Hilbert's Nullstellensatz

Alexander Maletzky*

March 17, 2025

Abstract

This entry formalizes Hilbert's Nullstellensatz, an important theorem in algebraic geometry that can be viewed as the generalization of the Fundamental Theorem of Algebra to multivariate polynomials: If a set of (multivariate) polynomials over an algebraically closed field has no common zero, then the ideal it generates is the entire polynomial ring. The formalization proves several equivalent versions of this celebrated theorem: the weak Nullstellensatz, the strong Nullstellensatz (connecting algebraic varieties and radical ideals), and the field-theoretic Nullstellensatz. The formalization follows Chapter 4.1. of *Ideals, Varieties, and Algorithms* by Cox, Little and O'Shea.

Contents

1	Algebraically Closed Fields	2
2	Properties of the Lexicographic Order on Power-Produ	icts 6
3	Polynomial Mappings and Univariate Polynomials	g
	3.1 Morphisms pm -of-poly and $poly$ -of- pm	
	3.2 Evaluating Polynomials	
	3.3 Morphisms $flat$ - pm - of - $poly$ and $poly$ - of - $focus$	17
4	Hilbert's Nullstellensatz	20
	4.1 Preliminaries	20
	4.2 Ideals and Varieties	23
	4.3 Radical Ideals	27
	4.4 Geometric Version of the Nullstellensatz	31
5	Field-Theoretic Version of Hilbert's Nullstellensatz	52
	5.1 Getting Rid of Sort Constraints in Geometric Version .	52
	5.2 Field-Theoretic Version of the Nullstellensatz	57

^{*}Funded by the Austrian Science Fund (FWF): grant no. P 29498-N31

1 Algebraically Closed Fields

```
theory Algebraically-Closed-Fields
 \mathbf{imports}\ \mathit{HOL-Computational-Algebra}. \mathit{Fundamental-Theorem-Algebra}
begin
lemma prod-eq-zeroE:
 assumes prod\ f\ I = \{0:: 'a:: \{semiring-no-zero-divisors, comm-monoid-mult, zero-neg-one\}\}
 obtains i where finite I and i \in I and f i = 0
proof -
 have finite I
 proof (rule ccontr)
   assume infinite l
   with assms show False by simp
 moreover from this assms obtain i where i \in I and f i = 0
 proof (induct I arbitrary: thesis)
   case empty
   from empty(2) show ?case by simp
 next
   case (insert j I)
   from insert.hyps(1, 2) have f j * prod f I = prod f (insert j I) by simp
   also have \dots = 0 by fact
   finally have fj = 0 \lor prod fI = 0 by simp
   thus ?case
   proof
     assume f j = 0
     with - show ?thesis by (rule insert.prems) simp
   \mathbf{next}
     assume prod f I = 0
     then obtain i where i \in I and f i = 0 using insert.hyps(3) by blast
     from - this(2) show ?thesis by (rule insert.prems) (simp add: \langle i \in I \rangle)
   qed
 qed
 ultimately show ?thesis ..
\mathbf{qed}
lemma degree-prod-eq:
 assumes finite I and \bigwedge i. i \in I \Longrightarrow f i \neq 0
 shows Polynomial.degree (prod fI :: -::semiring-no-zero-divisors poly) = (\sum i \in I.
Polynomial.degree (f i)
 using assms
proof (induct I)
 case empty
 show ?case by simp
\mathbf{next}
 case (insert j J)
 have 1: f i \neq 0 if i \in J for i
 proof (rule insert.prems)
```

```
from that show i \in insert \ j \ J by simp
  qed
  hence eq: Polynomial.degree (prod f J) = (\sum i \in J. Polynomial.degree <math>(f i)) by
(rule insert.hyps)
  from insert.hyps(1, 2) have Polynomial.degree (prod f (insert j J)) = Polyno-
mial.degree (f j * prod f J)
   by simp
 also have ... = Polynomial.degree (f j) + Polynomial.degree (prod f J)
 proof (rule degree-mult-eq)
   show f j \neq 0 by (rule insert.prems) simp
 next
   show prod f J \neq 0
   proof
     assume prod f J = 0
     then obtain i where i \in J and f i = 0 by (rule prod-eq-zeroE)
     from this(1) have f i \neq 0 by (rule 1)
     thus False using \langle f | i = 0 \rangle ...
   qed
 qed
  also from insert.hyps(1, 2) have ... = (\sum i \in insert \ j \ J. \ Polynomial.degree \ (f
i)) by (simp add: eq)
 finally show ?case.
qed
class alg-closed-field =
 assumes alg-closed-field-axiom: \Lambda p::'a::field\ poly.\ 0 < Polynomial.degree\ p \Longrightarrow
\exists z. \ poly \ p \ z = 0
begin
lemma rootE:
 assumes 0 < Polynomial.degree p
 obtains z where poly p z = (\theta :: 'a)
proof -
 from assms have \exists z. poly p z = 0 by (rule alg-closed-field-axiom)
 then obtain z where poly p z = 0..
 thus ?thesis ..
qed
lemma infinite-UNIV: infinite (UNIV::'a set)
proof
 assume fin: finite (UNIV::'a set)
 define p where p = (\prod a \in UNIV. [:-a, 1::'a:]) + [:-1:]
  have Polynomial.degree (\prod a \in UNIV. [:-a, 1::'a:]) = (\sum a \in UNIV. Polynomial.degree)
mial.degree [:- a, 1::'a:])
   using fin by (rule degree-prod-eq) simp
 also have \dots = (\sum a \in (UNIV::'a\ set).\ 1) by simp
 also have \dots = card (UNIV::'a set) by simp
 also from fin have ... > \theta by (rule finite-UNIV-card-ge-\theta)
 finally have 0 < Polynomial.degree (\prod a \in UNIV. [:-a, 1::'a:]).
```

```
hence Polynomial.degree [:-1:] < Polynomial.degree ( <math>\prod a \in UNIV. [:-a, 1::'a:] )
by simp
 hence Polynomial.degree p = Polynomial.degree (\prod a \in UNIV. [:-a, 1::'a:]) un-
folding p-def
   by (rule degree-add-eq-left)
  also have \ldots > \theta by fact
  finally have 0 < Polynomial.degree p.
  then obtain z where poly p z = 0 by (rule rootE)
  hence (\prod a \in UNIV. (z - a)) = 1 by (simp \ add: \ p\text{-def poly-prod})
 {\bf thus}\ False\ {\bf by}\ (metis\ UNIV-I\ cancel-comm-monoid-add-class. diff-cancel\ fin\ one-neq-zero
prod-zero-iff)
qed
lemma linear-factorsE:
  fixes p :: 'a poly
 obtains c A m where finite A and p = Polynomial.smult c (\prod a \in A. [:-a, 1:]
    and \bigwedge a. \ m \ a = 0 \longleftrightarrow a \notin A \ \text{and} \ c = 0 \longleftrightarrow p = 0 \ \text{and} \ \bigwedge z. \ poly \ p \ z = 0
\longleftrightarrow (c = 0 \lor z \in A)
proof -
  obtain c A m where fin: finite A and p: p = Polynomial.smult c (\prod a \in A. [:-
a, 1: ] \cap m a
   and *: \bigwedge x. m \ x = 0 \longleftrightarrow x \notin A
  proof (induct p arbitrary: thesis rule: poly-root-induct[where P=\lambda-. True])
   case \theta
   show ?case
   proof (rule \theta)
     show \theta = Polynomial.smult \ \theta \ (\prod a \in \{\}. \ [:-a, 1:] \ \widehat{\ } (\lambda -. \ \theta) \ a) by simp
   qed simp-all
  next
   case (no\text{-}roots\ p)
   have Polynomial.degree p = 0
   proof (rule ccontr)
     assume Polynomial.degree p \neq 0
     hence 0 < Polynomial.degree p by simp
     then obtain z where poly p z = 0 by (rule rootE)
     moreover have poly p \ z \neq 0 by (rule no-roots) blast
     ultimately show False by simp
    qed
   then obtain c where p: p = [:c:] by (rule degree-eq-zeroE)
   show ?case
   proof (rule no-roots)
     show p = Polynomial.smult \ c \ (\prod a \in \{\}. \ [:-a, 1:] \ ^(\lambda -. \theta) \ a) by (simp \ add: a)
   qed simp-all
  \mathbf{next}
   case (root \ a \ p)
   obtain A c m where 1: finite A and p: p = Polynomial.smult\ c\ (\prod a \in A.\ [:-
a, 1:] \cap m a
```

```
and 2: \bigwedge x. \ m \ x = 0 \longleftrightarrow x \notin A \ \text{by} \ (rule \ root.hyps) \ blast
        define m' where m' = (\lambda x. if x = a then Suc (m x) else m x)
        \mathbf{show}~? case
        proof (rule root.prems)
            from 1 show finite (insert a A) by simp
            have [:a, -1:] * p = [:-a, 1:] * (-p) by simp
           also have ... = [:-a, 1:] * (Polynomial.smult (-c) (\prod a \in A. [:-a, 1:] ^m
a))
                by (simp \ add: \ p)
           also have ... = Polynomial.smult (-c) ([-a, 1:] * (\prod a \in A. [-a, 1:] ^m
a))
               by (simp only: mult-smult-right ac-simps)
            also have [:-a, 1:] * (\prod a \in A. [:-a, 1:] ^m a) = (\prod a \in insert \ a \ A. [:-a, 1:] ^m a)
1:] \cap m'(a)
            proof (cases a \in A)
               case True
               with 1 have (\prod a \in A. [:-a, 1:] \cap m \ a) = [:-a, 1:] \cap m \ a * (\prod a \in A - \{a\}.
[:-a, 1:] \cap m \ a)
                    by (simp add: prod.remove)
                 also from refl have (\prod a \in A - \{a\}. [:-a, 1:] \cap m \ a) = (\prod a \in A - \{a\}. [:-a])
a, 1:] \cap m'a)
                    by (rule prod.cong) (simp add: m'-def)
                finally have [:-a, 1:] * (\prod a \in A. [:-a, 1:] \cap m \ a) = ([:-a, 1:] * [:-a, 1:] \cap m \ a) * (\prod a \in A - \{a\}. [:-a, 1:] \cap a) = ([:-a, 1:] \cap m \ a) * ([:-a, 1:] \cap a) = ([:-a, 1:
m'(a)
                    by (simp only: mult.assoc)
                 also have [:-a, 1:] * [:-a, 1:] ^ m a = [:-a, 1:] ^ m' a by (simp add:
                finally show ?thesis using 1 by (simp add: prod.insert-remove)
            \mathbf{next}
                case False
                  with 1 have (\prod a \in insert \ a \ A. \ [:-a, 1:] \ \widehat{\ } m' \ a) = [:-a, 1:] \ \widehat{\ } m' \ a \ *
(\prod a \in A. [:-a, 1:] \cap m'a)
                    by simp
                also from reft have (\prod a \in A. [:-a, 1:] \cap m'a) = (\prod a \in A. [:-a, 1:] \cap m
a)
                proof (rule prod.cong)
                    \mathbf{fix} \ x
                    assume x \in A
                    with False have x \neq a by blast
                    thus [:-x, 1:] \cap m' x = [:-x, 1:] \cap m x by (simp add: m'-def)
                  finally have (\prod a \in insert \ a \ A. \ [:-a, 1:] \cap m' \ a) = [:-a, 1:] \cap m' \ a *
(\prod a \in A. [:-a, 1:] \cap m a).
                also from False have m' a = 1 by (simp \ add: \ m'-def \ 2)
                finally show ?thesis by simp
            qed
            finally show [:a, -1:] * p = Polynomial.smult (-c) (<math>\prod a \in insert \ a \ A. [:-
```

```
a, 1:] \ \widehat{\ } m' \ a) .
    \mathbf{next}
     show m' x = 0 \longleftrightarrow x \notin insert \ a \ A \ by (simp \ add: m'-def \ 2)
    ged
  \mathbf{qed}
  moreover have c = \theta \longleftrightarrow p = \theta
    assume p = \theta
   hence [:c:] = \theta \lor (\prod a \in A. [:-a, 1:] \cap m \ a) = \theta by (simp \ add: p)
    thus c = \theta
    proof
     assume [:c:] = \theta
     thus ?thesis by simp
     assume (\prod a \in A. [:-a, 1:] \cap m \ a) = 0
     then obtain a where [:-a, 1:] ma = 0 by (rule\ prod\text{-}eq\text{-}zeroE)
     thus ?thesis by simp
    qed
  \mathbf{qed} (simp add: p)
  moreover {
    \mathbf{fix} \ z
    have 0 < m \ z \text{ if } z \in A \text{ by } (rule \ ccontr) \ (simp \ add: * that)
    hence poly p \ z = 0 \longleftrightarrow (c = 0 \lor z \in A) by (auto simp: p poly-prod * fin
elim: prod-eq-zeroE)
  }
 ultimately show ?thesis ..
qed
end
instance \ complex :: alg-closed-field
 by standard (rule fundamental-theorem-of-algebra, simp add: constant-degree)
end
```

2 Properties of the Lexicographic Order on Power-Products

```
theory Lex-Order-PP imports Polynomials.Power-Products begin
```

We prove some useful properties of the purely lexicographic order relation on power-products.

```
lemma lex-pm-keys-leE:
assumes lex-pm s t and x \in keys (s::'x::linorder <math>\Rightarrow_0 'a::add-linorder-min)
obtains y where y \in keys t and y \leq x
```

```
using assms(1) unfolding lex-pm-alt
proof (elim disjE exE conjE)
 assume s = t
 show ?thesis
 proof
   from assms(2) show x \in keys\ t by (simp\ only: \langle s = t \rangle)
 qed (fact order.refl)
\mathbf{next}
 \mathbf{fix} \ y
 assume 1: lookup s y < lookup t y and 2: \forall y' < y. lookup s y' = lookup t y'
 show ?thesis
 proof (cases \ y \leq x)
   \mathbf{case} \ \mathit{True}
   from zero-min 1 have 0 < lookup t y by (rule le-less-trans)
   hence y \in keys \ t by (simp add: dual-order.strict-implies-not-eq in-keys-iff)
   thus ?thesis using True ..
 next
   case False
   hence x < y by simp
   with 2 have lookup \ s \ x = lookup \ t \ x \ by \ simp
   with assms(2) have x \in keys\ t by (simp\ only:\ in-keys-iff\ not-False-eq-True)
   thus ?thesis using order.refl ..
  qed
qed
lemma lex-pm-except-max:
 assumes lex-pm s t and keys s \cup keys t \subseteq \{...x\}
 shows lex-pm (except s \{x\}) (except t \{x\})
proof -
 from assms(1) have s = t \lor (\exists x. \ lookup \ s \ x < lookup \ t \ x \land (\forall y < x. \ lookup \ s \ y)
= lookup \ t \ y))
   by (simp only: lex-pm-alt)
 thus ?thesis
 proof (elim \ disjE \ exE \ conjE)
   assume s = t
   thus ?thesis by (simp only: lex-pm-refl)
 next
   \mathbf{fix} \ y
   assume \forall z < y. lookup s z = lookup t z
   hence eq: lookup \ s \ z = lookup \ t \ z \ if \ z < y \ for \ z \ using \ that \ by \ simp
   assume *: lookup \ s \ y < lookup \ t \ y
   hence y \in keys \ s \cup keys \ t by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
   with assms(2) have y \in \{...x\} ...
   hence y = x \lor y < x by auto
   thus ?thesis
   proof
     assume y: y = x
     have except \ s \ \{x\} = except \ t \ \{x\}
     proof (rule poly-mapping-eqI)
```

```
show lookup (except s\{x\}) z = lookup (except t\{x\}) z
       proof (rule linorder-cases)
         assume z < y
         thus ?thesis by (simp add: lookup-except eq)
       next
         assume y < z
         hence z \notin \{...x\} by (simp \ add: \ y)
         with assms(2) have z \notin keys \ s and z \notin keys \ t by blast+
         with \langle y < z \rangle show ?thesis by (simp add: y lookup-except in-keys-iff)
       \mathbf{next}
         assume z = y
         thus ?thesis by (simp add: y lookup-except)
       qed
     qed
     thus ?thesis by (simp only: lex-pm-refl)
   next
     assume y < x
     show ?thesis unfolding lex-pm-alt
     proof (intro disjI2 exI conjI allI impI)
       from \langle y < x \rangle * \mathbf{show} \ lookup \ (except \ s \ \{x\}) \ y < lookup \ (except \ t \ \{x\}) \ y
         by (simp add: lookup-except)
     next
       \mathbf{fix} \ z
       assume z < y
       hence z < x using \langle y < x \rangle by (rule less-trans)
       with \langle z < y \rangle show lookup (except s \{x\}) z = lookup (except t \{x\}) z
         by (simp add: lookup-except eq)
     qed
   qed
 qed
qed
lemma lex-pm-strict-plus-left:
 assumes lex-pm-strict s t and \bigwedge x y. x \in keys \ t \Longrightarrow y \in keys \ u \Longrightarrow x < y
 shows lex-pm-strict (u + s) (t::- \Rightarrow_0 'a::add-linorder-min)
proof -
  from assms(1) obtain x where 1: lookup \ s \ x < lookup \ t \ x \ and \ 2: \bigwedge y. \ y < x
\implies lookup \ s \ y = lookup \ t \ y
   by (auto simp: lex-pm-strict-def less-poly-mapping-def less-fun-def)
 from 1 have x \in keys\ t by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
 have lookup-u: lookup u z = 0 if z \le x for z
 proof (rule ccontr)
   assume lookup \ u \ z \neq 0
   hence z \in keys \ u \ \mathbf{by} \ (simp \ add: in-keys-iff)
   with \langle x \in keys \ t \rangle have x < z by (rule \ assms(2))
   with that show False by simp
  qed
 from 1 have lookup (u + s) x < lookup t x by (simp add: lookup-add lookup-u)
```

```
moreover have lookup (u+s) y=lookup t y if y < x for y using that by (simp\ add:\ lookup-add\ 2\ lookup-u) ultimately show ?thesis by (auto\ simp:\ lex-pm-strict-def\ less-poly-mapping-def\ less-fun-def) qed
```

end

3 Polynomial Mappings and Univariate Polynomials

```
\begin{tabular}{ll} \bf theory & \it Univariate-PM \\ \bf imports & \it HOL-Computational-Algebra. Polynomial & \it Polynomials. MPoly-PM \\ \bf begin \\ \end{tabular}
```

3.1 Morphisms *pm-of-poly* and *poly-of-pm*

Many things in this section are copied from theory *Polynomials.MPoly-Type-Univariate*.

```
lemma pm-of-poly-aux:
  \{t. (poly.coeff \ p \ (lookup \ t \ x) \ when \ t \in .[\{x\}]) \neq 0\} =
          Poly-Mapping.single x ' {d. poly.coeff p d \neq 0} (is ?M = -)
proof (intro subset-antisym subsetI)
  assume t \in ?M
 hence \bigwedge y. \ y \neq x \Longrightarrow Poly-Mapping.lookup \ t \ y = 0 by (fastforce simp: PPs-def
in-keys-iff)
  hence t = Poly-Mapping.single x (lookup t x)
  using poly-mapping-eqI by (metis (full-types) lookup-single-eq lookup-single-not-eq)
  then show t \in (Poly\text{-}Mapping.single\ x) '\{d.\ poly.coeff\ p\ d \neq 0\} using \langle t \in Poly - Mapping.single\ x \rangle
?M \rightarrow \mathbf{by} \ auto
qed (auto split: if-splits simp: PPs-def)
lift-definition pm\text{-}of\text{-}poly:: 'x \Rightarrow 'a \ poly \Rightarrow ('x \Rightarrow_0 \ nat) \Rightarrow_0 'a::comm\text{-}monoid\text{-}add
 is \lambda x \ p \ t. (poly.coeff p (lookup t \ x)) when t \in .[\{x\}]
proof -
  fix x::'x and p::'a poly
  show finite \{t. (poly.coeff \ p \ (lookup \ t \ x) \ when \ t \in .[\{x\}]) \neq \emptyset\} unfolding
pm-of-poly-aux
    using finite-surj[OF MOST-coeff-eq-0[unfolded eventually-cofinite]] by blast
qed
definition poly-of-pm: 'x \Rightarrow (('x \Rightarrow_0 nat) \Rightarrow_0 'a) \Rightarrow 'a::comm-monoid-add poly
  where poly-of-pm x p = Abs-poly (\lambda d. \ lookup \ p \ (Poly-Mapping.single \ x \ d))
lemma lookup-pm-of-poly-single [simp]:
  lookup\ (pm\text{-}of\text{-}poly\ x\ p)\ (Poly\text{-}Mapping.single\ x\ d) = poly.coeff\ p\ d
  by (simp add: pm-of-poly.rep-eq PPs-closed-single)
```

```
lemma keys-pm-of-poly: keys (pm\text{-}of\text{-}poly\ x\ p) = Poly\text{-}Mapping.single\ x` \{d.\ poly.coeff
p \ d \neq 0
proof -
 have keys (pm\text{-}of\text{-}poly\ x\ p) = \{t.\ (poly.coeff\ p\ (lookup\ t\ x)\ when\ t\in .[\{x\}]) \neq 0\}
  by (rule set-eqI) (simp add: pm-of-poly.rep-eq flip: lookup-not-eq-zero-eq-in-keys)
  also have ... = Poly-Mapping.single x ' \{d. poly.coeff p d \neq 0\} by (fact
pm-of-poly-aux)
 finally show ?thesis.
qed
lemma coeff-poly-of-pm [simp]: poly.coeff (poly-of-pm\ x\ p)\ k = lookup\ p\ (Poly-Mapping.single
proof
 have 0:Poly-Mapping.single\ x\ `\{d.\ lookup\ p\ (Poly-Mapping.single\ x\ d) \neq 0\} \subseteq
\{d.\ lookup\ p\ d\neq 0\}
   by auto
  have \forall_{\infty} k. lookup p (Poly-Mapping.single x k) = 0 unfolding coeff-def even-
tually-cofinite
  using finite-imageD[OF finite-subset[OF 0 Poly-Mapping.finite-lookup]] inj-single
   by (metis\ inj-eq\ inj-onI)
  then show ?thesis by (simp add: poly-of-pm-def Abs-poly-inverse)
\mathbf{qed}
lemma pm-of-poly-of-pm:
 assumes p \in P[\{x\}]
 shows pm-of-poly x (poly-of-pm x p) = p
proof (rule poly-mapping-eqI)
 \mathbf{fix} \ t
 from assms have keys p \subseteq .[\{x\}] by (rule PolysD)
 \mathbf{show} \ \mathit{lookup} \ (\mathit{pm-of-poly} \ x \ (\mathit{poly-of-pm} \ x \ p)) \ t = \mathit{lookup} \ p \ t
 proof (simp add: pm-of-poly.rep-eq when-def, intro conjI impI)
   assume t \in .[\{x\}]
   hence Poly-Mapping.single x (lookup t x) = t
     by (simp add: PPsD keys-subset-singleton-imp-monomial)
   thus lookup p (Poly-Mapping.single x (lookup t x)) = lookup p t by simp
   assume t \notin .[\{x\}]
   with assms PolysD have t \notin keys p by blast
   thus lookup p \ t = 0 by (simp add: in-keys-iff)
 qed
qed
lemma poly-of-pm-of-poly [simp]: poly-of-pm x (pm-of-poly x p) = p
 by (simp add: poly-of-pm-def coeff-inverse)
lemma pm-of-poly-in-Polys: pm-of-poly x p \in P[\{x\}]
 by (auto simp: keys-pm-of-poly PPs-closed-single intro!: PolysI)
lemma pm-of-poly-zero [simp]: pm-of-poly x \theta = \theta
```

```
by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq)
lemma pm-of-poly-eq-zero-iff [iff]: pm-of-poly x p = 0 \longleftrightarrow p = 0
 by (metis poly-of-pm-of-poly pm-of-poly-zero)
lemma pm-of-poly-monom: pm-of-poly x (Polynomial.monom c d) = monomial c
(Poly-Mapping.single\ x\ d)
proof (rule poly-mapping-eqI)
 \mathbf{fix} \ t
 show lookup (pm\text{-}of\text{-}poly\ x\ (Polynomial.monom\ c\ d))\ t = lookup\ (monomial\ c
(monomial \ d \ x)) \ t
 proof (cases \ t \in .[\{x\}])
   {f case}\ True
   thus ?thesis
     by (auto simp: pm-of-poly.rep-eq lookup-single PPs-singleton when-def dest:
monomial-inj)
 next
   case False
   thus ?thesis by (auto simp add: pm-of-poly.rep-eq lookup-single PPs-singleton)
 qed
qed
lemma pm-of-poly-plus: pm-of-poly x (p+q) = pm-of-poly x p + pm-of-poly x q
 by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq lookup-add when-add-distrib)
lemma pm-of-poly-uminus [simp]: pm-of-poly x (-p) = -pm-of-poly x p
 by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq when-distrib)
lemma pm-of-poly-minus: pm-of-poly x (p-q) = pm-of-poly x p-pm-of-poly x
 by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq lookup-minus when-diff-distrib)
lemma pm-of-poly-one [simp]: pm-of-poly x 1 = 1
 by (simp add: pm-of-poly-monom flip: single-one monom-eq-1)
lemma pm-of-poly-pCons:
 pm-of-poly x (pCons \ c \ p) =
    monomial\ c\ 0 + punit.monom-mult\ (1::-::monoid-mult)\ (Poly-Mapping.single
x 1) (pm\text{-}of\text{-}poly \ x \ p)
   (is ? l = ? r)
proof (rule poly-mapping-eqI)
 \mathbf{fix} \ t
 let ?x = Poly-Mapping.single x (Suc 0)
 show lookup ? l t = lookup ? r t
 proof (cases ?x \ adds \ t)
   case True
   have 1: t - ?x \in .[\{x\}] \longleftrightarrow t \in .[\{x\}]
   proof
     assume t - ?x \in .[\{x\}]
```

```
moreover have ?x \in .[\{x\}] by (rule PPs-closed-single) simp
     ultimately have (t - ?x) + ?x \in .[\{x\}] by (rule PPs-closed-plus)
     with True show t \in .[\{x\}] by (simp \ add: \ adds-minus)
   qed (rule PPs-closed-minus)
   from True have 0 < lookup t x
       by (metis adds-minus lookup-add lookup-single-eq n-not-Suc-n neq0-conv
plus-eq-zero-2)
   moreover from this have t \neq 0 by auto
   ultimately show ?thesis using True
   by (simp add: pm-of-poly.rep-eq lookup-add lookup-single punit.lookup-monom-mult
1 coeff-pCons
                 lookup-minus split: nat.split)
 next
   {\bf case}\ \mathit{False}
   moreover have t \in .[\{x\}] \longleftrightarrow t = 0
   proof
     assume t \in .[\{x\}]
     hence keys \ t \subseteq \{x\} by (rule\ PPsD)
     show t = \theta
     proof (rule ccontr)
      assume t \neq 0
      hence keys t \neq \{\} by simp
      then obtain y where y \in keys \ t by blast
      with \langle keys \ t \subseteq \{x\} \rangle have y \in \{x\}..
      hence y = x by simp
      with \langle y \in keys \ t \rangle have Suc \ 0 \leq lookup \ t \ x by (simp \ add: in-keys-iff)
      hence ?x \ adds \ t
      by (metis adds-poly-mappingI le0 le-funI lookup-single-eq lookup-single-not-eq)
      with False show False ..
     qed
   qed (simp only: zero-in-PPs)
   ultimately show ?thesis
   by (simp add: pm-of-poly.rep-eq lookup-add lookup-single punit.lookup-monom-mult
when-def)
 qed
qed
lemma pm-of-poly-smult [simp]: pm-of-poly x (Polynomial.smult c p) = c \cdot pm-of-poly
 by (rule poly-mapping-eqI) (simp add: pm-of-poly.rep-eq when-distrib)
lemma pm-of-poly-times: pm-of-poly x (p * q) = pm-of-poly x p * pm-of-poly x
(q::-::ring-1 \ poly)
proof (induct p)
 case \theta
 show ?case by simp
 case (pCons \ a \ p)
 show ?case
```

```
by (simp add: pm-of-poly-plus pm-of-poly-pCons map-scale-eq-times pCons(2)
algebra	ext{-}simps
           flip: times-monomial-left)
qed
lemma pm-of-poly-sum: pm-of-poly x (sum f I) = (\sum i \in I. pm-of-poly x (f i))
 by (induct I rule: infinite-finite-induct) (simp-all add: pm-of-poly-plus)
lemma pm-of-poly-prod: pm-of-poly x (prod f I) = (\prod i \in I. pm-of-poly x (f i ::
-::ring-1 poly))
 by (induct I rule: infinite-finite-induct) (simp-all add: pm-of-poly-times)
lemma pm-of-poly-power [simp]: pm-of-poly x (p ^n) = pm-of-poly x (p::-::ring-1
poly) \cap m
 by (induct m) (simp-all add: pm-of-poly-times)
lemma poly-of-pm-zero [simp]: poly-of-pm x \theta = \theta
 by (metis poly-of-pm-of-poly pm-of-poly-zero)
lemma poly-of-pm-eq-zero-iff: poly-of-pm x p = 0 \longleftrightarrow keys p \cap .[\{x\}] = \{\}
proof
 assume eq: poly-of-pm x p = 0
   \mathbf{fix} \ t
   assume t \in .[\{x\}]
   then obtain d where t = Poly-Mapping.single x <math>d unfolding PPs-singleton
   moreover assume t \in keys p
     ultimately have 0 \neq lookup p (Poly-Mapping.single x d) by (simp add:
in-keys-iff)
   also have lookup p (Poly-Mapping.single x d) = Polynomial.coeff (poly-of-pm
x p) d
     \mathbf{by} \ simp
   also have \dots = 0 by (simp \ add: \ eq)
   finally have False by blast
 thus keys p \cap .[\{x\}] = \{\} by blast
 assume *: keys \ p \cap .[\{x\}] = \{\}
 {
   \mathbf{fix} d
   have Poly-Mapping.single x \ d \in .[\{x\}] (is ?x \in ...) by (rule PPs-closed-single)
   with * have ?x \notin keys \ p \ by \ blast
   hence Polynomial.coeff (poly-of-pm x p) d = 0 by (simp add: in-keys-iff)
 thus poly-of-pm x p = 0 using leading-coeff-0-iff by blast
qed
```

```
lemma poly-of-pm-monomial:
    poly-of-pm x (monomial c t) = (Polynomial.monom c (lookup t x) when t \in
.[\{x\}])
proof (cases \ t \in .[\{x\}])
   case True
   moreover from this obtain d where t = Poly-Mapping.single x d
      by (metis PPsD keys-subset-singleton-imp-monomial)
   ultimately show ?thesis unfolding Polynomial.monom.abs-eq coeff-poly-of-pm
      by (auto simp: poly-of-pm-def lookup-single when-def
            dest!: monomial-inj intro!: arg-cong[\mathbf{where} \ f = Abs-poly])
next
   case False
  moreover from this have t \neq monomial\ d\ x for d by (auto simp: PPs-closed-single)
  ultimately show ?thesis unfolding Polynomial.monom.abs-eq coeff-poly-of-pm
      by (auto simp: poly-of-pm-def lookup-single when-def zero-poly.abs-eq)
qed
lemma poly-of-pm-plus: poly-of-pm x (p + q) = poly-of-pm x p + poly-of-pm x q
 unfolding Polynomial.plus-poly.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def
lookup-add)
lemma poly-of-pm-uminus [simp]: poly-of-pm x(-p) = - poly-of-pm x(p) = - poly-of-
  unfolding Polynomial.uminus-poly.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def)
lemma poly-of-pm-minus: poly-of-pm x (p-q) = poly-of-pm x p - poly-of-pm x
  unfolding Polynomial.minus-poly.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def
lookup-minus)
lemma poly-of-pm-one [simp]: poly-of-pm x 1 = 1
   by (simp add: poly-of-pm-monomial zero-in-PPs flip: single-one monom-eq-1)
lemma poly-of-pm-times:
  poly-of-pm \ x \ (p*q) = poly-of-pm \ x \ p*poly-of-pm \ x \ (q::-\Rightarrow_0 'a::comm-semiring-1)
proof -
    have eq: poly-of-pm x (monomial c \ t * q) = poly-of-pm x (monomial c \ t) *
poly-of-pm \ x \ q
      if c \neq 0 for c t
   proof (cases \ t \in .[\{x\}])
      case True
     then obtain d where t: t = Poly-Mapping.single x <math>d unfolding PPs-singleton
       have poly-of-pm x (monomial c t) * poly-of-pm x q = Polynomial.monom c
(lookup\ t\ x)*poly-of-pm\ x\ q
         by (simp add: True poly-of-pm-monomial)
      also have \dots = poly\text{-}of\text{-}pm \ x \ (monomial \ c \ t * q) \ unfolding \ t
      proof (induct d)
         case \theta
         have Polynomial.smult c (poly-of-pm x q) = poly-of-pm x (c \cdot q)
```

```
unfolding Polynomial.smult.abs-eq coeff-poly-of-pm by (simp add: poly-of-pm-def)
   with that show ?case by (simp add: Polynomial.times-poly-def flip: map-scale-eq-times)
   next
     case (Suc\ d)
    have 1: Poly-Mapping single x a adds Poly-Mapping single x b \longleftrightarrow a \le b for
      by (metis adds-def deg-pm-mono deg-pm-single le-Suc-ex single-add)
     have 2: poly-of-pm x (punit.monom-mult 1 (Poly-Mapping.single x 1) r) =
pCons \ \theta \ (poly-of-pm \ x \ r)
      for r :: - \Rightarrow_0 'a unfolding poly.coeff-inject[symmetric]
        by (rule ext) (simp add: coeff-pCons punit.lookup-monom-mult adds-zero
monomial-0-iff 1
                       flip: single-diff split: nat.split)
     from Suc that have Polynomial.monom c (lookup (monomial (Suc d) x) x)
* poly-of-pm x q =
                     poly-of-pm \ x \ (punit.monom-mult \ 1 \ (Poly-Mapping.single \ x \ 1)
                                     ((monomial\ c\ (monomial\ d\ x)) * q))
      by (simp add: Polynomial.times-poly-def 2 del: One-nat-def)
     also have \dots = poly-of-pm \ x \ (monomial \ c \ (Poly-Mapping.single \ x \ (Suc \ d))
    by (simp add: ac-simps times-monomial-monomial flip: single-add times-monomial-left)
     finally show ?case.
   finally show ?thesis by (rule sym)
 \mathbf{next}
   case False
   {
     \mathbf{fix} \ s
     assume s \in keys \pmod{monomial c} t * q
     also have \ldots \subseteq (+) t' keys q unfolding times-monomial-left
      by (fact punit.keys-monom-mult-subset[simplified])
     finally obtain u where s: s = t + u ...
     assume s \in .[\{x\}]
     hence s - u \in .[\{x\}] by (rule PPs-closed-minus)
     hence t \in .[\{x\}] by (simp \ add: \ s)
     with False have False ..
  hence poly-of-pm\ x\ (monomial\ c\ t*q)=0 by (auto simp:\ poly-of-pm-eq-zero-iff)
   with False show ?thesis by (simp add: poly-of-pm-monomial)
 ged
 show ?thesis
   by (induct p rule: poly-mapping-plus-induct) (simp-all add: poly-of-pm-plus eq
distrib-right)
qed
lemma poly-of-pm-sum: poly-of-pm x (sum f I) = (\sum i \in I. poly-of-pm x (f i))
 by (induct I rule: infinite-finite-induct) (simp-all add: poly-of-pm-plus)
lemma poly-of-pm-prod: poly-of-pm x (prod f I) = (\prod i \in I. poly-of-pm x (f i))
```

```
by (induct I rule: infinite-finite-induct) (simp-all add: poly-of-pm-times)
```

```
lemma poly-of-pm-power [simp]: poly-of-pm x (p \hat{m}) = poly-of-pm x p \hat{m} by (induct m) (simp-all add: poly-of-pm-times)
```

3.2 Evaluating Polynomials

```
lemma poly-eq-poly-eval: poly (poly-of-pm x p) a = poly-eval (\lambda y. a when y = x)
proof (induction p rule: poly-mapping-plus-induct)
 case 1
 show ?case by simp
next
 case (2 p c t)
 show ?case
 proof (cases \ t \in .[\{x\}])
   \mathbf{case} \ \mathit{True}
   have poly-eval (\lambda y. \ a \ when \ y = x) (monomial c \ t) = c * (\prod y \in keys \ t. \ (a \ when
y = x) \widehat{} lookup t y)
     \mathbf{by}\ (\mathit{simp\ only:\ poly-eval-monomial})
   also from True have (\prod y \in keys\ t.\ (a\ when\ y = x)\ \widehat{\ }lookup\ t\ y) = (\prod y \in \{x\}.
(a when y = x) \cap lookup t y)
     by (intro prod.mono-neutral-left ballI) (auto simp: in-keys-iff dest: PPsD)
   also have \dots = a \cap lookup \ t \ x \ by \ simp
   finally show ?thesis
    by (simp add: poly-of-pm-plus poly-of-pm-monomial poly-monom poly-eval-plus
True 2(3)
 next
   case False
   have poly-eval (\lambda y. \ a \ when \ y = x) \ (monomial \ c \ t) = c * (\prod y \in keys \ t. \ (a \ when \ y \in keys \ t.)
y = x) \log \sup t y
     by (simp only: poly-eval-monomial)
   also from finite-keys have (\prod y \in keys \ t. \ (a \ when \ y = x) \cap lookup \ t \ y) = 0
   proof (rule prod-zero)
     from False obtain y where y \in keys \ t and y \neq x by (auto simp: PPs-def)
     from this(1) show \exists y \in keys \ t. (a when y = x) \land lookup \ t \ y = 0
     proof
       from \langle y \in keys \ t \rangle have 0 < lookup \ t \ y by (simp \ add: in-keys-iff)
         with \langle y \neq x \rangle show (a when y = x) \widehat{} lookup t y = 0 by (simp add:
zero-power)
     qed
   qed
   finally show ?thesis
    by (simp add: poly-of-pm-plus poly-of-pm-monomial poly-monom poly-eval-plus
False 2(3)
 qed
qed
corollary poly-eq-poly-eval':
```

```
assumes p \in P[\{x\}]
  shows poly (poly-of-pm x p) a = poly-eval (\lambda-. a) p
  unfolding poly-eq-poly-eval using refl
proof (rule poly-eval-cong)
  \mathbf{fix} \ y
  assume y \in indets p
 also from assms have \ldots \subseteq \{x\} by (rule PolysD)
  finally show (a when y = x) = a by simp
qed
lemma poly-eval-eq-poly: poly-eval a (pm\text{-}of\text{-}poly\ x\ p) = poly\ p\ (a\ x)
  by (induct p)
  (simp-all\ add:\ pm-of-poly-p\ Cons\ poly-eval-plus\ poly-eval-times\ poly-eval-monomial
             flip: times-monomial-left)
3.3
        Morphisms flat-pm-of-poly and poly-of-focus
definition flat-pm-of-poly :: 'x \Rightarrow (('x \Rightarrow_0 nat) \Rightarrow_0 'a) \ poly \Rightarrow (('x \Rightarrow_0 nat) \Rightarrow_0 nat) \Rightarrow_0 nat)
'a::semiring-1)
 where flat-pm-of-poly <math>x = flatten \circ pm-of-poly <math>x
definition poly-of-focus: 'x \Rightarrow (('x \Rightarrow_0 nat) \Rightarrow_0 'a) \Rightarrow (('x \Rightarrow_0 nat) \Rightarrow_0 'a::comm-monoid-add)
poly
  where poly-of-focus x = poly-of-pm \ x \circ focus \ \{x\}
{f lemma}\ flat	ext{-}pm	ext{-}of	ext{-}poly	ext{-}in	ext{-}Polys:
  assumes range (poly.coeff p) \subseteq P[Y]
  shows flat-pm-of-poly x p \in P[insert \ x \ Y]
proof -
  let ?p = pm\text{-}of\text{-}poly \ x \ p
  from assms have lookup ?p 'keys ?p \subseteq P[Y] by (simp add: keys-pm-of-poly
image-image) blast
 with pm-of-poly-in-Polys have flatten ?p \in P[\{x\} \cup Y] by (rule flatten-in-Polys)
  thus ?thesis by (simp add: flat-pm-of-poly-def)
qed
corollary indets-flat-pm-of-poly-subset:
  indets (flat-pm-of-poly \ x \ p) \subseteq insert \ x \ ([\ ] \ (indets \ `range \ (poly.coeff \ p)))
proof -
  let ?p = pm\text{-}of\text{-}poly \ x \ p
  let ?Y = \bigcup (indets 'range (poly.coeff p))
  have range (poly.coeff\ p) \subseteq P[?Y] by (auto\ intro:\ PolysI-alt)
  hence flat-pm-of-poly x p \in P[insert \ x ? Y] by (rule flat-pm-of-poly-in-Polys)
  thus ?thesis by (rule PolysD)
qed
lemma
 shows flat-pm-of-poly-zero [simp]: flat-pm-of-poly x \theta = \theta
   and flat-pm-of-poly-monom: flat-pm-of-poly x (Polynomial.monom c d) =
```

```
punit.monom-mult\ 1\ (Poly-Mapping.single\ x\ d)\ c
   and flat-pm-of-poly-plus: flat-pm-of-poly x (p + q) =
                             flat-pm-of-poly <math>x p + flat-pm-of-poly <math>x q
   and flat-pm-of-poly-one [simp]: flat-pm-of-poly x = 1
   and flat-pm-of-poly-sum: flat-pm-of-poly x (sum f(I) = (\sum i \in I). flat-pm-of-poly
 by (simp-all add: flat-pm-of-poly-def pm-of-poly-monom flatten-monomial pm-of-poly-plus
                 flatten-plus pm-of-poly-sum flatten-sum)
lemma
 shows flat-pm-of-poly-uminus [simp]: flat-pm-of-poly x(-p) = - flat-pm-of-poly
   and flat-pm-of-poly-minus: flat-pm-of-poly x (p - q) =
                             flat-pm-of-poly <math>x p - flat-pm-of-poly <math>x (q::=:ring poly)
 by (simp-all add: flat-pm-of-poly-def pm-of-poly-minus flatten-minus)
lemma flat-pm-of-poly-pCons:
 flat-pm-of-poly \ x \ (pCons \ c \ p) =
  c + punit.monom-mult 1 (Poly-Mapping.single x 1) (flat-pm-of-poly x (p::-::comm-semiring-1)
 by (simp add: flat-pm-of-poly-def pm-of-poly-pCons flatten-plus flatten-monomial
flatten\hbox{-}times
        flip: times-monomial-left)
lemma flat-pm-of-poly-smult [simp]:
 flat-pm-of-poly\ x\ (Polynomial.smult\ c\ p) = c*flat-pm-of-poly\ x\ (p::-::comm-semiring-1)
 by (simp add: flat-pm-of-poly-def map-scale-eq-times flatten-times flatten-monomial
pm-of-poly-times)
lemma
  shows flat-pm-of-poly-times: flat-pm-of-poly x (p * q) = flat-pm-of-poly x p * q
flat-pm-of-poly x q
   and flat-pm-of-poly-prod: flat-pm-of-poly x (prod f I) =
                              (\prod i \in I. flat\text{-}pm\text{-}of\text{-}poly \ x \ (f \ i :: -::comm\text{-}ring\text{-}1 \ poly))
  and flat-pm-of-poly-power: flat-pm-of-poly x(p \cap m) = \text{flat-pm-of-poly } x(p::::comm-ring-1)
poly) \cap m
  by (simp-all add: flat-pm-of-poly-def flatten-times pm-of-poly-times flatten-prod
pm-of-poly-prod)
{f lemma} coeff-poly-of-focus-subset-Polys:
 assumes p \in P[X]
 shows range (poly.coeff\ (poly-of-focus\ x\ p)) \subseteq P[X-\{x\}]
proof -
 have range (poly.coeff\ (poly-of-focus\ x\ p)) \subseteq range\ (lookup\ (focus\ \{x\}\ p))
   by (auto simp: poly-of-focus-def)
 also from assms have ... \subseteq P[X - \{x\}] by (rule focus-coeffs-subset-Polys')
  finally show ?thesis.
qed
```

```
lemma
 shows poly-of-focus-zero [simp]: poly-of-focus x \theta = \theta
   and poly-of-focus-uninus [simp]: poly-of-focus x (-p) = - poly-of-focus x p
  and poly-of-focus poly-of-focus x(p+q) = poly-of-focus x(p+q) = poly-of-focus x(p+q)
  and poly-of-focus-minus: poly-of-focus x(p-q) = poly-of-focus x(p-q) = poly-of-focus
   and poly-of-focus-one [simp]: poly-of-focus x = 1
   and poly-of-focus-sum: poly-of-focus x (sum f I) = (\sum i \in I. poly-of-focus <math>x (f
i))
 by (simp-all add: poly-of-focus-def keys-focus poly-of-pm-plus focus-plus poly-of-pm-minus
focus-minus
                 poly-of-pm-sum focus-sum)
lemma poly-of-focus-eq-zero-iff [iff]: poly-of-focus x p = 0 \longleftrightarrow p = 0
 using focus-in-Polys[of \{x\} p]
 by (auto simp: poly-of-focus-def poly-of-pm-eq-zero-iff Int-absorb2 dest: PolysD)
lemma poly-of-focus-monomial:
 poly-of-focus\ x\ (monomial\ c\ t) = Polynomial.monom\ (monomial\ c\ (except\ t\ \{x\}))
(lookup\ t\ x)
  by (simp add: poly-of-focus-def focus-monomial poly-of-pm-monomial PPs-def
keys-except lookup-except)
lemma
 shows poly-of-focus-times: poly-of-focus x (p * q) = poly-of-focus x p * poly-of-focus
   and poly-of-focus-prod: poly-of-focus x (prod f I) =
                           (\prod i \in I. \ poly-of-focus \ x \ (f \ i :: - \Rightarrow_0 -:: comm-semiring-1))
    and poly-of-focus-power: poly-of-focus x (p \cap m) = poly-of-focus x (p::- \Rightarrow_0
-::comm-semiring-1)
  by (simp-all add: poly-of-focus-def poly-of-pm-times focus-times poly-of-pm-prod
focus-prod)
lemma flat-pm-of-poly-of-focus [simp]: flat-pm-of-poly x (poly-of-focus x p) = p
 by (simp add: flat-pm-of-poly-def poly-of-focus-def pm-of-poly-of-pm focus-in-Polys)
lemma poly-of-focus-flat-pm-of-poly:
 assumes range (poly.coeff p) \subseteq P[-\{x\}]
 shows poly-of-focus\ x\ (flat-pm-of-poly\ x\ p) = p
proof -
 from assms have lookup (pm\text{-}of\text{-}poly\ x\ p) 'keys (pm\text{-}of\text{-}poly\ x\ p)\subseteq P[-\{x\}]
   by (simp add: keys-pm-of-poly image-image) blast
 thus ?thesis by (simp add: flat-pm-of-poly-def poly-of-focus-def focus-flatten pm-of-poly-in-Polys)
qed
lemma flat-pm-of-poly-eq-zeroD:
```

assumes flat-pm-of-poly x p = 0 and range (poly.coeff p) $\subseteq P[-\{x\}]$

```
shows p=0
proof —
from assms(2) have p=poly\text{-}of\text{-}focus\ x\ (flat\text{-}pm\text{-}of\text{-}poly\ x\ p)
by (simp\ only:\ poly\text{-}of\text{-}focus\text{-}flat\text{-}pm\text{-}of\text{-}poly)
also have ... = 0 by (simp\ add:\ assms(1))
finally show ?thesis .

qed

lemma poly\text{-}poly\text{-}of\text{-}focus:\ poly\ (poly\text{-}of\text{-}focus\ x\ p)\ a=poly\text{-}eval\ (\lambda\text{-}.\ a)\ (focus\ \{x\}\ p)
by (simp\ add:\ poly\text{-}of\text{-}focus\text{-}def\ poly\text{-}eq\text{-}poly\text{-}eval'\ focus\text{-}in\text{-}Polys)

corollary poly\text{-}poly\text{-}of\text{-}focus\text{-}monomial:\ poly\ (poly\text{-}of\text{-}focus\ x\ p)\ (monomial\ 1\ (Poly\text{-}Mapping.single\ x\ 1)) = (p::-\Rightarrow_0
-::comm\text{-}semiring\text{-}1)
unfolding poly\text{-}poly\text{-}of\text{-}focus\ poly\text{-}eval\text{-}focus\ by}\ (rule\ poly\text{-}subst\text{-}id)\ simp
```

4 Hilbert's Nullstellensatz

```
 \begin{array}{c} \textbf{theory} \ \textit{Nullstellensatz} \\ \textbf{imports} \ \textit{Algebraically-Closed-Fields} \\ \textit{HOL-Computational-Algebra.Fraction-Field} \\ \textit{Lex-Order-PP} \\ \textit{Univariate-PM} \\ \textit{Groebner-Bases.Groebner-PM} \\ \textbf{begin} \end{array}
```

We prove the geometric version of Hilbert's Nullstellensatz, i.e. the precise correspondence between algebraic varieties and radical ideals. The field-theoretic version of the Nullstellensatz is proved in theory *Nullstellensatz-Field*.

4.1 Preliminaries

end

```
lemma finite-linorder-induct [consumes 1, case-names empty insert]: assumes finite (A::'a::linorder set) and P {} and A A. finite A \Longrightarrow A \subseteq \{..< a\} \Longrightarrow P A \Longrightarrow P (insert a A) shows P A proof — define k where k = card A thus ?thesis using assms(1) proof (induct k arbitrary: A) case 0 with assms(2) show ?case by simp next case (Suc k)
```

```
define a where a = Max A
   from Suc.prems(1) have A \neq \{\} by auto
   with Suc.prems(2) have a \in A unfolding a-def by (rule\ Max-in)
   with Suc. prems have k = card (A - \{a\}) by simp
   moreover from Suc.prems(2) have finite (A - \{a\}) by simp
   ultimately have P(A - \{a\}) by (rule\ Suc.hyps)
   with \langle finite\ (A - \{a\}) \rangle - have P\ (insert\ a\ (A - \{a\}))
   proof (rule\ assms(3))
    show A - \{a\} \subseteq \{..< a\}
    proof
      \mathbf{fix} \ b
      assume b \in A - \{a\}
      hence b \in A and b \neq a by simp-all
       moreover from Suc.prems(2) this(1) have b \leq a unfolding a-def by
(rule\ Max-qe)
      ultimately show b \in \{... < a\} by simp
    qed
   qed
   with \langle a \in A \rangle show ?case by (simp add: insert-absorb)
 qed
qed
lemma Fract-same: Fract a = (1 \text{ when } a \neq 0)
 by (simp add: One-fract-def Zero-fract-def eq-fract when-def)
lemma Fract-eq-zero-iff: Fract a b=0 \longleftrightarrow a=0 \lor b=0
  by (metis (no-types, lifting) Zero-fract-def eq-fract(1) eq-fract(2) mult-eq-0-iff
one-neq-zero)
lemma poly-plus-rightE:
 obtains c where poly p(x + y) = poly p(x + c * y)
proof (induct p arbitrary: thesis)
 case \theta
 have poly \theta (x + y) = poly \theta x + \theta * y by simp
 thus ?case by (rule \ \theta)
 case (pCons \ a \ p)
 obtain c where poly p(x + y) = poly p(x + c * y by (rule pCons.hyps)
 hence poly (pCons\ a\ p)\ (x+y)=a+(x+y)*(poly\ p\ x+c*y) by simp
 also have ... = poly (pCons\ a\ p)\ x + (x*c + (poly\ p\ x + c*y))*y by (simp)
add: algebra-simps)
 finally show ?case by (rule pCons.prems)
qed
lemma poly-minus-rightE:
 obtains c where poly p(x - y) = poly p(x - c * (y::-::comm-ring))
 by (metis add-diff-cancel-right' diff-add-cancel poly-plus-rightE)
lemma map-poly-plus:
```

```
assumes f \theta = \theta and \bigwedge a b \cdot f(a + b) = f a + f b
  shows map\text{-}poly f (p + q) = map\text{-}poly f p + map\text{-}poly f q
  by (rule Polynomial.poly-eqI) (simp add: coeff-map-poly assms)
lemma map-poly-minus:
  assumes f \theta = \theta and \bigwedge a b \cdot f (a - b) = f a - f b
  shows map\text{-}poly f (p - q) = map\text{-}poly f p - map\text{-}poly f q
 by (rule Polynomial.poly-eqI) (simp add: coeff-map-poly assms)
lemma map-poly-sum:
  assumes f \theta = \theta and \bigwedge a b \cdot f(a + b) = f a + f b
  shows map-poly f (sum g A) = (\sum a \in A. map-poly f (g a))
  by (induct A rule: infinite-finite-induct) (simp-all add: map-poly-plus assms)
{\bf lemma}\ \textit{map-poly-times}:
 assumes f \theta = \theta and A \cdot a \cdot b \cdot f(a + b) = f \cdot a + f \cdot b and A \cdot a \cdot b \cdot f(a * b) = f \cdot a * b
 shows map\text{-}poly f (p * q) = map\text{-}poly f p * map\text{-}poly f q
proof (induct p)
  case \theta
  show ?case by simp
next
  case (pCons \ c \ p)
  show ?case by (simp add: assms map-poly-plus map-poly-smult map-poly-pCons
pCons)
qed
lemma poly-Fract:
 assumes set (Polynomial.coeffs p) \subseteq range (\lambda x. Fract x 1)
 obtains q m where poly p (Fract a b) = Fract q (b \widehat{} m)
 using assms
proof (induct p arbitrary: thesis)
  case \theta
  have poly \theta (Fract a b) = Fract \theta (b \uparrow 1) by (simp add: fract-collapse)
  thus ?case by (rule \ \theta)
  case (pCons \ c \ p)
 from pCons.hyps(1) have insert c (set (Polynomial.coeffs p)) = set (Polynomial.coeffs
(pCons \ c \ p))
   by auto
 with pCons.prems(2) have c \in range(\lambda x. Fract x 1) and set(Polynomial.coeffs)
p) \subseteq range (\lambda x. Fract x 1)
   by blast+
  from this(2) obtain q\theta m\theta where poly-p: poly\ p (Fract a\ b) = Fract q\theta (b\ \hat{}
m\theta)
   using pCons.hyps(2) by blast
  from \langle c \in \neg \rangle obtain c\theta where c: c = Fract \ c\theta \ 1 ..
  show ?case
  proof (cases b = \theta)
```

```
hence poly (pCons \ c \ p) (Fract \ a \ b) = Fract \ c\theta \ (b \ \widehat{\ } \theta) by (simp \ add: \ c
fract-collapse)
   thus ?thesis by (rule pCons.prems)
 next
   case False
   hence poly (pCons\ c\ p) (Fract\ a\ b) = Fract\ (c\theta * b\ \widehat{} Suc\ m\theta + a * q\theta) (b\ \widehat{}
     by (simp\ add:\ poly-p\ c)
   thus ?thesis by (rule pCons.prems)
 qed
qed
lemma (in ordered-term) lt-sum-le-Max: lt (sum f A) \leq_t ord-term-lin.Max {lt (f
a) \mid a. \ a \in A \}
proof (induct A rule: infinite-finite-induct)
 case (infinite A)
 thus ?case by (simp add: min-term-min)
 case empty
 thus ?case by (simp add: min-term-min)
next
  case (insert a A)
 show ?case
 proof (cases\ A = \{\})
   {\bf case}\  \, True
   thus ?thesis by simp
 next
   {f case} False
   from insert.hyps(1, 2) have lt (sum f (insert a A)) = lt (f a + sum f A) by
  also have ... \leq_t ord-term-lin.max (lt (f a)) (lt (sum f A)) by (rule lt-plus-le-max)
    also have ... \leq_t ord-term-lin.max (lt (f a)) (ord-term-lin.Max {lt (f a) | a. a}
     using insert.hyps(3) ord-term-lin.max.mono by blast
   also from insert.hyps(1) False have ... = ord-term-lin.Max (insert (lt (f a))
\{lt\ (f\ x)\ | x.\ x\in A\})
     by simp
   also have ... = ord-term-lin.Max \{lt\ (f\ x)\ | x.\ x\in insert\ a\ A\}
     by (rule arg-cong[where f = ord-term-lin.Max]) blast
   finally show ?thesis.
 qed
qed
4.2
       Ideals and Varieties
definition variety-of :: (('x \Rightarrow_0 nat) \Rightarrow_0 'a) set \Rightarrow ('x \Rightarrow 'a::comm\text{-semiring-1})
 where variety-of F = \{a. \ \forall f \in F. \ poly\text{-eval } a f = 0\}
```

case True

```
definition ideal-of :: ('x \Rightarrow 'a::comm\text{-semiring-1}) set \Rightarrow (('x \Rightarrow_0 nat) \Rightarrow_0 'a) set
  where ideal-of A = \{f. \ \forall \ a \in A. \ poly\text{-eval } a \ f = 0\}
abbreviation V \equiv variety-of
abbreviation \mathcal{I} \equiv ideal\text{-}of
lemma variety-ofI: (\Lambda f. f \in F \Longrightarrow poly\text{-eval } a f = 0) \Longrightarrow a \in V F
  by (simp add: variety-of-def)
lemma variety-of-alt: poly-eval a : F \subseteq \{0\} \Longrightarrow a \in \mathcal{V} F
  by (auto intro: variety-ofI)
lemma variety-ofD: a \in V F \Longrightarrow f \in F \Longrightarrow poly-eval \ a f = 0
  by (simp add: variety-of-def)
lemma variety-of-empty [simp]: \mathcal{V} \{\} = UNIV
  by (simp add: variety-of-def)
lemma variety-of-UNIV [simp]: V UNIV = \{\}
 by (metis (mono-tags, lifting) Collect-empty-eq UNIV-I one-neq-zero poly-eval-one
variety-of-def)
lemma variety-of-antimono: F \subseteq G \Longrightarrow \mathcal{V} \ G \subseteq \mathcal{V} \ F
  \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{variety}\text{-}\mathit{of}\text{-}\mathit{def})
lemma variety-of-ideal [simp]: V (ideal F) = V F
proof
  show V (ideal F) \subseteq V F by (intro variety-of-antimono ideal.span-superset)
\mathbf{next}
  show V F \subseteq V (ideal F)
  proof (intro subsetI variety-ofI)
    fix a f
    assume a \in \mathcal{V} F and f \in ideal F
    from this(2) show poly-eval a f = 0
    proof (induct f rule: ideal.span-induct-alt)
      \mathbf{case}\ base
      show ?case by simp
    next
      case (step \ c \ f \ g)
       with \langle a \in \mathcal{V} | F \rangle show ?case by (auto simp: poly-eval-plus poly-eval-times
dest: variety-ofD)
    qed
  qed
qed
lemma ideal-ofI: (\land a. \ a \in A \Longrightarrow poly\text{-eval} \ a \ f = 0) \Longrightarrow f \in \mathcal{I} \ A
  by (simp add: ideal-of-def)
```

```
lemma ideal-ofD: f \in \mathcal{I} A \Longrightarrow a \in A \Longrightarrow poly\text{-eval } a f = 0
  by (simp add: ideal-of-def)
lemma ideal-of-empty [simp]: \mathcal{I} \{\} = UNIV
  by (simp add: ideal-of-def)
lemma ideal-of-antimono: A \subseteq B \Longrightarrow \mathcal{I} \ B \subseteq \mathcal{I} \ A
  by (auto simp: ideal-of-def)
lemma ideal-ideal-of [simp]: ideal (\mathcal{I} A) = \mathcal{I} A
  unfolding ideal.span-eq-iff
proof (rule ideal.subspaceI)
  show 0 \in \mathcal{I} A by (rule ideal-ofI) simp
next
  \mathbf{fix} f q
  assume f \in \mathcal{I} A
  hence f: poly-eval a f = 0 if a \in A for a using that by (rule ideal-ofD)
  assume g \in \mathcal{I} A
  hence g: poly-eval a g = 0 if a \in A for a using that by (rule ideal-ofD)
  show f + g \in \mathcal{I} A by (rule ideal-ofI) (simp add: poly-eval-plus f g)
\mathbf{next}
  fix c f
  assume f \in \mathcal{I} A
  hence f: poly-eval \ a \ f = 0 \ \text{if} \ a \in A \ \text{for} \ a \ \text{using} \ that \ \text{by} \ (rule \ ideal-ofD)
  show c * f \in \mathcal{I} A by (rule ideal-ofI) (simp add: poly-eval-times f)
qed
lemma ideal-of-UN: \mathcal{I}(\bigcup (A \cdot J)) = (\bigcap j \in J. \mathcal{I}(A j))
proof (intro set-eqI iffI ideal-ofI INT-I)
  fix p j a
  assume p \in \mathcal{I} (\bigcup (A ' J))
  assume j \in J and a \in A j
  hence a \in \bigcup (A ' J) ..
  with \langle p \in \neg \rangle show poly-eval a p = 0 by (rule ideal-ofD)
\mathbf{next}
  \mathbf{fix} \ p \ a
  assume a \in \bigcup (A 'J)
  then obtain j where j \in J and a \in A j..
  assume p \in (\bigcap j \in J. \mathcal{I} (A j))
  hence p \in \mathcal{I} (A j) using \langle j \in J \rangle ...
  thus poly-eval a p = 0 using \langle a \in A j \rangle by (rule ideal-ofD)
qed
corollary ideal-of-Un: \mathcal{I}(A \cup B) = \mathcal{I}(A \cap \mathcal{I}(B))
  using ideal-of-UN[of\ id\ \{A,\ B\}] by simp
lemma variety-of-ideal-of-variety [simp]: \mathcal{V}(\mathcal{I}(\mathcal{V} F)) = \mathcal{V} F (is - = ?V)
proof
  have F \subseteq \mathcal{I}(\mathcal{V} F) by (auto intro!: ideal-ofI dest: variety-ofD)
```

```
thus V(\mathcal{I} ? V) \subseteq ?V by (rule variety-of-antimono)
  show ?V \subseteq \mathcal{V} \ (\mathcal{I} \ ?V) by (auto intro!: variety-ofI dest: ideal-ofD)
lemma ideal-of-inj-on: inj-on \mathcal{I} (range (\mathcal{V}::(('x \Rightarrow_0 nat) \Rightarrow_0 'a::comm-semiring-1)
set \Rightarrow -))
proof (rule inj-onI)
  \mathbf{fix} \ A \ B :: ('x \Rightarrow 'a) \ set
  assume A \in range \mathcal{V}
  then obtain F where A: A = \mathcal{V} F ..
  assume B \in range \mathcal{V}
  then obtain G where B: B = \mathcal{V} G..
  assume \mathcal{I} A = \mathcal{I} B
  hence V(\mathcal{I} A) = V(\mathcal{I} B) by simp
  thus A = B by (simp \ add: A \ B)
qed
lemma ideal-of-variety-of-ideal [simp]: \mathcal{I}(\mathcal{V}(\mathcal{I}A)) = \mathcal{I}A (is - = ?I)
  have A \subseteq \mathcal{V} (\mathcal{I} A) by (auto intro!: variety-ofI dest: ideal-ofD)
  thus \mathcal{I}(\mathcal{V}?I) \subseteq ?I by (rule ideal-of-antimono)
  show ?I \subseteq \mathcal{I} \ (\mathcal{V} \ ?I) by (auto intro!: ideal-ofI dest: variety-ofD)
qed
lemma variety-of-inj-on: inj-on \mathcal{V} (range (\mathcal{I}::('x \Rightarrow 'a::comm-semiring-1) set \Rightarrow
\mathbf{proof}\ (\mathit{rule}\ \mathit{inj-onI})
  \mathbf{fix}\ F\ G::(('x\Rightarrow_0\ nat)\Rightarrow_0\ 'a)\ set
  assume F \in range \mathcal{I}
  then obtain A where F: F = \mathcal{I} A..
  assume G \in range \mathcal{I}
  then obtain B where G: G = \mathcal{I} B..
  assume V F = V G
  hence \mathcal{I}(\mathcal{V} F) = \mathcal{I}(\mathcal{V} G) by simp
  thus F = G by (simp \ add: F \ G)
qed
lemma image-map-indets-ideal-of:
  assumes inj f
  shows map-indets f ' \mathcal{I} A = \mathcal{I} ((\lambda a. \ a \circ f) - ' (A::('x \Rightarrow 'a::comm\text{-}semiring\text{-}1)
set)) \cap P[range\ f]
proof -
  {
    fix p and a::'x \Rightarrow 'a
    assume \forall a \in (\lambda a. \ a \circ f) - `A. \ poly-eval \ (a \circ f) \ p = 0
    hence eq: poly-eval (a \circ f) p = 0 if a \circ f \in A for a using that by simp
    have the-inv f \circ f = id by (rule ext) (simp add: assms the-inv-f-f)
```

```
hence a: a = a \circ the\text{-}inv \ f \circ f \ \text{by} \ (simp \ add: comp\text{-}assoc)
   moreover assume a \in A
   ultimately have (a \circ the\text{-}inv f) \circ f \in A by simp
   hence poly-eval ((a \circ the\text{-}inv f) \circ f) p = 0 by (rule \ eq)
   hence poly-eval a p = 0 by (simp flip: a)
 thus ?thesis
    by (auto simp: ideal-of-def poly-eval-map-indets simp flip: range-map-indets
intro!: imageI)
qed
lemma variety-of-map-indets: V (map-indets f 'F) = (\lambda a. \ a \circ f) - 'V F
 by (auto simp: variety-of-def poly-eval-map-indets)
4.3
       Radical Ideals
definition radical :: 'a::monoid-mult set \Rightarrow 'a set (\langle \sqrt{(-)} \rangle [999] 999)
  where radical F = \{f. \exists m. f \cap m \in F\}
lemma radicalI: f \cap m \in F \Longrightarrow f \in \sqrt{F}
 by (auto simp: radical-def)
lemma radicalE:
 assumes f \in \sqrt{F}
 obtains m where f \cap m \in F
 using assms by (auto simp: radical-def)
lemma radical-empty [simp]: \sqrt{\{\}} = \{\}
 by (simp add: radical-def)
lemma radical-UNIV [simp]: \sqrt{UNIV} = UNIV
 by (simp add: radical-def)
lemma radical-ideal-eq-UNIV-iff: \sqrt{ideal} \ F = UNIV \longleftrightarrow ideal \ F = UNIV
proof
 assume \sqrt{ideal} F = UNIV
 hence 1 \in \sqrt{ideal} \ F by simp
 then obtain m where 1 \cap m \in ideal\ F by (rule radicalE)
  thus ideal F = UNIV by (simp add: ideal-eq-UNIV-iff-contains-one)
qed simp
lemma zero-in-radical-ideal [simp]: 0 \in \sqrt{ideal} F
proof (rule radicalI)
 show 0 \cap 1 \in ideal\ F by (simp\ add:\ ideal.span-zero)
lemma radical-mono: F \subseteq G \Longrightarrow \sqrt{F} \subseteq \sqrt{G}
 by (auto elim!: radicalE intro: radicalI)
```

```
lemma radical-superset: F \subseteq \sqrt{F}
proof
  \mathbf{fix} f
  assume f \in F
 hence f \cap 1 \in F by simp
  thus f \in \sqrt{F} by (rule \ radical I)
\mathbf{qed}
lemma radical-idem [simp]: \sqrt{\sqrt{F}} = \sqrt{F}
 show \sqrt{F} \subseteq \sqrt{F} by (auto elim!: radicalE intro: radicalI simp flip: power-mult)
qed (fact radical-superset)
lemma radical-Int-subset: \sqrt{(A \cap B)} \subseteq \sqrt{A} \cap \sqrt{B}
  by (auto intro: radicalI elim: radicalE)
lemma radical-ideal-Int: \sqrt{(ideal\ F\cap ideal\ G)} = \sqrt{ideal\ F} \cap \sqrt{ideal\ G}
  using radical-Int-subset
proof (rule subset-antisym)
  show \sqrt{ideal} \ F \cap \sqrt{ideal} \ G \subseteq \sqrt{(ideal} \ F \cap ideal \ G)
  proof
   \mathbf{fix} p
   assume p \in \sqrt{ideal} \ F \cap \sqrt{ideal} \ G
   hence p \in \sqrt{ideal} \ F and p \in \sqrt{ideal} \ G by simp-all
   from this(1) obtain m1 where p1: p \cap m1 \in ideal F by (rule \ radical E)
   from \langle p \in \sqrt{ideal} \ G \rangle obtain m2 where p \cap m2 \in ideal \ G by (rule \ radicalE)
   hence p \cap m1 * p \cap m2 \in ideal G by (rule ideal.span-scale)
   moreover from p1 have p \cap m2 * p \cap m1 \in ideal F by (rule ideal.span-scale)
   ultimately have p \cap (m1 + m2) \in ideal \ F \cap ideal \ G by (simp \ add: power-add)
mult.commute)
   thus p \in \sqrt{(ideal\ F \cap ideal\ G)} by (rule\ radicalI)
  qed
qed
lemma ideal-radical-ideal [simp]: ideal (\sqrt{ideal} F) = \sqrt{ideal} F (is - = ?R)
  unfolding ideal.span-eq-iff
proof (rule ideal.subspaceI)
  have 0 \cap 1 \in ideal\ F by (simp\ add:\ ideal.span-zero)
  thus 0 \in ?R by (rule\ radicalI)
next
  \mathbf{fix} \ a \ b
  assume a \in ?R
  then obtain m where a \cap m \in ideal\ F by (rule radicalE)
  have a: a \cap k \in ideal\ F \ \text{if} \ m \leq k \ \text{for} \ k
  proof -
   from \langle a \cap m \in A \rangle have a \cap (k - m + m) \in ideal\ F by (simp\ only:\ power-add)
ideal.span-scale)
   with that show ?thesis by simp
  qed
```

```
assume b \in ?R
  then obtain n where b \cap n \in ideal\ F by (rule\ radicalE)
  have b: b \cap k \in ideal\ F \ \text{if} \ n \leq k \ \text{for} \ k
  proof -
    from \langle b \cap n \in A \rangle have b \cap (k-n+n) \in ideal\ F by (simp only: power-add
ideal.span-scale)
   with that show ?thesis by simp
  qed
  have (a + b) \cap (m + n) \in ideal \ F unfolding binomial-ring
  proof (rule ideal.span-sum)
   \mathbf{fix} \ k
   show of-nat (m + n \ choose \ k) * a \ \hat{k} * b \ \hat{m} + n - k) \in ideal \ F
   proof (cases k \leq m)
     {f case}\ {\it True}
     hence n \leq m + n - k by simp
     hence b \ \widehat{\ } (m+n-k) \in ideal \ F \ \mathbf{by} \ (rule \ b)
     thus ?thesis by (rule ideal.span-scale)
   \mathbf{next}
     case False
     hence m \leq k by simp
     hence a \hat{k} \in ideal \ F by (rule \ a)
     hence of-nat (m + n \ choose \ k) * b \ (m + n - k) * a \ k \in ideal \ F \ by (rule
ideal.span-scale)
     thus ?thesis by (simp only: ac-simps)
   qed
  qed
  thus a + b \in R by (rule radicalI)
next
  \mathbf{fix} \ c \ a
 assume a \in ?R
 then obtain m where a \cap m \in ideal \ F by (rule \ radical E)
 hence (c * a) \cap m \in ideal\ F by (simp\ only:\ power-mult-distrib\ ideal.span-scale)
  thus c * a \in ?R by (rule radicalI)
lemma radical-ideal-of [simp]: \sqrt{\mathcal{I}} A = \mathcal{I} (A::(-\Rightarrow -::semiring-1-no-zero-divisors))
set)
proof
 show \sqrt{I} A \subseteq I A by (auto elim!: radicalE dest!: ideal-ofD intro!: ideal-ofI simp:
poly-eval-power)
qed (fact radical-superset)
lemma variety-of-radical-ideal [simp]: \mathcal{V} (\sqrt{ideal}\ F) = \mathcal{V} (F::(-\Rightarrow_0-::semiring-1-no-zero-divisors)
set
proof
 have F \subseteq ideal\ F by (rule ideal.span-superset)
 also have \ldots \subseteq \sqrt{ideal} \ F by (rule radical-superset)
  finally show V (\sqrt{ideal}\ F) \subseteq V F by (rule variety-of-antimono)
next
```

```
show V F \subseteq V (\sqrt{ideal} F)
  proof (intro subsetI variety-ofI)
    fix a f
    assume a \in \mathcal{V} F
    hence a \in \mathcal{V} (ideal F) by simp
    assume f \in \sqrt{ideal} F
    then obtain m where f \cap m \in ideal \ F by (rule \ radical E)
   \mathbf{with} \ \ \langle a \in \mathcal{V} \ (\mathit{ideal} \ F) \rangle \ \mathbf{have} \ \mathit{poly-eval} \ a \ (\mathit{f} \ \widehat{\ } \mathit{m}) = \ \mathit{0} \ \mathbf{by} \ (\mathit{rule} \ \mathit{variety-ofD})
    thus poly-eval a f = 0 by (simp add: poly-eval-power)
  \mathbf{qed}
qed
{f lemma}\ image-map-indets-radical:
  assumes inj f
  shows map-indets f '\sqrt{F} = \sqrt{(map\text{-}indets f '(F::(- <math>\Rightarrow_0 'a::comm\text{-}ring\text{-}1) set))}
\cap P[range\ f]
proof
  show map-indets f ' \sqrt{F} \subseteq \sqrt{(map\text{-}indets\ f\ 'F)} \cap P[range\ f]
   by (auto simp: radical-def simp flip: map-indets-power range-map-indets introl:
imageI)
next
  show \sqrt{(map\text{-}indets\ f\ 'F)} \cap P[range\ f] \subseteq map\text{-}indets\ f\ '\sqrt{F}
  proof
    \mathbf{fix} p
    assume p \in \sqrt{(map\text{-}indets\ f\ `F)} \cap P[range\ f]
    hence p \in \sqrt{(map\text{-}indets\ f\ `F)} and p \in range\ (map\text{-}indets\ f)
      by (simp-all add: range-map-indets)
    from this(1) obtain m where p \cap m \in map\text{-}indets\ f \in F by (rule\ radicalE)
    then obtain q where q \in F and p-m: p \cap m = map\text{-}indets f q ...
    from assms obtain g where g \circ f = id and map-indets g \circ map-indets f = id
(id::-\Rightarrow -\Rightarrow_0 'a)
      by (rule map-indets-inverseE)
    hence eq: map-indets g (map-indets f p') = p' for p'::- \Rightarrow_0 'a
      by (simp\ add:\ pointfree-idE)
   from p-m have map-indets g(p \cap m) = map-indets g(map-indets f q) by (rule
arg-cong)
    hence (map\text{-}indets\ g\ p) \cap m = q\ \text{by}\ (simp\ add:\ eq)
    from \langle p \in range \rightarrow obtain p' where p = map-indets f p' ...
    hence p = map\text{-}indets \ f \ (map\text{-}indets \ g \ p) by (simp \ add: \ eq)
    moreover have map-indets q p \in \sqrt{F}
    proof (rule radicalI)
       from \langle q \in F \rangle show map-indets g \not p \cap m \in F by (simp add: p-m eq flip:
map-indets-power)
    ultimately show p \in map\text{-}indets f ' \sqrt{F} by (rule image\text{-}eqI)
  qed
qed
```

4.4 Geometric Version of the Nullstellensatz

```
\mathbf{lemma}\ \textit{weak-Nullstellensatz-aux-1}:
  assumes \bigwedge i. i \in I \Longrightarrow g \ i \in ideal \ B
 obtains c where c \in ideal \ B and (\prod i \in I. \ (f \ i + g \ i) \ \widehat{\ } m \ i) = (\prod i \in I. \ f \ i \ \widehat{\ } m
i) + c
 using assms
proof (induct I arbitrary: thesis rule: infinite-finite-induct)
  case (infinite I)
  from ideal.span-zero show ?case by (rule infinite) (simp add: infinite(1))
next
  case empty
  from ideal.span-zero show ?case by (rule empty) simp
  case (insert j I)
  have g \ i \in ideal \ B \ if \ i \in I \ for \ i \ by \ (rule \ insert.prems) \ (simp \ add: \ that)
  with insert.hyps(3) obtain c where c: c \in ideal B
   and 1: (\prod i \in I. (f i + g i) \cap m i) = (\prod i \in I. f i \cap m i) + c by blast
  define k where k = m j
  obtain d where 2: (f j + g j) m j = f j m j + d * g j unfolding
k-def[symmetric]
  proof (induct k arbitrary: thesis)
   case \theta
   have (fj + gj) \cap \theta = fj \cap \theta + \theta * gj by simp
   thus ?case by (rule \ \theta)
  next
   case (Suc \ k)
   obtain d where (fj + gj) \hat{k} = fj \hat{k} + d * gj by (rule\ Suc.hyps)
   hence (fj + gj) Suc k = (fj \hat{k} + d * gj) * (fj + gj) by simp
   also have ... = fj \cap Suc \ k + (fj \cap k + d * (fj + gj)) * gj by (simp \ add:
algebra-simps)
   finally show ?case by (rule Suc.prems)
  qed
 from c have *: fj \cap mj * c + (((\prod i \in I. fi \cap mi) + c) * d) * gj \in ideal B (is
   by (intro ideal.span-add ideal.span-scale insert.prems insertI1)
  from insert.hyps(1, 2) have (\prod i \in insert j \ I. \ (f \ i + g \ i) \cap m \ i) =
                               (fj \cap m j + d * g j) * ((\prod i \in I. f i \cap m i) + c)
   by (simp add: 12)
 also from insert.hyps(1, 2) have ... = (\prod i \in insert \ j \ I. \ f \ i \cap m \ i) + ?c by (simp)
add: algebra-simps)
  finally have (\prod i \in insert \ j \ I. \ (f \ i + g \ i) \cap m \ i) = (\prod i \in insert \ j \ I. \ f \ i \cap m \ i) + i \cap insert \ j \ I. \ f \ i \cap m \ i)
  with * show ?case by (rule insert.prems)
qed
lemma weak-Nullstellensatz-aux-2:
 assumes finite X and F \subseteq P[insert \ x \ X] and X \subseteq \{... < x :: 'x :: \{countable, linorder\}\}
   and 1 \notin ideal \ F and ideal \ F \cap P[\{x\}] \subseteq \{0\}
  obtains a::'a::alg\text{-}closed\text{-}field where 1 \notin ideal (poly-eval (\lambda-. monomial a \theta) '
```

```
focus \{x\} 'F)
proof -
 let ?x = monomial 1 (Poly-Mapping.single x 1)
  from assms(3) have x \notin X by blast
 hence eq1: insert x X - \{x\} = X and eq2: insert x X - X = \{x\} by blast+
 interpret i: pm-powerprod lex-pm lex-pm-strict::('x \Rightarrow_0 nat) \Rightarrow -
   unfolding lex-pm-def lex-pm-strict-def
  by standard (simp-all add: lex-pm-zero-min lex-pm-plus-monotone flip: lex-pm-def)
 have lpp-focus: i.lpp (focus X g) = except (i.lpp g) {x} if g \in P[insert \ x \ X] for
g::-\Rightarrow_0'a
 proof (cases g = \theta)
   \mathbf{case} \ \mathit{True}
   thus ?thesis by simp
 next
   case False
   have keys-focus-g: keys (focus X g) = (\lambda t. except t {x}) 'keys g
     unfolding keys-focus using refl
   proof (rule image-cong)
     \mathbf{fix} t
     assume t \in keys g
     also from that have \ldots \subseteq .[insert \ x \ X] by (rule \ PolysD)
     finally have keys t \subseteq insert \ x \ X by (rule \ PPsD)
     hence except t (-X) = except t (insert x X \cap -X)
     by (metis (no-types, lifting) Int-commute except-keys-Int inf.orderE inf-left-commute)
     also from \langle x \notin X \rangle have insert x X \cap -X = \{x\} by simp
     finally show except t(-X) = except \ t(x).
   qed
   show ?thesis
   proof (rule i.punit.lt-eqI-keys)
     from False have i.lpp \ g \in keys \ g by (rule i.punit.lt-in-keys)
     thus except (i.lpp\ g)\ \{x\} \in keys\ (focus\ X\ g) unfolding keys-focus-g by (rule
imageI)
     \mathbf{fix} \ t
     assume t \in keys (focus X q)
       then obtain s where s \in keys g and t: t = except s \{x\} unfolding
keys-focus-q...
     from this(1) have lex-pm\ s\ (i.lpp\ g) by (rule\ i.punit.lt-max-keys)
     moreover have keys s \cup keys \ (i.lpp \ g) \subseteq \{..x\}
     proof (rule Un-least)
       from \langle g \in P[-] \rangle have keys g \subseteq .[insert \ x \ X] by (rule \ PolysD)
       with \langle s \in keys \ g \rangle have s \in [insert \ x \ X]..
       hence keys \ s \subseteq insert \ x \ X \ by \ (rule PPsD)
       thus keys s \subseteq \{...x\} using assms(3) by auto
       from \langle i.lpp \ g \in keys \ g \rangle \langle keys \ g \subseteq \neg \rangle have i.lpp \ g \in .[insert \ x \ X] ..
       hence keys (i.lpp g) \subseteq insert x X by (rule PPsD)
       thus keys\ (i.lpp\ g)\subseteq \{..x\} using assms(3) by auto
```

```
qed
       ultimately show lex-pm t (except (i.lpp g) \{x\}) unfolding t by (rule
lex-pm-except-max)
   qed
 ged
 define G where G = i.punit.reduced-GB F
  from assms(1) have finite (insert x X) by simp
  hence fin-G: finite G and G-sub: G \subseteq P[insert \ x \ X] and ideal-G: ideal \ G =
ideal\ F
   and 0 \notin G and G-isGB: i.punit.is-Groebner-basis G unfolding G-def using
assms(2)
  by (rule i.finite-reduced-GB-Polys, rule i.reduced-GB-Polys, rule i.reduced-GB-ideal-Polys,
       rule i.reduced-GB-nonzero-Polys, rule i.reduced-GB-is-GB-Polys)
 define G' where G' = focus X'
 from fin-G \langle \theta \notin G \rangle have fin-G': finite G' and \theta \notin G' by (auto simp: G'-def)
 have G'-sub: G' \subseteq P[X] by (auto simp: G'-def intro: focus-in-Polys)
 define G'' where G'' = i.lcf' G'
  from \langle \theta \notin G' \rangle have \theta \notin G'' by (auto simp: G''-def i.punit.lc-eq-zero-iff)
  have lookup-focus-in: lookup (focus X g) t \in P[\{x\}] if g \in G for g t
 proof -
   have lookup (focus X g) t \in range (lookup (focus X g)) by (rule rangeI)
   from that G-sub have g \in P[insert \ x \ X]..
  hence range (lookup (focus X g)) \subseteq P[insert x X - X] by (rule focus-coeffs-subset-Polys')
   with \langle \cdot \in range \rightarrow  have lookup (focus X g) t \in P[insert \ x \ X - X] ..
   also have insert x X - X = \{x\} by (simp only: eq2)
   finally show ?thesis.
  ged
 hence lef-in: i.lef (focus X g) \in P[\{x\}] if g \in G for g
   unfolding i.punit.lc-def using that by blast
  have G''-sub: G'' \subseteq P[\{x\}]
 proof
   \mathbf{fix} c
   assume c \in G''
   then obtain g' where g' \in G' and c: c = i.lef g' unfolding G''-def...
    from \langle q' \in G' \rangle obtain q where q \in G and q' : q' = focus X q unfolding
G'-def ..
   from this(1) show c \in P[\{x\}] unfolding c \ g' by (rule \ lcf-in)
 define P where P = poly-of-pm \ x ' G''
 from fin-G' have fin-P: finite P by (simp add: P-def G''-def)
 have \theta \notin P
  proof
   assume \theta \in P
   then obtain g'' where g'' \in G'' and \theta = poly-of-pm \ x \ g'' unfolding P-def ..
  from this(2) have *: keys g'' \cap .[\{x\}] = \{\} by (simp \ add: \ poly-of-pm-eq-zero-iff)
   from \langle g'' \in G'' \rangle G''-sub have g'' \in P[\{x\}]..
   hence keys g'' \subseteq .[\{x\}] by (rule PolysD)
   with * have keys g'' = \{\} by blast
```

```
with \langle g'' \in G'' \rangle \langle \theta \notin G'' \rangle show False by simp
  qed
  define Z where Z = (\bigcup p \in P. \{z. poly p z = 0\})
  have finite Z unfolding Z-def using fin-P
  proof (rule finite-UN-I)
   \mathbf{fix} p
   assume p \in P
   with \langle \theta \notin P \rangle have p \neq \theta by blast
   thus finite \{z. poly \ p \ z = 0\} by (rule poly-roots-finite)
 with infinite-UNIV [where 'a='a] have -Z \neq \{\} using finite-compl by fastforce
 then obtain a where a \notin Z by blast
  have a-nz: poly-eval (\lambda-. a) (i.lef (focus X g)) \neq 0 if g \in G for g
  proof -
   from that G-sub have q \in P[insert \ x \ X]..
    have poly-eval (\lambda-. a) (i.lcf (focus X g)) = poly (poly-of-pm x (i.lcf (focus X g)))
g))) a
     by (rule sym, intro poly-eq-poly-eval' lcf-in that)
   moreover have poly-of-pm x (i.lef (focus X g)) \in P
     by (auto simp: P-def G''-def G'-def that intro!: imageI)
   ultimately show ?thesis using \langle a \notin Z \rangle by (simp \ add: Z-def)
  qed
 let ?e = poly\text{-}eval (\lambda \text{-}. monomial } a \theta)
 have lookup-e-focus: lookup (?e (focus \{x\}\ g)) t = poly\text{-eval}\ (\lambda-. a) (lookup (focus
(X \ g) \ t)
   if g \in P[insert \ x \ X] for g \ t
  proof -
    have focus (-\{x\}) g = focus (-\{x\}) \cap insert x X) g by (rule sym) (rule
focus-Int, fact)
   also have ... = focus X g by (simp add: Int-commute eq1 flip: Diff-eq)
   finally show ?thesis by (simp add: lookup-poly-eval-focus)
  have lpp\text{-}e\text{-}focus: i.lpp \ (?e \ (focus \ \{x\} \ g)) = except \ (i.lpp \ g) \ \{x\} \ \textbf{if} \ g \in G \ \textbf{for} \ g
  proof (rule i.punit.lt-eqI-keys)
   from that G-sub have g \in P[insert \ x \ X]..
   hence lookup (?e (focus \{x\}\ g)) (except (i.lpp g) \{x\}) = poly-eval (\lambda-. a) (i.lcf
(focus\ X\ g))
     by (simp only: lookup-e-focus lpp-focus i.punit.lc-def)
   also from that have ... \neq 0 by (rule a-nz)
    finally show except (i.lpp g) \{x\} \in keys (?e (focus \{x\}\ g)) by (simp add:
in-keys-iff)
   \mathbf{fix} \ t
   assume t \in keys (?e (focus \{x\}\ g))
   hence 0 \neq lookup (?e (focus \{x\}\ g)) t by (simp add: in-keys-iff)
    also from \langle g \in P[-] \rangle have lookup (?e (focus \{x\}\ g)) t = poly\text{-eval}(\lambda-. a)
(lookup (focus X g) t)
```

```
by (rule lookup-e-focus)
  finally have t \in keys (focus Xg) by (auto simp flip: lookup-not-eq-zero-eq-in-keys)
   hence lex-pm\ t\ (i.lpp\ (focus\ X\ g)) by (rule\ i.punit.lt-max-keys)
   with \langle g \in P[-] \rangle show lex-pm t (except (i.lpp g) \{x\}) by (simp only: lpp-focus)
  ged
 show ?thesis
 proof
   define G3 where G3 = ?e 'focus \{x\} ' G
   have G3 \subseteq P[X]
   proof
     \mathbf{fix} h
     assume h \in G3
    then obtain h\theta where h\theta \in G and h: h = e (focus \{x\} h\theta) by (auto simp:
G3-def)
     from this(1) G-sub have h\theta \in P[insert \ x \ X] ..
    hence h \in P[insert \ x \ X - \{x\}] unfolding h by (rule poly-eval-focus-in-Polys)
     thus h \in P[X] by (simp only: eq1)
   from fin-G have finite G3 by (simp add: G3-def)
   have ideal G3 \cap P[-\{x\}] = ?e 'focus \{x\}' ideal G
     by (simp only: G3-def image-poly-eval-focus-ideal)
   also have ... = ideal (?e 'focus \{x\} 'F) \cap P[- \{x\}]
     by (simp only: ideal-G image-poly-eval-focus-ideal)
   finally have eq3: ideal G3 \cap P[- {x}] = ideal (?e 'focus {x} 'F) \cap P[- {x}]
  from assms(1) \land G3 \subseteq P[X] \land finite\ G3 \land \mathbf{have}\ G3 - isGB:\ i.punit.is-Groebner-basis
G3
   proof (rule i.punit.isGB-I-spoly-rep[simplified, OF dickson-grading-varnum,
                                     where m=0, simplified i.dgrad-p-set-varnum])
     fix q1 q2
     assume q1 \in G3
     then obtain g1' where g1' \in G and g1: g1 = ?e (focus \{x\} g1')
       unfolding G3-def by blast
     from this(1) have lpp1: i.lpp g1 = except (i.lpp g1') \{x\} unfolding g1 by
(rule\ lpp-e-focus)
     from \langle g1' \in G \rangle G-sub have g1' \in P[insert \ x \ X] ..
     assume g2 \in G3
     then obtain g2' where g2' \in G and g2: g2 = ?e (focus \{x\} g2')
       unfolding G3-def by blast
     from this(1) have lpp2: i.lpp g2 = except (i.lpp g2') \{x\} unfolding g2 by
(rule lpp-e-focus)
     from \langle g2' \in G \rangle G-sub have g2' \in P[insert \ x \ X] ..
     define l where l = lcs (except (i.lpp g1') \{x\}) (except (i.lpp g2') \{x\})
     define c1 where c1 = i.lcf (focus X g1)
     define c2 where c2 = i.lef (focus X g2')
     define c where c = poly\text{-}eval (\lambda-. a) c1 * poly\text{-}eval (\lambda-. a) c2
```

```
define s where s = c2 * punit.monom-mult 1 (l - except (i.lpp g1') {x})
g1' -
                                                               c1 * punit.monom-mult 1 (l - except (i.lpp g2') \{x\}) g2'
              have c1 \in P[\{x\}] unfolding c1-def using \langle g1' \in G \rangle by (rule lcf-in)
                  hence eval-c1: poly-eval (\lambda-. monomial a 0) (focus \{x\} c1) = monomial
(poly-eval (\lambda-. a) c1) 0
             by (simp add: focus-Polys poly-eval-sum poly-eval-monomial monomial-power-map-scale
                                                   times-monomial-monomial flip: punit.monomial-prod-sum mono-
mial-sum)
                          (simp add: poly-eval-alt)
              have c2 \in P[\{x\}] unfolding c2-def using \langle g2' \in G \rangle by (rule\ lcf-in)
                  hence eval-c2: poly-eval (\lambda-. monomial a 0) (focus \{x\} c2) = monomial
(poly-eval (\lambda-. a) c2) 0
             by (simp add: focus-Polys poly-eval-sum poly-eval-monomial monomial-power-map-scale
                                                  times-monomial-monomial flip: punit.monomial-prod-sum mono-
mial-sum)
                          (simp add: poly-eval-alt)
              assume spoly-nz: i.punit.spoly g1 g2 \neq 0
              assume g1 \neq 0 and g2 \neq 0
              hence g1' \neq 0 and g2' \neq 0 by (auto simp: g1 g2)
              have c1-nz: poly-eval (\lambda-. a) c1 \neq 0 unfolding c1-def using \langle g1' \in G \rangle by
             moreover have c2-nz: poly-eval (\lambda-. a) c2 \neq 0 unfolding c2-def using \langle g2' \rangle
\in G \triangleright \mathbf{by} (rule \ a - nz)
              ultimately have c \neq 0 by (simp add: c-def)
              hence inverse c \neq 0 by simp
              from \langle g1' \in P[-] \rangle have except (i.lpp g1') \{x\} \in .[insert \ x \ X - \{x\}]
                  by (intro PPs-closed-except' i.PPs-closed-lpp)
                moreover from \langle g2' \in P[-] \rangle have except (i.lpp \ g2') \ \{x\} \in .[insert \ x \ X - ]
\{x\}
                   by (intro PPs-closed-except' i.PPs-closed-lpp)
          ultimately have l \in .[insert \ x \ X - \{x\}] unfolding l-def by (rule \ PPs\text{-}closed\text{-}lcs)
              hence l \in .[X] by (simp \ only: eq1)
              hence l \in .[insert \ x \ X] by rule \ (rule \ PPs-mono, \ blast)
                   moreover from \langle c1 \in P[\{x\}] \rangle have c1 \in P[insert \ x \ X] by rule (intro
Polys-mono, simp)
                   moreover from \langle c2 \in P[\{x\}] \rangle have c2 \in P[insert \ x \ X] by rule (intro
Polys-mono, simp)
            ultimately have s \in P[insert \ x \ X] using \langle g1' \in P[-] \rangle \langle g2' \in P[-] \rangle unfolding
s-def
                      by (intro Polys-closed-minus Polys-closed-times Polys-closed-monom-mult
PPs-closed-minus)
              \mathbf{have}\ s \in ideal\ G\ \mathbf{unfolding}\ s\text{-}def\ times\text{-}monomial\text{-}left[symmetric]}
                      \textbf{by} \ (\textit{intro ideal.span-diff ideal.span-scale ideal.span-base} \ \ \langle \textit{g1}' \in \textit{G} \rangle \ \ \langle \textit{g2}' \in \textit{G}
G)
           with G-isGB have (i.punit.red\ G)^{**} s \theta by (rule\ i.punit.GB-imp-zero-reducibility[simplified])
              with \langle finite\ (insert\ x\ X)\rangle\ G-sub fin-G\ \langle s\in P[-]\rangle
             obtain q\theta where 1: s = \theta + (\sum g \in G. \ q\theta \ g * g) and 2: \bigwedge g. \ q\theta \ g \in P[insert]
```

```
[x \ X]
       and \beta: \bigwedge g. lex-pm (i.lpp (q0 \ g * g)) (i.lpp \ s)
         by (rule\ i.punit.red-rtrancl-repE[simplified,\ OF\ dickson-grading-varnum,
where m=0,
                                         simplified i.dqrad-p-set-varnum]) blast
     define q where q = (\lambda g. inverse \ c \cdot (\sum h \in \{y \in G. ?e (focus \{x\} \ y) = g\}. ?e
(focus \{x\} (q0 h)))
     have eq4: ?e (focus \{x\} (monomial 1 (l - t))) = monomial 1 (l - t)  for t
        have focus \{x\} (monomial (1::'a) (l-t)) = monomial (monomial 1 (l-t))
t)) 0
       proof (intro focus-Polys-Compl Polys-closed-monomial PPs-closed-minus)
         from \langle x \notin X \rangle have X \subseteq -\{x\} by simp
         hence .[X] \subseteq .[-\{x\}] by (rule\ PPs-mono)
         with \langle l \in .[X] \rangle show l \in .[-\{x\}]..
       qed
       thus ?thesis by (simp add: poly-eval-monomial)
     from c2-nz have eq5: inverse c * poly-eval (\lambda -. a) c2 = 1 / lookup g1 (i.lpp)
g1)
       unfolding lpp1 using \langle g1' \in P[-] \rangle
       by (simp add: c-def mult.assoc divide-inverse-commute g1 lookup-e-focus
               flip: lpp-focus i.punit.lc-def c1-def)
     from c1-nz have eq6: inverse c * poly\text{-eval}(\lambda -. a) c1 = 1 / lookup g2 (i.lpp
g2)
       unfolding lpp2 using \langle g2' \in P[-] \rangle
       by (simp add: c-def mult.assoc mult.left-commute of inverse (poly-eval (\lambda-.
a) c1)
                divide-inverse-commute g2 lookup-e-focus flip: lpp-focus i.punit.lc-def
c2-def)
     have l-alt: l = lcs (i.lpp g1) (i.lpp g2) by (simp only: l-def lpp1 lpp2)
     have spoly-eq: i.punit.spoly g1 g2 = (inverse \ c) \cdot ?e \ (focus \ \{x\} \ s)
       by (simp add: s-def focus-minus focus-times poly-eval-minus poly-eval-times
eval-c1 eval-c2
                           eq 4\ eq 5\ eq 6\ map-scale-eq\text{-}times\ times\text{-}monomial\text{-}monomial
right-diff-distrib
                     i.punit.spoly-def Let-def
                flip: mult.assoc times-monomial-left g1 g2 lpp1 lpp2 l-alt)
      also have ... = (\sum g \in G. inverse c \cdot (?e (focus \{x\} (q0 g)) * ?e (focus \{x\}
g)))
     \mathbf{by}\ (simp\ add:\ 1\ focus\text{-}sum\ poly\text{-}eval\text{-}sum\ focus\text{-}times\ poly\text{-}eval\text{-}times\ map\text{-}scale\text{-}sum\text{-}distrib\text{-}left)
     also have \dots = (\sum g \in G3. \sum h \in \{y \in G. ?e (focus\{x\} y) = g\}.
                                 inverse c \cdot (?e (focus \{x\} (q0 h)) * ?e (focus \{x\} h)))
       unfolding G3-def image-image using fin-G by (rule sum.image-gen)
     also have ... = (\sum g \in G3. inverse c \cdot (\sum h \in \{y \in G. ?e (focus\{x\} y) = g\}. ?e
(focus \{x\} (q0 h))) * g)
```

by (intro sum.cong refl) (simp add: map-scale-eq-times sum-distrib-left

```
sum-distrib-right mult.assoc)
          also from refl have ... = (\sum g \in G3. \ q \ g * g) by (rule sum.cong) (simp add:
q-def sum-distrib-right)
          finally have i.punit.spoly g1 g2 = (\sum g \in G3. \ q \ g * g).
          thus i.punit.spoly-rep (varnum X) 0 G3 q1 q2
          proof (rule i.punit.spoly-repI[simplified, where m=0 and d=varnum X,
                                                                       simplified i.dgrad-p-set-varnum])
              \mathbf{fix} \ q
              show q \ g \in P[X] unfolding q-def
              proof (intro Polys-closed-map-scale Polys-closed-sum)
                  fix g\theta
                 from \langle q\theta | g\theta \in P[insert | x | X] \rangle have ?e(focus \{x\} (q\theta | g\theta)) \in P[insert | x | X]
- \{x\}]
                     by (rule poly-eval-focus-in-Polys)
                  thus e (focus x (q0 g0)) \in P[X] by (simp only: eq1)
              qed
              assume q g \neq \theta \land g \neq \theta
              hence q g \neq 0..
             have i.lpp (q \ g * g) = i.lpp \ (\sum h \in \{y \in G. \ ?e \ (focus \ \{x\} \ y) = g\}. inverse c
?e (focus \{x\} (q0 h)) * g)
                  by (simp add: q-def map-scale-sum-distrib-left sum-distrib-right)
              also have lex-pm ... (i.ordered-powerprod-lin.Max)
                           \{i.lpp \ (inverse \ c \cdot ?e \ (focus \ \{x\} \ (q0 \ h)) * g) \mid h.h \in \{y \in G. ?e \ (focus \ focus \ foc
\{x\}\ y) = g\}\}
             (is lex-pm - (i.ordered-powerprod-lin.Max?A)) by (fact i.punit.lt-sum-le-Max)
              also have lex-pm \dots (i.lpp \ s)
              proof (rule i.ordered-powerprod-lin.Max.boundedI)
                  from fin-G show finite ?A by simp
              next
                  show ?A \neq \{\}
                  proof
                     assume ?A = \{\}
                     hence \{h \in G. ?e (focus \{x\} h) = g\} = \{\} by simp
                     hence q g = 0 by (simp only: q-def sum.empty map-scale-zero-right)
                     with \langle q | q \neq 0 \rangle show False ...
                  qed
              next
                  \mathbf{fix} \ t
                  assume t \in ?A
                  then obtain h where h \in G and g[symmetric]: ?e (focus \{x\} \ h) = g
                     and t = i.lpp \ (inverse \ c \cdot ?e \ (focus \ \{x\} \ (q0 \ h)) * g) by blast
                  note this(3)
                  also have i.lpp (inverse c \cdot ?e (focus \{x\} (q0\ h)) * g) =
                                       i.lpp \ (inverse \ c \cdot (?e \ (focus \ \{x\} \ (q0 \ h * h))))
                by (simp only: map-scale-eq-times mult.assoc g poly-eval-times focus-times)
                  also from \langle inverse \ c \neq 0 \rangle have ... = i.lpp \ (?e \ (focus \ \{x\} \ (q0 \ h * h)))
                     by (rule i.punit.lt-map-scale)
                  also have lex-pm \dots (i.lpp (q0 \ h * h))
```

```
proof (rule i.punit.lt-le, rule ccontr)
          \mathbf{fix} \ u
          assume lookup (?e (focus \{x\} (q0 \ h * h))) u \neq 0
          hence u \in keys (?e (focus {x} (q0 h * h))) by (simp add: in-keys-iff)
          with keys-poly-eval-focus-subset have u \in (\lambda v. \ except \ v \ \{x\}) ' keys (q0)
h * h) ..
          then obtain v where v \in keys (q0 \ h * h) and u: u = except \ v \{x\}..
          have lex-pm u (Poly-Mapping.single x (lookup v x) + u)
        by (metis add.commute add.right-neutral i.plus-monotone-left lex-pm-zero-min)
          also have ... = v by (simp \ only: u \ flip: plus-except)
       also from \langle v \in \neg \rangle have lex\text{-pm } v \ (i.lpp \ (q0 \ h * h)) by (rule \ i.punit.lt\text{-max-keys})
          finally have lex-pm\ u\ (i.lpp\ (q0\ h*h)).
          moreover assume lex\text{-}pm\text{-}strict\ (i.lpp\ (q0\ h*h))\ u
          ultimately show False by simp
        qed
        also have lex-pm \dots (i.lpp \ s) by fact
        finally show lex-pm \ t \ (i.lpp \ s).
       qed
       also have lex-pm-strict \dots l
       proof (rule i.punit.lt-less)
        from spoly-nz show s \neq 0 by (auto simp: spoly-eq)
       \mathbf{next}
        \mathbf{fix} \ t
        assume lex-pm \ l \ t
        have g1' = flatten (focus X g1') by simp
        also have ... = flatten (monomial c1 (i.lpp (focus X g1')) + i.punit.tail
(focus X g1'))
          by (simp only: c1-def flip: i.punit.leading-monomial-tail)
       also from \langle g1' \in P[-] \rangle have ... = punit.monom-mult 1 (except (i.lpp g1')
\{x\}) c1 +
                                        flatten (i.punit.tail (focus X g1'))
          by (simp only: flatten-plus flatten-monomial lpp-focus)
        finally have punit.monom-mult\ 1\ (except\ (i.lpp\ g1')\ \{x\})\ c1\ +
                            flatten (i.punit.tail (focus X g1')) = g1' (is ?l = -) by
(rule sym)
        moreover have c2 * punit.monom-mult 1 (l - except (i.lpp q1') <math>\{x\}) ?!
                       punit.monom-mult\ 1\ l\ (c1*c2)\ +
                       c2 * punit.monom-mult 1 (l - i.lpp (focus X g1'))
                                            (flatten (i.punit.tail (focus X g1')))
          (is - = punit.monom-mult 1 l (c1 * c2) + ?a)
         by (simp add: punit.monom-mult-dist-right punit.monom-mult-assoc l-def
minus-plus adds-lcs)
            (simp add: distrib-left lpp-focus \langle g1' \in P[-] \rangle flip: times-monomial-left)
        ultimately have a: c2 * punit.monom-mult 1 (l - except (i.lpp g1') \{x\})
g1' =
                            punit.monom-mult\ 1\ l\ (c1*c2) + ?a\ by\ simp
```

```
have g2' = flatten (focus X g2') by simp
        also have ... = flatten (monomial c2 (i.lpp (focus X g2')) + i.punit.tail
(focus \ X \ g2'))
          by (simp only: c2-def flip: i.punit.leading-monomial-tail)
       also from \langle g2' \in P[-] \rangle have ... = punit.monom-mult 1 (except (i.lpp g2')
\{x\}) c2 +
                                        flatten (i.punit.tail (focus X g2'))
          by (simp only: flatten-plus flatten-monomial lpp-focus)
        finally have punit.monom-mult 1 (except (i.lpp g2') \{x\}) c2 +
                           flatten (i.punit.tail (focus X g2')) = g2' (is ?l = -) by
(rule sym)
        moreover have c1 * punit.monom-mult 1 (l - except (i.lpp g2') \{x\}) ?l
                      punit.monom-mult\ 1\ l\ (c1\ *\ c2)\ +
                      c1 * punit.monom-mult 1 (l - i.lpp (focus X q2'))
                                           (flatten (i.punit.tail (focus X q2')))
          (is - = punit.monom-mult\ 1\ l\ (c1*c2) + ?b)
         by (simp add: punit.monom-mult-dist-right punit.monom-mult-assoc l-def
minus-plus adds-lcs-2)
            (simp add: distrib-left lpp-focus \langle g2' \in P[-] \rangle flip: times-monomial-left)
        ultimately have b: c1 * punit.monom-mult 1 (l - except (i.lpp g2') \{x\})
g2' =
                           punit.monom-mult\ 1\ l\ (c1*c2) + ?b\ \mathbf{by}\ simp
         have lex-pm-strict-t: lex-pm-strict t (l - i.lpp (focus X h) + i.lpp (focus X h))
(X h)
          if t \in keys (d * punit.monom-mult 1 (l - i.lpp (focus X h))
                                      (flatten\ (i.punit.tail\ (focus\ X\ h))))
          and h \in G and d \in P[\{x\}] for d h
        proof -
          have \theta: lex-pm-strict (u + v) w if lex-pm-strict v w and w \in .[X] and
u \in .[\{x\}]
            for u \ v \ w \ using \ that(1)
          proof (rule lex-pm-strict-plus-left)
            fix y z
            assume y \in keys w
            also from that(2) have ... \subseteq X by (rule\ PPsD)
            also have \ldots \subseteq \{..< x\} by fact
            finally have y < x by simp
            assume z \in keys \ u
            also from that(3) have ... \subseteq \{x\} by (rule\ PPsD)
            finally show y < z using \langle y < x \rangle by simp
          qed
          let ?h = focus X h
          from that(2) have ?h \in G' by (simp \ add: \ G'-def)
          with \langle G' \subseteq P[X] \rangle have ?h \in P[X]..
          hence i.lpp ?h \in .[X] by (rule i.PPs-closed-lpp)
          from that(1) obtain t1 t2 where t1 \in keys d
           and t2 \in keys (punit.monom-mult 1 (l - i.lpp ?h) (flatten (i.punit.tail
```

```
?h)))
            and t: t = t1 + t2 by (rule in-keys-timesE)
           from this(2) obtain t3 where t3 \in keys (flatten (i.punit.tail ?h))
           and t2: t2 = l - i.lpp ?h + t3 by (auto simp: punit.keys-monom-mult)
           from this(1) obtain t4 t5 where t4 \in keys (i.punit.tail ?h)
           and t5-in: t5 \in keys (lookup (i.punit.tail?h) t4) and t3: t3 = t4 + t5
            using keys-flatten-subset by blast
       from this(1) have 1: lex-pm-strict t4 (i.lpp?h) by (rule i.punit.keys-tail-less-lt)
           from that(2) have lookup ?h t \neq P[\{x\}] by (rule\ lookup\ -focus\ -in)
           hence keys (lookup ?h t4) \subseteq .[{x}] by (rule PolysD)
           moreover from t5-in have t5-in: t5 \in keys (lookup ?h t4)
            by (simp add: i.punit.lookup-tail split: if-split-asm)
          ultimately have t5 \in .[\{x\}]..
          with 1 \langle i.lpp ? h \in \rightarrow have lex-pm-strict (t5 + t4) (i.lpp ? h) by (rule 0)
          hence lex-pm-strict t3 (i.lpp ?h) by (simp only: t3 add.commute)
           hence lex-pm-strict t2 (l - i.lpp ?h + i.lpp ?h) unfolding t2
            by (rule i.plus-monotone-strict-left)
           moreover from \langle l \in .[X] \rangle \langle i.lpp ?h \in .[X] \rangle have l - i.lpp ?h + i.lpp
?h \in .[X]
            by (intro PPs-closed-plus PPs-closed-minus)
           moreover from \langle t1 \in keys \ d \rangle \ that(3) have t1 \in .[\{x\}] by (auto dest:
PolysD)
           ultimately show ?thesis unfolding t by (rule \theta)
         qed
         show lookup \ s \ t = 0
         proof (rule ccontr)
          assume lookup s t \neq 0
          hence t \in keys \ s \ \mathbf{by} \ (simp \ add: in-keys-iff)
          also have ... = keys (?a - ?b) by (simp \ add: s-def \ a \ b)
          also have \ldots \subseteq keys ?a \cup keys ?b by (fact keys-minus)
          finally show False
           proof
            assume t \in keys ?a
            hence lex-pm-strict t (l - i.lpp (focus X g1') + i.lpp (focus X g1'))
              using \langle g1' \in G \rangle \langle c2 \in P[\{x\}] \rangle by (rule lex-pm-strict-t)
            with \langle q1' \in P[-] \rangle have lex-pm-strict t l
              by (simp add: lpp-focus l-def minus-plus adds-lcs)
            with \(\left(lex-pm \ l \ t\rangle \) show ?thesis by simp
           next
            assume t \in keys ?b
            hence lex-pm-strict t (l - i.lpp (focus X g2') + i.lpp (focus X g2'))
              using \langle g2' \in G \rangle \langle c1 \in P[\{x\}] \rangle by (rule lex-pm-strict-t)
            with \langle g2' \in P[-] \rangle have lex-pm-strict t l
              by (simp add: lpp-focus l-def minus-plus adds-lcs-2)
            with \(\left(lex-pm \ l \ t\rangle \) show ?thesis by \(simp\)
           qed
         ged
       qed
       also have \dots = lcs (i.lpp \ g1) (i.lpp \ g2) by (simp \ only: \ l-def \ lpp1 \ lpp2)
```

```
finally show lex-pm-strict (i.lpp (q g * g)) (lcs (i.lpp g1) (i.lpp g2)).
     qed
   qed
   have 1 \in ideal (?e 'focus {x} 'F) \longleftrightarrow 1 \in ideal (?e 'focus {x} 'F) \cap P[-
\{x\}
     by (simp add: one-in-Polys)
   also have ... \longleftrightarrow 1 \in ideal \ G3 by (simp \ add: one-in-Polys \ flip: eq3)
   also have ¬ ...
   proof
     note G3-isGB
     moreover assume 1 \in ideal \ G3
     moreover have 1 \neq (\theta :: - \Rightarrow_0 'a) by simp
     ultimately obtain g where g \in G3 and g \neq 0 and i.lpp g adds i.lpp (1::-
\Rightarrow_0 'a)
       by (rule i.punit.GB-adds-lt[simplified])
      from this(3) have i.lpp \ q = 0 by (simp \ add: i.punit.lt-monomial \ adds-zero
flip: single-one)
    hence monomial (i.lef g) \theta = g by (rule i.punit.lt-eq-min-term-monomial[simplified])
      from \langle g \in G3 \rangle obtain g' where g' \in G and g: g = ?e (focus \{x\} g') by
(auto simp: G3-def)
       from this(1) have i.lpp \ g = except \ (i.lpp \ g') \ \{x\} unfolding g by (rule
lpp-e-focus)
     hence keys (i.lpp\ g') \subseteq \{x\} by (simp\ add: \langle i.lpp\ g = 0 \rangle\ except-eq-zero-iff)
     have g' \in P[\{x\}]
     proof (intro PolysI subsetI PPsI)
       \mathbf{fix} \ t \ y
       assume t \in keys \ g'
       hence lex-pm\ t\ (i.lpp\ g') by (rule\ i.punit.lt-max-keys)
       moreover assume y \in keys t
          ultimately obtain z where z \in keys (i.lpp g') and z \leq y by (rule
lex-pm-keys-leE)
       with \langle keys \ (i.lpp \ g') \subseteq \{x\} \rangle have x \leq y by blast
       from \langle g' \in G \rangle G-sub have g' \in P[insert \ x \ X] ..
       hence indets\ g' \subseteq insert\ x\ X by (rule\ PolysD)
       moreover from \langle y \in \neg \rangle \langle t \in \neg \rangle have y \in indets \ g' by (rule \ in-indets I)
       ultimately have y \in insert \ x \ X..
       thus y \in \{x\}
       proof
         assume y \in X
         with assms(3) have y \in \{... < x\} ..
         with \langle x \leq y \rangle show ?thesis by simp
       \mathbf{qed}\ simp
     qed
     moreover from \langle g' \in G \rangle have g' \in ideal \ G by (rule ideal.span-base)
     ultimately have g' \in ideal \ F \cap P[\{x\}] by (simp \ add: ideal-G)
     with assms(5) have g' = 0 by blast
     hence g = \theta by (simp \ add: \ g)
      with \langle g \neq \theta \rangle show False ...
    qed
```

```
finally show 1 \notin ideal \ (?e \cdot focus \{x\} \cdot F).
  qed
qed
lemma weak-Nullstellensatz-aux-3:
 assumes F \subseteq P[insert \ x \ X] and x \notin X and 1 \notin ideal \ F and \neg ideal \ F \cap P[\{x\}]
  obtains a::'a::alg-closed-field where 1 \notin ideal (poly-eval (\lambda-. monomial a 0) '
focus \{x\} 'F)
proof -
  let ?x = monomial \ 1 \ (Poly-Mapping.single \ x \ 1)
 from assms(4) obtain f where f \in ideal\ F and f \in P[\{x\}] and f \neq 0 by blast
  define p where p = poly-of-pm x f
  from \langle f \in P[\{x\}] \rangle \langle f \neq \theta \rangle have p \neq \theta
  by (auto simp: p-def poly-of-pm-eq-zero-iff simp flip: keys-eq-empty dest!: PolysD(1))
  obtain c A m where A: finite A and p: p = Polynomial.smult c (\prod a \in A. [:-
[a, 1:] \cap [m \ a]
    and \bigwedge x. m \ x = 0 \longleftrightarrow x \notin A and c = 0 \longleftrightarrow p = 0 and \bigwedge z. poly p \ z = 0
\longleftrightarrow (c = 0 \lor z \in A)
   by (rule linear-factorsE) blast
 from this(4, 5) have c \neq 0 and \Delta z. poly p z = 0 \iff z \in A by (simp-all add:
\langle p \neq 0 \rangle
  have \exists a \in A. \ 1 \notin ideal \ (poly-eval \ (\lambda -. \ monomial \ a \ 0) \ `focus \ \{x\} \ `F)
  proof (rule ccontr)
   assume asm: \neg (\exists a \in A. \ 1 \notin ideal \ (poly-eval \ (\lambda -. \ monomial \ a \ 0) \ `focus \ \{x\} \ `
F))
   obtain g h where g a \in ideal F and 1: h a * (?x - monomial a 0) + g a = 1
     if a \in A for a
   proof -
      define P where P = (\lambda gh \ a. \ fst \ gh \in ideal \ F \land fst \ gh + snd \ gh * (?x - fst \ gh + snd \ gh))
monomial\ a\ \theta) = 1
      define gh where gh = (\lambda a. SOME gh. P gh a)
      show ?thesis
      proof
       \mathbf{fix} \ a
       assume a \in A
       with asm have 1 \in ideal (poly-eval (\lambda-. monomial a \mid 0) 'focus \{x\} ' F) by
blast
       hence 1 \in poly\text{-}eval\ (\lambda\text{-}.\ monomial\ a\ 0) 'focus \{x\}' ideal F
          by (simp add: image-poly-eval-focus-ideal one-in-Polys)
        then obtain g where g \in ideal \ F and 1 = poly-eval \ (\lambda -. \ monomial \ a \ \theta)
(focus \{x\} g)
          unfolding image-image ..
        note this(2)
       also have poly-eval (\lambda-. monomial a 0) (focus \{x\} g) = poly (poly-of-focus
x g) (monomial \ a \ \theta)
         by (simp only: poly-poly-of-focus)
        also have ... = poly (poly-of-focus x g) (?x - (?x - monomial \ a \ \theta)) by
simp
```

```
also obtain h where ... = poly (poly-of-focus x g) ?x - h * (?x - monomial)
a \theta
         by (rule\ poly-minus-rightE)
     also have \dots = q - h * (?x - monomial \ a \ \theta) by (simp only: poly-poly-of-focus-monomial)
       finally have g - h * (?x - monomial \ a \ \theta) = 1 by (rule \ sym)
       with \langle g \in ideal \ F \rangle have P(g, -h) a by (simp \ add: P-def)
       hence P(gh \ a) a unfolding gh\text{-}def by (rule \ some I)
       thus fst (gh \ a) \in ideal \ F \ and \ snd (gh \ a) * (?x - monomial \ a \ 0) + fst (gh \ a)
a) = 1
         by (simp-all only: P-def add.commute)
     qed
   qed
   from this(1) obtain g' where g' \in ideal F
     and 2: (\prod a \in A. (h \ a * (?x - monomial \ a \ \theta) + g \ a) \cap m \ a) =
               (\prod a \in A. (h \ a * (?x - monomial \ a \ \theta)) \cap m \ a) + g'
     by (rule weak-Nullstellensatz-aux-1)
   have 1 = (\prod a \in A. (h \ a * (?x - monomial \ a \ \theta) + g \ a) \cap m \ a)
     by (rule sym) (intro prod.neutral ballI, simp only: 1 power-one)
   also have ... = (\prod a \in A. \ h \ a \cap m \ a) * (\prod a \in A. \ (?x - monomial \ a \ 0) \cap m \ a)
+ g'
     by (simp only: 2 power-mult-distrib prod.distrib)
   also have (\prod a \in A. (?x - monomial \ a \ 0) \cap m \ a) = pm\text{-of-poly } x (\prod a \in A. [:-
a, 1: ] \cap m a
    \textbf{by } (\textit{simp add: pm-of-poly-prod pm-of-poly-p Cons single-uminus punit.} monom-mult-monomial
             flip: single-one)
   also from \langle c \neq \theta \rangle have ... = monomial (inverse c) \theta * pm\text{-of-poly } x p
     by (simp add: p map-scale-assoc flip: map-scale-eq-times)
   also from \langle f \in P[\{x\}] \rangle have ... = monomial (inverse c) \theta * f
     by (simp\ only: \langle p = poly-of-pm\ x\ f \rangle\ pm-of-poly-of-pm)
   finally have 1 = ((\prod a \in A. \ h \ a \cap m \ a) * monomial (inverse \ c) \ 0) * f + g'
     by (simp only: mult.assoc)
  also from \langle f \in ideal \, F \rangle \langle g' \in ideal \, F \rangle have \ldots \in ideal \, F by (intro ideal.span-add
ideal.span-scale)
   finally have 1 \in ideal F.
   with assms(3) show False ..
  then obtain a where 1 \notin ideal \ (poly-eval \ (\lambda-. \ monomial \ a \ 0) \ `focus \ \{x\} \ `F)
  thus ?thesis ..
qed
theorem weak-Nullstellensatz:
  assumes finite X and F \subseteq P[X] and \mathcal{V} F = \{\}::('x::\{countable, linorder\}\} \Rightarrow
'a::alg\text{-}closed\text{-}field) set)
  shows ideal F = UNIV
  unfolding ideal-eq-UNIV-iff-contains-one
proof (rule ccontr)
  assume 1 \notin ideal F
  with assms(1, 2) obtain a where 1 \notin ideal (poly-eval a 'F)
```

```
proof (induct X arbitrary: F thesis rule: finite-linorder-induct)
   case empty
   have F \subseteq \{\theta\}
   proof
     \mathbf{fix} f
     assume f \in F
     with empty.prems(2) have f \in P[\{\}] ...
     then obtain c where f: f = monomial \ c \ 0 unfolding Polys-empty ...
     also have c = \theta
     proof (rule ccontr)
       assume c \neq 0
       from \langle f \in F \rangle have f \in ideal\ F by (rule ideal.span-base)
       hence monomial (inverse c) 0 * f \in ideal F by (rule ideal.span-scale)
      with \langle c \neq 0 \rangle have 1 \in ideal \ F by (simp \ add: f \ times-monomial-monomial)
       with empty.prems(3) show False ...
     qed
     finally show f \in \{0\} by simp
   qed
   hence poly-eval \theta ' F \subseteq \{\theta\} by auto
   hence ideal (poly-eval \theta 'F) = \{\theta\} by simp
   hence 1 \notin ideal \ (poly-eval \ 0 \ `F) by (simp \ del: ideal-eq-zero-iff)
   thus ?case by (rule empty.prems)
  next
   case (insert x X)
    obtain a0 where 1 \notin ideal (poly-eval (\lambda-. monomial a0 0) 'focus \{x\} 'F)
(is - \notin ideal ?F)
   proof (cases ideal F \cap P[\{x\}] \subseteq \{\theta\})
     case True
      with insert.hyps(1) insert.prems(2) insert.hyps(2) insert.prems(3) obtain
a\theta
       where 1 \notin ideal \ (poly-eval \ (\lambda -. \ monomial \ a0 \ 0) \ `focus \ \{x\} \ `F)
       by (rule weak-Nullstellensatz-aux-2)
     thus ?thesis ..
   next
     {f case} False
     from insert.hyps(2) have x \notin X by blast
     with insert.prems(2) obtain a0 where 1 \notin ideal (poly-eval (\lambda-. monomial
a0\ 0) 'focus \{x\}' F)
       using insert.prems(3) False by (rule weak-Nullstellensatz-aux-3)
     thus ?thesis ..
   qed
   moreover have ?F \subseteq P[X]
   proof -
     {
       \mathbf{fix} f
       assume f \in F
       with insert.prems(2) have f \in P[insert \ x \ X]..
       hence poly-eval (\lambda-. monomial a0\ 0) (focus \{x\}\ f) \in P[insert\ x\ X-\{x\}]
         by (rule poly-eval-focus-in-Polys)
```

```
also have \ldots \subseteq P[X] by (rule Polys-mono) simp
       finally have poly-eval (\lambda-. monomial a0 0) (focus \{x\}\ f) \in P[X].
     thus ?thesis by blast
   ged
  ultimately obtain a1 where 1 \notin ideal (poly-eval \ a1 \ `?F) using insert.hyps(3)
   also have poly-eval a1 '?F = poly-eval (a1(x := poly-eval a1 (monomial a0)
\theta))) ' F
     by (simp add: image-image poly-eval-poly-eval-focus fun-upd-def)
   finally show ?case by (rule insert.prems)
 hence ideal (poly-eval a 'F) \neq UNIV by (simp\ add: ideal-eq-UNIV-iff-contains-one)
 hence ideal (poly-eval a 'F) = \{0\} using ideal-field-disj[of poly-eval a 'F] by
blast
 hence poly-eval a 'F \subseteq \{0\} by simp
 hence a \in \mathcal{V} F by (rule variety-ofI-alt)
 thus False by (simp \ add: assms(3))
qed
lemma radical-idealI:
 assumes finite X and F \subseteq P[X] and f \in P[X] and x \notin X
   and V (insert (1 - punit.monom-mult\ 1\ (Poly-Mapping.single\ x\ 1)\ f)\ F) = {}
 shows (f::('x::\{countable, linorder\} \Rightarrow_0 nat) \Rightarrow_0 'a::alg-closed-field) \in \sqrt{ideal} F
proof (cases f = \theta)
  case True
  thus ?thesis by simp
next
  case False
 from assms(4) have P[X] \subseteq P[-\{x\}] by (auto simp: Polys-alt)
  with assms(3) have f \in P[-\{x\}] ...
 let ?x = Poly\text{-}Mapping.single x 1
 let ?f = punit.monom-mult 1 ?x f
 from assms(1) have finite (insert x X) by simp
 moreover have insert (1 - ?f) F \subseteq P[insert \ x \ X] unfolding insert-subset
  proof (intro conjI Polys-closed-minus one-in-Polys Polys-closed-monom-mult
PPs-closed-single)
   have P[X] \subseteq P[insert \ x \ X] by (rule Polys-mono) blast
   with assms(2, 3) show f \in P[insert \ x \ X] and F \subseteq P[insert \ x \ X] by blast+
 qed simp
 ultimately have ideal (insert (1 - ?f) F) = UNIV
   using assms(5) by (rule weak-Nullstellensatz)
  hence 1 \in ideal (insert (1 - ?f) F) by simp
  then obtain F' q where fin': finite F' and F'-sub: F' \subseteq insert (1 - ?f) F
   and eq: 1 = (\sum f' \in F'. q f' * f') by (rule ideal.span E)
 show f \in \sqrt{ideal} \ F
  proof (cases 1 - ?f \in F')
   case True
   define g where g = (\lambda x :: ('x \Rightarrow_0 nat) \Rightarrow_0 'a. Fract x 1)
```

```
define F'' where F'' = F' - \{1 - ?f\}
   define q\theta where q\theta = q(1 - ?f)
   have g - \theta: g \theta = \theta by (simp \ add: g - def \ fract-collapse)
   have g-1: g = 1 by (simp \ add: g-def \ fract-collapse)
   have g-plus: g(a + b) = g(a + g(b)) for a b by (simp add: g-def)
   have g-minus: g(a - b) = g(a - g)b for a b by (simp \ add: g-def)
   have g-times: g(a * b) = g a * g b for a b by (simp add: g-def)
   from fin' have fin'': finite F'' by (simp \ add: F'' - def)
   from F'-sub have F''-sub: F'' \subseteq F by (auto simp: F''-def)
   have focus \{x\} ?f = monomial\ 1 ?x * focus\ \{x\} f
   by (simp add: focus-times focus-monomial except-single flip: times-monomial-left)
    also from \langle f \in P[-\{x\}] \rangle have focus \{x\} f = monomial f 0 by (rule fo-
cus-Polys-Compl)
  finally have focus \{x\} ? f = monomial f ? x by (simp add: times-monomial-monomial)
   hence eq1: poly (map-poly g (poly-of-focus x (1 - ?f))) (Fract 1 f) = 0
   by (simp add: poly-of-focus-def focus-minus poly-of-pm-minus poly-of-pm-monomial
               PPs-closed-single map-poly-minus g-0 g-1 g-minus map-poly-monom
poly-monom)
        (simp add: g-def Fract-same \langle f \neq 0 \rangle)
   have eq2: poly (map-poly g (poly-of-focus x f')) (Fract 1 f) = Fract f' 1 if f'
\in F'' for f'
   proof -
     from that F''-sub have f' \in F...
     with assms(2) have f' \in P[X] ..
     with \langle P[X] \subseteq \rightarrow have f' \in P[-\{x\}]..
     hence focus \{x\} f' = monomial f' 0 by (rule focus-Polys-Compl)
     thus ?thesis
     \mathbf{by}\ (simp\ add:\ poly-of\text{-}focus\text{-}def\ focus\text{-}minus\ poly-of\text{-}pm\text{-}minus\ poly-of\text{-}pm\text{-}monomial}
                   zero-in-PPs map-poly-minus g-0 g-1 g-minus map-poly-monom
poly-monom)
         (simp only: g-def)
   qed
   define p0m0 where p0m0 = (\lambda f'. SOME z. poly (map-poly g (poly-of-focus x))
(q f')) (Fract 1 f) =
                                         Fract (fst z) (f \cap snd z))
   define p\theta where p\theta = fst \circ p\theta m\theta
   define m\theta where m\theta = snd \circ p\theta m\theta
   define m where m = Max (m\theta 'F'')
   have eq3: poly (map-poly g (poly-of-focus x (q f'))) (Fract 1 f) = Fract (p0 f')
(f \cap m\theta f')
     for f'
   proof -
     have g \ a = 0 \longleftrightarrow a = 0 for a by (simp add: g-def Fract-eq-zero-iff)
     hence set (Polynomial.coeffs (map-poly g (poly-of-focus x (q f')))) \subseteq range
(\lambda x. Fract x 1)
       by (auto simp: set-coeffs-map-poly g-def)
     then obtain p m' where poly (map-poly g (poly-of-focus x (q f'))) (Fract 1
```

```
f) = Fract \ p \ (f \cap m')
       by (rule poly-Fract)
      hence poly (map-poly g (poly-of-focus x (q f'))) (Fract 1 f) = Fract (fst (p, q))
m')) (f \cap snd (p, m'))
       by simp
     thus ?thesis unfolding p0-def m0-def p0m0-def o-def by (rule someI)
   qed
   note eq
   also from True fin' have (\sum f' \in F', q f' * f') = q\theta * (1 - ?f) + (\sum f' \in F''.
q f' * f'
     by (simp add: q0-def F''-def sum.remove)
   finally have poly-of-focus x 1 = poly-of-focus x (q\theta * (1 - ?f) + (\sum f' \in F''.
q f' * f')
     by (rule arg-cong)
   hence 1 = poly \ (map-poly \ g \ (poly-of-focus \ x \ (q0 * (1 - ?f) + (\sum f' \in F''. \ q \ f'))
* f')))) (Fract 1 f)
     by (simp add: g-1)
   also have ... = poly (map-poly g (poly-of-focus x (\sum f' \in F''. q f' * f'))) (Fract
1 f
     by (simp only: poly-of-focus-plus map-poly-plus g-0 g-plus g-times poly-add
                    poly-of-focus-times map-poly-times poly-mult eq1 mult-zero-right
add-0-left)
   also have ... = (\sum f' \in F''. Fract (p0 f') (f \cap m0 f') * Fract f' 1)
    by (simp only: poly-of-focus-sum poly-of-focus-times map-poly-sum map-poly-times
               g-0 g-plus g-times poly-sum poly-mult eq2 eq3 cong: sum.cong)
   finally have Fract (f \cap m) 1 = Fract (f \cap m) 1 * (\sum f' \in F''. Fract (p0 f' * f')
(f \cap m\theta f')
     by simp
   also have ... = (\sum f' \in F''. Fract (f \cap m * (p0 f' * f')) (f \cap m0 f'))
     by (simp add: sum-distrib-left)
   also from refl have ... = (\sum f' \in F''. Fract ((f \cap (m - m0 f') * p0 f') * f') 1)
   proof (rule sum.cong)
     fix f'
     assume f' \in F''
     hence m\theta \ f' \in m\theta ' F'' by (rule imageI)
     with - have m0 f' \leq m unfolding m-def by (rule Max-ge) (simp add: fin'')
     hence f \cap m = f \cap (m0 \ f') * f \cap (m - m0 \ f') by (simp \ flip: \ power-add) hence Fract \ (f \cap m * (p0 \ f' * f')) \ (f \cap m0 \ f') = Fract \ (f \cap m0 \ f') \ (f \cap m0 \ f')
                                                 Fract (f \cap (m - m0 f') * (p0 f' * f')) 1
       by (simp add: ac-simps)
      also from \langle f \neq 0 \rangle have Fract (f \cap m0 f') (f \cap m0 f') = 1 by (simp \ add:
Fract-same)
     finally show Fract (f \cap m * (p0 f' * f')) (f \cap m0 f') = Fract (f \cap (m - m0))
f') * p0 f' * f') 1
       by (simp add: ac-simps)
   qed
   also from fin'' have ... = Fract \left( \sum f' \in F'' \right) \left( f \cap (m - m0 f') * p0 f' \right) * f' \right) 1
```

```
by (induct F'') (simp-all add: fract-collapse) finally have f \cap m = (\sum f' \in F''. (f \cap (m - m0 \ f') * p0 \ f') * f')
     by (simp add: eq-fract)
   also have \dots \in ideal \ F'' by (rule \ ideal.sum-in-span I)
   also from \langle F'' \subseteq F \rangle have ... \subseteq ideal\ F by (rule ideal.span-mono)
   finally show f \in \sqrt{ideal} \ F by (rule \ radicalI)
 \mathbf{next}
   case False
   with F'-sub have F' \subseteq F by blast
   have 1 \in ideal \ F' unfolding eq by (rule \ ideal.sum-in-span I)
   also from \langle F' \subseteq F \rangle have ... \subseteq ideal\ F by (rule ideal.span-mono)
   finally have ideal F = UNIV by (simp only: ideal-eq-UNIV-iff-contains-one)
   thus ?thesis by simp
 qed
qed
corollary radical-idealI-extend-indets:
 assumes finite X and F \subseteq P[X]
  and V (insert (1 - punit.monom-mult 1 (Poly-Mapping.single None 1) (extend-indets
f))
                         (extend-indets 'F) = \{\}
 shows (f::(-::\{countable, linorder\} \Rightarrow_0 nat) \Rightarrow_0 -:: alg-closed-field) \in \sqrt{ideal} F
proof -
  define Y where Y = X \cup indets f
  from assms(1) have fin-Y: finite Y by (simp add: Y-def finite-indets)
 have P[X] \subseteq P[Y] by (rule Polys-mono) (simp add: Y-def)
  with assms(2) have F-sub: F \subseteq P[Y] by (rule subset-trans)
 have f-in: f \in P[Y] by (simp\ add:\ Y-def\ Polys-alt)
 let ?F = extend-indets ' F
 let ?f = extend-indets f
 let ?X = Some 'Y
 from fin-Y have finite ?X by (rule finite-imageI)
 moreover from F-sub have ?F \subseteq P[?X]
    by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2)
subsetD[of F])
  moreover from f-in have ?f \in P[?X]
   by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2))
  moreover have None \notin ?X by simp
  ultimately have ?f \in \sqrt{ideal} ?F \text{ using } assms(3) \text{ by } (rule \ radical-idealI)
 also have ?f \in \sqrt{ideal} ?F \longleftrightarrow f \in \sqrt{ideal} F
 proof
   assume f \in \sqrt{ideal} \ F
   then obtain m where f \cap m \in ideal\ F by (rule\ radicalE)
   hence extend-indets (f \cap m) \in extend-indets 'ideal F by (rule imageI)
  with extend-indets-ideal-subset have ?f \cap m \in ideal ?F unfolding extend-indets-power
   thus ?f \in \sqrt{ideal} ?F by (rule \ radicalI)
 next
```

```
assume ?f \in \sqrt{ideal} ?F
   then obtain m where ?f \cap m \in ideal ?F by (rule \ radicalE)
   moreover have ?f \cap m \in P[-\{None\}]
    by (rule Polys-closed-power) (auto introl: PolysI-alt simp: indets-extend-indets)
   ultimately have extend-indets (f \cap m) \in extend-indets 'ideal F
     by (simp add: extend-indets-ideal extend-indets-power)
   hence f \cap m \in ideal\ F by (simp\ only: inj-image-mem-iff[OF\ inj-extend-indets])
   thus f \in \sqrt{ideal} \ F by (rule \ radical I)
  qed
  finally show ?thesis.
qed
{f theorem} Nullstellensatz:
 assumes finite X and F \subseteq P[X]
   and (f::(-::\{countable, linorder\} \Rightarrow_0 nat) \Rightarrow_0 -:: alg-closed-field) \in \mathcal{I} (\mathcal{V} F)
 shows f \in \sqrt{ideal} \ F
  using assms(1, 2)
proof (rule radical-idealI-extend-indets)
  let ?f = punit.monom-mult\ 1\ (monomial\ 1\ None)\ (extend-indets\ f)
  show V (insert (1 - ?f) (extend-indets 'F)) = {}
 proof (intro subset-antisym subsetI)
   \mathbf{fix} \ a
   assume a \in \mathcal{V} (insert (1 - ?f) (extend-indets 'F))
   moreover have 1 - ?f \in insert (1 - ?f) (extend-indets 'F) by simp
   ultimately have poly-eval a (1 - ?f) = 0 by (rule\ variety-ofD)
   hence poly-eval a (extend-indets f) \neq 0
    by (auto simp: poly-eval-minus poly-eval-times simp flip: times-monomial-left)
   hence poly-eval (a \circ Some) f \neq 0 by (simp add: poly-eval-extend-indets)
   have a \circ Some \in \mathcal{V} F
   proof (rule variety-ofI)
     \mathbf{fix}\;f'
     assume f' \in F
     hence extend-indets f' \in insert (1 - ?f) (extend-indets 'F) by simp
     with \langle a \in \neg \rangle have poly-eval a (extend-indets f') = 0 by (rule variety-ofD)
     thus poly-eval (a \circ Some) f' = 0 by (simp \ only: poly-eval-extend-indets)
   with assms(3) have poly-eval (a \circ Some) f = 0 by (rule\ ideal-ofD)
   with \langle poly\text{-}eval\ (a \circ Some)\ f \neq 0 \rangle show a \in \{\}..
  qed simp
qed
{\bf theorem}\ strong\text{-}Null stellens at z:
 assumes finite X and F \subseteq P[X]
 shows \mathcal{I}(\mathcal{V}|F) = \sqrt{ideal(F::((-::\{countable, linorder\} \Rightarrow_0 nat) \Rightarrow_0 -:: alg-closed-field)}
proof (intro subset-antisym subsetI)
 \mathbf{fix} f
 assume f \in \mathcal{I} \ (\mathcal{V} \ F)
 with assms show f \in \sqrt{ideal} \ F by (rule Nullstellensatz)
```

```
qed (metis ideal-ofI variety-ofD variety-of-radical-ideal)
```

The following lemma can be used for actually *deciding* whether a polynomial is contained in the radical of an ideal or not.

```
lemma radical-ideal-iff:
 assumes finite X and F \subseteq P[X] and f \in P[X] and x \notin X
 shows (f::(-::\{countable, linorder\} \Rightarrow_0 nat) \Rightarrow_0 -:: alg-closed-field) \in \sqrt{ideal} \ F \longleftrightarrow
            1 \in ideal (insert (1 - punit.monom-mult 1 (Poly-Mapping.single x 1))
f) F)
proof -
  let ?f = punit.monom-mult\ 1\ (Poly-Mapping.single\ x\ 1)\ f
  show ?thesis
  proof
   assume f \in \sqrt{ideal} \ F
   then obtain m where f \cap m \in ideal\ F by (rule\ radicalE)
   from assms(1) have finite (insert x X) by simp
   \mathbf{moreover} \ \mathbf{have} \ \mathit{insert} \ (1 - ?f) \ \mathit{F} \subseteq \mathit{P}[\mathit{insert} \ \mathit{x} \ \mathit{X}] \ \mathbf{unfolding} \ \mathit{insert-subset}
    proof (intro conjI Polys-closed-minus one-in-Polys Polys-closed-monom-mult
PPs-closed-single)
     have P[X] \subseteq P[insert \ x \ X] by (rule Polys-mono) blast
     with assms(2, 3) show f \in P[insert \ x \ X] and F \subseteq P[insert \ x \ X] by blast+
    qed simp
   moreover have V (insert (1 - ?f) F) = \{\}
   proof (intro subset-antisym subsetI)
     \mathbf{fix} \ a
     assume a \in \mathcal{V} (insert (1 - ?f) F)
     moreover have 1 - ?f \in insert (1 - ?f) F by simp
     ultimately have poly-eval a (1 - ?f) = 0 by (rule\ variety-ofD)
     hence poly-eval a (f \cap m) \neq 0
         by (auto simp: poly-eval-minus poly-eval-times poly-eval-power simp flip:
times-monomial-left)
        from \langle a \in \neg \rangle have a \in \mathcal{V} (ideal (insert (1 - ?f) F)) by (simp only:
variety-of-ideal)
    moreover from \langle f \cap m \in ideal \ F \rangle \ ideal.span-mono \ have \ f \cap m \in ideal \ (insert
(1 - ?f) F)
       bv (rule rev-subsetD) blast
     ultimately have poly-eval a (f \cap m) = 0 by (rule\ variety-ofD)
     with \langle poly\text{-}eval\ a\ (f^m) \neq 0 \rangle show a \in \{\}..
   ultimately have ideal (insert (1 - ?f) F) = UNIV by (rule weak-Nullstellensatz)
   thus 1 \in ideal (insert (1 - ?f) F) by simp
  \mathbf{next}
   assume 1 \in ideal (insert (1 - ?f) F)
   have V (insert (1 - ?f) F) = \{\}
   proof (intro subset-antisym subsetI)
     \mathbf{fix} \ a
     assume a \in \mathcal{V} (insert (1 - ?f) F)
     hence a \in \mathcal{V} (ideal (insert (1 - ?f) F)) by (simp only: variety-of-ideal)
     hence poly-eval a 1 = 0 using \langle 1 \in \rightarrow by (rule \ variety-ofD)
```

```
thus a \in \{\} by simp ext{qed } simp ext{with } assms \ show \ f \in \sqrt{ideal} \ F \ by \ (rule \ radical-idealI) \ ext{qed} ext{qed} ext{qed}
```

5 Field-Theoretic Version of Hilbert's Nullstellensatz

```
{\bf theory}\ Null stellens at z\hbox{-}Field\\ {\bf imports}\ Null stellens at z\ HOL-Types\hbox{-}To\hbox{-}Sets. Types\hbox{-}To\hbox{-}Sets\\ {\bf begin}
```

Building upon the geometric version of Hilbert's Nullstellensatz in *Nullstellensatz*. *Nullstellensatz*, we prove its field-theoretic version here. To that end we employ the 'types to sets' methodology.

5.1 Getting Rid of Sort Constraints in Geometric Version

We can use the 'types to sets' approach to get rid of the *countable* and *linorder* sort constraints on the type of indeterminates in the geometric version of the Nullstellensatz. Once the 'types to sets' methodology is integrated as a standard component into the main library of Isabelle, the theorems in *Nullstellensatz.Nullstellensatz* could be replaced by their counterparts in this section.

lemmas radical-ideal I-internalized = radical-ideal I [unoverload-type 'x]

```
lemma radical-idealI:
  assumes finite\ X and F\subseteq P[X] and f\in P[X] and x\notin X
  and \mathcal{V} (insert\ (1-punit.monom-mult\ 1\ (Poly-Mapping.single\ x\ 1)\ f)\ F)=\{\}
  shows (f::('x\Rightarrow_0\ nat)\Rightarrow_0\ 'a::alg\text{-}closed\text{-}field)\in\sqrt{ideal}\ F
  proof -
  define Y where Y=insert\ x\ X
  from assms(1) have fin\text{-}Y: finite\ Y by (simp\ add:\ Y\text{-}def)
  have X\subseteq Y by (auto\ simp:\ Y\text{-}def)
  hence P[X]\subseteq P[Y] by (rule\ Polys\text{-}mono)
  with assms(2,\ 3) have F\text{-}sub: F\subseteq P[Y] and f\in P[Y] by auto
  {

We define the type 'y to be isomorphic to Y.
  assume \exists\ (Rep::'y\Rightarrow'x)\ Abs.\ type\text{-}definition\ Rep\ Abs\ Y
  then obtain rep::'y\Rightarrow'x and abs::'x\Rightarrow'y where t:\ type\text{-}definition\ rep\ abs\ Y
  by blast
```

```
then interpret y: type-definition rep abs Y.
   from well-ordering obtain le-y'::('y \times 'y) set where fld: Field le-y' = UNIV
    and wo: Well-order le-y' by meson
   define le-y where le-y = (\lambda a \ b::'y. (a, b) \in le-y')
   from \langle f \in P[Y] \rangle have \theta: map-indets rep (map-indets abs f) = f unfolding
map-indets-map-indets
     by (intro map-indets-id) (auto intro!: y.Abs-inverse dest: PolysD)
   have 1: map\text{-}indets \ (rep \circ abs) \ `F = F
   proof
     from F-sub show map-indets (rep \circ abs) ' F \subseteq F
     by (smt\ (verit)\ PolysD(2)\ comp-apply\ image-subset-iff\ map-indets-id\ subsetD
y.Abs-inverse)
   next
     from F-sub show F \subseteq map-indets (rep \circ abs) ' F
        by (smt (verit) PolysD(2) comp-apply image-eqI map-indets-id subsetD
subsetI\ y.Abs-inverse
   qed
   have 2: inj rep by (meson inj-onI y.Rep-inject)
   hence 3: inj (map-indets rep) by (rule map-indets-injI)
   from fin-Y have 4: finite (abs 'Y) by (rule finite-imageI)
   from we have le-y-refl: le-y x x for x
   by (simp add: le-y-def well-order-on-def linear-order-on-def partial-order-on-def
                preorder-on-def refl-on-def fld)
   have le-y-total: le-y x y \lor le-y y x for x y
   proof (cases \ x = y)
     case True
     thus ?thesis by (simp add: le-y-refl)
   next
     {f case} False
     with wo show ?thesis
      by (simp add: le-y-def well-order-on-def linear-order-on-def total-on-def
                  Relation.total-on-def fld)
   qed
   from 4 finite-imp-inj-to-nat-seg y. Abs-image have class.countable TYPE('y)
     by unfold-locales fastforce
   moreover have class.linorder le-y (strict le-y)
     apply standard
     subgoal by (fact refl)
    subgoal by (fact le-y-refl)
     subgoal using wo
    by (auto simp: le-y-def well-order-on-def linear-order-on-def partial-order-on-def
                  preorder-on-def fld dest: transD)
     subgoal using wo
    by (simp add: le-y-def well-order-on-def linear-order-on-def partial-order-on-def
                  preorder-on-def antisym-def fld)
     subgoal by (fact le-y-total)
```

```
done
   moreover from assms(1) have finite (abs 'X) by (rule finite-imageI)
   moreover have map-indets abs 'F \subseteq P[abs 'X]
   proof (rule subset-trans)
     from assms(2) show map\text{-}indets abs ' F\subseteq map\text{-}indets abs ' P[X] by (rule
image-mono)
   qed (simp only: image-map-indets-Polys)
   moreover have map-indets abs f \in P[abs 'X]
   proof
      from assms(3) show map-indets abs f \in map-indets abs ' P[X] by (rule
imageI)
   qed (simp only: image-map-indets-Polys)
   moreover from assms(4) y. Abs-inject have abs \ x \notin abs 'X unfolding Y-def
  moreover have V (insert (1 - punit.monom-mult 1 (Poly-Mapping.single (abs)))
x) (Suc \theta)
                               (map-indets\ abs\ f))\ (map-indets\ abs\ `F)) = \{\}
   proof (intro set-eqI iffI)
     \mathbf{fix} \ a
     assume a \in \mathcal{V} (insert (1 - punit.monom-mult 1 (Poly-Mapping.single (abs)))
x) (Suc \theta)
                               (map-indets \ abs \ f)) \ (map-indets \ abs \ 'F))
       also have ... = (\lambda b. b \circ abs) - \mathcal{V} (insert (1 - punit.monom-mult 1)
(Poly-Mapping.single\ x\ 1)\ f)\ F)
      by (simp add: map-indets-minus map-indets-times map-indets-monomial
             flip: variety-of-map-indets times-monomial-left)
     finally show a \in \{\} by (simp\ only:\ assms(5)\ vimage-empty)
   qed simp
   ultimately have map-indets abs f \in \sqrt{ideal} (map-indets abs 'F)
     by (rule radical-idealI-internalized[where 'x='y, untransferred, simplified])
  hence map-indets rep (map-indets abs f) \in map-indets rep '\sqrt{ideal} (map-indets
abs (F)
     by (rule imageI)
   also from 2 have ... = \sqrt{(ideal\ F \cap P[Y])} \cap P[Y]
     by (simp add: image-map-indets-ideal image-map-indets-radical image-image
map-indets-map-indets
                 1 \ y.Rep-range)
   also have ... \subseteq \sqrt{ideal} \ F using radical-mono by blast
   finally have ?thesis by (simp only: \theta)
 note rl = this[cancel-type-definition]
 have Y \neq \{\} by (simp add: Y-def)
 thus ?thesis by (rule rl)
\mathbf{qed}
{\bf corollary}\ \textit{radical-idealI-extend-indets}:
 assumes finite X and F \subseteq P[X]
  and V (insert (1 - punit.monom-mult 1 (Poly-Mapping.single None 1) (extend-indets
f))
```

```
(extend-indets 'F) = \{\}
 shows (f::-\Rightarrow_0 -:: alg\text{-}closed\text{-}field) \in \sqrt{ideal} \ F
proof -
  define Y where Y = X \cup indets f
  from assms(1) have fin-Y: finite Y by (simp add: Y-def finite-indets)
 have P[X] \subseteq P[Y] by (rule Polys-mono) (simp add: Y-def)
  with assms(2) have F-sub: F \subseteq P[Y] by (rule subset-trans)
 have f-in: f \in P[Y] by (simp add: Y-def Polys-alt)
 let ?F = extend-indets ' F
 let ?f = extend-indets f
 let ?X = Some 'Y
 from fin-Y have finite ?X by (rule finite-imageI)
 moreover from F-sub have ?F \subseteq P[?X]
   by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2)
subsetD[of F])
 moreover from f-in have ?f \in P[?X]
   by (auto simp: indets-extend-indets intro!: PolysI-alt imageI dest!: PolysD(2))
 moreover have None \notin ?X by simp
  ultimately have ?f \in \sqrt{ideal} ?F \text{ using } assms(3) \text{ by } (rule radical-idealI)
 also have ?f \in \sqrt{ideal} ?F \longleftrightarrow f \in \sqrt{ideal} F
 proof
   assume f \in \sqrt{ideal} \ F
   then obtain m where f \cap m \in ideal F by (rule \ radical E)
   hence extend-indets (f \cap m) \in extend-indets 'ideal F by (rule imageI)
  with extend-indets-ideal-subset have ?f \cap m \in ideal ?F unfolding extend-indets-power
   thus ?f \in \sqrt{ideal} ?F by (rule \ radicalI)
 next
   assume ?f \in \sqrt{ideal} ?F
   then obtain m where ?f \cap m \in ideal ?F by (rule \ radicalE)
   moreover have ?f \cap m \in P[-\{None\}]
   by (rule Polys-closed-power) (auto intro!: PolysI-alt simp: indets-extend-indets)
   ultimately have extend-indets (f \hat{\ } m) \in extend-indets ' ideal F
     by (simp add: extend-indets-ideal extend-indets-power)
   hence f \cap m \in ideal \ F by (simp only: inj-image-mem-iff [OF \ inj-extend-indets])
   thus f \in \sqrt{ideal} \ F by (rule \ radicalI)
  qed
  finally show ?thesis.
qed
theorem Nullstellensatz:
 assumes finite X and F \subseteq P[X]
   and (f::-\Rightarrow_0 -:: alg\text{-}closed\text{-}field) \in \mathcal{I} (\mathcal{V} F)
 shows f \in \sqrt{ideal} \ F
 using assms(1, 2)
proof (rule radical-idealI-extend-indets)
 let ?f = punit.monom-mult\ 1\ (monomial\ 1\ None)\ (extend-indets\ f)
 show V (insert (1 - ?f) (extend-indets 'F)) = {}
```

```
proof (intro subset-antisym subsetI)
   \mathbf{fix} \ a
   assume a \in \mathcal{V} (insert (1 - ?f) (extend-indets 'F))
   moreover have 1 - ?f \in insert (1 - ?f) (extend-indets 'F) by simp
   ultimately have poly-eval a (1 - ?f) = 0 by (rule\ variety-ofD)
   hence poly-eval a (extend-indets f) \neq 0
    by (auto simp: poly-eval-minus poly-eval-times simp flip: times-monomial-left)
   hence poly-eval (a \circ Some) f \neq 0 by (simp add: poly-eval-extend-indets)
   have a \circ Some \in \mathcal{V} F
   proof (rule variety-ofI)
     \mathbf{fix} f'
     assume f' \in F
     hence extend-indets f' \in insert (1 - ?f) (extend-indets 'F) by simp
     with \langle a \in \neg \rangle have poly-eval a (extend-indets f') = 0 by (rule variety-ofD)
     thus poly-eval (a \circ Some) f' = 0 by (simp only: poly-eval-extend-indets)
   with assms(3) have poly-eval (a \circ Some) f = 0 by (rule\ ideal-ofD)
   with \langle poly\text{-}eval\ (a \circ Some)\ f \neq \theta \rangle show a \in \{\}..
  qed simp
qed
{\bf theorem}\ strong\text{-}Null stellens at z:
  assumes finite X and F \subseteq P[X]
  shows \mathcal{I}(\mathcal{V} F) = \sqrt{ideal(F::(-\Rightarrow_0 -:: alg-closed-field) set)}
proof (intro subset-antisym subsetI)
  \mathbf{fix} f
  assume f \in \mathcal{I} (\mathcal{V} F)
  with assms show f \in \sqrt{ideal} \ F by (rule Nullstellensatz)
qed (metis ideal-ofI variety-ofD variety-of-radical-ideal)
theorem weak-Nullstellensatz:
  assumes finite X and F \subseteq P[X] and \mathcal{V} F = (\{\}::(- \Rightarrow -:: alg\text{-}closed\text{-}field) set)
 shows ideal F = UNIV
proof -
  from assms(1, 2) have \mathcal{I}(\mathcal{V} F) = \sqrt{ideal} F by (rule strong-Nullstellensatz)
  thus ?thesis by (simp add: assms(3) flip: radical-ideal-eq-UNIV-iff)
qed
lemma radical-ideal-iff:
  assumes finite X and F \subseteq P[X] and f \in P[X] and x \notin X
 shows (f::-\Rightarrow_0 -:: alg\text{-}closed\text{-}field) \in \sqrt{ideal} \ F \longleftrightarrow
            1 \in ideal \ (insert \ (1 - punit.monom-mult \ 1 \ (Poly-Mapping.single \ x \ 1)
f) F
proof -
 let ?f = punit.monom-mult\ 1\ (Poly-Mapping.single\ x\ 1)\ f
 show ?thesis
  proof
   assume f \in \sqrt{ideal} \ F
   then obtain m where f \cap m \in ideal\ F by (rule\ radicalE)
```

```
from assms(1) have finite (insert x X) by simp
   moreover have insert (1 - ?f) F \subseteq P[insert \ x \ X] unfolding insert-subset
    proof (intro conjI Polys-closed-minus one-in-Polys Polys-closed-monom-mult
PPs-closed-single)
     have P[X] \subseteq P[insert \ x \ X] by (rule Polys-mono) blast
     with assms(2, 3) show f \in P[insert \ x \ X] and F \subseteq P[insert \ x \ X] by blast+
   qed simp
   moreover have V (insert (1 - ?f) F) = \{\}
   proof (intro subset-antisym subsetI)
     assume a \in \mathcal{V} (insert (1 - ?f) F)
     moreover have 1 - ?f \in insert (1 - ?f) F by simp
     ultimately have poly-eval a (1 - ?f) = 0 by (rule\ variety-ofD)
     hence poly-eval a (f \cap m) \neq 0
        by (auto simp: poly-eval-minus poly-eval-times poly-eval-power simp flip:
times-monomial-left)
       from \langle a \in \neg \rangle have a \in \mathcal{V} (ideal (insert (1 - ?f) F)) by (simp only:
variety-of-ideal)
    moreover from \langle f \cap m \in ideal \ F \rangle \ ideal.span-mono\ have\ f \cap m \in ideal\ (insert
(1 - ?f) F
       by (rule rev-subsetD) blast
     ultimately have poly-eval a (f \cap m) = \theta by (rule variety-ofD)
     with \langle poly\text{-}eval\ a\ (f^m) \neq \theta \rangle show a \in \{\}..
   qed simp
  ultimately have ideal (insert (1 - ?f) F) = UNIV by (rule weak-Nullstellensatz)
   thus 1 \in ideal (insert (1 - ?f) F) by simp
   assume 1 \in ideal (insert (1 - ?f) F)
   have V (insert (1 - ?f) F) = \{\}
   proof (intro subset-antisym subsetI)
     \mathbf{fix} \ a
     assume a \in \mathcal{V} (insert (1 - ?f) F)
     hence a \in \mathcal{V} (ideal (insert (1 - ?f) F)) by (simp only: variety-of-ideal)
     hence poly-eval a 1 = 0 using \langle 1 \in A \rangle by (rule variety-ofD)
     thus a \in \{\} by simp
   qed simp
   with assms show f \in \sqrt{ideal} \ F by (rule radical-idealI)
  qed
qed
```

5.2 Field-Theoretic Version of the Nullstellensatz

Due to the possibility of infinite indeterminate-types, we have to explicitly add the set of indeterminates under consideration to the definition of maximal ideals.

```
definition generates-max-ideal :: 'x \ set \Rightarrow (('x \Rightarrow_0 \ nat) \Rightarrow_0 \ 'a::comm\text{-}ring\text{-}1) \ set \Rightarrow bool

where generates-max-ideal X \ F \longleftrightarrow (ideal \ F \neq UNIV \land
```

```
(\forall F'. F' \subseteq P[X] \longrightarrow ideal \ F \subset ideal \ F' \longrightarrow ideal
F' = UNIV)
lemma generates-max-idealI:
 assumes ideal F \neq UNIV and \bigwedge F'. F' \subseteq P[X] \Longrightarrow ideal \ F \subset ideal \ F' \Longrightarrow ideal
F' = UNIV
  shows generates-max-ideal X F
  using assms by (simp add: generates-max-ideal-def)
lemma generates-max-idealI-alt:
  assumes ideal F \neq UNIV and \bigwedge p. p \in P[X] \Longrightarrow p \notin ideal \ F \Longrightarrow 1 \in ideal
(insert \ p \ F)
  shows generates-max-ideal X F
 using assms(1)
proof (rule generates-max-idealI)
  fix F'
  assume F' \subseteq P[X] and sub: ideal F \subset ideal F'
  from this(2) ideal.span-subset-spanI have \neg F' \subseteq ideal F by blast
  then obtain p where p \in F' and p \notin ideal F by blast
  from this(1) \langle F' \subseteq P[X] \rangle have p \in P[X]..
  hence 1 \in ideal \ (insert \ p \ F) \ \mathbf{using} \ \langle p \notin \neg \rangle \ \mathbf{by} \ (rule \ assms(2))
 also have ... \subseteq ideal (F' \cup F) by (rule ideal.span-mono) (simp add: \langle p \in F' \rangle)
 also have \dots = ideal \ (ideal \ F' \cup ideal \ F) by (simp \ add: ideal.span-Un \ ideal.span-span)
 also from sub have ideal F' \cup ideal \ F = ideal \ F' by blast
  finally show ideal F' = UNIV by (simp only: ideal-eq-UNIV-iff-contains-one
ideal.span-span)
qed
{\bf lemma}\ \textit{generates-max-idealD}:
 assumes generates-max-ideal X F
 shows ideal\ F \neq UNIV and F' \subseteq P[X] \Longrightarrow ideal\ F \subset ideal\ F' \Longrightarrow ideal\ F' =
  using assms by (simp-all add: generates-max-ideal-def)
{f lemma} {\it generates-max-ideal-cases}:
  assumes generates-max-ideal X F and F' \subseteq P[X] and ideal F \subseteq ideal F'
 obtains ideal F = ideal F' \mid ideal F' = UNIV
 using assms by (auto simp: generates-max-ideal-def)
lemma max-ideal-UNIV-radical:
  assumes generates-max-ideal UNIV F
  shows \sqrt{ideal} \ F = ideal \ F
proof (rule ccontr)
  assume \sqrt{ideal} \ F \neq ideal \ F
  with radical-superset have ideal F \subset \sqrt{ideal} \ F by blast
  also have ... = ideal \ (\sqrt{ideal} \ F) by simp
  finally have ideal F \subset ideal (\sqrt{ideal} \ F).
  with assms - have ideal (\sqrt{ideal}\ F) = UNIV by (rule generates-max-idealD)
simp
```

```
hence \sqrt{ideal} \ F = UNIV \ by \ simp
 hence 1 \in \sqrt{ideal} \ F by simp
 hence 1 \in ideal \ F by (auto \ elim: radicalE)
 hence ideal\ F = UNIV\ by (simp\ only:\ ideal-eq-UNIV-iff-contains-one)
 moreover from assms have ideal F \neq UNIV by (rule generates-max-idealD)
  ultimately show False by simp
qed
lemma max-ideal-shape-aux:
 (\lambda x. monomial \ 1 \ (Poly-Mapping.single \ x \ 1) - monomial \ (a \ x) \ 0) \ `X \subseteq P[X]
 by (auto intro!: Polys-closed-minus Polys-closed-monomial PPs-closed-single zero-in-PPs)
lemma max-ideal-shapeI:
 generates-max-ideal X ((\lambda x. monomial (1::'a::field) (Poly-Mapping.single x 1) -
monomial(a x) 0) (X)
   (is generates-max-ideal X ?F)
proof (rule generates-max-idealI-alt)
 show ideal ?F \neq UNIV
 proof
   \mathbf{assume}\ \mathit{ideal}\ \mathit{?F} = \mathit{UNIV}
   hence V (ideal ?F) = V UNIV by (rule arg-cong)
   hence V ?F = \{\} by simp
    moreover have a \in \mathcal{V} ?F by (rule variety-ofI) (auto simp: poly-eval-minus
poly-eval-monomial)
   ultimately show False by simp
 ged
\mathbf{next}
 \mathbf{fix} p
 assume p \in P[X] and p \notin ideal ?F
 have p \in ideal (insert \ p \ ?F) by (rule ideal.span-base) simp
 let ?f = \lambda x. monomial (1::'a) (Poly-Mapping.single\ x\ 1) - monomial\ (a\ x)\ 0
 let ?g = \lambda x. monomial (1::'a) (Poly-Mapping.single x 1) + monomial (a x) 0
 define q where q = poly\text{-}subst ? q p
 have p = poly\text{-}subst ?f q unfolding q-def poly-subst-poly-subst
   by (rule sym, rule poly-subst-id)
     (simp add: poly-subst-plus poly-subst-monomial subst-pp-single flip: times-monomial-left)
  also have ... = (\sum t \in keys \ q. \ punit.monom-mult \ (lookup \ q \ t) \ 0 \ (subst-pp \ ?f \ t))
by (fact poly-subst-def)
 also have ... = punit.monom-mult (lookup q 0) 0 (subst-pp ?f 0) +
               (\sum t \in keys \ q - \{0\}. \ monomial \ (lookup \ q \ t) \ 0 * subst-pp ?f \ t)
  by (cases 0 \in keys q) (simp-all add: sum.remove in-keys-iff flip: times-monomial-left)
 also have ... = monomial (lookup q 0) 0 + ?r by (simp flip: times-monomial-left)
 finally have eq: p - ?r = monomial (lookup q 0) 0 by simp
 have ?r \in ideal ?F
 proof (intro ideal.span-sum ideal.span-scale)
   \mathbf{fix} \ t
```

```
assume t \in keys \ q - \{\theta\}
   hence t \in keys \ q \text{ and } keys \ t \neq \{\} by simp-all
   from this(2) obtain x where x \in keys \ t by blast
   hence x \in indets \ q \ using \langle t \in keys \ q \rangle \ by \ (rule \ in-indets I)
   then obtain y where y \in indets \ p \ and \ x \in indets \ (?q \ y) \ unfolding \ q-def
     by (rule\ in-indets-poly-substE)
  from this(2) indets-plus-subset have x \in indets (monomial (1::'a) (Poly-Mapping.single
y(1)) \cup
                                               indets (monomial (a \ y) \ \theta) ...
   with \langle y \in indets \ p \rangle have x \in indets \ p by (simp \ add: indets-monomial)
   also from \langle p \in P[X] \rangle have ... \subseteq X by (rule\ PolysD)
   finally have x \in X.
   from \langle x \in keys \ t \rangle have lookup t \ x \neq 0 by (simp add: in-keys-iff)
   hence eq: b \cap lookup \ t \ x = b \cap Suc \ (lookup \ t \ x - 1) for b by simp
   have subst-pp ?f t = (\prod y \in keys \ t. ?f \ y \cap lookup \ t \ y) by (fact \ subst-pp-def)
   also from \langle x \in keys \ t \rangle have ... = ((\prod y \in keys \ t - \{x\}) \cdot ?f \ y \cap lookup \ t \ y) * ?f
x \cap (lookup\ t\ x-1)) * ?f x
     by (simp add: prod.remove mult.commute eq)
   also from \langle x \in X \rangle have ... \in ideal ?F by (intro ideal.span-scale ideal.span-base
imageI
   finally show subst-pp ?f t \in ideal ?F.
  qed
  also have ... \subseteq ideal (insert p ?F) by (rule ideal.span-mono) blast
  finally have ?r \in ideal (insert \ p \ ?F).
  with \langle p \in ideal \rightarrow \text{have } p - ?r \in ideal (insert p ?F) by (rule ideal.span-diff)
  hence monomial (lookup q 0) 0 \in ideal (insert p ?F) by (simp only: eq)
  hence monomial (inverse (lookup q \theta)) \theta * monomial (lookup q \theta) \theta \in ideal
(insert \ p \ ?F)
   by (rule ideal.span-scale)
  hence monomial (inverse (lookup q \theta) * lookup q \theta) \theta \in ideal (insert p ? F)
   by (simp add: times-monomial-monomial)
  moreover have lookup q \theta \neq \theta
  proof
   assume lookup \ q \ \theta = \theta
   with eq \langle ?r \in ideal ?F \rangle have p \in ideal ?F by simp
   with \langle p \notin ideal ?F \rangle show False ...
  ultimately show 1 \in ideal (insert p ?F) by simp
qed
```

We first prove the following lemma assuming that the type of indeterminates is finite, and then transfer the result to arbitrary types of indeterminates by using the 'types to sets' methodology. This approach facilitates the proof considerably.

```
lemma max-ideal-shapeD-finite:

assumes generates-max-ideal UNIV (F::(('x::finite <math>\Rightarrow_0 nat) \Rightarrow_0 'a::alg-closed-field)

set)

obtains a where ideal F = ideal (range (\lambda x. monomial 1 (Poly-Mapping.single))
```

```
(x \ 1) - monomial (a \ x) \ \theta)
proof -
  have fin: finite (UNIV::'x set) by simp
  have (\bigcap a \in \mathcal{V} \ F. \ ideal \ (range \ (\lambda x. \ monomial \ 1 \ (Poly-Mapping.single \ x \ 1) \ -
monomial(a x) \theta)) = \mathcal{I}(\mathcal{V} F)
   (is ?A = -)
  proof (intro set-eqI iffI ideal-ofI INT-I)
   assume p \in A and a \in V
   hence p \in ideal (range (\lambda x. monomial 1 (Poly-Mapping.single x 1) - monomial
(a x) \theta)
     (\mathbf{is} - \in ideal ?B) \dots
   have a \in \mathcal{V} ?B
   proof (rule variety-ofI)
     \mathbf{fix} f
     assume f \in ?B
    then obtain x where f = monomial 1 (Poly-Mapping.single <math>x 1) - monomial
(a x) \theta...
     thus poly-eval a f = 0 by (simp add: poly-eval-minus poly-eval-monomial)
   hence a \in \mathcal{V} (ideal ?B) by (simp only: variety-of-ideal)
   thus poly-eval a p = 0 using \langle p \in ideal \rightarrow by (rule \ variety-ofD)
  next
   \mathbf{fix} \ p \ a
   assume p \in \mathcal{I} \ (\mathcal{V} \ F) and a \in \mathcal{V} \ F
   hence eq: poly-eval a p = 0 by (rule ideal-ofD)
    have p \in \sqrt{ideal} (range (\lambda x. monomial 1 (monomial 1 x) - monomial (a x)
\theta)) (is - \in \sqrt{ideal ?B})
     using fin\ max-ideal-shape-aux
   proof (rule Nullstellensatz)
     show p \in \mathcal{I} (\mathcal{V} ?B)
     proof (rule ideal-ofI)
       \mathbf{fix} \ a\theta
       assume a\theta \in \mathcal{V} ?B
       have a\theta = a
       proof
         \mathbf{fix} \ x
           have monomial 1 (monomial 1 x) - monomial (a x) \theta \in PB by (rule
rangeI)
        with \langle a\theta \in \neg \rangle have poly-eval a0 (monomial 1 (monomial 1 x) - monomial
(a x) \theta = 0
           by (rule variety-ofD)
         thus a\theta \ x = a \ x by (simp add: poly-eval-minus poly-eval-monomial)
       thus poly-eval a0 p = 0 by (simp only: eq)
     qed
   qed
   also have ... = ideal (range (\lambda x. monomial 1 (monomial 1 x) - monomial (a
(x) (\theta)
```

```
using max-ideal-shape by (rule max-ideal-UNIV-radical)
    finally show p \in ideal (range (\lambda x. monomial 1 (monomial 1 x) – monomial
(a x) \theta).
 qed
 also from fin have ... = \sqrt{ideal} F by (rule strong-Nullstellensatz) simp
 also from assms have \dots = ideal \ F by (rule max-ideal-UNIV-radical)
 finally have eq: ?A = ideal F.
 also from assms have \dots \neq UNIV by (rule generates-max-idealD)
  finally obtain a where a \in \mathcal{V} F
  and ideal (range (\lambda x. monomial 1 (Poly-Mapping.single x (1::nat)) – monomial
(a \ x) \ \theta)) \neq UNIV
     (is ?B \neq -) by auto
 from \langle a \in \mathcal{V} | F \rangle have ideal F \subseteq ?B by (auto simp flip: eq)
 \mathbf{with}\ \mathit{assms}\ \mathit{max-ideal-shape-aux}\ \mathbf{show}\ \mathit{?thesis}
 proof (rule generates-max-ideal-cases)
   assume ideal\ F = ?B
   thus ?thesis ..
 next
   assume ?B = UNIV
   with \langle ?B \neq UNIV \rangle show ?thesis ...
 ged
\mathbf{qed}
lemmas max-ideal-shapeD-internalized = max-ideal-shapeD-finite[unoverload-type]
'x
lemma max-ideal-shapeD:
 assumes finite X and F \subseteq P[X]
   and generates-max-ideal X (F::(('x \Rightarrow_0 nat) \Rightarrow_0 'a::alg-closed-field) set)
  obtains a where ideal F = ideal ((\lambda x. monomial\ 1 (Poly-Mapping.single x\ 1)
- monomial (a x) \theta 'X
proof (cases X = \{\})
 case True
 from assms(3) have ideal\ F \neq UNIV by (rule generates-max-idealD)
 hence 1 \notin ideal \ F by (simp \ add: ideal-eq-UNIV-iff-contains-one)
 have F \subseteq \{\theta\}
 proof
   \mathbf{fix} f
   assume f \in F
   with assms(2) have f \in P[X] ...
   then obtain c where f: f = monomial \ c \ 0 by (auto simp: True \ Polys-empty)
   with \langle f \in F \rangle have monomial c \mid 0 \in ideal \mid F \mid by (simp only: ideal.span-base)
  hence monomial (inverse c) 0 * monomial c 0 \in ideal F by (rule ideal.span-scale)
  hence monomial (inverse c * c) 0 \in ideal F by (simp add: times-monomial-monomial)
   with \langle 1 \notin ideal \ F \rangle left-inverse have c = 0 by fastforce
   thus f \in \{0\} by (simp \ add: f)
 hence ideal F = ideal((\lambda x. monomial 1 (Poly-Mapping.single x 1) - monomial)
(undefined x) \theta 'X)
```

```
by (simp add: True)
 thus ?thesis ..
\mathbf{next}
 case False
We define the type y to be isomorphic to X.
   assume \exists (Rep :: 'y \Rightarrow 'x) \ Abs. \ type-definition \ Rep \ Abs \ X
   then obtain rep :: 'y \Rightarrow 'x and abs :: 'x \Rightarrow 'y where t: type-definition rep abs
X
     by blast
   then interpret y: type-definition rep abs X.
   have 1: map-indets (rep \circ abs) ' A = A if A \subseteq P[X] for A::(-\Rightarrow_0 'a) set
     from that show map-indets (rep \circ abs) ' A \subseteq A
     by (smt\ (verit)\ PolysD(2)\ comp-apply\ image-subset-iff\ map-indets-id\ subsetD
y.Abs-inverse)
   next
     from that show A \subseteq map\text{-}indets (rep \circ abs) ' A
        by (smt\ (verit)\ PolysD(2)\ comp-apply\ image-eqI\ map-indets-id\ subsetD
subsetI\ y.Abs-inverse
   aed
   have 2: inj rep by (meson inj-onI y.Rep-inject)
   hence 3: inj (map-indets rep) by (rule map-indets-injI)
   have class.finite TYPE('y)
   proof
     from assms(1) have finite\ (abs\ `X) by (rule\ finite\text{-}imageI)
     thus finite (UNIV::'y set) by (simp only: y.Abs-image)
   qed
   moreover have generates-max-ideal UNIV (map-indets abs 'F)
   proof (intro generates-max-idealI notI)
     assume ideal (map-indets abs 'F) = UNIV
     hence 1 \in ideal \ (map-indets \ abs \ `F) by simp
     hence map-indets rep 1 \in map-indets rep 'ideal (map-indets abs 'F) by
(rule\ imageI)
     also from map-indets-plus map-indets-times have \ldots \subseteq ideal (map-indets
rep ' map-indets abs ' F)
      by (rule image-ideal-subset)
     also from assms(2) have map-indets rep ' map-indets abs ' F = F
      by (simp only: image-image map-indets-map-indets 1)
     finally have 1 \in ideal \ F by simp
   moreover from assms(3) have ideal F \neq UNIV by (rule generates-max-idealD)
     ultimately show False by (simp add: ideal-eq-UNIV-iff-contains-one)
   next
     fix F'
     assume ideal (map-indets abs 'F) \subset ideal F'
       with inj-on-subset have map-indets rep 'ideal (map-indets abs 'F) \subset
```

```
map-indets rep ' ideal F'
      by (rule image-strict-mono) (fact 3, fact subset-UNIV)
     hence sub: ideal F \cap P[X] \subset ideal (map-indets rep 'F') \cap P[X] using 2
assms(2)
       by (simp add: image-map-indets-ideal image-image map-indets-map-indets
1 \ y.Rep-range)
     have ideal F \subset ideal (map-indets rep 'F')
     proof (intro psubsetI notI ideal.span-subset-spanI subsetI)
      \mathbf{fix} p
      assume p \in F
      with assms(2) ideal.span-base sub show p \in ideal (map-indets rep 'F') by
blast
     next
      assume ideal F = ideal (map-indets rep 'F')
      with sub show False by simp
     qed
     with assms(3) - have ideal (map-indets rep 'F') = UNIV
     proof (rule generates-max-idealD)
      from subset-UNIV have map-indets rep 'F' \subseteq range (map-indets rep) by
(rule\ image-mono)
      also have \dots = P[X] by (simp\ only: range-map-indets\ y.Rep-range)
      finally show map-indets rep 'F' \subseteq P[X].
     hence P[range\ rep] = ideal\ (map-indets\ rep\ 'F') \cap P[range\ rep] by simp
       also from 2 have ... = map-indets rep 'ideal F' by (simp only: im-
age-map-indets-ideal)
     finally have map-indets rep 'ideal F' = range (map-indets rep)
      by (simp only: range-map-indets)
     with 3 show ideal F' = UNIV by (metis inj-image-eq-iff)
   qed
   ultimately obtain a
     where *: ideal (map-indets \ abs \ 'F) =
                ideal (range (\lambda x. monomial 1 (Poly-Mapping.single x (Suc 0)) -
monomial(a x) 0)
      (is - ?A)
     by (rule max-ideal-shapeD-internalized[where 'x='y, untransferred, simpli-
fied
   hence map-indets rep 'ideal (map-indets abs 'F) = map-indets rep '? A by
   with 2 assms(2) have ideal\ F \cap P[X] =
       ideal (range (\lambda x. monomial 1 (Poly-Mapping.single (rep x) 1) - monomial
(a \ x) \ \theta)) \cap P[X]
      (\mathbf{is} - = ideal ?B \cap -)
   \textbf{by } (simp \ add: image-map-indets-ideal \ y. Rep-range \ image-image \ map-indets-map-indets
           map-indets-minus map-indets-monomial 1)
   also have ?B = (\lambda x. \ monomial \ 1 \ (Poly-Mapping.single \ x \ 1) - monomial \ ((a
\circ abs(x) \theta(x) \circ X
      (is - ?C)
   proof
```

```
show ?B \subseteq ?C by (smt\ (verit)\ comp-apply\ image-iff\ image-subset-iff\ y.\ Abs-image
y.Abs-inverse)
   \mathbf{next}
     from y.Rep-inverse y.Rep-range show ?C \subseteq ?B by auto
   ged
   finally have eq: ideal F \cap P[X] = ideal \ ?C \cap P[X].
   have ideal F = ideal ?C
   proof (intro subset-antisym ideal.span-subset-spanI subsetI)
     \mathbf{fix} p
     assume p \in F
     with assms(2) ideal.span-base have p \in ideal\ F \cap P[X] by blast
     thus p \in ideal ?C by (simp \ add: eq)
   next
     \mathbf{fix} p
     assume p \in ?C
      then obtain x where x \in X and p = monomial 1 (monomial 1 x) -
monomial ((a \circ abs) x) \theta...
     note this(2)
     also from \langle x \in X \rangle have \ldots \in P[X]
     by (intro Polys-closed-minus Polys-closed-monomial PPs-closed-single zero-in-PPs)
     finally have p \in P[X].
     with \langle p \in ?C \rangle have p \in ideal ?C \cap P[X] by (simp \ add: ideal.span-base)
     also have \dots = ideal \ F \cap P[X] by (simp \ only: eq)
     finally show p \in ideal \ F by simp
   \mathbf{qed}
   hence ?thesis ..
 note rl = this[cancel-type-definition]
 from False show ?thesis by (rule rl)
theorem Nullstellensatz-field:
 assumes finite X and F \subseteq P[X] and generates-max-ideal X (F::(-\Rightarrow_0-::alg-closed-field)
   and x \in X
 shows \{\theta\} \subset ideal\ F \cap P[\{x\}]
 unfolding \ subset-not-subset-eq
proof (intro conjI notI)
  show \{0\} \subseteq ideal\ F \cap P[\{x\}]\ by (auto intro: ideal.span-zero zero-in-Polys)
  from assms(1, 2, 3) obtain a
   where eq: ideal F = ideal ((\lambda x. monomial 1 (monomial 1 x) – monomial (a
x) \theta (X)
   by (rule\ max-ideal-shapeD)
 let ?p = \lambda x. monomial 1 (monomial 1 x) – monomial (a x) 0
 from assms(4) have ?p \ x \in ?p \ `X  by (rule \ imageI)
 also have \ldots \subseteq ideal\ F unfolding eq by (rule ideal.span-superset)
 finally have ?p \ x \in ideal \ F.
 moreover have ?p \ x \in P[\{x\}]
```

```
by (auto intro!: Polys-closed-minus Polys-closed-monomial PPs-closed-single zero-in-PPs) ultimately have ?p \ x \in ideal \ F \cap P[\{x\}] \dots also assume \dots \subseteq \{0\} finally show False by (metis diff-eq-diff-eq diff-self monomial-0D monomial-inj one-neq-zero singletonD) qed end
```

References

[1] D. Cox, J. Little, and D. O'Shea. *Ideals, Varieties, and Algorithms*. Undergraduate Texts in Mathematics. Springer, 2007.