
Hilbert’s Nullstellensatz

Alexander Maletzky∗

March 17, 2025

Abstract

This entry formalizes Hilbert’s Nullstellensatz, an important the-
orem in algebraic geometry that can be viewed as the generalization
of the Fundamental Theorem of Algebra to multivariate polynomials:
If a set of (multivariate) polynomials over an algebraically closed field
has no common zero, then the ideal it generates is the entire poly-
nomial ring. The formalization proves several equivalent versions of
this celebrated theorem: the weak Nullstellensatz, the strong Null-
stellensatz (connecting algebraic varieties and radical ideals), and the
field-theoretic Nullstellensatz. The formalization follows Chapter 4.1.
of Ideals, Varieties, and Algorithms by Cox, Little and O’Shea.

Contents
1 Algebraically Closed Fields 2

2 Properties of the Lexicographic Order on Power-Products 6

3 Polynomial Mappings and Univariate Polynomials 9
3.1 Morphisms pm-of-poly and poly-of-pm 9
3.2 Evaluating Polynomials . 16
3.3 Morphisms flat-pm-of-poly and poly-of-focus 17

4 Hilbert’s Nullstellensatz 20
4.1 Preliminaries . 20
4.2 Ideals and Varieties . 23
4.3 Radical Ideals . 27
4.4 Geometric Version of the Nullstellensatz 31

5 Field-Theoretic Version of Hilbert’s Nullstellensatz 52
5.1 Getting Rid of Sort Constraints in Geometric Version 52
5.2 Field-Theoretic Version of the Nullstellensatz 57

∗Funded by the Austrian Science Fund (FWF): grant no. P 29498-N31

1

1 Algebraically Closed Fields
theory Algebraically-Closed-Fields

imports HOL−Computational-Algebra.Fundamental-Theorem-Algebra
begin

lemma prod-eq-zeroE :
assumes prod f I = (0 :: ′a::{semiring-no-zero-divisors,comm-monoid-mult,zero-neq-one})
obtains i where finite I and i ∈ I and f i = 0

proof −
have finite I
proof (rule ccontr)

assume infinite I
with assms show False by simp

qed
moreover from this assms obtain i where i ∈ I and f i = 0
proof (induct I arbitrary: thesis)

case empty
from empty(2) show ?case by simp

next
case (insert j I)
from insert.hyps(1 , 2) have f j ∗ prod f I = prod f (insert j I) by simp
also have . . . = 0 by fact
finally have f j = 0 ∨ prod f I = 0 by simp
thus ?case
proof

assume f j = 0
with - show ?thesis by (rule insert.prems) simp

next
assume prod f I = 0
then obtain i where i ∈ I and f i = 0 using insert.hyps(3) by blast
from - this(2) show ?thesis by (rule insert.prems) (simp add: ‹i ∈ I ›)

qed
qed
ultimately show ?thesis ..

qed

lemma degree-prod-eq:
assumes finite I and

∧
i. i ∈ I =⇒ f i 6= 0

shows Polynomial.degree (prod f I :: -::semiring-no-zero-divisors poly) = (
∑

i∈I .
Polynomial.degree (f i))

using assms
proof (induct I)

case empty
show ?case by simp

next
case (insert j J)
have 1 : f i 6= 0 if i ∈ J for i
proof (rule insert.prems)

2

from that show i ∈ insert j J by simp
qed
hence eq: Polynomial.degree (prod f J) = (

∑
i∈J . Polynomial.degree (f i)) by

(rule insert.hyps)
from insert.hyps(1 , 2) have Polynomial.degree (prod f (insert j J)) = Polyno-

mial.degree (f j ∗ prod f J)
by simp

also have . . . = Polynomial.degree (f j) + Polynomial.degree (prod f J)
proof (rule degree-mult-eq)

show f j 6= 0 by (rule insert.prems) simp
next

show prod f J 6= 0
proof

assume prod f J = 0
then obtain i where i ∈ J and f i = 0 by (rule prod-eq-zeroE)
from this(1) have f i 6= 0 by (rule 1)
thus False using ‹f i = 0 › ..

qed
qed
also from insert.hyps(1 , 2) have . . . = (

∑
i∈insert j J . Polynomial.degree (f

i)) by (simp add: eq)
finally show ?case .

qed

class alg-closed-field =
assumes alg-closed-field-axiom:

∧
p:: ′a::field poly. 0 < Polynomial.degree p =⇒

∃ z. poly p z = 0
begin

lemma rootE :
assumes 0 < Polynomial.degree p
obtains z where poly p z = (0 :: ′a)

proof −
from assms have ∃ z. poly p z = 0 by (rule alg-closed-field-axiom)
then obtain z where poly p z = 0 ..
thus ?thesis ..

qed

lemma infinite-UNIV : infinite (UNIV :: ′a set)
proof

assume fin: finite (UNIV :: ′a set)
define p where p = (

∏
a∈UNIV . [:− a, 1 :: ′a:]) + [:−1 :]

have Polynomial.degree (
∏

a∈UNIV . [:− a, 1 :: ′a:]) = (
∑

a∈UNIV . Polyno-
mial.degree [:− a, 1 :: ′a:])

using fin by (rule degree-prod-eq) simp
also have . . . = (

∑
a∈(UNIV :: ′a set). 1) by simp

also have . . . = card (UNIV :: ′a set) by simp
also from fin have . . . > 0 by (rule finite-UNIV-card-ge-0)
finally have 0 < Polynomial.degree (

∏
a∈UNIV . [:− a, 1 :: ′a:]) .

3

hence Polynomial.degree [:−1 :] < Polynomial.degree (
∏

a∈UNIV . [:− a, 1 :: ′a:])
by simp

hence Polynomial.degree p = Polynomial.degree (
∏

a∈UNIV . [:− a, 1 :: ′a:]) un-
folding p-def

by (rule degree-add-eq-left)
also have . . . > 0 by fact
finally have 0 < Polynomial.degree p .
then obtain z where poly p z = 0 by (rule rootE)
hence (

∏
a∈UNIV . (z − a)) = 1 by (simp add: p-def poly-prod)

thus False by (metis UNIV-I cancel-comm-monoid-add-class.diff-cancel fin one-neq-zero
prod-zero-iff)
qed

lemma linear-factorsE :
fixes p :: ′a poly
obtains c A m where finite A and p = Polynomial.smult c (

∏
a∈A. [:− a, 1 :]

^ m a)
and

∧
a. m a = 0 ←→ a /∈ A and c = 0 ←→ p = 0 and

∧
z. poly p z = 0

←→ (c = 0 ∨ z ∈ A)
proof −

obtain c A m where fin: finite A and p: p = Polynomial.smult c (
∏

a∈A. [:−
a, 1 :] ^ m a)

and ∗:
∧

x. m x = 0 ←→ x /∈ A
proof (induct p arbitrary: thesis rule: poly-root-induct[where P=λ-. True])

case 0
show ?case
proof (rule 0)

show 0 = Polynomial.smult 0 (
∏

a∈{}. [:− a, 1 :] ^ (λ-. 0) a) by simp
qed simp-all

next
case (no-roots p)
have Polynomial.degree p = 0
proof (rule ccontr)

assume Polynomial.degree p 6= 0
hence 0 < Polynomial.degree p by simp
then obtain z where poly p z = 0 by (rule rootE)
moreover have poly p z 6= 0 by (rule no-roots) blast
ultimately show False by simp

qed
then obtain c where p: p = [:c:] by (rule degree-eq-zeroE)
show ?case
proof (rule no-roots)

show p = Polynomial.smult c (
∏

a∈{}. [:− a, 1 :] ^ (λ-. 0) a) by (simp add:
p)

qed simp-all
next

case (root a p)
obtain A c m where 1 : finite A and p: p = Polynomial.smult c (

∏
a∈A. [:−

a, 1 :] ^ m a)

4

and 2 :
∧

x. m x = 0 ←→ x /∈ A by (rule root.hyps) blast
define m ′ where m ′ = (λx. if x = a then Suc (m x) else m x)
show ?case
proof (rule root.prems)

from 1 show finite (insert a A) by simp
next

have [:a, − 1 :] ∗ p = [:− a, 1 :] ∗ (− p) by simp
also have . . . = [:− a, 1 :] ∗ (Polynomial.smult (− c) (

∏
a∈A. [:− a, 1 :] ^ m

a))
by (simp add: p)

also have . . . = Polynomial.smult (− c) ([:− a, 1 :] ∗ (
∏

a∈A. [:− a, 1 :] ^ m
a))

by (simp only: mult-smult-right ac-simps)
also have [:− a, 1 :] ∗ (

∏
a∈A. [:− a, 1 :] ^ m a) = (

∏
a∈insert a A. [:− a,

1 :] ^ m ′ a)
proof (cases a ∈ A)

case True
with 1 have (

∏
a∈A. [:− a, 1 :] ^ m a) = [:− a, 1 :] ^ m a ∗ (

∏
a∈A−{a}.

[:− a, 1 :] ^ m a)
by (simp add: prod.remove)

also from refl have (
∏

a∈A−{a}. [:− a, 1 :] ^ m a) = (
∏

a∈A−{a}. [:−
a, 1 :] ^ m ′ a)

by (rule prod.cong) (simp add: m ′-def)
finally have [:− a, 1 :] ∗ (

∏
a∈A. [:− a, 1 :] ^ m a) =

([:− a, 1 :] ∗ [:− a, 1 :] ^ m a) ∗ (
∏

a∈A − {a}. [:− a, 1 :] ^
m ′ a)

by (simp only: mult.assoc)
also have [:− a, 1 :] ∗ [:− a, 1 :] ^ m a = [:− a, 1 :] ^ m ′ a by (simp add:

m ′-def)
finally show ?thesis using 1 by (simp add: prod.insert-remove)

next
case False
with 1 have (

∏
a∈insert a A. [:− a, 1 :] ^ m ′ a) = [:− a, 1 :] ^ m ′ a ∗

(
∏

a∈A. [:− a, 1 :] ^ m ′ a)
by simp

also from refl have (
∏

a∈A. [:− a, 1 :] ^ m ′ a) = (
∏

a∈A. [:− a, 1 :] ^ m
a)

proof (rule prod.cong)
fix x
assume x ∈ A
with False have x 6= a by blast
thus [:− x, 1 :] ^ m ′ x = [:− x, 1 :] ^ m x by (simp add: m ′-def)

qed
finally have (

∏
a∈insert a A. [:− a, 1 :] ^ m ′ a) = [:− a, 1 :] ^ m ′ a ∗

(
∏

a∈A. [:− a, 1 :] ^ m a) .
also from False have m ′ a = 1 by (simp add: m ′-def 2)
finally show ?thesis by simp

qed
finally show [:a, − 1 :] ∗ p = Polynomial.smult (− c) (

∏
a∈insert a A. [:−

5

a, 1 :] ^ m ′ a) .
next

fix x
show m ′ x = 0 ←→ x /∈ insert a A by (simp add: m ′-def 2)

qed
qed
moreover have c = 0 ←→ p = 0
proof

assume p = 0
hence [:c:] = 0 ∨ (

∏
a∈A. [:− a, 1 :] ^ m a) = 0 by (simp add: p)

thus c = 0
proof

assume [:c:] = 0
thus ?thesis by simp

next
assume (

∏
a∈A. [:− a, 1 :] ^ m a) = 0

then obtain a where [:− a, 1 :] ^ m a = 0 by (rule prod-eq-zeroE)
thus ?thesis by simp

qed
qed (simp add: p)
moreover {

fix z
have 0 < m z if z ∈ A by (rule ccontr) (simp add: ∗ that)
hence poly p z = 0 ←→ (c = 0 ∨ z ∈ A) by (auto simp: p poly-prod ∗ fin

elim: prod-eq-zeroE)
}
ultimately show ?thesis ..

qed

end

instance complex :: alg-closed-field
by standard (rule fundamental-theorem-of-algebra, simp add: constant-degree)

end

2 Properties of the Lexicographic Order on Power-
Products

theory Lex-Order-PP
imports Polynomials.Power-Products

begin

We prove some useful properties of the purely lexicographic order relation
on power-products.
lemma lex-pm-keys-leE :

assumes lex-pm s t and x ∈ keys (s:: ′x::linorder ⇒0
′a::add-linorder-min)

obtains y where y ∈ keys t and y ≤ x

6

using assms(1) unfolding lex-pm-alt
proof (elim disjE exE conjE)

assume s = t
show ?thesis
proof

from assms(2) show x ∈ keys t by (simp only: ‹s = t›)
qed (fact order .refl)

next
fix y
assume 1 : lookup s y < lookup t y and 2 : ∀ y ′<y. lookup s y ′ = lookup t y ′

show ?thesis
proof (cases y ≤ x)

case True
from zero-min 1 have 0 < lookup t y by (rule le-less-trans)
hence y ∈ keys t by (simp add: dual-order .strict-implies-not-eq in-keys-iff)
thus ?thesis using True ..

next
case False
hence x < y by simp
with 2 have lookup s x = lookup t x by simp
with assms(2) have x ∈ keys t by (simp only: in-keys-iff not-False-eq-True)
thus ?thesis using order .refl ..

qed
qed

lemma lex-pm-except-max:
assumes lex-pm s t and keys s ∪ keys t ⊆ {..x}
shows lex-pm (except s {x}) (except t {x})

proof −
from assms(1) have s = t ∨ (∃ x. lookup s x < lookup t x ∧ (∀ y<x. lookup s y

= lookup t y))
by (simp only: lex-pm-alt)

thus ?thesis
proof (elim disjE exE conjE)

assume s = t
thus ?thesis by (simp only: lex-pm-refl)

next
fix y
assume ∀ z<y. lookup s z = lookup t z
hence eq: lookup s z = lookup t z if z < y for z using that by simp
assume ∗: lookup s y < lookup t y
hence y ∈ keys s ∪ keys t by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
with assms(2) have y ∈ {..x} ..
hence y = x ∨ y < x by auto
thus ?thesis
proof

assume y: y = x
have except s {x} = except t {x}
proof (rule poly-mapping-eqI)

7

fix z
show lookup (except s {x}) z = lookup (except t {x}) z
proof (rule linorder-cases)

assume z < y
thus ?thesis by (simp add: lookup-except eq)

next
assume y < z
hence z /∈ {..x} by (simp add: y)
with assms(2) have z /∈ keys s and z /∈ keys t by blast+
with ‹y < z› show ?thesis by (simp add: y lookup-except in-keys-iff)

next
assume z = y
thus ?thesis by (simp add: y lookup-except)

qed
qed
thus ?thesis by (simp only: lex-pm-refl)

next
assume y < x
show ?thesis unfolding lex-pm-alt
proof (intro disjI2 exI conjI allI impI)

from ‹y < x› ∗ show lookup (except s {x}) y < lookup (except t {x}) y
by (simp add: lookup-except)

next
fix z
assume z < y
hence z < x using ‹y < x› by (rule less-trans)
with ‹z < y› show lookup (except s {x}) z = lookup (except t {x}) z

by (simp add: lookup-except eq)
qed

qed
qed

qed

lemma lex-pm-strict-plus-left:
assumes lex-pm-strict s t and

∧
x y. x ∈ keys t =⇒ y ∈ keys u =⇒ x < y

shows lex-pm-strict (u + s) (t::- ⇒0
′a::add-linorder-min)

proof −
from assms(1) obtain x where 1 : lookup s x < lookup t x and 2 :

∧
y. y < x

=⇒ lookup s y = lookup t y
by (auto simp: lex-pm-strict-def less-poly-mapping-def less-fun-def)

from 1 have x ∈ keys t by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
have lookup-u: lookup u z = 0 if z ≤ x for z
proof (rule ccontr)

assume lookup u z 6= 0
hence z ∈ keys u by (simp add: in-keys-iff)
with ‹x ∈ keys t› have x < z by (rule assms(2))
with that show False by simp

qed
from 1 have lookup (u + s) x < lookup t x by (simp add: lookup-add lookup-u)

8

moreover have lookup (u + s) y = lookup t y if y < x for y using that
by (simp add: lookup-add 2 lookup-u)

ultimately show ?thesis by (auto simp: lex-pm-strict-def less-poly-mapping-def
less-fun-def)
qed

end

3 Polynomial Mappings and Univariate Polynomi-
als

theory Univariate-PM
imports HOL−Computational-Algebra.Polynomial Polynomials.MPoly-PM

begin

3.1 Morphisms pm-of-poly and poly-of-pm

Many things in this section are copied from theory Polynomials.MPoly-Type-Univariate.
lemma pm-of-poly-aux:
{t. (poly.coeff p (lookup t x) when t ∈ .[{x}]) 6= 0} =

Poly-Mapping.single x ‘ {d. poly.coeff p d 6= 0} (is ?M = -)
proof (intro subset-antisym subsetI)

fix t
assume t ∈ ?M
hence

∧
y. y 6= x =⇒ Poly-Mapping.lookup t y = 0 by (fastforce simp: PPs-def

in-keys-iff)
hence t = Poly-Mapping.single x (lookup t x)
using poly-mapping-eqI by (metis (full-types) lookup-single-eq lookup-single-not-eq)
then show t ∈ (Poly-Mapping.single x) ‘ {d. poly.coeff p d 6= 0} using ‹t ∈

?M › by auto
qed (auto split: if-splits simp: PPs-def)

lift-definition pm-of-poly :: ′x ⇒ ′a poly ⇒ (′x ⇒0 nat)⇒0
′a::comm-monoid-add

is λx p t. (poly.coeff p (lookup t x)) when t ∈ .[{x}]
proof −

fix x:: ′x and p:: ′a poly
show finite {t. (poly.coeff p (lookup t x) when t ∈ .[{x}]) 6= 0} unfolding

pm-of-poly-aux
using finite-surj[OF MOST-coeff-eq-0 [unfolded eventually-cofinite]] by blast

qed

definition poly-of-pm :: ′x ⇒ ((′x ⇒0 nat) ⇒0
′a) ⇒ ′a::comm-monoid-add poly

where poly-of-pm x p = Abs-poly (λd. lookup p (Poly-Mapping.single x d))

lemma lookup-pm-of-poly-single [simp]:
lookup (pm-of-poly x p) (Poly-Mapping.single x d) = poly.coeff p d
by (simp add: pm-of-poly.rep-eq PPs-closed-single)

9

lemma keys-pm-of-poly: keys (pm-of-poly x p) = Poly-Mapping.single x ‘ {d. poly.coeff
p d 6= 0}
proof −

have keys (pm-of-poly x p) = {t. (poly.coeff p (lookup t x) when t ∈ .[{x}]) 6= 0}
by (rule set-eqI) (simp add: pm-of-poly.rep-eq flip: lookup-not-eq-zero-eq-in-keys)
also have . . . = Poly-Mapping.single x ‘ {d. poly.coeff p d 6= 0} by (fact

pm-of-poly-aux)
finally show ?thesis .

qed

lemma coeff-poly-of-pm [simp]: poly.coeff (poly-of-pm x p) k = lookup p (Poly-Mapping.single
x k)
proof −

have 0 :Poly-Mapping.single x ‘ {d. lookup p (Poly-Mapping.single x d) 6= 0} ⊆
{d. lookup p d 6= 0}

by auto
have ∀∞ k. lookup p (Poly-Mapping.single x k) = 0 unfolding coeff-def even-

tually-cofinite
using finite-imageD[OF finite-subset[OF 0 Poly-Mapping.finite-lookup]] inj-single
by (metis inj-eq inj-onI)

then show ?thesis by (simp add: poly-of-pm-def Abs-poly-inverse)
qed

lemma pm-of-poly-of-pm:
assumes p ∈ P[{x}]
shows pm-of-poly x (poly-of-pm x p) = p

proof (rule poly-mapping-eqI)
fix t
from assms have keys p ⊆ .[{x}] by (rule PolysD)
show lookup (pm-of-poly x (poly-of-pm x p)) t = lookup p t
proof (simp add: pm-of-poly.rep-eq when-def , intro conjI impI)

assume t ∈ .[{x}]
hence Poly-Mapping.single x (lookup t x) = t

by (simp add: PPsD keys-subset-singleton-imp-monomial)
thus lookup p (Poly-Mapping.single x (lookup t x)) = lookup p t by simp

next
assume t /∈ .[{x}]
with assms PolysD have t /∈ keys p by blast
thus lookup p t = 0 by (simp add: in-keys-iff)

qed
qed

lemma poly-of-pm-of-poly [simp]: poly-of-pm x (pm-of-poly x p) = p
by (simp add: poly-of-pm-def coeff-inverse)

lemma pm-of-poly-in-Polys: pm-of-poly x p ∈ P[{x}]
by (auto simp: keys-pm-of-poly PPs-closed-single intro!: PolysI)

lemma pm-of-poly-zero [simp]: pm-of-poly x 0 = 0

10

by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq)

lemma pm-of-poly-eq-zero-iff [iff]: pm-of-poly x p = 0 ←→ p = 0
by (metis poly-of-pm-of-poly pm-of-poly-zero)

lemma pm-of-poly-monom: pm-of-poly x (Polynomial.monom c d) = monomial c
(Poly-Mapping.single x d)
proof (rule poly-mapping-eqI)

fix t
show lookup (pm-of-poly x (Polynomial.monom c d)) t = lookup (monomial c

(monomial d x)) t
proof (cases t ∈ .[{x}])

case True
thus ?thesis

by (auto simp: pm-of-poly.rep-eq lookup-single PPs-singleton when-def dest:
monomial-inj)

next
case False
thus ?thesis by (auto simp add: pm-of-poly.rep-eq lookup-single PPs-singleton)

qed
qed

lemma pm-of-poly-plus: pm-of-poly x (p + q) = pm-of-poly x p + pm-of-poly x q
by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq lookup-add when-add-distrib)

lemma pm-of-poly-uminus [simp]: pm-of-poly x (− p) = − pm-of-poly x p
by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq when-distrib)

lemma pm-of-poly-minus: pm-of-poly x (p − q) = pm-of-poly x p − pm-of-poly x
q
by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq lookup-minus when-diff-distrib)

lemma pm-of-poly-one [simp]: pm-of-poly x 1 = 1
by (simp add: pm-of-poly-monom flip: single-one monom-eq-1)

lemma pm-of-poly-pCons:
pm-of-poly x (pCons c p) =

monomial c 0 + punit.monom-mult (1 ::-::monoid-mult) (Poly-Mapping.single
x 1) (pm-of-poly x p)

(is ?l = ?r)
proof (rule poly-mapping-eqI)

fix t
let ?x = Poly-Mapping.single x (Suc 0)
show lookup ?l t = lookup ?r t
proof (cases ?x adds t)

case True
have 1 : t − ?x ∈ .[{x}] ←→ t ∈ .[{x}]
proof

assume t − ?x ∈ .[{x}]

11

moreover have ?x ∈ .[{x}] by (rule PPs-closed-single) simp
ultimately have (t − ?x) + ?x ∈ .[{x}] by (rule PPs-closed-plus)
with True show t ∈ .[{x}] by (simp add: adds-minus)

qed (rule PPs-closed-minus)
from True have 0 < lookup t x

by (metis adds-minus lookup-add lookup-single-eq n-not-Suc-n neq0-conv
plus-eq-zero-2)

moreover from this have t 6= 0 by auto
ultimately show ?thesis using True
by (simp add: pm-of-poly.rep-eq lookup-add lookup-single punit.lookup-monom-mult

1 coeff-pCons
lookup-minus split: nat.split)

next
case False
moreover have t ∈ .[{x}] ←→ t = 0
proof

assume t ∈ .[{x}]
hence keys t ⊆ {x} by (rule PPsD)
show t = 0
proof (rule ccontr)

assume t 6= 0
hence keys t 6= {} by simp
then obtain y where y ∈ keys t by blast
with ‹keys t ⊆ {x}› have y ∈ {x} ..
hence y = x by simp
with ‹y ∈ keys t› have Suc 0 ≤ lookup t x by (simp add: in-keys-iff)
hence ?x adds t

by (metis adds-poly-mappingI le0 le-funI lookup-single-eq lookup-single-not-eq)
with False show False ..

qed
qed (simp only: zero-in-PPs)
ultimately show ?thesis
by (simp add: pm-of-poly.rep-eq lookup-add lookup-single punit.lookup-monom-mult

when-def)
qed

qed

lemma pm-of-poly-smult [simp]: pm-of-poly x (Polynomial.smult c p) = c · pm-of-poly
x p

by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq when-distrib)

lemma pm-of-poly-times: pm-of-poly x (p ∗ q) = pm-of-poly x p ∗ pm-of-poly x
(q::-::ring-1 poly)
proof (induct p)

case 0
show ?case by simp

next
case (pCons a p)
show ?case

12

by (simp add: pm-of-poly-plus pm-of-poly-pCons map-scale-eq-times pCons(2)
algebra-simps

flip: times-monomial-left)
qed

lemma pm-of-poly-sum: pm-of-poly x (sum f I) = (
∑

i∈I . pm-of-poly x (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: pm-of-poly-plus)

lemma pm-of-poly-prod: pm-of-poly x (prod f I) = (
∏

i∈I . pm-of-poly x (f i ::
-::ring-1 poly))

by (induct I rule: infinite-finite-induct) (simp-all add: pm-of-poly-times)

lemma pm-of-poly-power [simp]: pm-of-poly x (p ^ m) = pm-of-poly x (p::-::ring-1
poly) ^ m

by (induct m) (simp-all add: pm-of-poly-times)

lemma poly-of-pm-zero [simp]: poly-of-pm x 0 = 0
by (metis poly-of-pm-of-poly pm-of-poly-zero)

lemma poly-of-pm-eq-zero-iff : poly-of-pm x p = 0 ←→ keys p ∩ .[{x}] = {}
proof

assume eq: poly-of-pm x p = 0
{

fix t
assume t ∈ .[{x}]
then obtain d where t = Poly-Mapping.single x d unfolding PPs-singleton

..
moreover assume t ∈ keys p

ultimately have 0 6= lookup p (Poly-Mapping.single x d) by (simp add:
in-keys-iff)

also have lookup p (Poly-Mapping.single x d) = Polynomial.coeff (poly-of-pm
x p) d

by simp
also have . . . = 0 by (simp add: eq)
finally have False by blast

}
thus keys p ∩ .[{x}] = {} by blast

next
assume ∗: keys p ∩ .[{x}] = {}
{

fix d
have Poly-Mapping.single x d ∈ .[{x}] (is ?x ∈ -) by (rule PPs-closed-single)

simp
with ∗ have ?x /∈ keys p by blast
hence Polynomial.coeff (poly-of-pm x p) d = 0 by (simp add: in-keys-iff)

}
thus poly-of-pm x p = 0 using leading-coeff-0-iff by blast

qed

13

lemma poly-of-pm-monomial:
poly-of-pm x (monomial c t) = (Polynomial.monom c (lookup t x) when t ∈

.[{x}])
proof (cases t ∈ .[{x}])

case True
moreover from this obtain d where t = Poly-Mapping.single x d

by (metis PPsD keys-subset-singleton-imp-monomial)
ultimately show ?thesis unfolding Polynomial.monom.abs-eq coeff-poly-of-pm

by (auto simp: poly-of-pm-def lookup-single when-def
dest!: monomial-inj intro!: arg-cong[where f=Abs-poly])

next
case False
moreover from this have t 6= monomial d x for d by (auto simp: PPs-closed-single)
ultimately show ?thesis unfolding Polynomial.monom.abs-eq coeff-poly-of-pm

by (auto simp: poly-of-pm-def lookup-single when-def zero-poly.abs-eq)
qed

lemma poly-of-pm-plus: poly-of-pm x (p + q) = poly-of-pm x p + poly-of-pm x q
unfolding Polynomial.plus-poly.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def

lookup-add)

lemma poly-of-pm-uminus [simp]: poly-of-pm x (− p) = − poly-of-pm x p
unfolding Polynomial.uminus-poly.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def)

lemma poly-of-pm-minus: poly-of-pm x (p − q) = poly-of-pm x p − poly-of-pm x
q
unfolding Polynomial.minus-poly.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def

lookup-minus)

lemma poly-of-pm-one [simp]: poly-of-pm x 1 = 1
by (simp add: poly-of-pm-monomial zero-in-PPs flip: single-one monom-eq-1)

lemma poly-of-pm-times:
poly-of-pm x (p ∗ q) = poly-of-pm x p ∗ poly-of-pm x (q::-⇒0

′a::comm-semiring-1)
proof −

have eq: poly-of-pm x (monomial c t ∗ q) = poly-of-pm x (monomial c t) ∗
poly-of-pm x q

if c 6= 0 for c t
proof (cases t ∈ .[{x}])

case True
then obtain d where t: t = Poly-Mapping.single x d unfolding PPs-singleton

..
have poly-of-pm x (monomial c t) ∗ poly-of-pm x q = Polynomial.monom c

(lookup t x) ∗ poly-of-pm x q
by (simp add: True poly-of-pm-monomial)

also have . . . = poly-of-pm x (monomial c t ∗ q) unfolding t
proof (induct d)

case 0
have Polynomial.smult c (poly-of-pm x q) = poly-of-pm x (c · q)

14

unfolding Polynomial.smult.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def)
with that show ?case by (simp add: Polynomial.times-poly-def flip: map-scale-eq-times)
next

case (Suc d)
have 1 : Poly-Mapping.single x a adds Poly-Mapping.single x b ←→ a ≤ b for

a b :: nat
by (metis adds-def deg-pm-mono deg-pm-single le-Suc-ex single-add)

have 2 : poly-of-pm x (punit.monom-mult 1 (Poly-Mapping.single x 1) r) =
pCons 0 (poly-of-pm x r)

for r :: - ⇒0
′a unfolding poly.coeff-inject[symmetric]

by (rule ext) (simp add: coeff-pCons punit.lookup-monom-mult adds-zero
monomial-0-iff 1

flip: single-diff split: nat.split)
from Suc that have Polynomial.monom c (lookup (monomial (Suc d) x) x)

∗ poly-of-pm x q =
poly-of-pm x (punit.monom-mult 1 (Poly-Mapping.single x 1)

((monomial c (monomial d x)) ∗ q))
by (simp add: Polynomial.times-poly-def 2 del: One-nat-def)

also have . . . = poly-of-pm x (monomial c (Poly-Mapping.single x (Suc d))
∗ q)

by (simp add: ac-simps times-monomial-monomial flip: single-add times-monomial-left)
finally show ?case .

qed
finally show ?thesis by (rule sym)

next
case False
{

fix s
assume s ∈ keys (monomial c t ∗ q)
also have . . . ⊆ (+) t ‘ keys q unfolding times-monomial-left

by (fact punit.keys-monom-mult-subset[simplified])
finally obtain u where s: s = t + u ..
assume s ∈ .[{x}]
hence s − u ∈ .[{x}] by (rule PPs-closed-minus)
hence t ∈ .[{x}] by (simp add: s)
with False have False ..

}
hence poly-of-pm x (monomial c t ∗ q) = 0 by (auto simp: poly-of-pm-eq-zero-iff)
with False show ?thesis by (simp add: poly-of-pm-monomial)

qed
show ?thesis

by (induct p rule: poly-mapping-plus-induct) (simp-all add: poly-of-pm-plus eq
distrib-right)
qed

lemma poly-of-pm-sum: poly-of-pm x (sum f I) = (
∑

i∈I . poly-of-pm x (f i))
by (induct I rule: infinite-finite-induct) (simp-all add: poly-of-pm-plus)

lemma poly-of-pm-prod: poly-of-pm x (prod f I) = (
∏

i∈I . poly-of-pm x (f i))

15

by (induct I rule: infinite-finite-induct) (simp-all add: poly-of-pm-times)

lemma poly-of-pm-power [simp]: poly-of-pm x (p ^ m) = poly-of-pm x p ^ m
by (induct m) (simp-all add: poly-of-pm-times)

3.2 Evaluating Polynomials
lemma poly-eq-poly-eval: poly (poly-of-pm x p) a = poly-eval (λy. a when y = x)
p
proof (induction p rule: poly-mapping-plus-induct)

case 1
show ?case by simp

next
case (2 p c t)
show ?case
proof (cases t ∈ .[{x}])

case True
have poly-eval (λy. a when y = x) (monomial c t) = c ∗ (

∏
y∈keys t. (a when

y = x) ^ lookup t y)
by (simp only: poly-eval-monomial)

also from True have (
∏

y∈keys t. (a when y = x) ^ lookup t y) = (
∏

y∈{x}.
(a when y = x) ^ lookup t y)

by (intro prod.mono-neutral-left ballI) (auto simp: in-keys-iff dest: PPsD)
also have . . . = a ^ lookup t x by simp
finally show ?thesis
by (simp add: poly-of-pm-plus poly-of-pm-monomial poly-monom poly-eval-plus

True 2 (3))
next

case False
have poly-eval (λy. a when y = x) (monomial c t) = c ∗ (

∏
y∈keys t. (a when

y = x) ^ lookup t y)
by (simp only: poly-eval-monomial)

also from finite-keys have (
∏

y∈keys t. (a when y = x) ^ lookup t y) = 0
proof (rule prod-zero)

from False obtain y where y ∈ keys t and y 6= x by (auto simp: PPs-def)
from this(1) show ∃ y∈keys t. (a when y = x) ^ lookup t y = 0
proof

from ‹y ∈ keys t› have 0 < lookup t y by (simp add: in-keys-iff)
with ‹y 6= x› show (a when y = x) ^ lookup t y = 0 by (simp add:

zero-power)
qed

qed
finally show ?thesis
by (simp add: poly-of-pm-plus poly-of-pm-monomial poly-monom poly-eval-plus

False 2 (3))
qed

qed

corollary poly-eq-poly-eval ′:

16

assumes p ∈ P[{x}]
shows poly (poly-of-pm x p) a = poly-eval (λ-. a) p
unfolding poly-eq-poly-eval using refl

proof (rule poly-eval-cong)
fix y
assume y ∈ indets p
also from assms have . . . ⊆ {x} by (rule PolysD)
finally show (a when y = x) = a by simp

qed

lemma poly-eval-eq-poly: poly-eval a (pm-of-poly x p) = poly p (a x)
by (induct p)
(simp-all add: pm-of-poly-pCons poly-eval-plus poly-eval-times poly-eval-monomial

flip: times-monomial-left)

3.3 Morphisms flat-pm-of-poly and poly-of-focus
definition flat-pm-of-poly :: ′x ⇒ ((′x ⇒0 nat) ⇒0

′a) poly ⇒ ((′x ⇒0 nat) ⇒0
′a::semiring-1)

where flat-pm-of-poly x = flatten ◦ pm-of-poly x

definition poly-of-focus :: ′x ⇒ ((′x ⇒0 nat)⇒0
′a)⇒ ((′x ⇒0 nat)⇒0

′a::comm-monoid-add)
poly

where poly-of-focus x = poly-of-pm x ◦ focus {x}

lemma flat-pm-of-poly-in-Polys:
assumes range (poly.coeff p) ⊆ P[Y]
shows flat-pm-of-poly x p ∈ P[insert x Y]

proof −
let ?p = pm-of-poly x p
from assms have lookup ?p ‘ keys ?p ⊆ P[Y] by (simp add: keys-pm-of-poly

image-image) blast
with pm-of-poly-in-Polys have flatten ?p ∈ P[{x} ∪ Y] by (rule flatten-in-Polys)
thus ?thesis by (simp add: flat-pm-of-poly-def)

qed

corollary indets-flat-pm-of-poly-subset:
indets (flat-pm-of-poly x p) ⊆ insert x (

⋃
(indets ‘ range (poly.coeff p)))

proof −
let ?p = pm-of-poly x p
let ?Y =

⋃
(indets ‘ range (poly.coeff p))

have range (poly.coeff p) ⊆ P[?Y] by (auto intro: PolysI-alt)
hence flat-pm-of-poly x p ∈ P[insert x ?Y] by (rule flat-pm-of-poly-in-Polys)
thus ?thesis by (rule PolysD)

qed

lemma
shows flat-pm-of-poly-zero [simp]: flat-pm-of-poly x 0 = 0

and flat-pm-of-poly-monom: flat-pm-of-poly x (Polynomial.monom c d) =

17

punit.monom-mult 1 (Poly-Mapping.single x d) c
and flat-pm-of-poly-plus: flat-pm-of-poly x (p + q) =

flat-pm-of-poly x p + flat-pm-of-poly x q
and flat-pm-of-poly-one [simp]: flat-pm-of-poly x 1 = 1
and flat-pm-of-poly-sum: flat-pm-of-poly x (sum f I) = (

∑
i∈I . flat-pm-of-poly

x (f i))
by (simp-all add: flat-pm-of-poly-def pm-of-poly-monom flatten-monomial pm-of-poly-plus

flatten-plus pm-of-poly-sum flatten-sum)

lemma
shows flat-pm-of-poly-uminus [simp]: flat-pm-of-poly x (− p) = − flat-pm-of-poly

x p
and flat-pm-of-poly-minus: flat-pm-of-poly x (p − q) =

flat-pm-of-poly x p − flat-pm-of-poly x (q::-::ring poly)
by (simp-all add: flat-pm-of-poly-def pm-of-poly-minus flatten-minus)

lemma flat-pm-of-poly-pCons:
flat-pm-of-poly x (pCons c p) =
c + punit.monom-mult 1 (Poly-Mapping.single x 1) (flat-pm-of-poly x (p::-::comm-semiring-1

poly))
by (simp add: flat-pm-of-poly-def pm-of-poly-pCons flatten-plus flatten-monomial

flatten-times
flip: times-monomial-left)

lemma flat-pm-of-poly-smult [simp]:
flat-pm-of-poly x (Polynomial.smult c p) = c ∗ flat-pm-of-poly x (p::-::comm-semiring-1

poly)
by (simp add: flat-pm-of-poly-def map-scale-eq-times flatten-times flatten-monomial

pm-of-poly-times)

lemma
shows flat-pm-of-poly-times: flat-pm-of-poly x (p ∗ q) = flat-pm-of-poly x p ∗

flat-pm-of-poly x q
and flat-pm-of-poly-prod: flat-pm-of-poly x (prod f I) =

(
∏

i∈I . flat-pm-of-poly x (f i :: -::comm-ring-1 poly))
and flat-pm-of-poly-power : flat-pm-of-poly x (p ^ m) = flat-pm-of-poly x (p::-::comm-ring-1

poly) ^ m
by (simp-all add: flat-pm-of-poly-def flatten-times pm-of-poly-times flatten-prod

pm-of-poly-prod)

lemma coeff-poly-of-focus-subset-Polys:
assumes p ∈ P[X]
shows range (poly.coeff (poly-of-focus x p)) ⊆ P[X − {x}]

proof −
have range (poly.coeff (poly-of-focus x p)) ⊆ range (lookup (focus {x} p))

by (auto simp: poly-of-focus-def)
also from assms have . . . ⊆ P[X − {x}] by (rule focus-coeffs-subset-Polys ′)
finally show ?thesis .

qed

18

lemma
shows poly-of-focus-zero [simp]: poly-of-focus x 0 = 0

and poly-of-focus-uminus [simp]: poly-of-focus x (− p) = − poly-of-focus x p
and poly-of-focus-plus: poly-of-focus x (p + q) = poly-of-focus x p + poly-of-focus

x q
and poly-of-focus-minus: poly-of-focus x (p − q) = poly-of-focus x p − poly-of-focus

x q
and poly-of-focus-one [simp]: poly-of-focus x 1 = 1
and poly-of-focus-sum: poly-of-focus x (sum f I) = (

∑
i∈I . poly-of-focus x (f

i))
by (simp-all add: poly-of-focus-def keys-focus poly-of-pm-plus focus-plus poly-of-pm-minus

focus-minus
poly-of-pm-sum focus-sum)

lemma poly-of-focus-eq-zero-iff [iff]: poly-of-focus x p = 0 ←→ p = 0
using focus-in-Polys[of {x} p]
by (auto simp: poly-of-focus-def poly-of-pm-eq-zero-iff Int-absorb2 dest: PolysD)

lemma poly-of-focus-monomial:
poly-of-focus x (monomial c t) = Polynomial.monom (monomial c (except t {x}))

(lookup t x)
by (simp add: poly-of-focus-def focus-monomial poly-of-pm-monomial PPs-def

keys-except lookup-except)

lemma
shows poly-of-focus-times: poly-of-focus x (p ∗ q) = poly-of-focus x p ∗ poly-of-focus

x q
and poly-of-focus-prod: poly-of-focus x (prod f I) =

(
∏

i∈I . poly-of-focus x (f i :: - ⇒0 -::comm-semiring-1))
and poly-of-focus-power : poly-of-focus x (p ^ m) = poly-of-focus x (p::- ⇒0

-::comm-semiring-1) ^ m
by (simp-all add: poly-of-focus-def poly-of-pm-times focus-times poly-of-pm-prod

focus-prod)

lemma flat-pm-of-poly-of-focus [simp]: flat-pm-of-poly x (poly-of-focus x p) = p
by (simp add: flat-pm-of-poly-def poly-of-focus-def pm-of-poly-of-pm focus-in-Polys)

lemma poly-of-focus-flat-pm-of-poly:
assumes range (poly.coeff p) ⊆ P[− {x}]
shows poly-of-focus x (flat-pm-of-poly x p) = p

proof −
from assms have lookup (pm-of-poly x p) ‘ keys (pm-of-poly x p) ⊆ P[− {x}]

by (simp add: keys-pm-of-poly image-image) blast
thus ?thesis by (simp add: flat-pm-of-poly-def poly-of-focus-def focus-flatten pm-of-poly-in-Polys)

qed

lemma flat-pm-of-poly-eq-zeroD:
assumes flat-pm-of-poly x p = 0 and range (poly.coeff p) ⊆ P[− {x}]

19

shows p = 0
proof −

from assms(2) have p = poly-of-focus x (flat-pm-of-poly x p)
by (simp only: poly-of-focus-flat-pm-of-poly)

also have . . . = 0 by (simp add: assms(1))
finally show ?thesis .

qed

lemma poly-poly-of-focus: poly (poly-of-focus x p) a = poly-eval (λ-. a) (focus {x}
p)

by (simp add: poly-of-focus-def poly-eq-poly-eval ′ focus-in-Polys)

corollary poly-poly-of-focus-monomial:
poly (poly-of-focus x p) (monomial 1 (Poly-Mapping.single x 1)) = (p::- ⇒0

-::comm-semiring-1)
unfolding poly-poly-of-focus poly-eval-focus by (rule poly-subst-id) simp

end

4 Hilbert’s Nullstellensatz
theory Nullstellensatz

imports Algebraically-Closed-Fields
HOL−Computational-Algebra.Fraction-Field
Lex-Order-PP
Univariate-PM
Groebner-Bases.Groebner-PM

begin

We prove the geometric version of Hilbert’s Nullstellensatz, i.e. the pre-
cise correspondence between algebraic varieties and radical ideals. The
field-theoretic version of the Nullstellensatz is proved in theory Nullstel-
lensatz-Field.

4.1 Preliminaries
lemma finite-linorder-induct [consumes 1 , case-names empty insert]:

assumes finite (A:: ′a::linorder set) and P {}
and

∧
a A. finite A =⇒ A ⊆ {..<a} =⇒ P A =⇒ P (insert a A)

shows P A
proof −

define k where k = card A
thus ?thesis using assms(1)
proof (induct k arbitrary: A)

case 0
with assms(2) show ?case by simp

next
case (Suc k)

20

define a where a = Max A
from Suc.prems(1) have A 6= {} by auto
with Suc.prems(2) have a ∈ A unfolding a-def by (rule Max-in)
with Suc.prems have k = card (A − {a}) by simp
moreover from Suc.prems(2) have finite (A − {a}) by simp
ultimately have P (A − {a}) by (rule Suc.hyps)
with ‹finite (A − {a})› - have P (insert a (A − {a}))
proof (rule assms(3))

show A − {a} ⊆ {..<a}
proof

fix b
assume b ∈ A − {a}
hence b ∈ A and b 6= a by simp-all

moreover from Suc.prems(2) this(1) have b ≤ a unfolding a-def by
(rule Max-ge)

ultimately show b ∈ {..<a} by simp
qed

qed
with ‹a ∈ A› show ?case by (simp add: insert-absorb)

qed
qed

lemma Fract-same: Fract a a = (1 when a 6= 0)
by (simp add: One-fract-def Zero-fract-def eq-fract when-def)

lemma Fract-eq-zero-iff : Fract a b = 0 ←→ a = 0 ∨ b = 0
by (metis (no-types, lifting) Zero-fract-def eq-fract(1) eq-fract(2) mult-eq-0-iff

one-neq-zero)

lemma poly-plus-rightE :
obtains c where poly p (x + y) = poly p x + c ∗ y

proof (induct p arbitrary: thesis)
case 0
have poly 0 (x + y) = poly 0 x + 0 ∗ y by simp
thus ?case by (rule 0)

next
case (pCons a p)
obtain c where poly p (x + y) = poly p x + c ∗ y by (rule pCons.hyps)
hence poly (pCons a p) (x + y) = a + (x + y) ∗ (poly p x + c ∗ y) by simp
also have . . . = poly (pCons a p) x + (x ∗ c + (poly p x + c ∗ y)) ∗ y by (simp

add: algebra-simps)
finally show ?case by (rule pCons.prems)

qed

lemma poly-minus-rightE :
obtains c where poly p (x − y) = poly p x − c ∗ (y::-::comm-ring)
by (metis add-diff-cancel-right ′ diff-add-cancel poly-plus-rightE)

lemma map-poly-plus:

21

assumes f 0 = 0 and
∧

a b. f (a + b) = f a + f b
shows map-poly f (p + q) = map-poly f p + map-poly f q
by (rule Polynomial.poly-eqI) (simp add: coeff-map-poly assms)

lemma map-poly-minus:
assumes f 0 = 0 and

∧
a b. f (a − b) = f a − f b

shows map-poly f (p − q) = map-poly f p − map-poly f q
by (rule Polynomial.poly-eqI) (simp add: coeff-map-poly assms)

lemma map-poly-sum:
assumes f 0 = 0 and

∧
a b. f (a + b) = f a + f b

shows map-poly f (sum g A) = (
∑

a∈A. map-poly f (g a))
by (induct A rule: infinite-finite-induct) (simp-all add: map-poly-plus assms)

lemma map-poly-times:
assumes f 0 = 0 and

∧
a b. f (a + b) = f a + f b and

∧
a b. f (a ∗ b) = f a ∗

f b
shows map-poly f (p ∗ q) = map-poly f p ∗ map-poly f q

proof (induct p)
case 0
show ?case by simp

next
case (pCons c p)
show ?case by (simp add: assms map-poly-plus map-poly-smult map-poly-pCons

pCons)
qed

lemma poly-Fract:
assumes set (Polynomial.coeffs p) ⊆ range (λx. Fract x 1)
obtains q m where poly p (Fract a b) = Fract q (b ^ m)
using assms

proof (induct p arbitrary: thesis)
case 0
have poly 0 (Fract a b) = Fract 0 (b ^ 1) by (simp add: fract-collapse)
thus ?case by (rule 0)

next
case (pCons c p)
from pCons.hyps(1) have insert c (set (Polynomial.coeffs p)) = set (Polynomial.coeffs

(pCons c p))
by auto

with pCons.prems(2) have c ∈ range (λx. Fract x 1) and set (Polynomial.coeffs
p) ⊆ range (λx. Fract x 1)

by blast+
from this(2) obtain q0 m0 where poly-p: poly p (Fract a b) = Fract q0 (b ^

m0)
using pCons.hyps(2) by blast

from ‹c ∈ -› obtain c0 where c: c = Fract c0 1 ..
show ?case
proof (cases b = 0)

22

case True
hence poly (pCons c p) (Fract a b) = Fract c0 (b ^ 0) by (simp add: c

fract-collapse)
thus ?thesis by (rule pCons.prems)

next
case False
hence poly (pCons c p) (Fract a b) = Fract (c0 ∗ b ^ Suc m0 + a ∗ q0) (b ^

Suc m0)
by (simp add: poly-p c)

thus ?thesis by (rule pCons.prems)
qed

qed

lemma (in ordered-term) lt-sum-le-Max: lt (sum f A) �t ord-term-lin.Max {lt (f
a) | a. a ∈ A}
proof (induct A rule: infinite-finite-induct)

case (infinite A)
thus ?case by (simp add: min-term-min)

next
case empty
thus ?case by (simp add: min-term-min)

next
case (insert a A)
show ?case
proof (cases A = {})

case True
thus ?thesis by simp

next
case False
from insert.hyps(1 , 2) have lt (sum f (insert a A)) = lt (f a + sum f A) by

simp
also have . . . �t ord-term-lin.max (lt (f a)) (lt (sum f A)) by (rule lt-plus-le-max)
also have . . . �t ord-term-lin.max (lt (f a)) (ord-term-lin.Max {lt (f a) |a. a

∈ A})
using insert.hyps(3) ord-term-lin.max.mono by blast

also from insert.hyps(1) False have . . . = ord-term-lin.Max (insert (lt (f a))
{lt (f x) |x. x ∈ A})

by simp
also have . . . = ord-term-lin.Max {lt (f x) |x. x ∈ insert a A}

by (rule arg-cong[where f=ord-term-lin.Max]) blast
finally show ?thesis .

qed
qed

4.2 Ideals and Varieties
definition variety-of :: ((′x ⇒0 nat) ⇒0

′a) set ⇒ (′x ⇒ ′a::comm-semiring-1)
set

where variety-of F = {a. ∀ f∈F . poly-eval a f = 0}

23

definition ideal-of :: (′x ⇒ ′a::comm-semiring-1) set ⇒ ((′x ⇒0 nat) ⇒0
′a) set

where ideal-of A = {f . ∀ a∈A. poly-eval a f = 0}

abbreviation V ≡ variety-of
abbreviation I ≡ ideal-of

lemma variety-ofI : (
∧

f . f ∈ F =⇒ poly-eval a f = 0) =⇒ a ∈ V F
by (simp add: variety-of-def)

lemma variety-ofI-alt: poly-eval a ‘ F ⊆ {0} =⇒ a ∈ V F
by (auto intro: variety-ofI)

lemma variety-ofD: a ∈ V F =⇒ f ∈ F =⇒ poly-eval a f = 0
by (simp add: variety-of-def)

lemma variety-of-empty [simp]: V {} = UNIV
by (simp add: variety-of-def)

lemma variety-of-UNIV [simp]: V UNIV = {}
by (metis (mono-tags, lifting) Collect-empty-eq UNIV-I one-neq-zero poly-eval-one

variety-of-def)

lemma variety-of-antimono: F ⊆ G =⇒ V G ⊆ V F
by (auto simp: variety-of-def)

lemma variety-of-ideal [simp]: V (ideal F) = V F
proof

show V (ideal F) ⊆ V F by (intro variety-of-antimono ideal.span-superset)
next

show V F ⊆ V (ideal F)
proof (intro subsetI variety-ofI)

fix a f
assume a ∈ V F and f ∈ ideal F
from this(2) show poly-eval a f = 0
proof (induct f rule: ideal.span-induct-alt)

case base
show ?case by simp

next
case (step c f g)
with ‹a ∈ V F› show ?case by (auto simp: poly-eval-plus poly-eval-times

dest: variety-ofD)
qed

qed
qed

lemma ideal-ofI : (
∧

a. a ∈ A =⇒ poly-eval a f = 0) =⇒ f ∈ I A
by (simp add: ideal-of-def)

24

lemma ideal-ofD: f ∈ I A =⇒ a ∈ A =⇒ poly-eval a f = 0
by (simp add: ideal-of-def)

lemma ideal-of-empty [simp]: I {} = UNIV
by (simp add: ideal-of-def)

lemma ideal-of-antimono: A ⊆ B =⇒ I B ⊆ I A
by (auto simp: ideal-of-def)

lemma ideal-ideal-of [simp]: ideal (I A) = I A
unfolding ideal.span-eq-iff

proof (rule ideal.subspaceI)
show 0 ∈ I A by (rule ideal-ofI) simp

next
fix f g
assume f ∈ I A
hence f : poly-eval a f = 0 if a ∈ A for a using that by (rule ideal-ofD)
assume g ∈ I A
hence g: poly-eval a g = 0 if a ∈ A for a using that by (rule ideal-ofD)
show f + g ∈ I A by (rule ideal-ofI) (simp add: poly-eval-plus f g)

next
fix c f
assume f ∈ I A
hence f : poly-eval a f = 0 if a ∈ A for a using that by (rule ideal-ofD)
show c ∗ f ∈ I A by (rule ideal-ofI) (simp add: poly-eval-times f)

qed

lemma ideal-of-UN : I (
⋃

(A ‘ J)) = (
⋂

j∈J . I (A j))
proof (intro set-eqI iffI ideal-ofI INT-I)

fix p j a
assume p ∈ I (

⋃
(A ‘ J))

assume j ∈ J and a ∈ A j
hence a ∈

⋃
(A ‘ J) ..

with ‹p ∈ -› show poly-eval a p = 0 by (rule ideal-ofD)
next

fix p a
assume a ∈

⋃
(A ‘ J)

then obtain j where j ∈ J and a ∈ A j ..
assume p ∈ (

⋂
j∈J . I (A j))

hence p ∈ I (A j) using ‹j ∈ J › ..
thus poly-eval a p = 0 using ‹a ∈ A j› by (rule ideal-ofD)

qed

corollary ideal-of-Un: I (A ∪ B) = I A ∩ I B
using ideal-of-UN [of id {A, B}] by simp

lemma variety-of-ideal-of-variety [simp]: V (I (V F)) = V F (is - = ?V)
proof

have F ⊆ I (V F) by (auto intro!: ideal-ofI dest: variety-ofD)

25

thus V (I ?V) ⊆ ?V by (rule variety-of-antimono)
next

show ?V ⊆ V (I ?V) by (auto intro!: variety-ofI dest: ideal-ofD)
qed

lemma ideal-of-inj-on: inj-on I (range (V::((′x ⇒0 nat) ⇒0
′a::comm-semiring-1)

set ⇒ -))
proof (rule inj-onI)

fix A B :: (′x ⇒ ′a) set
assume A ∈ range V
then obtain F where A: A = V F ..
assume B ∈ range V
then obtain G where B: B = V G ..
assume I A = I B
hence V (I A) = V (I B) by simp
thus A = B by (simp add: A B)

qed

lemma ideal-of-variety-of-ideal [simp]: I (V (I A)) = I A (is - = ?I)
proof

have A ⊆ V (I A) by (auto intro!: variety-ofI dest: ideal-ofD)
thus I (V ?I) ⊆ ?I by (rule ideal-of-antimono)

next
show ?I ⊆ I (V ?I) by (auto intro!: ideal-ofI dest: variety-ofD)

qed

lemma variety-of-inj-on: inj-on V (range (I::(′x ⇒ ′a::comm-semiring-1) set ⇒
-))
proof (rule inj-onI)

fix F G :: ((′x ⇒0 nat) ⇒0
′a) set

assume F ∈ range I
then obtain A where F : F = I A ..
assume G ∈ range I
then obtain B where G: G = I B ..
assume V F = V G
hence I (V F) = I (V G) by simp
thus F = G by (simp add: F G)

qed

lemma image-map-indets-ideal-of :
assumes inj f
shows map-indets f ‘ I A = I ((λa. a ◦ f) −‘ (A::(′x ⇒ ′a::comm-semiring-1)

set)) ∩ P[range f]
proof −

{
fix p and a:: ′x ⇒ ′a
assume ∀ a∈(λa. a ◦ f) −‘ A. poly-eval (a ◦ f) p = 0
hence eq: poly-eval (a ◦ f) p = 0 if a ◦ f ∈ A for a using that by simp
have the-inv f ◦ f = id by (rule ext) (simp add: assms the-inv-f-f)

26

hence a: a = a ◦ the-inv f ◦ f by (simp add: comp-assoc)
moreover assume a ∈ A
ultimately have (a ◦ the-inv f) ◦ f ∈ A by simp
hence poly-eval ((a ◦ the-inv f) ◦ f) p = 0 by (rule eq)
hence poly-eval a p = 0 by (simp flip: a)

}
thus ?thesis

by (auto simp: ideal-of-def poly-eval-map-indets simp flip: range-map-indets
intro!: imageI)
qed

lemma variety-of-map-indets: V (map-indets f ‘ F) = (λa. a ◦ f) −‘ V F
by (auto simp: variety-of-def poly-eval-map-indets)

4.3 Radical Ideals
definition radical :: ′a::monoid-mult set ⇒ ′a set (‹

√
(-)› [999] 999)

where radical F = {f . ∃m. f ^ m ∈ F}

lemma radicalI : f ^ m ∈ F =⇒ f ∈
√

F
by (auto simp: radical-def)

lemma radicalE :
assumes f ∈

√
F

obtains m where f ^ m ∈ F
using assms by (auto simp: radical-def)

lemma radical-empty [simp]:
√
{} = {}

by (simp add: radical-def)

lemma radical-UNIV [simp]:
√

UNIV = UNIV
by (simp add: radical-def)

lemma radical-ideal-eq-UNIV-iff :
√

ideal F = UNIV ←→ ideal F = UNIV
proof

assume
√

ideal F = UNIV
hence 1 ∈

√
ideal F by simp

then obtain m where 1 ^ m ∈ ideal F by (rule radicalE)
thus ideal F = UNIV by (simp add: ideal-eq-UNIV-iff-contains-one)

qed simp

lemma zero-in-radical-ideal [simp]: 0 ∈
√

ideal F
proof (rule radicalI)

show 0 ^ 1 ∈ ideal F by (simp add: ideal.span-zero)
qed

lemma radical-mono: F ⊆ G =⇒
√

F ⊆
√

G
by (auto elim!: radicalE intro: radicalI)

27

lemma radical-superset: F ⊆
√

F
proof

fix f
assume f ∈ F
hence f ^ 1 ∈ F by simp
thus f ∈

√
F by (rule radicalI)

qed

lemma radical-idem [simp]:
√√

F =
√

F
proof

show
√√

F ⊆
√

F by (auto elim!: radicalE intro: radicalI simp flip: power-mult)
qed (fact radical-superset)

lemma radical-Int-subset:
√
(A ∩ B) ⊆

√
A ∩

√
B

by (auto intro: radicalI elim: radicalE)

lemma radical-ideal-Int:
√
(ideal F ∩ ideal G) =

√
ideal F ∩

√
ideal G

using radical-Int-subset
proof (rule subset-antisym)

show
√

ideal F ∩
√

ideal G ⊆
√
(ideal F ∩ ideal G)

proof
fix p
assume p ∈

√
ideal F ∩

√
ideal G

hence p ∈
√

ideal F and p ∈
√

ideal G by simp-all
from this(1) obtain m1 where p1 : p ^ m1 ∈ ideal F by (rule radicalE)
from ‹p ∈

√
ideal G› obtain m2 where p ^ m2 ∈ ideal G by (rule radicalE)

hence p ^ m1 ∗ p ^ m2 ∈ ideal G by (rule ideal.span-scale)
moreover from p1 have p ^ m2 ∗ p ^ m1 ∈ ideal F by (rule ideal.span-scale)
ultimately have p ^ (m1 + m2) ∈ ideal F ∩ ideal G by (simp add: power-add

mult.commute)
thus p ∈

√
(ideal F ∩ ideal G) by (rule radicalI)

qed
qed

lemma ideal-radical-ideal [simp]: ideal (
√

ideal F) =
√

ideal F (is - = ?R)
unfolding ideal.span-eq-iff

proof (rule ideal.subspaceI)
have 0 ^ 1 ∈ ideal F by (simp add: ideal.span-zero)
thus 0 ∈ ?R by (rule radicalI)

next
fix a b
assume a ∈ ?R
then obtain m where a ^ m ∈ ideal F by (rule radicalE)
have a: a ^ k ∈ ideal F if m ≤ k for k
proof −

from ‹a ^ m ∈ -› have a ^ (k − m + m) ∈ ideal F by (simp only: power-add
ideal.span-scale)

with that show ?thesis by simp
qed

28

assume b ∈ ?R
then obtain n where b ^ n ∈ ideal F by (rule radicalE)
have b: b ^ k ∈ ideal F if n ≤ k for k
proof −

from ‹b ^ n ∈ -› have b ^ (k − n + n) ∈ ideal F by (simp only: power-add
ideal.span-scale)

with that show ?thesis by simp
qed
have (a + b) ^ (m + n) ∈ ideal F unfolding binomial-ring
proof (rule ideal.span-sum)

fix k
show of-nat (m + n choose k) ∗ a ^ k ∗ b ^ (m + n − k) ∈ ideal F
proof (cases k ≤ m)

case True
hence n ≤ m + n − k by simp
hence b ^ (m + n − k) ∈ ideal F by (rule b)
thus ?thesis by (rule ideal.span-scale)

next
case False
hence m ≤ k by simp
hence a ^ k ∈ ideal F by (rule a)
hence of-nat (m + n choose k) ∗ b ^ (m + n − k) ∗ a ^ k ∈ ideal F by (rule

ideal.span-scale)
thus ?thesis by (simp only: ac-simps)

qed
qed
thus a + b ∈ ?R by (rule radicalI)

next
fix c a
assume a ∈ ?R
then obtain m where a ^ m ∈ ideal F by (rule radicalE)
hence (c ∗ a) ^ m ∈ ideal F by (simp only: power-mult-distrib ideal.span-scale)
thus c ∗ a ∈ ?R by (rule radicalI)

qed

lemma radical-ideal-of [simp]:
√
I A = I (A::(- ⇒ -::semiring-1-no-zero-divisors)

set)
proof

show
√
I A ⊆ I A by (auto elim!: radicalE dest!: ideal-ofD intro!: ideal-ofI simp:

poly-eval-power)
qed (fact radical-superset)

lemma variety-of-radical-ideal [simp]: V (
√

ideal F) = V (F ::(-⇒0 -::semiring-1-no-zero-divisors)
set)
proof

have F ⊆ ideal F by (rule ideal.span-superset)
also have . . . ⊆

√
ideal F by (rule radical-superset)

finally show V (
√

ideal F) ⊆ V F by (rule variety-of-antimono)
next

29

show V F ⊆ V (
√

ideal F)
proof (intro subsetI variety-ofI)

fix a f
assume a ∈ V F
hence a ∈ V (ideal F) by simp
assume f ∈

√
ideal F

then obtain m where f ^ m ∈ ideal F by (rule radicalE)
with ‹a ∈ V (ideal F)› have poly-eval a (f ^ m) = 0 by (rule variety-ofD)
thus poly-eval a f = 0 by (simp add: poly-eval-power)

qed
qed

lemma image-map-indets-radical:
assumes inj f
shows map-indets f ‘

√
F =

√
(map-indets f ‘ (F ::(- ⇒0

′a::comm-ring-1) set))
∩ P[range f]
proof

show map-indets f ‘
√

F ⊆
√
(map-indets f ‘ F) ∩ P[range f]

by (auto simp: radical-def simp flip: map-indets-power range-map-indets intro!:
imageI)
next

show
√
(map-indets f ‘ F) ∩ P[range f] ⊆ map-indets f ‘

√
F

proof
fix p
assume p ∈

√
(map-indets f ‘ F) ∩ P[range f]

hence p ∈
√
(map-indets f ‘ F) and p ∈ range (map-indets f)

by (simp-all add: range-map-indets)
from this(1) obtain m where p ^ m ∈ map-indets f ‘ F by (rule radicalE)
then obtain q where q ∈ F and p-m: p ^ m = map-indets f q ..
from assms obtain g where g ◦ f = id and map-indets g ◦ map-indets f =

(id::- ⇒ - ⇒0
′a)

by (rule map-indets-inverseE)
hence eq: map-indets g (map-indets f p ′) = p ′ for p ′::- ⇒0

′a
by (simp add: pointfree-idE)

from p-m have map-indets g (p ^ m) = map-indets g (map-indets f q) by (rule
arg-cong)

hence (map-indets g p) ^ m = q by (simp add: eq)
from ‹p ∈ range -› obtain p ′ where p = map-indets f p ′ ..
hence p = map-indets f (map-indets g p) by (simp add: eq)
moreover have map-indets g p ∈

√
F

proof (rule radicalI)
from ‹q ∈ F› show map-indets g p ^ m ∈ F by (simp add: p-m eq flip:

map-indets-power)
qed
ultimately show p ∈ map-indets f ‘

√
F by (rule image-eqI)

qed
qed

30

4.4 Geometric Version of the Nullstellensatz
lemma weak-Nullstellensatz-aux-1 :

assumes
∧

i. i ∈ I =⇒ g i ∈ ideal B
obtains c where c ∈ ideal B and (

∏
i∈I . (f i + g i) ^ m i) = (

∏
i∈I . f i ^ m

i) + c
using assms

proof (induct I arbitrary: thesis rule: infinite-finite-induct)
case (infinite I)
from ideal.span-zero show ?case by (rule infinite) (simp add: infinite(1))

next
case empty
from ideal.span-zero show ?case by (rule empty) simp

next
case (insert j I)
have g i ∈ ideal B if i ∈ I for i by (rule insert.prems) (simp add: that)
with insert.hyps(3) obtain c where c: c ∈ ideal B

and 1 : (
∏

i∈I . (f i + g i) ^ m i) = (
∏

i∈I . f i ^ m i) + c by blast
define k where k = m j
obtain d where 2 : (f j + g j) ^ m j = f j ^ m j + d ∗ g j unfolding

k-def [symmetric]
proof (induct k arbitrary: thesis)

case 0
have (f j + g j) ^ 0 = f j ^ 0 + 0 ∗ g j by simp
thus ?case by (rule 0)

next
case (Suc k)
obtain d where (f j + g j) ^ k = f j ^ k + d ∗ g j by (rule Suc.hyps)
hence (f j + g j) ^ Suc k = (f j ^ k + d ∗ g j) ∗ (f j + g j) by simp
also have . . . = f j ^ Suc k + (f j ^ k + d ∗ (f j + g j)) ∗ g j by (simp add:

algebra-simps)
finally show ?case by (rule Suc.prems)

qed
from c have ∗: f j ^ m j ∗ c + (((

∏
i∈I . f i ^ m i) + c) ∗ d) ∗ g j ∈ ideal B (is

?c ∈ -)
by (intro ideal.span-add ideal.span-scale insert.prems insertI1)

from insert.hyps(1 , 2) have (
∏

i∈insert j I . (f i + g i) ^ m i) =
(f j ^ m j + d ∗ g j) ∗ ((

∏
i∈I . f i ^ m i) + c)

by (simp add: 1 2)
also from insert.hyps(1 , 2) have . . . = (

∏
i∈insert j I . f i ^ m i) + ?c by (simp

add: algebra-simps)
finally have (

∏
i∈insert j I . (f i + g i) ^ m i) = (

∏
i∈insert j I . f i ^ m i) +

?c .
with ∗ show ?case by (rule insert.prems)

qed

lemma weak-Nullstellensatz-aux-2 :
assumes finite X and F ⊆ P[insert x X] and X ⊆ {..<x:: ′x::{countable,linorder}}

and 1 /∈ ideal F and ideal F ∩ P[{x}] ⊆ {0}
obtains a:: ′a::alg-closed-field where 1 /∈ ideal (poly-eval (λ-. monomial a 0) ‘

31

focus {x} ‘ F)
proof −

let ?x = monomial 1 (Poly-Mapping.single x 1)
from assms(3) have x /∈ X by blast
hence eq1 : insert x X − {x} = X and eq2 : insert x X − X = {x} by blast+

interpret i: pm-powerprod lex-pm lex-pm-strict::(′x ⇒0 nat) ⇒ -
unfolding lex-pm-def lex-pm-strict-def

by standard (simp-all add: lex-pm-zero-min lex-pm-plus-monotone flip: lex-pm-def)
have lpp-focus: i.lpp (focus X g) = except (i.lpp g) {x} if g ∈ P[insert x X] for

g::- ⇒0
′a

proof (cases g = 0)
case True
thus ?thesis by simp

next
case False
have keys-focus-g: keys (focus X g) = (λt. except t {x}) ‘ keys g

unfolding keys-focus using refl
proof (rule image-cong)

fix t
assume t ∈ keys g
also from that have . . . ⊆ .[insert x X] by (rule PolysD)
finally have keys t ⊆ insert x X by (rule PPsD)
hence except t (− X) = except t (insert x X ∩ − X)
by (metis (no-types, lifting) Int-commute except-keys-Int inf .orderE inf-left-commute)
also from ‹x /∈ X› have insert x X ∩ − X = {x} by simp
finally show except t (− X) = except t {x} .

qed
show ?thesis
proof (rule i.punit.lt-eqI-keys)

from False have i.lpp g ∈ keys g by (rule i.punit.lt-in-keys)
thus except (i.lpp g) {x} ∈ keys (focus X g) unfolding keys-focus-g by (rule

imageI)

fix t
assume t ∈ keys (focus X g)

then obtain s where s ∈ keys g and t: t = except s {x} unfolding
keys-focus-g ..

from this(1) have lex-pm s (i.lpp g) by (rule i.punit.lt-max-keys)
moreover have keys s ∪ keys (i.lpp g) ⊆ {..x}
proof (rule Un-least)

from ‹g ∈ P[-]› have keys g ⊆ .[insert x X] by (rule PolysD)
with ‹s ∈ keys g› have s ∈ .[insert x X] ..
hence keys s ⊆ insert x X by (rule PPsD)
thus keys s ⊆ {..x} using assms(3) by auto

from ‹i.lpp g ∈ keys g› ‹keys g ⊆ -› have i.lpp g ∈ .[insert x X] ..
hence keys (i.lpp g) ⊆ insert x X by (rule PPsD)
thus keys (i.lpp g) ⊆ {..x} using assms(3) by auto

32

qed
ultimately show lex-pm t (except (i.lpp g) {x}) unfolding t by (rule

lex-pm-except-max)
qed

qed

define G where G = i.punit.reduced-GB F
from assms(1) have finite (insert x X) by simp
hence fin-G: finite G and G-sub: G ⊆ P[insert x X] and ideal-G: ideal G =

ideal F
and 0 /∈ G and G-isGB: i.punit.is-Groebner-basis G unfolding G-def using

assms(2)
by (rule i.finite-reduced-GB-Polys, rule i.reduced-GB-Polys, rule i.reduced-GB-ideal-Polys,

rule i.reduced-GB-nonzero-Polys, rule i.reduced-GB-is-GB-Polys)
define G ′ where G ′ = focus X ‘ G
from fin-G ‹0 /∈ G› have fin-G ′: finite G ′ and 0 /∈ G ′ by (auto simp: G ′-def)
have G ′-sub: G ′ ⊆ P[X] by (auto simp: G ′-def intro: focus-in-Polys)
define G ′′ where G ′′ = i.lcf ‘ G ′

from ‹0 /∈ G ′› have 0 /∈ G ′′ by (auto simp: G ′′-def i.punit.lc-eq-zero-iff)
have lookup-focus-in: lookup (focus X g) t ∈ P[{x}] if g ∈ G for g t
proof −

have lookup (focus X g) t ∈ range (lookup (focus X g)) by (rule rangeI)
from that G-sub have g ∈ P[insert x X] ..

hence range (lookup (focus X g)) ⊆ P[insert x X − X] by (rule focus-coeffs-subset-Polys ′)
with ‹- ∈ range -› have lookup (focus X g) t ∈ P[insert x X − X] ..
also have insert x X − X = {x} by (simp only: eq2)
finally show ?thesis .

qed
hence lcf-in: i.lcf (focus X g) ∈ P[{x}] if g ∈ G for g

unfolding i.punit.lc-def using that by blast
have G ′′-sub: G ′′ ⊆ P[{x}]
proof

fix c
assume c ∈ G ′′

then obtain g ′ where g ′ ∈ G ′ and c: c = i.lcf g ′ unfolding G ′′-def ..
from ‹g ′ ∈ G ′› obtain g where g ∈ G and g ′: g ′ = focus X g unfolding

G ′-def ..
from this(1) show c ∈ P[{x}] unfolding c g ′ by (rule lcf-in)

qed
define P where P = poly-of-pm x ‘ G ′′

from fin-G ′ have fin-P: finite P by (simp add: P-def G ′′-def)
have 0 /∈ P
proof

assume 0 ∈ P
then obtain g ′′ where g ′′ ∈ G ′′ and 0 = poly-of-pm x g ′′ unfolding P-def ..
from this(2) have ∗: keys g ′′ ∩ .[{x}] = {} by (simp add: poly-of-pm-eq-zero-iff)
from ‹g ′′ ∈ G ′′› G ′′-sub have g ′′ ∈ P[{x}] ..
hence keys g ′′ ⊆ .[{x}] by (rule PolysD)
with ∗ have keys g ′′ = {} by blast

33

with ‹g ′′ ∈ G ′′› ‹0 /∈ G ′′› show False by simp
qed
define Z where Z = (

⋃
p∈P. {z. poly p z = 0})

have finite Z unfolding Z-def using fin-P
proof (rule finite-UN-I)

fix p
assume p ∈ P
with ‹0 /∈ P› have p 6= 0 by blast
thus finite {z. poly p z = 0} by (rule poly-roots-finite)

qed
with infinite-UNIV [where ′a= ′a] have − Z 6= {} using finite-compl by fastforce
then obtain a where a /∈ Z by blast

have a-nz: poly-eval (λ-. a) (i.lcf (focus X g)) 6= 0 if g ∈ G for g
proof −

from that G-sub have g ∈ P[insert x X] ..
have poly-eval (λ-. a) (i.lcf (focus X g)) = poly (poly-of-pm x (i.lcf (focus X

g))) a
by (rule sym, intro poly-eq-poly-eval ′ lcf-in that)

moreover have poly-of-pm x (i.lcf (focus X g)) ∈ P
by (auto simp: P-def G ′′-def G ′-def that intro!: imageI)

ultimately show ?thesis using ‹a /∈ Z › by (simp add: Z-def)
qed

let ?e = poly-eval (λ-. monomial a 0)
have lookup-e-focus: lookup (?e (focus {x} g)) t = poly-eval (λ-. a) (lookup (focus

X g) t)
if g ∈ P[insert x X] for g t

proof −
have focus (− {x}) g = focus (− {x} ∩ insert x X) g by (rule sym) (rule

focus-Int, fact)
also have . . . = focus X g by (simp add: Int-commute eq1 flip: Diff-eq)
finally show ?thesis by (simp add: lookup-poly-eval-focus)

qed
have lpp-e-focus: i.lpp (?e (focus {x} g)) = except (i.lpp g) {x} if g ∈ G for g
proof (rule i.punit.lt-eqI-keys)

from that G-sub have g ∈ P[insert x X] ..
hence lookup (?e (focus {x} g)) (except (i.lpp g) {x}) = poly-eval (λ-. a) (i.lcf

(focus X g))
by (simp only: lookup-e-focus lpp-focus i.punit.lc-def)

also from that have . . . 6= 0 by (rule a-nz)
finally show except (i.lpp g) {x} ∈ keys (?e (focus {x} g)) by (simp add:

in-keys-iff)

fix t
assume t ∈ keys (?e (focus {x} g))
hence 0 6= lookup (?e (focus {x} g)) t by (simp add: in-keys-iff)
also from ‹g ∈ P[-]› have lookup (?e (focus {x} g)) t = poly-eval (λ-. a)

(lookup (focus X g) t)

34

by (rule lookup-e-focus)
finally have t ∈ keys (focus X g) by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
hence lex-pm t (i.lpp (focus X g)) by (rule i.punit.lt-max-keys)
with ‹g ∈ P[-]› show lex-pm t (except (i.lpp g) {x}) by (simp only: lpp-focus)

qed

show ?thesis
proof

define G3 where G3 = ?e ‘ focus {x} ‘ G
have G3 ⊆ P[X]
proof

fix h
assume h ∈ G3
then obtain h0 where h0 ∈ G and h: h = ?e (focus {x} h0) by (auto simp:

G3-def)
from this(1) G-sub have h0 ∈ P[insert x X] ..

hence h ∈ P[insert x X − {x}] unfolding h by (rule poly-eval-focus-in-Polys)
thus h ∈ P[X] by (simp only: eq1)

qed
from fin-G have finite G3 by (simp add: G3-def)

have ideal G3 ∩ P[− {x}] = ?e ‘ focus {x} ‘ ideal G
by (simp only: G3-def image-poly-eval-focus-ideal)

also have . . . = ideal (?e ‘ focus {x} ‘ F) ∩ P[− {x}]
by (simp only: ideal-G image-poly-eval-focus-ideal)

finally have eq3 : ideal G3 ∩ P[− {x}] = ideal (?e ‘ focus {x} ‘ F) ∩ P[− {x}]
.

from assms(1) ‹G3 ⊆ P[X]› ‹finite G3 › have G3-isGB: i.punit.is-Groebner-basis
G3

proof (rule i.punit.isGB-I-spoly-rep[simplified, OF dickson-grading-varnum,
where m=0 , simplified i.dgrad-p-set-varnum])

fix g1 g2
assume g1 ∈ G3
then obtain g1 ′ where g1 ′ ∈ G and g1 : g1 = ?e (focus {x} g1 ′)

unfolding G3-def by blast
from this(1) have lpp1 : i.lpp g1 = except (i.lpp g1 ′) {x} unfolding g1 by

(rule lpp-e-focus)
from ‹g1 ′ ∈ G› G-sub have g1 ′ ∈ P[insert x X] ..
assume g2 ∈ G3
then obtain g2 ′ where g2 ′ ∈ G and g2 : g2 = ?e (focus {x} g2 ′)

unfolding G3-def by blast
from this(1) have lpp2 : i.lpp g2 = except (i.lpp g2 ′) {x} unfolding g2 by

(rule lpp-e-focus)
from ‹g2 ′ ∈ G› G-sub have g2 ′ ∈ P[insert x X] ..

define l where l = lcs (except (i.lpp g1 ′) {x}) (except (i.lpp g2 ′) {x})
define c1 where c1 = i.lcf (focus X g1 ′)
define c2 where c2 = i.lcf (focus X g2 ′)
define c where c = poly-eval (λ-. a) c1 ∗ poly-eval (λ-. a) c2

35

define s where s = c2 ∗ punit.monom-mult 1 (l − except (i.lpp g1 ′) {x})
g1 ′ −

c1 ∗ punit.monom-mult 1 (l − except (i.lpp g2 ′) {x}) g2 ′

have c1 ∈ P[{x}] unfolding c1-def using ‹g1 ′ ∈ G› by (rule lcf-in)
hence eval-c1 : poly-eval (λ-. monomial a 0) (focus {x} c1) = monomial

(poly-eval (λ-. a) c1) 0
by (simp add: focus-Polys poly-eval-sum poly-eval-monomial monomial-power-map-scale

times-monomial-monomial flip: punit.monomial-prod-sum mono-
mial-sum)

(simp add: poly-eval-alt)
have c2 ∈ P[{x}] unfolding c2-def using ‹g2 ′ ∈ G› by (rule lcf-in)

hence eval-c2 : poly-eval (λ-. monomial a 0) (focus {x} c2) = monomial
(poly-eval (λ-. a) c2) 0

by (simp add: focus-Polys poly-eval-sum poly-eval-monomial monomial-power-map-scale
times-monomial-monomial flip: punit.monomial-prod-sum mono-

mial-sum)
(simp add: poly-eval-alt)

assume spoly-nz: i.punit.spoly g1 g2 6= 0
assume g1 6= 0 and g2 6= 0
hence g1 ′ 6= 0 and g2 ′ 6= 0 by (auto simp: g1 g2)
have c1-nz: poly-eval (λ-. a) c1 6= 0 unfolding c1-def using ‹g1 ′ ∈ G› by

(rule a-nz)
moreover have c2-nz: poly-eval (λ-. a) c2 6= 0 unfolding c2-def using ‹g2 ′

∈ G› by (rule a-nz)
ultimately have c 6= 0 by (simp add: c-def)
hence inverse c 6= 0 by simp
from ‹g1 ′ ∈ P[-]› have except (i.lpp g1 ′) {x} ∈ .[insert x X − {x}]

by (intro PPs-closed-except ′ i.PPs-closed-lpp)
moreover from ‹g2 ′ ∈ P[-]› have except (i.lpp g2 ′) {x} ∈ .[insert x X −

{x}]
by (intro PPs-closed-except ′ i.PPs-closed-lpp)

ultimately have l ∈ .[insert x X − {x}] unfolding l-def by (rule PPs-closed-lcs)
hence l ∈ .[X] by (simp only: eq1)
hence l ∈ .[insert x X] by rule (rule PPs-mono, blast)

moreover from ‹c1 ∈ P[{x}]› have c1 ∈ P[insert x X] by rule (intro
Polys-mono, simp)

moreover from ‹c2 ∈ P[{x}]› have c2 ∈ P[insert x X] by rule (intro
Polys-mono, simp)

ultimately have s ∈ P[insert x X] using ‹g1 ′ ∈ P[-]› ‹g2 ′ ∈ P[-]› unfolding
s-def

by (intro Polys-closed-minus Polys-closed-times Polys-closed-monom-mult
PPs-closed-minus)

have s ∈ ideal G unfolding s-def times-monomial-left[symmetric]
by (intro ideal.span-diff ideal.span-scale ideal.span-base ‹g1 ′ ∈ G› ‹g2 ′ ∈

G›)
with G-isGB have (i.punit.red G)∗∗ s 0 by (rule i.punit.GB-imp-zero-reducibility[simplified])

with ‹finite (insert x X)› G-sub fin-G ‹s ∈ P[-]›
obtain q0 where 1 : s = 0 + (

∑
g∈G. q0 g ∗ g) and 2 :

∧
g. q0 g ∈ P[insert

36

x X]
and 3 :

∧
g. lex-pm (i.lpp (q0 g ∗ g)) (i.lpp s)

by (rule i.punit.red-rtrancl-repE [simplified, OF dickson-grading-varnum,
where m=0 ,

simplified i.dgrad-p-set-varnum]) blast

define q where q = (λg. inverse c · (
∑

h∈{y∈G. ?e (focus {x} y) = g}. ?e
(focus {x} (q0 h))))

have eq4 : ?e (focus {x} (monomial 1 (l − t))) = monomial 1 (l − t) for t
proof −

have focus {x} (monomial (1 :: ′a) (l − t)) = monomial (monomial 1 (l −
t)) 0

proof (intro focus-Polys-Compl Polys-closed-monomial PPs-closed-minus)
from ‹x /∈ X› have X ⊆ − {x} by simp
hence .[X] ⊆ .[− {x}] by (rule PPs-mono)
with ‹l ∈ .[X]› show l ∈ .[− {x}] ..

qed
thus ?thesis by (simp add: poly-eval-monomial)

qed
from c2-nz have eq5 : inverse c ∗ poly-eval (λ-. a) c2 = 1 / lookup g1 (i.lpp

g1)
unfolding lpp1 using ‹g1 ′ ∈ P[-]›
by (simp add: c-def mult.assoc divide-inverse-commute g1 lookup-e-focus

flip: lpp-focus i.punit.lc-def c1-def)
from c1-nz have eq6 : inverse c ∗ poly-eval (λ-. a) c1 = 1 / lookup g2 (i.lpp

g2)
unfolding lpp2 using ‹g2 ′ ∈ P[-]›
by (simp add: c-def mult.assoc mult.left-commute[of inverse (poly-eval (λ-.

a) c1)]
divide-inverse-commute g2 lookup-e-focus flip: lpp-focus i.punit.lc-def

c2-def)
have l-alt: l = lcs (i.lpp g1) (i.lpp g2) by (simp only: l-def lpp1 lpp2)
have spoly-eq: i.punit.spoly g1 g2 = (inverse c) · ?e (focus {x} s)

by (simp add: s-def focus-minus focus-times poly-eval-minus poly-eval-times
eval-c1 eval-c2

eq4 eq5 eq6 map-scale-eq-times times-monomial-monomial
right-diff-distrib

i.punit.spoly-def Let-def
flip: mult.assoc times-monomial-left g1 g2 lpp1 lpp2 l-alt)

also have . . . = (
∑

g∈G. inverse c · (?e (focus {x} (q0 g)) ∗ ?e (focus {x}
g)))

by (simp add: 1 focus-sum poly-eval-sum focus-times poly-eval-times map-scale-sum-distrib-left)
also have . . . = (

∑
g∈G3 .

∑
h∈{y∈G. ?e (focus{x} y) = g}.

inverse c · (?e (focus {x} (q0 h)) ∗ ?e (focus {x} h)))
unfolding G3-def image-image using fin-G by (rule sum.image-gen)

also have . . . = (
∑

g∈G3 . inverse c · (
∑

h∈{y∈G. ?e (focus{x} y) = g}. ?e
(focus {x} (q0 h))) ∗ g)

by (intro sum.cong refl) (simp add: map-scale-eq-times sum-distrib-left

37

sum-distrib-right mult.assoc)
also from refl have . . . = (

∑
g∈G3 . q g ∗ g) by (rule sum.cong) (simp add:

q-def sum-distrib-right)
finally have i.punit.spoly g1 g2 = (

∑
g∈G3 . q g ∗ g) .

thus i.punit.spoly-rep (varnum X) 0 G3 g1 g2
proof (rule i.punit.spoly-repI [simplified, where m=0 and d=varnum X ,

simplified i.dgrad-p-set-varnum])
fix g
show q g ∈ P[X] unfolding q-def
proof (intro Polys-closed-map-scale Polys-closed-sum)

fix g0
from ‹q0 g0 ∈ P[insert x X]› have ?e (focus {x} (q0 g0)) ∈ P[insert x X

− {x}]
by (rule poly-eval-focus-in-Polys)

thus ?e (focus {x} (q0 g0)) ∈ P[X] by (simp only: eq1)
qed

assume q g 6= 0 ∧ g 6= 0
hence q g 6= 0 ..
have i.lpp (q g ∗ g) = i.lpp (

∑
h∈{y∈G. ?e (focus {x} y) = g}. inverse c ·

?e (focus {x} (q0 h)) ∗ g)
by (simp add: q-def map-scale-sum-distrib-left sum-distrib-right)

also have lex-pm . . . (i.ordered-powerprod-lin.Max
{i.lpp (inverse c · ?e (focus {x} (q0 h)) ∗ g) | h. h ∈ {y∈G. ?e (focus

{x} y) = g}})
(is lex-pm - (i.ordered-powerprod-lin.Max ?A)) by (fact i.punit.lt-sum-le-Max)
also have lex-pm . . . (i.lpp s)
proof (rule i.ordered-powerprod-lin.Max.boundedI)

from fin-G show finite ?A by simp
next

show ?A 6= {}
proof

assume ?A = {}
hence {h ∈ G. ?e (focus {x} h) = g} = {} by simp
hence q g = 0 by (simp only: q-def sum.empty map-scale-zero-right)
with ‹q g 6= 0 › show False ..

qed
next

fix t
assume t ∈ ?A
then obtain h where h ∈ G and g[symmetric]: ?e (focus {x} h) = g

and t = i.lpp (inverse c · ?e (focus {x} (q0 h)) ∗ g) by blast
note this(3)
also have i.lpp (inverse c · ?e (focus {x} (q0 h)) ∗ g) =

i.lpp (inverse c · (?e (focus {x} (q0 h ∗ h))))
by (simp only: map-scale-eq-times mult.assoc g poly-eval-times focus-times)
also from ‹inverse c 6= 0 › have . . . = i.lpp (?e (focus {x} (q0 h ∗ h)))

by (rule i.punit.lt-map-scale)
also have lex-pm . . . (i.lpp (q0 h ∗ h))

38

proof (rule i.punit.lt-le, rule ccontr)
fix u
assume lookup (?e (focus {x} (q0 h ∗ h))) u 6= 0
hence u ∈ keys (?e (focus {x} (q0 h ∗ h))) by (simp add: in-keys-iff)
with keys-poly-eval-focus-subset have u ∈ (λv. except v {x}) ‘ keys (q0

h ∗ h) ..
then obtain v where v ∈ keys (q0 h ∗ h) and u: u = except v {x} ..
have lex-pm u (Poly-Mapping.single x (lookup v x) + u)

by (metis add.commute add.right-neutral i.plus-monotone-left lex-pm-zero-min)
also have . . . = v by (simp only: u flip: plus-except)

also from ‹v ∈ -› have lex-pm v (i.lpp (q0 h ∗ h)) by (rule i.punit.lt-max-keys)
finally have lex-pm u (i.lpp (q0 h ∗ h)) .
moreover assume lex-pm-strict (i.lpp (q0 h ∗ h)) u
ultimately show False by simp

qed
also have lex-pm . . . (i.lpp s) by fact
finally show lex-pm t (i.lpp s) .

qed
also have lex-pm-strict . . . l
proof (rule i.punit.lt-less)

from spoly-nz show s 6= 0 by (auto simp: spoly-eq)
next

fix t
assume lex-pm l t

have g1 ′ = flatten (focus X g1 ′) by simp
also have . . . = flatten (monomial c1 (i.lpp (focus X g1 ′)) + i.punit.tail

(focus X g1 ′))
by (simp only: c1-def flip: i.punit.leading-monomial-tail)

also from ‹g1 ′ ∈ P[-]› have . . . = punit.monom-mult 1 (except (i.lpp g1 ′)
{x}) c1 +

flatten (i.punit.tail (focus X g1 ′))
by (simp only: flatten-plus flatten-monomial lpp-focus)

finally have punit.monom-mult 1 (except (i.lpp g1 ′) {x}) c1 +
flatten (i.punit.tail (focus X g1 ′)) = g1 ′ (is ?l = -) by

(rule sym)
moreover have c2 ∗ punit.monom-mult 1 (l − except (i.lpp g1 ′) {x}) ?l

=
punit.monom-mult 1 l (c1 ∗ c2) +
c2 ∗ punit.monom-mult 1 (l − i.lpp (focus X g1 ′))

(flatten (i.punit.tail (focus X g1 ′)))
(is - = punit.monom-mult 1 l (c1 ∗ c2) + ?a)

by (simp add: punit.monom-mult-dist-right punit.monom-mult-assoc l-def
minus-plus adds-lcs)

(simp add: distrib-left lpp-focus ‹g1 ′ ∈ P[-]› flip: times-monomial-left)
ultimately have a: c2 ∗ punit.monom-mult 1 (l − except (i.lpp g1 ′) {x})

g1 ′ =
punit.monom-mult 1 l (c1 ∗ c2) + ?a by simp

39

have g2 ′ = flatten (focus X g2 ′) by simp
also have . . . = flatten (monomial c2 (i.lpp (focus X g2 ′)) + i.punit.tail

(focus X g2 ′))
by (simp only: c2-def flip: i.punit.leading-monomial-tail)

also from ‹g2 ′ ∈ P[-]› have . . . = punit.monom-mult 1 (except (i.lpp g2 ′)
{x}) c2 +

flatten (i.punit.tail (focus X g2 ′))
by (simp only: flatten-plus flatten-monomial lpp-focus)

finally have punit.monom-mult 1 (except (i.lpp g2 ′) {x}) c2 +
flatten (i.punit.tail (focus X g2 ′)) = g2 ′ (is ?l = -) by

(rule sym)
moreover have c1 ∗ punit.monom-mult 1 (l − except (i.lpp g2 ′) {x}) ?l

=
punit.monom-mult 1 l (c1 ∗ c2) +
c1 ∗ punit.monom-mult 1 (l − i.lpp (focus X g2 ′))

(flatten (i.punit.tail (focus X g2 ′)))
(is - = punit.monom-mult 1 l (c1 ∗ c2) + ?b)

by (simp add: punit.monom-mult-dist-right punit.monom-mult-assoc l-def
minus-plus adds-lcs-2)

(simp add: distrib-left lpp-focus ‹g2 ′ ∈ P[-]› flip: times-monomial-left)
ultimately have b: c1 ∗ punit.monom-mult 1 (l − except (i.lpp g2 ′) {x})

g2 ′ =
punit.monom-mult 1 l (c1 ∗ c2) + ?b by simp

have lex-pm-strict-t: lex-pm-strict t (l − i.lpp (focus X h) + i.lpp (focus
X h))

if t ∈ keys (d ∗ punit.monom-mult 1 (l − i.lpp (focus X h))
(flatten (i.punit.tail (focus X h))))

and h ∈ G and d ∈ P[{x}] for d h
proof −

have 0 : lex-pm-strict (u + v) w if lex-pm-strict v w and w ∈ .[X] and
u ∈ .[{x}]

for u v w using that(1)
proof (rule lex-pm-strict-plus-left)

fix y z
assume y ∈ keys w
also from that(2) have . . . ⊆ X by (rule PPsD)
also have . . . ⊆ {..<x} by fact
finally have y < x by simp
assume z ∈ keys u
also from that(3) have . . . ⊆ {x} by (rule PPsD)
finally show y < z using ‹y < x› by simp

qed
let ?h = focus X h
from that(2) have ?h ∈ G ′ by (simp add: G ′-def)
with ‹G ′ ⊆ P[X]› have ?h ∈ P[X] ..
hence i.lpp ?h ∈ .[X] by (rule i.PPs-closed-lpp)
from that(1) obtain t1 t2 where t1 ∈ keys d
and t2 ∈ keys (punit.monom-mult 1 (l − i.lpp ?h) (flatten (i.punit.tail

40

?h)))
and t: t = t1 + t2 by (rule in-keys-timesE)

from this(2) obtain t3 where t3 ∈ keys (flatten (i.punit.tail ?h))
and t2 : t2 = l − i.lpp ?h + t3 by (auto simp: punit.keys-monom-mult)
from this(1) obtain t4 t5 where t4 ∈ keys (i.punit.tail ?h)
and t5-in: t5 ∈ keys (lookup (i.punit.tail ?h) t4) and t3 : t3 = t4 + t5
using keys-flatten-subset by blast

from this(1) have 1 : lex-pm-strict t4 (i.lpp ?h) by (rule i.punit.keys-tail-less-lt)
from that(2) have lookup ?h t4 ∈ P[{x}] by (rule lookup-focus-in)
hence keys (lookup ?h t4) ⊆ .[{x}] by (rule PolysD)
moreover from t5-in have t5-in: t5 ∈ keys (lookup ?h t4)

by (simp add: i.punit.lookup-tail split: if-split-asm)
ultimately have t5 ∈ .[{x}] ..

with 1 ‹i.lpp ?h ∈ -› have lex-pm-strict (t5 + t4) (i.lpp ?h) by (rule 0)
hence lex-pm-strict t3 (i.lpp ?h) by (simp only: t3 add.commute)
hence lex-pm-strict t2 (l − i.lpp ?h + i.lpp ?h) unfolding t2

by (rule i.plus-monotone-strict-left)
moreover from ‹l ∈ .[X]› ‹i.lpp ?h ∈ .[X]› have l − i.lpp ?h + i.lpp

?h ∈ .[X]
by (intro PPs-closed-plus PPs-closed-minus)

moreover from ‹t1 ∈ keys d› that(3) have t1 ∈ .[{x}] by (auto dest:
PolysD)

ultimately show ?thesis unfolding t by (rule 0)
qed
show lookup s t = 0
proof (rule ccontr)

assume lookup s t 6= 0
hence t ∈ keys s by (simp add: in-keys-iff)
also have . . . = keys (?a − ?b) by (simp add: s-def a b)
also have . . . ⊆ keys ?a ∪ keys ?b by (fact keys-minus)
finally show False
proof

assume t ∈ keys ?a
hence lex-pm-strict t (l − i.lpp (focus X g1 ′) + i.lpp (focus X g1 ′))

using ‹g1 ′ ∈ G› ‹c2 ∈ P[{x}]› by (rule lex-pm-strict-t)
with ‹g1 ′ ∈ P[-]› have lex-pm-strict t l

by (simp add: lpp-focus l-def minus-plus adds-lcs)
with ‹lex-pm l t› show ?thesis by simp

next
assume t ∈ keys ?b
hence lex-pm-strict t (l − i.lpp (focus X g2 ′) + i.lpp (focus X g2 ′))

using ‹g2 ′ ∈ G› ‹c1 ∈ P[{x}]› by (rule lex-pm-strict-t)
with ‹g2 ′ ∈ P[-]› have lex-pm-strict t l

by (simp add: lpp-focus l-def minus-plus adds-lcs-2)
with ‹lex-pm l t› show ?thesis by simp

qed
qed

qed
also have . . . = lcs (i.lpp g1) (i.lpp g2) by (simp only: l-def lpp1 lpp2)

41

finally show lex-pm-strict (i.lpp (q g ∗ g)) (lcs (i.lpp g1) (i.lpp g2)) .
qed

qed
have 1 ∈ ideal (?e ‘ focus {x} ‘ F) ←→ 1 ∈ ideal (?e ‘ focus {x} ‘ F) ∩ P[−

{x}]
by (simp add: one-in-Polys)

also have . . . ←→ 1 ∈ ideal G3 by (simp add: one-in-Polys flip: eq3)
also have ¬ . . .
proof

note G3-isGB
moreover assume 1 ∈ ideal G3
moreover have 1 6= (0 ::- ⇒0

′a) by simp
ultimately obtain g where g ∈ G3 and g 6= 0 and i.lpp g adds i.lpp (1 ::-

⇒0
′a)

by (rule i.punit.GB-adds-lt[simplified])
from this(3) have i.lpp g = 0 by (simp add: i.punit.lt-monomial adds-zero

flip: single-one)
hence monomial (i.lcf g) 0 = g by (rule i.punit.lt-eq-min-term-monomial[simplified])

from ‹g ∈ G3 › obtain g ′ where g ′ ∈ G and g: g = ?e (focus {x} g ′) by
(auto simp: G3-def)

from this(1) have i.lpp g = except (i.lpp g ′) {x} unfolding g by (rule
lpp-e-focus)

hence keys (i.lpp g ′) ⊆ {x} by (simp add: ‹i.lpp g = 0 › except-eq-zero-iff)
have g ′ ∈ P[{x}]
proof (intro PolysI subsetI PPsI)

fix t y
assume t ∈ keys g ′

hence lex-pm t (i.lpp g ′) by (rule i.punit.lt-max-keys)
moreover assume y ∈ keys t

ultimately obtain z where z ∈ keys (i.lpp g ′) and z ≤ y by (rule
lex-pm-keys-leE)

with ‹keys (i.lpp g ′) ⊆ {x}› have x ≤ y by blast
from ‹g ′ ∈ G› G-sub have g ′ ∈ P[insert x X] ..
hence indets g ′ ⊆ insert x X by (rule PolysD)
moreover from ‹y ∈ -› ‹t ∈ -› have y ∈ indets g ′ by (rule in-indetsI)
ultimately have y ∈ insert x X ..
thus y ∈ {x}
proof

assume y ∈ X
with assms(3) have y ∈ {..<x} ..
with ‹x ≤ y› show ?thesis by simp

qed simp
qed
moreover from ‹g ′ ∈ G› have g ′ ∈ ideal G by (rule ideal.span-base)
ultimately have g ′ ∈ ideal F ∩ P[{x}] by (simp add: ideal-G)
with assms(5) have g ′ = 0 by blast
hence g = 0 by (simp add: g)
with ‹g 6= 0 › show False ..

qed

42

finally show 1 /∈ ideal (?e ‘ focus {x} ‘ F) .
qed

qed

lemma weak-Nullstellensatz-aux-3 :
assumes F ⊆ P[insert x X] and x /∈ X and 1 /∈ ideal F and ¬ ideal F ∩ P[{x}]
⊆ {0}

obtains a:: ′a::alg-closed-field where 1 /∈ ideal (poly-eval (λ-. monomial a 0) ‘
focus {x} ‘ F)
proof −

let ?x = monomial 1 (Poly-Mapping.single x 1)
from assms(4) obtain f where f ∈ ideal F and f ∈ P[{x}] and f 6= 0 by blast
define p where p = poly-of-pm x f
from ‹f ∈ P[{x}]› ‹f 6= 0 › have p 6= 0
by (auto simp: p-def poly-of-pm-eq-zero-iff simp flip: keys-eq-empty dest!: PolysD(1))
obtain c A m where A: finite A and p: p = Polynomial.smult c (

∏
a∈A. [:−

a, 1 :] ^ m a)
and

∧
x. m x = 0 ←→ x /∈ A and c = 0 ←→ p = 0 and

∧
z. poly p z = 0

←→ (c = 0 ∨ z ∈ A)
by (rule linear-factorsE) blast

from this(4 , 5) have c 6= 0 and
∧

z. poly p z = 0 ←→ z ∈ A by (simp-all add:
‹p 6= 0 ›)

have ∃ a∈A. 1 /∈ ideal (poly-eval (λ-. monomial a 0) ‘ focus {x} ‘ F)
proof (rule ccontr)

assume asm: ¬ (∃ a∈A. 1 /∈ ideal (poly-eval (λ-. monomial a 0) ‘ focus {x} ‘
F))

obtain g h where g a ∈ ideal F and 1 : h a ∗ (?x − monomial a 0) + g a = 1
if a ∈ A for a

proof −
define P where P = (λgh a. fst gh ∈ ideal F ∧ fst gh + snd gh ∗ (?x −

monomial a 0) = 1)
define gh where gh = (λa. SOME gh. P gh a)
show ?thesis
proof

fix a
assume a ∈ A
with asm have 1 ∈ ideal (poly-eval (λ-. monomial a 0) ‘ focus {x} ‘ F) by

blast
hence 1 ∈ poly-eval (λ-. monomial a 0) ‘ focus {x} ‘ ideal F

by (simp add: image-poly-eval-focus-ideal one-in-Polys)
then obtain g where g ∈ ideal F and 1 = poly-eval (λ-. monomial a 0)

(focus {x} g)
unfolding image-image ..

note this(2)
also have poly-eval (λ-. monomial a 0) (focus {x} g) = poly (poly-of-focus

x g) (monomial a 0)
by (simp only: poly-poly-of-focus)

also have . . . = poly (poly-of-focus x g) (?x − (?x − monomial a 0)) by
simp

43

also obtain h where . . . = poly (poly-of-focus x g) ?x − h ∗ (?x − monomial
a 0)

by (rule poly-minus-rightE)
also have . . . = g − h ∗ (?x − monomial a 0) by (simp only: poly-poly-of-focus-monomial)

finally have g − h ∗ (?x − monomial a 0) = 1 by (rule sym)
with ‹g ∈ ideal F› have P (g, − h) a by (simp add: P-def)
hence P (gh a) a unfolding gh-def by (rule someI)
thus fst (gh a) ∈ ideal F and snd (gh a) ∗ (?x − monomial a 0) + fst (gh

a) = 1
by (simp-all only: P-def add.commute)

qed
qed
from this(1) obtain g ′ where g ′ ∈ ideal F

and 2 : (
∏

a∈A. (h a ∗ (?x − monomial a 0) + g a) ^ m a) =
(
∏

a∈A. (h a ∗ (?x − monomial a 0)) ^ m a) + g ′

by (rule weak-Nullstellensatz-aux-1)
have 1 = (

∏
a∈A. (h a ∗ (?x − monomial a 0) + g a) ^ m a)

by (rule sym) (intro prod.neutral ballI , simp only: 1 power-one)
also have . . . = (

∏
a∈A. h a ^ m a) ∗ (

∏
a∈A. (?x − monomial a 0) ^ m a)

+ g ′

by (simp only: 2 power-mult-distrib prod.distrib)
also have (

∏
a∈A. (?x − monomial a 0) ^ m a) = pm-of-poly x (

∏
a∈A. [:−

a, 1 :] ^ m a)
by (simp add: pm-of-poly-prod pm-of-poly-pCons single-uminus punit.monom-mult-monomial

flip: single-one)
also from ‹c 6= 0 › have . . . = monomial (inverse c) 0 ∗ pm-of-poly x p

by (simp add: p map-scale-assoc flip: map-scale-eq-times)
also from ‹f ∈ P[{x}]› have . . . = monomial (inverse c) 0 ∗ f

by (simp only: ‹p = poly-of-pm x f › pm-of-poly-of-pm)
finally have 1 = ((

∏
a∈A. h a ^ m a) ∗ monomial (inverse c) 0) ∗ f + g ′

by (simp only: mult.assoc)
also from ‹f ∈ ideal F› ‹g ′∈ ideal F› have . . . ∈ ideal F by (intro ideal.span-add

ideal.span-scale)
finally have 1 ∈ ideal F .
with assms(3) show False ..

qed
then obtain a where 1 /∈ ideal (poly-eval (λ-. monomial a 0) ‘ focus {x} ‘ F)

..
thus ?thesis ..

qed

theorem weak-Nullstellensatz:
assumes finite X and F ⊆ P[X] and V F = ({}::(′x::{countable,linorder} ⇒

′a::alg-closed-field) set)
shows ideal F = UNIV
unfolding ideal-eq-UNIV-iff-contains-one

proof (rule ccontr)
assume 1 /∈ ideal F
with assms(1 , 2) obtain a where 1 /∈ ideal (poly-eval a ‘ F)

44

proof (induct X arbitrary: F thesis rule: finite-linorder-induct)
case empty
have F ⊆ {0}
proof

fix f
assume f ∈ F
with empty.prems(2) have f ∈ P[{}] ..
then obtain c where f : f = monomial c 0 unfolding Polys-empty ..
also have c = 0
proof (rule ccontr)

assume c 6= 0
from ‹f ∈ F› have f ∈ ideal F by (rule ideal.span-base)
hence monomial (inverse c) 0 ∗ f ∈ ideal F by (rule ideal.span-scale)
with ‹c 6= 0 › have 1 ∈ ideal F by (simp add: f times-monomial-monomial)
with empty.prems(3) show False ..

qed
finally show f ∈ {0} by simp

qed
hence poly-eval 0 ‘ F ⊆ {0} by auto
hence ideal (poly-eval 0 ‘ F) = {0} by simp
hence 1 /∈ ideal (poly-eval 0 ‘ F) by (simp del: ideal-eq-zero-iff)
thus ?case by (rule empty.prems)

next
case (insert x X)
obtain a0 where 1 /∈ ideal (poly-eval (λ-. monomial a0 0) ‘ focus {x} ‘ F)

(is - /∈ ideal ?F)
proof (cases ideal F ∩ P[{x}] ⊆ {0})

case True
with insert.hyps(1) insert.prems(2) insert.hyps(2) insert.prems(3) obtain

a0
where 1 /∈ ideal (poly-eval (λ-. monomial a0 0) ‘ focus {x} ‘ F)
by (rule weak-Nullstellensatz-aux-2)

thus ?thesis ..
next

case False
from insert.hyps(2) have x /∈ X by blast
with insert.prems(2) obtain a0 where 1 /∈ ideal (poly-eval (λ-. monomial

a0 0) ‘ focus {x} ‘ F)
using insert.prems(3) False by (rule weak-Nullstellensatz-aux-3)

thus ?thesis ..
qed
moreover have ?F ⊆ P[X]
proof −

{
fix f
assume f ∈ F
with insert.prems(2) have f ∈ P[insert x X] ..
hence poly-eval (λ-. monomial a0 0) (focus {x} f) ∈ P[insert x X − {x}]

by (rule poly-eval-focus-in-Polys)

45

also have . . . ⊆ P[X] by (rule Polys-mono) simp
finally have poly-eval (λ-. monomial a0 0) (focus {x} f) ∈ P[X] .

}
thus ?thesis by blast

qed
ultimately obtain a1 where 1 /∈ ideal (poly-eval a1 ‘ ?F) using insert.hyps(3)

by blast
also have poly-eval a1 ‘ ?F = poly-eval (a1 (x := poly-eval a1 (monomial a0

0))) ‘ F
by (simp add: image-image poly-eval-poly-eval-focus fun-upd-def)

finally show ?case by (rule insert.prems)
qed
hence ideal (poly-eval a ‘ F) 6= UNIV by (simp add: ideal-eq-UNIV-iff-contains-one)
hence ideal (poly-eval a ‘ F) = {0} using ideal-field-disj[of poly-eval a ‘ F] by

blast
hence poly-eval a ‘ F ⊆ {0} by simp
hence a ∈ V F by (rule variety-ofI-alt)
thus False by (simp add: assms(3))

qed

lemma radical-idealI :
assumes finite X and F ⊆ P[X] and f ∈ P[X] and x /∈ X

and V (insert (1 − punit.monom-mult 1 (Poly-Mapping.single x 1) f) F) = {}
shows (f ::(′x::{countable,linorder} ⇒0 nat) ⇒0

′a::alg-closed-field) ∈
√

ideal F
proof (cases f = 0)

case True
thus ?thesis by simp

next
case False
from assms(4) have P[X] ⊆ P[− {x}] by (auto simp: Polys-alt)
with assms(3) have f ∈ P[− {x}] ..
let ?x = Poly-Mapping.single x 1
let ?f = punit.monom-mult 1 ?x f
from assms(1) have finite (insert x X) by simp
moreover have insert (1 − ?f) F ⊆ P[insert x X] unfolding insert-subset
proof (intro conjI Polys-closed-minus one-in-Polys Polys-closed-monom-mult

PPs-closed-single)
have P[X] ⊆ P[insert x X] by (rule Polys-mono) blast
with assms(2 , 3) show f ∈ P[insert x X] and F ⊆ P[insert x X] by blast+

qed simp
ultimately have ideal (insert (1 − ?f) F) = UNIV

using assms(5) by (rule weak-Nullstellensatz)
hence 1 ∈ ideal (insert (1 − ?f) F) by simp
then obtain F ′ q where fin ′: finite F ′ and F ′-sub: F ′ ⊆ insert (1 − ?f) F

and eq: 1 = (
∑

f ′∈F ′. q f ′ ∗ f ′) by (rule ideal.spanE)
show f ∈

√
ideal F

proof (cases 1 − ?f ∈ F ′)
case True
define g where g = (λx::(′x ⇒0 nat) ⇒0

′a. Fract x 1)

46

define F ′′ where F ′′ = F ′ − {1 − ?f }
define q0 where q0 = q (1 − ?f)
have g-0 : g 0 = 0 by (simp add: g-def fract-collapse)
have g-1 : g 1 = 1 by (simp add: g-def fract-collapse)
have g-plus: g (a + b) = g a + g b for a b by (simp add: g-def)
have g-minus: g (a − b) = g a − g b for a b by (simp add: g-def)
have g-times: g (a ∗ b) = g a ∗ g b for a b by (simp add: g-def)
from fin ′ have fin ′′: finite F ′′ by (simp add: F ′′-def)
from F ′-sub have F ′′-sub: F ′′ ⊆ F by (auto simp: F ′′-def)

have focus {x} ?f = monomial 1 ?x ∗ focus {x} f
by (simp add: focus-times focus-monomial except-single flip: times-monomial-left)
also from ‹f ∈ P[− {x}]› have focus {x} f = monomial f 0 by (rule fo-

cus-Polys-Compl)
finally have focus {x} ?f = monomial f ?x by (simp add: times-monomial-monomial)
hence eq1 : poly (map-poly g (poly-of-focus x (1 − ?f))) (Fract 1 f) = 0
by (simp add: poly-of-focus-def focus-minus poly-of-pm-minus poly-of-pm-monomial

PPs-closed-single map-poly-minus g-0 g-1 g-minus map-poly-monom
poly-monom)

(simp add: g-def Fract-same ‹f 6= 0 ›)
have eq2 : poly (map-poly g (poly-of-focus x f ′)) (Fract 1 f) = Fract f ′ 1 if f ′

∈ F ′′ for f ′

proof −
from that F ′′-sub have f ′ ∈ F ..
with assms(2) have f ′ ∈ P[X] ..
with ‹P[X] ⊆ -› have f ′ ∈ P[− {x}] ..
hence focus {x} f ′ = monomial f ′ 0 by (rule focus-Polys-Compl)
thus ?thesis
by (simp add: poly-of-focus-def focus-minus poly-of-pm-minus poly-of-pm-monomial

zero-in-PPs map-poly-minus g-0 g-1 g-minus map-poly-monom
poly-monom)

(simp only: g-def)
qed

define p0m0 where p0m0 = (λf ′. SOME z. poly (map-poly g (poly-of-focus x
(q f ′))) (Fract 1 f) =

Fract (fst z) (f ^ snd z))
define p0 where p0 = fst ◦ p0m0
define m0 where m0 = snd ◦ p0m0
define m where m = Max (m0 ‘ F ′′)
have eq3 : poly (map-poly g (poly-of-focus x (q f ′))) (Fract 1 f) = Fract (p0 f ′)

(f ^ m0 f ′)
for f ′

proof −
have g a = 0 ←→ a = 0 for a by (simp add: g-def Fract-eq-zero-iff)
hence set (Polynomial.coeffs (map-poly g (poly-of-focus x (q f ′)))) ⊆ range

(λx. Fract x 1)
by (auto simp: set-coeffs-map-poly g-def)

then obtain p m ′ where poly (map-poly g (poly-of-focus x (q f ′))) (Fract 1

47

f) = Fract p (f ^ m ′)
by (rule poly-Fract)

hence poly (map-poly g (poly-of-focus x (q f ′))) (Fract 1 f) = Fract (fst (p,
m ′)) (f ^ snd (p, m ′))

by simp
thus ?thesis unfolding p0-def m0-def p0m0-def o-def by (rule someI)

qed

note eq
also from True fin ′ have (

∑
f ′∈F ′. q f ′ ∗ f ′) = q0 ∗ (1 − ?f) + (

∑
f ′∈F ′′.

q f ′ ∗ f ′)
by (simp add: q0-def F ′′-def sum.remove)

finally have poly-of-focus x 1 = poly-of-focus x (q0 ∗ (1 − ?f) + (
∑

f ′∈F ′′.
q f ′ ∗ f ′))

by (rule arg-cong)
hence 1 = poly (map-poly g (poly-of-focus x (q0 ∗ (1 − ?f) + (

∑
f ′∈F ′′. q f ′

∗ f ′)))) (Fract 1 f)
by (simp add: g-1)

also have . . . = poly (map-poly g (poly-of-focus x (
∑

f ′∈F ′′. q f ′ ∗ f ′))) (Fract
1 f)

by (simp only: poly-of-focus-plus map-poly-plus g-0 g-plus g-times poly-add
poly-of-focus-times map-poly-times poly-mult eq1 mult-zero-right

add-0-left)
also have . . . = (

∑
f ′∈F ′′. Fract (p0 f ′) (f ^ m0 f ′) ∗ Fract f ′ 1)

by (simp only: poly-of-focus-sum poly-of-focus-times map-poly-sum map-poly-times
g-0 g-plus g-times poly-sum poly-mult eq2 eq3 cong: sum.cong)

finally have Fract (f ^ m) 1 = Fract (f ^ m) 1 ∗ (
∑

f ′∈F ′′. Fract (p0 f ′ ∗ f ′)
(f ^ m0 f ′))

by simp
also have . . . = (

∑
f ′∈F ′′. Fract (f ^ m ∗ (p0 f ′ ∗ f ′)) (f ^ m0 f ′))

by (simp add: sum-distrib-left)
also from refl have . . . = (

∑
f ′∈F ′′. Fract ((f ^ (m − m0 f ′) ∗ p0 f ′) ∗ f ′) 1)

proof (rule sum.cong)
fix f ′

assume f ′ ∈ F ′′

hence m0 f ′ ∈ m0 ‘ F ′′ by (rule imageI)
with - have m0 f ′ ≤ m unfolding m-def by (rule Max-ge) (simp add: fin ′′)
hence f ^ m = f ^ (m0 f ′) ∗ f ^ (m − m0 f ′) by (simp flip: power-add)
hence Fract (f ^ m ∗ (p0 f ′ ∗ f ′)) (f ^ m0 f ′) = Fract (f ^ m0 f ′) (f ^ m0 f ′)

∗
Fract (f ^ (m − m0 f ′) ∗ (p0 f ′ ∗ f ′)) 1

by (simp add: ac-simps)
also from ‹f 6= 0 › have Fract (f ^ m0 f ′) (f ^ m0 f ′) = 1 by (simp add:

Fract-same)
finally show Fract (f ^ m ∗ (p0 f ′ ∗ f ′)) (f ^ m0 f ′) = Fract (f ^ (m − m0

f ′) ∗ p0 f ′ ∗ f ′) 1
by (simp add: ac-simps)

qed
also from fin ′′ have . . . = Fract (

∑
f ′∈F ′′. (f ^ (m − m0 f ′) ∗ p0 f ′) ∗ f ′) 1

48

by (induct F ′′) (simp-all add: fract-collapse)
finally have f ^ m = (

∑
f ′∈F ′′. (f ^ (m − m0 f ′) ∗ p0 f ′) ∗ f ′)

by (simp add: eq-fract)
also have . . . ∈ ideal F ′′ by (rule ideal.sum-in-spanI)
also from ‹F ′′ ⊆ F› have . . . ⊆ ideal F by (rule ideal.span-mono)
finally show f ∈

√
ideal F by (rule radicalI)

next
case False
with F ′-sub have F ′ ⊆ F by blast
have 1 ∈ ideal F ′ unfolding eq by (rule ideal.sum-in-spanI)
also from ‹F ′ ⊆ F› have . . . ⊆ ideal F by (rule ideal.span-mono)
finally have ideal F = UNIV by (simp only: ideal-eq-UNIV-iff-contains-one)
thus ?thesis by simp

qed
qed

corollary radical-idealI-extend-indets:
assumes finite X and F ⊆ P[X]
and V (insert (1 − punit.monom-mult 1 (Poly-Mapping.single None 1) (extend-indets

f))
(extend-indets ‘ F)) = {}

shows (f ::(-::{countable,linorder} ⇒0 nat) ⇒0 -::alg-closed-field) ∈
√

ideal F
proof −

define Y where Y = X ∪ indets f
from assms(1) have fin-Y : finite Y by (simp add: Y-def finite-indets)
have P[X] ⊆ P[Y] by (rule Polys-mono) (simp add: Y-def)
with assms(2) have F-sub: F ⊆ P[Y] by (rule subset-trans)
have f-in: f ∈ P[Y] by (simp add: Y-def Polys-alt)

let ?F = extend-indets ‘ F
let ?f = extend-indets f
let ?X = Some ‘ Y
from fin-Y have finite ?X by (rule finite-imageI)
moreover from F-sub have ?F ⊆ P[?X]

by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2)
subsetD[of F])

moreover from f-in have ?f ∈ P[?X]
by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2))

moreover have None /∈ ?X by simp
ultimately have ?f ∈

√
ideal ?F using assms(3) by (rule radical-idealI)

also have ?f ∈
√

ideal ?F ←→ f ∈
√

ideal F
proof

assume f ∈
√

ideal F
then obtain m where f ^ m ∈ ideal F by (rule radicalE)
hence extend-indets (f ^ m) ∈ extend-indets ‘ ideal F by (rule imageI)

with extend-indets-ideal-subset have ?f ^ m ∈ ideal ?F unfolding extend-indets-power
..

thus ?f ∈
√

ideal ?F by (rule radicalI)
next

49

assume ?f ∈
√

ideal ?F
then obtain m where ?f ^ m ∈ ideal ?F by (rule radicalE)
moreover have ?f ^ m ∈ P[− {None}]
by (rule Polys-closed-power) (auto intro!: PolysI-alt simp: indets-extend-indets)
ultimately have extend-indets (f ^ m) ∈ extend-indets ‘ ideal F

by (simp add: extend-indets-ideal extend-indets-power)
hence f ^ m ∈ ideal F by (simp only: inj-image-mem-iff [OF inj-extend-indets])
thus f ∈

√
ideal F by (rule radicalI)

qed
finally show ?thesis .

qed

theorem Nullstellensatz:
assumes finite X and F ⊆ P[X]

and (f ::(-::{countable,linorder} ⇒0 nat) ⇒0 -::alg-closed-field) ∈ I (V F)
shows f ∈

√
ideal F

using assms(1 , 2)
proof (rule radical-idealI-extend-indets)

let ?f = punit.monom-mult 1 (monomial 1 None) (extend-indets f)
show V (insert (1 − ?f) (extend-indets ‘ F)) = {}
proof (intro subset-antisym subsetI)

fix a
assume a ∈ V (insert (1 − ?f) (extend-indets ‘ F))
moreover have 1 − ?f ∈ insert (1 − ?f) (extend-indets ‘ F) by simp
ultimately have poly-eval a (1 − ?f) = 0 by (rule variety-ofD)
hence poly-eval a (extend-indets f) 6= 0
by (auto simp: poly-eval-minus poly-eval-times simp flip: times-monomial-left)

hence poly-eval (a ◦ Some) f 6= 0 by (simp add: poly-eval-extend-indets)
have a ◦ Some ∈ V F
proof (rule variety-ofI)

fix f ′

assume f ′ ∈ F
hence extend-indets f ′ ∈ insert (1 − ?f) (extend-indets ‘ F) by simp
with ‹a ∈ -› have poly-eval a (extend-indets f ′) = 0 by (rule variety-ofD)
thus poly-eval (a ◦ Some) f ′ = 0 by (simp only: poly-eval-extend-indets)

qed
with assms(3) have poly-eval (a ◦ Some) f = 0 by (rule ideal-ofD)
with ‹poly-eval (a ◦ Some) f 6= 0 › show a ∈ {} ..

qed simp
qed

theorem strong-Nullstellensatz:
assumes finite X and F ⊆ P[X]
shows I (V F) =

√
ideal (F ::((-::{countable,linorder} ⇒0 nat)⇒0 -::alg-closed-field)

set)
proof (intro subset-antisym subsetI)

fix f
assume f ∈ I (V F)
with assms show f ∈

√
ideal F by (rule Nullstellensatz)

50

qed (metis ideal-ofI variety-ofD variety-of-radical-ideal)

The following lemma can be used for actually deciding whether a polynomial
is contained in the radical of an ideal or not.
lemma radical-ideal-iff :

assumes finite X and F ⊆ P[X] and f ∈ P[X] and x /∈ X
shows (f ::(-::{countable,linorder} ⇒0 nat)⇒0 -::alg-closed-field) ∈

√
ideal F ←→

1 ∈ ideal (insert (1 − punit.monom-mult 1 (Poly-Mapping.single x 1)
f) F)
proof −

let ?f = punit.monom-mult 1 (Poly-Mapping.single x 1) f
show ?thesis
proof

assume f ∈
√

ideal F
then obtain m where f ^ m ∈ ideal F by (rule radicalE)
from assms(1) have finite (insert x X) by simp
moreover have insert (1 − ?f) F ⊆ P[insert x X] unfolding insert-subset
proof (intro conjI Polys-closed-minus one-in-Polys Polys-closed-monom-mult

PPs-closed-single)
have P[X] ⊆ P[insert x X] by (rule Polys-mono) blast
with assms(2 , 3) show f ∈ P[insert x X] and F ⊆ P[insert x X] by blast+

qed simp
moreover have V (insert (1 − ?f) F) = {}
proof (intro subset-antisym subsetI)

fix a
assume a ∈ V (insert (1 − ?f) F)
moreover have 1 − ?f ∈ insert (1 − ?f) F by simp
ultimately have poly-eval a (1 − ?f) = 0 by (rule variety-ofD)
hence poly-eval a (f ^ m) 6= 0

by (auto simp: poly-eval-minus poly-eval-times poly-eval-power simp flip:
times-monomial-left)

from ‹a ∈ -› have a ∈ V (ideal (insert (1 − ?f) F)) by (simp only:
variety-of-ideal)

moreover from ‹f ^ m ∈ ideal F› ideal.span-mono have f ^ m ∈ ideal (insert
(1 − ?f) F)

by (rule rev-subsetD) blast
ultimately have poly-eval a (f ^ m) = 0 by (rule variety-ofD)
with ‹poly-eval a (f ^ m) 6= 0 › show a ∈ {} ..

qed simp
ultimately have ideal (insert (1 − ?f) F) = UNIV by (rule weak-Nullstellensatz)
thus 1 ∈ ideal (insert (1 − ?f) F) by simp

next
assume 1 ∈ ideal (insert (1 − ?f) F)
have V (insert (1 − ?f) F) = {}
proof (intro subset-antisym subsetI)

fix a
assume a ∈ V (insert (1 − ?f) F)
hence a ∈ V (ideal (insert (1 − ?f) F)) by (simp only: variety-of-ideal)
hence poly-eval a 1 = 0 using ‹1 ∈ -› by (rule variety-ofD)

51

thus a ∈ {} by simp
qed simp
with assms show f ∈

√
ideal F by (rule radical-idealI)

qed
qed

end

5 Field-Theoretic Version of Hilbert’s Nullstellen-
satz

theory Nullstellensatz-Field
imports Nullstellensatz HOL−Types-To-Sets.Types-To-Sets

begin

Building upon the geometric version of Hilbert’s Nullstellensatz in Nullstel-
lensatz.Nullstellensatz, we prove its field-theoretic version here. To that end
we employ the ‘types to sets’ methodology.

5.1 Getting Rid of Sort Constraints in Geometric Version

We can use the ‘types to sets’ approach to get rid of the countable and
linorder sort constraints on the type of indeterminates in the geometric
version of the Nullstellensatz. Once the ‘types to sets’ methodology is in-
tegrated as a standard component into the main library of Isabelle, the
theorems in Nullstellensatz.Nullstellensatz could be replaced by their coun-
terparts in this section.
lemmas radical-idealI-internalized = radical-idealI [unoverload-type ′x]

lemma radical-idealI :
assumes finite X and F ⊆ P[X] and f ∈ P[X] and x /∈ X

and V (insert (1 − punit.monom-mult 1 (Poly-Mapping.single x 1) f) F) = {}
shows (f ::(′x ⇒0 nat) ⇒0

′a::alg-closed-field) ∈
√

ideal F
proof −

define Y where Y = insert x X
from assms(1) have fin-Y : finite Y by (simp add: Y-def)
have X ⊆ Y by (auto simp: Y-def)
hence P[X] ⊆ P[Y] by (rule Polys-mono)
with assms(2 , 3) have F-sub: F ⊆ P[Y] and f ∈ P[Y] by auto
{

We define the type ′y to be isomorphic to Y.
assume ∃ (Rep :: ′y ⇒ ′x) Abs. type-definition Rep Abs Y
then obtain rep :: ′y ⇒ ′x and abs :: ′x ⇒ ′y where t: type-definition rep abs

Y
by blast

52

then interpret y: type-definition rep abs Y .

from well-ordering obtain le-y ′::(′y × ′y) set where fld: Field le-y ′ = UNIV
and wo: Well-order le-y ′ by meson

define le-y where le-y = (λa b:: ′y. (a, b) ∈ le-y ′)

from ‹f ∈ P[Y]› have 0 : map-indets rep (map-indets abs f) = f unfolding
map-indets-map-indets

by (intro map-indets-id) (auto intro!: y.Abs-inverse dest: PolysD)
have 1 : map-indets (rep ◦ abs) ‘ F = F
proof

from F-sub show map-indets (rep ◦ abs) ‘ F ⊆ F
by (smt (verit) PolysD(2) comp-apply image-subset-iff map-indets-id subsetD

y.Abs-inverse)
next

from F-sub show F ⊆ map-indets (rep ◦ abs) ‘ F
by (smt (verit) PolysD(2) comp-apply image-eqI map-indets-id subsetD

subsetI y.Abs-inverse)
qed
have 2 : inj rep by (meson inj-onI y.Rep-inject)
hence 3 : inj (map-indets rep) by (rule map-indets-injI)
from fin-Y have 4 : finite (abs ‘ Y) by (rule finite-imageI)
from wo have le-y-refl: le-y x x for x
by (simp add: le-y-def well-order-on-def linear-order-on-def partial-order-on-def

preorder-on-def refl-on-def fld)
have le-y-total: le-y x y ∨ le-y y x for x y
proof (cases x = y)

case True
thus ?thesis by (simp add: le-y-refl)

next
case False
with wo show ?thesis

by (simp add: le-y-def well-order-on-def linear-order-on-def total-on-def
Relation.total-on-def fld)

qed

from 4 finite-imp-inj-to-nat-seg y.Abs-image have class.countable TYPE(′y)
by unfold-locales fastforce

moreover have class.linorder le-y (strict le-y)
apply standard
subgoal by (fact refl)
subgoal by (fact le-y-refl)
subgoal using wo
by (auto simp: le-y-def well-order-on-def linear-order-on-def partial-order-on-def

preorder-on-def fld dest: transD)
subgoal using wo
by (simp add: le-y-def well-order-on-def linear-order-on-def partial-order-on-def

preorder-on-def antisym-def fld)
subgoal by (fact le-y-total)

53

done
moreover from assms(1) have finite (abs ‘ X) by (rule finite-imageI)
moreover have map-indets abs ‘ F ⊆ P[abs ‘ X]
proof (rule subset-trans)

from assms(2) show map-indets abs ‘ F ⊆ map-indets abs ‘ P[X] by (rule
image-mono)

qed (simp only: image-map-indets-Polys)
moreover have map-indets abs f ∈ P[abs ‘ X]
proof

from assms(3) show map-indets abs f ∈ map-indets abs ‘ P[X] by (rule
imageI)

qed (simp only: image-map-indets-Polys)
moreover from assms(4) y.Abs-inject have abs x /∈ abs ‘ X unfolding Y-def

by blast
moreover have V (insert (1 − punit.monom-mult 1 (Poly-Mapping.single (abs

x) (Suc 0))
(map-indets abs f)) (map-indets abs ‘ F)) = {}

proof (intro set-eqI iffI)
fix a
assume a ∈ V (insert (1 − punit.monom-mult 1 (Poly-Mapping.single (abs

x) (Suc 0))
(map-indets abs f)) (map-indets abs ‘ F))

also have . . . = (λb. b ◦ abs) −‘ V (insert (1 − punit.monom-mult 1
(Poly-Mapping.single x 1) f) F)

by (simp add: map-indets-minus map-indets-times map-indets-monomial
flip: variety-of-map-indets times-monomial-left)

finally show a ∈ {} by (simp only: assms(5) vimage-empty)
qed simp
ultimately have map-indets abs f ∈

√
ideal (map-indets abs ‘ F)

by (rule radical-idealI-internalized[where ′x= ′y, untransferred, simplified])
hence map-indets rep (map-indets abs f) ∈ map-indets rep ‘

√
ideal (map-indets

abs ‘ F)
by (rule imageI)

also from 2 have . . . =
√
(ideal F ∩ P[Y]) ∩ P[Y]

by (simp add: image-map-indets-ideal image-map-indets-radical image-image
map-indets-map-indets

1 y.Rep-range)
also have . . . ⊆

√
ideal F using radical-mono by blast

finally have ?thesis by (simp only: 0)
}
note rl = this[cancel-type-definition]
have Y 6= {} by (simp add: Y-def)
thus ?thesis by (rule rl)

qed

corollary radical-idealI-extend-indets:
assumes finite X and F ⊆ P[X]
and V (insert (1 − punit.monom-mult 1 (Poly-Mapping.single None 1) (extend-indets

f))

54

(extend-indets ‘ F)) = {}
shows (f ::- ⇒0 -::alg-closed-field) ∈

√
ideal F

proof −
define Y where Y = X ∪ indets f
from assms(1) have fin-Y : finite Y by (simp add: Y-def finite-indets)
have P[X] ⊆ P[Y] by (rule Polys-mono) (simp add: Y-def)
with assms(2) have F-sub: F ⊆ P[Y] by (rule subset-trans)
have f-in: f ∈ P[Y] by (simp add: Y-def Polys-alt)

let ?F = extend-indets ‘ F
let ?f = extend-indets f
let ?X = Some ‘ Y
from fin-Y have finite ?X by (rule finite-imageI)
moreover from F-sub have ?F ⊆ P[?X]

by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2)
subsetD[of F])

moreover from f-in have ?f ∈ P[?X]
by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2))

moreover have None /∈ ?X by simp
ultimately have ?f ∈

√
ideal ?F using assms(3) by (rule radical-idealI)

also have ?f ∈
√

ideal ?F ←→ f ∈
√

ideal F
proof

assume f ∈
√

ideal F
then obtain m where f ^ m ∈ ideal F by (rule radicalE)
hence extend-indets (f ^ m) ∈ extend-indets ‘ ideal F by (rule imageI)

with extend-indets-ideal-subset have ?f ^ m ∈ ideal ?F unfolding extend-indets-power
..

thus ?f ∈
√

ideal ?F by (rule radicalI)
next

assume ?f ∈
√

ideal ?F
then obtain m where ?f ^ m ∈ ideal ?F by (rule radicalE)
moreover have ?f ^ m ∈ P[− {None}]
by (rule Polys-closed-power) (auto intro!: PolysI-alt simp: indets-extend-indets)
ultimately have extend-indets (f ^ m) ∈ extend-indets ‘ ideal F

by (simp add: extend-indets-ideal extend-indets-power)
hence f ^ m ∈ ideal F by (simp only: inj-image-mem-iff [OF inj-extend-indets])
thus f ∈

√
ideal F by (rule radicalI)

qed
finally show ?thesis .

qed

theorem Nullstellensatz:
assumes finite X and F ⊆ P[X]

and (f ::- ⇒0 -::alg-closed-field) ∈ I (V F)
shows f ∈

√
ideal F

using assms(1 , 2)
proof (rule radical-idealI-extend-indets)

let ?f = punit.monom-mult 1 (monomial 1 None) (extend-indets f)
show V (insert (1 − ?f) (extend-indets ‘ F)) = {}

55

proof (intro subset-antisym subsetI)
fix a
assume a ∈ V (insert (1 − ?f) (extend-indets ‘ F))
moreover have 1 − ?f ∈ insert (1 − ?f) (extend-indets ‘ F) by simp
ultimately have poly-eval a (1 − ?f) = 0 by (rule variety-ofD)
hence poly-eval a (extend-indets f) 6= 0
by (auto simp: poly-eval-minus poly-eval-times simp flip: times-monomial-left)

hence poly-eval (a ◦ Some) f 6= 0 by (simp add: poly-eval-extend-indets)
have a ◦ Some ∈ V F
proof (rule variety-ofI)

fix f ′

assume f ′ ∈ F
hence extend-indets f ′ ∈ insert (1 − ?f) (extend-indets ‘ F) by simp
with ‹a ∈ -› have poly-eval a (extend-indets f ′) = 0 by (rule variety-ofD)
thus poly-eval (a ◦ Some) f ′ = 0 by (simp only: poly-eval-extend-indets)

qed
with assms(3) have poly-eval (a ◦ Some) f = 0 by (rule ideal-ofD)
with ‹poly-eval (a ◦ Some) f 6= 0 › show a ∈ {} ..

qed simp
qed

theorem strong-Nullstellensatz:
assumes finite X and F ⊆ P[X]
shows I (V F) =

√
ideal (F ::(- ⇒0 -::alg-closed-field) set)

proof (intro subset-antisym subsetI)
fix f
assume f ∈ I (V F)
with assms show f ∈

√
ideal F by (rule Nullstellensatz)

qed (metis ideal-ofI variety-ofD variety-of-radical-ideal)

theorem weak-Nullstellensatz:
assumes finite X and F ⊆ P[X] and V F = ({}::(- ⇒ -::alg-closed-field) set)
shows ideal F = UNIV

proof −
from assms(1 , 2) have I (V F) =

√
ideal F by (rule strong-Nullstellensatz)

thus ?thesis by (simp add: assms(3) flip: radical-ideal-eq-UNIV-iff)
qed

lemma radical-ideal-iff :
assumes finite X and F ⊆ P[X] and f ∈ P[X] and x /∈ X
shows (f ::- ⇒0 -::alg-closed-field) ∈

√
ideal F ←→

1 ∈ ideal (insert (1 − punit.monom-mult 1 (Poly-Mapping.single x 1)
f) F)
proof −

let ?f = punit.monom-mult 1 (Poly-Mapping.single x 1) f
show ?thesis
proof

assume f ∈
√

ideal F
then obtain m where f ^ m ∈ ideal F by (rule radicalE)

56

from assms(1) have finite (insert x X) by simp
moreover have insert (1 − ?f) F ⊆ P[insert x X] unfolding insert-subset
proof (intro conjI Polys-closed-minus one-in-Polys Polys-closed-monom-mult

PPs-closed-single)
have P[X] ⊆ P[insert x X] by (rule Polys-mono) blast
with assms(2 , 3) show f ∈ P[insert x X] and F ⊆ P[insert x X] by blast+

qed simp
moreover have V (insert (1 − ?f) F) = {}
proof (intro subset-antisym subsetI)

fix a
assume a ∈ V (insert (1 − ?f) F)
moreover have 1 − ?f ∈ insert (1 − ?f) F by simp
ultimately have poly-eval a (1 − ?f) = 0 by (rule variety-ofD)
hence poly-eval a (f ^ m) 6= 0

by (auto simp: poly-eval-minus poly-eval-times poly-eval-power simp flip:
times-monomial-left)

from ‹a ∈ -› have a ∈ V (ideal (insert (1 − ?f) F)) by (simp only:
variety-of-ideal)

moreover from ‹f ^ m ∈ ideal F› ideal.span-mono have f ^ m ∈ ideal (insert
(1 − ?f) F)

by (rule rev-subsetD) blast
ultimately have poly-eval a (f ^ m) = 0 by (rule variety-ofD)
with ‹poly-eval a (f ^ m) 6= 0 › show a ∈ {} ..

qed simp
ultimately have ideal (insert (1 − ?f) F) = UNIV by (rule weak-Nullstellensatz)
thus 1 ∈ ideal (insert (1 − ?f) F) by simp

next
assume 1 ∈ ideal (insert (1 − ?f) F)
have V (insert (1 − ?f) F) = {}
proof (intro subset-antisym subsetI)

fix a
assume a ∈ V (insert (1 − ?f) F)
hence a ∈ V (ideal (insert (1 − ?f) F)) by (simp only: variety-of-ideal)
hence poly-eval a 1 = 0 using ‹1 ∈ -› by (rule variety-ofD)
thus a ∈ {} by simp

qed simp
with assms show f ∈

√
ideal F by (rule radical-idealI)

qed
qed

5.2 Field-Theoretic Version of the Nullstellensatz

Due to the possibility of infinite indeterminate-types, we have to explic-
itly add the set of indeterminates under consideration to the definition of
maximal ideals.
definition generates-max-ideal :: ′x set ⇒ ((′x ⇒0 nat) ⇒0

′a::comm-ring-1) set
⇒ bool

where generates-max-ideal X F ←→ (ideal F 6= UNIV ∧

57

(∀F ′. F ′ ⊆ P[X] −→ ideal F ⊂ ideal F ′ −→ ideal
F ′ = UNIV))

lemma generates-max-idealI :
assumes ideal F 6= UNIV and

∧
F ′. F ′ ⊆ P[X] =⇒ ideal F ⊂ ideal F ′ =⇒ ideal

F ′ = UNIV
shows generates-max-ideal X F
using assms by (simp add: generates-max-ideal-def)

lemma generates-max-idealI-alt:
assumes ideal F 6= UNIV and

∧
p. p ∈ P[X] =⇒ p /∈ ideal F =⇒ 1 ∈ ideal

(insert p F)
shows generates-max-ideal X F
using assms(1)

proof (rule generates-max-idealI)
fix F ′

assume F ′ ⊆ P[X] and sub: ideal F ⊂ ideal F ′

from this(2) ideal.span-subset-spanI have ¬ F ′ ⊆ ideal F by blast
then obtain p where p ∈ F ′ and p /∈ ideal F by blast
from this(1) ‹F ′ ⊆ P[X]› have p ∈ P[X] ..
hence 1 ∈ ideal (insert p F) using ‹p /∈ -› by (rule assms(2))
also have . . . ⊆ ideal (F ′ ∪ F) by (rule ideal.span-mono) (simp add: ‹p ∈ F ′›)
also have . . . = ideal (ideal F ′∪ ideal F) by (simp add: ideal.span-Un ideal.span-span)
also from sub have ideal F ′ ∪ ideal F = ideal F ′ by blast
finally show ideal F ′ = UNIV by (simp only: ideal-eq-UNIV-iff-contains-one

ideal.span-span)
qed

lemma generates-max-idealD:
assumes generates-max-ideal X F
shows ideal F 6= UNIV and F ′ ⊆ P[X] =⇒ ideal F ⊂ ideal F ′ =⇒ ideal F ′ =

UNIV
using assms by (simp-all add: generates-max-ideal-def)

lemma generates-max-ideal-cases:
assumes generates-max-ideal X F and F ′ ⊆ P[X] and ideal F ⊆ ideal F ′

obtains ideal F = ideal F ′ | ideal F ′ = UNIV
using assms by (auto simp: generates-max-ideal-def)

lemma max-ideal-UNIV-radical:
assumes generates-max-ideal UNIV F
shows

√
ideal F = ideal F

proof (rule ccontr)
assume

√
ideal F 6= ideal F

with radical-superset have ideal F ⊂
√

ideal F by blast
also have . . . = ideal (

√
ideal F) by simp

finally have ideal F ⊂ ideal (
√

ideal F) .
with assms - have ideal (

√
ideal F) = UNIV by (rule generates-max-idealD)

simp

58

hence
√

ideal F = UNIV by simp
hence 1 ∈

√
ideal F by simp

hence 1 ∈ ideal F by (auto elim: radicalE)
hence ideal F = UNIV by (simp only: ideal-eq-UNIV-iff-contains-one)
moreover from assms have ideal F 6= UNIV by (rule generates-max-idealD)
ultimately show False by simp

qed

lemma max-ideal-shape-aux:
(λx. monomial 1 (Poly-Mapping.single x 1) − monomial (a x) 0) ‘ X ⊆ P[X]
by (auto intro!: Polys-closed-minus Polys-closed-monomial PPs-closed-single zero-in-PPs)

lemma max-ideal-shapeI :
generates-max-ideal X ((λx. monomial (1 :: ′a::field) (Poly-Mapping.single x 1) −

monomial (a x) 0) ‘ X)
(is generates-max-ideal X ?F)

proof (rule generates-max-idealI-alt)

show ideal ?F 6= UNIV
proof

assume ideal ?F = UNIV
hence V (ideal ?F) = V UNIV by (rule arg-cong)
hence V ?F = {} by simp
moreover have a ∈ V ?F by (rule variety-ofI) (auto simp: poly-eval-minus

poly-eval-monomial)
ultimately show False by simp

qed
next

fix p
assume p ∈ P[X] and p /∈ ideal ?F
have p ∈ ideal (insert p ?F) by (rule ideal.span-base) simp
let ?f = λx. monomial (1 :: ′a) (Poly-Mapping.single x 1) − monomial (a x) 0
let ?g = λx. monomial (1 :: ′a) (Poly-Mapping.single x 1) + monomial (a x) 0
define q where q = poly-subst ?g p
have p = poly-subst ?f q unfolding q-def poly-subst-poly-subst

by (rule sym, rule poly-subst-id)
(simp add: poly-subst-plus poly-subst-monomial subst-pp-single flip: times-monomial-left)

also have . . . = (
∑

t∈keys q. punit.monom-mult (lookup q t) 0 (subst-pp ?f t))
by (fact poly-subst-def)

also have . . . = punit.monom-mult (lookup q 0) 0 (subst-pp ?f 0) +
(
∑

t∈keys q − {0}. monomial (lookup q t) 0 ∗ subst-pp ?f t)
(is - = - + ?r)

by (cases 0 ∈ keys q) (simp-all add: sum.remove in-keys-iff flip: times-monomial-left)
also have . . . = monomial (lookup q 0) 0 + ?r by (simp flip: times-monomial-left)
finally have eq: p − ?r = monomial (lookup q 0) 0 by simp
have ?r ∈ ideal ?F
proof (intro ideal.span-sum ideal.span-scale)

fix t

59

assume t ∈ keys q − {0}
hence t ∈ keys q and keys t 6= {} by simp-all
from this(2) obtain x where x ∈ keys t by blast
hence x ∈ indets q using ‹t ∈ keys q› by (rule in-indetsI)
then obtain y where y ∈ indets p and x ∈ indets (?g y) unfolding q-def

by (rule in-indets-poly-substE)
from this(2) indets-plus-subset have x ∈ indets (monomial (1 :: ′a) (Poly-Mapping.single

y 1)) ∪
indets (monomial (a y) 0) ..

with ‹y ∈ indets p› have x ∈ indets p by (simp add: indets-monomial)
also from ‹p ∈ P[X]› have . . . ⊆ X by (rule PolysD)
finally have x ∈ X .
from ‹x ∈ keys t› have lookup t x 6= 0 by (simp add: in-keys-iff)
hence eq: b ^ lookup t x = b ^ Suc (lookup t x − 1) for b by simp

have subst-pp ?f t = (
∏

y∈keys t. ?f y ^ lookup t y) by (fact subst-pp-def)
also from ‹x ∈ keys t› have . . . = ((

∏
y∈keys t − {x}. ?f y ^ lookup t y) ∗ ?f

x ^ (lookup t x − 1)) ∗ ?f x
by (simp add: prod.remove mult.commute eq)

also from ‹x ∈ X› have . . . ∈ ideal ?F by (intro ideal.span-scale ideal.span-base
imageI)

finally show subst-pp ?f t ∈ ideal ?F .
qed
also have . . . ⊆ ideal (insert p ?F) by (rule ideal.span-mono) blast
finally have ?r ∈ ideal (insert p ?F) .
with ‹p ∈ ideal -› have p − ?r ∈ ideal (insert p ?F) by (rule ideal.span-diff)
hence monomial (lookup q 0) 0 ∈ ideal (insert p ?F) by (simp only: eq)
hence monomial (inverse (lookup q 0)) 0 ∗ monomial (lookup q 0) 0 ∈ ideal

(insert p ?F)
by (rule ideal.span-scale)

hence monomial (inverse (lookup q 0) ∗ lookup q 0) 0 ∈ ideal (insert p ?F)
by (simp add: times-monomial-monomial)

moreover have lookup q 0 6= 0
proof

assume lookup q 0 = 0
with eq ‹?r ∈ ideal ?F› have p ∈ ideal ?F by simp
with ‹p /∈ ideal ?F› show False ..

qed
ultimately show 1 ∈ ideal (insert p ?F) by simp

qed

We first prove the following lemma assuming that the type of indeterminates
is finite, and then transfer the result to arbitrary types of indeterminates by
using the ‘types to sets’ methodology. This approach facilitates the proof
considerably.
lemma max-ideal-shapeD-finite:
assumes generates-max-ideal UNIV (F ::((′x::finite⇒0 nat)⇒0

′a::alg-closed-field)
set)

obtains a where ideal F = ideal (range (λx. monomial 1 (Poly-Mapping.single

60

x 1) − monomial (a x) 0))
proof −

have fin: finite (UNIV :: ′x set) by simp
have (

⋂
a∈V F . ideal (range (λx. monomial 1 (Poly-Mapping.single x 1) −

monomial (a x) 0))) = I (V F)
(is ?A = -)

proof (intro set-eqI iffI ideal-ofI INT-I)
fix p a
assume p ∈ ?A and a ∈ V F

hence p ∈ ideal (range (λx. monomial 1 (Poly-Mapping.single x 1) − monomial
(a x) 0))

(is - ∈ ideal ?B) ..
have a ∈ V ?B
proof (rule variety-ofI)

fix f
assume f ∈ ?B

then obtain x where f = monomial 1 (Poly-Mapping.single x 1) − monomial
(a x) 0 ..

thus poly-eval a f = 0 by (simp add: poly-eval-minus poly-eval-monomial)
qed
hence a ∈ V (ideal ?B) by (simp only: variety-of-ideal)
thus poly-eval a p = 0 using ‹p ∈ ideal -› by (rule variety-ofD)

next
fix p a
assume p ∈ I (V F) and a ∈ V F
hence eq: poly-eval a p = 0 by (rule ideal-ofD)
have p ∈

√
ideal (range (λx. monomial 1 (monomial 1 x) − monomial (a x)

0)) (is - ∈
√

ideal ?B)
using fin max-ideal-shape-aux

proof (rule Nullstellensatz)
show p ∈ I (V ?B)
proof (rule ideal-ofI)

fix a0
assume a0 ∈ V ?B
have a0 = a
proof

fix x
have monomial 1 (monomial 1 x) − monomial (a x) 0 ∈ ?B by (rule

rangeI)
with ‹a0 ∈ -› have poly-eval a0 (monomial 1 (monomial 1 x) − monomial

(a x) 0) = 0
by (rule variety-ofD)

thus a0 x = a x by (simp add: poly-eval-minus poly-eval-monomial)
qed
thus poly-eval a0 p = 0 by (simp only: eq)

qed
qed
also have . . . = ideal (range (λx. monomial 1 (monomial 1 x) − monomial (a

x) 0))

61

using max-ideal-shapeI by (rule max-ideal-UNIV-radical)
finally show p ∈ ideal (range (λx. monomial 1 (monomial 1 x) − monomial

(a x) 0)) .
qed
also from fin have . . . =

√
ideal F by (rule strong-Nullstellensatz) simp

also from assms have . . . = ideal F by (rule max-ideal-UNIV-radical)
finally have eq: ?A = ideal F .
also from assms have . . . 6= UNIV by (rule generates-max-idealD)
finally obtain a where a ∈ V F
and ideal (range (λx. monomial 1 (Poly-Mapping.single x (1 ::nat)) − monomial

(a x) 0)) 6= UNIV
(is ?B 6= -) by auto

from ‹a ∈ V F› have ideal F ⊆ ?B by (auto simp flip: eq)
with assms max-ideal-shape-aux show ?thesis
proof (rule generates-max-ideal-cases)

assume ideal F = ?B
thus ?thesis ..

next
assume ?B = UNIV
with ‹?B 6= UNIV › show ?thesis ..

qed
qed

lemmas max-ideal-shapeD-internalized = max-ideal-shapeD-finite[unoverload-type
′x]

lemma max-ideal-shapeD:
assumes finite X and F ⊆ P[X]

and generates-max-ideal X (F ::((′x ⇒0 nat) ⇒0
′a::alg-closed-field) set)

obtains a where ideal F = ideal ((λx. monomial 1 (Poly-Mapping.single x 1)
− monomial (a x) 0) ‘ X)
proof (cases X = {})

case True
from assms(3) have ideal F 6= UNIV by (rule generates-max-idealD)
hence 1 /∈ ideal F by (simp add: ideal-eq-UNIV-iff-contains-one)
have F ⊆ {0}
proof

fix f
assume f ∈ F
with assms(2) have f ∈ P[X] ..
then obtain c where f : f = monomial c 0 by (auto simp: True Polys-empty)
with ‹f ∈ F› have monomial c 0 ∈ ideal F by (simp only: ideal.span-base)

hence monomial (inverse c) 0 ∗ monomial c 0 ∈ ideal F by (rule ideal.span-scale)
hence monomial (inverse c ∗ c) 0 ∈ ideal F by (simp add: times-monomial-monomial)
with ‹1 /∈ ideal F› left-inverse have c = 0 by fastforce
thus f ∈ {0} by (simp add: f)

qed
hence ideal F = ideal ((λx. monomial 1 (Poly-Mapping.single x 1) − monomial

(undefined x) 0) ‘ X)

62

by (simp add: True)
thus ?thesis ..

next
case False
{

We define the type ′y to be isomorphic to X.
assume ∃ (Rep :: ′y ⇒ ′x) Abs. type-definition Rep Abs X
then obtain rep :: ′y ⇒ ′x and abs :: ′x ⇒ ′y where t: type-definition rep abs

X
by blast

then interpret y: type-definition rep abs X .

have 1 : map-indets (rep ◦ abs) ‘ A = A if A ⊆ P[X] for A::(- ⇒0
′a) set

proof
from that show map-indets (rep ◦ abs) ‘ A ⊆ A
by (smt (verit) PolysD(2) comp-apply image-subset-iff map-indets-id subsetD

y.Abs-inverse)
next

from that show A ⊆ map-indets (rep ◦ abs) ‘ A
by (smt (verit) PolysD(2) comp-apply image-eqI map-indets-id subsetD

subsetI y.Abs-inverse)
qed
have 2 : inj rep by (meson inj-onI y.Rep-inject)
hence 3 : inj (map-indets rep) by (rule map-indets-injI)

have class.finite TYPE(′y)
proof

from assms(1) have finite (abs ‘ X) by (rule finite-imageI)
thus finite (UNIV :: ′y set) by (simp only: y.Abs-image)

qed
moreover have generates-max-ideal UNIV (map-indets abs ‘ F)
proof (intro generates-max-idealI notI)

assume ideal (map-indets abs ‘ F) = UNIV
hence 1 ∈ ideal (map-indets abs ‘ F) by simp
hence map-indets rep 1 ∈ map-indets rep ‘ ideal (map-indets abs ‘ F) by

(rule imageI)
also from map-indets-plus map-indets-times have . . . ⊆ ideal (map-indets

rep ‘ map-indets abs ‘ F)
by (rule image-ideal-subset)

also from assms(2) have map-indets rep ‘ map-indets abs ‘ F = F
by (simp only: image-image map-indets-map-indets 1)

finally have 1 ∈ ideal F by simp
moreover from assms(3) have ideal F 6= UNIV by (rule generates-max-idealD)

ultimately show False by (simp add: ideal-eq-UNIV-iff-contains-one)
next

fix F ′

assume ideal (map-indets abs ‘ F) ⊂ ideal F ′

with inj-on-subset have map-indets rep ‘ ideal (map-indets abs ‘ F) ⊂

63

map-indets rep ‘ ideal F ′

by (rule image-strict-mono) (fact 3 , fact subset-UNIV)
hence sub: ideal F ∩ P[X] ⊂ ideal (map-indets rep ‘ F ′) ∩ P[X] using 2

assms(2)
by (simp add: image-map-indets-ideal image-image map-indets-map-indets

1 y.Rep-range)
have ideal F ⊂ ideal (map-indets rep ‘ F ′)
proof (intro psubsetI notI ideal.span-subset-spanI subsetI)

fix p
assume p ∈ F
with assms(2) ideal.span-base sub show p ∈ ideal (map-indets rep ‘ F ′) by

blast
next

assume ideal F = ideal (map-indets rep ‘ F ′)
with sub show False by simp

qed
with assms(3) - have ideal (map-indets rep ‘ F ′) = UNIV
proof (rule generates-max-idealD)

from subset-UNIV have map-indets rep ‘ F ′ ⊆ range (map-indets rep) by
(rule image-mono)

also have . . . = P[X] by (simp only: range-map-indets y.Rep-range)
finally show map-indets rep ‘ F ′ ⊆ P[X] .

qed
hence P[range rep] = ideal (map-indets rep ‘ F ′) ∩ P[range rep] by simp

also from 2 have . . . = map-indets rep ‘ ideal F ′ by (simp only: im-
age-map-indets-ideal)

finally have map-indets rep ‘ ideal F ′ = range (map-indets rep)
by (simp only: range-map-indets)

with 3 show ideal F ′ = UNIV by (metis inj-image-eq-iff)
qed
ultimately obtain a

where ∗: ideal (map-indets abs ‘ F) =
ideal (range (λx. monomial 1 (Poly-Mapping.single x (Suc 0)) −

monomial (a x) 0))
(is - = ?A)

by (rule max-ideal-shapeD-internalized[where ′x= ′y, untransferred, simpli-
fied])

hence map-indets rep ‘ ideal (map-indets abs ‘ F) = map-indets rep ‘ ?A by
simp

with 2 assms(2) have ideal F ∩ P[X] =
ideal (range (λx. monomial 1 (Poly-Mapping.single (rep x) 1) − monomial

(a x) 0)) ∩ P[X]
(is - = ideal ?B ∩ -)

by (simp add: image-map-indets-ideal y.Rep-range image-image map-indets-map-indets
map-indets-minus map-indets-monomial 1)

also have ?B = (λx. monomial 1 (Poly-Mapping.single x 1) − monomial ((a
◦ abs) x) 0) ‘ X

(is - = ?C)
proof

64

show ?B ⊆ ?C by (smt (verit) comp-apply image-iff image-subset-iff y.Abs-image
y.Abs-inverse)

next
from y.Rep-inverse y.Rep-range show ?C ⊆ ?B by auto

qed
finally have eq: ideal F ∩ P[X] = ideal ?C ∩ P[X] .
have ideal F = ideal ?C
proof (intro subset-antisym ideal.span-subset-spanI subsetI)

fix p
assume p ∈ F
with assms(2) ideal.span-base have p ∈ ideal F ∩ P[X] by blast
thus p ∈ ideal ?C by (simp add: eq)

next
fix p
assume p ∈ ?C

then obtain x where x ∈ X and p = monomial 1 (monomial 1 x) −
monomial ((a ◦ abs) x) 0 ..

note this(2)
also from ‹x ∈ X› have . . . ∈ P[X]
by (intro Polys-closed-minus Polys-closed-monomial PPs-closed-single zero-in-PPs)
finally have p ∈ P[X] .
with ‹p ∈ ?C › have p ∈ ideal ?C ∩ P[X] by (simp add: ideal.span-base)
also have . . . = ideal F ∩ P[X] by (simp only: eq)
finally show p ∈ ideal F by simp

qed
hence ?thesis ..

}
note rl = this[cancel-type-definition]
from False show ?thesis by (rule rl)

qed

theorem Nullstellensatz-field:
assumes finite X and F ⊆ P[X] and generates-max-ideal X (F ::(-⇒0 -::alg-closed-field)

set)
and x ∈ X

shows {0} ⊂ ideal F ∩ P[{x}]
unfolding subset-not-subset-eq

proof (intro conjI notI)
show {0} ⊆ ideal F ∩ P[{x}] by (auto intro: ideal.span-zero zero-in-Polys)

next
from assms(1 , 2 , 3) obtain a

where eq: ideal F = ideal ((λx. monomial 1 (monomial 1 x) − monomial (a
x) 0) ‘ X)

by (rule max-ideal-shapeD)
let ?p = λx. monomial 1 (monomial 1 x) − monomial (a x) 0
from assms(4) have ?p x ∈ ?p ‘ X by (rule imageI)
also have . . . ⊆ ideal F unfolding eq by (rule ideal.span-superset)
finally have ?p x ∈ ideal F .
moreover have ?p x ∈ P[{x}]

65

by (auto intro!: Polys-closed-minus Polys-closed-monomial PPs-closed-single
zero-in-PPs)

ultimately have ?p x ∈ ideal F ∩ P[{x}] ..
also assume . . . ⊆ {0}
finally show False

by (metis diff-eq-diff-eq diff-self monomial-0D monomial-inj one-neq-zero sin-
gletonD)
qed

end

References

[1] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms.
Undergraduate Texts in Mathematics. Springer, 2007.

66

	Algebraically Closed Fields
	Properties of the Lexicographic Order on Power-Products
	Polynomial Mappings and Univariate Polynomials
	Morphisms 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pm-of-poly and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 poly-of-pm
	Evaluating Polynomials
	Morphisms 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 flat-pm-of-poly and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 poly-of-focus

	Hilbert's Nullstellensatz
	Preliminaries
	Ideals and Varieties
	Radical Ideals
	Geometric Version of the Nullstellensatz

	Field-Theoretic Version of Hilbert's Nullstellensatz
	Getting Rid of Sort Constraints in Geometric Version
	Field-Theoretic Version of the Nullstellensatz

