Conservation of CSP Noninterference Security under Sequential Composition

Pasquale Noce
Security Certification Specialist at Arjo Systems, Italy
pasquale dot noce dot lavoro at gmail dot com pasquale dot noce at arjosystems dot com

September 13, 2023

Abstract

In his outstanding work on Communicating Sequential Processes, Hoare has defined two fundamental binary operations allowing to compose the input processes into another, typically more complex, process: sequential composition and concurrent composition. Particularly, the output of the former operation is a process that initially behaves like the first operand, and then like the second operand once the execution of the first one has terminated successfully, as long as it does.

This paper formalizes Hoare's definition of sequential composition and proves, in the general case of a possibly intransitive policy, that CSP noninterference security is conserved under this operation, provided that successful termination cannot be affected by confidential events and cannot occur as an alternative to other events in the traces of the first operand. Both of these assumptions are shown, by means of counterexamples, to be necessary for the theorem to hold.

Contents

1 Propaedeutic definitions and lemmas
 2

1.1 Preliminary propaedeutic lemmas 4
1.2 Intransitive purge of event sets with trivial base case 11
1.3 Closure of the failures of a secure process under intransitive purge 16
1.3.1 Step 1 18
1.3.2 Step 2 20
1.3.3 Step 3 21
1.3.4 Step 4 21
1.3.5 Step 5 23
1.3.6 Step 6 24
1.3.7 \quad Step 7 25
1.3.8 Step 8 25
1.3.9 Step 9 26
1.3.10 Step 10 28
1.4 Additional propaedeutic lemmas 30
2 Sequential composition and noninterference security 35
2.1 Sequential processes 36
2.2 Sequential composition 39
2.3 Conservation of refusals union closure and sequentiality under sequential composition 49
2.4 Conservation of noninterference security under sequential com- position 67
2.5 Generalization of the security conservation theorem to lists of processes 105
3 Necessity of nontrivial assumptions 108
3.1 Preliminary definitions and lemmas 109
3.2 Necessity of termination security 109
3.3 Necessity of process sequentiality 114

1 Propaedeutic definitions and lemmas

theory Propaedeutics
imports Noninterference-Ipurge-Unwinding.DeterministicProcesses begin

To our Lord Jesus Christ, my dear parents, and my "little" sister, for the immense love with which they surround me.
In his outstanding work on Communicating Sequential Processes [1], Hoare has defined two fundamental binary operations allowing to compose the input processes into another, typically more complex, process: sequential composition and concurrent composition. Particularly, the output of the former operation is a process that initially behaves like the first operand, and then like the second operand once the execution of the first one has terminated successfully, as long as it does. In order to distinguish it from deadlock, successful termination is regarded as a special event in the process alphabet (required to be the same for both the input processes and the output one).
This paper formalizes Hoare's definition of sequential composition and proves, in the general case of a possibly intransitive policy, that CSP noninterference security $[8]$ is conserved under this operation, viz. the security of both of the input processes implies that of the output process.

This property is conditional on two nontrivial assumptions. The first assumption is that the policy do not allow successful termination to be affected by confidential events, viz. by other events not allowed to affect some event in the process alphabet. The second assumption is that successful termination do not occur as an alternative to other events in the traces of the first operand, viz. that whenever the process can terminate successfully, it cannot engage in any other event. Both of these assumptions are shown, by means of counterexamples, to be necessary for the theorem to hold.
From the above sketch of the sequential composition of two processes P and Q, notwithstanding its informal character, it clearly follows that any failure of the output process is either a failure of P (case A), or a pair (xs @ ys, $Y)$, where $x s$ is a trace of P and $(y s, Y)$ is a failure of Q (case B). On the other hand, according to the definition of security given in [8], the output process is secure just in case, for each of its failures, any event x contained in the failure trace can be removed from the trace, or inserted into the trace of another failure after the same previous events as in the original trace, and the resulting pair is still a failure of the process, provided that the future of x is deprived of the events that may be affected by x.
In case A, this transformation is performed on a failure of process P; being it secure, the result is still a failure of P, and then of the output process. In case B, the transformation may involve either ys alone, or both $x s$ and $y s$, depending on the position at which x is removed or inserted. In the former subcase, being Q secure, the result has the form (xs @ $y s^{\prime}, Y^{\prime}$) where ($y s^{\prime}$, Y^{\prime}) is a failure of Q, thus it is still a failure of the output process. In the latter subcase, ys has to be deprived of the events that may be affected by x, as well as by any event affected by x in the involved portion of $x s$, and a similar transformation applies to Y. In order that the output process be secure, the resulting pair $\left(y s^{\prime \prime}, Y^{\prime \prime}\right)$ must still be a failure of Q, so that the pair $\left(x s^{\prime} @ y s^{\prime \prime}, Y^{\prime \prime}\right)$, where $x s^{\prime}$ results from the transformation of $x s$, be a failure of the output process.
The transformations bringing from $y s$ and Y to $y s^{\prime \prime}$ and $Y^{\prime \prime}$ are implemented by the functions ipurge-tr-aux and ipurge-ref-aux defined in [9]. Therefore, the proof of the target security conservation theorem requires that of the following lemma: given a process P, a noninterference policy I, and an eventdomain map D, if P is secure with respect to I and D and $(x s, X)$ is a failure of P, then (ipurge-tr-aux I D Uxs, ipurge-ref-aux I $D U$ xs X) is still a failure of P. In other words, the lemma states that the failures of a secure process are closed under intransitive purge. This section contains a proof of such closure lemma, as well as further definitions and lemmas required for the proof of the target theorem.
Throughout this paper, the salient points of definitions and proofs are commented; for additional information, cf. Isabelle documentation, particularly [6], [4], [3], and [2].

1.1 Preliminary propaedeutic lemmas

In what follows, some lemmas required for the demonstration of the target closure lemma are proven.
Here below is the proof of some properties of functions ipurge-tr and ipurge-ref.
lemma ipurge-tr-length:
length (ipurge-tr I D u xs) \leq length xs
by (induction xs rule: rev-induct, simp-all)

```
lemma ipurge-ref-swap:
    ipurge-ref \(I D\) uss \(\{x \in X . P x\}=\)
    \(\{x \in\) ipurge-ref \(I D u\) xs X. P \(x\}\)
proof (simp add: ipurge-ref-def)
qed blast
lemma ipurge-ref-last:
    ipurge-ref IDu(xs @ [x]) \(X=\)
        (if \((u, D x) \in I \vee(\exists v \in \operatorname{sinks} I D u x s .(v, D x) \in I)\)
        then ipurge-ref I \(D\) u xs \(\left\{x^{\prime} \in X .\left(D x, D x^{\prime}\right) \notin I\right\}\)
        else ipurge-ref I D u xs X)
proof (cases \((u, D x) \in I \vee(\exists v \in \operatorname{sinks} I D u x s .(v, D x) \in I)\),
    simp-all add: ipurge-ref-def)
qed blast
```

Here below is the proof of some properties of function sinks-aux.

```
lemma sinks-aux-append:
    sinks-aux I D U (xs @ ys) = sinks-aux I D (sinks-aux I D U xs) ys
proof (induction ys rule: rev-induct, simp, subst append-assoc [symmetric])
qed (simp del: append-assoc)
lemma sinks-aux-union:
    sinks-aux I D (U\cupV)xs=
    sinks-aux I D U xs \cup sinks-aux I D V (ipurge-tr-aux I D U xs)
proof (induction xs rule: rev-induct, simp)
    fix x xs
    assume A: sinks-aux I D (U\cupV) xs=
        sinks-aux I D U xs \cup sinks-aux I D V (ipurge-tr-aux I D U xs)
    show sinks-aux I D (U\cupV) (xs @ [x]) =
        sinks-aux I D U (xs @ [x]) \cup sinks-aux I D V (ipurge-tr-aux I D U (xs @ [x]))
    proof (cases \existsw\in sinks-aux I D (U\cupV) xs. ( w, D x) \inI)
        case True
        hence \existsw\in sinks-aux I D U xs U sinks-aux I D V (ipurge-tr-aux I D U xs).
            (w,D x) \inI
        using }A\mathrm{ by simp
        hence (\existsw\in sinks-aux I D U xs. (w,D x) \inI)\vee
```

```
            (\existsw\in sinks-aux I D V (ipurge-tr-aux I D U xs). (w,D x) \inI)
            by blast
            thus ?thesis
            using A and True by (cases \existsw\in sinks-aux I D U xs. (w, D x) \inI, simp-all)
    next
        case False
    hence }\neg(\existsw\in\mathrm{ sinks-aux I D U xs U
        sinks-aux I D V (ipurge-tr-aux I D U xs). (w,Dx)\inI)
        using A by simp
    hence }\neg(\existsw\in\mathrm{ sinks-aux I D U xs. (w,D x) &I)^
        \neg (\existsw\in sinks-aux I D V (ipurge-tr-aux I D U xs). (w,D x) \inI)
        by blast
    thus ?thesis
        using A and False by simp
    qed
qed
lemma sinks-aux-subset-dom:
    assumes A:U\subseteqV
    shows sinks-aux I D U xs \subseteq sinks-aux I D V xs
proof (induction xs rule: rev-induct, simp add: A, rule subsetI)
    fix x xs w
    assume
    B: sinks-aux I D U xs\subseteq sinks-aux I D V xs and
    C:w sinks-aux I D U (xs @ [x])
    show w sinks-aux I D V (xs @ [x])
    proof (cases \existsu\in sinks-aux I D U xs. (u,D x) \inI)
    case True
    hence w=Dx\veew\in sinks-aux I D U xs
        using C by simp
    moreover {
        assume D:w = D x
        obtain u where E:u\in sinks-aux I D U xs and F: (u,Dx)\inI
            using True ..
        have u\in sinks-aux I D V xs using B and E ..
        with F have }\existsu\in\mathrm{ sinks-aux I D V xs. (u,D x) 
        hence ?thesis using D by simp
    }
    moreover {
            assume w sinks-aux I D U xs
            with B have w\in sinks-aux I D V xs ..
            hence ?thesis by simp
    }
    ultimately show ?thesis ..
    next
    case False
    hence w
    using C by simp
    with B have w\in sinks-aux I D V xs ..
```

```
        thus ?thesis by simp
    qed
qed
lemma sinks-aux-subset-ipurge-tr-aux:
sinks-aux I D \(U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right) \subseteq\) sinks-aux I D U xs
proof (induction xs rule: rev-induct, simp, rule subsetI)
fix \(x x s w\)
assume
A: sinks-aux I D U (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right) \subseteq\) sinks-aux I D U xs and
\(B: w \in\) sinks-aux I D \(U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime}(x s @[x])\right)\)
show \(w \in\) sinks-aux I D \(U\) (xs @ [x])
proof (cases \(\exists u \in\) sinks-aux I D Uxs. \((u, D x) \in I\), simp-all (no-asm-simp))
from \(B\) have \(w=D x \vee w \in\) sinks-aux \(I D U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right)\)
proof (cases \(\exists u^{\prime} \in\) sinks-aux \(I^{\prime} D^{\prime} U^{\prime} x s .\left(u^{\prime}, D^{\prime} x\right) \in I^{\prime}\), simp-all)
qed (cases \(\exists u \in\) sinks-aux I D \(U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right) .(u, D x) \in I\), simp-all)
moreover \{
assume \(w=D x\)
hence \(w=D x \vee w \in\) sinks-aux I \(D U x s\)..
\}
moreover \{
assume \(w \in\) sinks-aux I \(D U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right)\)
with \(A\) have \(w \in\) sinks-aux I \(D U\) xs ..
hence \(w=D x \vee w \in\) sinks-aux I \(D U x s\)..
\}
ultimately show \(w=D x \vee w \in \operatorname{sinks}-a u x I D U x s .\).
next
assume \(C: \neg(\exists u \in\) sinks-aux I \(D U x s .(u, D x) \in I)\)
have \(w \in\) sinks-aux I \(D U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right)\)
proof (cases \(\exists u^{\prime} \in\) sinks-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s .\left(u^{\prime}, D^{\prime} x\right) \in I^{\prime}\right)\)
case True
thus \(w \in\) sinks-aux I \(D U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right)\)
using \(B\) by simp
next
case False
hence \(w \in\) sinks-aux I D \(U\) (ipurge-tr-aux \(I^{\prime} D^{\prime} U^{\prime} x s @[x]\) ) using \(B\) by simp
moreover have
\(\neg\left(\exists u \in\right.\) sinks-aux I D \(U\) (ipurge-tr-aux \(\left.\left.I^{\prime} D^{\prime} U^{\prime} x s\right) .(u, D x) \in I\right)\)
(is \(\neg\) ? \(P\) )
proof
assume ?P
then obtain \(u\) where
\(D: u \in\) sinks-aux I \(D U\) (ipurge-tr-aux \(\left.I^{\prime} D^{\prime} U^{\prime} x s\right)\) and \(E:(u, D x) \in I .\).
have \(u \in\) sinks-aux I \(D U\) xs using \(A\) and \(D\)..
with \(E\) have \(\exists u \in \operatorname{sinks-aux~IDUxs.~}(u, D x) \in I\)..
thus False using \(C\) by contradiction
```

```
        qed
        ultimately show w\in sinks-aux I D U (ipurge-tr-aux I' D' U' xs)
        by simp
    qed
    with A show w\in sinks-aux I D U xs ..
    qed
qed
lemma sinks-aux-subset-ipurge-tr:
    sinks-aux I D U (ipurge-tr I' D' u' xs)\subseteq sinks-aux I D U xs
by (simp add: ipurge-tr-aux-single-dom [symmetric] sinks-aux-subset-ipurge-tr-aux)
```

lemma sinks-aux-member-ipurge-tr-aux [rule-format]:
$u \in$ sinks-aux I $D(U \cup V)$ xs \longrightarrow
$(u, w) \in I \longrightarrow$
$\neg(\exists v \in$ sinks-aux I D Vxs. $(v, w) \in I) \longrightarrow$
$u \in$ sinks-aux I D U (ipurge-tr-aux I D V xs)
proof (induction xs arbitrary: u w rule: rev-induct, (rule-tac [!] impI)+, simp)
fix $u w$
assume
$A:(u, w) \in I$ and
$B: \forall v \in V .(v, w) \notin I$
assume $u \in U \vee u \in V$
moreover \{
assume $u \in U$
\}
moreover \{
assume $u \in V$
with B have $(u, w) \notin I$..
hence $u \in U$ using A by contradiction
\}
ultimately show $u \in U$..
next
fix x xs $u w$
assume
A: $\bigwedge u w . u \in$ sinks-aux I $D(U \cup V) x s \longrightarrow$
$(u, w) \in I \longrightarrow$
$\neg(\exists v \in$ sinks-aux I D V xs. $(v, w) \in I) \longrightarrow$
$u \in$ sinks-aux I D U (ipurge-tr-aux I D V xs) and
$B: u \in$ sinks-aux I D $(U \cup V)(x s @[x])$ and
$C:(u, w) \in I$ and
$D: \neg(\exists v \in$ sinks-aux I D V $(x s$ @ $[x]) .(v, w) \in I)$
show $u \in$ sinks-aux I D U (ipurge-tr-aux I D V (xs @ $[x])$)
proof (cases $\exists u^{\prime} \in$ sinks-aux I $\left.D(U \cup V) x s .\left(u^{\prime}, D x\right) \in I\right)$
case True
hence $u=D x \vee u \in$ sinks-aux $I D(U \cup V) x s$
using B by simp
moreover \{
assume $E: u=D x$
obtain u^{\prime} where $u^{\prime} \in$ sinks-aux $I D(U \cup V) x s$ and $F:\left(u^{\prime}, D x\right) \in I$ using True ..
moreover have $u^{\prime} \in$ sinks-aux I $D(U \cup V) x s \longrightarrow$
$\left(u^{\prime}, D x\right) \in I \longrightarrow$
$\neg(\exists v \in$ sinks-aux I D V xs. $(v, D x) \in I) \longrightarrow$
$u^{\prime} \in$ sinks-aux I D U (ipurge-tr-aux I D V xs)
(is $-\longrightarrow-\longrightarrow \neg P \longrightarrow$? Q) using A.
ultimately have $\neg ? P \longrightarrow$? Q
by simp
moreover have \neg ? P
proof
have $(D x, w) \in I$ using C and E by simp
moreover assume ?P
hence $D x \in$ sinks-aux I $D V(x s @[x])$ by simp
ultimately have $\exists v \in \operatorname{sinks}$-aux I D V (xs @ $[x]) .(v, w) \in I .$.
moreover have $\neg(\exists v \in \operatorname{sinks-aux} I D V(x s @[x]) .(v, w) \in I)$
using D by simp
ultimately show False by contradiction
qed
ultimately have ? Q..
with F have $\exists u^{\prime} \in$ sinks-aux I $D U$ (ipurge-tr-aux I $D V x s$). $\left(u^{\prime}, D x\right) \in I .$.
hence $D x \in$ sinks-aux I $D U$ (ipurge-tr-aux I DVxs @ $[x]$)
by simp
moreover have ipurge-tr-aux I D Vxs @ $[x]=$
ipurge-tr-aux I D V (xs @ [x])
using $\langle\neg ? P\rangle$ by simp
ultimately have ?thesis using E by simp
\}
moreover \{
assume $u \in$ sinks-aux I $D(U \cup V) x s$
moreover have $u \in$ sinks-aux I $D(U \cup V) x s \longrightarrow$
$(u, w) \in I \longrightarrow$
$\neg(\exists v \in$ sinks-aux I D V xs. $(v, w) \in I) \longrightarrow$
$u \in$ sinks-aux I $D U$ (ipurge-tr-aux I $D V x s$)
(is $-\longrightarrow-\longrightarrow \neg P \longrightarrow$? Q) using A.
ultimately have $\neg ? P \longrightarrow$? Q
using C by simp
moreover have \neg ? P
proof
assume ? P
hence $\exists v \in$ sinks-aux ID $V(x s @[x]) .(v, w) \in I$
by simp
thus False using D by contradiction
qed
ultimately have $u \in$ sinks-aux I D U (ipurge-tr-aux I D Vxs) ..
hence ?thesis by simp
\}
ultimately show?thesis ..

```
    next
        case False
        hence u\in sinks-aux I D(U\cupV) xs
        using B by simp
    moreover have }u\in\mathrm{ sinks-aux I D(U UV) xs }
        (u,w) \inI \longrightarrow
        \neg ( \exists v \in \text { sinks-aux I D V xs. (v,w) }
        u\in sinks-aux I D U (ipurge-tr-aux I D V xs)
        (is - \longrightarrow-\longrightarrow\neg?P\longrightarrow?Q) using A .
        ultimately have }\neg\mathrm{ ?P}\longrightarrow\mathrm{ ? Q
        using C by simp
    moreover have \neg ?P
    proof
        assume ?P
        hence \existsv\in sinks-aux I D V (xs @ [x]). (v,w)\inI
            by simp
            thus False using D by contradiction
    qed
    ultimately have u\in sinks-aux I D U (ipurge-tr-aux I D V xs)..
    thus ?thesis by simp
    qed
qed
lemma sinks-aux-member-ipurge-tr:
    assumes
        A:u\in sinks-aux I D (insert v U) xs and
        B:(u,w)\inI and
        C:\neg ((v,w) \inI\vee (\exists\mp@subsup{v}{}{\prime}\in\operatorname{sinks I D v xs. ( v',w) \inI))})
    shows u\in sinks-aux I D U (ipurge-tr I D v xs)
proof (subst ipurge-tr-aux-single-dom [symmetric],
    rule-tac w=w in sinks-aux-member-ipurge-tr-aux)
    show }u\in\mathrm{ sinks-aux I D (U U{v}) xs
        using A by simp
next
    show (u,w)\inI
        using B .
next
    show }\neg(\exists\mp@subsup{v}{}{\prime}\in\mathrm{ sinks-aux I D {v} xs. (v',w) }\inI
    using C by (simp add: sinks-aux-single-dom)
qed
```

Here below is the proof of some properties of functions ipurge-tr-aux and ipurge-ref-aux.
lemma ipurge-tr-aux-append:
ipurge-tr-aux IDU(xs@ys)=
ipurge-tr-aux ID Uxs@ipurge-tr-aux ID (sinks-aux ID Uxs) ys
proof (induction ys rule: rev-induct, simp, subst append-assoc [symmetric])
qed (simp add: sinks-aux-append del: append-assoc)
lemma ipurge-tr-aux-single-event:
ipurge-tr-aux I D $U[x]=($ if $\exists v \in U .(v, D x) \in I$
then []
else $[x]$)
by (subst (2) append-Nil [symmetric], simp del: append-Nil)
lemma ipurge-tr-aux-cons:
ipurge-tr-aux I $D U(x \# x s)=($ if $\exists u \in U .(u, D x) \in I$
then ipurge-tr-aux I D (insert $(D x) U)$ xs
else x \# ipurge-tr-aux I D U xs)
proof -
have ipurge-tr-aux I D $U(x \# x s)=$ ipurge-tr-aux I D $U([x] @ x s)$
by simp
also have $\ldots=$
ipurge-tr-aux I D $U[x]$ @ ipurge-tr-aux I D (sinks-aux I D $U[x])$ xs
by (simp only: ipurge-tr-aux-append)
finally show?thesis by (simp add: sinks-aux-single-event ipurge-tr-aux-single-event)
qed
lemma ipurge-tr-aux-union:
ipurge-tr-aux I $D(U \cup V) x s=$
ipurge-tr-aux I D V (ipurge-tr-aux I D U xs)
proof (induction xs rule: rev-induct, simp)
fix x xs
assume A : ipurge-tr-aux I $D(U \cup V) x s=$ ipurge-tr-aux I D V (ipurge-tr-aux I D U xs)
show ipurge-tr-aux I $D(U \cup V)(x s @[x])=$ ipurge-tr-aux I D V (ipurge-tr-aux I D U (xs @ $[x]))$
proof (cases $\exists v \in$ sinks-aux I $D(U \cup V) x s .(v, D x) \in I)$
case True
hence $\exists w \in$ sinks-aux I $D U$ xs \cup sinks-aux I $D V$ (ipurge-tr-aux I D Uxs). $(w, D x) \in I$
by (simp add: sinks-aux-union)
hence $(\exists w \in \operatorname{sinks}$-aux I D Uxs. $(w, D x) \in I) \vee$
$(\exists w \in$ sinks-aux I D V (ipurge-tr-aux I D Uxs). $(w, D x) \in I)$
by blast
thus ?thesis
using A and True by (cases $\exists w \in \operatorname{sinks-aux~ID~Uxs.~}(w, D x) \in I$, simp-all)
next
case False
hence $\neg(\exists w \in$ sinks-aux I D Uxs \cup
sinks-aux I D V (ipurge-tr-aux I D U xs $).(w, D x) \in I)$
by (simp add: sinks-aux-union)
hence $\neg(\exists w \in \operatorname{sinks}$-aux I D Uxs. $(w, D x) \in I) \wedge$
$\neg(\exists w \in$ sinks-aux I D V (ipurge-tr-aux I D Uxs $) .(w, D x) \in I)$ by blast

```
    thus ?thesis
    using A and False by simp
    qed
qed
lemma ipurge-tr-aux-insert:
    ipurge-tr-aux I D (insert v U)xs=
    ipurge-tr-aux I D U (ipurge-tr I D v xs)
by (subst insert-is-Un, simp only: ipurge-tr-aux-union ipurge-tr-aux-single-dom)
lemma ipurge-ref-aux-subset:
ipurge-ref-aux I D U xs X\subseteqX
by (subst ipurge-ref-aux-def, rule subsetI, simp)
```


1.2 Intransitive purge of event sets with trivial base case

Here below are the definitions of variants of functions sinks-aux and ipurge-ref-aux, respectively named sinks-aux-less and ipurge-ref-aux-less, such that their base cases in correspondence with an empty input list are trivial, viz. such that sinks-aux-less I D $U[]=\{ \}$ and ipurge-ref-aux-less I D $U[] X=X$. These functions will prove to be useful in what follows.

```
function sinks-aux-less :
\(\left({ }^{\prime} d \times{ }^{\prime} d\right)\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d\) set \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} d\) set where
sinks-aux-less - - [] = \{\}|
sinks-aux-less I D \(U(x s @[x])=\)
    (if \(\exists v \in U \cup\) sinks-aux-less I D Uxs. \((v, D x) \in I\)
    then insert ( \(D\) x) (sinks-aux-less I D U xs)
    else sinks-aux-less I D U xs)
proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disjI1, assumption, simp)
termination by lexicographic-order
definition ipurge-ref-aux-less ::
    \(\left({ }^{\prime} d \times{ }^{\prime} d\right)\) set \(\Rightarrow\left(' a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d\) set \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime} a\) set where
ipurge-ref-aux-less I D U xs \(X \equiv\)
    \(\{x \in X . \forall v \in\) sinks-aux-less I D Uxs. \((v, D x) \notin I\}\)
```

Here below is the proof of some properties of function sinks-aux-less used in what follows.
lemma sinks-aux-sinks-aux-less:
sinks-aux I D U xs $=U \cup$ sinks-aux-less I D U xs
by (induction xs rule: rev-induct, simp-all)
lemma sinks-aux-less-single-dom:
sinks-aux-less I D $\{u\} x s=$ sinks $I D u x s$
by (induction xs rule: rev-induct, simp-all)
lemma sinks-aux-less-single-event:
sinks-aux-less I D $U[x]=($ if $\exists u \in U .(u, D x) \in I$ then $\{D x\}$ else $\{ \})$
by (subst append-Nil [symmetric], simp del: append-Nil)
lemma sinks-aux-less-append:
sinks-aux-less ID $U(x s$ @ ys $)=$
sinks-aux-less I D U xs \cup sinks-aux-less I $D(U \cup$ sinks-aux-less I $D U x s)$ ys proof (induction ys rule: rev-induct, simp, subst append-assoc [symmetric])
qed (simp del: append-assoc)
lemma sinks-aux-less-cons:
sinks-aux-less $I D U(x \# x s)=($ if $\exists u \in U .(u, D x) \in I$
then insert $(D x)($ sinks-aux-less I $D($ insert $(D x) U) x s)$
else sinks-aux-less I D U xs)
proof -
have sinks-aux-less I D $U(x \# x s)=$ sinks-aux-less I D $U([x] @ x s)$
by simp
also have ... =
sinks-aux-less I D $U[x] \cup$ sinks-aux-less I $D(U \cup$ sinks-aux-less I $D U[x])$ xs
by (simp only: sinks-aux-less-append)
finally show ?thesis
by (cases $\exists u \in U .(u, D x) \in I$, simp-all add: sinks-aux-less-single-event)
qed

Here below is the proof of some properties of function ipurge-ref-aux-less used in what follows.
lemma ipurge-ref-aux-less-last:
ipurge-ref-aux-less $I D U(x s @[x]) X=$
(if $\exists v \in U \cup$ sinks-aux-less I $D U x s .(v, D x) \in I$
then ipurge-ref-aux-less I D U xs $\left\{x^{\prime} \in X .\left(D x, D x^{\prime}\right) \notin I\right\}$
else ipurge-ref-aux-less I D U xs X)
by (cases $\exists v \in U \cup$ sinks-aux-less I $D U x s .(v, D x) \in I$,
simp-all add: ipurge-ref-aux-less-def)
lemma ipurge-ref-aux-less-nil:
ipurge-ref-aux-less I D U xs (ipurge-ref-aux I D U [] X) = ipurge-ref-aux I D U xs X
proof (simp add: ipurge-ref-aux-def ipurge-ref-aux-less-def sinks-aux-sinks-aux-less) qed blast
lemma ipurge-ref-aux-less-cons-1:
assumes $A: \exists u \in U .(u, D x) \in I$
shows ipurge-ref-aux-less I $D U(x \# x s) X=$
ipurge-ref-aux-less I $D U$ (ipurge-tr I $D(D x)$ xs) (ipurge-ref I $D(D x)$ xs X)
proof (induction xs arbitrary: X rule: rev-induct,
simp add: ipurge-ref-def ipurge-ref-aux-less-def sinks-aux-less-single-event A)
fix $x^{\prime} x s X$
assume $B: \bigwedge X$.
ipurge-ref-aux-less $I D U(x \# x s) X=$
ipurge-ref-aux-less I D U (ipurge-tr I D ($D x$) xs)
(ipurge-ref I $D(D x)$ xs X)
show
ipurge-ref-aux-less I D $U(x \# x s @[x\rceil) X=$
ipurge-ref-aux-less I D U (ipurge-tr I D (Dx) (xs @ [x]))
(ipurge-ref I D ($D x$) (xs @ $[x]) X$)
proof (cases $\exists v \in U \cup$ sinks-aux-less I D $\left.U(x \# x s) .\left(v, D x^{\prime}\right) \in I\right)$
assume $C: \exists v \in U \cup$ sinks-aux-less $I D U(x \# x s) .\left(v, D x^{\prime}\right) \in I$
hence ipurge-ref-aux-less I D $U(x \# x s$ @ [x $\rceil) X=$
ipurge-ref-aux-less I D $U(x \# x s)\left\{y \in X .\left(D x^{\prime}, D y\right) \notin I\right\}$
by (subst append-Cons [symmetric],
simp add: ipurge-ref-aux-less-last del: append-Cons)
also have $\ldots=$
ipurge-ref-aux-less I D U (ipurge-tr I $D\left(\begin{array}{l}\text { (in) xs) }\end{array}\right.$
(ipurge-ref $\left.I D(D x) x s\left\{y \in X .\left(D x^{\prime}, D y\right) \notin I\right\}\right)$
using B.
finally have D : ipurge-ref-aux-less I $D U(x \# x s$ @ $[x]) X=$ ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs)
(ipurge-ref I $\left.D(D x) x s\left\{y \in X .\left(D x^{\prime}, D y\right) \notin I\right\}\right)$.
show ?thesis
proof $\left(\right.$ cases $\left.\left(D x, D x^{\prime}\right) \in I \vee\left(\exists v \in \operatorname{sinks} I D(D x) x s .\left(v, D x^{\prime}\right) \in I\right)\right)$
case True
hence ipurge-ref $I D(D x)$ xs $\left\{y \in X .\left(D x^{\prime}, D y\right) \notin I\right\}=$
ipurge-ref I D (D x) (xs @ [x]) X
by (simp add: ipurge-ref-last)
moreover have $D x^{\prime} \in \operatorname{sinks} I D(D x)(x s @[x])$
using True by (simp only: sinks-interference-eq)
hence ipurge-tr I $D(D x) x s=$ ipurge-tr I $D(D x)(x s @[x])$
by simp
ultimately show ?thesis using D by simp
next
case False
hence ipurge-ref I $D(D x) x s\left\{y \in X .\left(D x^{\prime}, D y\right) \notin I\right\}=$ ipurge-ref $I D(D x)(x s @[x])\left\{y \in X .\left(D x^{\prime}, D y\right) \notin I\right\}$ by (simp add: ipurge-ref-last)
also have $\ldots=\left\{y \in\right.$ ipurge-ref $\left.I D(D x)(x s @[x]) X .\left(D x^{\prime}, D y\right) \notin I\right\}$
by (simp add: ipurge-ref-swap)
finally have ipurge-ref-aux-less I D $U(x \#$ xs @ [x]) $X=$ ipurge-ref-aux-less I D U (ipurge-tr I D (Dx) xs)
$\{y \in$ ipurge-ref I D (Dx) (xs @ $\left.[x]) X .\left(D x^{\prime}, D y\right) \notin I\right\}$
using D by simp
also have $\ldots=$ ipurge-ref-aux-less I $D U$ (ipurge-tr I $D(D x)$ xs @ $[x])$ (ipurge-ref I D ($D x$) (xs @ [x]) X)
proof -
have $\exists v \in U \cup$ sinks-aux-less I $D U$ (ipurge-tr I $D(D x) x s)$.

```
        \(\left(v, D x^{\prime}\right) \in I\)
    proof -
        obtain \(v\) where
            \(E: v \in U \cup\) sinks-aux-less I \(D U(x \# x s)\) and
            \(F:\left(v, D x^{\prime}\right) \in I\)
        using \(C\)..
        have \(v \in\) sinks-aux I \(D U(x \# x s)\)
        using \(E\) by (simp add: sinks-aux-sinks-aux-less)
        hence \(v \in\) sinks-aux I \(D\) (insert \((D x) U\) ) xs
            using \(A\) by (simp add: sinks-aux-cons)
        hence \(v \in\) sinks-aux I \(D U\) (ipurge-tr I \(D(D x) x s)\)
            using \(F\) and False by (rule sinks-aux-member-ipurge-tr)
            hence \(v \in U \cup\) sinks-aux-less I \(D U\) (ipurge-tr I \(D(D x) x s)\)
            by (simp add: sinks-aux-sinks-aux-less)
        with \(F\) show ?thesis ..
        qed
        thus ?thesis by (simp add: ipurge-ref-aux-less-last)
    qed
    finally have ipurge-ref-aux-less I \(D U(x \# x s @[x]) X=\)
        ipurge-ref-aux-less I D U (ipurge-tr I D ( \(D\) x) xs @ [x])
            (ipurge-ref I D (D x) (xs @ \([x]) X\) ).
    moreover have \(D x^{\prime} \notin \operatorname{sinks} I D(D x)(x s @[x])\)
    using False by (simp only: sinks-interference-eq, simp)
    hence ipurge-tr ID \((D x) x s\) @ \([x]=\) ipurge-tr \(I D(D x)(x s @[x])\)
        by simp
    ultimately show ?thesis by simp
    qed
next
assume \(C: \neg\left(\exists v \in U \cup\right.\) sinks-aux-less \(\left.I D U(x \# x s) .\left(v, D x^{\prime}\right) \in I\right)\)
hence ipurge-ref-aux-less \(I D U(x \# x s @[x]) X=\)
    ipurge-ref-aux-less I D \(U\) ( \(x \#\) xs) X
    by (subst append-Cons [symmetric],
    simp add: ipurge-ref-aux-less-last del: append-Cons)
also have ... =
    ipurge-ref-aux-less I D U (ipurge-tr I \(D\left(\begin{array}{l}\text { (i) xs) }\end{array}\right.\)
        (ipurge-ref I \(D(D x)\) xs \(X)\)
    using \(B\).
also have ... =
    ipurge-ref-aux-less I D U (ipurge-tr I D ( \(D x\) ) xs @ [ \(x\) 〕])
        (ipurge-ref I \(D(D x)\) xs \(X\) )
proof -
    have \(\neg(\exists v \in U \cup\) sinks-aux-less I \(D U\) (ipurge-tr I \(D(D x) x s)\).
                \(\left.\left(v, D x^{\prime}\right) \in I\right)(\) is \(\neg ? P)\)
    proof
        assume ?P
        then obtain \(v\) where
            \(D: v \in U \cup\) sinks-aux-less I \(D U\) (ipurge-tr I \(D(D x) x s)\) and
            \(E:\left(v, D x^{\prime}\right) \in I .\).
            have sinks-aux I D U (ipurge-tr I D (Dx) xs) \(\subseteq\) sinks-aux I D U xs
```

```
    by (rule sinks-aux-subset-ipurge-tr)
    moreover have v\in sinks-aux I D U (ipurge-tr I D (D x) xs)
    using D by (simp add: sinks-aux-sinks-aux-less)
    ultimately have v\in sinks-aux I D U xs ..
    moreover have U\subseteqinsert (D x) U
    by (rule subset-insertI)
    hence sinks-aux I D U xs\subseteq sinks-aux I D (insert (D x) U) xs
    by (rule sinks-aux-subset-dom)
    ultimately have v\in sinks-aux I D (insert (Dx) U) xs ..
    hence v
    using A by (simp add: sinks-aux-cons)
    hence v}\inU\cup\mathrm{ sinks-aux-less I D U (x# xs)
    by (simp add: sinks-aux-sinks-aux-less)
    with E have \existsv\inU\cup sinks-aux-less I D U (x# ms). (v,D x') \inI ..
    thus False using C by contradiction
    qed
    thus ?thesis by (simp add: ipurge-ref-aux-less-last)
qed
also have ... =
    ipurge-ref-aux-less I D U (ipurge-tr I D (D x) (xs @ [x]))
    (ipurge-ref I D (D x) (xs @ [x]) X)
proof -
    have }\neg((Dx,D\mp@subsup{x}{}{\prime})\inI\vee(\existsv\in\operatorname{sinks}ID(Dx)xs.(v,D\mp@subsup{x}{}{\prime})\inI)
    (is \neg ?P)
    proof (rule notI, erule disjE)
    assume D: (D x, D x ) \inI
    have insert (D x)U\subseteq sinks-aux I D (insert (D x) U) xs
    by (rule sinks-aux-subset)
    moreover have Dx\in insert (Dx) U
    by simp
    ultimately have Dx\in sinks-aux I D (insert (D x) U) xs ..
    hence Dx\in sinks-aux I D U (x# xs)
    using A by (simp add: sinks-aux-cons)
    hence Dx\inU\cup sinks-aux-less I D U (x## xs)
    by (simp add: sinks-aux-sinks-aux-less)
    with D have }\existsv\inU\cup\mathrm{ sinks-aux-less I D U (x##xs). (v,D x') GI ..
    thus False using C by contradiction
next
    assume \existsv\in sinks I D (Dx) xs. (v,D x') \inI
    then obtain v}\mathrm{ where
        D:v\in sinks I D (Dx) xs and
        E:(v,D x') \inI ..
    have {Dx}\subseteqinsert (Dx)U
    by simp
    hence sinks-aux I D {Dx} xs\subseteq sinks-aux I D (insert (Dx)U) xs
    by (rule sinks-aux-subset-dom)
    moreover have v\in sinks-aux I D{D x} xs
    using D by (simp add: sinks-aux-single-dom)
    ultimately have v\in sinks-aux I D (insert (D x) U) xs ..
```

```
            hence \(v \in\) sinks-aux I \(D U(x \# x s)\)
            using \(A\) by (simp add: sinks-aux-cons)
            hence \(v \in U \cup\) sinks-aux-less I \(D U(x \# x s)\)
            by (simp add: sinks-aux-sinks-aux-less)
            with \(E\) have \(\exists v \in U \cup\) sinks-aux-less I \(D U(x \# x s) .\left(v, D x^{\prime}\right) \in I\)..
            thus False using \(C\) by contradiction
        qed
        hence ipurge-tr I D \((D x) x s @[x]=\) ipurge-tr \(I D(D x)(x s @[x])\)
            by (simp only: sinks-interference-eq, simp)
            moreover have ipurge-ref I \(D(D x)\) xs \(X=\)
                    ipurge-ref I D (D x) (xs @ [x]) X
            using \(\langle\neg ?\rangle\) by (simp add: ipurge-ref-last)
            ultimately show ?thesis by simp
    qed
    finally show?thesis .
    qed
qed
lemma ipurge-ref-aux-less-cons-2:
    \(\neg(\exists u \in U .(u, D x) \in I) \Longrightarrow\)
    ipurge-ref-aux-less I D \(U(x \#\) xs \() X=\)
        ipurge-ref-aux-less I D U xs X
by (simp add: ipurge-ref-aux-less-def sinks-aux-less-cons)
```


1.3 Closure of the failures of a secure process under intransitive purge

The intransitive purge of an event list $x s$ with regard to a policy I, an eventdomain map D, and a set of domains U can equivalently be computed as follows: for each item x of $x s$, if x may be affected by some domain in U, discard x and go on recursively using ipurge-tr $I D(D x) x s^{\prime}$ as input, where $x s^{\prime}$ is the sublist of $x s$ following x; otherwise, retain x and go on recursively using $x s^{\prime}$ as input.
In fact, in each recursive step, any item allowed to be indirectly affected by U through the effect of some item preceding x within $x s$ has already been removed from the list. Hence, it is sufficient to check whether x may be directly affected by U, and remove x, as well as any residual item allowed to be affected by x, if this is the case.
Similarly, the intransitive purge of an event set X with regard to a policy I, an event-domain map D, a set of domains U, and an event list $x s$ can be computed as follows. First of all, compute ipurge-ref-aux I D U [] X and use this set, along with $x s$, as the input for the subsequent step. Then, for each item x of $x s$, if x may be affected by some domain in U, go on recursively using ipurge-tr I $D\left(\begin{array}{l}D\end{array}\right) x s^{\prime}$ and ipurge-ref I $D(D x) x s^{\prime} X^{\prime}$ as input, where X^{\prime} is the set input to the current recursive step; otherwise, go on recursively using $x s^{\prime}$ and X^{\prime} as input.

In fact, in each recursive step, any item allowed to be affected by U either directly, or through the effect of some item preceding x within $x s$, has already been removed from the set (in the initial step and in subsequent steps, respectively). Thus, it is sufficient to check whether x may be directly affected by U, and remove any residual item allowed to be affected by x if this is the case.
Assume that the two computations be performed simultaneously by a single function, which will then take as input an event list-event set pair and return as output another such pair. Then, if the input pair is a failure of a secure process, the output pair is still a failure. In fact, for each item x of $x s$ allowed to be affected by U, if $y s$ is the partial output list for the sublist of $x s$ preceding x, then (ys @ ipurge-tr $I D(D x) x s^{\prime}$, ipurge-ref I $D(D x) x s^{\prime}$ X^{\prime}) is a failure provided that such is ($y s$ @ $x \# x s^{\prime}, X^{\prime}$), by virtue of the definition of CSP noninterference security [8]. Hence, the property of being a failure is conserved upon each recursive call by the event list-event set pair such that the list matches the concatenation of the partial output list with the residual input list, and the set matches the residual input set. This holds until the residual input list is nil, which is the base case determining the end of the computation.
As shown by this argument, a proof by induction that the output event listevent set pair, under the aforesaid assumptions, is still a failure, requires that the partial output list be passed to the function as a further argument, in addition to the residual input list, in the recursive calls contained within the definition of the function. Therefore, the output list has to be accumulated into a parameter of the function, viz. the function needs to be tail-recursive. This suggests to prove the properties of interest of the function by applying the ten-step proof method for theorems on tail-recursive functions described in [7].
The starting point is to formulate a naive definition of the function, which will then be refined as specified by the proof method. A slight complication is due to the preliminary replacement of the input event set X with ipurge-ref-aux I D $U[] X$, to be performed before the items of the input event list start to be consumed recursively. A simple solution to this problem is to nest the accumulator of the output list within data type option. In this way, the initial state can be distinguished from the subsequent one, in which the input event list starts to be consumed, by assigning the distinct values None and Some [], respectively, to the accumulator.
Everything is now ready for giving a naive definition of the function under consideration:
function (sequential) ipurge-fail-aux-t-naive ::
$\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d$ set $\Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ list option $\Rightarrow{ }^{\prime} a$ set \Rightarrow 'a failure

```
where
ipurge-fail-aux-t-naive I D U xs None X =
    ipurge-fail-aux-t-naive I D U xs (Some []) (ipurge-ref-aux I D U [] X)|
ipurge-fail-aux-t-naive I D U (x # xs) (Some ys) X =
    (if \existsu\inU. (u,D x) \inI
    then ipurge-fail-aux-t-naive I D U
        (ipurge-tr I D (D x) xs) (Some ys) (ipurge-ref I D (D x) xs X)
    else ipurge-fail-aux-t-naive I DU
        xs (Some (ys @ [x])) X)|
ipurge-fail-aux-t-naive - - (Some ys) X = (ys,X)
oops
```

The parameter into which the output list is accumulated is the last but one. As shown by the above informal argument, function ipurge-fail-aux-t-naive enjoys the following properties:
fst (ipurge-fail-aux-t-naive I $D U$ xs None $X)=$ ipurge-tr-aux I $D U x s$
snd (ipurge-fail-aux-t-naive I D Uxs None X) $=$ ipurge-ref-aux I D U xs X
\llbracket secure P I $D ;(x s, X) \in$ failures $P \rrbracket \Longrightarrow$ ipurge-fail-aux-t-naive I D U xs None $X \in$ failures P
which altogether imply the target lemma, viz. the closure of the failures of a secure process under intransitive purge.
In what follows, the steps provided for by the aforesaid proof method will be dealt with one after the other, with the purpose of proving the target closure lemma in the final step. For more information on this proof method, cf. [7].

1.3.1 Step 1

In the definition of the auxiliary tail-recursive function ipurge-fail-aux-t-aux, the Cartesian product of the input parameter types of function ipurge-fail-aux-t-naive will be implemented as the following record type:

```
record \(\left({ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec \(=\)
    Pol :: \(\left(1 d \times{ }^{\prime} d\right)\) set
    Map :: ' \(a \Rightarrow{ }^{\prime} d\)
    Doms :: 'd set
    List :: 'a list
    ListOp :: 'a list option
    Set :: 'a set
```

Here below is the resulting definition of function ipurge-fail-aux-t-aux:

```
function ipurge-fail-aux-t-aux :: ('a, 'd) ipurge-rec \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec
where
```

```
ipurge-fail-aux-t-aux (Pol \(=I, M a p=D, D o m s=U\), List \(=x s\),
```

ipurge-fail-aux-t-aux (Pol $=I, M a p=D, D o m s=U$, List $=x s$,
ListOp $=$ None, Set $=X \mid=$
ListOp $=$ None, Set $=X \mid=$
ipurge-fail-aux-t-aux $\$ Pol $=I, M a p=D, D o m s=U$, List $=x s$,
ipurge-fail-aux-t-aux $\$ Pol $=I, M a p=D, D o m s=U$, List $=x s$,
ListOp $=$ Some [], Set = ipurge-ref-aux I D U [] XD |
ListOp $=$ Some [], Set = ipurge-ref-aux I D U [] XD |
ipurge-fail-aux-t-aux (Pol $=I, M a p=D, D o m s=U$, List $=x \# x s$,
ipurge-fail-aux-t-aux (Pol $=I, M a p=D, D o m s=U$, List $=x \# x s$,
ListOp $=$ Some ys, Set $=X \mid=$
ListOp $=$ Some ys, Set $=X \mid=$
(if $\exists u \in U .(u, D x) \in I$
(if $\exists u \in U .(u, D x) \in I$
then ipurge-fail-aux-t-aux $\ P o l=I, M a p=D, D o m s=U$,
then ipurge-fail-aux-t-aux $\ P o l=I, M a p=D, D o m s=U$,
List $=$ ipurge-tr I D (Dx) xs, ListOp $=$ Some ys,
List $=$ ipurge-tr I D (Dx) xs, ListOp $=$ Some ys,
Set $=$ ipurge-ref $I D(D x)$ xs $X)$
Set $=$ ipurge-ref $I D(D x)$ xs $X)$
else ipurge-fail-aux-t-aux $($ Pol $=I, M a p=D, D o m s=U$,
else ipurge-fail-aux-t-aux $($ Pol $=I, M a p=D, D o m s=U$,
List $=x s$, ListOp $=$ Some (ys @ $[x]$), Set $=X D) \mid$
List $=x s$, ListOp $=$ Some (ys @ $[x]$), Set $=X D) \mid$
ipurge-fail-aux-t-aux
$($ Pol $=I$, Map $=D$, Doms $=U$, List $=[]$, ListOp $=$ Some ys, Set $=X)=$
$($ Pol $=I, M a p=D$, Doms $=U$, List $=[]$, ListOp $=$ Some ys, Set $=X)$
proof (simp-all, atomize-elim)
fix $Y::\left({ }^{\prime} a,{ }^{\prime} d\right)$ ipurge-rec
show
$(\exists I D U$ xs $X . Y=(P o l=I, M a p=D, D o m s=U$, List $=x s$,
ListOp $=$ None, Set $=X D) \vee$
$(\exists I D U x$ xs ys $X . Y=($ Pol $=I, M a p=D$, Doms $=U$, List $=x \# x s$,
ListOp $=$ Some ys, Set $=X D) \vee$
$(\exists I D U$ ys $X . Y=(\ P o l=I, M a p=D, D o m s=U$, List $=[]$,
ListOp $=$ Some ys, Set $=X D)$
proof (cases Y, simp)
fix $x s ~:: ~ ' a ~ l i s t ~ a n d ~ y s o ~:: ~ ' a ~ l i s t ~ o p t i o n ~$
show
yso $=$ None \vee
$\left(\exists x^{\prime} x s^{\prime} . x s=x^{\prime} \# x s^{\prime}\right) \wedge(\exists y s . y s o=$ Some $y s) \vee$
$x s=[] \wedge(\exists$ ys. yso $=$ Some ys $)$
proof (cases yso, simp-all)
qed (subst disj-commute, rule spec [OF list.nchotomy])
qed
qed

```

The length of the input event list of function ipurge-fail-aux-t-aux decreases in every recursive call except for the first one, where the input list is left unchanged while the nested output list passes from None to Some []. A
measure function decreasing in the first recursive call as well can then be obtained by increasing the length of the input list by one in case the nested output list matches None. Using such a measure function, the termination of function ipurge-fail-aux-t-aux is guaranteed by the fact that the event lists output by function ipurge-tr are not longer than the corresponding input ones.
```

termination ipurge-fail-aux-t-aux
proof (relation measure (λY. (if ListOp $Y=$ None then Suc else id)
(length (List Y))), simp-all)
fix $D:: ' a \Rightarrow$ ' d and $I x x s$
have length (ipurge-tr I $D(D x) x s) \leq$ length $x s$ by (rule ipurge-tr-length)
thus length (ipurge-tr I $D(D x)$ xs) < Suc (length xs) by simp
qed

```

\subsection*{1.3.2 Step 2}
definition ipurge-fail-aux-t-in ::
\(\left({ }^{\prime} d \times{ }^{\prime} d\right)\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d\) set \(\Rightarrow{ }^{\prime}\) a list \(\Rightarrow{ }^{\prime}\) a set \(\Rightarrow\left({ }^{\prime} a,^{\prime} d\right)\) ipurge-rec where ipurge-fail-aux-t-in I D U xs \(X \equiv\)
\[
(P o l=I, M a p=D, D o m s=U, \text { List }=x s, \text { ListOp }=\text { None }, \text { Set }=X)
\]
definition ipurge-fail-aux-t-out :: ('a, 'd) ipurge-rec \(\Rightarrow\) 'a failure where ipurge-fail-aux-t-out \(Y \equiv\) (case ListOp \(Y\) of Some \(y s \Rightarrow y s\), Set \(Y)\)
definition ipurge-fail-aux-t ::
\(\left(' d \times{ }^{\prime} d\right)\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d\) set \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime}\) a failure
where
ipurge-fail-aux-t I D U xs \(X \equiv\) ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux (ipurge-fail-aux-t-in I D U xs X))

Since the significant inputs of function ipurge-fail-aux-t-naive match pattern -, -, -, -, None, -, those of function ipurge-fail-aux-t-aux, as returned by function ipurge-fail-aux-t-in, match pattern \(\ P o l=-, M a p=-, D o m s=-\), List \(=-\), ListOp \(=\) None, Set \(=-()\).
Likewise, since the nested output lists returned by function ipurge-fail-aux-t-aux match pattern Some -, function ipurge-fail-aux-t-out does not need to worry about dealing with nested output lists equal to None.
In terms of function ipurge-fail-aux-t, the statements to be proven in order to demonstrate the target closure lemma, previously expressed using function ipurge-fail-aux-t-naive and henceforth respectively named ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures, take the following form:
fst (ipurge-fail-aux-t I \(D\) xs \(X\) ) \(=\) ipurge-tr-aux \(I D U\) xs
snd (ipurge-fail-aux-t I D U xs \(X\) ) = ipurge-ref-aux I D U xs \(X\)
\(\llbracket\) secure P I D; (xs, X \() \in\) failures \(P \rrbracket \Longrightarrow\) ipurge-fail-aux-t I D U xs \(X \in\) failures \(P\)

\subsection*{1.3.3 Step 3}
inductive-set ipurge-fail-aux-t-set ::
( \(\left.{ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec set
for \(Y::\left({ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec where
\(R 0: Y \in\) ipurge-fail-aux-t-set \(Y \mid\)
R1: (Pol \(=I, M a p=D, D o m s=U\), List \(=x s\),
ListOp \(=\) None, Set \(=X D \in\) ipurge-fail-aux-t-set \(Y \Longrightarrow\)
(Pol \(=I, M a p=D\), Doms \(=U\), List \(=x s\),
ListOp \(=\) Some [], Set \(=\) ipurge-ref-aux I D U [] XD \(\in\) ipurge-fail-aux-t-set \(Y \mid\)
R2: \(\llbracket(\) Pol \(=I, \operatorname{Map}=D\), Doms \(=U\), List \(=x \# x s\),
ListOp \(=\) Some ys, Set \(=X \mid \in\) ipurge-fail-aux-t-set \(Y\);
\(\exists u \in U .(u, D x) \in I \rrbracket \Longrightarrow\)
(Pol \(=I\), Map \(=D\), Doms \(=U\), List \(=\) ipurge-tr I D (D x) xs,
ListOp \(=\) Some ys, Set \(=\) ipurge-ref \(I D(D x)\) xs \(X \mid \in\) ipurge-fail-aux-t-set \(Y \mid\)
R3: \(\llbracket \mid\) Pol \(=I, M a p=D\), Doms \(=U\), List \(=x \# x s\),
ListOp \(=\) Some ys, Set \(=X \mid \in\) ipurge-fail-aux-t-set \(Y\);
\(\neg(\exists u \in U .(u, D x) \in I) \rrbracket \Longrightarrow\)
( Pol \(=I, M a p=D\), Doms \(=U\), List \(=x s\),
ListOp \(=\) Some \((y s @[x])\), Set \(=X D \in\) ipurge-fail-aux-t-set \(Y\)

\subsection*{1.3.4 Step 4}
lemma ipurge-fail-aux-t-subset: assumes \(A: Z \in\) ipurge-fail-aux-t-set \(Y\) shows ipurge-fail-aux-t-set \(Z \subseteq\) ipurge-fail-aux-t-set \(Y\) proof (rule subsetI, erule ipurge-fail-aux-t-set.induct) show \(Z \in\) ipurge-fail-aux-t-set \(Y\) using \(A\).
next
fix \(I D U x s X\)
assume \((P o l=I, M a p=D, D o m s=U\), List \(=x s\),
ListOp \(=\) None, Set \(=X \mid \in\) ipurge-fail-aux-t-set \(Y\)
thus \(\|\) Pol \(=I, M a p=D, D o m s=U\), List \(=x s\),
ListOp = Some [], Set = ipurge-ref-aux I D U [] X \() \in\) ipurge-fail-aux-t-set \(Y\)
by (rule R1)
next
fix \(I D U x\) xs ys \(X\)
assume
```

 Pol = I,Map = D, Doms = U, List = x # xs,
 ListOp = Some ys,Set = XD \in ipurge-fail-aux-t-set Y and
 \existsu\inU. (u,D x) \inI
 thus \Pol = I,Map = D, Doms = U, List = ipurge-tr I D (D x) xs,
 ListOp = Some ys, Set = ipurge-ref I D (D x) xs XD \in ipurge-fail-aux-t-set Y
 by (rule R2)
 next
fix I DU x xs ys X
assume
Pol = I, Map = D, Doms = U, List = x \# xs,
ListOp = Some ys, Set = XD \in ipurge-fail-aux-t-set Y and
\neg(\existsu\inU. (u,D x) \inI)
thus (Pol=I,Map=D,Doms=U,List = xs,
ListOp=Some (ys @ [x]), Set =X\) ipurge-fail-aux-t-set Y
by (rule R3)
qed
lemma ipurge-fail-aux-t-aux-set:
ipurge-fail-aux-t-aux Y ipurge-fail-aux-t-set Y
proof (induction rule: ipurge-fail-aux-t-aux.induct,
simp-all add: R0 del: ipurge-fail-aux-t-aux.simps(2))
fix I U xs X and D :: 'a m 'd
let
?Y= \Pol = I,Map = D, Doms = U, List = xs,
ListOp = None, Set = X) and
? Y' = (Pol = I,Map = D, Doms = U, List = xs,
ListOp = Some [], Set = ipurge-ref-aux I D U [] XD
have ?Y \in ipurge-fail-aux-t-set ?Y
by (rule R0)
moreover have ?Y \in ipurge-fail-aux-t-set ?Y \Longrightarrow
?Y'}\in\mathrm{ ipurge-fail-aux-t-set ?Y
by (rule R1)
ultimately have ?Y'\in ipurge-fail-aux-t-set ?Y
by simp
hence ipurge-fail-aux-t-set ?Y'}\subseteqipurge-fail-aux-t-set ?Y
by (rule ipurge-fail-aux-t-subset)
moreover assume ipurge-fail-aux-t-aux ? Y'\in ipurge-fail-aux-t-set ? Y'
ultimately show ipurge-fail-aux-t-aux ? Y' \in ipurge-fail-aux-t-set ?Y ..
next
fix I U x xs ys X and D :: 'a }\mp@subsup{|}{}{\prime}
let
?Y= (Pol = I,Map = D, Doms=U,List = x \# xs,
ListOp = Some ys, Set = XD and
? Y' = |Pol = I,Map = D, Doms = U,List = ipurge-tr I D (Dx) xs,
ListOp = Some ys, Set = ipurge-ref I D (D x) xs XD and
? Y''\ (Pol = I,Map=D, Doms=U,List = xs,
ListOp=Some (ys@ [x]), Set = XD
assume
A:\existsu\inU. (u,Dx)\inI\Longrightarrow

```
```

 ipurge-fail-aux-t-aux ? Y' \in ipurge-fail-aux-t-set ? Y' and
 B:}\forallu\inU.(u,Dx)\not\inI
 ipurge-fail-aux-t-aux ? Y''
 show ipurge-fail-aux-t-aux ?Y \in ipurge-fail-aux-t-set ?Y
 proof (cases \existsu\inU.(u,D x) \inI, simp-all (no-asm-simp))
 case True
 have ?Y \in ipurge-fail-aux-t-set ?Y
 by (rule R0)
 moreover have ?Y \in ipurge-fail-aux-t-set ? Y \Longrightarrow\existsu\inU. (u,D x)\inI\Longrightarrow
 ? Y'
 by (rule R2)
 ultimately have ? Y' }\in\mathrm{ ipurge-fail-aux-t-set ?Y
 using True by simp
 hence ipurge-fail-aux-t-set ? Y'}\subseteq\mathrm{ ipurge-fail-aux-t-set ?Y
 by (rule ipurge-fail-aux-t-subset)
 moreover have ipurge-fail-aux-t-aux ? Y' \in ipurge-fail-aux-t-set ? Y'
 using A and True by simp
 ultimately show ipurge-fail-aux-t-aux ? Y' \in ipurge-fail-aux-t-set ?Y ..
 next
case False
have ?Y \in ipurge-fail-aux-t-set ?Y
by (rule R0)
moreover have ?Y \in ipurge-fail-aux-t-set ?Y \Longrightarrow
\neg (\exists u \in U . (u , D x) \in I) \Longrightarrow ? Y' \in ipurge-fail-aux-t-set ?Y
by (rule R3)
ultimately have ? Y'I \in ipurge-fail-aux-t-set ?Y
using False by simp
hence ipurge-fail-aux-t-set ?Y'\}\subseteqipurge-fail-aux-t-set ?Y
by (rule ipurge-fail-aux-t-subset)
moreover have ipurge-fail-aux-t-aux ? Y' }\in\mathrm{ ipurge-fail-aux-t-set ?Y'"
using B and False by simp
ultimately show ipurge-fail-aux-t-aux ? Y'I \in ipurge-fail-aux-t-set ?Y ..
qed
qed

```

\subsection*{1.3.5 Step 5}
definition ipurge-fail-aux-t-inv-1 ::
\((' d \times ' d)\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d\) set \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec \(\Rightarrow\) bool where
ipurge-fail-aux-t-inv-1 I D U xs \(Y \equiv\)
(case ListOp Y of None \(\Rightarrow[] \mid\) Some ys \(\Rightarrow\) ys) @ ipurge-tr-aux I D U (List Y) \(=\) ipurge-tr-aux I D U xs
definition ipurge-fail-aux-t-inv-2 ::
\(\left(' d \times{ }^{\prime} d\right)\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d\) set \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow\)
( \(\left.{ }^{\prime} a,{ }^{\prime} d\right)\) ipurge-rec \(\Rightarrow\) bool
where
ipurge-fail-aux-t-inv-2 I D U xs X Y 三
```

if ListOp $Y=$ None
then List $Y=x s \wedge$ Set $Y=X$
else ipurge-ref-aux-less I $D U($ List $Y)($ Set $Y)=$ ipurge-ref-aux I D U xs X
definition ipurge-fail-aux-t-inv-3 ::
'a process $\Rightarrow\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime}$ a list $\Rightarrow{ }^{\prime}$ a set \Rightarrow
(' $\left.a,{ }^{\prime} d\right)$ ipurge-rec \Rightarrow bool
where
ipurge-fail-aux-t-inv-3 P I D xs X Y 三
secure P I D $\longrightarrow(x s, X) \in$ failures $P \longrightarrow$
$(($ case ListOp Y of None $\Rightarrow[] \mid$ Some $y s \Rightarrow y s) @$ List Y, Set $Y) \in$ failures P

```

Three invariants have been defined, one for each of lemmas ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures. More precisely, the invariants are ipurge-fail-aux-t-inv-1 I D U xs, ipurge-fail-aux-t-inv-2 I D U xs \(X\), and ipurge-fail-aux-t-inv-3 P I D xs \(X\), where the free variables are intended to match those appearing in the aforesaid lemmas.
Particularly:
- The first invariant expresses the fact that in each recursive step, any item of the residual input list List \(Y\) indirectly affected by \(U\) through the effect of previous, already consumed items has already been removed from the list, so that applying function ipurge-tr-aux I D U to the list is sufficient to obtain the intransitive purge of the whole original list.
- The second invariant expresses the fact that in each recursive step, any item of the residual input set Set \(Y\) affected by \(U\) either directly, or through the effect of previous, already consumed items, has already been removed from the set, so that applying function ipurge-ref-aux-less \(I D U(\) List \(Y)\) to the set is sufficient to obtain the intransitive purge of the whole original set.
The use of function ipurge-ref-aux-less ensures that the invariant implies the equality Set \(Y=\) ipurge-ref-aux \(I D U\) xs \(X\) for List \(Y=[]\), viz. for the output values of function ipurge-fail-aux-t-aux, which is the reason requiring the introduction of function ipurge-ref-aux-less.
- The third invariant expresses the fact that in each recursive step, the event list-event set pair such that the list matches the concatenation of the partial output list with List \(Y\), and the set matches Set \(Y\), is a failure provided that the original input pair is such as well.

\subsection*{1.3.6 Step 6}
lemma ipurge-fail-aux-t-input-1:
ipurge-fail-aux-t-inv-1 I D U xs
\((\) Pol \(=I, M a p=D\), Doms \(=U\), List \(=x s\), ListOp \(=\) None, Set \(=X)\)
by (simp add: ipurge-fail-aux-t-inv-1-def)
lemma ipurge-fail-aux-t-input-2:
ipurge-fail-aux-t-inv-2 I D U xs X
\((\) Pol \(=I\), Map \(=D\), Doms \(=U\), List \(=x s\), ListOp \(=\) None, Set \(=X)\)
by (simp add: ipurge-fail-aux-t-inv-2-def)
lemma ipurge-fail-aux-t-input-3:
ipurge-fail-aux-t-inv-3 P I D xs X
\((\) Pol \(=I, M a p=D\), Doms \(=U\), List \(=x s\), ListOp \(=\) None, Set \(=X)\)
by (simp add: ipurge-fail-aux-t-inv-3-def)

\subsection*{1.3.7 Step 7}
definition ipurge-fail-aux-t-form :: ('a, 'd) ipurge-rec \(\Rightarrow\) bool where ipurge-fail-aux-t-form \(Y \equiv\) case ListOp \(Y\) of None \(\Rightarrow\) False \(\mid\) Some ys \(\Rightarrow\) List \(Y=[]\)
lemma ipurge-fail-aux-t-intro-1:
【ipurge-fail-aux-t-inv-1 I D U xs Y; ipurge-fail-aux-t-form \(Y \rrbracket \Longrightarrow\) fst (ipurge-fail-aux-t-out \(Y\) ) \(=\) ipurge-tr-aux I D U xs
proof (simp add: ipurge-fail-aux-t-inv-1-def ipurge-fail-aux-t-form-def ipurge-fail-aux-t-out-def)
qed (simp split: option.split-asm)
lemma ipurge-fail-aux-t-intro-2:
\(\llbracket\) ipurge-fail-aux-t-inv-2 I D U xs X Y; ipurge-fail-aux-t-form \(Y \rrbracket \Longrightarrow\) snd (ipurge-fail-aux-t-out \(Y\) ) \(=\) ipurge-ref-aux I \(D\) Us \(X\)
proof (simp add: ipurge-fail-aux-t-inv-2-def ipurge-fail-aux-t-form-def ipurge-fail-aux-t-out-def)
qed (simp add: ipurge-ref-aux-less-def split: option.split-asm)
lemma ipurge-fail-aux-t-intro-3:
\(\llbracket i p u r g e-f a i l-a u x-t-i n v-3 P I D\) xs \(X\) Y; ipurge-fail-aux-t-form \(Y \rrbracket \Longrightarrow\) secure \(P I D \longrightarrow(x s, X) \in\) failures \(P \longrightarrow\) ipurge-fail-aux-t-out \(Y \in\) failures \(P\)
proof (simp add: ipurge-fail-aux-t-inv-3-def ipurge-fail-aux-t-form-def ipurge-fail-aux-t-out-def)
qed (simp split:option.split-asm)

\subsection*{1.3.8 Step 8}
lemma ipurge-fail-aux-t-form-aux: ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux Y)
by (induction Y rule: ipurge-fail-aux-t-aux.induct, simp-all add: ipurge-fail-aux-t-form-def)

\subsection*{1.3.9 Step 9}
lemma ipurge-fail-aux-t-invariance-aux:
\(Z \in\) ipurge-fail-aux-t-set \(Y \Longrightarrow\)
Pol \(Z=\operatorname{Pol} Y \wedge \operatorname{Map} Z=\operatorname{Map} Y \wedge\) Doms \(Z=\) Doms \(Y\)
by (erule ipurge-fail-aux-t-set.induct, simp-all)

The lemma just proven, stating the invariance of the first three record fields over inductive set ipurge-fail-aux-t-set \(Y\), is used in the following proofs of the invariance of predicates ipurge-fail-aux-t-inv-1 I D Uxs, ipurge-fail-aux-t-inv-2 I D U xs X, and ipurge-fail-aux-t-inv-3 P I D xs X.

The equality between the free variables appearing in the predicates and the corresponding fields of the record generating the set, which is required for such invariance properties to hold, is asserted in the enunciation of the properties by means of record updates. In the subsequent proofs of lemmas ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures, the enforcement of this equality will be ensured by the identification of both predicate variables and record fields with the related free variables appearing in the lemmas.
lemma ipurge-fail-aux-t-invariance-1:
\(\llbracket Z \in\) ipurge-fail-aux-t-set (Y|Pol \(:=I\), Map \(:=D\), Doms \(:=U D)\); ipurge-fail-aux-t-inv-1 I D U xs \((Y(\) Pol \(:=I, M a p:=D\), Doms \(:=U \mid) \rrbracket \Longrightarrow\) ipurge-fail-aux-t-inv-1 I D U xs Z
proof (erule ipurge-fail-aux-t-set.induct, assumption,
drule-tac [!] ipurge-fail-aux-t-invariance-aux,
simp-all add: ipurge-fail-aux-t-inv-1-def)
fix \(x x s^{\prime} y s\)
assume ys @ ipurge-tr-aux I D \(U\left(x \#\right.\) xs \(\left.{ }^{\prime}\right)=\) ipurge-tr-aux I \(D U\) xs (is ? \(A=\) ? \(C\) )
moreover assume \(\exists u \in U .(u, D x) \in I\)
hence ? \(A=y s\) @ ipurge-tr-aux I \(D(\) insert \((D x) U) x s^{\prime}\)
by (simp add: ipurge-tr-aux-cons)
hence ? \(A=y s\) @ ipurge-tr-aux I \(D U\) (ipurge-tr I \(D\left(\begin{array}{ll}\left.\text { ( } x)^{\prime} \text { ) }\right) ~\end{array}\right.\)
(is - = ?B) by (simp add: ipurge-tr-aux-insert)
ultimately show ? \(B=? C\) by \(\operatorname{simp}\)
next
fix \(x x s^{\prime} y s\)
assume ys @ ipurge-tr-aux I D \(U\left(x \# x s^{\prime}\right)=\) ipurge-tr-aux I \(D U x s\) (is ? \(A=\) ? \(C\) )
moreover assume \(\forall u \in U .(u, D x) \notin I\)
hence ? \(A=y s\) @ \(x\) \# ipurge-tr-aux I D U xs \({ }^{\prime}\)
(is - = ?B) by (simp add: ipurge-tr-aux-cons)
ultimately show ? \(B=? C\) by \(\operatorname{simp}\)
qed
lemma ipurge-fail-aux-t-invariance-2:
```

 \llbracketZ \in ipurge-fail-aux-t-set (Y\Pol := I, Map := D,Doms := U\);
 ipurge-fail-aux-t-inv-2 I D U xs X (Y(Pol := I, Map := D, Doms :=UD)\rrbracket\Longrightarrow
 ipurge-fail-aux-t-inv-2 I D U xs X Z
 proof (erule ipurge-fail-aux-t-set.induct, assumption,
drule-tac [!] ipurge-fail-aux-t-invariance-aux,
simp-all add: ipurge-fail-aux-t-inv-2-def)
show ipurge-ref-aux-less I D U xs (ipurge-ref-aux I D U [] X)=
ipurge-ref-aux I D U xs X
by (rule ipurge-ref-aux-less-nil)
next
fix }x\timesx\mp@subsup{s}{}{\prime}\mp@subsup{X}{}{\prime
assume ipurge-ref-aux-less I D U (x \# xs') X' = ipurge-ref-aux I D U xs X
(is ?A = ?C)
moreover assume }\existsu\inU.(u,Dx)\in
hence ?A = ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs')
(ipurge-ref I D (D x) xs' X')
(is - = ?B) by (rule ipurge-ref-aux-less-cons-1)
ultimately show ?B = ?C by simp
next
fix x xs ' X'
assume ipurge-ref-aux-less I D U (x \# xs') X'=ipurge-ref-aux I D U xs X
(is ?A = ?C)
moreover assume }\forallu\inU.(u,Dx)\not\in
hence }\neg(\existsu\inU.(u,Dx)\inI) by sim
hence ?A = ipurge-ref-aux-less I D U xs' X'
(is - = ?B) by (rule ipurge-ref-aux-less-cons-2)
ultimately show ?B = ?C by simp
qed
lemma ipurge-fail-aux-t-invariance-3:
\llbracketZ ipurge-fail-aux-t-set (Y\Pol := I, Map := D|));
ipurge-fail-aux-t-inv-3 P I D xs X (Y(\Pol:= I, Map := D|))】\Longrightarrow
ipurge-fail-aux-t-inv-3 P I D xs X Z
proof (erule ipurge-fail-aux-t-set.induct, assumption,
drule-tac [!] ipurge-fail-aux-t-invariance-aux,
simp-all add: ipurge-fail-aux-t-inv-3-def, (rule-tac [!] impI)+)
fix }x\mp@subsup{s}{}{\prime}\mp@subsup{X}{}{\prime
assume
secure P I D and
(xs,X) f failures P and
secure P I D\longrightarrow(xs, X) \in failures P\longrightarrow(xs', X') \in failures P
hence (x\mp@subsup{s}{}{\prime},\mp@subsup{X}{}{\prime})\in\mathrm{ failures P}
by simp
moreover have ipurge-ref-aux I D (Doms Y) [] X'\subseteq 㕵
by (rule ipurge-ref-aux-subset)
ultimately show (xs', ipurge-ref-aux I D (Doms Y) [] X') \in failures P
by (rule process-rule-3)
next
fix x xs' ys X'

```
```

 assume S: secure P I D and
 (xs,X) f failures P and
 secure PID\longrightarrow(xs,X)\in failures P\longrightarrow(ys @ x# xs', X') \in failures P
 hence (ys @ x # xs', X') \in failures P
 by simp
 hence (x # xs', X') \in futures P ys
 by (simp add: futures-def)
 hence (ipurge-tr I D (D x) x\mp@subsup{s}{}{\prime},\mathrm{ , ipurge-ref I D (D x) xs ' }\mp@subsup{X}{}{\prime})\in\mathrm{ futures P ys}
 using S by (simp add: secure-def)
 thus (ys @ ipurge-tr I D (D x) xs', ipurge-ref I D (D x) xs' X') \in failures P
 by (simp add: futures-def)
 qed

```

\subsection*{1.3.10 Step 10}

Here below are the proofs of lemmas ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures, which are then applied to demonstrate the target closure lemma.
lemma ipurge-fail-aux-t-eq-tr:
fst (ipurge-fail-aux-t I D U xs X) = ipurge-tr-aux I D U xs
proof -
let \(? Y=(\) Pol \(=I, M a p=D\), Doms \(=U\), List \(=x s\), ListOp \(=\) None, Set \(=X\) D
have ipurge-fail-aux-t-aux ? Y \(\in\) ipurge-fail-aux-t-set \((? Y(\) Pol \(:=I\), Map \(:=D\), Doms \(:=U))\)
by (simp add: ipurge-fail-aux-t-aux-set del: ipurge-fail-aux-t-aux.simps)
moreover have
ipurge-fail-aux-t-inv-1 I D U xs \((? Y(\) Pol \(:=I\), Map \(:=D\), Doms \(:=U D)\)
by (simp add: ipurge-fail-aux-t-input-1)
ultimately have ipurge-fail-aux-t-inv-1 I D U xs (ipurge-fail-aux-t-aux ? Y)
by (rule ipurge-fail-aux-t-invariance-1)
moreover have ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-form-aux)
ultimately have fst (ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux ?Y)) \(=\) ipurge-tr-aux I D U xs
by (rule ipurge-fail-aux-t-intro-1)
moreover have ?Y = ipurge-fail-aux-t-in I D U xs X
by (simp add: ipurge-fail-aux-t-in-def)
ultimately show ?thesis
by (simp add: ipurge-fail-aux-t-def)
qed
lemma ipurge-fail-aux-t-eq-ref:
snd (ipurge-fail-aux-t I D U xs X) \(=\) ipurge-ref-aux I D U xs \(X\)
proof -
let ? \(Y=(\) Pol \(=I\), Map \(=\) D, Doms \(=U\), List \(=x s\), ListOp \(=\) None, Set \(=X\) D
have ipurge-fail-aux-t-aux ? Y
\(\in\) ipurge-fail-aux-t-set \((? Y(\) Pol \(:=I\), Map \(:=D\), Doms \(:=U D)\)
by (simp add: ipurge-fail-aux-t-aux-set del: ipurge-fail-aux-t-aux.simps)
moreover have
ipurge-fail-aux-t-inv-2 I D U xs X \((? Y(\mid P o l:=I\), Map \(:=D\), Doms \(:=U())\)
by (simp add: ipurge-fail-aux-t-input-2)
ultimately have ipurge-fail-aux-t-inv-2 I D U xs X (ipurge-fail-aux-t-aux ? Y)
by (rule ipurge-fail-aux-t-invariance-2)
moreover have ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux ? Y)
by (rule ipurge-fail-aux-t-form-aux)
ultimately have snd (ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux ?Y)) \(=\) ipurge-ref-aux I D U xs X
by (rule ipurge-fail-aux-t-intro-2)
moreover have ? \(Y=\) ipurge-fail-aux-t-in I \(D U\) xs \(X\)
by (simp add: ipurge-fail-aux-t-in-def)
ultimately show ?thesis
by (simp add: ipurge-fail-aux-t-def)
qed
lemma ipurge-fail-aux-t-failures [rule-format]:
secure PID \(\longrightarrow(x s, X) \in\) failures \(P \longrightarrow\) ipurge-fail-aux-t I D U xs \(X \in\) failures \(P\)
proof -
let \(? Y=(\) Pol \(=I, M a p=D\), Doms \(=U\), List \(=x s\), ListOp \(=\) None, Set \(=X\) )
have ipurge-fail-aux-t-aux ? Y
\(\in\) ipurge-fail-aux-t-set \((? Y(\operatorname{Pol}:=I, M a p:=D D)\)
by (simp add: ipurge-fail-aux-t-aux-set del: ipurge-fail-aux-t-aux.simps)
moreover have
ipurge-fail-aux-t-inv-3 P I D xs \(X(? Y(P o l:=I, M a p:=D))\)
by (simp add: ipurge-fail-aux-t-input-3)
ultimately have ipurge-fail-aux-t-inv-3 P I D xs X (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-invariance-3)
moreover have ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-form-aux)
ultimately have secure \(P I D \longrightarrow(x s, X) \in\) failures \(P \longrightarrow\)
ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux ? \(Y\) ) \(\in\) failures \(P\)
by (rule ipurge-fail-aux-t-intro-3)
moreover have ? \(Y=\) ipurge-fail-aux-t-in I \(D U\) xs \(X\)
by (simp add: ipurge-fail-aux-t-in-def)
ultimately show ?thesis
by (simp add: ipurge-fail-aux-t-def)
qed
lemma ipurge-tr-ref-aux-failures:
\(\llbracket\) secure P I D; \((x s, X) \in\) failures \(P \rrbracket \Longrightarrow\)
(ipurge-tr-aux I D U xs, ipurge-ref-aux I D U xs X) \(\in\) failures \(P\)
proof (drule ipurge-fail-aux-t-failures [where \(U=U\) ], assumption,
cases ipurge-fail-aux-t I D U xs X)
qed (simp add: ipurge-fail-aux-t-eq-tr [where \(X=X\), symmetric]
ipurge-fail-aux-t-eq-ref [symmetric])

\subsection*{1.4 Additional propaedeutic lemmas}

In what follows, additional lemmas required for the demonstration of the target security conservation theorem are proven.
Here below is the proof of some properties of functions ipurge-tr-aux and ipurge-ref-aux. Particularly, it is shown that in case an event list and its intransitive purge for some set of domains are both traces of a secure process, and the purged list has a future not affected by any purged event, then that future is also a future for the full event list.
lemma ipurge-tr-aux-idem:
ipurge-tr-aux I D U (ipurge-tr-aux I D U xs) = ipurge-tr-aux I D Uxs by (simp add: ipurge-tr-aux-union [symmetric])
lemma ipurge-tr-aux-set:
set (ipurge-tr-aux I D Uxs) \(\subseteq\) set xs
proof (induction xs rule: rev-induct, simp-all)
qed blast
lemma ipurge-tr-aux-nil [rule-format]:
assumes \(A: u \in U\)
shows \((\forall x \in\) set \(x s .(u, D x) \in I) \longrightarrow\) ipurge-tr-aux I D U xs \(=[]\)
proof (induction xs rule: rev-induct, simp, rule impI)
fix \(x\) xs
assume \(\left(\forall x^{\prime} \in\right.\) set \(\left.x s .\left(u, D x^{\prime}\right) \in I\right) \longrightarrow\) ipurge-tr-aux I D U xs \(=[]\)
moreover assume \(B: \forall x^{\prime} \in \operatorname{set}(x s @[x]) .\left(u, D x^{\prime}\right) \in I\)
ultimately have \(C\) : ipurge-tr-aux I \(D U x s=[]\) by \(\operatorname{simp}\)
have \((u, D x) \in I\) using \(B\) by simp
moreover have \(U \subseteq\) sinks-aux I D Uxs by (rule sinks-aux-subset)
hence \(u \in\) sinks-aux I \(D U x s\) using \(A\)..
ultimately have \(\exists u \in\) sinks-aux I D \(U\) xs. \((u, D x) \in I\)..
hence ipurge-tr-aux I D \(U\) (xs @ \([x])=\) ipurge-tr-aux I D U xs by \(\operatorname{simp}\)
thus ipurge-tr-aux I D \(U(x s\) @ \([x])=[]\) using \(C\) by simp
qed
lemma ipurge-tr-aux-del-failures [rule-format]:
assumes \(S\) : secure \(P I D\)
shows \((\forall u \in\) sinks-aux-less I D U ys. \(\forall z \in Z \cup\) set \(z s .(u, D z) \notin I) \longrightarrow\) (xs @ ipurge-tr-aux ID Uys@zs,Z) failures \(P \longrightarrow\)
```

xs@ ys \in traces P\longrightarrow

```
    \((x s @ y s @ z s, Z) \in\) failures \(P\)
proof (induction ys arbitrary: zs rule: rev-induct, simp, (rule impI)+)
    fix \(y\) ys \(z s\)
    assume
    A: \(\bigwedge z s .(\forall u \in\) sinks-aux-less I \(D\) U ys. \(\forall z \in Z \cup\) set \(z s . ~(u, D z) \notin I) \longrightarrow\)
        (xs@ ipurge-tr-aux ID U ys @ zs, Z) \(\in\) failures \(P \longrightarrow\)
        \(x s @ y s \in\) traces \(P \longrightarrow\)
            \((x s @ y s @ z s, Z) \in\) failures \(P\) and
    \(B: \forall u \in\) sinks-aux-less I D \(U\) (ys @ [y]). \(\forall z \in Z \cup\) set \(z s .(u, D z) \notin I\) and
    \(C:(x s\) @ ipurge-tr-aux I D U (ys @ \([y])\) @ zs, Z) \(\in\) failures \(P\) and
    \(D: x s @(y s @[y]) \in\) traces \(P\)
    show (xs @ (ys @ \([y]\) ) @ zs, Z) \(\in\) failures \(P\)
    proof (cases \(\exists u \in\) sinks-aux I D U ys. \((u, D y) \in I\), simp-all (no-asm))
    case True
    have
    \((\forall u \in\) sinks-aux-less I D U ys. \(\forall z \in Z \cup\) set zs. \((u, D z) \notin I) \longrightarrow\)
        (xs@ ipurge-tr-aux ID U ys @ zs, Z) \(\in\) failures \(P \longrightarrow\)
        xs @ys \(\in\) traces \(P \longrightarrow\)
            \((x s @ y s @ z s, Z) \in\) failures \(P\)
    using \(A\).
    moreover have \(\exists u \in U \cup\) sinks-aux-less I \(D U y s .(u, D y) \in I\)
    using True by (simp add: sinks-aux-sinks-aux-less)
    hence \(E: \forall u \in \operatorname{insert}(D y)(\) sinks-aux-less I D U ys). \(\forall z \in Z \cup\) set \(z s\).
        \((u, D z) \notin I\)
    using \(B\) by (simp only: sinks-aux-less.simps if-True)
    hence \(\forall u \in\) sinks-aux-less I \(D\) U ys. \(\forall z \in Z \cup\) set zs. \((u, D z) \notin I\)
    by \(\operatorname{simp}\)
    moreover have (xs @ ipurge-tr-aux ID Uys @ zs, Z) \(\in\) failures \(P\)
    using \(C\) and True by simp
    moreover have (xs @ ys) @ \([y] \in \operatorname{traces} P\)
    using \(D\) by \(\operatorname{simp}\)
    hence xs @ ys \(\in\) traces \(P\)
    by (rule process-rule-2-traces)
    ultimately have (xs @ys @ zs, Z) \(\in\) failures \(P\)
    by \(\operatorname{simp}\)
    hence \((z s, Z) \in\) futures \(P(x s @ y s)\)
    by (simp add: futures-def)
    moreover have (xs @ ys @ [y], \{\}) \(\in\) failures \(P\)
    using \(D\) by (rule traces-failures)
    hence \(([y],\{ \}) \in\) futures \(P(x s\) @ \(y s)\)
    by (simp add: futures-def)
    ultimately have ( \(y\) \# ipurge-tr I \(D(D y) z s\), ipurge-ref \(I D(D y) z s Z)\)
    \(\in\) futures \(P(x s @ y s)\)
    using \(S\) by (simp add: secure-def)
moreover have ipurge-tr \(I D(D y) z s=z s\)
    by (subst ipurge-tr-all, simp add: E)
moreover have ipurge-ref \(I D(D y)\) zs \(Z=Z\)
    by (rule ipurge-ref-all, simp add: E)
```

 ultimately have (y # zs,Z)\in futures P (xs @ ys)
 by simp
 thus (xs @ ys @ y #zs,Z)\in failures P
 by (simp add: futures-def)
 next
 case False
 have E
 (\forallu\in sinks-aux-less I D U ys.}\forallz\inZ\cup\operatorname{set}(y#zs). (u,Dz)\not\inI)
 (xs@ ipurge-tr-aux I D U ys @ (y#zs), Z) \in failures P \longrightarrow
 xs@ ys \in traces P\longrightarrow
 (xs @ ys@ (y#zs),Z)\in failures P
 using A.
 have F:\neg(\existsu\inU\cup sinks-aux-less I D U ys. (u,D y)\inI)
 using False by (simp add: sinks-aux-sinks-aux-less)
 hence }\forallu\in\mathrm{ sinks-aux-less I D U ys. }\forallz\inZ\cup\mathrm{ set zs. (u,Dz)}\not\in
 using B by (simp only: sinks-aux-less.simps if-False)
 moreover have }\forallu\in\mathrm{ sinks-aux-less I D U ys. (u,D y)}\not\in
 using F by simp
 ultimately have
 \forallu\in sinks-aux-less I D U ys. }\forallz\inZ\cup\operatorname{set}(y#zs).(u,Dz)\not\in
 by simp
 with E have
 (xs @ ipurge-tr-aux I D U ys @ (y#zs), Z) f failures P\longrightarrow
 xs@ ys \in traces P\longrightarrow
 (xs@ys@ (y # zs),Z) \in failures P ..
 moreover have (xs @ ipurge-tr-aux ID U ys @ (y#zs), Z) \in failures P
 using C and False by simp
 moreover have (xs @ ys)@ @y]\in traces P
 using D by simp
 hence xs @ ys \in traces P
 by (rule process-rule-2-traces)
 ultimately show (xs @ ys @ (y#zs), Z) \in failures P
 by simp
 qed
 qed
lemma ipurge-ref-aux-append:
ipurge-ref-aux I D U (xs @ ys) X = ipurge-ref-aux I D (sinks-aux I D U xs) ys X
by (simp add: ipurge-ref-aux-def sinks-aux-append)
lemma ipurge-ref-aux-empty [rule-format]:
assumes
A:u \in sinks-aux I D U xs and
B:}\forallx\inX.(u,Dx)\in
shows ipurge-ref-aux I D U xs X = {}
proof (rule equals0I, simp add: ipurge-ref-aux-def, erule conjE)
fix }
assume }x\in
with B have (u,D x) \inI ..

```
```

 moreover assume }\forallu\in\mathrm{ sinks-aux I D U xs. (u,D x) &I
 hence (}u,Dx)\not\in
 using A ..
 ultimately show False
 by contradiction
 qed

```

Here below is the proof of some properties of functions sinks, ipurge-tr, and ipurge-ref. Particularly, using the previous analogous result on function ipurge-tr-aux, it is shown that in case an event list and its intransitive purge for some domain are both traces of a secure process, and the purged list has a future not affected by any purged event, then that future is also a future for the full event list.
lemma sinks-idem:
sinks I D u (ipurge-tr I D uxs) \(=\{ \}\)
by (induction xs rule: rev-induct, simp-all)
lemma sinks-elem [rule-format]:
\(v \in\) sinks I \(D u x s \longrightarrow(\exists x \in\) set \(x s . v=D x)\)
by (induction xs rule: rev-induct, simp-all)
lemma ipurge-tr-append: ipurge-tr IDu(xs@ys)=
    ipurge-tr IDuxs @ ipurge-tr-aux I D (insert u(sinks IDuxs)) ys
proof (simp add: sinks-aux-single-dom [symmetric]
    ipurge-tr-aux-single-dom [symmetric])
qed (simp add: ipurge-tr-aux-append)
lemma ipurge-tr-idem:
ipurge-tr I D u (ipurge-tr I Duxs) = ipurge-tr ID uxs
by (simp add: ipurge-tr-aux-single-dom [symmetric] ipurge-tr-aux-idem)
lemma ipurge-tr-set:
```

set (ipurge-tr I D u xs) \subseteq set xs
by (simp add: ipurge-tr-aux-single-dom [symmetric] ipurge-tr-aux-set)

```
lemma ipurge-tr-del-failures [rule-format]:
    assumes
        \(S\) : secure P I D and
        \(A: \forall v \in \operatorname{sinks} I D\) u ys. \(\forall z \in Z \cup\) set \(z s .(v, D z) \notin I\) and
        \(B:(x s\) @ ipurge-tr I D u ys @ zs, Z) \(\in\) failures \(P\) and
        \(C: x s @ y s \in\) traces \(P\)
    shows (xs @ ys @zs, Z) \(\in\) failures \(P\)
proof (rule ipurge-tr-aux-del-failures [OF S-C, where \(U=\{u\}]\) )
qed (simp add: A sinks-aux-less-single-dom, simp add: B ipurge-tr-aux-single-dom)
lemma ipurge-tr-del-traces [rule-format]:

\section*{assumes}
\(S\) : secure P I D and
\(A: \forall v \in\) sinks I \(D u\) ys. \(\forall z \in\) set \(z s .(v, D z) \notin I\) and
B: xs @ ipurge-tr IDuys @ zs \(\in\) traces \(P\) and
\(C: x s @ y s \in\) traces \(P\)
shows \(x s\) @ ys @ zs \(\in\) traces \(P\)
proof (rule failures-traces [where \(X=\{ \}]\),
rule ipurge-tr-del-failures \([\) OF \(S-C\), where \(u=u]\) )
qed (simp add: A, rule traces-failures [OF B])
lemma ipurge-ref-append:
ipurge-ref \(I D u(x s\) @ ys) \(X=\) ipurge-ref-aux I D (insert u (sinks I D uxs)) ys X
proof (simp add: sinks-aux-single-dom [symmetric]
ipurge-ref-aux-single-dom [symmetric])
qed (simp add: ipurge-ref-aux-append)
lemma ipurge-ref-distrib-inter:
ipurge-ref I D u xs \((X \cap Y)=\) ipurge-ref I D u xs \(X \cap\) ipurge-ref I D u xs \(Y\)
proof (simp add: ipurge-ref-def)
qed blast
lemma ipurge-ref-distrib-union:
ipurge-ref I \(D\) u xs \((X \cup Y)=\) ipurge-ref I \(D\) u xs \(X \cup\) ipurge-ref I \(D\) u xs \(Y\)
proof (simp add: ipurge-ref-def)
qed blast
lemma ipurge-ref-subset:
ipurge-ref I \(D\) u xs \(X \subseteq X\)
by (subst ipurge-ref-def, rule subsetI, simp)
lemma ipurge-ref-subset-union:
ipurge-ref I \(D\) uxs \((X \cup Y) \subseteq X \cup\) ipurge-ref I \(D\) u xs \(Y\)
proof (simp add: ipurge-ref-def)
qed blast
lemma ipurge-ref-subset-insert:
ipurge-ref I D u xs (insert \(x\) X) \(\subseteq\) insert \(x\) (ipurge-ref I D uxs X)
by (simp only: insert-def ipurge-ref-subset-union)
lemma ipurge-ref-empty [rule-format]:
assumes
A: \(v=u \vee v \in\) sinks I \(D u\) xs and
\(B: \forall x \in X .(v, D x) \in I\)
shows ipurge-ref I \(D\) uxs \(X=\{ \}\)
proof (subst ipurge-ref-aux-single-dom [symmetric],
rule ipurge-ref-aux-empty [of v])
show \(v \in\) sinks-aux I \(D\{u\} x s\)
```

 using A by (simp add: sinks-aux-single-dom)
 next
fix }
assume }x\in
with B show (v,Dx) \inI ..
qed

```

Finally, in what follows, properties process-prop-1, process-prop-5, and pro-cess-prop- 6 of processes (cf. [8]) are put into the form of introduction rules.
lemma process-rule-1:
\(([],\{ \}) \in\) failures \(P\)
proof (simp add: failures-def)
have Rep-process \(P \in\) process-set (is ? \(P^{\prime} \in-\) ) by (rule Rep-process)
thus \(([],\{ \}) \in f s t ? P^{\prime}\)
by (simp add: process-set-def process-prop-1-def)
qed
lemma process-rule-5 [rule-format]:
\(x s \in\) divergences \(P \longrightarrow x s\) @ \([x] \in\) divergences \(P\)
proof (simp add: divergences-def)
have Rep-process \(P \in\) process-set (is ? \(P^{\prime} \in-\) )
by (rule Rep-process)
hence \(\forall x s x . x s \in\) snd ? \(P^{\prime} \longrightarrow x s @[x] \in\) snd ? \(P^{\prime}\)
by (simp add: process-set-def process-prop-5-def)
thus \(x s \in\) snd ? \(P^{\prime} \longrightarrow x s @[x] \in\) snd? \(P^{\prime}\)
by blast
qed
lemma process-rule-6 [rule-format]:
xs \(\in\) divergences \(P \longrightarrow(x s, X) \in\) failures \(P\)
proof (simp add: failures-def divergences-def)
have Rep-process \(P \in\) process-set (is ? \(P^{\prime} \in-\) )
by (rule Rep-process)
hence \(\forall x s X\). xs \(\in\) snd ? \(P^{\prime} \longrightarrow(x s, X) \in f s t ? P^{\prime}\)
by (simp add: process-set-def process-prop-6-def)
thus \(x s \in\) snd ? \(P^{\prime} \longrightarrow(x s, X) \in f s t ? P^{\prime}\)
by blast
qed
end

\section*{2 Sequential composition and noninterference security}

\author{
theory SequentialComposition
}
imports Propaedeutics
begin

This section formalizes the definitions of sequential processes and sequential composition given in [1], and then proves that under the assumptions discussed above, noninterference security is conserved under sequential composition for any pair of processes sharing an alphabet that contains successful termination. Finally, this result is generalized to an arbitrary list of processes.

\subsection*{2.1 Sequential processes}

In [1], a sequential process is defined as a process whose alphabet contains successful termination. Since sequential composition applies to sequential processes, the first problem put by the formalization of this operation is that of finding a suitable way to represent such a process.

A simple but effective strategy is to identify it with a process having alphabet ' \(a\) option, where ' \(a\) is the native type of its ordinary (i.e. distinct from termination) events. Then, ordinary events will be those matching pattern Some -, whereas successful termination will be denoted by the special event None. This means that the sentences of a sequential process, defined in [1] as the traces after which the process can terminate successfully, will be nothing but the event lists \(x s\) such that \(x s\) @ [None] is a trace (which implies that \(x s\) is a trace as well).

Once a suitable representation of successful termination has been found, the next step is to formalize the properties of sequential processes related to this event, expressing them in terms of the selected representation. The first of the resulting predicates, weakly-sequential, is the minimum required for allowing the identification of event None with successful termination, namely that None may occur in a trace as its last event only. The second predicate, sequential, following what Hoare does in [1], extends the first predicate with an additional requirement, namely that whenever the process can engage in event None, it cannot engage in any other event. A simple counterexample shows that this requirement does not imply the first one: a process whose traces are \(\{[],[\) None \(]\), [None, None \(]\}\) satisfies the second requirement, but not the first one.

Moreover, here below is the definition of a further predicate, secure-termination, which applies to a security policy rather than to a process, and is satisfied just in case the policy does not allow event None to be affected by confidential events, viz. by ordinary events not allowed to affect some event in the alphabet. Interestingly, this property, which will prove to be necessary for the target theorem to hold, is nothing but the CSP counterpart of a condition required for a security type system to enforce termination-sensitive nonin-
terference security of programs, namely that program termination must not depend on confidential data (cf. [5], section 9.2.6).
```

definition sentences :: 'a option process \Rightarrow 'a option list set where
sentences $P \equiv\{$ xs. xs @ $[$ None $] \in$ traces $P\}$
definition weakly-sequential :: 'a option process \Rightarrow bool where
weakly-sequential $P \equiv$
$\forall x s \in$ traces P. None \notin set (butlast $x s$)
definition sequential :: 'a option process \Rightarrow bool where
sequential $P \equiv$
$(\forall x s \in$ traces P. None \notin set (butlast $x s)) \wedge$
($\forall x s \in$ sentences P. next-events P xs $=\{N o n e\})$

```
definition secure-termination :: ('d \(\times\) 'd) set \(\Rightarrow\left({ }^{\prime}\right.\) a option \(\Rightarrow\) 'd) \(\Rightarrow\) bool where secure-termination I \(D \equiv\)
\(\forall x .(D x, D\) None \() \in I \wedge x \neq\) None \(\longrightarrow(\forall u \in\) range \(D .(D x, u) \in I)\)

Here below is the proof of some useful lemmas involving the constants just defined. Particularly, it is proven that process sequentiality is indeed stronger than weak sequentiality, and a sentence of a refusals union closed (cf. [9]), sequential process admits the set of all the ordinary events of the process as a refusal. The use of the latter lemma in the proof of the target security conservation theorem is the reason why the theorem requires to assume that the first of the processes to be composed be refusals union closed (cf. below).
```

lemma seq-implies-weakly-seq:
sequential $P \Longrightarrow$ weakly-sequential P
by (simp add: weakly-sequential-def sequential-def)
lemma weakly-seq-sentences-none:
assumes
WS: weakly-sequential P and
A: xs \in sentences P
shows None \notin set xs
proof -
have $\forall x s \in$ traces P. None \notin set (butlast $x s$)
using $W S$ by (simp add: weakly-sequential-def)
moreover have $x s$ @ $[$ None $] \in$ traces P
using A by (simp add: sentences-def)
ultimately have None \notin set (butlast (xs @ [None])) ..
thus ?thesis
by simp
qed

```
```

lemma seq-sentences-none:
assumes
S: sequential P and
A: xs \in sentences P and
B:xs @ y\# ys \in traces P
shows y=None
proof -
have \forallxs \in sentences P. next-events P xs ={None}
using S by (simp add: sequential-def)
hence next-events P xs ={None}
using A ..
moreover have (xs @ [y]) @ ys \in traces P
using }B\mathrm{ by simp
hence xs @ [y]\in traces P
by (rule process-rule-2-traces)
hence y next-events P xs
by (simp add: next-events-def)
ultimately show ?thesis
by simp
qed
lemma seq-sentences-ref:
assumes
A: ref-union-closed P and
B: sequential P and
C:xs \in sentences P
shows (xs, {x. x\not=None}) \in failures P
(is (-, ?X)\in -)
proof -
have (}\exists\textrm{X}.X\in\mathrm{ singleton-set ? X) }
(\forallX\in singleton-set ?X. (xs,X) f failures P)}
(xs, \bigcupX 就gleton-set ?X. X) f failures P
using }A\mathrm{ by (simp add: ref-union-closed-def)
moreover have }\existsx.x\in?
by blast
hence }\existsX.X\in\mathrm{ singleton-set ?X
by (simp add: singleton-set-some)
ultimately have (}\forallX\in\mathrm{ singleton-set ?X. (xs,X) f failures P)}
(xs, \bigcupX singleton-set ?X. X) failures P ..
moreover have }\forallX\in\mathrm{ singleton-set ?X. (xs,X) f failures P
proof (rule ballI, simp add: singleton-set-def del: not-None-eq,
erule exE, erule conjE, simp (no-asm-simp))
fix }x\mathrm{ :: 'a option
assume D: x\not= None
have xs @ [None] \in traces P
using C by (simp add: sentences-def)
hence xs \in traces P
by (rule process-rule-2-traces)

```
```

 hence \((x s,\{ \}) \in\) failures \(P\)
 by (rule traces-failures)
 hence (xs @ \([x],\{ \}) \in\) failures \(P \vee(x s,\{x\}) \in\) failures \(P\)
 by (rule process-rule-4)
 thus \((x s,\{x\}) \in\) failures \(P\)
 proof (rule disjE, rule-tac ccontr, simp-all)
 assume (xs @ \([x],\{ \}) \in\) failures \(P\)
 hence \(x s @[x] \in\) traces \(P\)
 by (rule failures-traces)
 with \(B\) and \(C\) have \(x=\) None
 by (rule seq-sentences-none)
 thus False
 using \(D\) by contradiction
 qed
 qed
ultimately have $(x s, \bigcup X \in$ singleton-set ? $X . X) \in$ failures P..
thus ?thesis
by (simp only: singleton-set-union)
qed

```

\subsection*{2.2 Sequential composition}

In what follows, the definition of the failures resulting from the sequential composition of two processes \(P, Q\) given in [1] is formalized as the inductive definition of set seq-comp-failures \(P Q\). Then, the sequential composition of \(P\) and \(Q\), denoted by means of notation \(P ; Q\) following [1], is defined as the process having seq-comp-failures \(P Q\) as failures set and the empty set as divergences set.
For the sake of generality, this definition is based on the mere implicit assumption that the input processes be weakly sequential, rather than sequential. This slightly complicates things, since the sentences of process \(P\) may number further events in addition to None in their future.
Therefore, the resulting refusals of a sentence \(x s\) of \(P\) will have the form insert None \(X \cap Y\), where \(X\) is a refusal of \(x s\) in \(P\) and \(Y\) is an initial refusal of \(Q\) (cf. rule SCF-R2). In fact, after \(x s\), process \(P ; Q\) must be able to refuse None if \(Q\) is, whereas it cannot refuse an ordinary event unless both \(P\) and \(Q\), in their respective states, can.
Moreover, a trace xs of \(P ; Q\) may result from different combinations of a sentence of \(P\) with a trace of \(Q\). Thus, in order that the refusals of \(P ; Q\) be closed under set union, the union of any two refusals of \(x s\) must still be a refusal (cf. rule \(S C F-R_{4}\) ). Indeed, this property will prove to be sufficient to ensure that for any two processes whose refusals are closed under set union, their sequential composition still be such, which is what is expected for any process of practical significance (cf. [9]).
According to the definition given in [1], a divergence of \(P ; Q\) is either a di-
vergence of \(P\), or the concatenation of a sentence of \(P\) with a divergence of \(Q\). Apparently, this definition does not match the formal one stated here below, which identifies the divergences set of \(P ; Q\) with the empty set. Nonetheless, as remarked above, sequential composition does not make sense unless the input processes are weakly sequential, since this is the minimum required to confer the meaning of successful termination on the corresponding alphabet symbol. But a weakly sequential process cannot have any divergence, so that the two definitions are actually equivalent. In fact, a divergence is a trace such that, however it is extended with arbitrary additional events, the resulting event list is still a trace (cf. process properties process-prop-5 and process-prop- 6 in [8]). Therefore, if \(x s\) were a divergence, then \(x s\) @ [None, None] would be a trace, which is impossible in case the process satisfies predicate weakly-sequential.
inductive-set seq-comp-failures ::
'a option process \(\Rightarrow\) ' \(a\) option process \(\Rightarrow\) ' \(a\) option failure set
for \(P\) :: 'a option process and \(Q\) :: 'a option process where
SCF-R1: \(\llbracket x s \notin\) sentences \(P ;(x s, X) \in\) failures \(P ;\) None \(\notin\) set \(x s \rrbracket \Longrightarrow\)
\((x s, X) \in\) seq-comp-failures \(P Q \mid\)
SCF-R2: \(\llbracket x s \in\) sentences \(P ;(x s, X) \in\) failures \(P ;([], Y) \in\) failures \(Q \rrbracket \Longrightarrow\) (xs, insert None \(X \cap Y) \in\) seq-comp-failures \(P Q \mid\)

SCF-R3: \(\llbracket x s \in\) sentences \(P ;(y s, Y) \in\) failures \(Q ; y s \neq[] \rrbracket \Longrightarrow\) \((x s @ y s, Y) \in\) seq-comp-failures \(P Q \mid\)

SCF-R4: \(\llbracket(x s, X) \in\) seq-comp-failures \(P Q ;(x s, Y) \in\) seq-comp-failures \(P Q \rrbracket \Longrightarrow\) \((x s, X \cup Y) \in\) seq-comp-failures \(P Q\)
definition seq-comp ::
'a option process \(\Rightarrow\) ' \(a\) option process \(\Rightarrow\) 'a option process (infixl ; 60) where
\(P ; Q \equiv\) Abs-process (seq-comp-failures \(P Q,\{ \})\)

Here below is the proof that, for any two processes \(P, Q\) defined over the same alphabet containing successful termination, set seq-comp-failures \(P Q\) indeed enjoys the characteristic properties of the failures set of a process as defined in [8] provided that \(P\) is weakly sequential, which is what happens in any meaningful case.
lemma seq-comp-prop-1:
\(([],\{ \}) \in\) seq-comp-failures \(P Q\)
proof (cases []\(\in\) sentences \(P\) )
case False
```

 moreover have ([], {}) \in failures P
 by (rule process-rule-1)
 moreover have None & set []
 by simp
 ultimately show ?thesis
 by (rule SCF-R1)
 next
case True
moreover have ([],{}) \in failures P
by (rule process-rule-1)
moreover have ([], {}) \in failures Q
by (rule process-rule-1)
ultimately have ([], {None} \cap{})\in seq-comp-failures P Q
by (rule SCF-R2)
thus ?thesis by simp
qed
lemma seq-comp-prop-2-aux [rule-format]:
assumes WS: weakly-sequential P
shows (ws,X)\in seq-comp-failures }PQ
ws=xs@ @ [x] \longrightarrow(xs,{})\in seq-comp-failures P Q
proof (erule seq-comp-failures.induct, rule-tac [!] impI, simp-all, erule conjE)
fix }\mp@subsup{X}{}{\prime
assume
A:(xs@ @ [], X)) failures P and
B:None \& set xs
have }\mp@subsup{A}{}{\prime}:(xs,{})\in\mathrm{ failures P
using A by (rule process-rule-2)
show (xs, {}) \in seq-comp-failures P Q
proof (cases xs \in sentences P)
case False
thus ?thesis
using A' and B by (rule SCF-R1)
next
case True
have ([], {}) \in failures Q
by (rule process-rule-1)
with True and A' have (xs, {None} \cap{}) \in seq-comp-failures P Q
by (rule SCF-R2)
thus ?thesis by simp
qed
next
fix }\mp@subsup{X}{}{\prime
assume A:(xs @ [x], X') \in failures P
hence }\mp@subsup{A}{}{\prime}:(xs,{})\in\mathrm{ failures }
by (rule process-rule-2)
show (xs, {}) \in seq-comp-failures P Q
proof (cases xs \in sentences P)
case False

```
```

 have }\forallxs\in\mathrm{ traces P. None & set (butlast xs)
 using WS by (simp add: weakly-sequential-def)
 moreover have xs @ [x]\in traces P
 using A by (rule failures-traces)
 ultimately have None & set (butlast (xs @ [x])) ..
 hence None & set xs by simp
 with False and A' show ?thesis
 by (rule SCF-R1)
 next
 case True
 have ([],{})\in failures Q
 by (rule process-rule-1)
 with True and }\mp@subsup{A}{}{\prime}\mathrm{ have (xs,{None} }\cap{})\in\mathrm{ seq-comp-failures P Q
 by (rule SCF-R2)
 thus?thesis by simp
 qed
 next
fix xs' ys Y
assume
A: xs'@ ys = xs@ @ [x] and
B:xs' \in sentences P and
C:(ys,Y) failures Q and
D: ys \not= []
have }\existsyy\mp@subsup{s}{}{\prime}.ys=y\mp@subsup{s}{}{\prime}@ [y
using D by (rule-tac xs = ys in rev-cases, simp-all)
then obtain y and ys' where D':ys=y\mp@subsup{s}{}{\prime}@ [y]
by blast
hence xs=xs'@ys'
using A by simp
thus (xs, {})\in seq-comp-failures PQ
proof (cases ys' = [], simp-all)
case True
have xs' @ [None] \in traces P
using }B\mathrm{ by (simp add: sentences-def)
hence xs' }\in\mathrm{ traces P
by (rule process-rule-2-traces)
hence (xs', {}) \in failures P
by (rule traces-failures)
moreover have ([],{})\in failures Q
by (rule process-rule-1)
ultimately have (x\mp@subsup{s}{}{\prime},{None} \cap {})\in seq-comp-failures P Q
by (rule SCF-R2 [OF B])
thus (xs',{})\in seq-comp-failures P Q
by simp
next
case False
have (ys' @ [y], Y) \in failures Q
using C and D' by simp
hence C':(ys', {})\in failures Q

```
```

 by (rule process-rule-2)
 with B show (x\mp@subsup{s}{}{\prime}@ys', {})\in seq-comp-failures P Q
 using False by (rule SCF-R3)
 qed
 qed
lemma seq-comp-prop-2:
assumes WS: weakly-sequential P
shows (xs @ [x], X) \in seq-comp-failures P Q \Longrightarrow
(xs, {}) \in seq-comp-failures PQ
by (erule seq-comp-prop-2-aux [OF WS], simp)
lemma seq-comp-prop-3 [rule-format]:
(xs, Y) \in seq-comp-failures P Q X\subseteqY\longrightarrow
(xs,X) \in seq-comp-failures P Q
proof (induction arbitrary: X rule: seq-comp-failures.induct, rule-tac [!] impI)
fix xs X Y
assume
A: xs \not\in sentences P and
B:(xs,X)\in failures P and
C: None \& set xs and
D: Y\subseteqX
have (xs,Y)\in failures P
using }B\mathrm{ and D by (rule process-rule-3)
with A show (xs,Y) \in seq-comp-failures P Q
using C by (rule SCF-R1)
next
fix xs X Y Z
assume
A: xs \in sentences P and
B:(xs,X) \in failures P and
C:([],Y) f failures Q and
D:Z\subseteqinsert None }X\cap
have Z - {None }}\subseteq
using D by blast
with B have (xs, Z - {None}) \in failures P
by (rule process-rule-3)
moreover have Z\subseteqY
using D by simp
with C have ([],Z) failures }
by (rule process-rule-3)
ultimately have (xs, insert None (Z - {None}) \cap Z)\in seq-comp-failures P Q
by (rule SCF-R2 [OF A])
moreover have insert None (Z - {None}) \cap Z=Z
by blast
ultimately show (xs,Z)\in seq-comp-failures P Q
by simp
next
fix xs ys X Y

```
```

 assume
 A:xs \in sentences P and
 B:(ys,Y)\in failures Q and
 C:ys\not=[] and
 D: X\subseteqY
 have (ys,X)\in failures Q
 using }B\mathrm{ and D by (rule process-rule-3)
 with A show (xs@ys,X)\in seq-comp-failures P Q
 using C by (rule SCF-R3)
 next
fix xs X Y Z
assume
A: \W.W\subseteqX\longrightarrow(xs,W)\in seq-comp-failures P Q and
B:\bigwedgeW.W\subseteqY\longrightarrow(xs,W)\in seq-comp-failures P Q and
C:Z\subseteqX\cupY
have }Z\capX\subseteqX\longrightarrow(xs,Z\capX)\in\mathrm{ seq-comp-failures P Q
using A.
hence (xs,Z\capX)\inseq-comp-failures P Q
by simp
moreover have Z\capY\subseteqY\longrightarrow(xs,Z\capY)\in seq-comp-failures P Q
using B .
hence (xs,Z\capY)\in seq-comp-failures P Q
by simp
ultimately have (xs,Z\capX\cupZ\capY)\inseq-comp-failures P Q
by (rule SCF-R4)
hence (xs,Z\cap (X\cupY))\in seq-comp-failures P Q
by (simp add: Int-Un-distrib)
moreover have Z\cap (X\cupY)=Z
using C by (rule Int-absorb2)
ultimately show (xs,Z)\in seq-comp-failures P Q
by simp
qed
lemma seq-comp-prop-4:
assumes WS: weakly-sequential P
shows (xs, X) \in seq-comp-failures }PQ
(xs @ [x], {}) \in seq-comp-failures P Q\vee
(xs, insert x X) \in seq-comp-failures P Q
proof (erule seq-comp-failures.induct, simp-all)
fix xs X
assume
A: xs \# sentences P and
B:(xs,X)\in failures P and
C: None \& set xs
have (xs@ @ [x], {}) \in failures P \vee
(xs, insert x X) failures P
using B by (rule process-rule-4)
thus (xs @ [x], {}) \in seq-comp-failures P Q \vee
(xs, insert x X) \in seq-comp-failures P Q

```
```

proof
assume D:(xs @ [x],{}) \in failures P
show ?thesis
proof (cases xs @ [x]\in sentences P)
case False
have None \& set (xs @ [x])
proof (simp add: C, rule notI)
assume None = x
hence (xs @ [None], {}) \in failures P
using D by simp
hence xs @ [None] \in traces P
by (rule failures-traces)
hence xs \in sentences P
by (simp add: sentences-def)
thus False
using A by contradiction
qed
with False and D have (xs @ [x], {}) \in seq-comp-failures P Q
by (rule SCF-R1)
thus ?thesis..
next
case True
have ([], {}) \in failures Q
by (rule process-rule-1)
with True and D have (xs@ @x], {None } \cap {}) \in seq-comp-failures P Q
by (rule SCF-R2)
thus ?thesis by simp
qed
next
assume (xs, insert x X) f failures P
with A have (xs, insert x X) \in seq-comp-failures P Q
using C by (rule SCF-R1)
thus ?thesis ..
qed
next
fix xs X Y
assume
A: xs \in sentences P and
B:(xs,X)\in failures P and
C:([],Y) f failures Q
show (xs@ @ x], {}) \in seq-comp-failures P Q \vee
(xs, insert x (insert None X \capY)) \in seq-comp-failures P Q
proof (cases x = None, simp)
case True
have ([] @ [None], {})\in failures Q\vee ([], insert None Y) f failures Q
using C by (rule process-rule-4)
thus (xs @ [None], {}) \in seq-comp-failures P Q\vee
(xs, insert None (insert None X \capY)) \in seq-comp-failures P Q
proof (rule disjE, simp)

```
```

 assume ([None], {}) \in failures Q
 moreover have [None] }\not=[
 by simp
 ultimately have (xs @ [None], {}) \in seq-comp-failures P Q
 by (rule SCF-R3 [OF A])
 thus ?thesis..
 next
 assume ([], insert None Y) failures Q
 with A and B have (xs, insert None X \cap insert None Y)
 * seq-comp-failures P Q
 by (rule SCF-R2)
 moreover have insert None X\cap insert None Y=
 insert None (insert None X \capY)
 by blast
 ultimately have (xs, insert None (insert None X \capY))
 \epsilon seq-comp-failures P Q
 by simp
 thus ?thesis ..
 qed
 next
case False
have (xs @ [x], {}) \in failures P\vee (xs, insert x X) \in failures P
using B by (rule process-rule-4)
thus ?thesis
proof (rule disjE, cases xs @ [x] { sentences P)
assume
D:xs@ [x]\not\in sentences P and
E:(xs@ @ x], {}) \in failures P
have None \& set xs
using WS and A by (rule weakly-seq-sentences-none)
hence None \& set (xs @ [x])
using False by (simp del: not-None-eq)
with D and E have (xs @ [x],{})\in seq-comp-failures P Q
by (rule SCF-R1)
thus ?thesis..
next
assume
xs @ [x] \in sentences P and
(xs@ @x], {}) \in failures P
moreover have ([],{})\in failures Q
by (rule process-rule-1)
ultimately have (xs@ @x],{None} \cap {}) \in seq-comp-failures P Q
by (rule SCF-R2)
thus ?thesis by simp
next
assume D:(xs, insert x X) f failures P
have ([] @ [x],{}) f failures Q \vee ([], insert x Y) failures Q
using C by (rule process-rule-4)
thus ?thesis

```
```

 proof (rule disjE, simp)
 assume ([x], {}) \in failures Q
 moreover have [x]\not=[]
 by simp
 ultimately have (xs @ [x], {}) \in seq-comp-failures P Q
 by (rule SCF-R3 [OF A])
 thus ?thesis..
 next
 assume ([], insert x Y) \in failures Q
 with A and D have (xs, insert None (insert x X) \cap insert x Y)
 seq-comp-failures P Q
 by (rule SCF-R2)
 moreover have insert None (insert x X) \cap insert x Y =
 insert x (insert None }X\capY\mathrm{)
 by blast
 ultimately have (xs, insert x (insert None X \capY))
 \epsilonseq-comp-failures P Q
 by simp
 thus ?thesis ..
 qed
 qed
 qed
 next
fix xs ys Y
assume
A: xs \in sentences P and
B:(ys,Y)\in failures Q and
C:ys \not=[]
have (ys @ [x], {})\in failures Q\vee (ys, insert x Y) f failures Q
using B by (rule process-rule-4)
thus (xs @ ys @ [x],{})\in seq-comp-failures P Q \vee
(xs@ ys, insert x Y) \in seq-comp-failures P Q
proof
assume (ys @ [x],{}) \in failures Q
moreover have ys @ [x] \# []
by simp
ultimately have (xs @ ys @ [x], {}) \in seq-comp-failures P Q
by (rule SCF-R3 [OF A])
thus ?thesis ..
next
assume (ys, insert x Y) f failures Q
with A have (xs @ ys, insert x Y) \in seq-comp-failures P Q
using C by (rule SCF-R3)
thus ?thesis ..
qed
next
fix xs X Y
assume
(xs@ @x],{})\in seq-comp-failures P Q \vee

```
```

 (xs, insert x X) \in seq-comp-failures P Q and
 (xs@ @x],{})\in seq-comp-failures P Q \vee
 (xs, insert x Y) \in seq-comp-failures P Q
 thus (xs @ [x], {}) \in seq-comp-failures P Q \vee
 (xs, insert x (X\cupY)) \in seq-comp-failures P Q
 proof (cases (xs @ [x], {})\in seq-comp-failures P Q , simp-all)
 assume
 (xs, insert x X) \in seq-comp-failures P Q and
 (xs, insert x Y) \in seq-comp-failures P Q
 hence (xs, insert x X \cup insert x Y) \in seq-comp-failures P Q
 by (rule SCF-R4)
 thus (xs, insert x (X\cupY))\in seq-comp-failures P Q
 by simp
 qed
 qed
lemma seq-comp-rep:
assumes WS: weakly-sequential P
shows Rep-process (P;Q)=(seq-comp-failures P Q,{})
proof (subst seq-comp-def, rule Abs-process-inverse, simp add: process-set-def,
(subst conj-assoc [symmetric])+,(rule conjI)+)
show process-prop-1 (seq-comp-failures P Q, {})
proof (simp add: process-prop-1-def)
qed (rule seq-comp-prop-1)
next
show process-prop-2 (seq-comp-failures P Q, {})
proof (simp add: process-prop-2-def del: all-simps,(rule allI)+, rule impI)
qed (rule seq-comp-prop-2 [OF WS])
next
show process-prop-3 (seq-comp-failures P Q,{})
proof (simp add: process-prop-3-def del: all-simps, (rule allI)+, rule impI,
erule conjE)
qed (rule seq-comp-prop-3)
next
show process-prop-4 (seq-comp-failures P Q, {})
proof (simp add: process-prop-4-def, (rule allI)+, rule impI)
qed (rule seq-comp-prop-4 [OF WS])
next
show process-prop-5 (seq-comp-failures P Q, {})
by (simp add: process-prop-5-def)
next
show process-prop-6 (seq-comp-failures P Q, {})
by (simp add: process-prop-6-def)
qed

```

Here below, the previous result is applied to derive useful expressions for the outputs of the functions returning the elements of a process, as defined in [8] and [9], when acting on the sequential composition of a pair of processes.
lemma seq-comp-failures:
> weakly-sequential \(P \Longrightarrow\)

failures \((P ; Q)=\) seq-comp-failures \(P Q\)
by (drule seq-comp-rep [where \(Q=Q]\), simp add: failures-def)
lemma seq-comp-divergences:
weakly-sequential \(P \Longrightarrow\) divergences \((P ; Q)=\{ \}\)
by (drule seq-comp-rep [where \(Q=Q]\), simp add: divergences-def)
lemma seq-comp-futures:
weakly-sequential \(P \Longrightarrow\)
futures \((P ; Q) x s=\{(y s, Y) .(x s @ y s, Y) \in\) seq-comp-failures \(P Q\}\)
by (simp add: futures-def seq-comp-failures)
lemma seq-comp-traces:
weakly-sequential \(P \Longrightarrow\)
traces \((P ; Q)=\) Domain (seq-comp-failures \(P Q\) )
by (simp add: traces-def seq-comp-failures)
lemma seq-comp-refusals:
weakly-sequential \(P \Longrightarrow\) refusals \((P ; Q) x s \equiv\) seq-comp-failures \(P Q\) " \(\{x s\}\)
by (simp add: refusals-def seq-comp-failures)
lemma seq-comp-next-events:
weakly-sequential \(P \Longrightarrow\)
next-events \((P ; Q) x s=\{x\). xs @ \([x] \in\) Domain \((\) seq-comp-failures \(P Q)\}\)
by (simp add: next-events-def seq-comp-traces)

\subsection*{2.3 Conservation of refusals union closure and sequentiality under sequential composition}

Here below is the proof that, for any two processes \(P, Q\) and any failure \((x s, X)\) of \(P ; Q\), the refusal \(X\) is the union of a set of refusals where, for any such refusal \(W,(x s, W)\) is a failure of \(P ; Q\) by virtue of one of rules \(S C F-R 1, S C F-R 2\), or \(S C F-R 3\).
The converse is also proven, under the assumption that the refusals of both \(P\) and \(Q\) be closed under union: namely, for any trace \(x s\) of \(P ; Q\) and any set of refusals where, for any such refusal \(W,(x s, W)\) is a failure of the aforesaid kind, the union of these refusals is still a refusal of \(x s\).
The proof of the latter lemma makes use of the axiom of choice.
lemma seq-comp-refusals-1:
\((x s, X) \in\) seq-comp-failures \(P Q \Longrightarrow \exists R\).
\[
X=(\bigcup n \in\{. . \text { length } x s\} . \bigcup W \in R n . W) \wedge
\]
```

 (}\forallW\inR0
    ```

```

 xs \in sentences P}\wedge(\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures }Q
 W= insert None U\capV))^
 (}\foralln\in{0<..length xs }. \forallW G R n.
 take (length xs - n) xs \in sentences P ^
 (drop (length xs - n) xs,W)\in failures Q)^
 (\existsn\in{..length xs}. \existsW.W\inR n)
 (is - \Longrightarrow\existsR. ?T R xs X)
 proof (erule seq-comp-failures.induct, (erule-tac [4] exE)+)
fix xs X
assume
A: xs \& sentences P and
B:(xs,X)\in failures P and
C: None \& set xs
show \existsR.?T R xs X
proof (rule-tac x = \lambdan. if n=0 then {X} else {} in exI,
simp add: A B C, rule equalityI, rule-tac [!] subsetI, simp-all)
fix }
assume }\existsn\in{..length xs }
\existsW\in if n=0 then {X} else {}. x }\in
thus }x\in
by (simp split: if-split-asm)
qed
next
fix xs X Y
assume
A: xs \in sentences P and
B:(xs,X) f failures P and
C : ([] , Y) \in failures Q
show }\existsR.?TR xs (insert None X\capY
proof (rule-tac x = \lambdan. if n=0 then {insert None X\capY} else {} in exI,
simp add: A, rule conjI, rule equalityI, rule-tac [1-2] subsetI, simp-all)
fix }
assume }\existsn\in{..length xs}
\existsW\in if n=0 then {insert None X \capY} else {}. x
thus (x=None \vee x\inX)\wedge x\inY
by (simp split: if-split-asm)
next
show }\existsU.(xs,U)\in\mathrm{ failures }P\wedge(\existsV.([],V)\in\mathrm{ failures }Q
insert None }X\capY=\mathrm{ insert None }U\capV
proof (rule-tac x = X in exI, rule conjI, simp add: B)
qed (rule-tac x = Y in exI, rule conjI, simp-all add: C)
qed
next
fix xs ys Y
assume
A: xs \in sentences P and
B:(ys,Y)\in failures Q and

```
```

 C:ys \not=[]
 show \existsR.?T R (xs @ ys) Y
 proof (rule-tac x = \lambdan. if n= length ys then {Y} else {} in exI,
 simp add: A B C, rule equalityI, rule-tac [!] subsetI, simp-all)
 fix }
 assume }\existsn\in{..length xs + length ys}
 \existsW\in if n= length ys then {Y} else {}. x }\in
 thus }x\in
 by (simp split: if-split-asm)
 qed
 next
fix xs X Y Rx Ry
assume
A: ?T Rx xs X and
B: ?T Ry xs Y
show }\existsR\mathrm{ . ?T R xs (X UY)
proof (rule-tac x = \lambdan. Rx n \cupRy n in exI, rule conjI, rule-tac [2] conjI,
rule-tac [3] conjI, rule-tac [2] ballI, (rule-tac [3] ballI)+)
have }X\cupY=(\bigcupn\leqlength xs. \bigcupW G Rx n.W)
(\bigcupn\leqlength xs. UW\inRy n.W)
using }A\mathrm{ and B by simp
also have ... =(\bigcupn\leq length xs. (\bigcupW G Rx n.W)\cup(\bigcupW\inRy n.W))
by blast
also have ... =(\bigcupn\leq length xs. \bigcupW GRx n\cupRy n.W)
by simp
finally show }X\cupY=(\bigcupn\leqlength xs. \bigcupW GRxn\cupRyn.W)
next
fix W
assume W\inRx 0\cupRy0
thus
xs \not\in sentences P ^ None \# set xs ^ (xs,W) f failures P \vee
xs \in sentences }P\wedge(\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures Q ^
W = insert None U\capV)
(is ?T' W)
proof
have }\forallW\inRx 0.?T'W
using A by simp
moreover assume W\inRx 0
ultimately show ?thesis ..
next

```

```

 using B by simp
 moreover assume W\inRy 0
 ultimately show ?thesis ..
 qed
 next
fix n W
assume C: n \in{0<..length xs }
assume W\inRxn\cupRyn

```
```

 thus
 take (length xs - n) xs \in sentences P ^
 (drop (length xs - n) xs,W) f failures Q
 (is ?T' n W)
 proof
 have }\foralln\in{0<..length xs}..\forallW\inRx n. ?T' n W
 using A by simp
 hence }\forallW\inRxn.?T' n W
 using C ..
 moreover assume W \inRx n
 ultimately show ?thesis ..
 next
 have }\foralln\in{0<..length xs }. \forallW\inRyn.?T' n W
 using B by simp
 hence }\forallW\inRyn.?T' n W
 using C ..
 moreover assume W\inRy n
 ultimately show ?thesis ..
 qed
 next
 have }\existsn\in{..length xs}.\existsW.W\inRx
 using }A\mathrm{ by simp
 then obtain n where C: n \in {..length xs} and D:\existsW.W\inRx n ..
 obtain W where W\inRx n
 using D ..
 hence W\inRx n\cupRy n..
 hence }\existsW.W\inRxn\cupRyn.
 thus }\existsn\in{..length xs}.\existsW.W\inRx n\cupRy
 using C ..
 qed
 qed
lemma seq-comp-refusals-finite [rule-format]:
assumes A:xs }\in\mathrm{ Domain (seq-comp-failures P Q)
shows finite A\Longrightarrow(\forallx\inA. (xs,F x) \in seq-comp-failures P Q)}
(xs, \bigcupx\inA.Fx)\in seq-comp-failures P Q
proof (erule finite-induct, simp, rule-tac [2] impI)
have }\existsX.(xs,X)\in seq-comp-failures P Q
using }A\mathrm{ by (simp add: Domain-iff)
then obtain X where (xs,X) \in seq-comp-failures P Q ..
moreover have {}\subseteqX ..
ultimately show (xs, {}) \in seq-comp-failures P Q
by (rule seq-comp-prop-3)
next
fix }\mp@subsup{x}{}{\prime}
assume B:}\forallx\in\mathrm{ insert }\mp@subsup{x}{}{\prime}A.(xs,Fx)\in seq-comp-failures P Q
hence (xs,F x')\in seq-comp-failures P Q
by simp
moreover assume (}\forallx\inA.(xs,Fx)\in\mathrm{ seq-comp-failures P Q)}

```
```

 (xs, \bigcupx\inA.Fx)\in seq-comp-failures P Q
 hence (xs, \bigcupx\inA.Fx)\inseq-comp-failures PQ
 using B by simp
 ultimately have (xs,F x'\cup (\bigcupx\inA.F x)) \in seq-comp-failures P Q
 by (rule SCF-R4)
 thus (xs, \bigcupx\in insert x'A.Fx)\in seq-comp-failures P Q
 by simp
 qed
lemma seq-comp-refusals-2:
assumes
A: ref-union-closed P and
B: ref-union-closed Q and
C:xs \inDomain (seq-comp-failures P Q) and
D:X=(\bigcupn\in{..length xs}. \bigcup W G R n.W)^
(}\forallW\inR0
xs \not\in sentences P^ None \& set xs ^ (xs,W) \in failures P \vee
xs f sentences P}\wedge(\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures }Q
W = insert None U\capV)) ^
(\foralln\in{0<..length xs }.}\forallW\inRn
take (length xs - n) xs \in sentences P ^
(drop (length xs - n) xs,W) f failures Q)
shows (xs,X) \in seq-comp-failures P Q
proof -
have }\existsY.(xs,Y)\in seq-comp-failures P Q
using C by (simp add: Domain-iff)
then obtain Y where (xs,Y)\in seq-comp-failures P Q ..
moreover have {}\subseteq Y ..
ultimately have E:(xs,{})\in seq-comp-failures P Q
by (rule seq-comp-prop-3)
have (xs, \bigcupW\inR 0.W) \in seq-comp-failures P Q
proof (cases \existsW.W\inR 0, cases xs }\in\mathrm{ sentences P)
assume }\neg(\existsW.W\inR0
thus ?thesis
using E by simp
next
assume
F:\existsW.W\inR 0 and
G:xs \not\in sentences P
have H:\forallW\inR 0. None \& set xs ^ (xs,W) \in failures P
using D and G by simp
show ?thesis
proof (rule SCF-R1 [OF G])
have \forallxs A. (\existsW.W\inA)\longrightarrow(\forallW\inA.(xs,W) { failures P)}
(xs, \bigcupW\inA.W) \in failures P
using A by (simp add: ref-union-closed-def)
hence (\existsW.W\inR0)\longrightarrow(\forallW\inR 0. (xs,W) \in failures P)\longrightarrow
(xs,\bigcupW\inR 0.W) f failures P
by blast

```
```

 thus (xs, \bigcupW\inR0.W)\in failures P
 using F and H by simp
 next
 obtain W where W \inR 0 using F ..
 thus None & set xs
 using H by simp
 qed
 next
assume
F:\existsW.W\inR0 and
G:xs \in sentences P
have}\forallW\inR 0.\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures }Q
W = insert None U\capV
using D and G by simp
hence }\existsF.\forallW\inR0.\existsV.(xs,FW)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures }Q
W = insert None (FW) \capV
by (rule bchoice)
then obtain F where }\forallW\inR0
\existsV.(xs,FW)\in failures P}\wedge([],V)\in\mathrm{ failures }Q
W = insert None (FW)\capV..
hence \existsG.\forallW\inR 0. (xs,FW) \in failures P^([],GW) \in failures Q ^
W = insert None (FW)\capGW
by (rule bchoice)
then obtain G where H:\forallW\inR 0.
(xs,FW)\in failures }P\wedge([],GW)\in\mathrm{ failures Q
W = insert None (FW)\capGW..
have (xs, insert None (UW\inR 0.FW)\cap(UW\inR 0.GW))
\in seq-comp-failures P Q
(is (-, ?S) \in -)
proof (rule SCF-R2 [OF G])
have }\forallxsA.(\existsX.X\inA)\longrightarrow(\forallX\inA.(xs,X)\in\mathrm{ failures P)}
(xs, \bigcupX \inA. X) f failures P
using A by (simp add: ref-union-closed-def)
hence (\existsX.X\inF'R 0)\longrightarrow(\forallX\inF'R 0. (xs,X) f failures P)\longrightarrow
(xs, \bigcupX\inF'R 0. X) \in failures }
(is ?A\longrightarrow? B\longrightarrow? C)
by (erule-tac x = xs in allE, erule-tac x = F` R 0 in allE)
moreover obtain W where W\inR0 using F ..
hence ?A
proof (simp add: image-def, rule-tac x =F W in exI)
qed (rule bexI, simp)
ultimately have ? B \longrightarrow ?C ..
moreover have ? }
proof (rule ballI, simp add: image-def, erule bexE)
fix WX
assume W\inR0
hence (xs,F W) f failures P
using H by simp
moreover assume X =FW

```
```

 ultimately show (xs,X) \in failures P
 by simp
 qed
 ultimately have ?C ..
 thus (xs,\bigcupW\inR0.FW)\in failures P
 by }\operatorname{simp
 next
have }\forallxsA.(\existsY.Y\inA)\longrightarrow(\forallY\inA.(xs,Y)\in failures Q)
(xs, \bigcupY\inA.Y)\in failures Q
using B by (simp add: ref-union-closed-def)

```

```

 ([], \cupY\inG'R 0. Y) f failures Q
 (is ?A\longrightarrow?B\longrightarrow?C)
 by (erule-tac x = [] in allE, erule-tac x = G' R 0 in allE)
 moreover obtain W where W \inR 0 using F ..
 hence ?A
 proof (simp add: image-def, rule-tac x =G W in exI)
 qed (rule bexI, simp)
 ultimately have ? B \longrightarrow ?C ..
 moreover have ? B
 proof (rule ballI, simp add: image-def, erule bexE)
 fix W Y
 assume W\inR0
 hence ([],G W) f failures Q
 using H by simp
 moreover assume Y=G W
 ultimately show ([],Y)\in failures Q
 by simp
 qed
 ultimately have ?C ..
 thus ([], \bigcupW\inR 0.GW) f failures Q
 by simp
 qed
moreover have (UW\inR 0.W)\subseteq?S
proof (rule subsetI, simp, erule bexE)
fix }x
assume I:W\inR 0
hence W= insert None (FW)\capGW
using H by simp
moreover assume x\inW
ultimately have x\in insert None (FW)\capGW
by simp
thus (x=None \vee (\existsW\inR 0. x \inFW))}\wedge(\existsW\inR 0. x\inGW
(is ? A ^ ?B)
proof (rule IntE, simp)
assume x=None \vee x f F W
moreover {
assume x = None
hence ?A ..

```
```

 }
 moreover {
 assume }x\inF
 hence }\existsW\inR0.x\inFW\mathrm{ using I ..
 hence ?A ..
 }
 ultimately have ?A ..
 moreover assume }x\inG
 hence ?B using I ..
 ultimately show ?thesis ..
 qed
 qed
ultimately show ?thesis
by (rule seq-comp-prop-3)
qed
moreover have }\foralln\in{0<..length xs }
(xs, \bigcupW \inR n.W) \in seq-comp-failures P Q
proof
fix n
assume F: n \in{0<..length xs }
hence }G:\forallW\inRn\mathrm{ .
take (length xs - n) xs \in sentences P ^
(drop (length xs - n) xs,W) failures Q
using D by simp
show (xs, \bigcupW GR n.W)\in seq-comp-failures P Q
proof (cases \existsW.W\inR n)
case False
thus ?thesis
using E by simp
next
case True
have (take (length xs - n) xs @ drop (length xs - n) xs, \bigcupW \inR n.W)
\&eq-comp-failures P Q
proof (rule SCF-R3)
obtain W where W \inR n using True ..
thus take (length xs - n) xs \in sentences P
using G by simp
next
have }\forallxsA.(\existsW.W\inA)\longrightarrow(\forallW\inA.(xs,W)\in\mathrm{ failures Q)}
(xs, \bigcupW\inA.W)\in failures Q
using B by (simp add:ref-union-closed-def)
hence (}\exists\textrm{W}.W\inRn)
(\forallW\inR n. (drop (length xs - n) xs,W) f failures Q)}
(drop (length xs - n) xs, \bigcupW\inR n.W) failures Q
by blast
thus (drop (length xs - n) xs, \bigcupW\inR n.W) f failures Q
using G and True by simp
next
show drop (length xs - n) xs \not= []

```
```

 using F by (simp, arith)
 qed
 thus ?thesis
 by simp
 qed
 qed
ultimately have F:}\foralln\in{..length xs}
(xs, \bigcupW GR n.W) \in seq-comp-failures P Q
by auto
have (xs, \bigcupn\in{..length xs }. \bigcupW W R n. W) \in seq-comp-failures P Q
proof (rule seq-comp-refusals-finite [OF C], simp)
fix n
assume }n\in{..length xs
with F show (xs, \bigcup W \inR n.W) \in seq-comp-failures P Q ..
qed
moreover have }X=(\bigcupn\in{..length xs}. \bigcupW GR n.W
using D by simp
ultimately show ?thesis
by simp
qed

```

In what follows, the previous results are used to prove that refusals union closure, weak sequentiality, and sequentiality are conserved under sequential composition. The proof of the first of these lemmas makes use of the axiom of choice.

Since the target security conservation theorem, in addition to the security of both of the processes to be composed, also requires to assume that the first process be refusals union closed and sequential (cf. below), these further conservation lemmas will permit to generalize the theorem to the sequential composition of an arbitrary list of processes.
```

lemma seq-comp-ref-union-closed:
assumes
WS:weakly-sequential P and
A: ref-union-closed P and
B: ref-union-closed Q
shows ref-union-closed (P;Q)
proof (simp only: ref-union-closed-def seq-comp-failures [OF WS],
(rule allI)+,(rule impI)+, erule exE)
fix xs A X'
assume
C:}\forallX\inA.(xs,X)\in\mathrm{ seq-comp-failures P Q and
D: 㕵的A
have }\forallX\inA.\existsR\mathrm{ .
X=(\bigcupn \in{..length xs}. \bigcupW GR n.W)^
(}\forallW\inR0
xs \not\in sentences P ^ None \# set xs ^ (xs,W) \in failures P\vee

```
```

 xs \in sentences P}\wedge(\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures Q ^
 W = insert None U \capV))^
 (}\foralln\in{0<..length xs }. \forallW GR n.
 take (length xs - n) xs \in sentences P ^
 (drop (length xs - n) xs,W) f failures Q)
 (is }\forallX\inA.\existsR\mathrm{ . ?T R X)
 proof
fix }
assume }X\in
with C have (xs,X) \in seq-comp-failures P Q ..
hence}\existsR.X=(\bigcupn\in{..length xs}. \bigcupW\inRn.W)
(}\forallW\inR0
xs \not\in sentences P ^ None \# set xs ^ (xs,W) f failures P\vee
xs f sentences P}\wedge(\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures Q }
W= insert None U\capV))^
(\foralln\in{0<..length xs }.}\forallW\inRn
take (length xs - n) xs \in sentences P ^
(drop (length xs - n) xs,W) failures Q)^
(\existsn\in{..length xs}. \exists W.W\inRn)
by (rule seq-comp-refusals-1)
thus }\existsR\mathrm{ . ?T R X
by blast
qed
hence }\existsR.\forallX\inA.?T(RX)
by (rule bchoice)
then obtain R where E: }\forallX\inA.?T (RX)X ..
have xs \in Domain (seq-comp-failures P Q)
proof (simp add: Domain-iff)
have (xs, X')\in seq-comp-failures P Q
using C and D ..
thus }\existsX.(xs,X)\in\mathrm{ seq-comp-failures P Q ..
qed
moreover have ?T (}\lambdan.\bigcupX\inA.RXn)(\bigcupX\inA.X
proof (rule conjI, rule-tac [2] conjI)
show }(\bigcupX\inA.X)=(\bigcupn\in{..length xs}. \bigcupW W UX\inA.R X n.W
proof (rule equalityI, rule-tac [!] subsetI, simp-all,
erule bexE, (erule-tac [2] bexE)+)
fix x X
assume F:X \in A
hence }X=(\bigcupn\in{..length xs}. \bigcupW WR X n.W
using E by simp
moreover assume }x\in
ultimately have }x\in(\bigcupn\in{..length xs}. \bigcupW W R X n.W
by simp
hence }\existsn\in{..length xs}.\existsW\inRX n. x\in
by simp
hence }\existsX\inA.\existsn\in{..length xs}. \existsW\inRX n. x \in W
using F ..
thus }\existsn\in{..length xs}.\existsX\inA.\existsW\inRXn.x\in

```
```

 by blast
 next
 fix x n X W
 assume F: X\inA
 hence }G:X=(\bigcupn\in{..length xs }. \bigcupW W R X n.W
 using E by simp
 assume }x\inW\mathrm{ and W }WRX
 hence }\existsW\inRXn.x\inW.
 moreover assume n}\in{..length xs
 ultimately have }\existsn\in{..length xs}. \existsW G R X n. x\inW ..
 hence }x\in(\bigcupn\in{..length xs}. \bigcupW\inRXn.W
 by simp
 hence }x\in
 by (subst G)
 thus }\existsX\inA.x\in
 using F ..
 qed
 next
show }\forallW\in\bigcupX\inA.RX 0
xs \not\in sentences P ^ None \& set xs ^ (xs,W) \in failures P \vee
xs \in sentences }P\wedge(\existsUV.(xs,U)\in\mathrm{ failures }P\wedge([],V)\in\mathrm{ failures }Q
W = insert None U\capV)
(is }\forallW\in-. ?T W
proof (rule ballI, simp only: UN-iff, erule bexE)
fix W X
assume X \inA
hence }\forallW\inRX0.?T
using E by simp
moreover assume W\inR X 0
ultimately show ?T W ..
qed
next
show }\foralln\in{0<..length xs}. \forallW\in\bigcupX\inA.RXn
take (length xs - n) xs \in sentences P ^
(drop (length xs - n) xs, W) f failures Q
(is }\foralln\in-.\forallW\in-.?TnW
proof ((rule ballI)+, simp only:UN-iff, erule bexE)
fix n W X
assume X \inA
hence }\foralln\in{0<..length xs }. \forallW\inRX n. ?T n W
using E by simp
moreover assume }n\in{0<..length xs
ultimately have }\forallW\inRXn\mathrm{ . ?T n W ..
moreover assume W\inR X n
ultimately show ?T n W ..
qed
qed
ultimately show (xs, \bigcupX A A. X) \in seq-comp-failures P Q
by (rule seq-comp-refusals-2 [OF A B

```
qed
lemma seq-comp-weakly-sequential:

\section*{assumes}

A: weakly-sequential \(P\) and
B: weakly-sequential \(Q\)
shows weakly-sequential ( \(P ; Q\) )
proof (subst weakly-sequential-def, rule balli, drule traces-failures,
subst (asm) seq-comp-failures [OF A], erule seq-comp-failures.induct, simp-all)
fix \(x s\) :: 'a option list
assume \(C\) : None \(\notin\) set xs
show None \(\notin\) set (butlast xs)
proof
assume None \(\in\) set (butlast xs)
hence None \(\in\) set xs
by (rule in-set-butlastD)
thus False
using \(C\) by contradiction
qed
next
fix \(x s\)
assume \(x s \in\) sentences \(P\)
with \(A\) have \(C\) : None \(\notin\) set \(x s\)
by (rule weakly-seq-sentences-none)
show None \(\notin\) set (butlast xs)
proof
assume None \(\in\) set (butlast xs)
hence None \(\in\) set xs
by (rule in-set-butlastD)
thus False
using \(C\) by contradiction
qed
next
fix \(x s\) ys \(Y\)
assume \(x s \in\) sentences \(P\)
with \(A\) have \(C\) : None \(\notin\) set xs
by (rule weakly-seq-sentences-none)
have \(\forall x s \in\) traces \(Q\). None \(\notin\) set (butlast xs)
using \(B\) by (simp add: weakly-sequential-def)
moreover assume \((y s, Y) \in\) failures \(Q\)
hence \(y s \in\) traces \(Q\)
by (rule failures-traces)
ultimately have None \(\notin\) set (butlast ys) ..
hence None \(\notin\) set (xs @ butlast ys)
using \(C\) by \(\operatorname{simp}\)
moreover assume \(y s \neq[]\)
hence butlast (xs @ys)=xs @ butlast ys
by ( simp add: butlast-append)
ultimately show None \(\notin\) set (butlast (xs @ ys))
```

 by simp
 qed
lemma seq-comp-sequential:
assumes
A: sequential P and
B: sequential Q
shows sequential (P;Q)
proof (subst sequential-def, rule conjI)
have weakly-sequential P
using A by (rule seq-implies-weakly-seq)
moreover have weakly-sequential Q
using B by (rule seq-implies-weakly-seq)
ultimately have weakly-sequential (P ; Q)
by (rule seq-comp-weakly-sequential)
thus }\forallxs\in\mathrm{ traces (P;Q).None \& set (butlast xs)
by (simp add: weakly-sequential-def)
next
have C: weakly-sequential P
using A by (rule seq-implies-weakly-seq)
show }\forallxs\in\mathrm{ sentences (P;Q).next-events (P;Q) xs ={None}
proof (rule ballI, simp add: sentences-def next-events-def, rule equalityI,
rule-tac [!] subsetI, simp-all, (drule traces-failures)+,
simp add: seq-comp-failures [OF C])
fix xs }
assume
D:(xs @ [None], {}) \in seq-comp-failures P Q and
E:(xs@ @x],{}) \in seq-comp-failures P Q
have }\existsR.{}=(\bigcupn\in{..length (xs @ [None])}. \bigcupW GR n.W)
(}\forallW\inR0
xs @ [None] \& sentences P ^
None \#set (xs @ [None]) ^(xs @ [None],W) \in failures P \vee
xs @ [None] \in sentences P ^
(\existsUV.(xs @ [None],U) f failures P ^ ([],V) \in failures Q ^
W= insert None U\capV))}
(\foralln\in{0<..length (xs@ @None])}.}\forallW\inRn
take (length (xs @ [None]) - n) (xs @ [None]) \in sentences P ^
(drop (length (xs @ [None]) - n) (xs @ [None]),W) f failures Q) ^
(\existsn\in{..length (xs@ [None])}. \existsW.W W R n)
(is }\existsR\mathrm{ .?T R)
using D by (rule seq-comp-refusals-1)
then obtain R where F:?T R ..
hence }\existsn\in{..Suc (length xs)}.\existsW.W\inR
by simp
moreover have R 0 = {}
proof (rule equals0I)
fix W
assume W\inR 0
hence xs @ [None] \in sentences P

```
```

 using F by simp
 with C have None & set (xs @ [None])
 by (rule weakly-seq-sentences-none)
 thus False
 by simp
 qed
ultimately have }\existsn\in{0<..Suc (length xs) }. \existsW.W\inR
proof -
assume }\existsn\in{..Suc (length xs)}.\existsW.W\inR
then obtain n where G:n\in{..Suc (length xs)} and H:\existsW.W\inR n ..
assume I: R 0={}
show }\existsn\in{0<..Suc (length xs)}. \existsW.W\inR
proof (cases n)
case 0
hence }\exists\textrm{W}.W\inR
using H by simp
then obtain W where W\inR 0 ..
moreover have W\not\inR 0
using I by (rule equalsOD)
ultimately show ?thesis
by contradiction
next
case (Suc m)
hence }n\in{0<..Suc (length xs)
using G by simp
with H show ?thesis ..
qed
qed
then obtain n and W where G:n\in{0<..Suc (length xs)} and W\inR n
by blast
hence
take (Suc (length xs) - n) (xs @ [None]) \in sentences P ^
(drop (Suc (length xs) - n) (xs @ [None]),W) \in failures Q
using F by simp
moreover have H:Suc (length xs) - n < length xs
using G by (simp, arith)
ultimately have I
take (Suc (length xs) - n) xs \in sentences P ^
(drop (Suc (length xs) - n) xs @ [None],W) Gfailures Q
by simp
have }\existsR.{}=(\bigcupn\in{..length (xs @ [x])}. \bigcupW \inR n.W)
(}\forallW\inR0
xs @ [x] \& sentences P ^
None \& set (xs @ [x])^(xs @ [x],W) \in failures P \vee
xs @ [x] E sentences P ^
(\existsUV.(xs@ @ [x],U) f failures P^([],V) f failures Q^
W= insert None U\capV))^
(\foralln\in{0<..length (xs @ [x])}. }\forallW\inR n
take (length (xs@ [x]) - n) (xs @ [x]) \in sentences P ^

```
```

 \((\) drop \((\) length \((x s @[x])-n)(x s @[x]), W) \in\) failures \(Q) \wedge\)
 $(\exists n \in\{. . l e n g t h(x s @[x])\} . \exists W . W \in R n)$
(is $\exists R$.?TR)
using E by (rule seq-comp-refusals-1)
then obtain R^{\prime} where J :? $T R^{\prime}$.
hence $\exists n \in\{. . S u c$ (length $x s$) $\} . \exists W . W \in R^{\prime} n$
by simp
then obtain n^{\prime} where $K: n^{\prime} \in\{$..Suc (length $\left.x s)\right\}$ and $L: \exists W . W \in R^{\prime} n^{\prime} .$.
have $n^{\prime}=0 \vee n^{\prime} \in\{0<$..Suc (length xs) $\}$
using K by auto
thus $x=$ None
proof
assume $n^{\prime}=0$
hence $\exists W . W \in R^{\prime} 0$
using L by simp
then obtain W^{\prime} where $W^{\prime} \in R^{\prime} 0$..
hence
xs @ $[x] \notin$ sentences $P \wedge$
None \notin set $(x s @[x]) \wedge\left(x s @[x], W^{\prime}\right) \in$ failures $P \vee$
xs @ $[x] \in$ sentences $P \wedge$
$(\exists U V .(x s @[x], U) \in$ failures $P \wedge([], V) \in$ failures $Q \wedge$
$W^{\prime}=$ insert None $U \cap V$)
using J by simp
hence $M: x s$ @ $[x] \in$ traces $P \wedge$ None \notin set $(x s$ @ $[x])$
proof (cases xs @ [x] \in sentences P, simp-all, (erule-tac [2] conjE)+,
simp-all)
case False
assume (xs@ $\left.[x], W^{\prime}\right) \in$ failures P
thus $x s @[x] \in$ traces P
by (rule failures-traces)
next
case True
hence ($x s$ @ $[x]$) @ $[$ None $] \in \operatorname{traces} P$
by (simp add: sentences-def)
hence xs @ $[x] \in$ traces P
by (rule process-rule-2-traces)
moreover have None $\notin \operatorname{set}(x s$ @ $[x]$)
using C and True by (rule weakly-seq-sentences-none)
ultimately show $x s @[x] \in \operatorname{traces} P \wedge$ None $\neq x \wedge$ None \notin set $x s$
by simp
qed
have $x s$ @ $[x]=$ take (Suc (length $x s)-n)(x s @[x])$ @
drop (Suc (length xs) - n) (xs @ [x])
by (simp only: append-take-drop-id)
hence xs @ $[x]=$ take (Suc (length xs) - n) xs @
drop (Suc (length xs) - n) xs @ $[x]$
using H by simp
moreover have $\exists y$ ys.drop (Suc (length $x s$) - n) xs @ $[x]=y \# y s$
by (cases drop (Suc (length xs) - n) xs @ [x], simp-all)

```
```

then obtain y and $y s$ where drop (Suc (length $x s)-n$) xs @ $[x]=y \# y s$
by blast
ultimately have $N: x s$ @ $[x]=$ take (Suc (length $x s)-n$) xs @ y \# ys
by simp
have take (Suc (length $x s$) $-n$) $x s \in$ sentences P
using I ..
moreover have take (Suc (length xs) - n) xs @ y \# ys \in traces P
using M and N by simp
ultimately have $y=$ None
by (rule seq-sentences-none [OFA])
moreover have $y \neq$ None
using M and N by (rule-tac not-sym, simp)
ultimately show ?thesis
by contradiction
next
assume $M: n^{\prime} \in\{0<.$. Suc (length $x s$) $\}$
moreover obtain W^{\prime} where $W^{\prime} \in R^{\prime} n^{\prime}$
using L..
ultimately have
take (Suc (length xs) - n^{\prime}) (xs @ $\left.[x]\right) \in$ sentences $P \wedge$
$\left(\right.$ drop $\left(\right.$ Suc $($ length $\left.\left.x s)-n^{\prime}\right)(x s @[x]), W^{\prime}\right) \in$ failures Q
using J by simp
moreover have N : Suc (length xs) $-n^{\prime} \leq$ length xs
using M by (simp, arith)
ultimately have O :
take (Suc (length xs) - n^{\prime}) xs sentences $P \wedge$
(drop (Suc (length xs) - n^{\prime}) xs @ $\left.[x], W^{\prime}\right) \in$ failures Q
by simp
moreover have $n=n^{\prime}$
proof (rule ccontr, simp add: neq-iff, erule disjE)
assume $P: n<n^{\prime}$
have take (Suc (length $x s)-n) x s=$
take (Suc (length xs) - n^{\prime}) (take (Suc (length xs) $-n$) xs) @
drop (Suc (length xs) - n') (take (Suc (length xs) -n) xs)
by (simp only: append-take-drop-id)
also have $\ldots=$
take (Suc (length xs) - n^{\prime}) xs @
drop (Suc (length xs) $-n^{\prime}$) (take (Suc (length $\left.\left.\left.x s\right)-n\right) x s\right)$
using P by (simp add: min-def)
also have $\ldots=$
take (Suc (length xs) - n^{\prime}) xs @
take $\left(n^{\prime}-n\right)($ drop (Suc (length $\left.\left.x s)-n^{\prime}\right) x s\right)$
using M by (subst drop-take, simp)
finally have take (Suc (length xs) $-n$) xs =
take (Suc (length xs) - n^{\prime}) xs @

```

```

 moreover have take \(\left(n^{\prime}-n\right)\left(d r o p\left(S u c(l e n g t h x s)-n^{\prime}\right) x s\right) \neq[]\)
 proof (rule-tac notI, simp, erule disjE)
 assume \(n^{\prime} \leq n\)
    ```
```

 thus False
 using P by simp
 next
assume length xs \leqSuc (length xs) - n'
moreover have Suc (length xs) - n'< Suc (length xs) - n
using M and P by simp
hence Suc (length xs) - n'< length xs
using H by simp
ultimately show False
by simp
qed
hence }\existsy\mathrm{ ys. take (}\mp@subsup{n}{}{\prime}-n)(\mathrm{ drop (Suc (length xs) - n') xs) = y \# ys
by (cases take (}\mp@subsup{n}{}{\prime}-n)(\mathrm{ drop (Suc (length xs) - n') xs), simp-all)
then obtain }y\mathrm{ and ys where
take (n' - n) (drop (Suc (length xs) - n') xs) = y \# ys
by blast
ultimately have Q: take (Suc (length xs) - n) xs =
take (Suc (length xs) - n') xs @ y \# ys
by simp
have take (Suc (length xs) - n') xs \in sentences P
using O ..
moreover have R: take (Suc (length xs) - n) xs \in sentences P
using I ..
hence take (Suc (length xs) - n) xs @ [None] \in traces P
by (simp add: sentences-def)
hence take (Suc (length xs) - n) xs \in traces P
by (rule process-rule-2-traces)
hence take (Suc (length xs) - n') xs @ y\# ys \in traces P
using Q by simp
ultimately have }y=\mathrm{ None
by (rule seq-sentences-none [OF A])
moreover have None \& set (take (Suc (length xs) - n) xs)
using C and R by (rule weakly-seq-sentences-none)
hence y}\not=\mathrm{ None
using Q by (rule-tac not-sym, simp)
ultimately show False
by contradiction
next
assume P: n' < n
have take (Suc (length xs) - n') xs=
take (Suc (length xs) - n) (take (Suc (length xs) - n') xs)@
drop (Suc (length xs) - n) (take (Suc (length xs) - n') xs)
by (simp only: append-take-drop-id)
also have ... =
take (Suc (length xs) - n) xs @
drop (Suc (length xs) - n) (take (Suc (length xs) - n') xs)
using P by (simp add: min-def)
also have ... =
take (Suc (length xs) - n) xs @

```
```

 take (n-n') (drop (Suc (length xs) - n) xs)
 using G by (subst drop-take, simp)
 finally have take (Suc (length xs) - n') xs=
take (Suc (length xs) - n) xs @
take (n-n') (drop (Suc (length xs) - n) xs).
moreover have take (n-n')(drop (Suc (length xs) - n) xs) f []
proof (rule-tac notI, simp, erule disjE)
assume n\leq n'
thus False
using P by simp
next
assume length xs \leqSuc (length xs) - n
moreover have Suc (length xs) - n< Suc (length xs) - n'
using G and P by simp
hence Suc (length xs) - n < length xs
using N by simp
ultimately show False
by simp
qed
hence \existsy ys. take (n- n') (drop (Suc (length xs) - n) xs) = y \# ys
by (cases take (}n-\mp@subsup{n}{}{\prime}\mathrm{) (drop (Suc (length xs) - n) xs), simp-all)
then obtain y and ys where
take (n-n') (drop (Suc (length xs) - n) xs) = y \# ys
by blast
ultimately have Q: take (Suc (length xs) - n') xs=
take (Suc (length xs) - n) xs @ y \# ys
by simp
have take (Suc (length xs) - n) xs \in sentences P
using I ..
moreover have R: take (Suc (length xs) - n') xs \in sentences P
using O ..
hence take (Suc (length xs) - n') xs @ [None] \in traces P
by (simp add: sentences-def)
hence take (Suc (length xs) - n') xs \in traces P
by (rule process-rule-2-traces)
hence take (Suc (length xs) - n) xs @ y \# ys \in traces P
using Q by simp
ultimately have y=None
by (rule seq-sentences-none [OF A])
moreover have None \& set (take (Suc (length xs) - n') xs)
using C and R by (rule weakly-seq-sentences-none)
hence }y\not=N\mathrm{ None
using Q by (rule-tac not-sym, simp)
ultimately show False
by contradiction
qed
ultimately have (drop (Suc (length xs) - n) xs @ [x], W') \in failures Q
by simp
hence P:drop (Suc (length xs) - n) xs @ [x]\in traces Q

```
```

 by (rule failures-traces)
 have (drop (Suc (length xs) - n) xs @ [None],W) \in failures Q
 using I ..
 hence drop (Suc (length xs) - n) xs @ [None] \in traces Q
 by (rule failures-traces)
 hence drop (Suc (length xs) - n) xs \in sentences Q
 by (simp add: sentences-def)
 with B show ?thesis
 using P by (rule seq-sentences-none)
 qed
 qed
qed

```

\subsection*{2.4 Conservation of noninterference security under sequential composition}

Everything is now ready for proving the target security conservation theorem. The two closure properties that the definition of noninterference security requires process futures to satisfy, one for the addition of events into traces and the other for the deletion of events from traces (cf. [8]), will be faced separately; here below is the proof of the former property. Unsurprisingly, rule induction on set seq-comp-failures is applied, and the closure of the failures of a secure process under intransitive purge (proven in the previous section) is used to meet the proof obligations arising from rule \(S C F-R 3\).
```

lemma seq-comp-secure-aux-1-case-1:
assumes
A: secure-termination I D and
B : sequential P and
C : secure P I D and
$D: x s @ y \# y s \notin$ sentences P and
$E:(x s @ y \# y s, X) \in$ failures P and
$F:$ None $\neq y$ and
G : None \notin set xs and
H : None \notin set ys
shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
\in seq-comp-failures $P Q$
proof -
have $(y \# y s, X) \in$ futures P xs
using E by (simp add: futures-def)
hence (ipurge-tr I D (Dy) ys, ipurge-ref I D (Dy) ys X) \in
futures P xs
using C by (simp add: secure-def)
hence I : (xs @ ipurge-tr $I D(D y) y s$, ipurge-ref $I D(D y)$ ys $X) \in$
failures P
by (simp add: futures-def)

```
```

show ?thesis
proof (cases xs @ ipurge-tr ID D y) ys \in sentences P,
cases $(D y, D$ None $) \in I \vee(\exists u \in$ sinks $I D(D y)$ ys. $(u, D$ None $) \in I)$,
simp-all)
assume xs @ ipurge-tr ID(Dy)ys \notin sentences P
thus ?thesis using I
proof (rule SCF-R1, simp add: FG)
have set (ipurge-tr I $D(D y) y s) \subseteq$ set ys
by (rule ipurge-tr-set)
thus None \notin set (ipurge-tr I $D(D y) y s)$
using H by (rule contra-subsetD)
qed
next
assume
$J: x s$ @ ipurge-tr I $D(D y) y s \in$ sentences P and
$K:(D y, D$ None $) \in I \vee(\exists u \in \operatorname{sinks} I D(D y)$ ys. $(u, D$ None $) \in I)$
have ipurge-ref $I D(D$ y) ys $X=\{ \}$
proof (rule disjE [OF K], erule-tac [2] bexE)
assume $L:(D y, D$ None $) \in I$
show ?thesis
proof (rule ipurge-ref-empty [of $D y$], simp)
fix x
have $(D y, D$ None $) \in I \wedge y \neq$ None $\longrightarrow(\forall u \in$ range $D .(D y, u) \in I)$
using A by (simp add: secure-termination-def)
hence $\forall u \in$ range $D .(D y, u) \in I$
using F and L by simp
thus $(D y, D x) \in I$
by simp
qed
next
fix u
assume
$L: u \in \operatorname{sinks} I D(D y) y s$ and
$M:(u, D$ None $) \in I$
have $\exists y^{\prime} \in$ set ys. $u=D y^{\prime}$
using L by (rule sinks-elem)
then obtain y^{\prime} where $N: y^{\prime} \in$ set ys and $O: u=D y^{\prime} .$.
have $P: y^{\prime} \neq$ None
proof
assume $y^{\prime}=$ None
hence None \in set ys
using N by simp
thus False
using H by contradiction
qed
show ?thesis
proof (rule ipurge-ref-empty [of u], simp add: L)
fix x
have $\left(D y^{\prime}, D\right.$ None $) \in I \wedge y^{\prime} \neq$ None $\longrightarrow\left(\forall v \in \operatorname{range} D .\left(D y^{\prime}, v\right) \in I\right)$

```
```

 using A by (simp add: secure-termination-def)
 moreover have (D y',D None) \inI
 using M and O by simp
 ultimately have }\forallv\in\mathrm{ range D. (D y
 using P by simp
 thus (u,D x) \inI
 using O by simp
 qed
 qed
thus ?thesis
proof simp
have ([],{}) \in failures Q
by (rule process-rule-1)
with J and I have (xs @ ipurge-tr I D (D y) ys,
insert None (ipurge-ref I D (D y) ys X) \cap{}) \in seq-comp-failures P Q
by (rule SCF-R2)
thus(xs@ ipurge-tr I D (D y) ys, {}) \in seq-comp-failures P Q
by simp
qed
next
assume
J: xs @ ipurge-tr I D (D y) ys \in sentences P and
K:(D y,D None)}\not\inI\wedge(\forallu\in\operatorname{sinks I D (D y) ys. (u,D None) }\not\inI
have (xs @ [y]) @ ys \in sentences P
proof (simp add: sentences-def del: append-assoc, subst (2) append-assoc,
rule ipurge-tr-del-traces [OF C, where }u=D y], simp-all add: K
have (y\# ys,X) futures P xs
using E by (simp add: futures-def)
moreover have xs @ ipurge-tr I D (D y) ys @ [None] \in traces P
using J by (simp add: sentences-def)
hence (xs @ ipurge-tr I D (D y) ys @ [None], {}) \in failures P
by (rule traces-failures)
hence (ipurge-tr I D (D y) ys @ [None], {}) \in futures P xs
by (simp add: futures-def)
ultimately have (y \# ipurge-tr I D (D y) (ipurge-tr I D (D y) ys @ [None]),
ipurge-ref I D (D y) (ipurge-tr I D (D y) ys @ [None]) {}) f futures P xs
using C by (simp add: secure-def del: ipurge-tr.simps)
hence (xs @ y \# ipurge-tr I D (D y) (ipurge-tr I D (D y) ys @ [None]),{})
failures P
by (simp add: futures-def ipurge-ref-def)
moreover have sinks I D(D y) (ipurge-tr I D (D y) ys)={}
by (rule sinks-idem)
hence }\neg((Dy,D None) \inI
(\existsu\in sinks I D (D y) (ipurge-tr I D (D y) ys). (u,D None) }\inI)
using K by simp
hence D None \& sinks I D (D y) (ipurge-tr I D (D y) ys @ [None])
by (simp only: sinks-interference-eq, simp)
ultimately have (xs @ y \# ipurge-tr I D (D y) (ipurge-tr I D (D y) ys)
@ [None], {}) \in failures P

```
```

 by simp
 hence (xs @ y # ipurge-tr I D (D y) ys @ [None], {}) \in failures P
 by (simp add: ipurge-tr-idem)
 thus xs @ y # ipurge-tr I D (D y) ys @ [None] \in traces P
 by (rule failures-traces)
 next
 show xs @ y # ys \in traces P
 using E by (rule failures-traces)
 qed
 hence xs @ y # ys \in sentences P
 by simp
 thus ?thesis
 using D by contradiction
 qed
 qed
lemma seq-comp-secure-aux-1-case-2:
assumes
A: secure-termination I D and
B: sequential P and
C: secure P I D and
D: secure Q I D and
E:xs@y\#ys \in sentences P and
F:(xs@y\#ys,X)\in failures P and
G:([],Y) f failures Q
shows (xs @ ipurge-tr I D (D y) ys,
ipurge-ref I D (D y) ys (insert None X \capY))\in seq-comp-failures P Q
proof -
have (y\# ys,X)\in futures P xs
using F by (simp add: futures-def)
hence (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
futures P xs
using C by (simp add: secure-def)
hence H:(xs @ ipurge-tr I D (D y) ys,ipurge-ref I D (D y) ys X)
failures P
by (simp add: futures-def)
have weakly-sequential P
using B by (rule seq-implies-weakly-seq)
hence I: None \& set (xs @ y \# ys)
using E by (rule weakly-seq-sentences-none)
show ?thesis
proof (cases xs @ ipurge-tr I D (D y) ys \in sentences P,
case-tac [2] (D y,D None) \inI\vee (\existsu\in sinks I D (D y) ys. (u,D None) \inI),
simp-all)
assume J:xs @ ipurge-tr I D (D y) ys \in sentences P
have ipurge-ref I D (D y) ys Y\subseteqY
by (rule ipurge-ref-subset)
with G have ([], ipurge-ref I D (D y) ys Y) f failures Q
by (rule process-rule-3)

```
with \(J\) and \(H\) have (xs @ ipurge-tr \(I D(D y) y s\), insert None (ipurge-ref \(I D(D\) y) ys \(X) \cap\) ipurge-ref \(I D(D\) y) ys \(Y)\) \(\in\) seq-comp-failures \(P Q\)
by (rule SCF-R2)
moreover have
ipurge-ref \(I D(D y)\) ys (insert None \(X) \cap\) ipurge-ref \(I D(D\) y) ys \(Y \subseteq\) insert None (ipurge-ref I D (D y) ys \(X) \cap\) ipurge-ref \(I D(D\) y) ys \(Y\)
proof (rule subsetI, simp del: insert-iff, erule conjE)
fix \(x\)
have ipurge-ref I \(D(D y)\) ys (insert None \(X) \subseteq\)
insert None (ipurge-ref I \(D(D\) y) ys \(X\) )
by (rule ipurge-ref-subset-insert)
moreover assume \(x \in\) ipurge-ref \(I D(D y)\) ys (insert None \(X\) )
ultimately show \(x \in\) insert None (ipurge-ref I \(D(D y)\) ys \(X\) ) ..
qed
ultimately have (xs @ ipurge-tr I \(D(D y) y s\),
ipurge-ref \(I D(D y)\) ys \((\) insert None \(X) \cap\) ipurge-ref \(I D(D\) y) ys \(Y)\)
\(\in\) seq-comp-failures \(P Q\)
by (rule seq-comp-prop-3)
thus ?thesis
by (simp add: ipurge-ref-distrib-inter)
next
assume
\(J:\) xs @ ipurge-tr I \(D(D y)\) ys \(\notin\) sentences \(P\) and
\(K:(D y, D\) None \() \in I \vee(\exists u \in \operatorname{sinks} I D(D y)\) ys. \((u, D\) None \() \in I)\)
have ipurge-ref \(I D(D y)\) ys (insert None \(X \cap Y)=\{ \}\)
proof (rule disjE [OF K], erule-tac [2] bexE)
assume \(L:(D y, D\) None \() \in I\)
show ?thesis
proof (rule ipurge-ref-empty [of \(D y\) ], simp)
fix \(x\)
have \((D y, D\) None \() \in I \wedge y \neq\) None \(\longrightarrow(\forall u \in\) range \(D .(D y, u) \in I)\)
using \(A\) by (simp add: secure-termination-def)
moreover have \(y \neq\) None
using \(I\) by (rule-tac not-sym, simp)
ultimately have \(\forall u \in\) range \(D .(D y, u) \in I\)
using \(L\) by simp
thus \((D y, D x) \in I\)
by \(\operatorname{simp}\)
qed
next
fix \(u\)
assume
\(L: u \in \operatorname{sinks} I D(D y) y s\) and \(M:(u, D\) None \() \in I\)
have \(\exists y^{\prime} \in\) set ys. \(u=D y^{\prime}\)
using \(L\) by (rule sinks-elem)
then obtain \(y^{\prime}\) where \(N: y^{\prime} \in\) set \(y s\) and \(O: u=D y^{\prime} .\).
have \(P: y^{\prime} \neq\) None
```

 proof
 assume y'}=\mathrm{ None
 hence None \in set ys
 using N by simp
 moreover have None & set ys
 using I by simp
 ultimately show False
 by contradiction
 qed
 show ?thesis
 proof (rule ipurge-ref-empty [of u], simp add:L)
 fix }
 have (D y',D None) \inI\wedge y'\not=None \longrightarrow
 using A by (simp add: secure-termination-def)
 moreover have (D y',D None) \inI
 using M and O by simp
 ultimately have }\forallv\in\mathrm{ range D. (D y',}v)\in
 using P by simp
 thus (u,D x) \inI
 using O by simp
 qed
 qed
thus ?thesis
proof simp
have {}\subseteq ipurge-ref I D (D y) ys X ..
with H have (xs @ ipurge-tr I D (D y) ys, {}) \in failures P
by (rule process-rule-3)
with J show (xs @ ipurge-tr I D (D y) ys, {}) \in seq-comp-failures P Q
proof (rule SCF-R1)
show None \& set (xs @ ipurge-tr I D (D y) ys)
using I
proof (simp, (erule-tac conjE)+)
have set (ipurge-tr I D (D y) ys)\subseteq set ys
by (rule ipurge-tr-set)
moreover assume None \& set ys
ultimately show None \# set (ipurge-tr I D (D y) ys)
by (rule contra-subsetD)
qed
qed
qed
next
assume
J: xs @ ipurge-tr I D (D y) ys \& sentences P and
K:(D y, D None) }\not=I\wedge(\forallu\in\mathrm{ sinks I D (D y) ys. (u,D None) }\not\inI
have xs @ y \# ys @ [None] \in traces P
using E by (simp add: sentences-def)
hence (xs @ y \# ys @ [None], {}) f failures P
by (rule traces-failures)
hence (y \# ys @ [None], {}) \in futures P xs

```
```

 by (simp add: futures-def)
 hence (ipurge-tr I D (D y) (ys @ [None]),
 ipurge-ref I D (D y)(ys @ [None]) {}) \in futures P xs
 (is (-, ?Y) \in-)
 using C by (simp add: secure-def del: ipurge-tr.simps)
 hence (xs @ ipurge-tr I D (D y) (ys @ [None]),?Y) \in failures P
 by (simp add: futures-def)
 hence xs @ ipurge-tr I D (D y) (ys @ [None]) \in traces P
 by (rule failures-traces)
 moreover have }\neg((Dy,D None) \inI
 (\existsu\in sinks I D (D y) ys. (u,D None) \inI))
 using K by simp
 hence D None & sinks ID(D y) (ys @ [None])
 by (simp only: sinks-interference-eq, simp)
 ultimately have xs @ ipurge-tr I D (D y) ys @ [None] \in traces P
 by simp
 hence xs @ ipurge-tr I D (D y) ys \in sentences P
 by (simp add: sentences-def)
 thus ?thesis
 using J by contradiction
 qed
 qed
lemma seq-comp-secure-aux-1-case-3:
assumes
A: secure-termination I D and
B: ref-union-closed Q and
C: sequential Q and
D: secure Q I D and
E: secure R I D and
F:ws \in sentences Q and
G:(ys',Y)\in failures R and
H:ws @ ys'=xs@y \# ys
shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
\in seq-comp-failures Q R
proof (cases length xs < length ws)
case True
have drop (Suc (length xs)) (xs @ y \# ys) = drop (Suc (length xs)) (ws @ ys')
using H by simp
hence I:ys = drop (Suc (length xs))ws @ ys'
(is - = ?ws' @ -)
using True by simp
let ?U = insert (D y) (sinks I D (D y) ?ws')
have ipurge-tr I D (D y) ys =
ipurge-tr I D (D y)?ws' @ ipurge-tr-aux I D ?U ys'
using I by (simp add: ipurge-tr-append)
moreover have ipurge-ref I D (D y) ys Y = ipurge-ref-aux I D ?U ys' Y
using I by (simp add: ipurge-ref-append)
ultimately show ?thesis

```
```

proof (cases xs @ ipurge-tr I D (D y) ?ws' \in sentences Q, simp-all)
assume J : xs @ ipurge-tr I $D(D y)$? ws ${ }^{\prime} \in$ sentences Q
have K : (ipurge-tr-aux I D ? U ys ${ }^{\prime}$, ipurge-ref-aux I D ? U ys $\left.{ }^{\prime} Y\right) \in$ failures R
using E and G by (rule ipurge-tr-ref-aux-failures)
show (xs @ ipurge-tr ID (D y) ?ws' @ ipurge-tr-aux I D ? U ys',
ipurge-ref-aux I D ? U ys $\left.{ }^{\prime} Y\right) \in$ seq-comp-failures $Q R$
proof (cases ipurge-tr-aux I D ? U ys')
case Nil
have (xs @ ipurge-tr I D (D y) ?ws', \{x. x \neq None $\}) \in$ failures Q
using B and C and J by (rule seq-sentences-ref)
moreover have ([], ipurge-ref-aux I D ? U ys ${ }^{\prime} Y$) \in failures R
using K and Nil by simp
ultimately have (xs @ ipurge-tr I $D(D y)$? $w s^{\prime}$,
insert None $\{x . x \neq$ None $\} \cap$ ipurge-ref-aux I D ? U ys $\left.{ }^{\prime} Y\right)$
\in seq-comp-failures $Q R$
by (rule SCF-R2 [OF J])
moreover have insert None $\{x . x \neq$ None $\} \cap$
ipurge-ref-aux I D ? U ys ${ }^{\prime} Y=$ ipurge-ref-aux I D ? U ys $s^{\prime} Y$
by blast
ultimately show ?thesis
using Nil by simp
next
case Cons
hence ipurge-tr-aux I $D ? U$ ys $^{\prime} \neq[]$
by simp
with J and K have
((xs @ ipurge-tr I D (D y) ?ws') @ ipurge-tr-aux I D ?U ys',
ipurge-ref-aux I D?U ys' Y) \in seq-comp-failures $Q R$
by (rule SCF-R3)
thus ?thesis
by simp
qed
next
assume J : xs @ ipurge-tr I $D(D y)$? ws ${ }^{\prime} \notin$ sentences Q
have $w s=$ take (Suc (length xs)) ws @ ?ws'
by simp
moreover have take (Suc (length xs)) (ws @ ys') =
take (Suc (length xs)) (xs @ y \# ys)
using H by simp
hence take (Suc (length xs)) ws =xs @ [y]
using True by simp
ultimately have $K: x s @ y \#$? ws ${ }^{\prime} \in$ sentences Q
using F by simp
hence $x s$ @ $y \# ? w s^{\prime} @[$ None $] \in \operatorname{traces} Q$
by (simp add: sentences-def)
hence (xs @ $y \#$? ws' @ [None], $\}) \in$ failures Q
by (rule traces-failures)
hence (y \# ?ws' @ [None], $\}$) \in futures Q xs
by (simp add: futures-def)

```
```

hence (ipurge-tr ID (D y) (?ws' @ [None]),
ipurge-ref I $D(D y)\left(? w s^{\prime} @[\right.$ None $\left.]\right)\}) \in$ futures Q xs
using D by (simp add: secure-def del: ipurge-tr.simps)
hence L : (xs @ ipurge-tr I D $(D y)\left(? w s^{\prime}\right.$ @ $[$ None] $\left.),\{ \}\right) \in$ failures Q
by (simp add: futures-def ipurge-ref-def)
have weakly-sequential Q
using C by (rule seq-implies-weakly-seq)
hence N : None \notin set (xs @ $\left.y \# ? w s^{\prime}\right)$
using K by (rule weakly-seq-sentences-none)
show (x @ @ ipurge-tr I D (D y) ?ws' @ ipurge-tr-aux I D ? U ys',
ipurge-ref-aux I D ? U ys' Y) \in seq-comp-failures $Q R$
proof (cases (D y, D None) $\in I \vee$
$\left(\exists u \in \operatorname{sinks} I D(D y) ? w^{\prime} .(u, D\right.$ None $\left.\left.) \in I\right)\right)$
assume $M:(D y, D$ None $) \in I \vee$
$\left(\exists u \in \operatorname{sinks} I D(D y) ? w s s^{\prime} .(u, D\right.$ None $\left.) \in I\right)$
have ipurge-tr-aux I D ? U ys' = []
proof (rule disjE [OF M], erule-tac [2] bexE)
assume $O:(D y, D$ None $) \in I$
show ?thesis
proof (rule ipurge-tr-aux-nil [of D y], simp)
fix x
have $(D y, D$ None $) \in I \wedge y \neq$ None $\longrightarrow(\forall u \in$ range $D .(D y, u) \in I)$
using A by (simp add: secure-termination-def)
moreover have $y \neq$ None
using N by (rule-tac not-sym, simp)
ultimately have $\forall u \in$ range $D .(D y, u) \in I$
using O by simp
thus $(D y, D x) \in I$
by simp
qed
next
fix u
assume
$O: u \in$ sinks I $D(D y) ?{ }^{2} s^{\prime}$ and
$P:(u, D$ None $) \in I$
have $\exists w \in$ set ? ${ }^{\prime} s^{\prime} . u=D w$
using O by (rule sinks-elem)
then obtain w where $Q: w \in$ set ? $w s^{\prime}$ and $R: u=D w .$.
have $S: w \neq$ None
proof
assume $w=$ None
hence None \in set ?ws ${ }^{\prime}$
using Q by simp
moreover have None \notin set ? ${ }^{\prime} s^{\prime}$
using N by simp
ultimately show False
by contradiction
qed
show ?thesis

```
```

proof (rule ipurge-tr-aux-nil [of u], simp add: O)
fix x
have $(D w, D$ None $) \in I \wedge w \neq$ None $\longrightarrow(\forall v \in$ range $D .(D w, v) \in I)$
using A by (simp add: secure-termination-def)
moreover have $(D w, D$ None $) \in I$
using P and R by simp
ultimately have $\forall v \in$ range $D .(D w, v) \in I$
using S by simp
thus $(u, D x) \in I$
using R by simp
qed
qed
moreover have ipurge-ref-aux $I D$? U ys $s^{\prime} Y=\{ \}$
proof (rule disjE [OF M], erule-tac [2] bexE)
assume $O:(D y, D$ None $) \in I$
show ?thesis
proof (rule ipurge-ref-aux-empty [of D y])
have ? $U \subseteq$ sinks-aux I D ? U ys ${ }^{\prime}$
by (rule sinks-aux-subset)
moreover have $D y \in ? U$
by simp
ultimately show $D y \in \operatorname{sinks}-a u x I D$? U ys' ..
next
fix x
have $(D y, D$ None $) \in I \wedge y \neq$ None $\longrightarrow(\forall u \in$ range $D .(D y, u) \in I)$
using A by (simp add: secure-termination-def)
moreover have $y \neq$ None
using N by (rule-tac not-sym, simp)
ultimately have $\forall u \in$ range $D .(D y, u) \in I$
using O by simp
thus $(D y, D x) \in I$
by simp
qed
next
fix u
assume
$O: u \in$ sinks $I D(D y) ? w s^{\prime}$ and
$P:(u, D$ None $) \in I$
have $\exists w \in$ set ? $w s^{\prime} . u=D w$
using O by (rule sinks-elem)
then obtain w where $Q: w \in$ set ? $w s^{\prime}$ and $R: u=D w .$.
have $S: w \neq$ None
proof
assume $w=$ None
hence None \in set ? ws'
using Q by simp
moreover have None \notin set ? ws'
using N by simp
ultimately show False

```
```

 by contradiction
 qed
 show ?thesis
 proof (rule ipurge-ref-aux-empty [of u])
 have ?U\subseteq sinks-aux I D ?U ys'
 by (rule sinks-aux-subset)
 moreover have u\in?U
 using O by simp
 ultimately show }u\in\mathrm{ sinks-aux I D ?U ys' ..
 next
 fix }
 have }(Dw,D None)\inI\wedgew\not=None\longrightarrow(\forallv\in\mathrm{ range D. }(Dw,v)\inI
 using A by (simp add: secure-termination-def)
 moreover have (D w,D None) \inI
 using P and R by simp
 ultimately have }\forallv\in\mathrm{ range D. (Dw,v) GI
 using S by simp
 thus (u,Dx)\inI
 using }R\mathrm{ by simp
 qed
 qed
ultimately show ?thesis
proof simp
have D None \in sinks I D (D y) (?ws' @ [None])
using M by (simp only: sinks-interference-eq)
hence (xs @ ipurge-tr I D (D y) ?ws', {}) \in failures Q
using L by simp
moreover have None \& set (xs @ ipurge-tr I D (D y)?ws')
proof -
show ?thesis
using N
proof (simp, (erule-tac conjE)+)
have set (ipurge-tr I D (D y) ?ws')\subseteq set ?ws'
by (rule ipurge-tr-set)
moreover assume None \& set ?ws'
ultimately show None \& set (ipurge-tr I D (D y) ?ws')
by (rule contra-subsetD)
qed
qed
ultimately show (xs @ ipurge-tr I D (D y) ?ws', {})
eseq-comp-failures Q R
by (rule SCF-R1 [OF J])
qed
next
assume }\neg((Dy,D None))\inI
(\existsu\in\operatorname{sinks}ID(D y) ?ws'.(u,D None) }\inI)
hence D None \& sinks I D (D y) (?ws' @ [None])
by (simp only: sinks-interference-eq, simp)
hence (xs @ ipurge-tr I D (D y) ?ws' @ [None], {}) \in failures Q

```
```

 using L by simp
 hence xs @ ipurge-tr I D (D y)?ws' @ [None] \in traces Q
 by (rule failures-traces)
 hence xs @ ipurge-tr I D (D y) ?ws'\in sentences Q
 by (simp add: sentences-def)
 thus ?thesis
 using }J\mathrm{ by contradiction
 qed
 qed
 next
case False
have drop (length ws) (ws @ ys')=drop (length ws)(xs @ y \# ys)
using H by simp
hence ys'= drop (length ws) xs @ y \# ys
(is - = ?xs' @ -)
using False by simp
hence (?xs' @ y \# ys,Y)\in failures R
using G by simp
hence (y\#ys,Y)\in futures R ?xs'
by (simp add: futures-def)
hence (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
futures R ?xs'
using E by (simp add: secure-def)
hence I: (?xs' @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
failures R
by (simp add: futures-def)
have xs = take (length ws) xs @ ?xs'
by simp
hence xs = take (length ws) (xs @ y \# ys) @ ?xs'
using False by simp
hence xs = take (length ws) (ws @ ys') @ ?xs'
using H by simp
hence J:xs=ws @ ?xs'
by simp
show ?thesis
proof (cases ?xs'@ ipurge-tr I D (D y) ys = [], insert I, subst J, simp)
have (ws,{x.x\not= None}) \in failures Q
using B and C and F by (rule seq-sentences-ref)
moreover assume ([], ipurge-ref I D (D y) ys Y)\in failures R
ultimately have (ws, insert None {x.x\not=None} \cap
ipurge-ref I D (D y) ys Y)\in seq-comp-failures Q R
by (rule SCF-R2 [OF F])
moreover have insert None {x. x\not= None} \cap ipurge-ref I D (D y) ys Y=
ipurge-ref I D (D y) ys Y
by blast
ultimately show (ws, ipurge-ref I D (D y) ys Y) \in seq-comp-failures Q R
by simp
next
assume ?xs' @ ipurge-tr I D (D y) ys \not= []

```
```

 with F and I have
 (ws @ ?xs' @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
 eseq-comp-failures Q R
 by (rule SCF-R3)
 hence ((ws @ ?xs') @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
 \in seq-comp-failures Q R
 by simp
 thus ?thesis
 using J by simp
 qed
 qed
lemma seq-comp-secure-aux-1 [rule-format]:
assumes
A: secure-termination I D and
B: ref-union-closed P and
C: sequential P and
D: secure P I D and
E: secure Q I D
shows (ws,Y)\in seq-comp-failures }PQ
ws=xs@y\#ys\longrightarrow
(xs@ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
seq-comp-failures P Q
proof (erule seq-comp-failures.induct, rule-tac [!] impI, simp-all, (erule conjE)+)
fix }
assume
xs @ y \# ys \& sentences P and
(xs@ @ \# ys,X) failures P and
None }\not=y\mathrm{ and
None }\not\in\mathrm{ set xs and
None \& set ys
thus (xs @ ipurge-tr I D (D y) ys,ipurge-ref I D (D y) ys X)
\epsilon seq-comp-failures P Q
by (rule seq-comp-secure-aux-1-case-1 [OFACA
next
fix }X
assume
xs @ y \# ys \in sentences P and
(xs@y\#ys,X)\in failures P and
([],Y) f failures Q
thus(xs@ ipurge-tr I D (D y) ys,
ipurge-ref I D (D y) ys (insert None X \capY)) \in seq-comp-failures P Q
by (rule seq-comp-secure-aux-1-case-2 [OF A C D E])
next
fix ws ys' Y
assume
ws \in sentences P and
(ys',Y) failures Q and
ws @ ys' = xs @ y \# ys

```
```

 thus (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
 seq-comp-failures P Q
 by (rule seq-comp-secure-aux-1-case-3 [OF A B C D E])
 next
fix X Y
assume
(xs@ ipurge-tr ID (D y) ys, ipurge-ref I D (D y) ys X)
\in seq-comp-failures P Q and
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
\in seq-comp-failures P Q
hence (xs @ ipurge-tr I D (D y) ys,
ipurge-ref I D (D y) ys X \cup ipurge-ref I D (D y) ys Y)
seq-comp-failures P Q
by (rule SCF-R4)
thus (xs @ ipurge-tr I D (D y) ys,ipurge-ref I D (D y) ys (X\cupY))
\in seq-comp-failures P Q
by (simp add: ipurge-ref-distrib-union)
qed
lemma seq-comp-secure-1:
assumes
A: secure-termination I D and
B: ref-union-closed P and
C: sequential P and
D: secure P I D and
E: secure Q I D
shows (xs @ y \# ys,Y)\in seq-comp-failures P Q \Longrightarrow
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
\& seq-comp-failures P Q
by (rule seq-comp-secure-aux-1 [OF A B C D E,where ws=xs @ y \# ys],
simp-all)

```

This completes the proof that the former requirement for noninterference security is satisfied, so it is the turn of the latter one. Again, rule induction on set seq-comp-failures is applied, and the closure of the failures of a secure process under intransitive purge is used to meet the proof obligations arising from rule \(S C F-R 3\). In more detail, rule induction is applied to the trace into which the event is inserted, and then a case distinction is performed on the trace from which the event is extracted, using the expression of its refusal as union of a set of refusals derived previously.
lemma seq-comp-secure-aux-2-case-1: assumes

A: secure-termination I D and
\(B\) : sequential \(P\) and
\(C\) : secure P I D and
\(D: x s @ z s \notin\) sentences \(P\) and
```

 E: (xs @ zs,X) failures P and
 F: None # set xs and
 G:None & set zs and
 H:(xs @ [y], {}) \in seq-comp-failures P Q
 shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
 \varepsilonseq-comp-failures P Q
 proof -
have }\existsR.{}=(\bigcupn\in{..length (xs @ [y])}. \bigcupW\inR n.W)
(}\forallW\inR0
xs @ [y] \& sentences P ^ None \& set (xs @ [y])^
(xs@ [y],W) \in failures P\vee
xs@ @y]\in sentences P ^(\existsUV.(xs@ [y],U)\in failures P
([],V) failures Q}^W= insert None U\capV))
(\foralln\in{0<..length (xs @ [y])}. }\forallW=R n
take (length (xs @ [y]) - n) (xs @ [y]) \in sentences P ^
(drop (length (xs@ [y]) - n) (xs @ [y]),W) \in failures Q)^
(\existsn\in{..length (xs@[y])}. \existsW.W\inR n)
(is }\existsR\mathrm{ . ?T R)
using H by (rule seq-comp-refusals-1)
then obtain R where I:?T R ..
hence }\existsn\in{..length (xs @ [y])}.\existsW.W\inR
by simp
moreover have }\foralln\in{0<..length (xs @ [y])}. R n={
proof (rule ballI, rule equalsOI)
fix n W
assume J:n }\in{0<..length (xs @ [y])
hence }\forallW\inR n.take (length (xs @ [y]) - n)(xs @ [y]) \in sentences P
using I by simp
moreover assume W \inR n
ultimately have take (length (xs @ [y]) - n) (xs @ [y]) \in sentences P ..
moreover have take (length (xs @ [y]) - n) (xs @ [y])=
take (length (xs @ [y]) - n) (xs @ zs)
using J by simp
ultimately have K: take (length (xs@ [y]) - n) (xs @ zs) \in sentences P
by simp
show False
proof (cases drop (length (xs @ [y]) - n) (xs @ zs))
case Nil
hence xs @ zs \in sentences P
using K by simp
thus False
using D by contradiction
next
case (Cons v vs)
moreover have xs@zs=take (length (xs @ [y]) - n) (xs@ @s)@
drop (length (xs@ [y]) - n) (xs @ zs)
by (simp only: append-take-drop-id)
ultimately have L: xs @ zs=
take (length (xs @ [y]) - n) (xs @ zs) @ v \# vs

```
```

 by (simp del: take-append)
 hence (take (length (xs @ [y]) - n) (xs@ zs)@ v# vs,X)
 failures P
 using E by (simp del: take-append)
 hence take (length (xs @ [y]) - n)(xs@ zs)@v # vs \in traces P
 by (rule failures-traces)
 with B and K have v=None
 by (rule seq-sentences-none)
 moreover have None & set (xs @ zs)
 using F and G by simp
 hence None & set (take (length (xs@ [y]) - n) (xs @ zs) @ v # vs)
 by (subst (asm) L)
 hence v\not= None
 by (rule-tac not-sym, simp)
 ultimately show False
 by contradiction
 qed
 qed
ultimately have }\exists\textrm{W}.W\inR
proof simp
assume }\existsn\in{..Suc (length xs)}.\existsW.W\inR
then obtain n where J:n \in{..Suc (length xs)} and K:\existsW.W\inR n ..
assume L: }\foralln\in{0<..Suc (length xs)}.R n={
show ?thesis
proof (cases n)
case 0
thus ?thesis
using K by simp
next
case (Suc m)
obtain W where W GR n
using K ..
moreover have 0<n
using Suc by simp
hence }n\in{0<..Suc (length xs)
using J by simp
with L have R n={} ..
hence W\not\inRn
by (rule equals0D)
ultimately show ?thesis
by contradiction
qed
qed
then obtain W where J:W\inR 0 ..
have }\forallW\inR0
xs @ [y] \& sentences P ^
None \& set (xs @ [y])^(xs@ [y],W) \in failures P\vee
xs @ [y] \in sentences P ^
(\existsUV.(xs@ [y],U) failures P}\wedge([],V)\in\mathrm{ failures Q^

```
```

 W= insert None U \capV)
 (is }\forallW\inR 0. ?T W
 using I by simp
hence ?T W using J ..
hence K:(xs @ [y],{}) \in failures P}\wedge None = y
proof (cases xs @ [y]\in sentences P, simp-all del: ex-simps,
(erule-tac exE)+,(erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y],W)\in failures P
moreover have {}\subseteqW ..
ultimately show (xs @ [y], {}) f failures P
by (rule process-rule-3)
next
fix }
case True
assume (xs @ [y],U) \in failures P
moreover have {}\subseteqU..
ultimately have (xs @ [y], {}) \in failures P
by (rule process-rule-3)
moreover have weakly-sequential P
using B by (rule seq-implies-weakly-seq)
hence None \& set (xs @ [y])
using True by (rule weakly-seq-sentences-none)
hence None }\not=
by simp
ultimately show ?thesis ..
qed
have (zs,X) f futures P xs
using E by (simp add: futures-def)
moreover have ([y],{}) \in futures P xs
using K by (simp add: futures-def)
ultimately have (y \# ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)\in
futures P xs
using C by (simp add: secure-def)
hence L:(xs @ y \# ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)\in
failures P
by (simp add: futures-def)
show ?thesis
proof (cases xs @ y \# ipurge-tr I D (D y) zs \in sentences P,
cases (D y,D None) }\inI\vee(\existsu\in\operatorname{sinks}ID(Dy)zs. (u,D None) \inI),
simp-all)
assume xs @ y \# ipurge-tr I D (D y) zs \not\in sentences P
thus ?thesis using L
proof (rule SCF-R1, simp add: F K)
have set (ipurge-tr I D (D y) zs)\subseteq set zs
by (rule ipurge-tr-set)
thus None \& set (ipurge-tr I D (D y) zs)
using G by (rule contra-subsetD)
qed

```
```

next
assume
$M: x s @ y \#$ ipurge-tr $I D(D y) z s \in$ sentences P and
$N:(D y, D$ None $) \in I \vee(\exists u \in \operatorname{sinks} I D(D y) z s .(u, D$ None $) \in I)$
have ipurge-ref $I D(D y)$ zs $X=\{ \}$
proof (rule disjE [OF N], erule-tac [2] bexE)
assume $O:(D y, D$ None $) \in I$
show ?thesis
proof (rule ipurge-ref-empty [of D y], simp)
fix x
have $(D y, D$ None $) \in I \wedge y \neq$ None $\longrightarrow(\forall u \in$ range $D .(D y, u) \in I)$
using A by (simp add: secure-termination-def)
moreover have $y \neq$ None
using K by (rule-tac not-sym, simp)
ultimately have $\forall u \in$ range $D .(D y, u) \in I$
using O by simp
thus $(D y, D x) \in I$
by simp
qed
next
fix u
assume
$O: u \in$ sinks $I D(D y) z s$ and
$P:(u, D$ None $) \in I$
have $\exists z \in$ set $z s . u=D z$
using O by (rule sinks-elem)
then obtain z where $Q: z \in$ set $z s$ and $R: u=D z$..
have $S: z \neq$ None
proof
assume $z=$ None
hence None \in set zs
using Q by simp
thus False
using G by contradiction
qed
show ?thesis
proof (rule ipurge-ref-empty [of u], simp add: O)
fix x
have $(D z, D$ None $) \in I \wedge z \neq$ None $\longrightarrow(\forall v \in$ range $D .(D z, v) \in I)$
using A by (simp add: secure-termination-def)
moreover have $(D z, D$ None $) \in I$
using P and R by simp
ultimately have $\forall v \in$ range $D .(D z, v) \in I$
using S by simp
thus $(u, D x) \in I$
using R by simp
qed
qed
thus ?thesis

```
```

 proof simp
 have ([],{}) \in failures Q
 by (rule process-rule-1)
 with }M\mathrm{ and L have (xs @ y # ipurge-tr I D (Dy)zs,
 insert None (ipurge-ref I D (D y) zs X) \cap{})\in seq-comp-failures P Q
 by (rule SCF-R2)
 thus (xs@y # ipurge-tr I D (D y) zs,{}) \in seq-comp-failures P Q
 by simp
 qed
 next
assume
M:xs@y \# ipurge-tr I D (D y) zs \in sentences P and
N:(D y, D None) }\not\inI\wedge(\forallu\in\operatorname{sinks I D (D y) zs. (u,D None) }\not\inI
have xs @ zs \in sentences P
proof (simp add: sentences-def,
rule ipurge-tr-del-traces [OF C, where u=D y], simp add:N)
have xs @ y \# ipurge-tr I D (D y) zs @ [None] \in traces P
using M by (simp add: sentences-def)
hence (xs @ y \# ipurge-tr I D (D y) zs @ [None], {}) \in failures P
by (rule traces-failures)
hence (y \# ipurge-tr I D (D y) zs @ [None], {}) \in futures P xs
by (simp add: futures-def)
hence (ipurge-tr I D (D y) (ipurge-tr I D (D y) zs @ [None]),
ipurge-ref I D (D y) (ipurge-tr I D (D y) zs @ [None]) {}) \in futures P xs
using C by (simp add: secure-def del: ipurge-tr.simps)
hence (xs@ ipurge-tr I D (D y) (ipurge-tr I D (D y) zs @ [None]), {})
failures P
by (simp add: futures-def ipurge-ref-def)
moreover have sinks I D(D y)(ipurge-tr I D (D y)zs)={}
by (rule sinks-idem)
hence }\neg((Dy,D None)) I\vee
(\existsu\in sinks I D (D y) (ipurge-tr I D (D y) zs). (u,D None) \inI))
using N by simp
hence D None \& sinks I D (D y) (ipurge-tr I D (D y)zs @ [None])
by (simp only: sinks-interference-eq, simp)
ultimately have (xs @ ipurge-tr I D (D y) (ipurge-tr I D (D y) zs)
@ [None], {}) \in failures P
by simp
hence (xs @ ipurge-tr I D (D y) zs @ [None], {}) \in failures P
by (simp add: ipurge-tr-idem)
thus xs@ ipurge-tr ID (D y) zs @ [None] \in traces P
by (rule failures-traces)
next
show xs @ zs \in traces P
using E by (rule failures-traces)
qed
thus ?thesis
using D by contradiction
qed

```

\section*{qed}
lemma seq-comp-secure-aux-2-case-2:
assumes
A: secure-termination I D and
\(B\) : sequential \(P\) and
\(C\) : secure P I D and
\(D\) : secure \(Q I D\) and
\(E: x s @ z s \in\) sentences \(P\) and
\(F:(x s @ z s, X) \in\) failures \(P\) and
\(G:([], Y) \in\) failures \(Q\) and
\(H:(x s @[y],\{ \}) \in\) seq-comp-failures \(P Q\)
shows (xs @y \# ipurge-tr I D (Dy)zs,
ipurge-ref \(I D(D y)\) zs (insert None \(X \cap Y)) \in\) seq-comp-failures \(P Q\)
proof -
have \(\exists R .\{ \}=(\bigcup n \in\{\)..length \((x s @[y])\} . \bigcup W \in R n . W) \wedge\)
\((\forall W \in R 0\).
\(x s @[y] \notin\) sentences \(P \wedge\) None \(\notin\) set \((x s @[y]) \wedge\)
(xs @ [y], W) \(\in\) failures \(P \vee\)
xs @ \([y] \in\) sentences \(P \wedge(\exists U V .(x s @[y], U) \in\) failures \(P \wedge\)
\(([], V) \in\) failures \(Q \wedge W=\) insert None \(U \cap V)) \wedge\)
\((\forall n \in\{0<. . l e n g t h(x s @[y])\} . \forall W \in R n\).
take (length (xs @ [y]) - n) (xs @ [y]) E sentences \(P \wedge\)
\((\) drop \((\) length \((x s @[y])-n)(x s @[y]), W) \in\) failures \(Q) \wedge\)
\((\exists n \in\{. . l e n g t h(x s @[y])\} . \exists W . W \in R n)\)
(is \(\exists R\).?T \(R\) )
using \(H\) by (rule seq-comp-refusals-1)
then obtain \(R\) where \(I: ? T R\)..
hence \(\exists n \in\{\)..length \((x s @[y])\} . \exists W . W \in R n\)
by simp
then obtain \(n\) where \(J: n \in\{\)..length \((x s @[y])\}\) and \(K: \exists W . W \in R n .\).
have weakly-sequential \(P\)
using \(B\) by (rule seq-implies-weakly-seq)
hence \(L\) : None \(\notin \operatorname{set}(x s @ z s)\)
using \(E\) by (rule weakly-seq-sentences-none)
have \(n=0 \vee n \in\{0<\). .length ( \(x s\) @ \([y]\) ) \(\}\)
using \(J\) by auto
thus ?thesis
proof
assume \(n=0\)
hence \(\exists W . W \in R 0\)
using \(K\) by simp
then obtain \(W\) where \(M: W \in R 0\)..
have \(\forall W \in R 0\).
xs @ \([y] \notin\) sentences \(P \wedge\)
None \(\notin\) set \((x s @[y]) \wedge(x s @[y], W) \in\) failures \(P \vee\)
xs @ \([y] \in\) sentences \(P \wedge\)
\((\exists U V .(x s @[y], U) \in\) failures \(P \wedge([], V) \in\) failures \(Q \wedge\)
\(W=\) insert None \(U \cap V\) )
(is \(\forall W \in R 0\). ? \(T W\) )
using \(I\) by simp
hence ? \(T W\) using \(M\)..
hence \(N:(x s @[y],\{ \}) \in\) failures \(P \wedge\) None \(\notin\) set \(x s \wedge\) None \(\neq y\)
proof (cases xs @ \([y] \in\) sentences \(P\), simp-all del: ex-simps,
(erule-tac exE)+, (erule-tac [!] conjE)+, simp-all)
case False
assume \((x s @[y], W) \in\) failures \(P\)
moreover have \(\} \subseteq W\)..
ultimately show (xs @ [y], \{\}) \(\in\) failures \(P\)
by (rule process-rule-3)
next
fix \(U\)
case True
assume (xs @ \([y], U) \in\) failures \(P\)
moreover have \(\} \subseteq U\)..
ultimately have \((x s @[y],\{ \}) \in\) failures \(P\)
by (rule process-rule-3)
moreover have weakly-sequential \(P\)
using \(B\) by (rule seq-implies-weakly-seq)
hence None \(\notin\) set (xs @ [y]) using True by (rule weakly-seq-sentences-none)
hence None \(\notin\) set \(x s \wedge\) None \(\neq y\)
by \(\operatorname{simp}\)
ultimately show ?thesis ..
qed
have \((z s, X) \in\) futures \(P\) xs
using \(F\) by (simp add: futures-def)
moreover have \(([y],\{ \}) \in\) futures \(P\) xs
using \(N\) by (simp add: futures-def)
ultimately have ( \(y\) \# ipurge-tr \(I D(D y) z s\), ipurge-ref \(I D(D y) z s X)\)
\(\in\) futures \(P\) xs
using \(C\) by (simp add: secure-def)
hence \(O\) : (xs@y \# ipurge-tr ID (D y) zs, ipurge-ref ID (D y) zs X)
\(\in\) failures \(P\)
by (simp add: futures-def)
show ?thesis
proof (cases xs @y \# ipurge-tr I \(D(D y) z s \in\) sentences \(P\),
case-tac [2] (D y, D None) \(\in I \vee\)
\((\exists u \in \operatorname{sinks} I D(D y) z s .(u, D\) None \() \in I)\),
simp-all)
assume \(P\) : xs @ y \(\#\) ipurge-tr I \(D(D y) z s \in\) sentences \(P\)
have ipurge-ref \(I D(D y)\) zs \(Y \subseteq Y\)
by (rule ipurge-ref-subset)
with \(G\) have ([], ipurge-ref I \(D(D y)\) zs \(Y) \in\) failures \(Q\)
by (rule process-rule-3)
with \(P\) and \(O\) have (xs @ y ipurge-tr I D (Dy)zs,
insert None (ipurge-ref I D (D y) zs X) \(\cap\) ipurge-ref \(I D(D\) y) zs \(Y\) )
\(\in\) seq-comp-failures \(P Q\)
```

 by (rule SCF-R2)
 moreover have
ipurge-ref I D (D y) zs (insert None X) \cap ipurge-ref I D (D y) zs Y\subseteq
insert None (ipurge-ref I D (D y) zs X) \cap ipurge-ref I D (D y) zs Y
proof (rule subsetI, simp del: insert-iff, erule conjE)
fix }
have ipurge-ref I D(D y) zs (insert None X)\subseteq
insert None (ipurge-ref I D (D y) zs X)
by (rule ipurge-ref-subset-insert)
moreover assume x ipurge-ref I D (D y) zs (insert None X)
ultimately show }x\in\mathrm{ insert None (ipurge-ref I D (D y) zs X) ..
qed
ultimately have (xs @ y \# ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs (insert None X) \cap ipurge-ref I D (D y) zs Y)
< seq-comp-failures P Q
by (rule seq-comp-prop-3)
thus ?thesis
by (simp add: ipurge-ref-distrib-inter)
next
assume
P:xs @ y \# ipurge-tr I D (D y) zs \# sentences P and
Q:(D y,D None) }\inI\vee(\existsu\in\mathrm{ sinks I D (D y)zs. (u,D None) }\inI
have ipurge-ref I D (D y) zs (insert None X\capY)={}
proof (rule disjE [OF Q], erule-tac [2] bexE)
assume R:(D y,D None) }\in
show ?thesis
proof (rule ipurge-ref-empty [of D y], simp)
fix }
have }(Dy,D None) \inI\wedgey\not=None\longrightarrow(\forallu\in\mathrm{ range D. }(Dy,u)\inI
using A by (simp add: secure-termination-def)
moreover have y}\not=\mathrm{ None
using N by (rule-tac not-sym, simp)
ultimately have }\forallu\in\mathrm{ range D. (D y,u) }\in
using R by simp
thus (Dy,Dx)\inI
by simp
qed
next
fix }
assume
R:u\in sinks I D (D y) zs and
S:(u,D None) }\in
have }\existsz\in\mathrm{ set zs. }u=D
using R by (rule sinks-elem)
then obtain z where T:z\in set zs and U:u=Dz..
have V:z\not= None
proof
assume z= None
hence None \in set zs

```
```

 using T by simp
 moreover have None # set zs
 using L by simp
 ultimately show False
 by contradiction
 qed
 show ?thesis
 proof (rule ipurge-ref-empty [of u], simp add: R)
 fix }
 have (Dz,D None) \inI\wedgez\not= None \longrightarrow(\forallv\in range D. (Dz,v)\inI)
 using A by (simp add: secure-termination-def)
 moreover have (Dz,D None) }\in
 using S and U by simp
 ultimately have }\forallv\in\mathrm{ range D. (Dz,v) &I
 using V by simp
 thus (u,D x) \inI
 using U by simp
 qed
 qed
 thus ?thesis
 proof simp
 have {}\subseteq ipurge-ref I D (D y) zs X ..
 with O have (xs @ y # ipurge-tr I D (D y) zs, {}) f failures P
 by (rule process-rule-3)
 with P show (xs @ y # ipurge-tr I D (D y) zs, {})
 < seq-comp-failures P Q
 proof (rule SCF-R1, simp add: N)
 have set (ipurge-tr I D (D y)zs)\subseteq set zs
 by (rule ipurge-tr-set)
 moreover have None & set zs
 using L by simp
 ultimately show None # set (ipurge-tr I D (D y) zs)
 by (rule contra-subsetD)
 qed
 qed
 next
assume
P:xs @ y \# ipurge-tr I D (D y) zs \# sentences P and
Q:(D y, D None) }\not\inI\wedge(\forallu\in\operatorname{sinks I D (D y)zs. (u,D None) }\not\inI
have xs @ zs @ [None] \in traces P
using E by (simp add: sentences-def)
hence (xs@ zs @ [None], {}) \in failures P
by (rule traces-failures)
hence (zs @ [None], {}) \in futures P xs
by (simp add: futures-def)
moreover have ([y],{})\in futures P xs
using N by (simp add: futures-def)
ultimately have (y \# ipurge-tr I D (D y) (zs @ [None]),
ipurge-ref I D (D y) (zs @ [None]) {}) \in futures P xs

```
```

 (is \((-, ? Z) \in-\))
 using \(C\) by (simp add: secure-def del: ipurge-tr.simps)
 hence (xs @ y \# ipurge-tr I D (D y) (zs @ [None]), ?Z) \(\in\) failures \(P\)
 by (simp add: futures-def)
 hence \(x s\) @ \(y\) \# ipurge-tr I D (D y) (zs @ [None]) \(\in\) traces \(P\)
 by (rule failures-traces)
 moreover have \(\neg((D y, D\) None \() \in I \vee\)
 \((\exists u \in \operatorname{sinks} I D(D y) z s .(u, D\) None \() \in I))\)
 using \(Q\) by simp
 hence \(D\) None \(\notin\) sinks I \(D(D y)(z s @[N o n e])\)
 by (simp only: sinks-interference-eq, simp)
 ultimately have xs @ y \# ipurge-tr ID (Dy)zs @ \([\) None \(] \in \operatorname{traces} P\)
 by \(\operatorname{simp}\)
 hence \(x s\) @ \(y\) \# ipurge-tr I \(D(D y)\) zs \(\in\) sentences \(P\)
 by (simp add: sentences-def)
 thus ?thesis
 using \(P\) by contradiction
 qed
 next
assume $M: n \in\{0<.$. length $(x s @[y])\}$
have $\forall n \in\{0<$..length $(x s$ @ $[y])\} . \forall W \in R n$.
take (length (xs @ [y]) - n) (xs @ [y]) E sentences $P \wedge$
(drop (length $(x s @[y])-n)(x s @[y]), W) \in$ failures Q
(is $\forall n \in-. \forall W \in-$. ? $T n W$)
using I by simp
hence $\forall W \in R n$.?T $n W$
using M..
moreover obtain W where $W \in R n$
using K..
ultimately have N : ? $T n W$..
moreover have O : take (length $(x s$ @ $y])-n)(x s @[y])=$
take (length (xs @ [y]) - n) (xs @ zs)
using M by simp
ultimately have P : take (length $(x s @[y])-n)(x s @ z s) \in$ sentences P
by simp
have Q : drop (length $(x s @[y])-n)(x s @ z s)=[]$
proof (cases drop (length (xs @ $[y])-n)(x s @ z s)$, simp)
case (Cons v vs)
moreover have xs@zs=take (length $(x s @[y])-n)(x s @ z s) @$
drop (length (xs @ $[y])-n)(x s @ z s)$
by (simp only: append-take-drop-id)
ultimately have R : xs @ zs =
take (length (xs @ $[y])-n)(x s$ @ $z s) @ v \# v s$
by (simp del: take-append)
hence (take (length (xs @ [y]) - n) (xs @zs) @v\#vs, X)
\in failures P
using F by (simp del: take-append)
hence take (length $(x s$ @ $[y])-n)(x s$ @ $z s) @ v \# v s \in$ traces P
by (rule failures-traces)

```
```

with B and P have $v=$ None
by (rule seq-sentences-none)
moreover have
None $\notin \operatorname{set}($ take $($ length $(x s @[y])-n)(x s @ z s) @ v \# v s)$
using L by (subst (asm) R)
hence $v \neq$ None
by (rule-tac not-sym, simp)
ultimately show ?thesis
by contradiction
qed
hence R : $z s=[]$
using M by simp
moreover have $x s$ @ zs=take (length $(x s @[y])-n)(x s @ z s) @$
drop (length (xs @ $[y])-n)(x s @ z s)$
by (simp only: append-take-drop-id)
ultimately have take (length $(x s$ @ $[y])-n)(x s @ z s)=x s$
using Q by simp
hence take (length $(x s @[y])-n)(x s @[y])=x s$
using O by simp
moreover have $x s$ @ $y]=$ take (length $(x s @[y])-n)(x s @[y]) @$
drop (length (xs @ $[y]$) - n) (xs @ $[y]$)
by (simp only: append-take-drop-id)
ultimately have drop (length $(x s$ @ $[y])-n)(x s @[y])=[y]$
by simp
hence $S:([y], W) \in$ failures Q
using N by simp
show ?thesis using E and R
proof (rule-tac SCF-R3, simp-all)
have $\forall x s$ y ys Y zs Z.
$(y \# y s, Y) \in$ futures Q xs $\wedge(z s, Z) \in$ futures Q xs \longrightarrow
(ipurge-tr I D (D y) ys, ipurge-ref $I D(D y)$ ys $Y) \in$ futures Q xs \wedge
(y \# ipurge-tr $I D(D y) z s$, ipurge-ref $I D(D y) z s Z) \in$ futures Q xs
using D by (simp add: secure-def)
hence $([y], W) \in$ futures $Q[] \wedge([], Y) \in$ futures $Q[] \longrightarrow$
(ipurge-tr I $D(D y)[]$, ipurge-ref $I D(D y)[] W) \in$ futures $Q[] \wedge$
(y \# ipurge-tr $I D(D y)[]$, ipurge-ref $I D(D y)[] Y) \in$ futures $Q[]$
by blast
moreover have $([y], W) \in$ futures $Q[]$
using S by (simp add: futures-def)
moreover have ([],Y) futures $Q[]$
using G by (simp add: futures-def)
ultimately have ([y], ipurge-ref I $D(D y)[] Y) \in$ failures Q
(is $\left(-, ? Y^{\prime}\right) \in-$)
by (simp add: futures-def)
moreover have ipurge-ref $I D(D y)[]($ insert None $X) \cap ? Y^{\prime} \subseteq ? Y^{\prime}$
by simp
ultimately have ([y], ipurge-ref I D (Dy)[] (insert None $X) \cap$? Y^{\prime})
\in failures Q
by (rule process-rule-3)

```
```

 thus ([y], ipurge-ref I D (D y) [] (insert None X \capY)) \in failures Q
 by (simp add: ipurge-ref-distrib-inter)
 qed
 qed
 qed
lemma seq-comp-secure-aux-2-case-3:
assumes
A: secure-termination I D and
B: ref-union-closed P and
C: sequential P and
D: secure PI D and
E: secure Q I D and
F:ws}\in\mathrm{ sentences P and
G:(ys,Y)\in failures Q and
H:ys \# [] and
I:ws @ ys = xs @ zs and
J:(xs@ @y],{})\inseq-comp-failures P Q
shows (xs @ y \# ipurge-tr I D (D y) zs,ipurge-ref I D (D y) zs Y)
seq-comp-failures P Q
proof -
have }\existsR.{}=(\bigcupn\in{..length (xs @ [y])}. \bigcupW G R n.W)
(}\forallW\inR0
xs @ [y] \& sentences P ^ None \& set (xs @ [y])^
(xs @ [y],W) f failures P\vee
xs@ @ y] \in sentences P ^(\existsUV. (xs @ [y],U) f failures P }
([],V) f failures Q ^ W= insert None U \capV))^
(\foralln \in{0<..length (xs @ [y])}. }\forallW\inRn
take (length (xs @ [y]) - n) (xs @ [y]) \in sentences P ^
(drop (length (xs @ [y]) - n) (xs@ @y]),W)\in failures Q)^
(\existsn\in{..length (xs @ [y])}. \existsW.W \inR n)
(is }\existsR\mathrm{ . ?T R)
using }J\mathrm{ by (rule seq-comp-refusals-1)
then obtain R where J: ?T R ..
hence }\existsn\in{..length (xs@ @y])}. \existsW.W\inR
by simp
then obtain n where K:n\in{..length (xs@ @y])} and L: \existsW.W\inR n..
have M:n=0\vee n\in{0<..length (xs@ [y])}
using K by auto
show ?thesis
proof (cases length xs < length ws)
case True
have }\forallW\inR0
xs @ [y]\not\in sentences P ^
None \& set (xs @ [y])^(xs @ [y],W) f failures P\vee
xs@ [y]\in sentences P ^
(\existsUV.(xs@ [y],U)\in failures P ^ ([],V) f failures Q^
W = insert None U\capV)
(is }\forallW\in-. ?T W

```
```

using J by simp
moreover have $n \notin\{0<$..length ($x s$ @ $[y])\}$
proof
assume $N: n \in\{0<$..length $(x s @[y])\}$
hence $\forall W \in R$ n. take (length (xs @ $[y])-n)(x s$ @ $[y]) \in$ sentences P
using J by simp
moreover obtain W where $W \in R n$
using L..
ultimately have take (length $(x s$ @ $[y])-n)(x s @[y]) \in$ sentences P..
moreover have take (length (xs @ [y]) - n) (xs @ [y]) =
take (length (xs @ [y]) - n) (xs @ zs)
using N by simp
ultimately have take (length $(x s$ @ $[y])-n)(x s @ z s) \in$ sentences P
by simp
hence take (length $(x s @[y])-n)(w s @ y s) \in$ sentences P
using I by simp
moreover have length (xs @ $[y]$) - $n \leq$ length $x s$
using N by (simp, arith)
hence O : length ($x s$ @ $[y]$) $-n<$ length ws
using True by simp
ultimately have P : take (length (xs @ $[y])-n$) ws \in sentences P
by simp
show False
proof (cases drop (length (xs @ [y]) - n) ws)
case Nil
thus False
using O by simp
next
case (Cons v vs)
moreover have ws = take (length $(x s @[y])-n) w s$ @
drop (length (xs @ [y]) - n) ws
by simp
ultimately have $Q:$ ws = take (length (xs @ $[y]$) - n) ws @ $v \#$ vs
by simp
hence take (length (xs @ [y]) - n) ws @ v\#vs \in sentences P
using F by simp
hence (take (length (xs @ [y]) - n) ws @ v\#vs) @ [None] $\in \operatorname{traces} P$
by (simp add: sentences-def)
hence take (length (xs @ [y]) - n) ws @ v\#vs \in traces P
by (rule process-rule-2-traces)
with C and P have $v=$ None
by (rule seq-sentences-none)
moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)
hence None \notin set ws
using F by (rule weakly-seq-sentences-none)
hence None \notin set (take (length (xs @ $[y])-n$)ws @ $v \# v s$)
by (subst (asm) Q)
hence $v \neq$ None

```
```

 by (rule-tac not-sym, simp)
 ultimately show False
 by contradiction
 qed
 qed
hence }n=
using M by blast
hence }\existsW.W\inR
using L by simp
then obtain W where W\inR 0 ..
ultimately have ?T W ..
hence N:(xs @ [y],{})\in failures P ^ None \# set xs ^ None }\not=
proof (cases xs @ [y] E sentences P, simp-all del: ex-simps,
(erule-tac exE)+,(erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y],W)\in failures P
moreover have {}\subseteqW ..
ultimately show (xs @ [y], {}) \in failures P
by (rule process-rule-3)
next
fix }
case True
assume (xs @ [y],U) \in failures P
moreover have {}\subseteqU ..
ultimately have (xs @ [y], {}) \in failures P
by (rule process-rule-3)
moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)
hence None \& set (xs @ [y])
using True by (rule weakly-seq-sentences-none)
hence None }\not\in\mathrm{ set xs ^ None }\not=
by simp
ultimately show ?thesis ..
qed
have drop (length xs) (xs @ zs) = drop (length xs) (ws@ @s)
using I by simp
hence O:zs = drop (length xs) ws @ ys
(is - = ?ws' @ -)
using True by simp
let ?U = insert (D y)(sinks I D (D y) ?ws')
have ipurge-tr I D (D y) zs=
ipurge-tr I D (D y) ?ws' @ ipurge-tr-aux I D ?U ys
using O by (simp add: ipurge-tr-append)
moreover have ipurge-ref I D (D y) zs Y = ipurge-ref-aux I D ?U ys Y
using O by (simp add: ipurge-ref-append)
ultimately show ?thesis
proof (cases xs @ y \# ipurge-tr I D (D y) ?ws' \in sentences P, simp-all)
assume P: xs @ y \# ipurge-tr I D (D y) ?ws' \in sentences P
have Q: (ipurge-tr-aux I D ?U ys, ipurge-ref-aux I D ?U ys Y) f failures Q

```
```

 using E and G by (rule ipurge-tr-ref-aux-failures)
 show (xs @ y # ipurge-tr I D (D y) ?ws' @ ipurge-tr-aux I D ?U ys,
 ipurge-ref-aux I D ?U ys Y) \in seq-comp-failures P Q
 proof (cases ipurge-tr-aux I D ?U ys)
 case Nil
 have (xs@ @ # ipurge-tr I D (D y) ?ws', {x.x\not= None}) \in failures P
 using B and C and P by (rule seq-sentences-ref)
 moreover have ([], ipurge-ref-aux I D ?U ys Y) \in failures Q
 using Q and Nil by simp
 ultimately have (xs @ y # ipurge-tr I D (D y) ?ws',
 insert None {x. x\not= None} \cap ipurge-ref-aux I D ?U ys Y)
 | seq-comp-failures P Q
 by (rule SCF-R2 [OF P])
 moreover have insert None {x. x \not=None} \cap
 ipurge-ref-aux I D ?U ys Y = ipurge-ref-aux I D ?U ys Y
 by blast
 ultimately show ?thesis
 using Nil by simp
 next
case Cons
hence ipurge-tr-aux I D ?U ys \not= []
by simp
with P and Q have
((xs @ y \# ipurge-tr I D (D y) ?ws') @ ipurge-tr-aux I D ?U ys,
ipurge-ref-aux I D ?U ys Y)\in seq-comp-failures P Q
by (rule SCF-R3)
thus ?thesis
by simp
qed
next
assume P: xs @ y \# ipurge-tr I D (D y) ?ws' \& sentences P
have ws = take (length xs) ws @ ?ws'
by simp
moreover have take (length xs) (ws@ys)=take (length xs) (xs @ zs)
using I by simp
hence take (length xs) ws = xs
using True by simp
ultimately have xs @ ?ws' \in sentences P
using F by simp
hence xs@ @ws' @ [None] \in traces P
by (simp add: sentences-def)
hence (xs @ ?ws' @ [None], {}) \in failures P
by (rule traces-failures)
hence (?ws' @ [None], {}) \in futures P xs
by (simp add: futures-def)
moreover have ([y],{})\in futures P xs
using N by (simp add: futures-def)
ultimately have (y \# ipurge-tr I D (D y) (?ws' @ [None]),
ipurge-ref I D (D y) (?ws' @ [None]) {}) \in futures P xs

```
```

using D by (simp add: secure-def del: ipurge-tr.simps)
hence Q:(xs @ y \# ipurge-tr I D (D y) (?ws' @ [None]), {}) \in failures P
by (simp add: futures-def ipurge-ref-def)
have set ?ws' \subseteq set ws
by (rule set-drop-subset)
moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)
hence None \& set ws
using F by (rule weakly-seq-sentences-none)
ultimately have R: None }\ddagger\mathrm{ set ?ws'
by (rule contra-subsetD)
show (xs @ y \# ipurge-tr I D (D y) ?ws' @ ipurge-tr-aux I D ?U ys,
ipurge-ref-aux I D ?U ys Y) \in seq-comp-failures P Q
proof (cases (D y,D None) \inI\vee
(\existsu\in sinks I D (D y) ?ws'. (u,D None) }\inI)
assume S:(D y,D None) }\inI
(\existsu\in sinks I D (D y) ?ws'. (u,D None) }\inI
have ipurge-tr-aux I D ?U ys = []
proof (rule disjE [OF S], erule-tac [2] bexE)
assume T:(D y,D None) }\in
show ?thesis
proof (rule ipurge-tr-aux-nil [of D y], simp)
fix }
have (D y,D None) }\inI\wedgey\not=None\longrightarrow(\forallu\in\mathrm{ range D. }(Dy,u)\inI
using A by (simp add: secure-termination-def)
moreover have y}\not=\mathrm{ None
using N by (rule-tac not-sym, simp)
ultimately have }\forallu\in\mathrm{ range D. (Dy,u) }\in
using T by simp
thus (Dy,Dx)\inI
by simp
qed
next
fix }
assume
T:u \in sinks I D (D y) ?ws' and
U:(u,D None) \inI
have \existsw\in set ?ws'.}u=D
using T by (rule sinks-elem)
then obtain w where V:w\in set ? ws' and W:u=D w ..
have X:w\not= None
proof
assume w= None
hence None \in set ?ws'
using V by simp
moreover have None \& set ?ws'
using R by simp
ultimately show False
by contradiction

```
```

 qed
 show ?thesis
 proof (rule ipurge-tr-aux-nil [of u], simp add: T)
 fix \(x\)
 have \((D w, D\) None \() \in I \wedge w \neq\) None \(\longrightarrow\)
 \((\forall v \in\) range \(D .(D w, v) \in I)\)
 using \(A\) by (simp add: secure-termination-def)
 moreover have \((D w, D\) None \() \in I\)
 using \(U\) and \(W\) by simp
 ultimately have \(\forall v \in\) range \(D .(D w, v) \in I\)
 using \(X\) by simp
 thus \((u, D x) \in I\)
 using \(W\) by simp
 qed
 qed
moreover have ipurge-ref-aux I D ?U ys $Y=\{ \}$
proof (rule disjE [OF S], erule-tac [2] bexE)
assume $T:(D y, D$ None $) \in I$
show ?thesis
proof (rule ipurge-ref-aux-empty [of $D y]$)
have ? $U \subseteq$ sinks-aux I D ? U ys
by (rule sinks-aux-subset)
moreover have $D y \in ? U$
by simp
ultimately show $D y \in$ sinks-aux I D ? U ys ..
next
fix x
have $(D y, D$ None $) \in I \wedge y \neq$ None $\longrightarrow(\forall u \in$ range $D .(D y, u) \in I)$
using A by (simp add: secure-termination-def)
moreover have $y \neq$ None
using N by (rule-tac not-sym, simp)
ultimately have $\forall u \in$ range $D .(D y, u) \in I$
using T by simp
thus $(D y, D x) \in I$
by simp
qed
next
fix u
assume
$T: u \in$ sinks I $D(D y) ? w s^{\prime}$ and
$U:(u, D$ None $) \in I$
have $\exists w \in$ set ? $w s^{\prime} . u=D w$
using T by (rule sinks-elem)
then obtain w where $V: w \in s e t$? $w s^{\prime}$ and $W: u=D w$.
have $X: w \neq$ None
proof
assume $w=$ None
hence None \in set ? ws ${ }^{\prime}$
using V by simp

```
```

 moreover have None \(\notin\) set ? ws \({ }^{\prime}\)
 using \(R\) by simp
 ultimately show False
 by contradiction
 qed
 show ?thesis
 proof (rule ipurge-ref-aux-empty [of u])
 have ? \(U \subseteq\) sinks-aux I \(D\) ? \(U\) ys
 by (rule sinks-aux-subset)
 moreover have \(u \in\) ? \(U\)
 using \(T\) by \(\operatorname{simp}\)
 ultimately show \(u \in\) sinks-aux I D ?U ys ..
 next
 fix \(x\)
 have \((D w, D\) None \() \in I \wedge w \neq\) None \(\longrightarrow\)
 \((\forall v \in\) range \(D .(D w, v) \in I)\)
 using \(A\) by (simp add: secure-termination-def)
 moreover have \((D w, D\) None \() \in I\)
 using \(U\) and \(W\) by simp
 ultimately have \(\forall v \in \operatorname{range} D .(D w, v) \in I\)
 using \(X\) by simp
 thus \((u, D x) \in I\)
 using \(W\) by \(\operatorname{simp}\)
 qed
 qed
 ultimately show ?thesis
 proof simp
 have \(D\) None \(\in\) sinks I \(D(D y)\left(? w s^{\prime} @[\right.\) None \(\left.]\right)\)
 using \(S\) by (simp only: sinks-interference-eq)
 hence (xs @ \(y\) \# ipurge-tr \(I D(D y)\) ? ws \(\left.{ }^{\prime},\{ \}\right) \in\) failures \(P\)
 using \(Q\) by simp
 moreover have None \(\notin\) set (xs @ \(y \#\) ipurge-tr I D (D y) ?ws')
 proof (simp add: \(N\))
 have set (ipurge-tr I \(D(D y)\) ? ws \(\left.{ }^{\prime}\right) \subseteq\) set ? ws \({ }^{\prime}\)
 by (rule ipurge-tr-set)
 thus None \(\notin\) set (ipurge-tr I \(D(D y)\) ? ws')
 using \(R\) by (rule contra-subsetD)
 qed
 ultimately show (xs @ y ipurge-tr I D (D y) ?ws', \{\})
 \(\in\) seq-comp-failures \(P Q\)
 by (rule SCF-R1 [OF P])
 qed
 next
assume $\neg((D y, D$ None $) \in I \vee$
$(\exists u \in \operatorname{sinks} I D(D y)$? ws'. $(u, D$ None $) \in I))$
hence D None \notin sinks I $D(D y)\left(? w s^{\prime} @[\right.$ None $\left.]\right)$
by (simp only: sinks-interference-eq, simp)
hence (xs @ y \# ipurge-tr I D (D y) ?ws' @ [None], $\}) \in$ failures P
using Q by simp

```
```

 hence xs @ y # ipurge-tr I D (D y) ?ws' @ [None] \in traces P
 by (rule failures-traces)
 hence xs @ y # ipurge-tr I D (D y) ?ws'\in sentences P
 by (simp add: sentences-def)
 thus ?thesis
 using P by contradiction
 qed
 qed
 next
case False
have }\foralln\in{0<..length (xs @ [y])}.\forallW\inR n.
take (length (xs @ [y]) - n) (xs @ [y]) \in sentences P ^
(drop (length (xs@ @ y]) - n) (xs @ [y]),W) \in failures Q
(is }\foralln\in-.\forallW\in-..?T nW
using J by simp
moreover have n}=
proof
have }\forallW\inR0
xs @ [y] \& sentences P ^
None \# set (xs @ [y])^(xs@ [y],W) \in failures P \vee
xs@ [y] \in sentences P ^
(\existsUV.(xs @ [y],U) f failures }P\wedge([],V)\in\mathrm{ failures }Q
W = insert None U \capV)
(is }\forallW\in-. ?T'W
using J by blast
moreover assume n=0
hence }\exists\textrm{W}.W\inR
using L by simp
then obtain W where W\inR 0..
ultimately have ?T' W ..
hence N:xs@ [y]\in traces P ^ None \& set (xs @ [y])
proof (cases xs @ [y]\in sentences P, simp-all del: ex-simps,
(erule-tac exE)+,(erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y],W)\in failures P
moreover have {}\subseteqW ..
ultimately have (xs @ [y],{}) \in failures P
by (rule process-rule-3)
thus xs @ [y]\in traces P
by (rule failures-traces)
next
fix }
case True
assume (xs @ [y],U) \in failures P
moreover have {}\subseteqU ..
ultimately have (xs @ [y], {}) \in failures P
by (rule process-rule-3)
hence xs @ [y] \in traces P
by (rule failures-traces)

```
```

 moreover have weakly-sequential P
 using C by (rule seq-implies-weakly-seq)
 hence None & set (xs @ [y])
 using True by (rule weakly-seq-sentences-none)
 hence None }\not=y^N\mp@code{None }\not\in\mathrm{ set xs
 by simp
 ultimately show xs @ [y]\in traces P ^ None }\not=y^N\mp@code{None & set xs ..
 qed
have take (length xs)(xs@ zs)@ [y]= take (length xs) (ws @ ys)@ [y]
using I by simp
hence xs @ [y]=ws @ take (length xs - length ws) ys @ [y]
using False by simp
moreover have }\existsvvs. take (length xs - length ws) ys @ [y]=v\# v
by (cases take (length xs - length ws) ys @ [y], simp-all)
then obtain v and vs where
take (length xs - length ws) ys @ [y]=v\# vs
by blast
ultimately have O:xs@ [y]=ws @ v\#vs
by simp
hence ws @ v\#vs\intraces P
using N by simp
with C and F have v=None
by (rule seq-sentences-none)
moreover have v}\not=\mathrm{ None
using N and O by (rule-tac not-sym, simp)
ultimately show False
by contradiction
qed
hence N:n\in{0<..length (xs @ [y])}
using M by blast
ultimately have }\forallW\inRn\mathrm{ . ?T n W ..
moreover obtain W where W\inRn
using L ..
ultimately have O:?T n W ..
have P: length (xs@ @ [y]) - n < length xs
using N by (simp, arith)
have length (xs @ [y]) - n= length ws
proof (rule ccontr, simp only: neq-iff, erule disjE)
assume Q: length (xs @ [y]) - n < length ws
moreover have ws = take (length (xs @ [y]) - n)ws @
drop (length (xs@ @ y]) - n)ws
(is - = - @ ?ws')
by simp
ultimately have ws = take (length (xs @ [y]) - n)(ws @ ys) @ ?ws'
by simp
hence ws = take (length (xs @ [y]) - n) (xs @ zs)@ ?ws'
using I by simp
hence ws = take (length (xs @ [y]) - n) (xs @ [y])@ ?ws'
using P by simp

```
```

moreover have ? $w s^{\prime} \neq[]$
using Q by simp
hence $\exists v$ vs. ? $w s^{\prime}=v \#$ vs
by (cases? ws ${ }^{\prime}$, simp-all)
then obtain v and $v s$ where $? w s^{\prime}=v \# v s$
by blast
ultimately have $S:$ ws $=$ take $($ length $(x s @[y])-n)(x s @[y]) @ v \# v s$
by simp
hence (take (length (xs @ $[y])-n)(x s @[y]) @ v \# v s) @[N o n e]$
\in traces P
using F by (simp add: sentences-def)
hence T : take (length $(x s$ @ $y])-n)(x s @[y]) @ v \# v s \in \operatorname{traces} P$
by (rule process-rule-2-traces)
have take (length $(x s$ @ $[y])-n)(x s @[y]) \in$ sentences P
using O..
with C have $v=$ None
using T by (rule seq-sentences-none)
moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)
hence None \notin set ws
using F by (rule weakly-seq-sentences-none)
hence $v \neq$ None
using S by (rule-tac not-sym, simp)
ultimately show False
by contradiction
next
assume Q : length ws < length (xs @ $[y])-n$
have take (length (xs @ $[y])-n)(x s @[y])=$
take (length (xs @ $y \mathrm{y}])-n$) (xs @ zs)
using P by simp
also have $\ldots=$ take (length (xs @ $[y])-n)(w s @ y s)$
using I by simp
also have $\ldots=$ take (length (xs @ $[y])-n$) ws @
take (length (xs @ [y]) - n - length ws) ys
(is - = - @ ? ys')
by simp
also have $\ldots=w s @$?ys ${ }^{\prime}$
using Q by simp
finally have take (length (xs @ $[y])-n)(x s @[y])=w s$ @ ?ys'.
moreover have ? ys $^{\prime} \neq[]$
using Q and H by simp
hence $\exists v$ vs. ? ${ }^{\prime} s^{\prime}=v \#$ vs
by (cases ? ys ', simp-all)
then obtain v and $v s$ where ?ys' $=v \# v s$
by blast
ultimately have S : take (length $(x s @[y])-n)(x s @[y])=w s @ v \# v s$
by simp
hence (ws @ v\#vs) @ [None] \in traces P
using O by (simp add: sentences-def)

```
```

hence ws @ v \# vs \in traces P
by (rule process-rule-2-traces)
with C and F have T:v=None
by (rule seq-sentences-none)
have weakly-sequential P
using C by (rule seq-implies-weakly-seq)
moreover have take (length (xs@ [y]) - n) (xs @ [y]) \in sentences P
using O ..
ultimately have None \# set (take (length (xs @ [y]) - n) (xs @ [y]))
by (rule weakly-seq-sentences-none)
hence v\not= None
using}S\mathrm{ by (rule-tac not-sym, simp)
thus False
using T by contradiction
qed
hence (drop (length ws) (xs @ [y]),W) \in failures Q
using O by simp
hence (drop (length ws) xs @ [y],W) failures Q
(is (?xs' @ -, -) \in-)
using False by simp
hence ([y],W) \in futures Q ?xs'
by (simp add: futures-def)
moreover have drop (length ws) (ws @ ys)=drop (length ws) (xs @ zs)
using I by simp
hence ys=? ?xs'@ zs
using False by simp
hence (?xs' @ zs,Y)\in failures Q
using G by simp
hence (zs,Y)\in futures Q ?xs'
by (simp add: futures-def)
ultimately have (y\# ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)
futures Q ?xs'
using E by (simp add: secure-def)
hence (?xs' @ y \# ipurge-tr I D (D y) zs,ipurge-ref I D (D y) zs Y)
failures Q
by (simp add: futures-def)
moreover have ?xs' @ y \# ipurge-tr I D (D y) zs \not= []
by simp
ultimately have (ws @ ?xs' @ y \# ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs Y) \in seq-comp-failures P Q
by (rule SCF-R3 [OF F])
hence((ws @ ?xs') @ y \# ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs Y) \in seq-comp-failures P Q
by simp
moreover have xs = take (length ws) xs @ ?xs'
by simp
hence xs = take (length ws) (xs @ zs)@ ?xs'
using False by simp
hence xs = take (length ws) (ws @ ys)@ ?xs'

```
```

 using I by simp
 hence xs=ws @ ?xs'
 by simp
 ultimately show ?thesis
 by simp
 qed
 qed
lemma seq-comp-secure-aux-2 [rule-format]:
assumes
A: secure-termination I D and
B: ref-union-closed P and
C: sequential P and
D: secure PI D and
E: secure Q I D
shows (ws,Z)\in seq-comp-failures P Q >
ws=xs @ zs \longrightarrow
(xs@ @ [y],{})\in seq-comp-failures P Q \longrightarrow
(xs@y\# ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
\& seq-comp-failures P Q
proof (erule seq-comp-failures.induct, (rule-tac [!] impI)+, simp-all,(erule conjE)+)
fix }
assume
xs@zs \& sentences P and
(xs@ zs,X) f failures P and
None \& set xs and
None \& set zs and
(xs @ [y], {}) \in seq-comp-failures P Q
thus(xs@y\# ipurge-tr I D (D y) zs,ipurge-ref I D (D y) zs X)
seq-comp-failures P Q
by (rule seq-comp-secure-aux-2-case-1 [OFACA
next
fix X Y
assume
xs@ zs \in sentences P and
(xs@ zs,X) failures P and
([],Y) f failures Q and
(xs@ @y],{}) \in seq-comp-failures P Q
thus (xs@y \# ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs (insert None X \capY)) \in seq-comp-failures P Q
by (rule seq-comp-secure-aux-2-case-2 [OF A C D E])
next
fix ws ys Y
assume
ws }\in\mathrm{ sentences P and
(ys,Y) failures Q and
ys}\not=[] an
ws@ys=xs @ zs and
(xs@ @y],{})\in seq-comp-failures P Q

```
```

thus $\left(x s @ y\right.$ \# ipurge-tr I $D\left(\begin{array}{l}\text { y }\end{array}\right) z s$, ipurge-ref I $D\left(\begin{array}{l}\text { y }\end{array}\right) z s$)
\in seq-comp-failures $P Q$
by (rule seq-comp-secure-aux-2-case-3 [OF A B C D E])
next
fix $X Y$
assume
(xs @ y \# ipurge-tr ID (Dy)zs, ipurge-ref I D (D y) zs X)
\in seq-comp-failures $P Q$ and
(xs @ y \# ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)
\in seq-comp-failures $P Q$
hence (xs @ y \# ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs $X \cup$ ipurge-ref I D (D y) zs Y)
\in seq-comp-failures $P Q$
by (rule SCF-R4)
thus (xs @y \# ipurge-tr I D (Dy)zs, ipurge-ref I D (Dy)zs (X Y))
\in seq-comp-failures $P Q$
by (simp add: ipurge-ref-distrib-union)
qed
lemma seq-comp-secure-2:
assumes
A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D : secure PID and
E: secure Q I D
shows (xs @ zs, Z) \in seq-comp-failures $P Q \Longrightarrow$
(xs @ $[y],\{ \}) \in$ seq-comp-failures $P Q \Longrightarrow$
(xs @ y \# ipurge-tr I D (D y) zs, ipurge-ref I $D\left(\begin{array}{l}\text { y }\end{array}\right.$ zs Z)
\in seq-comp-failures $P Q$
by (rule seq-comp-secure-aux-2 [OF ABCDE, where ws $=x s$ @ zs], simp-all)
Finally, the target security conservation theorem can be enunciated and proven, which is done here below. The theorem states that for any two processes P, Q defined over the same alphabet containing successful termination, to which the noninterference policy I and the event-domain map D apply, if:

```
- \(I\) and \(D\) enforce termination security,
- \(P\) is refusals union closed and sequential, and
- both \(P\) and \(Q\) are secure with respect to \(I\) and \(D\),
then \(P ; Q\) is secure as well.
theorem seq-comp-secure:
```

assumes
A: secure-termination I D and
B: ref-union-closed P and
C: sequential P and
D: secure P I D and
E: secure Q I D
shows secure (P;Q)ID
proof (simp add: secure-def seq-comp-futures seq-implies-weakly-seq [OF C],
(rule allI)+, rule impI, erule conjE)
fix xs y ys Y zs Z
assume
F:(xs@y\#ys,Y)\inseq-comp-failures P Q and
G:(xs@zs,Z)\in seq-comp-failures P Q
show
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
seq-comp-failures P Q ^
(xs @ y \# ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
\& seq-comp-failures P Q
(is ?A ^ ?B)
proof
show ?A
by (rule seq-comp-secure-1 [OF A B C D E F}]
next
have H: weakly-sequential P
using C by (rule seq-implies-weakly-seq)
hence ((xs @ [y]) @ ys,Y) \in failures (P ; Q)
using F by (simp add: seq-comp-failures)
hence (xs @ [y], {}) \in failures (P;Q)
by (rule process-rule-2-failures)
hence (xs @ [y], {}) \in seq-comp-failures P Q
using H by (simp add: seq-comp-failures)
thus ?B
by (rule seq-comp-secure-2 [OF A B C D E G}]
qed
qed

```

\subsection*{2.5 Generalization of the security conservation theorem to lists of processes}

The target security conservation theorem, in the basic version just proven, applies to the sequential composition of a pair of processes. However, given an arbitrary list of processes where each process satisfies its assumptions, the theorem could be orderly applied to the composition of the first two processes in the list, then to the composition of the resulting process with the third process in the list, and so on, until the last process is reached. The final outcome would be that the sequential composition of all the processes in the list is secure.
Of course, this argument works provided that the assumptions of the theo-
rem keep being satisfied by the composed processes produced in each step of the recursion. But this is what indeed happens, by virtue of the conservation of refusals union closure and sequentiality under sequential composition, proven previously, and of the conservation of security under sequential composition, ensured by the target theorem itself.
Therefore, the target security conservation theorem can be generalized to an arbitrary list of processes, which is done here below. The resulting theorem states that for any nonempty list of processes defined over the same alphabet containing successful termination, to which the noninterference policy \(I\) and the event-domain map \(D\) apply, if:
- \(I\) and \(D\) enforce termination security,
- each process in the list, with the possible exception of the last one, is refusals union closed and sequential, and
- each process in the list is secure with respect to \(I\) and \(D\),
then the sequential composition of all the processes in the list is secure as well.
As a precondition, the above conservation lemmas for weak sequentiality, refusals union closure, and sequentiality are generalized, too.
```

lemma seq-comp-list-weakly-sequential [rule-format]:
$(\forall X \in \operatorname{set}(P \# P S)$. weakly-sequential $X) \longrightarrow$
weakly-sequential (foldl (;) P PS)
proof (induction PS rule: rev-induct, simp, rule impI, simp, (erule conjE)+)
qed (rule seq-comp-weakly-sequential)
lemma seq-comp-list-ref-union-closed [rule-format]:
$(\forall X \in \operatorname{set}($ butlast $(P \# P S))$. weakly-sequential $X) \longrightarrow$
$(\forall X \in \operatorname{set}(P \# P S)$. ref-union-closed $X) \longrightarrow$
ref-union-closed (foldl (;) P PS)
proof (induction PS rule: rev-induct, simp, (rule impI)+, simp, split if-split-asm,
simp, rule seq-comp-ref-union-closed, assumption+)
fix $P S$ and Q :: 'a option process
assume
A: weakly-sequential P and
$B: \forall X \in$ set PS. weakly-sequential X and
C : ref-union-closed Q and
$D:(\forall X \in \operatorname{set}(P \#$ butlast $P S)$. weakly-sequential $X) \longrightarrow$
ref-union-closed (foldl (;) P PS)
have weakly-sequential (foldl (;) P PS)
proof (rule seq-comp-list-weakly-sequential, simp, erule disjE, simp add: A)
fix X
assume $X \in$ set $P S$
with B show weakly-sequential X..

```
```

 qed
 moreover have }\forallX\in\mathrm{ set (}P#\mathrm{ butlast PS). weakly-sequential X
 proof (rule ballI, simp, erule disjE, simp add: A)
 fix }
 assume X set (butlast PS)
    ```

```

 by (rule in-set-butlastD)
 with B show weakly-sequential X ..
 qed
 with D have ref-union-closed (foldl (;) P PS) ..
 ultimately show ref-union-closed (foldl (;) P PS;Q)
 using C by (rule seq-comp-ref-union-closed)
 qed
lemma seq-comp-list-sequential [rule-format]:
(}\forallX\in\operatorname{set}(P\#PS). sequential X)
sequential (foldl (;) P PS)
proof (induction PS rule: rev-induct, simp, rule impI, simp,(erule conjE)+)
qed (rule seq-comp-sequential)
theorem seq-comp-list-secure [rule-format]:
assumes A: secure-termination I D
shows
(}\forallX\in\operatorname{set}(butlast (P\#PS)). ref-union-closed X ^ sequential X)
(}\forallX\in\operatorname{set}(P\#PS). secure X I D)
secure (foldl (;) P PS) I D
proof (induction PS rule: rev-induct, simp, (rule impI)+, simp, split if-split-asm,
simp, rule seq-comp-secure [OF A], assumption+)
fix PS Q
assume
B:PS\not=[] and
C: ref-union-closed P and
D: sequential P and
E:}\forallX\in\mathrm{ set PS. ref-union-closed }X\wedge\mathrm{ sequential }X\mathrm{ and
F: secure Q I D and
G:(\forallX\in\operatorname{set (P\# butlast PS). ref-union-closed X ^ sequential X)}\longrightarrow
secure (foldl (;) P PS) I D
have ref-union-closed (foldl (;) P PS)
proof (rule seq-comp-list-ref-union-closed, simp-all add: B, erule-tac [!] disjE,
simp-all add: C)
show weakly-sequential P
using D by (rule seq-implies-weakly-seq)
next
fix }
assume X \&et (butlast PS)

```

```

 by (rule in-set-butlastD)
 with E have ref-union-closed X ^ sequential X ..
 hence sequential X ..
    ```
```

 thus weakly-sequential X
 by (rule seq-implies-weakly-seq)
 next
 fix }
 assume X Get PS
 with E have ref-union-closed }X\wedge\mathrm{ sequential }X\mathrm{ ..
 thus ref-union-closed X ..
 qed
 moreover have sequential (foldl (;) P PS)
 proof (rule seq-comp-list-sequential, simp, erule disjE, simp add: D)
 fix }
 assume X set PS
 with E have ref-union-closed X \ sequential X ..
 thus sequential X ..
 qed
 moreover have }\forallX\in\mathrm{ set (P # butlast PS). ref-union-closed X ^ sequential X
 proof (rule ballI, simp, erule disjE, simp add: C D)
 fix X
 assume X Set (butlast PS)
 hence X & set PS
 by (rule in-set-butlastD)
 with E show ref-union-closed X ^ sequential X ..
 qed
 with G have secure (foldl (;) P PS) I D ..
 ultimately show secure (foldl (;) P PS ; Q) I D
 using F by (rule seq-comp-secure [OF A])
 qed
end

```

\section*{3 Necessity of nontrivial assumptions}
theory Counterexamples
imports SequentialComposition
begin

The security conservation theorem proven in this paper contains two nontrivial assumptions; namely, the security policy must satisfy predicate se-cure-termination, and the first input process must satisfy predicate sequential instead of weakly-sequential alone. This section shows, by means of counterexamples, that both of these assumptions are necessary for the theorem to hold.
In more detail, two counterexamples will be constructed: the former drops the termination security assumption, whereas the latter drops the process sequentiality assumption, replacing it with weak sequentiality alone. In both cases, all the other assumptions of the theorem keep being satisfied.

Both counterexamples make use of reflexive security policies, which is the case for any policy of practical significance, and are based on trace set processes as defined in [9]. The security of the processes input to sequential composition, as well as the insecurity of the resulting process, are demonstrated by means of the Ipurge Unwinding Theorem proven in [9].

\subsection*{3.1 Preliminary definitions and lemmas}

Both counterexamples will use the same type event as native type of ordinary events, as well as the same process \(Q\) as second input to sequential composition. Here below are the definitions of these constants, followed by few useful lemmas on process \(Q\).
```

datatype event $=a \mid b$
definition Q :: event option process where
$Q \equiv$ ts-process $\{[],[$ Some b]\}
lemma trace-set-snd:
trace-set $\{[]$, [Some b]\}
by (simp add: trace-set-def)
lemmas failures-snd $=t$ s-process-failures $[O F$ trace-set-snd $]$
lemmas traces-snd $=$ ts-process-traces $[$ OF trace-set-snd $]$
lemmas next-events-snd $=t$-process-next-events $[$ OF trace-set-snd $]$
lemmas unwinding-snd $=t$--ipurge-unwinding $[$ OF trace-set-snd $]$

```

\subsection*{3.2 Necessity of termination security}

The reason why the conservation of noninterference security under sequential composition requires the security policy to satisfy predicate secure-termination is that the second input process cannot engage in its events unless the first process has terminated successfully. Thus, the ordinary events of the first process can indirectly affect the events of the second process by affecting the successful termination of the first process. Therefore, if an ordinary event is allowed to affect successful termination, then the policy must allow it to affect any other event as well, which is exactly what predicate secure-termination states.
A counterexample showing the necessity of this assumption can then be constructed by defining a reflexive policy \(I_{1}\) that allows event Some \(a\) to affect None, but not Some b, and a deterministic process \(P_{1}\) that can engage in None only after engaging in Some \(a\). The resulting process \(P_{1} ; Q\) will
number [Some a, Some b], but not [Some b], among its traces, so that event Some \(a\) affects the occurrence of event Some \(b\) in contrast with policy \(I_{1}\), viz. \(P_{1} ; Q\) is not secure with respect to \(I_{1}\).
Here below are the definitions of constants \(I_{1}\) and \(P_{1}\), followed by few useful lemmas on process \(P_{1}\).
definition \(I_{1}::(\) event option \(\times\) event option) set where
\(I_{1} \equiv\{(\) Some \(a\), None \()\}=\)
definition \(P_{1}\) :: event option process where
\(P_{1} \equiv t s\)-process \(\{[]\), [Some a], [Some a, None \(\left.]\right\}\)
lemma trace-set-fst-1:
trace-set \(\{[],[\) Some a], [Some a, None \(]\}\)
by (simp add: trace-set-def)
lemmas failures-fst-1 \(=\) ts-process-failures \([\) OF trace-set-fst-1]
lemmas traces-fst-1 \(=\) ts-process-traces \([O F\) trace-set-fst- 1\(]\)
lemmas next-events-fst-1 \(=\) ts-process-next-events \([\) OF trace-set-fst-1]
lemmas unwinding-fst-1 \(=\) ts-ipurge-unwinding \([\) OF trace-set-fst-1]

Here below is the proof that policy \(I_{1}\) does not satisfy predicate secure-termination, whereas the remaining assumptions of the security conservation theorem keep being satisfied. For the sake of simplicity, the identity function is used as event-domain map.
lemma not-secure-termination-1:
\(\neg\) secure-termination \(I_{1}\) id
proof (simp add: secure-termination-def \(I_{1}\)-def, rule exI [where \(x=\) Some a], simp)
qed (rule exI [where \(x=\) Some \(b\) ], simp)
lemma ref-union-closed-fst-1:
ref-union-closed \(P_{1}\)
by (rule d-implies-ruc, subst \(P_{1}\)-def, rule ts-process-d, rule trace-set-fst-1)
lemma sequential-fst-1:
sequential \(P_{1}\)
proof (simp add: sequential-def sentences-def \(P_{1}\)-def traces-fst-1)
qed (simp add: set-eq-iff next-events-fst-1)
lemma secure-fst-1:
secure \(P_{1} I_{1}\) id
```

proof (simp add: P_{1}-def unwinding-fst-1 dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-fst-1, (rule allI)+)
fix u xs ys
show
$(x s=[] \vee x s=[$ Some a] $\vee x s=[$ Some a, None $]) \wedge$
$(y s=[] \vee y s=[$ Some a] \vee ys $=[$ Some a, None $]) \wedge$
ipurge-tr-rev I_{1} id $u x s=$ ipurge-tr-rev I_{1} id u ys \longrightarrow
next-dom-events (ts-process $\{[],[$ Some a], [Some a, None $]\}$) id uxs $=$
next-dom-events (ts-process \{[], [Some a], [Some a, None]\}) id u ys
proof (simp add: next-dom-events-def next-events-fst-1, cases u)
case None
show
$(x s=[] \vee x s=[$ Some $a] \vee x s=[$ Some a, None $]) \wedge$
$(y s=[] \vee y s=[$ Some a $] \vee y s=[$ Some a, None $]) \wedge$
ipurge-tr-rev I_{1} id u xs = ipurge-tr-rev I_{1} id u ys \longrightarrow
$\{x . u=x \wedge(x s=[] \wedge x=$ Some $a \vee x s=[$ Some $a] \wedge x=$ None $)\}=$
$\{x . u=x \wedge(y s=[] \wedge x=$ Some $a \vee y s=[$ Some $a] \wedge x=$ None $)\}$
by (simp add: I_{1}-def None, rule impI, (erule conjE)+,
$((($ erule disjE $)+)$?, simp $)+)$
next
case (Some v)
show
$(x s=[] \vee x s=[$ Some a $] \vee x s=[$ Some a, None $]) \wedge$
$(y s=[] \vee y s=[$ Some a $] \vee y s=[$ Some a, None $]) \wedge$
ipurge-tr-rev I_{1} id $u x s=$ ipurge-tr-rev I_{1} id u ys \longrightarrow
$\{x . u=x \wedge(x s=[] \wedge x=$ Some $a \vee x s=[$ Some $a] \wedge x=$ None $)\}=$
$\{x . u=x \wedge(y s=[] \wedge x=$ Some $a \vee y s=[$ Some $a] \wedge x=$ None $)\}$
by (simp add: I_{1}-def Some, rule impI, (erule conjE)+, cases v,
$((($ erule disjE)+)?, simp, blast?)+)
qed
qed
lemma secure-snd-1:
secure $Q I_{1}$ id
proof (simp add: Q-def unwinding-snd dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-snd, (rule allI)+)
fix $u x s$ ys
show
$(x s=[] \vee x s=[$ Some b] $) \wedge$
$(y s=[] \vee y s=[$ Some b] $) \wedge$
ipurge-tr-rev I_{1} id $u x s=$ ipurge-tr-rev I_{1} id u ys \longrightarrow
next-dom-events (ts-process $\{[]$, [Some b]\}) id u xs $=$
next-dom-events (ts-process $\{[],[$ Some b] $]$) id u ys
proof (simp add: next-dom-events-def next-events-snd, cases u)
case None
show
$(x s=[] \vee x s=[$ Some $b]) \wedge$
$(y s=[] \vee y s=[$ Some b] $) \wedge$
ipurge-tr-rev I_{1} id $u x s=$ ipurge-tr-rev I_{1} id $u y s \longrightarrow$

```
```

 \(\{x . u=x \wedge x s=[] \wedge x=\) Some \(b\}=\{x . u=x \wedge y s=[] \wedge x=\) Some \(b\}\)
 by (simp add: None, rule impI, (erule conjE)+,
 \((((\) erule disjE)+)?, simp \()+)\)
 next
 case (Some v)
 show
 \((x s=[] \vee x s=[\) Some b] \() \wedge\)
 \((y s=[] \vee y s=[\) Some b] \() \wedge\)
 ipurge-tr-rev \(I_{1}\) id \(u\) xs \(=\) ipurge-tr-rev \(I_{1}\) id u ys \(\longrightarrow\)
 \(\{x . u=x \wedge x s=[] \wedge x=\) Some \(b\}=\{x . u=x \wedge y s=[] \wedge x=\) Some \(b\}\)
 by (simp add: \(I_{1}\)-def Some, rule impI, (erule conjE)+, cases \(v\),
 ((erule disjE)+)?, simp \()+\))
 qed
 qed

```

In what follows, the insecurity of process \(P_{1} ; Q\) is demonstrated by proving that event list [Some \(a\), Some \(b\) ] is a trace of the process, whereas [Some \(b\) ] is not.
lemma traces-comp-1:
traces \(\left(P_{1} ; Q\right)=\) Domain (seq-comp-failures \(P_{1} Q\) )
by (subst seq-comp-traces, rule seq-implies-weakly-seq, rule sequential-fst-1, simp)
lemma ref-union-closed-comp-1:
ref-union-closed ( \(P_{1} ; Q\) )
proof (rule seq-comp-ref-union-closed, rule seq-implies-weakly-seq, rule sequential-fst-1, rule ref-union-closed-fst-1)
qed (rule d-implies-ruc, subst \(Q\)-def, rule ts-process-d, rule trace-set-snd)
lemma not-secure-comp-1-aux-aux-1:
\((x s, X) \in\) seq-comp-failures \(P_{1} Q \Longrightarrow x s \neq[\) Some \(b]\)
proof (rule notI, erule rev-mp, erule seq-comp-failures.induct, (rule-tac [!] impI)+, simp-all add: \(P_{1}\)-def \(Q\)-def sentences-def)
qed (simp-all add: failures-fst-1 traces-fst-1)
lemma not-secure-comp-1-aux-1:
[Some b] \(\notin\) traces \(\left(P_{1} ; Q\right)\)
proof (simp add: traces-comp-1 Domain-iff, rule allI, rule notI)
qed (drule not-secure-comp-1-aux-aux-1, simp)
lemma not-secure-comp-1-aux-2:
\(\left[\right.\) Some a, Some b] \(\in\) traces \(\left(P_{1} ; Q\right)\)
proof (simp add: traces-comp-1 Domain-iff, rule exI [where \(x=\{ \}]\) )
have [Some a] \(\in\) sentences \(P_{1}\)
by (simp add: \(P_{1}\)-def sentences-def traces-fst-1)
moreover have ([Some b], \{\}) \(\in\) failures \(Q\)
by (simp add: Q-def failures-snd)
moreover have \([\) Some \(b] \neq[]\)
```

 by simp
 ultimately have ([Some a]@ [Some b], {}) \in seq-comp-failures P P Q
 by (rule SCF-R3)
 thus ([Some a, Some b], {})\in seq-comp-failures P}\mp@subsup{P}{1}{}
 by simp
 qed
lemma not-secure-comp-1:
\neg secure (}\mp@subsup{P}{1}{\prime};Q)\mp@subsup{I}{1}{}\mathrm{ id
proof (subst ipurge-unwinding, rule ref-union-closed-comp-1, simp
add: fc-equals-wfc-rel-ipurge [symmetric] future-consistent-def rel-ipurge-def
del: disj-not1, rule exI [where }x=\mathrm{ Some b], rule exI [where }x=[]],\mathrm{ rule conjI)
show [] \in traces (}\mp@subsup{P}{1}{};Q
by (rule failures-traces [where X={}], rule process-rule-1)
next
show \existsys. ys }\in\mathrm{ traces (}\mp@subsup{P}{1}{};Q)
ipurge-tr-rev I I id (Some b) [] = ipurge-tr-rev I I id (Some b) ys }
(next-dom-events (}\mp@subsup{P}{1}{};Q)\mathrm{ id (Some b) [] \#
next-dom-events (}\mp@subsup{P}{1}{\prime};Q)\mathrm{ id (Some b) ys }
ref-dom-events (}\mp@subsup{P}{1}{};Q)\mathrm{ id (Some b) [] \#
ref-dom-events (}\mp@subsup{P}{1}{\prime};Q)\mathrm{ id (Some b) ys)
proof (rule exI [where x = [Some a]], rule conjI, rule-tac [2] conjI,
rule-tac [3] disjI1)
have [Some a] @ [Some b] \intraces (}\mp@subsup{P}{1}{};Q
by (simp add: not-secure-comp-1-aux-2)
thus [Some a] \in traces (}\mp@subsup{P}{1}{};Q
by (rule process-rule-2-traces)
next
show ipurge-tr-rev I I id (Some b) [] = ipurge-tr-rev I I id (Some b) [Some a]
by (simp add: I I-def)
next
show
next-dom-events (}\mp@subsup{P}{1}{};Q)\mathrm{ id (Some b) [] \#
next-dom-events (}\mp@subsup{P}{1}{\prime};Q)\mathrm{ id (Some b) [Some a]
proof (simp add: next-dom-events-def next-events-def set-eq-iff,
rule exI [where x=Some b], simp)
qed (simp add: not-secure-comp-1-aux-1 not-secure-comp-1-aux-2)
qed
qed

```

Here below, the previous results are used to show that constants \(I_{1}, P_{1}\), \(Q\), and id indeed constitute a counterexample to the statement obtained by removing termination security from the assumptions of the security conservation theorem.
lemma counterexample-1:
\(\neg\left(\right.\) ref-union-closed \(P_{1} \wedge\)
sequential \(P_{1} \wedge\)
```

 secure \(P_{1} I_{1}\) id \(\wedge\)
 secure \(Q I_{1}\) id \(\longrightarrow\)
 secure \(\left(P_{1} ; Q\right) I_{1}\) id)
 proof (simp, simp only: conj-assoc [symmetric], (rule conjI)+)
show ref-union-closed P_{1}
by (rule ref-union-closed-fst-1)
next
show sequential P_{1}
by (rule sequential-fst-1)
next
show secure $P_{1} I_{1}$ id
by (rule secure-fst-1)
next
show secure $Q I_{1}$ id
by (rule secure-snd-1)
next
show \neg secure $\left(P_{1} ; Q\right) I_{1}$ id
by (rule not-secure-comp-1)
qed

```

\subsection*{3.3 Necessity of process sequentiality}

The reason why the conservation of noninterference security under sequential composition requires the first input process to satisfy predicate sequential, instead of the more permissive predicate weakly-sequential, is that the possibility for the first process to engage in events alternative to successful termination entails the possibility for the resulting process to engage in events alternative to the initial ones of the second process. Namely, the resulting process would admit some state in which events of the first process can occur in alternative to events of the second process. But neither process, though being secure on its own, will in general be prepared to handle securely the alternative events added by the other process. Therefore, the first process must not admit alternatives to successful termination, which is exactly what predicate sequential states in addition to weakly-sequential.

A counterexample showing the necessity of this assumption can then be constructed by defining a reflexive policy \(I_{2}\) that does not allow event Some \(b\) to affect Some \(a\), and a deterministic process \(P_{2}\) that can engage in Some \(a\) in alternative to None. The resulting process \(P_{2} ; Q\) will number both [Some b] and [Some a], but not [Some b, Some a], among its traces, so that event Some \(b\) affects the occurrence of event Some \(a\) in contrast with policy \(I_{2}\), viz. \(P_{2} ; Q\) is not secure with respect to \(I_{2}\).

Here below are the definitions of constants \(I_{2}\) and \(P_{2}\), followed by few useful lemmas on process \(P_{2}\).
definition \(I_{2}::(\) event option \(\times\) event option) set where \(I_{2} \equiv\{(\) None, Some a) \(\}=\)
definition \(P_{2}\) :: event option process where
\(P_{2} \equiv\) ts-process \(\{[],[\) None \(],[\) Some a], [Some a, None \(]\}\)
lemma trace-set-fst-2:
trace-set \(\{[]\), [None], [Some a], [Some a, None] \(\}\)
by (simp add: trace-set-def)
lemmas failures-fst-2 \(=\) ts-process-failures \([\) OF trace-set-fst-2]
lemmas traces-fst-2 \(=\) ts-process-traces \([\) OF trace-set-fst-2]
lemmas next-events-fst-2 \(=\) ts-process-next-events \([O F\) trace-set-fst-2]
lemmas unwinding-fst-2 \(=\) ts-ipurge-unwinding [OF trace-set-fst-2]

Here below is the proof that process \(P_{2}\) does not satisfy predicate sequential, but rather predicate weakly-sequential only, whereas the remaining assumptions of the security conservation theorem keep being satisfied. For the sake of simplicity, the identity function is used as event-domain map.
lemma secure-termination-2:
secure-termination \(I_{2}\) id
by (simp add: secure-termination-def \(I_{2}\)-def)
lemma ref-union-closed-fst-2:
ref-union-closed \(P_{2}\)
by (rule d-implies-ruc, subst \(P_{2}\)-def, rule ts-process-d, rule trace-set-fst-2)
lemma weakly-sequential-fst-2:
weakly-sequential \(P_{2}\)
by (simp add: weakly-sequential-def \(P_{2}\)-def traces-fst-2)
lemma not-sequential-fst-2:
```

\neg sequential P_{2}
proof (simp add: sequential-def, rule disjI2, rule bexI [where $x=[]]$)
show next-events $P_{2}[] \neq\{$ None $\}$
proof (rule notI, drule eqset-imp-iff [where $x=$ Some a], simp)
qed (simp add: P_{2}-def next-events-fst-2)
next
show [] \in sentences P_{2}
by (simp add: sentences-def P_{2}-def traces-fst-2)
qed
lemma secure-fst-2:
secure $P_{2} I_{2}$ id
proof (simp add: P_{2}-def unwinding-fst-2 dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-fst-2, (rule allI)+)

```
```

fix u xs ys
show
(xs = []\vee xs = [None] \ xs = [Some a]\vee xs=[Some a,None]) ^
(ys = []\vee ys=[None]\vee ys=[Some a]\vee ys=[Some a,None]) ^
ipurge-tr-rev I I2 id u xs=ipurge-tr-rev I I id u ys }
next-dom-events (ts-process {[], [None], [Some a], [Some a, None]}) id u xs =
next-dom-events (ts-process {[],[None], [Some a], [Some a, None]}) id u ys
proof (simp add: next-dom-events-def next-events-fst-2, cases u)
case None
show
(xs=[]\vee xs = [None] \vee xs = [Some a] \vee xs = [Some a, None]) ^
(ys=[]\vee ys=[None]\vee ys=[Some a]\vee ys=[Some a,None]) ^
ipurge-tr-rev I2 id u xs=ipurge-tr-rev I I id u ys }
{x.u=x\wedge(xs=[]^x=None \vee xs=[]^x=Some a \vee
xs = [Some a] ^ x= None) }}
{x.u=x\wedge(ys=[]^x=None \vee ys = []^x= Some a \vee
ys}=[\mathrm{ Some a]^x= None)}
by (simp add: I2-def None, rule impI, (erule conjE)+,
(((erule disjE)+)?, simp, blast?)+)
next
case (Some v)
show
(xs=[]\vee xs=[None]\vee xs=[Some a]\vee xs = [Some a,None]) ^
(ys=[]\vee ys=[None]\vee ys=[Some a]\vee ys=[Some a,None])^
ipurge-tr-rev I2 id u xs=ipurge-tr-rev I I id u ys }
{x.u=x^(xs=[]^x=None \vee xs=[]^x=Some a \vee
xs = [Some a] ^ x= None) }}
{x.u=x^(ys=[]^x=None \vee ys = []^x= Some a \vee
ys = [Some a]^x= None)}
by (simp add: I I2-def Some, rule impI, (erule conjE)+, cases v,
(((erule disjE)+)?, simp, blast?)+)
qed
qed
lemma secure-snd-2:
secure Q I I id
proof (simp add: Q-def unwinding-snd dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-snd, (rule allI)+)
fix uxs ys
show
(xs = []\vee xs = [Some b])^
(ys=[]\vee ys = [Some b])^
ipurge-tr-rev I I id u xs=ipurge-tr-rev I I id u ys }
next-dom-events (ts-process {[], [Some b]}) id u xs=
next-dom-events (ts-process {[], [Some b]}) id u ys
proof (simp add: next-dom-events-def next-events-snd, cases u)
case None
show
(xs = [] \vee xs = [Some b])^

```
```

 \((y s=[] \vee y s=[\) Some b] \() \wedge\)
 ipurge-tr-rev \(I_{2}\) id \(u\) xs \(=\) ipurge-tr-rev \(I_{2}\) id \(u\) ys \(\longrightarrow\)
 \(\{x . u=x \wedge x s=[] \wedge x=\) Some \(b\}=\{x . u=x \wedge y s=[] \wedge x=\) Some \(b\}\)
 by (simp add: None, rule impI, (erule conjE)+,
 \((((\) erule disjE \()+)\) ?, simp \()+)\)
 next
 case (Some v)
 show
 \((x s=[] \vee x s=[\) Some \(b]) \wedge\)
 \((y s=[] \vee y s=[\) Some b] \() \wedge\)
 ipurge-tr-rev \(I_{2}\) id \(u x s=\) ipurge-tr-rev \(I_{2}\) id \(u\) ys \(\longrightarrow\)
 \(\{x . u=x \wedge x s=[] \wedge x=\) Some \(b\}=\{x . u=x \wedge y s=[] \wedge x=\) Some \(b\}\)
 by (simp add: \(I_{2}\)-def Some, rule impI, (erule conjE) + , cases \(v\),
 \((((\) erule disjE \()+)\) ?, simp \()+)\)
 qed
 qed

```

In what follows, the insecurity of process \(P_{2} ; Q\) is demonstrated by proving that event lists [Some b] and [Some a] are traces of the process, whereas [Some \(b\), Some a] is not.
lemma traces-comp-2:
traces \(\left(P_{2} ; Q\right)=\) Domain (seq-comp-failures \(P_{2} Q\) )
by (subst seq-comp-traces, rule weakly-sequential-fst-2, simp)
lemma ref-union-closed-comp-2:
ref-union-closed ( \(\left.P_{2} ; Q\right)\)
proof (rule seq-comp-ref-union-closed, rule weakly-sequential-fst-2,
rule ref-union-closed-fst-2)
qed (rule d-implies-ruc, subst \(Q\)-def, rule ts-process-d, rule trace-set-snd)
lemma not-secure-comp-2-aux-aux-1:
\((x s, X) \in\) seq-comp-failures \(P_{2} Q \Longrightarrow x s \neq[\) Some b, Some a]
proof (rule notI, erule rev-mp, erule seq-comp-failures.induct, (rule-tac [!] impI)+, simp-all add: \(P_{2}\)-def \(Q\)-def sentences-def)
qed (simp-all add: failures-fst-2 traces-fst-2 failures-snd)
lemma not-secure-comp-2-aux-1:
[Some b, Some a] \(\notin\) traces \(\left(P_{2} ; Q\right)\)
proof (simp add: traces-comp-2 Domain-iff, rule allI, rule notI)
qed (drule not-secure-comp-2-aux-aux-1, simp)
lemma not-secure-comp-2-aux-2:
\(\left[\right.\) Some a] \(\in\) traces \(\left(P_{2} ; Q\right)\)
proof (simp add: traces-comp-2 Domain-iff, rule exI [where \(x=\{ \}]\) )
have \([\) Some \(a] \in\) sentences \(P_{2}\)
by (simp add: \(P_{2}\)-def sentences-def traces-fst-2)
moreover have \(([\) Some \(a],\{ \}) \in\) failures \(P_{2}\)
```

 by (simp add: P}\mp@subsup{P}{2}{}\mathrm{ -def failures-fst-2)
 moreover have ([],{})\in failures Q
 by (simp add:Q-def failures-snd)
 ultimately have ([Some a], insert None {} \cap {}) \in seq-comp-failures }\mp@subsup{P}{2}{}
 by (rule SCF-R2)
 thus ([Some a],{})\in seq-comp-failures P}\mp@subsup{P}{2}{}
 by simp
 qed
lemma not-secure-comp-2-aux-3:
[Some b] G traces (}\mp@subsup{P}{2}{};Q
proof (simp add: traces-comp-2 Domain-iff, rule exI [where }x={}]
have [] \in sentences P}\mp@subsup{P}{2}{
by (simp add: P}\mp@subsup{P}{2}{}\mathrm{ -def sentences-def traces-fst-2)
moreover have ([Some b], {}) \in failures Q
by (simp add: Q-def failures-snd)
moreover have [Some b] \not= []
by simp
ultimately have ([] @ [Some b], {}) \in seq-comp-failures }\mp@subsup{P}{2}{}
by (rule SCF-R3)
thus ([Some b], {}) \in seq-comp-failures P P2 Q
by simp
qed
lemma not-secure-comp-2:
\neg secure (}\mp@subsup{P}{2}{\prime};Q)\mp@subsup{I}{2}{}\mathrm{ id
proof (subst ipurge-unwinding, rule ref-union-closed-comp-2, simp
add: fc-equals-wfc-rel-ipurge [symmetric] future-consistent-def rel-ipurge-def
del: disj-not1, rule exI [where x = Some a], rule exI [where }x=[]],\mathrm{ rule conjI)
show [] \in traces (}\mp@subsup{P}{2}{};Q
by (rule failures-traces [where X={}], rule process-rule-1)
next
show \existsys. ys }\in\mathrm{ traces (}\mp@subsup{P}{2}{};Q)
ipurge-tr-rev I I id (Some a) [] = ipurge-tr-rev I2 id (Some a) ys }
(next-dom-events (}\mp@subsup{P}{2}{};Q)\mathrm{ id (Some a) [] \#
next-dom-events (}\mp@subsup{P}{2}{};Q)\mathrm{ id (Some a) ys }
ref-dom-events (}\mp@subsup{P}{2}{};Q\mathrm{) id (Some a) [] \#
ref-dom-events (}\mp@subsup{P}{2}{};Q)\mathrm{ id (Some a) ys)
proof (rule exI [where x = [Some b]], rule conjI, rule-tac [2] conjI,
rule-tac [3] disjI1)
show [Some b] \in traces (}\mp@subsup{P}{2}{};Q
by (rule not-secure-comp-2-aux-3)
next
show ipurge-tr-rev I_ id (Some a) [] = ipurge-tr-rev I I id (Some a) [Some b]
by (simp add: I I2-def)
next
show
next-dom-events (}\mp@subsup{P}{2}{};Q)\mathrm{ id (Some a) [] \#
next-dom-events (}\mp@subsup{P}{2}{\prime};Q)\mathrm{ id (Some a) [Some b]

```
```

 proof (simp add: next-dom-events-def next-events-def set-eq-iff,
 rule exI [where x=Some a], simp)
 qed (simp add: not-secure-comp-2-aux-1 not-secure-comp-2-aux-2)
 qed
 qed

```

Here below, the previous results are used to show that constants \(I_{2}, P_{2}\), \(Q\), and \(i d\) indeed constitute a counterexample to the statement obtained by replacing process sequentiality with weak sequentiality in the assumptions of the security conservation theorem.
lemma counterexample-2:
```

 \(\neg\) (secure-termination \(I_{2}\) id \(\wedge\)
 ref-union-closed \(P_{2} \wedge\)
 weakly-sequential \(P_{2} \wedge\)
 secure \(P_{2} I_{2}\) id \(\wedge\)
 secure \(Q I_{2}\) id \(\longrightarrow\)
 secure \(\left(P_{2} ; Q\right) I_{2}\) id)
 proof (simp, simp only: conj-assoc [symmetric], (rule conjI)+)
show secure-termination I_{2} id
by (rule secure-termination-2)
next
show ref-union-closed P_{2}
by (rule ref-union-closed-fst-2)
next
show weakly-sequential P_{2}
by (rule weakly-sequential-fst-2)
next
show secure $P_{2} I_{2}$ id
by (rule secure-fst-2)
next
show secure $Q I_{2}$ id
by (rule secure-snd-2)
next
show \neg secure $\left(P_{2} ; Q\right) I_{2}$ id
by (rule not-secure-comp-2)
qed

```
end

\section*{References}
[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.
[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL. http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/ doc/functions.pdf.
[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs. http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/ isar-overview.pdf.
[4] T. Nipkow. Programming and Proving in Isabelle/HOL, Feb. 2016. http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/ doc/prog-prove.pdf.
[5] T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL. Springer, 2014. http://www.concrete-semantics.org/concrete-semantics. pdf.
[6] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Feb. 2016. http://isabelle.in.tum.de/ website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf.
[7] P. Noce. A general method for the proof of theorems on tail-recursive functions. Archive of Formal Proofs, Dec. 2013. http://isa-afp.org/ entries/Tail_Recursive_Functions.shtml, Formal proof development.
[8] P. Noce. Noninterference security in communicating sequential processes. Archive of Formal Proofs, May 2014. http://isa-afp.org/entries/ Noninterference_CSP.shtml, Formal proof development.
[9] P. Noce. The ipurge unwinding theorem for csp noninterference security. Archive of Formal Proofs, June 2015. http://isa-afp.org/entries/ Noninterference_Ipurge_Unwinding.shtml, Formal proof development.```

