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Abstract

In his outstanding work on Communicating Sequential Processes,
Hoare has defined two fundamental binary operations allowing to com-
pose the input processes into another, typically more complex, process:
sequential composition and concurrent composition. Particularly, the
output of the former operation is a process that initially behaves like
the first operand, and then like the second operand once the execution
of the first one has terminated successfully, as long as it does.

This paper formalizes Hoare’s definition of sequential composition
and proves, in the general case of a possibly intransitive policy, that
CSP noninterference security is conserved under this operation, pro-
vided that successful termination cannot be affected by confidential
events and cannot occur as an alternative to other events in the traces
of the first operand. Both of these assumptions are shown, by means
of counterexamples, to be necessary for the theorem to hold.
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1 Propaedeutic definitions and lemmas
theory Propaedeutics
imports Noninterference-Ipurge-Unwinding.DeterministicProcesses
begin

To our Lord Jesus Christ, my dear parents, and my "little" sister,
for the immense love with which they surround me.

In his outstanding work on Communicating Sequential Processes [1], Hoare
has defined two fundamental binary operations allowing to compose the
input processes into another, typically more complex, process: sequential
composition and concurrent composition. Particularly, the output of the
former operation is a process that initially behaves like the first operand,
and then like the second operand once the execution of the first one has
terminated successfully, as long as it does. In order to distinguish it from
deadlock, successful termination is regarded as a special event in the process
alphabet (required to be the same for both the input processes and the
output one).
This paper formalizes Hoare’s definition of sequential composition and proves,
in the general case of a possibly intransitive policy, that CSP noninterfer-
ence security [8] is conserved under this operation, viz. the security of both
of the input processes implies that of the output process.
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This property is conditional on two nontrivial assumptions. The first as-
sumption is that the policy do not allow successful termination to be af-
fected by confidential events, viz. by other events not allowed to affect some
event in the process alphabet. The second assumption is that successful
termination do not occur as an alternative to other events in the traces of
the first operand, viz. that whenever the process can terminate successfully,
it cannot engage in any other event. Both of these assumptions are shown,
by means of counterexamples, to be necessary for the theorem to hold.
From the above sketch of the sequential composition of two processes P and
Q, notwithstanding its informal character, it clearly follows that any failure
of the output process is either a failure of P (case A), or a pair (xs @ ys,
Y ), where xs is a trace of P and (ys, Y ) is a failure of Q (case B). On the
other hand, according to the definition of security given in [8], the output
process is secure just in case, for each of its failures, any event x contained
in the failure trace can be removed from the trace, or inserted into the trace
of another failure after the same previous events as in the original trace, and
the resulting pair is still a failure of the process, provided that the future of
x is deprived of the events that may be affected by x.
In case A, this transformation is performed on a failure of process P; being
it secure, the result is still a failure of P, and then of the output process. In
case B, the transformation may involve either ys alone, or both xs and ys,
depending on the position at which x is removed or inserted. In the former
subcase, being Q secure, the result has the form (xs @ ys ′, Y ′) where (ys ′,
Y ′) is a failure of Q, thus it is still a failure of the output process. In the
latter subcase, ys has to be deprived of the events that may be affected by
x, as well as by any event affected by x in the involved portion of xs, and
a similar transformation applies to Y. In order that the output process be
secure, the resulting pair (ys ′′, Y ′′) must still be a failure of Q, so that the
pair (xs ′ @ ys ′′, Y ′′), where xs ′ results from the transformation of xs, be a
failure of the output process.
The transformations bringing from ys and Y to ys ′′ and Y ′′ are implemented
by the functions ipurge-tr-aux and ipurge-ref-aux defined in [9]. Therefore,
the proof of the target security conservation theorem requires that of the
following lemma: given a process P, a noninterference policy I, and an event-
domain map D, if P is secure with respect to I and D and (xs, X) is a failure
of P, then (ipurge-tr-aux I D U xs, ipurge-ref-aux I D U xs X) is still a failure
of P. In other words, the lemma states that the failures of a secure process
are closed under intransitive purge. This section contains a proof of such
closure lemma, as well as further definitions and lemmas required for the
proof of the target theorem.
Throughout this paper, the salient points of definitions and proofs are com-
mented; for additional information, cf. Isabelle documentation, particularly
[6], [4], [3], and [2].
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1.1 Preliminary propaedeutic lemmas

In what follows, some lemmas required for the demonstration of the target
closure lemma are proven.
Here below is the proof of some properties of functions ipurge-tr and ipurge-ref.

lemma ipurge-tr-length:
length (ipurge-tr I D u xs) ≤ length xs
〈proof 〉

lemma ipurge-ref-swap:
ipurge-ref I D u xs {x ∈ X . P x} =
{x ∈ ipurge-ref I D u xs X . P x}

〈proof 〉

lemma ipurge-ref-last:
ipurge-ref I D u (xs @ [x]) X =
(if (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I )
then ipurge-ref I D u xs {x ′ ∈ X . (D x, D x ′) /∈ I}
else ipurge-ref I D u xs X)

〈proof 〉

Here below is the proof of some properties of function sinks-aux.

lemma sinks-aux-append:
sinks-aux I D U (xs @ ys) = sinks-aux I D (sinks-aux I D U xs) ys
〈proof 〉

lemma sinks-aux-union:
sinks-aux I D (U ∪ V ) xs =
sinks-aux I D U xs ∪ sinks-aux I D V (ipurge-tr-aux I D U xs)

〈proof 〉

lemma sinks-aux-subset-dom:
assumes A: U ⊆ V
shows sinks-aux I D U xs ⊆ sinks-aux I D V xs

〈proof 〉

lemma sinks-aux-subset-ipurge-tr-aux:
sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs) ⊆ sinks-aux I D U xs
〈proof 〉

lemma sinks-aux-subset-ipurge-tr :
sinks-aux I D U (ipurge-tr I ′ D ′ u ′ xs) ⊆ sinks-aux I D U xs
〈proof 〉

lemma sinks-aux-member-ipurge-tr-aux [rule-format]:
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u ∈ sinks-aux I D (U ∪ V ) xs −→
(u, w) ∈ I −→
¬ (∃ v ∈ sinks-aux I D V xs. (v, w) ∈ I ) −→

u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs)
〈proof 〉

lemma sinks-aux-member-ipurge-tr :
assumes

A: u ∈ sinks-aux I D (insert v U ) xs and
B: (u, w) ∈ I and
C : ¬ ((v, w) ∈ I ∨ (∃ v ′ ∈ sinks I D v xs. (v ′, w) ∈ I ))

shows u ∈ sinks-aux I D U (ipurge-tr I D v xs)
〈proof 〉

Here below is the proof of some properties of functions ipurge-tr-aux and
ipurge-ref-aux.

lemma ipurge-tr-aux-append:
ipurge-tr-aux I D U (xs @ ys) =
ipurge-tr-aux I D U xs @ ipurge-tr-aux I D (sinks-aux I D U xs) ys

〈proof 〉

lemma ipurge-tr-aux-single-event:
ipurge-tr-aux I D U [x] = (if ∃ v ∈ U . (v, D x) ∈ I

then []
else [x])

〈proof 〉

lemma ipurge-tr-aux-cons:
ipurge-tr-aux I D U (x # xs) = (if ∃ u ∈ U . (u, D x) ∈ I

then ipurge-tr-aux I D (insert (D x) U ) xs
else x # ipurge-tr-aux I D U xs)

〈proof 〉

lemma ipurge-tr-aux-union:
ipurge-tr-aux I D (U ∪ V ) xs =
ipurge-tr-aux I D V (ipurge-tr-aux I D U xs)

〈proof 〉

lemma ipurge-tr-aux-insert:
ipurge-tr-aux I D (insert v U ) xs =
ipurge-tr-aux I D U (ipurge-tr I D v xs)

〈proof 〉

lemma ipurge-ref-aux-subset:
ipurge-ref-aux I D U xs X ⊆ X
〈proof 〉
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1.2 Intransitive purge of event sets with trivial base case

Here below are the definitions of variants of functions sinks-aux and ipurge-ref-aux,
respectively named sinks-aux-less and ipurge-ref-aux-less, such that their
base cases in correspondence with an empty input list are trivial, viz. such
that sinks-aux-less I D U [] = {} and ipurge-ref-aux-less I D U [] X = X.
These functions will prove to be useful in what follows.

function sinks-aux-less ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

sinks-aux-less - - - [] = {} |
sinks-aux-less I D U (xs @ [x]) =
(if ∃ v ∈ U ∪ sinks-aux-less I D U xs. (v, D x) ∈ I
then insert (D x) (sinks-aux-less I D U xs)
else sinks-aux-less I D U xs)

〈proof 〉
termination 〈proof 〉

definition ipurge-ref-aux-less ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a set where

ipurge-ref-aux-less I D U xs X ≡
{x ∈ X . ∀ v ∈ sinks-aux-less I D U xs. (v, D x) /∈ I}

Here below is the proof of some properties of function sinks-aux-less used in
what follows.

lemma sinks-aux-sinks-aux-less:
sinks-aux I D U xs = U ∪ sinks-aux-less I D U xs
〈proof 〉

lemma sinks-aux-less-single-dom:
sinks-aux-less I D {u} xs = sinks I D u xs
〈proof 〉

lemma sinks-aux-less-single-event:
sinks-aux-less I D U [x] = (if ∃ u ∈ U . (u, D x) ∈ I then {D x} else {})
〈proof 〉

lemma sinks-aux-less-append:
sinks-aux-less I D U (xs @ ys) =
sinks-aux-less I D U xs ∪ sinks-aux-less I D (U ∪ sinks-aux-less I D U xs) ys

〈proof 〉

lemma sinks-aux-less-cons:
sinks-aux-less I D U (x # xs) = (if ∃ u ∈ U . (u, D x) ∈ I

then insert (D x) (sinks-aux-less I D (insert (D x) U ) xs)
else sinks-aux-less I D U xs)
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〈proof 〉

Here below is the proof of some properties of function ipurge-ref-aux-less
used in what follows.

lemma ipurge-ref-aux-less-last:
ipurge-ref-aux-less I D U (xs @ [x]) X =
(if ∃ v ∈ U ∪ sinks-aux-less I D U xs. (v, D x) ∈ I
then ipurge-ref-aux-less I D U xs {x ′ ∈ X . (D x, D x ′) /∈ I}
else ipurge-ref-aux-less I D U xs X)

〈proof 〉

lemma ipurge-ref-aux-less-nil:
ipurge-ref-aux-less I D U xs (ipurge-ref-aux I D U [] X) =
ipurge-ref-aux I D U xs X

〈proof 〉

lemma ipurge-ref-aux-less-cons-1 :
assumes A: ∃ u ∈ U . (u, D x) ∈ I
shows ipurge-ref-aux-less I D U (x # xs) X =

ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs) (ipurge-ref I D (D x) xs X)
〈proof 〉

lemma ipurge-ref-aux-less-cons-2 :
¬ (∃ u ∈ U . (u, D x) ∈ I ) =⇒
ipurge-ref-aux-less I D U (x # xs) X =

ipurge-ref-aux-less I D U xs X
〈proof 〉

1.3 Closure of the failures of a secure process under intran-
sitive purge

The intransitive purge of an event list xs with regard to a policy I, an event-
domain map D, and a set of domains U can equivalently be computed as
follows: for each item x of xs, if x may be affected by some domain in U,
discard x and go on recursively using ipurge-tr I D (D x) xs ′ as input, where
xs ′ is the sublist of xs following x; otherwise, retain x and go on recursively
using xs ′ as input.
In fact, in each recursive step, any item allowed to be indirectly affected by
U through the effect of some item preceding x within xs has already been
removed from the list. Hence, it is sufficient to check whether x may be
directly affected by U, and remove x, as well as any residual item allowed to
be affected by x, if this is the case.
Similarly, the intransitive purge of an event set X with regard to a policy
I, an event-domain map D, a set of domains U, and an event list xs can be
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computed as follows. First of all, compute ipurge-ref-aux I D U [] X and use
this set, along with xs, as the input for the subsequent step. Then, for each
item x of xs, if x may be affected by some domain in U, go on recursively
using ipurge-tr I D (D x) xs ′ and ipurge-ref I D (D x) xs ′ X ′ as input, where
X ′ is the set input to the current recursive step; otherwise, go on recursively
using xs ′ and X ′ as input.
In fact, in each recursive step, any item allowed to be affected by U either
directly, or through the effect of some item preceding x within xs, has already
been removed from the set (in the initial step and in subsequent steps,
respectively). Thus, it is sufficient to check whether x may be directly
affected by U, and remove any residual item allowed to be affected by x if
this is the case.
Assume that the two computations be performed simultaneously by a single
function, which will then take as input an event list-event set pair and return
as output another such pair. Then, if the input pair is a failure of a secure
process, the output pair is still a failure. In fact, for each item x of xs
allowed to be affected by U, if ys is the partial output list for the sublist of
xs preceding x, then (ys @ ipurge-tr I D (D x) xs ′, ipurge-ref I D (D x) xs ′

X ′) is a failure provided that such is (ys @ x # xs ′, X ′), by virtue of the
definition of CSP noninterference security [8]. Hence, the property of being
a failure is conserved upon each recursive call by the event list-event set
pair such that the list matches the concatenation of the partial output list
with the residual input list, and the set matches the residual input set. This
holds until the residual input list is nil, which is the base case determining
the end of the computation.
As shown by this argument, a proof by induction that the output event list-
event set pair, under the aforesaid assumptions, is still a failure, requires that
the partial output list be passed to the function as a further argument, in
addition to the residual input list, in the recursive calls contained within the
definition of the function. Therefore, the output list has to be accumulated
into a parameter of the function, viz. the function needs to be tail-recursive.
This suggests to prove the properties of interest of the function by applying
the ten-step proof method for theorems on tail-recursive functions described
in [7].
The starting point is to formulate a naive definition of the function, which
will then be refined as specified by the proof method. A slight complica-
tion is due to the preliminary replacement of the input event set X with
ipurge-ref-aux I D U [] X, to be performed before the items of the input
event list start to be consumed recursively. A simple solution to this prob-
lem is to nest the accumulator of the output list within data type option. In
this way, the initial state can be distinguished from the subsequent one, in
which the input event list starts to be consumed, by assigning the distinct
values None and Some [], respectively, to the accumulator.
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Everything is now ready for giving a naive definition of the function under
consideration:

function (sequential) ipurge-fail-aux-t-naive ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list option ⇒ ′a set ⇒

′a failure
where
ipurge-fail-aux-t-naive I D U xs None X =

ipurge-fail-aux-t-naive I D U xs (Some []) (ipurge-ref-aux I D U [] X) |
ipurge-fail-aux-t-naive I D U (x # xs) (Some ys) X =
(if ∃ u ∈ U . (u, D x) ∈ I
then ipurge-fail-aux-t-naive I D U
(ipurge-tr I D (D x) xs) (Some ys) (ipurge-ref I D (D x) xs X)

else ipurge-fail-aux-t-naive I D U
xs (Some (ys @ [x])) X) |

ipurge-fail-aux-t-naive - - - - (Some ys) X = (ys, X)
〈proof 〉

The parameter into which the output list is accumulated is the last but one.
As shown by the above informal argument, function ipurge-fail-aux-t-naive
enjoys the following properties:

fst (ipurge-fail-aux-t-naive I D U xs None X) = ipurge-tr-aux I D U xs

snd (ipurge-fail-aux-t-naive I D U xs None X) = ipurge-ref-aux I D U xs X

[[secure P I D; (xs, X) ∈ failures P]] =⇒ ipurge-fail-aux-t-naive I D U xs
None X ∈ failures P

which altogether imply the target lemma, viz. the closure of the failures of
a secure process under intransitive purge.
In what follows, the steps provided for by the aforesaid proof method will
be dealt with one after the other, with the purpose of proving the target
closure lemma in the final step. For more information on this proof method,
cf. [7].

1.3.1 Step 1

In the definition of the auxiliary tail-recursive function ipurge-fail-aux-t-aux,
the Cartesian product of the input parameter types of function ipurge-fail-aux-t-naive
will be implemented as the following record type:

record ( ′a, ′d) ipurge-rec =
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Pol :: ( ′d × ′d) set
Map :: ′a ⇒ ′d
Doms :: ′d set
List :: ′a list
ListOp :: ′a list option
Set :: ′a set

Here below is the resulting definition of function ipurge-fail-aux-t-aux:

function ipurge-fail-aux-t-aux :: ( ′a, ′d) ipurge-rec ⇒ ( ′a, ′d) ipurge-rec
where

ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = None, Set = X |) =

ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some [], Set = ipurge-ref-aux I D U [] X |) |

ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) =
(if ∃ u ∈ U . (u, D x) ∈ I
then ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U ,
List = ipurge-tr I D (D x) xs, ListOp = Some ys,
Set = ipurge-ref I D (D x) xs X |)

else ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U ,
List = xs, ListOp = Some (ys @ [x]), Set = X |)) |

ipurge-fail-aux-t-aux
(|Pol = I , Map = D, Doms = U , List = [], ListOp = Some ys, Set = X |) =
(|Pol = I , Map = D, Doms = U , List = [], ListOp = Some ys, Set = X |)

〈proof 〉

The length of the input event list of function ipurge-fail-aux-t-aux decreases
in every recursive call except for the first one, where the input list is left
unchanged while the nested output list passes from None to Some []. A
measure function decreasing in the first recursive call as well can then be
obtained by increasing the length of the input list by one in case the nested
output list matches None. Using such a measure function, the termination of
function ipurge-fail-aux-t-aux is guaranteed by the fact that the event lists
output by function ipurge-tr are not longer than the corresponding input
ones.

termination ipurge-fail-aux-t-aux
〈proof 〉
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1.3.2 Step 2
definition ipurge-fail-aux-t-in ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ( ′a, ′d) ipurge-rec

where
ipurge-fail-aux-t-in I D U xs X ≡
(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)

definition ipurge-fail-aux-t-out :: ( ′a, ′d) ipurge-rec ⇒ ′a failure where
ipurge-fail-aux-t-out Y ≡ (case ListOp Y of Some ys ⇒ ys, Set Y )

definition ipurge-fail-aux-t ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a failure

where
ipurge-fail-aux-t I D U xs X ≡

ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux (ipurge-fail-aux-t-in I D U xs X))

Since the significant inputs of function ipurge-fail-aux-t-naive match pattern
-, -, -, -, None, -, those of function ipurge-fail-aux-t-aux, as returned by
function ipurge-fail-aux-t-in, match pattern (|Pol = -, Map = -, Doms = -,
List = -, ListOp = None, Set = -|).
Likewise, since the nested output lists returned by function ipurge-fail-aux-t-aux
match pattern Some -, function ipurge-fail-aux-t-out does not need to worry
about dealing with nested output lists equal to None.
In terms of function ipurge-fail-aux-t, the statements to be proven in order to
demonstrate the target closure lemma, previously expressed using function
ipurge-fail-aux-t-naive and henceforth respectively named ipurge-fail-aux-t-eq-tr,
ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures, take the following form:

fst (ipurge-fail-aux-t I D U xs X) = ipurge-tr-aux I D U xs

snd (ipurge-fail-aux-t I D U xs X) = ipurge-ref-aux I D U xs X

[[secure P I D; (xs, X) ∈ failures P]] =⇒ ipurge-fail-aux-t I D U xs X ∈
failures P

1.3.3 Step 3
inductive-set ipurge-fail-aux-t-set ::
( ′a, ′d) ipurge-rec ⇒ ( ′a, ′d) ipurge-rec set

for Y :: ( ′a, ′d) ipurge-rec where

R0 : Y ∈ ipurge-fail-aux-t-set Y |

R1 : (|Pol = I , Map = D, Doms = U , List = xs,
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ListOp = None, Set = X |) ∈ ipurge-fail-aux-t-set Y =⇒
(|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some [], Set = ipurge-ref-aux I D U [] X |) ∈ ipurge-fail-aux-t-set Y |

R2 : [[(|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) ∈ ipurge-fail-aux-t-set Y ;
∃ u ∈ U . (u, D x) ∈ I ]] =⇒
(|Pol = I , Map = D, Doms = U , List = ipurge-tr I D (D x) xs,
ListOp = Some ys, Set = ipurge-ref I D (D x) xs X |) ∈ ipurge-fail-aux-t-set Y |

R3 : [[(|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) ∈ ipurge-fail-aux-t-set Y ;
¬ (∃ u ∈ U . (u, D x) ∈ I )]] =⇒
(|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some (ys @ [x]), Set = X |) ∈ ipurge-fail-aux-t-set Y

1.3.4 Step 4
lemma ipurge-fail-aux-t-subset:

assumes A: Z ∈ ipurge-fail-aux-t-set Y
shows ipurge-fail-aux-t-set Z ⊆ ipurge-fail-aux-t-set Y

〈proof 〉

lemma ipurge-fail-aux-t-aux-set:
ipurge-fail-aux-t-aux Y ∈ ipurge-fail-aux-t-set Y
〈proof 〉

1.3.5 Step 5
definition ipurge-fail-aux-t-inv-1 ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ( ′a, ′d) ipurge-rec ⇒ bool

where
ipurge-fail-aux-t-inv-1 I D U xs Y ≡
(case ListOp Y of None ⇒ [] | Some ys ⇒ ys) @ ipurge-tr-aux I D U (List Y ) =
ipurge-tr-aux I D U xs

definition ipurge-fail-aux-t-inv-2 ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒

( ′a, ′d) ipurge-rec ⇒ bool
where
ipurge-fail-aux-t-inv-2 I D U xs X Y ≡

if ListOp Y = None
then List Y = xs ∧ Set Y = X
else ipurge-ref-aux-less I D U (List Y ) (Set Y ) = ipurge-ref-aux I D U xs X

definition ipurge-fail-aux-t-inv-3 ::
′a process ⇒ ( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′a list ⇒ ′a set ⇒
( ′a, ′d) ipurge-rec ⇒ bool

where
ipurge-fail-aux-t-inv-3 P I D xs X Y ≡
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secure P I D −→ (xs, X) ∈ failures P −→
((case ListOp Y of None ⇒ [] | Some ys ⇒ ys) @ List Y , Set Y ) ∈ failures P

Three invariants have been defined, one for each of lemmas ipurge-fail-aux-t-eq-tr,
ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures. More precisely, the in-
variants are ipurge-fail-aux-t-inv-1 I D U xs, ipurge-fail-aux-t-inv-2 I D U
xs X, and ipurge-fail-aux-t-inv-3 P I D xs X, where the free variables are
intended to match those appearing in the aforesaid lemmas.
Particularly:

• The first invariant expresses the fact that in each recursive step, any
item of the residual input list List Y indirectly affected by U through
the effect of previous, already consumed items has already been re-
moved from the list, so that applying function ipurge-tr-aux I D U
to the list is sufficient to obtain the intransitive purge of the whole
original list.

• The second invariant expresses the fact that in each recursive step,
any item of the residual input set Set Y affected by U either di-
rectly, or through the effect of previous, already consumed items,
has already been removed from the set, so that applying function
ipurge-ref-aux-less I D U (List Y ) to the set is sufficient to obtain
the intransitive purge of the whole original set.
The use of function ipurge-ref-aux-less ensures that the invariant im-
plies the equality Set Y = ipurge-ref-aux I D U xs X for List Y = [],
viz. for the output values of function ipurge-fail-aux-t-aux, which is
the reason requiring the introduction of function ipurge-ref-aux-less.

• The third invariant expresses the fact that in each recursive step, the
event list-event set pair such that the list matches the concatenation
of the partial output list with List Y, and the set matches Set Y, is a
failure provided that the original input pair is such as well.

1.3.6 Step 6
lemma ipurge-fail-aux-t-input-1 :
ipurge-fail-aux-t-inv-1 I D U xs

(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)
〈proof 〉

lemma ipurge-fail-aux-t-input-2 :
ipurge-fail-aux-t-inv-2 I D U xs X

(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)
〈proof 〉
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lemma ipurge-fail-aux-t-input-3 :
ipurge-fail-aux-t-inv-3 P I D xs X

(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)
〈proof 〉

1.3.7 Step 7
definition ipurge-fail-aux-t-form :: ( ′a, ′d) ipurge-rec ⇒ bool where
ipurge-fail-aux-t-form Y ≡

case ListOp Y of None ⇒ False | Some ys ⇒ List Y = []

lemma ipurge-fail-aux-t-intro-1 :
[[ipurge-fail-aux-t-inv-1 I D U xs Y ; ipurge-fail-aux-t-form Y ]] =⇒

fst (ipurge-fail-aux-t-out Y ) = ipurge-tr-aux I D U xs
〈proof 〉

lemma ipurge-fail-aux-t-intro-2 :
[[ipurge-fail-aux-t-inv-2 I D U xs X Y ; ipurge-fail-aux-t-form Y ]] =⇒

snd (ipurge-fail-aux-t-out Y ) = ipurge-ref-aux I D U xs X
〈proof 〉

lemma ipurge-fail-aux-t-intro-3 :
[[ipurge-fail-aux-t-inv-3 P I D xs X Y ; ipurge-fail-aux-t-form Y ]] =⇒

secure P I D −→ (xs, X) ∈ failures P −→
ipurge-fail-aux-t-out Y ∈ failures P

〈proof 〉

1.3.8 Step 8
lemma ipurge-fail-aux-t-form-aux:
ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux Y )
〈proof 〉

1.3.9 Step 9
lemma ipurge-fail-aux-t-invariance-aux:
Z ∈ ipurge-fail-aux-t-set Y =⇒
Pol Z = Pol Y ∧ Map Z = Map Y ∧ Doms Z = Doms Y

〈proof 〉

The lemma just proven, stating the invariance of the first three record fields
over inductive set ipurge-fail-aux-t-set Y, is used in the following proofs of the
invariance of predicates ipurge-fail-aux-t-inv-1 I D U xs, ipurge-fail-aux-t-inv-2
I D U xs X, and ipurge-fail-aux-t-inv-3 P I D xs X.
The equality between the free variables appearing in the predicates and
the corresponding fields of the record generating the set, which is required
for such invariance properties to hold, is asserted in the enunciation of the
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properties by means of record updates. In the subsequent proofs of lemmas
ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures,
the enforcement of this equality will be ensured by the identification of both
predicate variables and record fields with the related free variables appearing
in the lemmas.

lemma ipurge-fail-aux-t-invariance-1 :
[[Z ∈ ipurge-fail-aux-t-set (Y (|Pol := I , Map := D, Doms := U |));

ipurge-fail-aux-t-inv-1 I D U xs (Y (|Pol := I , Map := D, Doms := U |))]] =⇒
ipurge-fail-aux-t-inv-1 I D U xs Z

〈proof 〉

lemma ipurge-fail-aux-t-invariance-2 :
[[Z ∈ ipurge-fail-aux-t-set (Y (|Pol := I , Map := D, Doms := U |));

ipurge-fail-aux-t-inv-2 I D U xs X (Y (|Pol := I , Map := D, Doms := U |))]] =⇒
ipurge-fail-aux-t-inv-2 I D U xs X Z

〈proof 〉

lemma ipurge-fail-aux-t-invariance-3 :
[[Z ∈ ipurge-fail-aux-t-set (Y (|Pol := I , Map := D|));

ipurge-fail-aux-t-inv-3 P I D xs X (Y (|Pol := I , Map := D|))]] =⇒
ipurge-fail-aux-t-inv-3 P I D xs X Z

〈proof 〉

1.3.10 Step 10

Here below are the proofs of lemmas ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref,
and ipurge-fail-aux-t-failures, which are then applied to demonstrate the tar-
get closure lemma.

lemma ipurge-fail-aux-t-eq-tr :
fst (ipurge-fail-aux-t I D U xs X) = ipurge-tr-aux I D U xs
〈proof 〉

lemma ipurge-fail-aux-t-eq-ref :
snd (ipurge-fail-aux-t I D U xs X) = ipurge-ref-aux I D U xs X
〈proof 〉

lemma ipurge-fail-aux-t-failures [rule-format]:
secure P I D −→ (xs, X) ∈ failures P −→

ipurge-fail-aux-t I D U xs X ∈ failures P
〈proof 〉

lemma ipurge-tr-ref-aux-failures:
[[secure P I D; (xs, X) ∈ failures P]] =⇒

(ipurge-tr-aux I D U xs, ipurge-ref-aux I D U xs X) ∈ failures P
〈proof 〉
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1.4 Additional propaedeutic lemmas

In what follows, additional lemmas required for the demonstration of the
target security conservation theorem are proven.
Here below is the proof of some properties of functions ipurge-tr-aux and
ipurge-ref-aux. Particularly, it is shown that in case an event list and its
intransitive purge for some set of domains are both traces of a secure process,
and the purged list has a future not affected by any purged event, then that
future is also a future for the full event list.

lemma ipurge-tr-aux-idem:
ipurge-tr-aux I D U (ipurge-tr-aux I D U xs) = ipurge-tr-aux I D U xs
〈proof 〉

lemma ipurge-tr-aux-set:
set (ipurge-tr-aux I D U xs) ⊆ set xs
〈proof 〉

lemma ipurge-tr-aux-nil [rule-format]:
assumes A: u ∈ U
shows (∀ x ∈ set xs. (u, D x) ∈ I ) −→ ipurge-tr-aux I D U xs = []

〈proof 〉

lemma ipurge-tr-aux-del-failures [rule-format]:
assumes S : secure P I D
shows (∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I ) −→
(xs @ ipurge-tr-aux I D U ys @ zs, Z ) ∈ failures P −→
xs @ ys ∈ traces P −→
(xs @ ys @ zs, Z ) ∈ failures P

〈proof 〉

lemma ipurge-ref-aux-append:
ipurge-ref-aux I D U (xs @ ys) X = ipurge-ref-aux I D (sinks-aux I D U xs) ys X
〈proof 〉

lemma ipurge-ref-aux-empty [rule-format]:
assumes

A: u ∈ sinks-aux I D U xs and
B: ∀ x ∈ X . (u, D x) ∈ I

shows ipurge-ref-aux I D U xs X = {}
〈proof 〉

Here below is the proof of some properties of functions sinks, ipurge-tr,
and ipurge-ref. Particularly, using the previous analogous result on function
ipurge-tr-aux, it is shown that in case an event list and its intransitive purge
for some domain are both traces of a secure process, and the purged list has
a future not affected by any purged event, then that future is also a future
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for the full event list.

lemma sinks-idem:
sinks I D u (ipurge-tr I D u xs) = {}
〈proof 〉

lemma sinks-elem [rule-format]:
v ∈ sinks I D u xs −→ (∃ x ∈ set xs. v = D x)
〈proof 〉

lemma ipurge-tr-append:
ipurge-tr I D u (xs @ ys) =
ipurge-tr I D u xs @ ipurge-tr-aux I D (insert u (sinks I D u xs)) ys

〈proof 〉

lemma ipurge-tr-idem:
ipurge-tr I D u (ipurge-tr I D u xs) = ipurge-tr I D u xs
〈proof 〉

lemma ipurge-tr-set:
set (ipurge-tr I D u xs) ⊆ set xs
〈proof 〉

lemma ipurge-tr-del-failures [rule-format]:
assumes

S : secure P I D and
A: ∀ v ∈ sinks I D u ys. ∀ z ∈ Z ∪ set zs. (v, D z) /∈ I and
B: (xs @ ipurge-tr I D u ys @ zs, Z ) ∈ failures P and
C : xs @ ys ∈ traces P

shows (xs @ ys @ zs, Z ) ∈ failures P
〈proof 〉

lemma ipurge-tr-del-traces [rule-format]:
assumes

S : secure P I D and
A: ∀ v ∈ sinks I D u ys. ∀ z ∈ set zs. (v, D z) /∈ I and
B: xs @ ipurge-tr I D u ys @ zs ∈ traces P and
C : xs @ ys ∈ traces P

shows xs @ ys @ zs ∈ traces P
〈proof 〉

lemma ipurge-ref-append:
ipurge-ref I D u (xs @ ys) X =
ipurge-ref-aux I D (insert u (sinks I D u xs)) ys X

〈proof 〉

lemma ipurge-ref-distrib-inter :
ipurge-ref I D u xs (X ∩ Y ) = ipurge-ref I D u xs X ∩ ipurge-ref I D u xs Y
〈proof 〉
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lemma ipurge-ref-distrib-union:
ipurge-ref I D u xs (X ∪ Y ) = ipurge-ref I D u xs X ∪ ipurge-ref I D u xs Y
〈proof 〉

lemma ipurge-ref-subset:
ipurge-ref I D u xs X ⊆ X
〈proof 〉

lemma ipurge-ref-subset-union:
ipurge-ref I D u xs (X ∪ Y ) ⊆ X ∪ ipurge-ref I D u xs Y
〈proof 〉

lemma ipurge-ref-subset-insert:
ipurge-ref I D u xs (insert x X) ⊆ insert x (ipurge-ref I D u xs X)
〈proof 〉

lemma ipurge-ref-empty [rule-format]:
assumes

A: v = u ∨ v ∈ sinks I D u xs and
B: ∀ x ∈ X . (v, D x) ∈ I

shows ipurge-ref I D u xs X = {}
〈proof 〉

Finally, in what follows, properties process-prop-1, process-prop-5, and pro-
cess-prop-6 of processes (cf. [8]) are put into the form of introduction rules.

lemma process-rule-1 :
([], {}) ∈ failures P
〈proof 〉

lemma process-rule-5 [rule-format]:
xs ∈ divergences P −→ xs @ [x] ∈ divergences P
〈proof 〉

lemma process-rule-6 [rule-format]:
xs ∈ divergences P −→ (xs, X) ∈ failures P
〈proof 〉

end

2 Sequential composition and noninterference se-
curity

theory SequentialComposition
imports Propaedeutics
begin
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This section formalizes the definitions of sequential processes and sequen-
tial composition given in [1], and then proves that under the assumptions
discussed above, noninterference security is conserved under sequential com-
position for any pair of processes sharing an alphabet that contains success-
ful termination. Finally, this result is generalized to an arbitrary list of
processes.

2.1 Sequential processes

In [1], a sequential process is defined as a process whose alphabet contains
successful termination. Since sequential composition applies to sequential
processes, the first problem put by the formalization of this operation is that
of finding a suitable way to represent such a process.
A simple but effective strategy is to identify it with a process having alphabet
′a option, where ′a is the native type of its ordinary (i.e. distinct from
termination) events. Then, ordinary events will be those matching pattern
Some -, whereas successful termination will be denoted by the special event
None. This means that the sentences of a sequential process, defined in
[1] as the traces after which the process can terminate successfully, will be
nothing but the event lists xs such that xs @ [None] is a trace (which implies
that xs is a trace as well).
Once a suitable representation of successful termination has been found,
the next step is to formalize the properties of sequential processes related to
this event, expressing them in terms of the selected representation. The first
of the resulting predicates, weakly-sequential, is the minimum required for
allowing the identification of event None with successful termination, namely
that None may occur in a trace as its last event only. The second predicate,
sequential, following what Hoare does in [1], extends the first predicate with
an additional requirement, namely that whenever the process can engage in
event None, it cannot engage in any other event. A simple counterexample
shows that this requirement does not imply the first one: a process whose
traces are {[], [None], [None, None]} satisfies the second requirement, but
not the first one.
Moreover, here below is the definition of a further predicate, secure-termination,
which applies to a security policy rather than to a process, and is satisfied
just in case the policy does not allow event None to be affected by confiden-
tial events, viz. by ordinary events not allowed to affect some event in the
alphabet. Interestingly, this property, which will prove to be necessary for
the target theorem to hold, is nothing but the CSP counterpart of a condition
required for a security type system to enforce termination-sensitive nonin-
terference security of programs, namely that program termination must not
depend on confidential data (cf. [5], section 9.2.6).
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definition sentences :: ′a option process ⇒ ′a option list set where
sentences P ≡ {xs. xs @ [None] ∈ traces P}

definition weakly-sequential :: ′a option process ⇒ bool where
weakly-sequential P ≡
∀ xs ∈ traces P. None /∈ set (butlast xs)

definition sequential :: ′a option process ⇒ bool where
sequential P ≡
(∀ xs ∈ traces P. None /∈ set (butlast xs)) ∧
(∀ xs ∈ sentences P. next-events P xs = {None})

definition secure-termination :: ( ′d × ′d) set ⇒ ( ′a option ⇒ ′d) ⇒ bool where
secure-termination I D ≡
∀ x. (D x, D None) ∈ I ∧ x 6= None −→ (∀ u ∈ range D. (D x, u) ∈ I )

Here below is the proof of some useful lemmas involving the constants
just defined. Particularly, it is proven that process sequentiality is indeed
stronger than weak sequentiality, and a sentence of a refusals union closed
(cf. [9]), sequential process admits the set of all the ordinary events of the
process as a refusal. The use of the latter lemma in the proof of the target
security conservation theorem is the reason why the theorem requires to as-
sume that the first of the processes to be composed be refusals union closed
(cf. below).

lemma seq-implies-weakly-seq:
sequential P =⇒ weakly-sequential P
〈proof 〉

lemma weakly-seq-sentences-none:
assumes

WS : weakly-sequential P and
A: xs ∈ sentences P

shows None /∈ set xs
〈proof 〉

lemma seq-sentences-none:
assumes

S : sequential P and
A: xs ∈ sentences P and
B: xs @ y # ys ∈ traces P

shows y = None
〈proof 〉

lemma seq-sentences-ref :
assumes
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A: ref-union-closed P and
B: sequential P and
C : xs ∈ sentences P

shows (xs, {x. x 6= None}) ∈ failures P
(is (-, ?X) ∈ -)

〈proof 〉

2.2 Sequential composition

In what follows, the definition of the failures resulting from the sequential
composition of two processes P, Q given in [1] is formalized as the inductive
definition of set seq-comp-failures P Q. Then, the sequential composition of
P and Q, denoted by means of notation P ; Q following [1], is defined as
the process having seq-comp-failures P Q as failures set and the empty set
as divergences set.
For the sake of generality, this definition is based on the mere implicit as-
sumption that the input processes be weakly sequential, rather than sequen-
tial. This slightly complicates things, since the sentences of process P may
number further events in addition to None in their future.
Therefore, the resulting refusals of a sentence xs of P will have the form
insert None X ∩ Y, where X is a refusal of xs in P and Y is an initial
refusal of Q (cf. rule SCF-R2 ). In fact, after xs, process P ; Q must be able
to refuse None if Q is, whereas it cannot refuse an ordinary event unless
both P and Q, in their respective states, can.
Moreover, a trace xs of P ; Q may result from different combinations of a
sentence of P with a trace of Q. Thus, in order that the refusals of P ; Q
be closed under set union, the union of any two refusals of xs must still be a
refusal (cf. rule SCF-R4 ). Indeed, this property will prove to be sufficient to
ensure that for any two processes whose refusals are closed under set union,
their sequential composition still be such, which is what is expected for any
process of practical significance (cf. [9]).
According to the definition given in [1], a divergence of P ; Q is either a di-
vergence of P, or the concatenation of a sentence of P with a divergence of Q.
Apparently, this definition does not match the formal one stated here below,
which identifies the divergences set of P ; Q with the empty set. Nonetheless,
as remarked above, sequential composition does not make sense unless the
input processes are weakly sequential, since this is the minimum required to
confer the meaning of successful termination on the corresponding alphabet
symbol. But a weakly sequential process cannot have any divergence, so
that the two definitions are actually equivalent. In fact, a divergence is a
trace such that, however it is extended with arbitrary additional events, the
resulting event list is still a trace (cf. process properties process-prop-5 and
process-prop-6 in [8]). Therefore, if xs were a divergence, then xs @ [None,
None] would be a trace, which is impossible in case the process satisfies
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predicate weakly-sequential.

inductive-set seq-comp-failures ::
′a option process ⇒ ′a option process ⇒ ′a option failure set

for P :: ′a option process and Q :: ′a option process where

SCF-R1 : [[xs /∈ sentences P; (xs, X) ∈ failures P; None /∈ set xs]] =⇒
(xs, X) ∈ seq-comp-failures P Q |

SCF-R2 : [[xs ∈ sentences P; (xs, X) ∈ failures P; ([], Y ) ∈ failures Q]] =⇒
(xs, insert None X ∩ Y ) ∈ seq-comp-failures P Q |

SCF-R3 : [[xs ∈ sentences P; (ys, Y ) ∈ failures Q; ys 6= []]] =⇒
(xs @ ys, Y ) ∈ seq-comp-failures P Q |

SCF-R4 : [[(xs, X) ∈ seq-comp-failures P Q; (xs, Y ) ∈ seq-comp-failures P Q]] =⇒
(xs, X ∪ Y ) ∈ seq-comp-failures P Q

definition seq-comp ::
′a option process ⇒ ′a option process ⇒ ′a option process (infixl ; 60 )

where
P ; Q ≡ Abs-process (seq-comp-failures P Q, {})

Here below is the proof that, for any two processes P, Q defined over the
same alphabet containing successful termination, set seq-comp-failures P Q
indeed enjoys the characteristic properties of the failures set of a process as
defined in [8] provided that P is weakly sequential, which is what happens
in any meaningful case.

lemma seq-comp-prop-1 :
([], {}) ∈ seq-comp-failures P Q
〈proof 〉

lemma seq-comp-prop-2-aux [rule-format]:
assumes WS : weakly-sequential P
shows (ws, X) ∈ seq-comp-failures P Q =⇒

ws = xs @ [x] −→ (xs, {}) ∈ seq-comp-failures P Q
〈proof 〉

lemma seq-comp-prop-2 :
assumes WS : weakly-sequential P
shows (xs @ [x], X) ∈ seq-comp-failures P Q =⇒
(xs, {}) ∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-prop-3 [rule-format]:
(xs, Y ) ∈ seq-comp-failures P Q =⇒ X ⊆ Y −→
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(xs, X) ∈ seq-comp-failures P Q
〈proof 〉

lemma seq-comp-prop-4 :
assumes WS : weakly-sequential P
shows (xs, X) ∈ seq-comp-failures P Q =⇒
(xs @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs, insert x X) ∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-rep:
assumes WS : weakly-sequential P
shows Rep-process (P ; Q) = (seq-comp-failures P Q, {})

〈proof 〉

Here below, the previous result is applied to derive useful expressions for the
outputs of the functions returning the elements of a process, as defined in
[8] and [9], when acting on the sequential composition of a pair of processes.

lemma seq-comp-failures:
weakly-sequential P =⇒

failures (P ; Q) = seq-comp-failures P Q
〈proof 〉

lemma seq-comp-divergences:
weakly-sequential P =⇒

divergences (P ; Q) = {}
〈proof 〉

lemma seq-comp-futures:
weakly-sequential P =⇒

futures (P ; Q) xs = {(ys, Y ). (xs @ ys, Y ) ∈ seq-comp-failures P Q}
〈proof 〉

lemma seq-comp-traces:
weakly-sequential P =⇒

traces (P ; Q) = Domain (seq-comp-failures P Q)
〈proof 〉

lemma seq-comp-refusals:
weakly-sequential P =⇒

refusals (P ; Q) xs ≡ seq-comp-failures P Q ‘‘ {xs}
〈proof 〉

lemma seq-comp-next-events:
weakly-sequential P =⇒

next-events (P ; Q) xs = {x. xs @ [x] ∈ Domain (seq-comp-failures P Q)}
〈proof 〉
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2.3 Conservation of refusals union closure and sequentiality
under sequential composition

Here below is the proof that, for any two processes P, Q and any failure
(xs, X) of P ; Q, the refusal X is the union of a set of refusals where, for
any such refusal W, (xs, W ) is a failure of P ; Q by virtue of one of rules
SCF-R1, SCF-R2, or SCF-R3.
The converse is also proven, under the assumption that the refusals of both
P and Q be closed under union: namely, for any trace xs of P ; Q and any
set of refusals where, for any such refusal W, (xs, W ) is a failure of the
aforesaid kind, the union of these refusals is still a refusal of xs.
The proof of the latter lemma makes use of the axiom of choice.

lemma seq-comp-refusals-1 :
(xs, X) ∈ seq-comp-failures P Q =⇒ ∃R.

X = (
⋃

n ∈ {..length xs}.
⋃

W ∈ R n. W ) ∧
(∀W ∈ R 0 .

xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W ) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U ) ∈ failures P ∧ ([], V ) ∈ failures Q ∧

W = insert None U ∩ V )) ∧
(∀n ∈ {0<..length xs}. ∀W ∈ R n.

take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W ) ∈ failures Q) ∧

(∃n ∈ {..length xs}. ∃W . W ∈ R n)
(is - =⇒ ∃R. ?T R xs X)

〈proof 〉

lemma seq-comp-refusals-finite [rule-format]:
assumes A: xs ∈ Domain (seq-comp-failures P Q)
shows finite A =⇒ (∀ x ∈ A. (xs, F x) ∈ seq-comp-failures P Q) −→
(xs,

⋃
x ∈ A. F x) ∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-refusals-2 :
assumes

A: ref-union-closed P and
B: ref-union-closed Q and
C : xs ∈ Domain (seq-comp-failures P Q) and
D: X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R n. W ) ∧

(∀W ∈ R 0 .
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W ) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U ) ∈ failures P ∧ ([], V ) ∈ failures Q ∧

W = insert None U ∩ V )) ∧
(∀n ∈ {0<..length xs}. ∀W ∈ R n.

take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W ) ∈ failures Q)

shows (xs, X) ∈ seq-comp-failures P Q
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〈proof 〉

In what follows, the previous results are used to prove that refusals union
closure, weak sequentiality, and sequentiality are conserved under sequential
composition. The proof of the first of these lemmas makes use of the axiom
of choice.
Since the target security conservation theorem, in addition to the security of
both of the processes to be composed, also requires to assume that the first
process be refusals union closed and sequential (cf. below), these further
conservation lemmas will permit to generalize the theorem to the sequential
composition of an arbitrary list of processes.

lemma seq-comp-ref-union-closed:
assumes

WS : weakly-sequential P and
A: ref-union-closed P and
B: ref-union-closed Q

shows ref-union-closed (P ; Q)
〈proof 〉

lemma seq-comp-weakly-sequential:
assumes

A: weakly-sequential P and
B: weakly-sequential Q

shows weakly-sequential (P ; Q)
〈proof 〉

lemma seq-comp-sequential:
assumes

A: sequential P and
B: sequential Q

shows sequential (P ; Q)
〈proof 〉

2.4 Conservation of noninterference security under sequen-
tial composition

Everything is now ready for proving the target security conservation the-
orem. The two closure properties that the definition of noninterference
security requires process futures to satisfy, one for the addition of events
into traces and the other for the deletion of events from traces (cf. [8]),
will be faced separately; here below is the proof of the former property.
Unsurprisingly, rule induction on set seq-comp-failures is applied, and the
closure of the failures of a secure process under intransitive purge (proven
in the previous section) is used to meet the proof obligations arising from
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rule SCF-R3.

lemma seq-comp-secure-aux-1-case-1 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: xs @ y # ys /∈ sentences P and
E : (xs @ y # ys, X) ∈ failures P and
F : None 6= y and
G: None /∈ set xs and
H : None /∈ set ys

shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-aux-1-case-2 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: secure Q I D and
E : xs @ y # ys ∈ sentences P and
F : (xs @ y # ys, X) ∈ failures P and
G: ([], Y ) ∈ failures Q

shows (xs @ ipurge-tr I D (D y) ys,
ipurge-ref I D (D y) ys (insert None X ∩ Y )) ∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-aux-1-case-3 :
assumes

A: secure-termination I D and
B: ref-union-closed Q and
C : sequential Q and
D: secure Q I D and
E : secure R I D and
F : ws ∈ sentences Q and
G: (ys ′, Y ) ∈ failures R and
H : ws @ ys ′ = xs @ y # ys

shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y )
∈ seq-comp-failures Q R

〈proof 〉

lemma seq-comp-secure-aux-1 [rule-format]:
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
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E : secure Q I D
shows (ws, Y ) ∈ seq-comp-failures P Q =⇒

ws = xs @ y # ys −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y )
∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-1 :
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (xs @ y # ys, Y ) ∈ seq-comp-failures P Q =⇒
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y )
∈ seq-comp-failures P Q

〈proof 〉

This completes the proof that the former requirement for noninterference
security is satisfied, so it is the turn of the latter one. Again, rule induction
on set seq-comp-failures is applied, and the closure of the failures of a secure
process under intransitive purge is used to meet the proof obligations arising
from rule SCF-R3. In more detail, rule induction is applied to the trace into
which the event is inserted, and then a case distinction is performed on the
trace from which the event is extracted, using the expression of its refusal
as union of a set of refusals derived previously.

lemma seq-comp-secure-aux-2-case-1 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: xs @ zs /∈ sentences P and
E : (xs @ zs, X) ∈ failures P and
F : None /∈ set xs and
G: None /∈ set zs and
H : (xs @ [y], {}) ∈ seq-comp-failures P Q

shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-aux-2-case-2 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
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D: secure Q I D and
E : xs @ zs ∈ sentences P and
F : (xs @ zs, X) ∈ failures P and
G: ([], Y ) ∈ failures Q and
H : (xs @ [y], {}) ∈ seq-comp-failures P Q

shows (xs @ y # ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs (insert None X ∩ Y )) ∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-aux-2-case-3 :
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D and
F : ws ∈ sentences P and
G: (ys, Y ) ∈ failures Q and
H : ys 6= [] and
I : ws @ ys = xs @ zs and
J : (xs @ [y], {}) ∈ seq-comp-failures P Q

shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y )
∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-aux-2 [rule-format]:
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (ws, Z ) ∈ seq-comp-failures P Q =⇒
ws = xs @ zs −→
(xs @ [y], {}) ∈ seq-comp-failures P Q −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z )
∈ seq-comp-failures P Q

〈proof 〉

lemma seq-comp-secure-2 :
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (xs @ zs, Z ) ∈ seq-comp-failures P Q =⇒
(xs @ [y], {}) ∈ seq-comp-failures P Q =⇒
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z )
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∈ seq-comp-failures P Q
〈proof 〉

Finally, the target security conservation theorem can be enunciated and
proven, which is done here below. The theorem states that for any two
processes P, Q defined over the same alphabet containing successful termi-
nation, to which the noninterference policy I and the event-domain map D
apply, if:

• I and D enforce termination security,

• P is refusals union closed and sequential, and

• both P and Q are secure with respect to I and D,

then P ; Q is secure as well.

theorem seq-comp-secure:
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows secure (P ; Q) I D
〈proof 〉

2.5 Generalization of the security conservation theorem to
lists of processes

The target security conservation theorem, in the basic version just proven,
applies to the sequential composition of a pair of processes. However, given
an arbitrary list of processes where each process satisfies its assumptions,
the theorem could be orderly applied to the composition of the first two
processes in the list, then to the composition of the resulting process with
the third process in the list, and so on, until the last process is reached. The
final outcome would be that the sequential composition of all the processes
in the list is secure.
Of course, this argument works provided that the assumptions of the theo-
rem keep being satisfied by the composed processes produced in each step
of the recursion. But this is what indeed happens, by virtue of the conser-
vation of refusals union closure and sequentiality under sequential composi-
tion, proven previously, and of the conservation of security under sequential
composition, ensured by the target theorem itself.
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Therefore, the target security conservation theorem can be generalized to an
arbitrary list of processes, which is done here below. The resulting theorem
states that for any nonempty list of processes defined over the same alphabet
containing successful termination, to which the noninterference policy I and
the event-domain map D apply, if:

• I and D enforce termination security,

• each process in the list, with the possible exception of the last one, is
refusals union closed and sequential, and

• each process in the list is secure with respect to I and D,

then the sequential composition of all the processes in the list is secure as
well.
As a precondition, the above conservation lemmas for weak sequentiality,
refusals union closure, and sequentiality are generalized, too.

lemma seq-comp-list-weakly-sequential [rule-format]:
(∀X ∈ set (P # PS). weakly-sequential X) −→

weakly-sequential (foldl (;) P PS)
〈proof 〉

lemma seq-comp-list-ref-union-closed [rule-format]:
(∀X ∈ set (butlast (P # PS)). weakly-sequential X) −→
(∀X ∈ set (P # PS). ref-union-closed X) −→

ref-union-closed (foldl (;) P PS)
〈proof 〉

lemma seq-comp-list-sequential [rule-format]:
(∀X ∈ set (P # PS). sequential X) −→

sequential (foldl (;) P PS)
〈proof 〉

theorem seq-comp-list-secure [rule-format]:
assumes A: secure-termination I D
shows
(∀X ∈ set (butlast (P # PS)). ref-union-closed X ∧ sequential X) −→
(∀X ∈ set (P # PS). secure X I D) −→

secure (foldl (;) P PS) I D
〈proof 〉

end

3 Necessity of nontrivial assumptions
theory Counterexamples
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imports SequentialComposition
begin

The security conservation theorem proven in this paper contains two non-
trivial assumptions; namely, the security policy must satisfy predicate se-
cure-termination, and the first input process must satisfy predicate sequen-
tial instead of weakly-sequential alone. This section shows, by means of
counterexamples, that both of these assumptions are necessary for the the-
orem to hold.
In more detail, two counterexamples will be constructed: the former drops
the termination security assumption, whereas the latter drops the process
sequentiality assumption, replacing it with weak sequentiality alone. In both
cases, all the other assumptions of the theorem keep being satisfied.
Both counterexamples make use of reflexive security policies, which is the
case for any policy of practical significance, and are based on trace set pro-
cesses as defined in [9]. The security of the processes input to sequential
composition, as well as the insecurity of the resulting process, are demon-
strated by means of the Ipurge Unwinding Theorem proven in [9].

3.1 Preliminary definitions and lemmas

Both counterexamples will use the same type event as native type of ordi-
nary events, as well as the same process Q as second input to sequential
composition. Here below are the definitions of these constants, followed by
few useful lemmas on process Q.

datatype event = a | b

definition Q :: event option process where
Q ≡ ts-process {[], [Some b]}

lemma trace-set-snd:
trace-set {[], [Some b]}
〈proof 〉

lemmas failures-snd = ts-process-failures [OF trace-set-snd]

lemmas traces-snd = ts-process-traces [OF trace-set-snd]

lemmas next-events-snd = ts-process-next-events [OF trace-set-snd]

lemmas unwinding-snd = ts-ipurge-unwinding [OF trace-set-snd]
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3.2 Necessity of termination security

The reason why the conservation of noninterference security under sequential
composition requires the security policy to satisfy predicate secure-termination
is that the second input process cannot engage in its events unless the first
process has terminated successfully. Thus, the ordinary events of the first
process can indirectly affect the events of the second process by affecting
the successful termination of the first process. Therefore, if an ordinary
event is allowed to affect successful termination, then the policy must al-
low it to affect any other event as well, which is exactly what predicate
secure-termination states.
A counterexample showing the necessity of this assumption can then be
constructed by defining a reflexive policy I 1 that allows event Some a to
affect None, but not Some b, and a deterministic process P1 that can engage
in None only after engaging in Some a. The resulting process P1 ; Q will
number [Some a, Some b], but not [Some b], among its traces, so that event
Some a affects the occurrence of event Some b in contrast with policy I 1,
viz. P1 ; Q is not secure with respect to I 1.
Here below are the definitions of constants I 1 and P1, followed by few useful
lemmas on process P1.

definition I 1 :: (event option × event option) set where
I 1 ≡ {(Some a, None)}=

definition P1 :: event option process where
P1 ≡ ts-process {[], [Some a], [Some a, None]}

lemma trace-set-fst-1 :
trace-set {[], [Some a], [Some a, None]}
〈proof 〉

lemmas failures-fst-1 = ts-process-failures [OF trace-set-fst-1 ]

lemmas traces-fst-1 = ts-process-traces [OF trace-set-fst-1 ]

lemmas next-events-fst-1 = ts-process-next-events [OF trace-set-fst-1 ]

lemmas unwinding-fst-1 = ts-ipurge-unwinding [OF trace-set-fst-1 ]

Here below is the proof that policy I 1 does not satisfy predicate secure-termination,
whereas the remaining assumptions of the security conservation theorem
keep being satisfied. For the sake of simplicity, the identity function is used
as event-domain map.

lemma not-secure-termination-1 :
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¬ secure-termination I 1 id
〈proof 〉

lemma ref-union-closed-fst-1 :
ref-union-closed P1

〈proof 〉

lemma sequential-fst-1 :
sequential P1

〈proof 〉

lemma secure-fst-1 :
secure P1 I 1 id
〈proof 〉

lemma secure-snd-1 :
secure Q I 1 id
〈proof 〉

In what follows, the insecurity of process P1 ; Q is demonstrated by proving
that event list [Some a, Some b] is a trace of the process, whereas [Some b]
is not.

lemma traces-comp-1 :
traces (P1 ; Q) = Domain (seq-comp-failures P1 Q)
〈proof 〉

lemma ref-union-closed-comp-1 :
ref-union-closed (P1 ; Q)
〈proof 〉

lemma not-secure-comp-1-aux-aux-1 :
(xs, X) ∈ seq-comp-failures P1 Q =⇒ xs 6= [Some b]
〈proof 〉

lemma not-secure-comp-1-aux-1 :
[Some b] /∈ traces (P1 ; Q)
〈proof 〉

lemma not-secure-comp-1-aux-2 :
[Some a, Some b] ∈ traces (P1 ; Q)
〈proof 〉

lemma not-secure-comp-1 :
¬ secure (P1 ; Q) I 1 id
〈proof 〉
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Here below, the previous results are used to show that constants I 1, P1,
Q, and id indeed constitute a counterexample to the statement obtained by
removing termination security from the assumptions of the security conser-
vation theorem.

lemma counterexample-1 :
¬ (ref-union-closed P1 ∧

sequential P1 ∧
secure P1 I 1 id ∧
secure Q I 1 id −→

secure (P1 ; Q) I 1 id)
〈proof 〉

3.3 Necessity of process sequentiality

The reason why the conservation of noninterference security under sequen-
tial composition requires the first input process to satisfy predicate sequen-
tial, instead of the more permissive predicate weakly-sequential, is that the
possibility for the first process to engage in events alternative to success-
ful termination entails the possibility for the resulting process to engage in
events alternative to the initial ones of the second process. Namely, the
resulting process would admit some state in which events of the first process
can occur in alternative to events of the second process. But neither pro-
cess, though being secure on its own, will in general be prepared to handle
securely the alternative events added by the other process. Therefore, the
first process must not admit alternatives to successful termination, which is
exactly what predicate sequential states in addition to weakly-sequential.
A counterexample showing the necessity of this assumption can then be
constructed by defining a reflexive policy I 2 that does not allow event Some
b to affect Some a, and a deterministic process P2 that can engage in Some
a in alternative to None. The resulting process P2 ; Q will number both
[Some b] and [Some a], but not [Some b, Some a], among its traces, so that
event Some b affects the occurrence of event Some a in contrast with policy
I 2, viz. P2 ; Q is not secure with respect to I 2.
Here below are the definitions of constants I 2 and P2, followed by few useful
lemmas on process P2.

definition I 2 :: (event option × event option) set where
I 2 ≡ {(None, Some a)}=

definition P2 :: event option process where
P2 ≡ ts-process {[], [None], [Some a], [Some a, None]}

lemma trace-set-fst-2 :
trace-set {[], [None], [Some a], [Some a, None]}
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〈proof 〉

lemmas failures-fst-2 = ts-process-failures [OF trace-set-fst-2 ]

lemmas traces-fst-2 = ts-process-traces [OF trace-set-fst-2 ]

lemmas next-events-fst-2 = ts-process-next-events [OF trace-set-fst-2 ]

lemmas unwinding-fst-2 = ts-ipurge-unwinding [OF trace-set-fst-2 ]

Here below is the proof that process P2 does not satisfy predicate sequential,
but rather predicate weakly-sequential only, whereas the remaining assump-
tions of the security conservation theorem keep being satisfied. For the sake
of simplicity, the identity function is used as event-domain map.

lemma secure-termination-2 :
secure-termination I 2 id
〈proof 〉

lemma ref-union-closed-fst-2 :
ref-union-closed P2

〈proof 〉

lemma weakly-sequential-fst-2 :
weakly-sequential P2

〈proof 〉

lemma not-sequential-fst-2 :
¬ sequential P2

〈proof 〉

lemma secure-fst-2 :
secure P2 I 2 id
〈proof 〉

lemma secure-snd-2 :
secure Q I 2 id
〈proof 〉

In what follows, the insecurity of process P2 ; Q is demonstrated by proving
that event lists [Some b] and [Some a] are traces of the process, whereas
[Some b, Some a] is not.

lemma traces-comp-2 :
traces (P2 ; Q) = Domain (seq-comp-failures P2 Q)
〈proof 〉
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lemma ref-union-closed-comp-2 :
ref-union-closed (P2 ; Q)
〈proof 〉

lemma not-secure-comp-2-aux-aux-1 :
(xs, X) ∈ seq-comp-failures P2 Q =⇒ xs 6= [Some b, Some a]
〈proof 〉

lemma not-secure-comp-2-aux-1 :
[Some b, Some a] /∈ traces (P2 ; Q)
〈proof 〉

lemma not-secure-comp-2-aux-2 :
[Some a] ∈ traces (P2 ; Q)
〈proof 〉

lemma not-secure-comp-2-aux-3 :
[Some b] ∈ traces (P2 ; Q)
〈proof 〉

lemma not-secure-comp-2 :
¬ secure (P2 ; Q) I 2 id
〈proof 〉

Here below, the previous results are used to show that constants I 2, P2,
Q, and id indeed constitute a counterexample to the statement obtained by
replacing process sequentiality with weak sequentiality in the assumptions
of the security conservation theorem.

lemma counterexample-2 :
¬ (secure-termination I 2 id ∧

ref-union-closed P2 ∧
weakly-sequential P2 ∧
secure P2 I 2 id ∧
secure Q I 2 id −→

secure (P2 ; Q) I 2 id)
〈proof 〉

end
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