
Conservation of CSP Noninterference Security
under Sequential Composition

Pasquale Noce
Security Certification Specialist at Arjo Systems, Italy

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjosystems dot com

March 17, 2025

Abstract

In his outstanding work on Communicating Sequential Processes,
Hoare has defined two fundamental binary operations allowing to com-
pose the input processes into another, typically more complex, process:
sequential composition and concurrent composition. Particularly, the
output of the former operation is a process that initially behaves like
the first operand, and then like the second operand once the execution
of the first one has terminated successfully, as long as it does.

This paper formalizes Hoare’s definition of sequential composition
and proves, in the general case of a possibly intransitive policy, that
CSP noninterference security is conserved under this operation, pro-
vided that successful termination cannot be affected by confidential
events and cannot occur as an alternative to other events in the traces
of the first operand. Both of these assumptions are shown, by means
of counterexamples, to be necessary for the theorem to hold.

Contents
1 Propaedeutic definitions and lemmas 2

1.1 Preliminary propaedeutic lemmas 4
1.2 Intransitive purge of event sets with trivial base case 11
1.3 Closure of the failures of a secure process under intransitive

purge . 16
1.3.1 Step 1 . 18
1.3.2 Step 2 . 20
1.3.3 Step 3 . 21
1.3.4 Step 4 . 21
1.3.5 Step 5 . 23
1.3.6 Step 6 . 24
1.3.7 Step 7 . 25

1

1.3.8 Step 8 . 25
1.3.9 Step 9 . 26
1.3.10 Step 10 . 28

1.4 Additional propaedeutic lemmas 30

2 Sequential composition and noninterference security 35
2.1 Sequential processes . 36
2.2 Sequential composition . 39
2.3 Conservation of refusals union closure and sequentiality under

sequential composition . 49
2.4 Conservation of noninterference security under sequential com-

position . 67
2.5 Generalization of the security conservation theorem to lists of

processes . 105

3 Necessity of nontrivial assumptions 108
3.1 Preliminary definitions and lemmas 109
3.2 Necessity of termination security 109
3.3 Necessity of process sequentiality 114

1 Propaedeutic definitions and lemmas
theory Propaedeutics
imports Noninterference-Ipurge-Unwinding.DeterministicProcesses
begin

To our Lord Jesus Christ, my dear parents, and my "little" sister,
for the immense love with which they surround me.

In his outstanding work on Communicating Sequential Processes [1], Hoare
has defined two fundamental binary operations allowing to compose the
input processes into another, typically more complex, process: sequential
composition and concurrent composition. Particularly, the output of the
former operation is a process that initially behaves like the first operand,
and then like the second operand once the execution of the first one has
terminated successfully, as long as it does. In order to distinguish it from
deadlock, successful termination is regarded as a special event in the process
alphabet (required to be the same for both the input processes and the
output one).
This paper formalizes Hoare’s definition of sequential composition and proves,
in the general case of a possibly intransitive policy, that CSP noninterfer-
ence security [8] is conserved under this operation, viz. the security of both
of the input processes implies that of the output process.

2

This property is conditional on two nontrivial assumptions. The first as-
sumption is that the policy do not allow successful termination to be af-
fected by confidential events, viz. by other events not allowed to affect some
event in the process alphabet. The second assumption is that successful
termination do not occur as an alternative to other events in the traces of
the first operand, viz. that whenever the process can terminate successfully,
it cannot engage in any other event. Both of these assumptions are shown,
by means of counterexamples, to be necessary for the theorem to hold.
From the above sketch of the sequential composition of two processes P and
Q, notwithstanding its informal character, it clearly follows that any failure
of the output process is either a failure of P (case A), or a pair (xs @ ys,
Y), where xs is a trace of P and (ys, Y) is a failure of Q (case B). On the
other hand, according to the definition of security given in [8], the output
process is secure just in case, for each of its failures, any event x contained
in the failure trace can be removed from the trace, or inserted into the trace
of another failure after the same previous events as in the original trace, and
the resulting pair is still a failure of the process, provided that the future of
x is deprived of the events that may be affected by x.
In case A, this transformation is performed on a failure of process P; being
it secure, the result is still a failure of P, and then of the output process. In
case B, the transformation may involve either ys alone, or both xs and ys,
depending on the position at which x is removed or inserted. In the former
subcase, being Q secure, the result has the form (xs @ ys ′, Y ′) where (ys ′,
Y ′) is a failure of Q, thus it is still a failure of the output process. In the
latter subcase, ys has to be deprived of the events that may be affected by
x, as well as by any event affected by x in the involved portion of xs, and
a similar transformation applies to Y. In order that the output process be
secure, the resulting pair (ys ′′, Y ′′) must still be a failure of Q, so that the
pair (xs ′ @ ys ′′, Y ′′), where xs ′ results from the transformation of xs, be a
failure of the output process.
The transformations bringing from ys and Y to ys ′′ and Y ′′ are implemented
by the functions ipurge-tr-aux and ipurge-ref-aux defined in [9]. Therefore,
the proof of the target security conservation theorem requires that of the
following lemma: given a process P, a noninterference policy I, and an event-
domain map D, if P is secure with respect to I and D and (xs, X) is a failure
of P, then (ipurge-tr-aux I D U xs, ipurge-ref-aux I D U xs X) is still a failure
of P. In other words, the lemma states that the failures of a secure process
are closed under intransitive purge. This section contains a proof of such
closure lemma, as well as further definitions and lemmas required for the
proof of the target theorem.
Throughout this paper, the salient points of definitions and proofs are com-
mented; for additional information, cf. Isabelle documentation, particularly
[6], [4], [3], and [2].

3

1.1 Preliminary propaedeutic lemmas

In what follows, some lemmas required for the demonstration of the target
closure lemma are proven.
Here below is the proof of some properties of functions ipurge-tr and ipurge-ref.

lemma ipurge-tr-length:
length (ipurge-tr I D u xs) ≤ length xs

by (induction xs rule: rev-induct, simp-all)

lemma ipurge-ref-swap:
ipurge-ref I D u xs {x ∈ X . P x} =
{x ∈ ipurge-ref I D u xs X . P x}

proof (simp add: ipurge-ref-def)
qed blast

lemma ipurge-ref-last:
ipurge-ref I D u (xs @ [x]) X =
(if (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)
then ipurge-ref I D u xs {x ′ ∈ X . (D x, D x ′) /∈ I}
else ipurge-ref I D u xs X)

proof (cases (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I),
simp-all add: ipurge-ref-def)

qed blast

Here below is the proof of some properties of function sinks-aux.

lemma sinks-aux-append:
sinks-aux I D U (xs @ ys) = sinks-aux I D (sinks-aux I D U xs) ys

proof (induction ys rule: rev-induct, simp, subst append-assoc [symmetric])
qed (simp del: append-assoc)

lemma sinks-aux-union:
sinks-aux I D (U ∪ V) xs =
sinks-aux I D U xs ∪ sinks-aux I D V (ipurge-tr-aux I D U xs)

proof (induction xs rule: rev-induct, simp)
fix x xs
assume A: sinks-aux I D (U ∪ V) xs =

sinks-aux I D U xs ∪ sinks-aux I D V (ipurge-tr-aux I D U xs)
show sinks-aux I D (U ∪ V) (xs @ [x]) =

sinks-aux I D U (xs @ [x]) ∪ sinks-aux I D V (ipurge-tr-aux I D U (xs @ [x]))
proof (cases ∃w ∈ sinks-aux I D (U ∪ V) xs. (w, D x) ∈ I)

case True
hence ∃w ∈ sinks-aux I D U xs ∪ sinks-aux I D V (ipurge-tr-aux I D U xs).
(w, D x) ∈ I

using A by simp
hence (∃w ∈ sinks-aux I D U xs. (w, D x) ∈ I) ∨

4

(∃w ∈ sinks-aux I D V (ipurge-tr-aux I D U xs). (w, D x) ∈ I)
by blast

thus ?thesis
using A and True by (cases ∃w ∈ sinks-aux I D U xs. (w, D x) ∈ I , simp-all)

next
case False
hence ¬ (∃w ∈ sinks-aux I D U xs ∪

sinks-aux I D V (ipurge-tr-aux I D U xs). (w, D x) ∈ I)
using A by simp

hence ¬ (∃w ∈ sinks-aux I D U xs. (w, D x) ∈ I) ∧
¬ (∃w ∈ sinks-aux I D V (ipurge-tr-aux I D U xs). (w, D x) ∈ I)

by blast
thus ?thesis
using A and False by simp

qed
qed

lemma sinks-aux-subset-dom:
assumes A: U ⊆ V
shows sinks-aux I D U xs ⊆ sinks-aux I D V xs

proof (induction xs rule: rev-induct, simp add: A, rule subsetI)
fix x xs w
assume

B: sinks-aux I D U xs ⊆ sinks-aux I D V xs and
C : w ∈ sinks-aux I D U (xs @ [x])

show w ∈ sinks-aux I D V (xs @ [x])
proof (cases ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I)

case True
hence w = D x ∨ w ∈ sinks-aux I D U xs
using C by simp

moreover {
assume D: w = D x
obtain u where E : u ∈ sinks-aux I D U xs and F : (u, D x) ∈ I

using True ..
have u ∈ sinks-aux I D V xs using B and E ..
with F have ∃ u ∈ sinks-aux I D V xs. (u, D x) ∈ I ..
hence ?thesis using D by simp

}
moreover {

assume w ∈ sinks-aux I D U xs
with B have w ∈ sinks-aux I D V xs ..
hence ?thesis by simp

}
ultimately show ?thesis ..

next
case False
hence w ∈ sinks-aux I D U xs
using C by simp

with B have w ∈ sinks-aux I D V xs ..

5

thus ?thesis by simp
qed

qed

lemma sinks-aux-subset-ipurge-tr-aux:
sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs) ⊆ sinks-aux I D U xs

proof (induction xs rule: rev-induct, simp, rule subsetI)
fix x xs w
assume

A: sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs) ⊆ sinks-aux I D U xs and
B: w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ (xs @ [x]))

show w ∈ sinks-aux I D U (xs @ [x])
proof (cases ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I , simp-all (no-asm-simp))

from B have w = D x ∨ w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs)
proof (cases ∃ u ′ ∈ sinks-aux I ′ D ′ U ′ xs. (u ′, D ′ x) ∈ I ′, simp-all)
qed (cases ∃ u ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs). (u, D x) ∈ I ,
simp-all)

moreover {
assume w = D x
hence w = D x ∨ w ∈ sinks-aux I D U xs ..

}
moreover {

assume w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs)
with A have w ∈ sinks-aux I D U xs ..
hence w = D x ∨ w ∈ sinks-aux I D U xs ..

}
ultimately show w = D x ∨ w ∈ sinks-aux I D U xs ..

next
assume C : ¬ (∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I)
have w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs)
proof (cases ∃ u ′ ∈ sinks-aux I ′ D ′ U ′ xs. (u ′, D ′ x) ∈ I ′)

case True
thus w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs)
using B by simp

next
case False
hence w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs @ [x])
using B by simp

moreover have
¬ (∃ u ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs). (u, D x) ∈ I)
(is ¬ ?P)

proof
assume ?P
then obtain u where

D: u ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs) and
E : (u, D x) ∈ I ..

have u ∈ sinks-aux I D U xs using A and D ..
with E have ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I ..
thus False using C by contradiction

6

qed
ultimately show w ∈ sinks-aux I D U (ipurge-tr-aux I ′ D ′ U ′ xs)
by simp

qed
with A show w ∈ sinks-aux I D U xs ..

qed
qed

lemma sinks-aux-subset-ipurge-tr :
sinks-aux I D U (ipurge-tr I ′ D ′ u ′ xs) ⊆ sinks-aux I D U xs

by (simp add: ipurge-tr-aux-single-dom [symmetric] sinks-aux-subset-ipurge-tr-aux)

lemma sinks-aux-member-ipurge-tr-aux [rule-format]:
u ∈ sinks-aux I D (U ∪ V) xs −→

(u, w) ∈ I −→
¬ (∃ v ∈ sinks-aux I D V xs. (v, w) ∈ I) −→

u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs)
proof (induction xs arbitrary: u w rule: rev-induct, (rule-tac [!] impI)+, simp)

fix u w
assume

A: (u, w) ∈ I and
B: ∀ v ∈ V . (v, w) /∈ I

assume u ∈ U ∨ u ∈ V
moreover {

assume u ∈ U
}
moreover {

assume u ∈ V
with B have (u, w) /∈ I ..
hence u ∈ U using A by contradiction

}
ultimately show u ∈ U ..

next
fix x xs u w
assume

A:
∧

u w. u ∈ sinks-aux I D (U ∪ V) xs −→
(u, w) ∈ I −→
¬ (∃ v ∈ sinks-aux I D V xs. (v, w) ∈ I) −→
u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs) and

B: u ∈ sinks-aux I D (U ∪ V) (xs @ [x]) and
C : (u, w) ∈ I and
D: ¬ (∃ v ∈ sinks-aux I D V (xs @ [x]). (v, w) ∈ I)

show u ∈ sinks-aux I D U (ipurge-tr-aux I D V (xs @ [x]))
proof (cases ∃ u ′ ∈ sinks-aux I D (U ∪ V) xs. (u ′, D x) ∈ I)

case True
hence u = D x ∨ u ∈ sinks-aux I D (U ∪ V) xs
using B by simp

moreover {
assume E : u = D x

7

obtain u ′ where u ′ ∈ sinks-aux I D (U ∪ V) xs and F : (u ′, D x) ∈ I
using True ..

moreover have u ′ ∈ sinks-aux I D (U ∪ V) xs −→
(u ′, D x) ∈ I −→
¬ (∃ v ∈ sinks-aux I D V xs. (v, D x) ∈ I) −→
u ′ ∈ sinks-aux I D U (ipurge-tr-aux I D V xs)
(is - −→ - −→ ¬ ?P −→ ?Q) using A .

ultimately have ¬ ?P −→ ?Q
by simp

moreover have ¬ ?P
proof

have (D x, w) ∈ I using C and E by simp
moreover assume ?P
hence D x ∈ sinks-aux I D V (xs @ [x]) by simp
ultimately have ∃ v ∈ sinks-aux I D V (xs @ [x]). (v, w) ∈ I ..
moreover have ¬ (∃ v ∈ sinks-aux I D V (xs @ [x]). (v, w) ∈ I)
using D by simp

ultimately show False by contradiction
qed
ultimately have ?Q ..
with F have ∃ u ′ ∈ sinks-aux I D U (ipurge-tr-aux I D V xs).
(u ′, D x) ∈ I ..

hence D x ∈ sinks-aux I D U (ipurge-tr-aux I D V xs @ [x])
by simp

moreover have ipurge-tr-aux I D V xs @ [x] =
ipurge-tr-aux I D V (xs @ [x])

using ‹¬ ?P› by simp
ultimately have ?thesis using E by simp

}
moreover {

assume u ∈ sinks-aux I D (U ∪ V) xs
moreover have u ∈ sinks-aux I D (U ∪ V) xs −→
(u, w) ∈ I −→
¬ (∃ v ∈ sinks-aux I D V xs. (v, w) ∈ I) −→
u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs)
(is - −→ - −→ ¬ ?P −→ ?Q) using A .

ultimately have ¬ ?P −→ ?Q
using C by simp

moreover have ¬ ?P
proof

assume ?P
hence ∃ v ∈ sinks-aux I D V (xs @ [x]). (v, w) ∈ I
by simp

thus False using D by contradiction
qed
ultimately have u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs) ..
hence ?thesis by simp

}
ultimately show ?thesis ..

8

next
case False
hence u ∈ sinks-aux I D (U ∪ V) xs
using B by simp

moreover have u ∈ sinks-aux I D (U ∪ V) xs −→
(u, w) ∈ I −→
¬ (∃ v ∈ sinks-aux I D V xs. (v, w) ∈ I) −→
u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs)
(is - −→ - −→ ¬ ?P −→ ?Q) using A .

ultimately have ¬ ?P −→ ?Q
using C by simp

moreover have ¬ ?P
proof

assume ?P
hence ∃ v ∈ sinks-aux I D V (xs @ [x]). (v, w) ∈ I
by simp

thus False using D by contradiction
qed
ultimately have u ∈ sinks-aux I D U (ipurge-tr-aux I D V xs) ..
thus ?thesis by simp

qed
qed

lemma sinks-aux-member-ipurge-tr :
assumes

A: u ∈ sinks-aux I D (insert v U) xs and
B: (u, w) ∈ I and
C : ¬ ((v, w) ∈ I ∨ (∃ v ′ ∈ sinks I D v xs. (v ′, w) ∈ I))

shows u ∈ sinks-aux I D U (ipurge-tr I D v xs)
proof (subst ipurge-tr-aux-single-dom [symmetric],
rule-tac w = w in sinks-aux-member-ipurge-tr-aux)
show u ∈ sinks-aux I D (U ∪ {v}) xs
using A by simp

next
show (u, w) ∈ I
using B .

next
show ¬ (∃ v ′ ∈ sinks-aux I D {v} xs. (v ′, w) ∈ I)
using C by (simp add: sinks-aux-single-dom)

qed

Here below is the proof of some properties of functions ipurge-tr-aux and
ipurge-ref-aux.

lemma ipurge-tr-aux-append:
ipurge-tr-aux I D U (xs @ ys) =
ipurge-tr-aux I D U xs @ ipurge-tr-aux I D (sinks-aux I D U xs) ys

proof (induction ys rule: rev-induct, simp, subst append-assoc [symmetric])

9

qed (simp add: sinks-aux-append del: append-assoc)

lemma ipurge-tr-aux-single-event:
ipurge-tr-aux I D U [x] = (if ∃ v ∈ U . (v, D x) ∈ I

then []
else [x])

by (subst (2) append-Nil [symmetric], simp del: append-Nil)

lemma ipurge-tr-aux-cons:
ipurge-tr-aux I D U (x # xs) = (if ∃ u ∈ U . (u, D x) ∈ I

then ipurge-tr-aux I D (insert (D x) U) xs
else x # ipurge-tr-aux I D U xs)

proof −
have ipurge-tr-aux I D U (x # xs) = ipurge-tr-aux I D U ([x] @ xs)
by simp

also have . . . =
ipurge-tr-aux I D U [x] @ ipurge-tr-aux I D (sinks-aux I D U [x]) xs

by (simp only: ipurge-tr-aux-append)
finally show ?thesis
by (simp add: sinks-aux-single-event ipurge-tr-aux-single-event)

qed

lemma ipurge-tr-aux-union:
ipurge-tr-aux I D (U ∪ V) xs =
ipurge-tr-aux I D V (ipurge-tr-aux I D U xs)

proof (induction xs rule: rev-induct, simp)
fix x xs
assume A: ipurge-tr-aux I D (U ∪ V) xs =

ipurge-tr-aux I D V (ipurge-tr-aux I D U xs)
show ipurge-tr-aux I D (U ∪ V) (xs @ [x]) =

ipurge-tr-aux I D V (ipurge-tr-aux I D U (xs @ [x]))
proof (cases ∃ v ∈ sinks-aux I D (U ∪ V) xs. (v, D x) ∈ I)

case True
hence ∃w ∈ sinks-aux I D U xs ∪ sinks-aux I D V (ipurge-tr-aux I D U xs).
(w, D x) ∈ I

by (simp add: sinks-aux-union)
hence (∃w ∈ sinks-aux I D U xs. (w, D x) ∈ I) ∨
(∃w ∈ sinks-aux I D V (ipurge-tr-aux I D U xs). (w, D x) ∈ I)

by blast
thus ?thesis
using A and True by (cases ∃w ∈ sinks-aux I D U xs. (w, D x) ∈ I , simp-all)

next
case False
hence ¬ (∃w ∈ sinks-aux I D U xs ∪

sinks-aux I D V (ipurge-tr-aux I D U xs). (w, D x) ∈ I)
by (simp add: sinks-aux-union)

hence ¬ (∃w ∈ sinks-aux I D U xs. (w, D x) ∈ I) ∧
¬ (∃w ∈ sinks-aux I D V (ipurge-tr-aux I D U xs). (w, D x) ∈ I)

by blast

10

thus ?thesis
using A and False by simp

qed
qed

lemma ipurge-tr-aux-insert:
ipurge-tr-aux I D (insert v U) xs =
ipurge-tr-aux I D U (ipurge-tr I D v xs)

by (subst insert-is-Un, simp only: ipurge-tr-aux-union ipurge-tr-aux-single-dom)

lemma ipurge-ref-aux-subset:
ipurge-ref-aux I D U xs X ⊆ X

by (subst ipurge-ref-aux-def , rule subsetI , simp)

1.2 Intransitive purge of event sets with trivial base case

Here below are the definitions of variants of functions sinks-aux and ipurge-ref-aux,
respectively named sinks-aux-less and ipurge-ref-aux-less, such that their
base cases in correspondence with an empty input list are trivial, viz. such
that sinks-aux-less I D U [] = {} and ipurge-ref-aux-less I D U [] X = X.
These functions will prove to be useful in what follows.

function sinks-aux-less ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

sinks-aux-less - - - [] = {} |
sinks-aux-less I D U (xs @ [x]) =
(if ∃ v ∈ U ∪ sinks-aux-less I D U xs. (v, D x) ∈ I
then insert (D x) (sinks-aux-less I D U xs)
else sinks-aux-less I D U xs)

proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disjI1 , assumption, simp)
termination by lexicographic-order

definition ipurge-ref-aux-less ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a set where

ipurge-ref-aux-less I D U xs X ≡
{x ∈ X . ∀ v ∈ sinks-aux-less I D U xs. (v, D x) /∈ I}

Here below is the proof of some properties of function sinks-aux-less used in
what follows.

lemma sinks-aux-sinks-aux-less:
sinks-aux I D U xs = U ∪ sinks-aux-less I D U xs

by (induction xs rule: rev-induct, simp-all)

lemma sinks-aux-less-single-dom:
sinks-aux-less I D {u} xs = sinks I D u xs

11

by (induction xs rule: rev-induct, simp-all)

lemma sinks-aux-less-single-event:
sinks-aux-less I D U [x] = (if ∃ u ∈ U . (u, D x) ∈ I then {D x} else {})

by (subst append-Nil [symmetric], simp del: append-Nil)

lemma sinks-aux-less-append:
sinks-aux-less I D U (xs @ ys) =
sinks-aux-less I D U xs ∪ sinks-aux-less I D (U ∪ sinks-aux-less I D U xs) ys

proof (induction ys rule: rev-induct, simp, subst append-assoc [symmetric])
qed (simp del: append-assoc)

lemma sinks-aux-less-cons:
sinks-aux-less I D U (x # xs) = (if ∃ u ∈ U . (u, D x) ∈ I

then insert (D x) (sinks-aux-less I D (insert (D x) U) xs)
else sinks-aux-less I D U xs)

proof −
have sinks-aux-less I D U (x # xs) = sinks-aux-less I D U ([x] @ xs)
by simp

also have . . . =
sinks-aux-less I D U [x] ∪ sinks-aux-less I D (U ∪ sinks-aux-less I D U [x]) xs

by (simp only: sinks-aux-less-append)
finally show ?thesis
by (cases ∃ u ∈ U . (u, D x) ∈ I , simp-all add: sinks-aux-less-single-event)

qed

Here below is the proof of some properties of function ipurge-ref-aux-less
used in what follows.

lemma ipurge-ref-aux-less-last:
ipurge-ref-aux-less I D U (xs @ [x]) X =
(if ∃ v ∈ U ∪ sinks-aux-less I D U xs. (v, D x) ∈ I
then ipurge-ref-aux-less I D U xs {x ′ ∈ X . (D x, D x ′) /∈ I}
else ipurge-ref-aux-less I D U xs X)

by (cases ∃ v ∈ U ∪ sinks-aux-less I D U xs. (v, D x) ∈ I ,
simp-all add: ipurge-ref-aux-less-def)

lemma ipurge-ref-aux-less-nil:
ipurge-ref-aux-less I D U xs (ipurge-ref-aux I D U [] X) =
ipurge-ref-aux I D U xs X

proof (simp add: ipurge-ref-aux-def ipurge-ref-aux-less-def sinks-aux-sinks-aux-less)
qed blast

lemma ipurge-ref-aux-less-cons-1 :
assumes A: ∃ u ∈ U . (u, D x) ∈ I
shows ipurge-ref-aux-less I D U (x # xs) X =

ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs) (ipurge-ref I D (D x) xs X)
proof (induction xs arbitrary: X rule: rev-induct,

12

simp add: ipurge-ref-def ipurge-ref-aux-less-def sinks-aux-less-single-event A)
fix x ′ xs X
assume B:

∧
X .

ipurge-ref-aux-less I D U (x # xs) X =
ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs)
(ipurge-ref I D (D x) xs X)

show
ipurge-ref-aux-less I D U (x # xs @ [x ′]) X =
ipurge-ref-aux-less I D U (ipurge-tr I D (D x) (xs @ [x ′]))
(ipurge-ref I D (D x) (xs @ [x ′]) X)

proof (cases ∃ v ∈ U ∪ sinks-aux-less I D U (x # xs). (v, D x ′) ∈ I)
assume C : ∃ v ∈ U ∪ sinks-aux-less I D U (x # xs). (v, D x ′) ∈ I
hence ipurge-ref-aux-less I D U (x # xs @ [x ′]) X =

ipurge-ref-aux-less I D U (x # xs) {y ∈ X . (D x ′, D y) /∈ I}
by (subst append-Cons [symmetric],
simp add: ipurge-ref-aux-less-last del: append-Cons)

also have . . . =
ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs)
(ipurge-ref I D (D x) xs {y ∈ X . (D x ′, D y) /∈ I})

using B .
finally have D: ipurge-ref-aux-less I D U (x # xs @ [x ′]) X =

ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs)
(ipurge-ref I D (D x) xs {y ∈ X . (D x ′, D y) /∈ I}) .

show ?thesis
proof (cases (D x, D x ′) ∈ I ∨ (∃ v ∈ sinks I D (D x) xs. (v, D x ′) ∈ I))

case True
hence ipurge-ref I D (D x) xs {y ∈ X . (D x ′, D y) /∈ I} =

ipurge-ref I D (D x) (xs @ [x ′]) X
by (simp add: ipurge-ref-last)

moreover have D x ′ ∈ sinks I D (D x) (xs @ [x ′])
using True by (simp only: sinks-interference-eq)

hence ipurge-tr I D (D x) xs = ipurge-tr I D (D x) (xs @ [x ′])
by simp

ultimately show ?thesis using D by simp
next

case False
hence ipurge-ref I D (D x) xs {y ∈ X . (D x ′, D y) /∈ I} =

ipurge-ref I D (D x) (xs @ [x ′]) {y ∈ X . (D x ′, D y) /∈ I}
by (simp add: ipurge-ref-last)

also have . . . = {y ∈ ipurge-ref I D (D x) (xs @ [x ′]) X . (D x ′, D y) /∈ I}
by (simp add: ipurge-ref-swap)

finally have ipurge-ref-aux-less I D U (x # xs @ [x ′]) X =
ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs)
{y ∈ ipurge-ref I D (D x) (xs @ [x ′]) X . (D x ′, D y) /∈ I}

using D by simp
also have . . . = ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs @ [x ′])
(ipurge-ref I D (D x) (xs @ [x ′]) X)

proof −
have ∃ v ∈ U ∪ sinks-aux-less I D U (ipurge-tr I D (D x) xs).

13

(v, D x ′) ∈ I
proof −

obtain v where
E : v ∈ U ∪ sinks-aux-less I D U (x # xs) and
F : (v, D x ′) ∈ I

using C ..
have v ∈ sinks-aux I D U (x # xs)
using E by (simp add: sinks-aux-sinks-aux-less)

hence v ∈ sinks-aux I D (insert (D x) U) xs
using A by (simp add: sinks-aux-cons)

hence v ∈ sinks-aux I D U (ipurge-tr I D (D x) xs)
using F and False by (rule sinks-aux-member-ipurge-tr)

hence v ∈ U ∪ sinks-aux-less I D U (ipurge-tr I D (D x) xs)
by (simp add: sinks-aux-sinks-aux-less)

with F show ?thesis ..
qed
thus ?thesis by (simp add: ipurge-ref-aux-less-last)

qed
finally have ipurge-ref-aux-less I D U (x # xs @ [x ′]) X =

ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs @ [x ′])
(ipurge-ref I D (D x) (xs @ [x ′]) X) .

moreover have D x ′ /∈ sinks I D (D x) (xs @ [x ′])
using False by (simp only: sinks-interference-eq, simp)

hence ipurge-tr I D (D x) xs @ [x ′] = ipurge-tr I D (D x) (xs @ [x ′])
by simp

ultimately show ?thesis by simp
qed

next
assume C : ¬ (∃ v ∈ U ∪ sinks-aux-less I D U (x # xs). (v, D x ′) ∈ I)
hence ipurge-ref-aux-less I D U (x # xs @ [x ′]) X =

ipurge-ref-aux-less I D U (x # xs) X
by (subst append-Cons [symmetric],
simp add: ipurge-ref-aux-less-last del: append-Cons)

also have . . . =
ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs)
(ipurge-ref I D (D x) xs X)

using B .
also have . . . =

ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs @ [x ′])
(ipurge-ref I D (D x) xs X)

proof −
have ¬ (∃ v ∈ U ∪ sinks-aux-less I D U (ipurge-tr I D (D x) xs).
(v, D x ′) ∈ I) (is ¬ ?P)

proof
assume ?P
then obtain v where

D: v ∈ U ∪ sinks-aux-less I D U (ipurge-tr I D (D x) xs) and
E : (v, D x ′) ∈ I ..

have sinks-aux I D U (ipurge-tr I D (D x) xs) ⊆ sinks-aux I D U xs

14

by (rule sinks-aux-subset-ipurge-tr)
moreover have v ∈ sinks-aux I D U (ipurge-tr I D (D x) xs)
using D by (simp add: sinks-aux-sinks-aux-less)

ultimately have v ∈ sinks-aux I D U xs ..
moreover have U ⊆ insert (D x) U
by (rule subset-insertI)

hence sinks-aux I D U xs ⊆ sinks-aux I D (insert (D x) U) xs
by (rule sinks-aux-subset-dom)

ultimately have v ∈ sinks-aux I D (insert (D x) U) xs ..
hence v ∈ sinks-aux I D U (x # xs)
using A by (simp add: sinks-aux-cons)

hence v ∈ U ∪ sinks-aux-less I D U (x # xs)
by (simp add: sinks-aux-sinks-aux-less)

with E have ∃ v ∈ U ∪ sinks-aux-less I D U (x # xs). (v, D x ′) ∈ I ..
thus False using C by contradiction

qed
thus ?thesis by (simp add: ipurge-ref-aux-less-last)

qed
also have . . . =

ipurge-ref-aux-less I D U (ipurge-tr I D (D x) (xs @ [x ′]))
(ipurge-ref I D (D x) (xs @ [x ′]) X)

proof −
have ¬ ((D x, D x ′) ∈ I ∨ (∃ v ∈ sinks I D (D x) xs. (v, D x ′) ∈ I))
(is ¬ ?P)

proof (rule notI , erule disjE)
assume D: (D x, D x ′) ∈ I
have insert (D x) U ⊆ sinks-aux I D (insert (D x) U) xs
by (rule sinks-aux-subset)

moreover have D x ∈ insert (D x) U
by simp

ultimately have D x ∈ sinks-aux I D (insert (D x) U) xs ..
hence D x ∈ sinks-aux I D U (x # xs)
using A by (simp add: sinks-aux-cons)

hence D x ∈ U ∪ sinks-aux-less I D U (x # xs)
by (simp add: sinks-aux-sinks-aux-less)

with D have ∃ v ∈ U ∪ sinks-aux-less I D U (x # xs). (v, D x ′) ∈ I ..
thus False using C by contradiction

next
assume ∃ v ∈ sinks I D (D x) xs. (v, D x ′) ∈ I
then obtain v where

D: v ∈ sinks I D (D x) xs and
E : (v, D x ′) ∈ I ..

have {D x} ⊆ insert (D x) U
by simp

hence sinks-aux I D {D x} xs ⊆ sinks-aux I D (insert (D x) U) xs
by (rule sinks-aux-subset-dom)

moreover have v ∈ sinks-aux I D {D x} xs
using D by (simp add: sinks-aux-single-dom)

ultimately have v ∈ sinks-aux I D (insert (D x) U) xs ..

15

hence v ∈ sinks-aux I D U (x # xs)
using A by (simp add: sinks-aux-cons)

hence v ∈ U ∪ sinks-aux-less I D U (x # xs)
by (simp add: sinks-aux-sinks-aux-less)

with E have ∃ v ∈ U ∪ sinks-aux-less I D U (x # xs). (v, D x ′) ∈ I ..
thus False using C by contradiction

qed
hence ipurge-tr I D (D x) xs @ [x ′] = ipurge-tr I D (D x) (xs @ [x ′])
by (simp only: sinks-interference-eq, simp)

moreover have ipurge-ref I D (D x) xs X =
ipurge-ref I D (D x) (xs @ [x ′]) X

using ‹¬ ?P› by (simp add: ipurge-ref-last)
ultimately show ?thesis by simp

qed
finally show ?thesis .

qed
qed

lemma ipurge-ref-aux-less-cons-2 :
¬ (∃ u ∈ U . (u, D x) ∈ I) =⇒
ipurge-ref-aux-less I D U (x # xs) X =

ipurge-ref-aux-less I D U xs X
by (simp add: ipurge-ref-aux-less-def sinks-aux-less-cons)

1.3 Closure of the failures of a secure process under intran-
sitive purge

The intransitive purge of an event list xs with regard to a policy I, an event-
domain map D, and a set of domains U can equivalently be computed as
follows: for each item x of xs, if x may be affected by some domain in U,
discard x and go on recursively using ipurge-tr I D (D x) xs ′ as input, where
xs ′ is the sublist of xs following x; otherwise, retain x and go on recursively
using xs ′ as input.
In fact, in each recursive step, any item allowed to be indirectly affected by
U through the effect of some item preceding x within xs has already been
removed from the list. Hence, it is sufficient to check whether x may be
directly affected by U, and remove x, as well as any residual item allowed to
be affected by x, if this is the case.
Similarly, the intransitive purge of an event set X with regard to a policy
I, an event-domain map D, a set of domains U, and an event list xs can be
computed as follows. First of all, compute ipurge-ref-aux I D U [] X and use
this set, along with xs, as the input for the subsequent step. Then, for each
item x of xs, if x may be affected by some domain in U, go on recursively
using ipurge-tr I D (D x) xs ′ and ipurge-ref I D (D x) xs ′ X ′ as input, where
X ′ is the set input to the current recursive step; otherwise, go on recursively
using xs ′ and X ′ as input.

16

In fact, in each recursive step, any item allowed to be affected by U either
directly, or through the effect of some item preceding x within xs, has already
been removed from the set (in the initial step and in subsequent steps,
respectively). Thus, it is sufficient to check whether x may be directly
affected by U, and remove any residual item allowed to be affected by x if
this is the case.
Assume that the two computations be performed simultaneously by a single
function, which will then take as input an event list-event set pair and return
as output another such pair. Then, if the input pair is a failure of a secure
process, the output pair is still a failure. In fact, for each item x of xs
allowed to be affected by U, if ys is the partial output list for the sublist of
xs preceding x, then (ys @ ipurge-tr I D (D x) xs ′, ipurge-ref I D (D x) xs ′

X ′) is a failure provided that such is (ys @ x # xs ′, X ′), by virtue of the
definition of CSP noninterference security [8]. Hence, the property of being
a failure is conserved upon each recursive call by the event list-event set
pair such that the list matches the concatenation of the partial output list
with the residual input list, and the set matches the residual input set. This
holds until the residual input list is nil, which is the base case determining
the end of the computation.
As shown by this argument, a proof by induction that the output event list-
event set pair, under the aforesaid assumptions, is still a failure, requires that
the partial output list be passed to the function as a further argument, in
addition to the residual input list, in the recursive calls contained within the
definition of the function. Therefore, the output list has to be accumulated
into a parameter of the function, viz. the function needs to be tail-recursive.
This suggests to prove the properties of interest of the function by applying
the ten-step proof method for theorems on tail-recursive functions described
in [7].
The starting point is to formulate a naive definition of the function, which
will then be refined as specified by the proof method. A slight complica-
tion is due to the preliminary replacement of the input event set X with
ipurge-ref-aux I D U [] X, to be performed before the items of the input
event list start to be consumed recursively. A simple solution to this prob-
lem is to nest the accumulator of the output list within data type option. In
this way, the initial state can be distinguished from the subsequent one, in
which the input event list starts to be consumed, by assigning the distinct
values None and Some [], respectively, to the accumulator.
Everything is now ready for giving a naive definition of the function under
consideration:

function (sequential) ipurge-fail-aux-t-naive ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list option ⇒ ′a set ⇒

′a failure

17

where
ipurge-fail-aux-t-naive I D U xs None X =

ipurge-fail-aux-t-naive I D U xs (Some []) (ipurge-ref-aux I D U [] X) |
ipurge-fail-aux-t-naive I D U (x # xs) (Some ys) X =
(if ∃ u ∈ U . (u, D x) ∈ I
then ipurge-fail-aux-t-naive I D U
(ipurge-tr I D (D x) xs) (Some ys) (ipurge-ref I D (D x) xs X)

else ipurge-fail-aux-t-naive I D U
xs (Some (ys @ [x])) X) |

ipurge-fail-aux-t-naive - - - - (Some ys) X = (ys, X)
oops

The parameter into which the output list is accumulated is the last but one.
As shown by the above informal argument, function ipurge-fail-aux-t-naive
enjoys the following properties:

fst (ipurge-fail-aux-t-naive I D U xs None X) = ipurge-tr-aux I D U xs

snd (ipurge-fail-aux-t-naive I D U xs None X) = ipurge-ref-aux I D U xs X

[[secure P I D; (xs, X) ∈ failures P]] =⇒ ipurge-fail-aux-t-naive I D U xs
None X ∈ failures P

which altogether imply the target lemma, viz. the closure of the failures of
a secure process under intransitive purge.
In what follows, the steps provided for by the aforesaid proof method will
be dealt with one after the other, with the purpose of proving the target
closure lemma in the final step. For more information on this proof method,
cf. [7].

1.3.1 Step 1

In the definition of the auxiliary tail-recursive function ipurge-fail-aux-t-aux,
the Cartesian product of the input parameter types of function ipurge-fail-aux-t-naive
will be implemented as the following record type:

record (′a, ′d) ipurge-rec =
Pol :: (′d × ′d) set
Map :: ′a ⇒ ′d
Doms :: ′d set
List :: ′a list
ListOp :: ′a list option
Set :: ′a set

18

Here below is the resulting definition of function ipurge-fail-aux-t-aux:

function ipurge-fail-aux-t-aux :: (′a, ′d) ipurge-rec ⇒ (′a, ′d) ipurge-rec
where

ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = None, Set = X |) =

ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some [], Set = ipurge-ref-aux I D U [] X |) |

ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) =
(if ∃ u ∈ U . (u, D x) ∈ I
then ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U ,
List = ipurge-tr I D (D x) xs, ListOp = Some ys,
Set = ipurge-ref I D (D x) xs X |)

else ipurge-fail-aux-t-aux (|Pol = I , Map = D, Doms = U ,
List = xs, ListOp = Some (ys @ [x]), Set = X |)) |

ipurge-fail-aux-t-aux
(|Pol = I , Map = D, Doms = U , List = [], ListOp = Some ys, Set = X |) =
(|Pol = I , Map = D, Doms = U , List = [], ListOp = Some ys, Set = X |)

proof (simp-all, atomize-elim)
fix Y :: (′a, ′d) ipurge-rec
show
(∃ I D U xs X . Y = (|Pol = I , Map = D, Doms = U , List = xs,

ListOp = None, Set = X |)) ∨
(∃ I D U x xs ys X . Y = (|Pol = I , Map = D, Doms = U , List = x # xs,

ListOp = Some ys, Set = X |)) ∨
(∃ I D U ys X . Y = (|Pol = I , Map = D, Doms = U , List = [],

ListOp = Some ys, Set = X |))
proof (cases Y , simp)

fix xs :: ′a list and yso :: ′a list option
show
yso = None ∨
(∃ x ′ xs ′. xs = x ′ # xs ′) ∧ (∃ ys. yso = Some ys) ∨
xs = [] ∧ (∃ ys. yso = Some ys)

proof (cases yso, simp-all)
qed (subst disj-commute, rule spec [OF list.nchotomy])

qed
qed

The length of the input event list of function ipurge-fail-aux-t-aux decreases
in every recursive call except for the first one, where the input list is left
unchanged while the nested output list passes from None to Some []. A

19

measure function decreasing in the first recursive call as well can then be
obtained by increasing the length of the input list by one in case the nested
output list matches None. Using such a measure function, the termination of
function ipurge-fail-aux-t-aux is guaranteed by the fact that the event lists
output by function ipurge-tr are not longer than the corresponding input
ones.

termination ipurge-fail-aux-t-aux
proof (relation measure (λY . (if ListOp Y = None then Suc else id)
(length (List Y))), simp-all)
fix D :: ′a ⇒ ′d and I x xs
have length (ipurge-tr I D (D x) xs) ≤ length xs by (rule ipurge-tr-length)
thus length (ipurge-tr I D (D x) xs) < Suc (length xs) by simp

qed

1.3.2 Step 2
definition ipurge-fail-aux-t-in ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ (′a, ′d) ipurge-rec

where
ipurge-fail-aux-t-in I D U xs X ≡
(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)

definition ipurge-fail-aux-t-out :: (′a, ′d) ipurge-rec ⇒ ′a failure where
ipurge-fail-aux-t-out Y ≡ (case ListOp Y of Some ys ⇒ ys, Set Y)

definition ipurge-fail-aux-t ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a failure

where
ipurge-fail-aux-t I D U xs X ≡

ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux (ipurge-fail-aux-t-in I D U xs X))

Since the significant inputs of function ipurge-fail-aux-t-naive match pattern
-, -, -, -, None, -, those of function ipurge-fail-aux-t-aux, as returned by
function ipurge-fail-aux-t-in, match pattern (|Pol = -, Map = -, Doms = -,
List = -, ListOp = None, Set = -|).
Likewise, since the nested output lists returned by function ipurge-fail-aux-t-aux
match pattern Some -, function ipurge-fail-aux-t-out does not need to worry
about dealing with nested output lists equal to None.
In terms of function ipurge-fail-aux-t, the statements to be proven in order to
demonstrate the target closure lemma, previously expressed using function
ipurge-fail-aux-t-naive and henceforth respectively named ipurge-fail-aux-t-eq-tr,
ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures, take the following form:

fst (ipurge-fail-aux-t I D U xs X) = ipurge-tr-aux I D U xs

20

snd (ipurge-fail-aux-t I D U xs X) = ipurge-ref-aux I D U xs X

[[secure P I D; (xs, X) ∈ failures P]] =⇒ ipurge-fail-aux-t I D U xs X ∈
failures P

1.3.3 Step 3
inductive-set ipurge-fail-aux-t-set ::
(′a, ′d) ipurge-rec ⇒ (′a, ′d) ipurge-rec set

for Y :: (′a, ′d) ipurge-rec where

R0 : Y ∈ ipurge-fail-aux-t-set Y |

R1 : (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = None, Set = X |) ∈ ipurge-fail-aux-t-set Y =⇒
(|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some [], Set = ipurge-ref-aux I D U [] X |) ∈ ipurge-fail-aux-t-set Y |

R2 : [[(|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) ∈ ipurge-fail-aux-t-set Y ;
∃ u ∈ U . (u, D x) ∈ I]] =⇒
(|Pol = I , Map = D, Doms = U , List = ipurge-tr I D (D x) xs,
ListOp = Some ys, Set = ipurge-ref I D (D x) xs X |) ∈ ipurge-fail-aux-t-set Y |

R3 : [[(|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) ∈ ipurge-fail-aux-t-set Y ;
¬ (∃ u ∈ U . (u, D x) ∈ I)]] =⇒
(|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some (ys @ [x]), Set = X |) ∈ ipurge-fail-aux-t-set Y

1.3.4 Step 4
lemma ipurge-fail-aux-t-subset:

assumes A: Z ∈ ipurge-fail-aux-t-set Y
shows ipurge-fail-aux-t-set Z ⊆ ipurge-fail-aux-t-set Y

proof (rule subsetI , erule ipurge-fail-aux-t-set.induct)
show Z ∈ ipurge-fail-aux-t-set Y using A .

next
fix I D U xs X
assume (|Pol = I , Map = D, Doms = U , List = xs,

ListOp = None, Set = X |) ∈ ipurge-fail-aux-t-set Y
thus (|Pol = I , Map = D, Doms = U , List = xs,

ListOp = Some [], Set = ipurge-ref-aux I D U [] X |) ∈ ipurge-fail-aux-t-set Y
by (rule R1)

next
fix I D U x xs ys X
assume

21

(|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) ∈ ipurge-fail-aux-t-set Y and

∃ u ∈ U . (u, D x) ∈ I
thus (|Pol = I , Map = D, Doms = U , List = ipurge-tr I D (D x) xs,

ListOp = Some ys, Set = ipurge-ref I D (D x) xs X |) ∈ ipurge-fail-aux-t-set Y
by (rule R2)

next
fix I D U x xs ys X
assume
(|Pol = I , Map = D, Doms = U , List = x # xs,

ListOp = Some ys, Set = X |) ∈ ipurge-fail-aux-t-set Y and
¬ (∃ u ∈ U . (u, D x) ∈ I)

thus (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some (ys @ [x]), Set = X |) ∈ ipurge-fail-aux-t-set Y

by (rule R3)
qed

lemma ipurge-fail-aux-t-aux-set:
ipurge-fail-aux-t-aux Y ∈ ipurge-fail-aux-t-set Y

proof (induction rule: ipurge-fail-aux-t-aux.induct,
simp-all add: R0 del: ipurge-fail-aux-t-aux.simps(2))
fix I U xs X and D :: ′a ⇒ ′d
let

?Y = (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = None, Set = X |) and

?Y ′ = (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some [], Set = ipurge-ref-aux I D U [] X |)

have ?Y ∈ ipurge-fail-aux-t-set ?Y
by (rule R0)

moreover have ?Y ∈ ipurge-fail-aux-t-set ?Y =⇒
?Y ′ ∈ ipurge-fail-aux-t-set ?Y

by (rule R1)
ultimately have ?Y ′ ∈ ipurge-fail-aux-t-set ?Y
by simp

hence ipurge-fail-aux-t-set ?Y ′ ⊆ ipurge-fail-aux-t-set ?Y
by (rule ipurge-fail-aux-t-subset)

moreover assume ipurge-fail-aux-t-aux ?Y ′ ∈ ipurge-fail-aux-t-set ?Y ′

ultimately show ipurge-fail-aux-t-aux ?Y ′ ∈ ipurge-fail-aux-t-set ?Y ..
next

fix I U x xs ys X and D :: ′a ⇒ ′d
let

?Y = (|Pol = I , Map = D, Doms = U , List = x # xs,
ListOp = Some ys, Set = X |) and

?Y ′ = (|Pol = I , Map = D, Doms = U , List = ipurge-tr I D (D x) xs,
ListOp = Some ys, Set = ipurge-ref I D (D x) xs X |) and

?Y ′′ = (|Pol = I , Map = D, Doms = U , List = xs,
ListOp = Some (ys @ [x]), Set = X |)

assume
A: ∃ u ∈ U . (u, D x) ∈ I =⇒

22

ipurge-fail-aux-t-aux ?Y ′ ∈ ipurge-fail-aux-t-set ?Y ′ and
B: ∀ u ∈ U . (u, D x) /∈ I =⇒

ipurge-fail-aux-t-aux ?Y ′′ ∈ ipurge-fail-aux-t-set ?Y ′′

show ipurge-fail-aux-t-aux ?Y ∈ ipurge-fail-aux-t-set ?Y
proof (cases ∃ u ∈ U . (u, D x) ∈ I , simp-all (no-asm-simp))

case True
have ?Y ∈ ipurge-fail-aux-t-set ?Y
by (rule R0)

moreover have ?Y ∈ ipurge-fail-aux-t-set ?Y =⇒ ∃ u ∈ U . (u, D x) ∈ I =⇒
?Y ′ ∈ ipurge-fail-aux-t-set ?Y

by (rule R2)
ultimately have ?Y ′ ∈ ipurge-fail-aux-t-set ?Y
using True by simp

hence ipurge-fail-aux-t-set ?Y ′ ⊆ ipurge-fail-aux-t-set ?Y
by (rule ipurge-fail-aux-t-subset)

moreover have ipurge-fail-aux-t-aux ?Y ′ ∈ ipurge-fail-aux-t-set ?Y ′

using A and True by simp
ultimately show ipurge-fail-aux-t-aux ?Y ′ ∈ ipurge-fail-aux-t-set ?Y ..

next
case False
have ?Y ∈ ipurge-fail-aux-t-set ?Y
by (rule R0)

moreover have ?Y ∈ ipurge-fail-aux-t-set ?Y =⇒
¬ (∃ u ∈ U . (u, D x) ∈ I) =⇒ ?Y ′′ ∈ ipurge-fail-aux-t-set ?Y

by (rule R3)
ultimately have ?Y ′′ ∈ ipurge-fail-aux-t-set ?Y
using False by simp

hence ipurge-fail-aux-t-set ?Y ′′ ⊆ ipurge-fail-aux-t-set ?Y
by (rule ipurge-fail-aux-t-subset)

moreover have ipurge-fail-aux-t-aux ?Y ′′ ∈ ipurge-fail-aux-t-set ?Y ′′

using B and False by simp
ultimately show ipurge-fail-aux-t-aux ?Y ′′ ∈ ipurge-fail-aux-t-set ?Y ..

qed
qed

1.3.5 Step 5
definition ipurge-fail-aux-t-inv-1 ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ (′a, ′d) ipurge-rec ⇒ bool

where
ipurge-fail-aux-t-inv-1 I D U xs Y ≡
(case ListOp Y of None ⇒ [] | Some ys ⇒ ys) @ ipurge-tr-aux I D U (List Y) =
ipurge-tr-aux I D U xs

definition ipurge-fail-aux-t-inv-2 ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒

(′a, ′d) ipurge-rec ⇒ bool
where
ipurge-fail-aux-t-inv-2 I D U xs X Y ≡

23

if ListOp Y = None
then List Y = xs ∧ Set Y = X
else ipurge-ref-aux-less I D U (List Y) (Set Y) = ipurge-ref-aux I D U xs X

definition ipurge-fail-aux-t-inv-3 ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′a list ⇒ ′a set ⇒
(′a, ′d) ipurge-rec ⇒ bool

where
ipurge-fail-aux-t-inv-3 P I D xs X Y ≡

secure P I D −→ (xs, X) ∈ failures P −→
((case ListOp Y of None ⇒ [] | Some ys ⇒ ys) @ List Y , Set Y) ∈ failures P

Three invariants have been defined, one for each of lemmas ipurge-fail-aux-t-eq-tr,
ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures. More precisely, the in-
variants are ipurge-fail-aux-t-inv-1 I D U xs, ipurge-fail-aux-t-inv-2 I D U
xs X, and ipurge-fail-aux-t-inv-3 P I D xs X, where the free variables are
intended to match those appearing in the aforesaid lemmas.
Particularly:

• The first invariant expresses the fact that in each recursive step, any
item of the residual input list List Y indirectly affected by U through
the effect of previous, already consumed items has already been re-
moved from the list, so that applying function ipurge-tr-aux I D U
to the list is sufficient to obtain the intransitive purge of the whole
original list.

• The second invariant expresses the fact that in each recursive step,
any item of the residual input set Set Y affected by U either di-
rectly, or through the effect of previous, already consumed items,
has already been removed from the set, so that applying function
ipurge-ref-aux-less I D U (List Y) to the set is sufficient to obtain
the intransitive purge of the whole original set.
The use of function ipurge-ref-aux-less ensures that the invariant im-
plies the equality Set Y = ipurge-ref-aux I D U xs X for List Y = [],
viz. for the output values of function ipurge-fail-aux-t-aux, which is
the reason requiring the introduction of function ipurge-ref-aux-less.

• The third invariant expresses the fact that in each recursive step, the
event list-event set pair such that the list matches the concatenation
of the partial output list with List Y, and the set matches Set Y, is a
failure provided that the original input pair is such as well.

1.3.6 Step 6
lemma ipurge-fail-aux-t-input-1 :

24

ipurge-fail-aux-t-inv-1 I D U xs
(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)

by (simp add: ipurge-fail-aux-t-inv-1-def)

lemma ipurge-fail-aux-t-input-2 :
ipurge-fail-aux-t-inv-2 I D U xs X

(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)
by (simp add: ipurge-fail-aux-t-inv-2-def)

lemma ipurge-fail-aux-t-input-3 :
ipurge-fail-aux-t-inv-3 P I D xs X

(|Pol = I , Map = D, Doms = U , List = xs, ListOp = None, Set = X |)
by (simp add: ipurge-fail-aux-t-inv-3-def)

1.3.7 Step 7
definition ipurge-fail-aux-t-form :: (′a, ′d) ipurge-rec ⇒ bool where
ipurge-fail-aux-t-form Y ≡

case ListOp Y of None ⇒ False | Some ys ⇒ List Y = []

lemma ipurge-fail-aux-t-intro-1 :
[[ipurge-fail-aux-t-inv-1 I D U xs Y ; ipurge-fail-aux-t-form Y]] =⇒

fst (ipurge-fail-aux-t-out Y) = ipurge-tr-aux I D U xs
proof (simp add: ipurge-fail-aux-t-inv-1-def ipurge-fail-aux-t-form-def
ipurge-fail-aux-t-out-def)

qed (simp split: option.split-asm)

lemma ipurge-fail-aux-t-intro-2 :
[[ipurge-fail-aux-t-inv-2 I D U xs X Y ; ipurge-fail-aux-t-form Y]] =⇒

snd (ipurge-fail-aux-t-out Y) = ipurge-ref-aux I D U xs X
proof (simp add: ipurge-fail-aux-t-inv-2-def ipurge-fail-aux-t-form-def
ipurge-fail-aux-t-out-def)

qed (simp add: ipurge-ref-aux-less-def split: option.split-asm)

lemma ipurge-fail-aux-t-intro-3 :
[[ipurge-fail-aux-t-inv-3 P I D xs X Y ; ipurge-fail-aux-t-form Y]] =⇒

secure P I D −→ (xs, X) ∈ failures P −→
ipurge-fail-aux-t-out Y ∈ failures P

proof (simp add: ipurge-fail-aux-t-inv-3-def ipurge-fail-aux-t-form-def
ipurge-fail-aux-t-out-def)

qed (simp split: option.split-asm)

1.3.8 Step 8
lemma ipurge-fail-aux-t-form-aux:
ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux Y)

by (induction Y rule: ipurge-fail-aux-t-aux.induct,
simp-all add: ipurge-fail-aux-t-form-def)

25

1.3.9 Step 9
lemma ipurge-fail-aux-t-invariance-aux:
Z ∈ ipurge-fail-aux-t-set Y =⇒
Pol Z = Pol Y ∧ Map Z = Map Y ∧ Doms Z = Doms Y

by (erule ipurge-fail-aux-t-set.induct, simp-all)

The lemma just proven, stating the invariance of the first three record fields
over inductive set ipurge-fail-aux-t-set Y, is used in the following proofs of the
invariance of predicates ipurge-fail-aux-t-inv-1 I D U xs, ipurge-fail-aux-t-inv-2
I D U xs X, and ipurge-fail-aux-t-inv-3 P I D xs X.
The equality between the free variables appearing in the predicates and
the corresponding fields of the record generating the set, which is required
for such invariance properties to hold, is asserted in the enunciation of the
properties by means of record updates. In the subsequent proofs of lemmas
ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref, and ipurge-fail-aux-t-failures,
the enforcement of this equality will be ensured by the identification of both
predicate variables and record fields with the related free variables appearing
in the lemmas.

lemma ipurge-fail-aux-t-invariance-1 :
[[Z ∈ ipurge-fail-aux-t-set (Y (|Pol := I , Map := D, Doms := U |));

ipurge-fail-aux-t-inv-1 I D U xs (Y (|Pol := I , Map := D, Doms := U |))]] =⇒
ipurge-fail-aux-t-inv-1 I D U xs Z

proof (erule ipurge-fail-aux-t-set.induct, assumption,
drule-tac [!] ipurge-fail-aux-t-invariance-aux,
simp-all add: ipurge-fail-aux-t-inv-1-def)
fix x xs ′ ys
assume ys @ ipurge-tr-aux I D U (x # xs ′) = ipurge-tr-aux I D U xs
(is ?A = ?C)

moreover assume ∃ u ∈ U . (u, D x) ∈ I
hence ?A = ys @ ipurge-tr-aux I D (insert (D x) U) xs ′

by (simp add: ipurge-tr-aux-cons)
hence ?A = ys @ ipurge-tr-aux I D U (ipurge-tr I D (D x) xs ′)
(is - = ?B) by (simp add: ipurge-tr-aux-insert)

ultimately show ?B = ?C by simp
next

fix x xs ′ ys
assume ys @ ipurge-tr-aux I D U (x # xs ′) = ipurge-tr-aux I D U xs
(is ?A = ?C)

moreover assume ∀ u ∈ U . (u, D x) /∈ I
hence ?A = ys @ x # ipurge-tr-aux I D U xs ′

(is - = ?B) by (simp add: ipurge-tr-aux-cons)
ultimately show ?B = ?C by simp

qed

lemma ipurge-fail-aux-t-invariance-2 :

26

[[Z ∈ ipurge-fail-aux-t-set (Y (|Pol := I , Map := D, Doms := U |));
ipurge-fail-aux-t-inv-2 I D U xs X (Y (|Pol := I , Map := D, Doms := U |))]] =⇒

ipurge-fail-aux-t-inv-2 I D U xs X Z
proof (erule ipurge-fail-aux-t-set.induct, assumption,
drule-tac [!] ipurge-fail-aux-t-invariance-aux,
simp-all add: ipurge-fail-aux-t-inv-2-def)
show ipurge-ref-aux-less I D U xs (ipurge-ref-aux I D U [] X) =

ipurge-ref-aux I D U xs X
by (rule ipurge-ref-aux-less-nil)

next
fix x xs ′ X ′

assume ipurge-ref-aux-less I D U (x # xs ′) X ′ = ipurge-ref-aux I D U xs X
(is ?A = ?C)

moreover assume ∃ u ∈ U . (u, D x) ∈ I
hence ?A = ipurge-ref-aux-less I D U (ipurge-tr I D (D x) xs ′)
(ipurge-ref I D (D x) xs ′ X ′)
(is - = ?B) by (rule ipurge-ref-aux-less-cons-1)

ultimately show ?B = ?C by simp
next

fix x xs ′ X ′

assume ipurge-ref-aux-less I D U (x # xs ′) X ′ = ipurge-ref-aux I D U xs X
(is ?A = ?C)

moreover assume ∀ u ∈ U . (u, D x) /∈ I
hence ¬ (∃ u ∈ U . (u, D x) ∈ I) by simp
hence ?A = ipurge-ref-aux-less I D U xs ′ X ′

(is - = ?B) by (rule ipurge-ref-aux-less-cons-2)
ultimately show ?B = ?C by simp

qed

lemma ipurge-fail-aux-t-invariance-3 :
[[Z ∈ ipurge-fail-aux-t-set (Y (|Pol := I , Map := D|));

ipurge-fail-aux-t-inv-3 P I D xs X (Y (|Pol := I , Map := D|))]] =⇒
ipurge-fail-aux-t-inv-3 P I D xs X Z

proof (erule ipurge-fail-aux-t-set.induct, assumption,
drule-tac [!] ipurge-fail-aux-t-invariance-aux,
simp-all add: ipurge-fail-aux-t-inv-3-def , (rule-tac [!] impI)+)
fix xs ′ X ′

assume
secure P I D and
(xs, X) ∈ failures P and
secure P I D −→ (xs, X) ∈ failures P −→ (xs ′, X ′) ∈ failures P

hence (xs ′, X ′) ∈ failures P
by simp

moreover have ipurge-ref-aux I D (Doms Y) [] X ′ ⊆ X ′

by (rule ipurge-ref-aux-subset)
ultimately show (xs ′, ipurge-ref-aux I D (Doms Y) [] X ′) ∈ failures P
by (rule process-rule-3)

next
fix x xs ′ ys X ′

27

assume S : secure P I D and
(xs, X) ∈ failures P and
secure P I D −→ (xs, X) ∈ failures P −→ (ys @ x # xs ′, X ′) ∈ failures P

hence (ys @ x # xs ′, X ′) ∈ failures P
by simp

hence (x # xs ′, X ′) ∈ futures P ys
by (simp add: futures-def)

hence (ipurge-tr I D (D x) xs ′, ipurge-ref I D (D x) xs ′ X ′) ∈ futures P ys
using S by (simp add: secure-def)

thus (ys @ ipurge-tr I D (D x) xs ′, ipurge-ref I D (D x) xs ′ X ′) ∈ failures P
by (simp add: futures-def)

qed

1.3.10 Step 10

Here below are the proofs of lemmas ipurge-fail-aux-t-eq-tr, ipurge-fail-aux-t-eq-ref,
and ipurge-fail-aux-t-failures, which are then applied to demonstrate the tar-
get closure lemma.

lemma ipurge-fail-aux-t-eq-tr :
fst (ipurge-fail-aux-t I D U xs X) = ipurge-tr-aux I D U xs

proof −
let ?Y = (|Pol = I , Map = D, Doms = U , List = xs, ListOp = None,

Set = X |)
have ipurge-fail-aux-t-aux ?Y
∈ ipurge-fail-aux-t-set (?Y (|Pol := I , Map := D, Doms := U |))

by (simp add: ipurge-fail-aux-t-aux-set del: ipurge-fail-aux-t-aux.simps)
moreover have
ipurge-fail-aux-t-inv-1 I D U xs (?Y (|Pol := I , Map := D, Doms := U |))
by (simp add: ipurge-fail-aux-t-input-1)

ultimately have ipurge-fail-aux-t-inv-1 I D U xs (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-invariance-1)

moreover have ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-form-aux)

ultimately have fst (ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux ?Y)) =
ipurge-tr-aux I D U xs

by (rule ipurge-fail-aux-t-intro-1)
moreover have ?Y = ipurge-fail-aux-t-in I D U xs X
by (simp add: ipurge-fail-aux-t-in-def)

ultimately show ?thesis
by (simp add: ipurge-fail-aux-t-def)

qed

lemma ipurge-fail-aux-t-eq-ref :
snd (ipurge-fail-aux-t I D U xs X) = ipurge-ref-aux I D U xs X

proof −
let ?Y = (|Pol = I , Map = D, Doms = U , List = xs, ListOp = None,

Set = X |)

28

have ipurge-fail-aux-t-aux ?Y
∈ ipurge-fail-aux-t-set (?Y (|Pol := I , Map := D, Doms := U |))

by (simp add: ipurge-fail-aux-t-aux-set del: ipurge-fail-aux-t-aux.simps)
moreover have
ipurge-fail-aux-t-inv-2 I D U xs X (?Y (|Pol := I , Map := D, Doms := U |))
by (simp add: ipurge-fail-aux-t-input-2)

ultimately have ipurge-fail-aux-t-inv-2 I D U xs X (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-invariance-2)

moreover have ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-form-aux)

ultimately have snd (ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux ?Y)) =
ipurge-ref-aux I D U xs X

by (rule ipurge-fail-aux-t-intro-2)
moreover have ?Y = ipurge-fail-aux-t-in I D U xs X
by (simp add: ipurge-fail-aux-t-in-def)

ultimately show ?thesis
by (simp add: ipurge-fail-aux-t-def)

qed

lemma ipurge-fail-aux-t-failures [rule-format]:
secure P I D −→ (xs, X) ∈ failures P −→

ipurge-fail-aux-t I D U xs X ∈ failures P
proof −

let ?Y = (|Pol = I , Map = D, Doms = U , List = xs, ListOp = None,
Set = X |)

have ipurge-fail-aux-t-aux ?Y
∈ ipurge-fail-aux-t-set (?Y (|Pol := I , Map := D|))

by (simp add: ipurge-fail-aux-t-aux-set del: ipurge-fail-aux-t-aux.simps)
moreover have
ipurge-fail-aux-t-inv-3 P I D xs X (?Y (|Pol := I , Map := D|))
by (simp add: ipurge-fail-aux-t-input-3)

ultimately have ipurge-fail-aux-t-inv-3 P I D xs X (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-invariance-3)

moreover have ipurge-fail-aux-t-form (ipurge-fail-aux-t-aux ?Y)
by (rule ipurge-fail-aux-t-form-aux)

ultimately have secure P I D −→ (xs, X) ∈ failures P −→
ipurge-fail-aux-t-out (ipurge-fail-aux-t-aux ?Y) ∈ failures P

by (rule ipurge-fail-aux-t-intro-3)
moreover have ?Y = ipurge-fail-aux-t-in I D U xs X
by (simp add: ipurge-fail-aux-t-in-def)

ultimately show ?thesis
by (simp add: ipurge-fail-aux-t-def)

qed

lemma ipurge-tr-ref-aux-failures:
[[secure P I D; (xs, X) ∈ failures P]] =⇒

(ipurge-tr-aux I D U xs, ipurge-ref-aux I D U xs X) ∈ failures P
proof (drule ipurge-fail-aux-t-failures [where U = U], assumption,
cases ipurge-fail-aux-t I D U xs X)

29

qed (simp add: ipurge-fail-aux-t-eq-tr [where X = X , symmetric]
ipurge-fail-aux-t-eq-ref [symmetric])

1.4 Additional propaedeutic lemmas

In what follows, additional lemmas required for the demonstration of the
target security conservation theorem are proven.
Here below is the proof of some properties of functions ipurge-tr-aux and
ipurge-ref-aux. Particularly, it is shown that in case an event list and its
intransitive purge for some set of domains are both traces of a secure process,
and the purged list has a future not affected by any purged event, then that
future is also a future for the full event list.

lemma ipurge-tr-aux-idem:
ipurge-tr-aux I D U (ipurge-tr-aux I D U xs) = ipurge-tr-aux I D U xs

by (simp add: ipurge-tr-aux-union [symmetric])

lemma ipurge-tr-aux-set:
set (ipurge-tr-aux I D U xs) ⊆ set xs

proof (induction xs rule: rev-induct, simp-all)
qed blast

lemma ipurge-tr-aux-nil [rule-format]:
assumes A: u ∈ U
shows (∀ x ∈ set xs. (u, D x) ∈ I) −→ ipurge-tr-aux I D U xs = []

proof (induction xs rule: rev-induct, simp, rule impI)
fix x xs
assume (∀ x ′ ∈ set xs. (u, D x ′) ∈ I) −→ ipurge-tr-aux I D U xs = []
moreover assume B: ∀ x ′ ∈ set (xs @ [x]). (u, D x ′) ∈ I
ultimately have C : ipurge-tr-aux I D U xs = []
by simp

have (u, D x) ∈ I
using B by simp

moreover have U ⊆ sinks-aux I D U xs
by (rule sinks-aux-subset)

hence u ∈ sinks-aux I D U xs
using A ..

ultimately have ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I ..
hence ipurge-tr-aux I D U (xs @ [x]) = ipurge-tr-aux I D U xs
by simp

thus ipurge-tr-aux I D U (xs @ [x]) = []
using C by simp

qed

lemma ipurge-tr-aux-del-failures [rule-format]:
assumes S : secure P I D
shows (∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I) −→
(xs @ ipurge-tr-aux I D U ys @ zs, Z) ∈ failures P −→

30

xs @ ys ∈ traces P −→
(xs @ ys @ zs, Z) ∈ failures P

proof (induction ys arbitrary: zs rule: rev-induct, simp, (rule impI)+)
fix y ys zs
assume

A:
∧

zs. (∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I) −→
(xs @ ipurge-tr-aux I D U ys @ zs, Z) ∈ failures P −→
xs @ ys ∈ traces P −→
(xs @ ys @ zs, Z) ∈ failures P and

B: ∀ u ∈ sinks-aux-less I D U (ys @ [y]). ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I and
C : (xs @ ipurge-tr-aux I D U (ys @ [y]) @ zs, Z) ∈ failures P and
D: xs @ (ys @ [y]) ∈ traces P

show (xs @ (ys @ [y]) @ zs, Z) ∈ failures P
proof (cases ∃ u ∈ sinks-aux I D U ys. (u, D y) ∈ I , simp-all (no-asm))

case True
have
(∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I) −→
(xs @ ipurge-tr-aux I D U ys @ zs, Z) ∈ failures P −→
xs @ ys ∈ traces P −→
(xs @ ys @ zs, Z) ∈ failures P

using A .
moreover have ∃ u ∈ U ∪ sinks-aux-less I D U ys. (u, D y) ∈ I
using True by (simp add: sinks-aux-sinks-aux-less)

hence E : ∀ u ∈ insert (D y) (sinks-aux-less I D U ys). ∀ z ∈ Z ∪ set zs.
(u, D z) /∈ I

using B by (simp only: sinks-aux-less.simps if-True)
hence ∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I
by simp

moreover have (xs @ ipurge-tr-aux I D U ys @ zs, Z) ∈ failures P
using C and True by simp

moreover have (xs @ ys) @ [y] ∈ traces P
using D by simp

hence xs @ ys ∈ traces P
by (rule process-rule-2-traces)

ultimately have (xs @ ys @ zs, Z) ∈ failures P
by simp

hence (zs, Z) ∈ futures P (xs @ ys)
by (simp add: futures-def)

moreover have (xs @ ys @ [y], {}) ∈ failures P
using D by (rule traces-failures)

hence ([y], {}) ∈ futures P (xs @ ys)
by (simp add: futures-def)

ultimately have (y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
∈ futures P (xs @ ys)

using S by (simp add: secure-def)
moreover have ipurge-tr I D (D y) zs = zs
by (subst ipurge-tr-all, simp add: E)

moreover have ipurge-ref I D (D y) zs Z = Z
by (rule ipurge-ref-all, simp add: E)

31

ultimately have (y # zs, Z) ∈ futures P (xs @ ys)
by simp

thus (xs @ ys @ y # zs, Z) ∈ failures P
by (simp add: futures-def)

next
case False
have E :
(∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set (y # zs). (u, D z) /∈ I) −→
(xs @ ipurge-tr-aux I D U ys @ (y # zs), Z) ∈ failures P −→
xs @ ys ∈ traces P −→
(xs @ ys @ (y # zs), Z) ∈ failures P

using A .
have F : ¬ (∃ u ∈ U ∪ sinks-aux-less I D U ys. (u, D y) ∈ I)
using False by (simp add: sinks-aux-sinks-aux-less)

hence ∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set zs. (u, D z) /∈ I
using B by (simp only: sinks-aux-less.simps if-False)

moreover have ∀ u ∈ sinks-aux-less I D U ys. (u, D y) /∈ I
using F by simp

ultimately have
∀ u ∈ sinks-aux-less I D U ys. ∀ z ∈ Z ∪ set (y # zs). (u, D z) /∈ I
by simp

with E have
(xs @ ipurge-tr-aux I D U ys @ (y # zs), Z) ∈ failures P −→
xs @ ys ∈ traces P −→
(xs @ ys @ (y # zs), Z) ∈ failures P ..

moreover have (xs @ ipurge-tr-aux I D U ys @ (y # zs), Z) ∈ failures P
using C and False by simp

moreover have (xs @ ys) @ [y] ∈ traces P
using D by simp

hence xs @ ys ∈ traces P
by (rule process-rule-2-traces)

ultimately show (xs @ ys @ (y # zs), Z) ∈ failures P
by simp

qed
qed

lemma ipurge-ref-aux-append:
ipurge-ref-aux I D U (xs @ ys) X = ipurge-ref-aux I D (sinks-aux I D U xs) ys X

by (simp add: ipurge-ref-aux-def sinks-aux-append)

lemma ipurge-ref-aux-empty [rule-format]:
assumes

A: u ∈ sinks-aux I D U xs and
B: ∀ x ∈ X . (u, D x) ∈ I

shows ipurge-ref-aux I D U xs X = {}
proof (rule equals0I , simp add: ipurge-ref-aux-def , erule conjE)

fix x
assume x ∈ X
with B have (u, D x) ∈ I ..

32

moreover assume ∀ u ∈ sinks-aux I D U xs. (u, D x) /∈ I
hence (u, D x) /∈ I
using A ..

ultimately show False
by contradiction

qed

Here below is the proof of some properties of functions sinks, ipurge-tr,
and ipurge-ref. Particularly, using the previous analogous result on function
ipurge-tr-aux, it is shown that in case an event list and its intransitive purge
for some domain are both traces of a secure process, and the purged list has
a future not affected by any purged event, then that future is also a future
for the full event list.

lemma sinks-idem:
sinks I D u (ipurge-tr I D u xs) = {}

by (induction xs rule: rev-induct, simp-all)

lemma sinks-elem [rule-format]:
v ∈ sinks I D u xs −→ (∃ x ∈ set xs. v = D x)

by (induction xs rule: rev-induct, simp-all)

lemma ipurge-tr-append:
ipurge-tr I D u (xs @ ys) =
ipurge-tr I D u xs @ ipurge-tr-aux I D (insert u (sinks I D u xs)) ys

proof (simp add: sinks-aux-single-dom [symmetric]
ipurge-tr-aux-single-dom [symmetric])

qed (simp add: ipurge-tr-aux-append)

lemma ipurge-tr-idem:
ipurge-tr I D u (ipurge-tr I D u xs) = ipurge-tr I D u xs

by (simp add: ipurge-tr-aux-single-dom [symmetric] ipurge-tr-aux-idem)

lemma ipurge-tr-set:
set (ipurge-tr I D u xs) ⊆ set xs

by (simp add: ipurge-tr-aux-single-dom [symmetric] ipurge-tr-aux-set)

lemma ipurge-tr-del-failures [rule-format]:
assumes

S : secure P I D and
A: ∀ v ∈ sinks I D u ys. ∀ z ∈ Z ∪ set zs. (v, D z) /∈ I and
B: (xs @ ipurge-tr I D u ys @ zs, Z) ∈ failures P and
C : xs @ ys ∈ traces P

shows (xs @ ys @ zs, Z) ∈ failures P
proof (rule ipurge-tr-aux-del-failures [OF S - - C , where U = {u}])
qed (simp add: A sinks-aux-less-single-dom, simp add: B ipurge-tr-aux-single-dom)

33

lemma ipurge-tr-del-traces [rule-format]:
assumes

S : secure P I D and
A: ∀ v ∈ sinks I D u ys. ∀ z ∈ set zs. (v, D z) /∈ I and
B: xs @ ipurge-tr I D u ys @ zs ∈ traces P and
C : xs @ ys ∈ traces P

shows xs @ ys @ zs ∈ traces P
proof (rule failures-traces [where X = {}],
rule ipurge-tr-del-failures [OF S - - C , where u = u])

qed (simp add: A, rule traces-failures [OF B])

lemma ipurge-ref-append:
ipurge-ref I D u (xs @ ys) X =
ipurge-ref-aux I D (insert u (sinks I D u xs)) ys X

proof (simp add: sinks-aux-single-dom [symmetric]
ipurge-ref-aux-single-dom [symmetric])

qed (simp add: ipurge-ref-aux-append)

lemma ipurge-ref-distrib-inter :
ipurge-ref I D u xs (X ∩ Y) = ipurge-ref I D u xs X ∩ ipurge-ref I D u xs Y

proof (simp add: ipurge-ref-def)
qed blast

lemma ipurge-ref-distrib-union:
ipurge-ref I D u xs (X ∪ Y) = ipurge-ref I D u xs X ∪ ipurge-ref I D u xs Y

proof (simp add: ipurge-ref-def)
qed blast

lemma ipurge-ref-subset:
ipurge-ref I D u xs X ⊆ X

by (subst ipurge-ref-def , rule subsetI , simp)

lemma ipurge-ref-subset-union:
ipurge-ref I D u xs (X ∪ Y) ⊆ X ∪ ipurge-ref I D u xs Y

proof (simp add: ipurge-ref-def)
qed blast

lemma ipurge-ref-subset-insert:
ipurge-ref I D u xs (insert x X) ⊆ insert x (ipurge-ref I D u xs X)

by (simp only: insert-def ipurge-ref-subset-union)

lemma ipurge-ref-empty [rule-format]:
assumes

A: v = u ∨ v ∈ sinks I D u xs and
B: ∀ x ∈ X . (v, D x) ∈ I

shows ipurge-ref I D u xs X = {}
proof (subst ipurge-ref-aux-single-dom [symmetric],
rule ipurge-ref-aux-empty [of v])
show v ∈ sinks-aux I D {u} xs

34

using A by (simp add: sinks-aux-single-dom)
next

fix x
assume x ∈ X
with B show (v, D x) ∈ I ..

qed

Finally, in what follows, properties process-prop-1, process-prop-5, and pro-
cess-prop-6 of processes (cf. [8]) are put into the form of introduction rules.

lemma process-rule-1 :
([], {}) ∈ failures P

proof (simp add: failures-def)
have Rep-process P ∈ process-set (is ?P ′ ∈ -)
by (rule Rep-process)

thus ([], {}) ∈ fst ?P ′

by (simp add: process-set-def process-prop-1-def)
qed

lemma process-rule-5 [rule-format]:
xs ∈ divergences P −→ xs @ [x] ∈ divergences P

proof (simp add: divergences-def)
have Rep-process P ∈ process-set (is ?P ′ ∈ -)
by (rule Rep-process)

hence ∀ xs x. xs ∈ snd ?P ′ −→ xs @ [x] ∈ snd ?P ′

by (simp add: process-set-def process-prop-5-def)
thus xs ∈ snd ?P ′ −→ xs @ [x] ∈ snd ?P ′

by blast
qed

lemma process-rule-6 [rule-format]:
xs ∈ divergences P −→ (xs, X) ∈ failures P

proof (simp add: failures-def divergences-def)
have Rep-process P ∈ process-set (is ?P ′ ∈ -)
by (rule Rep-process)

hence ∀ xs X . xs ∈ snd ?P ′ −→ (xs, X) ∈ fst ?P ′

by (simp add: process-set-def process-prop-6-def)
thus xs ∈ snd ?P ′ −→ (xs, X) ∈ fst ?P ′

by blast
qed

end

2 Sequential composition and noninterference se-
curity

theory SequentialComposition

35

imports Propaedeutics
begin

This section formalizes the definitions of sequential processes and sequen-
tial composition given in [1], and then proves that under the assumptions
discussed above, noninterference security is conserved under sequential com-
position for any pair of processes sharing an alphabet that contains success-
ful termination. Finally, this result is generalized to an arbitrary list of
processes.

2.1 Sequential processes

In [1], a sequential process is defined as a process whose alphabet contains
successful termination. Since sequential composition applies to sequential
processes, the first problem put by the formalization of this operation is that
of finding a suitable way to represent such a process.
A simple but effective strategy is to identify it with a process having alphabet
′a option, where ′a is the native type of its ordinary (i.e. distinct from
termination) events. Then, ordinary events will be those matching pattern
Some -, whereas successful termination will be denoted by the special event
None. This means that the sentences of a sequential process, defined in
[1] as the traces after which the process can terminate successfully, will be
nothing but the event lists xs such that xs @ [None] is a trace (which implies
that xs is a trace as well).
Once a suitable representation of successful termination has been found,
the next step is to formalize the properties of sequential processes related to
this event, expressing them in terms of the selected representation. The first
of the resulting predicates, weakly-sequential, is the minimum required for
allowing the identification of event None with successful termination, namely
that None may occur in a trace as its last event only. The second predicate,
sequential, following what Hoare does in [1], extends the first predicate with
an additional requirement, namely that whenever the process can engage in
event None, it cannot engage in any other event. A simple counterexample
shows that this requirement does not imply the first one: a process whose
traces are {[], [None], [None, None]} satisfies the second requirement, but
not the first one.
Moreover, here below is the definition of a further predicate, secure-termination,
which applies to a security policy rather than to a process, and is satisfied
just in case the policy does not allow event None to be affected by confiden-
tial events, viz. by ordinary events not allowed to affect some event in the
alphabet. Interestingly, this property, which will prove to be necessary for
the target theorem to hold, is nothing but the CSP counterpart of a condition
required for a security type system to enforce termination-sensitive nonin-

36

terference security of programs, namely that program termination must not
depend on confidential data (cf. [5], section 9.2.6).

definition sentences :: ′a option process ⇒ ′a option list set where
sentences P ≡ {xs. xs @ [None] ∈ traces P}

definition weakly-sequential :: ′a option process ⇒ bool where
weakly-sequential P ≡
∀ xs ∈ traces P. None /∈ set (butlast xs)

definition sequential :: ′a option process ⇒ bool where
sequential P ≡
(∀ xs ∈ traces P. None /∈ set (butlast xs)) ∧
(∀ xs ∈ sentences P. next-events P xs = {None})

definition secure-termination :: (′d × ′d) set ⇒ (′a option ⇒ ′d) ⇒ bool where
secure-termination I D ≡
∀ x. (D x, D None) ∈ I ∧ x 6= None −→ (∀ u ∈ range D. (D x, u) ∈ I)

Here below is the proof of some useful lemmas involving the constants
just defined. Particularly, it is proven that process sequentiality is indeed
stronger than weak sequentiality, and a sentence of a refusals union closed
(cf. [9]), sequential process admits the set of all the ordinary events of the
process as a refusal. The use of the latter lemma in the proof of the target
security conservation theorem is the reason why the theorem requires to as-
sume that the first of the processes to be composed be refusals union closed
(cf. below).

lemma seq-implies-weakly-seq:
sequential P =⇒ weakly-sequential P

by (simp add: weakly-sequential-def sequential-def)

lemma weakly-seq-sentences-none:
assumes

WS : weakly-sequential P and
A: xs ∈ sentences P

shows None /∈ set xs
proof −

have ∀ xs ∈ traces P. None /∈ set (butlast xs)
using WS by (simp add: weakly-sequential-def)

moreover have xs @ [None] ∈ traces P
using A by (simp add: sentences-def)

ultimately have None /∈ set (butlast (xs @ [None])) ..
thus ?thesis
by simp

qed

37

lemma seq-sentences-none:
assumes

S : sequential P and
A: xs ∈ sentences P and
B: xs @ y # ys ∈ traces P

shows y = None
proof −

have ∀ xs ∈ sentences P. next-events P xs = {None}
using S by (simp add: sequential-def)

hence next-events P xs = {None}
using A ..

moreover have (xs @ [y]) @ ys ∈ traces P
using B by simp

hence xs @ [y] ∈ traces P
by (rule process-rule-2-traces)

hence y ∈ next-events P xs
by (simp add: next-events-def)

ultimately show ?thesis
by simp

qed

lemma seq-sentences-ref :
assumes

A: ref-union-closed P and
B: sequential P and
C : xs ∈ sentences P

shows (xs, {x. x 6= None}) ∈ failures P
(is (-, ?X) ∈ -)

proof −
have (∃X . X ∈ singleton-set ?X) −→
(∀X ∈ singleton-set ?X . (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ singleton-set ?X . X) ∈ failures P

using A by (simp add: ref-union-closed-def)
moreover have ∃ x. x ∈ ?X
by blast

hence ∃X . X ∈ singleton-set ?X
by (simp add: singleton-set-some)

ultimately have (∀X ∈ singleton-set ?X . (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ singleton-set ?X . X) ∈ failures P ..

moreover have ∀X ∈ singleton-set ?X . (xs, X) ∈ failures P
proof (rule ballI , simp add: singleton-set-def del: not-None-eq,
erule exE , erule conjE , simp (no-asm-simp))
fix x :: ′a option
assume D: x 6= None
have xs @ [None] ∈ traces P
using C by (simp add: sentences-def)

hence xs ∈ traces P
by (rule process-rule-2-traces)

38

hence (xs, {}) ∈ failures P
by (rule traces-failures)

hence (xs @ [x], {}) ∈ failures P ∨ (xs, {x}) ∈ failures P
by (rule process-rule-4)

thus (xs, {x}) ∈ failures P
proof (rule disjE , rule-tac ccontr , simp-all)

assume (xs @ [x], {}) ∈ failures P
hence xs @ [x] ∈ traces P
by (rule failures-traces)

with B and C have x = None
by (rule seq-sentences-none)

thus False
using D by contradiction

qed
qed
ultimately have (xs,

⋃
X ∈ singleton-set ?X . X) ∈ failures P ..

thus ?thesis
by (simp only: singleton-set-union)

qed

2.2 Sequential composition

In what follows, the definition of the failures resulting from the sequential
composition of two processes P, Q given in [1] is formalized as the inductive
definition of set seq-comp-failures P Q. Then, the sequential composition of
P and Q, denoted by means of notation P ; Q following [1], is defined as
the process having seq-comp-failures P Q as failures set and the empty set
as divergences set.
For the sake of generality, this definition is based on the mere implicit as-
sumption that the input processes be weakly sequential, rather than sequen-
tial. This slightly complicates things, since the sentences of process P may
number further events in addition to None in their future.
Therefore, the resulting refusals of a sentence xs of P will have the form
insert None X ∩ Y, where X is a refusal of xs in P and Y is an initial
refusal of Q (cf. rule SCF-R2). In fact, after xs, process P ; Q must be able
to refuse None if Q is, whereas it cannot refuse an ordinary event unless
both P and Q, in their respective states, can.
Moreover, a trace xs of P ; Q may result from different combinations of a
sentence of P with a trace of Q. Thus, in order that the refusals of P ; Q
be closed under set union, the union of any two refusals of xs must still be a
refusal (cf. rule SCF-R4). Indeed, this property will prove to be sufficient to
ensure that for any two processes whose refusals are closed under set union,
their sequential composition still be such, which is what is expected for any
process of practical significance (cf. [9]).
According to the definition given in [1], a divergence of P ; Q is either a di-

39

vergence of P, or the concatenation of a sentence of P with a divergence of Q.
Apparently, this definition does not match the formal one stated here below,
which identifies the divergences set of P ; Q with the empty set. Nonetheless,
as remarked above, sequential composition does not make sense unless the
input processes are weakly sequential, since this is the minimum required to
confer the meaning of successful termination on the corresponding alphabet
symbol. But a weakly sequential process cannot have any divergence, so
that the two definitions are actually equivalent. In fact, a divergence is a
trace such that, however it is extended with arbitrary additional events, the
resulting event list is still a trace (cf. process properties process-prop-5 and
process-prop-6 in [8]). Therefore, if xs were a divergence, then xs @ [None,
None] would be a trace, which is impossible in case the process satisfies
predicate weakly-sequential.

inductive-set seq-comp-failures ::
′a option process ⇒ ′a option process ⇒ ′a option failure set

for P :: ′a option process and Q :: ′a option process where

SCF-R1 : [[xs /∈ sentences P; (xs, X) ∈ failures P; None /∈ set xs]] =⇒
(xs, X) ∈ seq-comp-failures P Q |

SCF-R2 : [[xs ∈ sentences P; (xs, X) ∈ failures P; ([], Y) ∈ failures Q]] =⇒
(xs, insert None X ∩ Y) ∈ seq-comp-failures P Q |

SCF-R3 : [[xs ∈ sentences P; (ys, Y) ∈ failures Q; ys 6= []]] =⇒
(xs @ ys, Y) ∈ seq-comp-failures P Q |

SCF-R4 : [[(xs, X) ∈ seq-comp-failures P Q; (xs, Y) ∈ seq-comp-failures P Q]] =⇒
(xs, X ∪ Y) ∈ seq-comp-failures P Q

definition seq-comp ::
′a option process ⇒ ′a option process ⇒ ′a option process (infixl ‹;› 60)

where
P ; Q ≡ Abs-process (seq-comp-failures P Q, {})

Here below is the proof that, for any two processes P, Q defined over the
same alphabet containing successful termination, set seq-comp-failures P Q
indeed enjoys the characteristic properties of the failures set of a process as
defined in [8] provided that P is weakly sequential, which is what happens
in any meaningful case.

lemma seq-comp-prop-1 :
([], {}) ∈ seq-comp-failures P Q

proof (cases [] ∈ sentences P)
case False

40

moreover have ([], {}) ∈ failures P
by (rule process-rule-1)

moreover have None /∈ set []
by simp

ultimately show ?thesis
by (rule SCF-R1)

next
case True
moreover have ([], {}) ∈ failures P
by (rule process-rule-1)

moreover have ([], {}) ∈ failures Q
by (rule process-rule-1)

ultimately have ([], {None} ∩ {}) ∈ seq-comp-failures P Q
by (rule SCF-R2)

thus ?thesis by simp
qed

lemma seq-comp-prop-2-aux [rule-format]:
assumes WS : weakly-sequential P
shows (ws, X) ∈ seq-comp-failures P Q =⇒

ws = xs @ [x] −→ (xs, {}) ∈ seq-comp-failures P Q
proof (erule seq-comp-failures.induct, rule-tac [!] impI , simp-all, erule conjE)

fix X ′

assume
A: (xs @ [x], X ′) ∈ failures P and
B: None /∈ set xs

have A ′: (xs, {}) ∈ failures P
using A by (rule process-rule-2)

show (xs, {}) ∈ seq-comp-failures P Q
proof (cases xs ∈ sentences P)

case False
thus ?thesis
using A ′ and B by (rule SCF-R1)

next
case True
have ([], {}) ∈ failures Q
by (rule process-rule-1)

with True and A ′ have (xs, {None} ∩ {}) ∈ seq-comp-failures P Q
by (rule SCF-R2)

thus ?thesis by simp
qed

next
fix X ′

assume A: (xs @ [x], X ′) ∈ failures P
hence A ′: (xs, {}) ∈ failures P
by (rule process-rule-2)

show (xs, {}) ∈ seq-comp-failures P Q
proof (cases xs ∈ sentences P)

case False

41

have ∀ xs ∈ traces P. None /∈ set (butlast xs)
using WS by (simp add: weakly-sequential-def)

moreover have xs @ [x] ∈ traces P
using A by (rule failures-traces)

ultimately have None /∈ set (butlast (xs @ [x])) ..
hence None /∈ set xs by simp
with False and A ′ show ?thesis
by (rule SCF-R1)

next
case True
have ([], {}) ∈ failures Q
by (rule process-rule-1)

with True and A ′ have (xs, {None} ∩ {}) ∈ seq-comp-failures P Q
by (rule SCF-R2)

thus ?thesis by simp
qed

next
fix xs ′ ys Y
assume

A: xs ′ @ ys = xs @ [x] and
B: xs ′ ∈ sentences P and
C : (ys, Y) ∈ failures Q and
D: ys 6= []

have ∃ y ys ′. ys = ys ′ @ [y]
using D by (rule-tac xs = ys in rev-cases, simp-all)

then obtain y and ys ′ where D ′: ys = ys ′ @ [y]
by blast

hence xs = xs ′ @ ys ′

using A by simp
thus (xs, {}) ∈ seq-comp-failures P Q
proof (cases ys ′ = [], simp-all)

case True
have xs ′ @ [None] ∈ traces P
using B by (simp add: sentences-def)

hence xs ′ ∈ traces P
by (rule process-rule-2-traces)

hence (xs ′, {}) ∈ failures P
by (rule traces-failures)

moreover have ([], {}) ∈ failures Q
by (rule process-rule-1)

ultimately have (xs ′, {None} ∩ {}) ∈ seq-comp-failures P Q
by (rule SCF-R2 [OF B])

thus (xs ′, {}) ∈ seq-comp-failures P Q
by simp

next
case False
have (ys ′ @ [y], Y) ∈ failures Q
using C and D ′ by simp

hence C ′: (ys ′, {}) ∈ failures Q

42

by (rule process-rule-2)
with B show (xs ′ @ ys ′, {}) ∈ seq-comp-failures P Q
using False by (rule SCF-R3)

qed
qed

lemma seq-comp-prop-2 :
assumes WS : weakly-sequential P
shows (xs @ [x], X) ∈ seq-comp-failures P Q =⇒
(xs, {}) ∈ seq-comp-failures P Q

by (erule seq-comp-prop-2-aux [OF WS], simp)

lemma seq-comp-prop-3 [rule-format]:
(xs, Y) ∈ seq-comp-failures P Q =⇒ X ⊆ Y −→

(xs, X) ∈ seq-comp-failures P Q
proof (induction arbitrary: X rule: seq-comp-failures.induct, rule-tac [!] impI)

fix xs X Y
assume

A: xs /∈ sentences P and
B: (xs, X) ∈ failures P and
C : None /∈ set xs and
D: Y ⊆ X

have (xs, Y) ∈ failures P
using B and D by (rule process-rule-3)

with A show (xs, Y) ∈ seq-comp-failures P Q
using C by (rule SCF-R1)

next
fix xs X Y Z
assume

A: xs ∈ sentences P and
B: (xs, X) ∈ failures P and
C : ([], Y) ∈ failures Q and
D: Z ⊆ insert None X ∩ Y

have Z − {None} ⊆ X
using D by blast

with B have (xs, Z − {None}) ∈ failures P
by (rule process-rule-3)

moreover have Z ⊆ Y
using D by simp

with C have ([], Z) ∈ failures Q
by (rule process-rule-3)

ultimately have (xs, insert None (Z − {None}) ∩ Z) ∈ seq-comp-failures P Q
by (rule SCF-R2 [OF A])

moreover have insert None (Z − {None}) ∩ Z = Z
by blast

ultimately show (xs, Z) ∈ seq-comp-failures P Q
by simp

next
fix xs ys X Y

43

assume
A: xs ∈ sentences P and
B: (ys, Y) ∈ failures Q and
C : ys 6= [] and
D: X ⊆ Y

have (ys, X) ∈ failures Q
using B and D by (rule process-rule-3)

with A show (xs @ ys, X) ∈ seq-comp-failures P Q
using C by (rule SCF-R3)

next
fix xs X Y Z
assume

A:
∧

W . W ⊆ X −→ (xs, W) ∈ seq-comp-failures P Q and
B:

∧
W . W ⊆ Y −→ (xs, W) ∈ seq-comp-failures P Q and

C : Z ⊆ X ∪ Y
have Z ∩ X ⊆ X −→ (xs, Z ∩ X) ∈ seq-comp-failures P Q
using A .

hence (xs, Z ∩ X) ∈ seq-comp-failures P Q
by simp

moreover have Z ∩ Y ⊆ Y −→ (xs, Z ∩ Y) ∈ seq-comp-failures P Q
using B .

hence (xs, Z ∩ Y) ∈ seq-comp-failures P Q
by simp

ultimately have (xs, Z ∩ X ∪ Z ∩ Y) ∈ seq-comp-failures P Q
by (rule SCF-R4)

hence (xs, Z ∩ (X ∪ Y)) ∈ seq-comp-failures P Q
by (simp add: Int-Un-distrib)

moreover have Z ∩ (X ∪ Y) = Z
using C by (rule Int-absorb2)

ultimately show (xs, Z) ∈ seq-comp-failures P Q
by simp

qed

lemma seq-comp-prop-4 :
assumes WS : weakly-sequential P
shows (xs, X) ∈ seq-comp-failures P Q =⇒
(xs @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs, insert x X) ∈ seq-comp-failures P Q

proof (erule seq-comp-failures.induct, simp-all)
fix xs X
assume

A: xs /∈ sentences P and
B: (xs, X) ∈ failures P and
C : None /∈ set xs

have (xs @ [x], {}) ∈ failures P ∨
(xs, insert x X) ∈ failures P

using B by (rule process-rule-4)
thus (xs @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs, insert x X) ∈ seq-comp-failures P Q

44

proof
assume D: (xs @ [x], {}) ∈ failures P
show ?thesis
proof (cases xs @ [x] ∈ sentences P)

case False
have None /∈ set (xs @ [x])
proof (simp add: C , rule notI)

assume None = x
hence (xs @ [None], {}) ∈ failures P
using D by simp

hence xs @ [None] ∈ traces P
by (rule failures-traces)

hence xs ∈ sentences P
by (simp add: sentences-def)

thus False
using A by contradiction

qed
with False and D have (xs @ [x], {}) ∈ seq-comp-failures P Q
by (rule SCF-R1)

thus ?thesis ..
next

case True
have ([], {}) ∈ failures Q
by (rule process-rule-1)

with True and D have (xs @ [x], {None} ∩ {}) ∈ seq-comp-failures P Q
by (rule SCF-R2)

thus ?thesis by simp
qed

next
assume (xs, insert x X) ∈ failures P
with A have (xs, insert x X) ∈ seq-comp-failures P Q
using C by (rule SCF-R1)

thus ?thesis ..
qed

next
fix xs X Y
assume

A: xs ∈ sentences P and
B: (xs, X) ∈ failures P and
C : ([], Y) ∈ failures Q

show (xs @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs, insert x (insert None X ∩ Y)) ∈ seq-comp-failures P Q

proof (cases x = None, simp)
case True
have ([] @ [None], {}) ∈ failures Q ∨ ([], insert None Y) ∈ failures Q
using C by (rule process-rule-4)

thus (xs @ [None], {}) ∈ seq-comp-failures P Q ∨
(xs, insert None (insert None X ∩ Y)) ∈ seq-comp-failures P Q

proof (rule disjE , simp)

45

assume ([None], {}) ∈ failures Q
moreover have [None] 6= []
by simp

ultimately have (xs @ [None], {}) ∈ seq-comp-failures P Q
by (rule SCF-R3 [OF A])

thus ?thesis ..
next

assume ([], insert None Y) ∈ failures Q
with A and B have (xs, insert None X ∩ insert None Y)
∈ seq-comp-failures P Q

by (rule SCF-R2)
moreover have insert None X ∩ insert None Y =

insert None (insert None X ∩ Y)
by blast

ultimately have (xs, insert None (insert None X ∩ Y))
∈ seq-comp-failures P Q

by simp
thus ?thesis ..

qed
next

case False
have (xs @ [x], {}) ∈ failures P ∨ (xs, insert x X) ∈ failures P
using B by (rule process-rule-4)

thus ?thesis
proof (rule disjE , cases xs @ [x] ∈ sentences P)

assume
D: xs @ [x] /∈ sentences P and
E : (xs @ [x], {}) ∈ failures P

have None /∈ set xs
using WS and A by (rule weakly-seq-sentences-none)

hence None /∈ set (xs @ [x])
using False by (simp del: not-None-eq)

with D and E have (xs @ [x], {}) ∈ seq-comp-failures P Q
by (rule SCF-R1)

thus ?thesis ..
next

assume
xs @ [x] ∈ sentences P and
(xs @ [x], {}) ∈ failures P

moreover have ([], {}) ∈ failures Q
by (rule process-rule-1)

ultimately have (xs @ [x], {None} ∩ {}) ∈ seq-comp-failures P Q
by (rule SCF-R2)

thus ?thesis by simp
next

assume D: (xs, insert x X) ∈ failures P
have ([] @ [x], {}) ∈ failures Q ∨ ([], insert x Y) ∈ failures Q
using C by (rule process-rule-4)

thus ?thesis

46

proof (rule disjE , simp)
assume ([x], {}) ∈ failures Q
moreover have [x] 6= []
by simp

ultimately have (xs @ [x], {}) ∈ seq-comp-failures P Q
by (rule SCF-R3 [OF A])

thus ?thesis ..
next

assume ([], insert x Y) ∈ failures Q
with A and D have (xs, insert None (insert x X) ∩ insert x Y)
∈ seq-comp-failures P Q

by (rule SCF-R2)
moreover have insert None (insert x X) ∩ insert x Y =

insert x (insert None X ∩ Y)
by blast

ultimately have (xs, insert x (insert None X ∩ Y))
∈ seq-comp-failures P Q

by simp
thus ?thesis ..

qed
qed

qed
next

fix xs ys Y
assume

A: xs ∈ sentences P and
B: (ys, Y) ∈ failures Q and
C : ys 6= []

have (ys @ [x], {}) ∈ failures Q ∨ (ys, insert x Y) ∈ failures Q
using B by (rule process-rule-4)

thus (xs @ ys @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs @ ys, insert x Y) ∈ seq-comp-failures P Q

proof
assume (ys @ [x], {}) ∈ failures Q
moreover have ys @ [x] 6= []
by simp

ultimately have (xs @ ys @ [x], {}) ∈ seq-comp-failures P Q
by (rule SCF-R3 [OF A])

thus ?thesis ..
next

assume (ys, insert x Y) ∈ failures Q
with A have (xs @ ys, insert x Y) ∈ seq-comp-failures P Q
using C by (rule SCF-R3)

thus ?thesis ..
qed

next
fix xs X Y
assume
(xs @ [x], {}) ∈ seq-comp-failures P Q ∨

47

(xs, insert x X) ∈ seq-comp-failures P Q and
(xs @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs, insert x Y) ∈ seq-comp-failures P Q

thus (xs @ [x], {}) ∈ seq-comp-failures P Q ∨
(xs, insert x (X ∪ Y)) ∈ seq-comp-failures P Q

proof (cases (xs @ [x], {}) ∈ seq-comp-failures P Q, simp-all)
assume
(xs, insert x X) ∈ seq-comp-failures P Q and
(xs, insert x Y) ∈ seq-comp-failures P Q

hence (xs, insert x X ∪ insert x Y) ∈ seq-comp-failures P Q
by (rule SCF-R4)

thus (xs, insert x (X ∪ Y)) ∈ seq-comp-failures P Q
by simp

qed
qed

lemma seq-comp-rep:
assumes WS : weakly-sequential P
shows Rep-process (P ; Q) = (seq-comp-failures P Q, {})

proof (subst seq-comp-def , rule Abs-process-inverse, simp add: process-set-def ,
(subst conj-assoc [symmetric])+, (rule conjI)+)
show process-prop-1 (seq-comp-failures P Q, {})
proof (simp add: process-prop-1-def)
qed (rule seq-comp-prop-1)

next
show process-prop-2 (seq-comp-failures P Q, {})
proof (simp add: process-prop-2-def del: all-simps, (rule allI)+, rule impI)
qed (rule seq-comp-prop-2 [OF WS])

next
show process-prop-3 (seq-comp-failures P Q, {})
proof (simp add: process-prop-3-def del: all-simps, (rule allI)+, rule impI ,
erule conjE)

qed (rule seq-comp-prop-3)
next

show process-prop-4 (seq-comp-failures P Q, {})
proof (simp add: process-prop-4-def , (rule allI)+, rule impI)
qed (rule seq-comp-prop-4 [OF WS])

next
show process-prop-5 (seq-comp-failures P Q, {})
by (simp add: process-prop-5-def)

next
show process-prop-6 (seq-comp-failures P Q, {})
by (simp add: process-prop-6-def)

qed

Here below, the previous result is applied to derive useful expressions for the
outputs of the functions returning the elements of a process, as defined in
[8] and [9], when acting on the sequential composition of a pair of processes.

48

lemma seq-comp-failures:
weakly-sequential P =⇒

failures (P ; Q) = seq-comp-failures P Q
by (drule seq-comp-rep [where Q = Q], simp add: failures-def)

lemma seq-comp-divergences:
weakly-sequential P =⇒

divergences (P ; Q) = {}
by (drule seq-comp-rep [where Q = Q], simp add: divergences-def)

lemma seq-comp-futures:
weakly-sequential P =⇒

futures (P ; Q) xs = {(ys, Y). (xs @ ys, Y) ∈ seq-comp-failures P Q}
by (simp add: futures-def seq-comp-failures)

lemma seq-comp-traces:
weakly-sequential P =⇒

traces (P ; Q) = Domain (seq-comp-failures P Q)
by (simp add: traces-def seq-comp-failures)

lemma seq-comp-refusals:
weakly-sequential P =⇒

refusals (P ; Q) xs ≡ seq-comp-failures P Q ‘‘ {xs}
by (simp add: refusals-def seq-comp-failures)

lemma seq-comp-next-events:
weakly-sequential P =⇒

next-events (P ; Q) xs = {x. xs @ [x] ∈ Domain (seq-comp-failures P Q)}
by (simp add: next-events-def seq-comp-traces)

2.3 Conservation of refusals union closure and sequentiality
under sequential composition

Here below is the proof that, for any two processes P, Q and any failure
(xs, X) of P ; Q, the refusal X is the union of a set of refusals where, for
any such refusal W, (xs, W) is a failure of P ; Q by virtue of one of rules
SCF-R1, SCF-R2, or SCF-R3.
The converse is also proven, under the assumption that the refusals of both
P and Q be closed under union: namely, for any trace xs of P ; Q and any
set of refusals where, for any such refusal W, (xs, W) is a failure of the
aforesaid kind, the union of these refusals is still a refusal of xs.
The proof of the latter lemma makes use of the axiom of choice.

lemma seq-comp-refusals-1 :
(xs, X) ∈ seq-comp-failures P Q =⇒ ∃R.

X = (
⋃

n ∈ {..length xs}.
⋃

W ∈ R n. W) ∧

49

(∀W ∈ R 0 .
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)) ∧
(∀n ∈ {0<..length xs}. ∀W ∈ R n.

take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q) ∧

(∃n ∈ {..length xs}. ∃W . W ∈ R n)
(is - =⇒ ∃R. ?T R xs X)

proof (erule seq-comp-failures.induct, (erule-tac [4] exE)+)
fix xs X
assume

A: xs /∈ sentences P and
B: (xs, X) ∈ failures P and
C : None /∈ set xs

show ∃R. ?T R xs X
proof (rule-tac x = λn. if n = 0 then {X} else {} in exI ,
simp add: A B C , rule equalityI , rule-tac [!] subsetI , simp-all)
fix x
assume ∃n ∈ {..length xs}.
∃W ∈ if n = 0 then {X} else {}. x ∈ W

thus x ∈ X
by (simp split: if-split-asm)

qed
next

fix xs X Y
assume

A: xs ∈ sentences P and
B: (xs, X) ∈ failures P and
C : ([], Y) ∈ failures Q

show ∃R. ?T R xs (insert None X ∩ Y)
proof (rule-tac x = λn. if n = 0 then {insert None X ∩ Y } else {} in exI ,
simp add: A, rule conjI , rule equalityI , rule-tac [1−2] subsetI , simp-all)
fix x
assume ∃n ∈ {..length xs}.
∃W ∈ if n = 0 then {insert None X ∩ Y } else {}. x ∈ W

thus (x = None ∨ x ∈ X) ∧ x ∈ Y
by (simp split: if-split-asm)

next
show ∃U . (xs, U) ∈ failures P ∧ (∃V . ([], V) ∈ failures Q ∧

insert None X ∩ Y = insert None U ∩ V)
proof (rule-tac x = X in exI , rule conjI , simp add: B)
qed (rule-tac x = Y in exI , rule conjI , simp-all add: C)

qed
next

fix xs ys Y
assume

A: xs ∈ sentences P and
B: (ys, Y) ∈ failures Q and

50

C : ys 6= []
show ∃R. ?T R (xs @ ys) Y
proof (rule-tac x = λn. if n = length ys then {Y } else {} in exI ,
simp add: A B C , rule equalityI , rule-tac [!] subsetI , simp-all)
fix x
assume ∃n ∈ {..length xs + length ys}.
∃W ∈ if n = length ys then {Y } else {}. x ∈ W

thus x ∈ Y
by (simp split: if-split-asm)

qed
next

fix xs X Y Rx Ry
assume

A: ?T Rx xs X and
B: ?T Ry xs Y

show ∃R. ?T R xs (X ∪ Y)
proof (rule-tac x = λn. Rx n ∪ Ry n in exI , rule conjI , rule-tac [2] conjI ,
rule-tac [3] conjI , rule-tac [2] ballI , (rule-tac [3] ballI)+)
have X ∪ Y = (

⋃
n ≤ length xs.

⋃
W ∈ Rx n. W) ∪

(
⋃

n ≤ length xs.
⋃

W ∈ Ry n. W)
using A and B by simp

also have . . . = (
⋃

n ≤ length xs. (
⋃

W ∈ Rx n. W) ∪ (
⋃

W ∈ Ry n. W))
by blast

also have . . . = (
⋃

n ≤ length xs.
⋃

W ∈ Rx n ∪ Ry n. W)
by simp

finally show X ∪ Y = (
⋃

n ≤ length xs.
⋃

W ∈ Rx n ∪ Ry n. W) .
next

fix W
assume W ∈ Rx 0 ∪ Ry 0
thus
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)
(is ?T ′ W)

proof
have ∀W ∈ Rx 0 . ?T ′ W
using A by simp

moreover assume W ∈ Rx 0
ultimately show ?thesis ..

next
have ∀W ∈ Ry 0 . ?T ′ W
using B by simp

moreover assume W ∈ Ry 0
ultimately show ?thesis ..

qed
next

fix n W
assume C : n ∈ {0<..length xs}
assume W ∈ Rx n ∪ Ry n

51

thus
take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q
(is ?T ′ n W)

proof
have ∀n ∈ {0<..length xs}. ∀W ∈ Rx n. ?T ′ n W
using A by simp

hence ∀W ∈ Rx n. ?T ′ n W
using C ..

moreover assume W ∈ Rx n
ultimately show ?thesis ..

next
have ∀n ∈ {0<..length xs}. ∀W ∈ Ry n. ?T ′ n W
using B by simp

hence ∀W ∈ Ry n. ?T ′ n W
using C ..

moreover assume W ∈ Ry n
ultimately show ?thesis ..

qed
next

have ∃n ∈ {..length xs}. ∃W . W ∈ Rx n
using A by simp

then obtain n where C : n ∈ {..length xs} and D: ∃W . W ∈ Rx n ..
obtain W where W ∈ Rx n
using D ..

hence W ∈ Rx n ∪ Ry n ..
hence ∃W . W ∈ Rx n ∪ Ry n ..
thus ∃n ∈ {..length xs}. ∃W . W ∈ Rx n ∪ Ry n
using C ..

qed
qed

lemma seq-comp-refusals-finite [rule-format]:
assumes A: xs ∈ Domain (seq-comp-failures P Q)
shows finite A =⇒ (∀ x ∈ A. (xs, F x) ∈ seq-comp-failures P Q) −→
(xs,

⋃
x ∈ A. F x) ∈ seq-comp-failures P Q

proof (erule finite-induct, simp, rule-tac [2] impI)
have ∃X . (xs, X) ∈ seq-comp-failures P Q
using A by (simp add: Domain-iff)

then obtain X where (xs, X) ∈ seq-comp-failures P Q ..
moreover have {} ⊆ X ..
ultimately show (xs, {}) ∈ seq-comp-failures P Q
by (rule seq-comp-prop-3)

next
fix x ′ A
assume B: ∀ x ∈ insert x ′ A. (xs, F x) ∈ seq-comp-failures P Q
hence (xs, F x ′) ∈ seq-comp-failures P Q
by simp

moreover assume (∀ x ∈ A. (xs, F x) ∈ seq-comp-failures P Q) −→

52

(xs,
⋃

x ∈ A. F x) ∈ seq-comp-failures P Q
hence (xs,

⋃
x ∈ A. F x) ∈ seq-comp-failures P Q

using B by simp
ultimately have (xs, F x ′ ∪ (

⋃
x ∈ A. F x)) ∈ seq-comp-failures P Q

by (rule SCF-R4)
thus (xs,

⋃
x ∈ insert x ′ A. F x) ∈ seq-comp-failures P Q

by simp
qed

lemma seq-comp-refusals-2 :
assumes

A: ref-union-closed P and
B: ref-union-closed Q and
C : xs ∈ Domain (seq-comp-failures P Q) and
D: X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)) ∧
(∀n ∈ {0<..length xs}. ∀W ∈ R n.

take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q)

shows (xs, X) ∈ seq-comp-failures P Q
proof −

have ∃Y . (xs, Y) ∈ seq-comp-failures P Q
using C by (simp add: Domain-iff)

then obtain Y where (xs, Y) ∈ seq-comp-failures P Q ..
moreover have {} ⊆ Y ..
ultimately have E : (xs, {}) ∈ seq-comp-failures P Q
by (rule seq-comp-prop-3)

have (xs,
⋃

W ∈ R 0 . W) ∈ seq-comp-failures P Q
proof (cases ∃W . W ∈ R 0 , cases xs ∈ sentences P)

assume ¬ (∃W . W ∈ R 0)
thus ?thesis
using E by simp

next
assume

F : ∃W . W ∈ R 0 and
G: xs /∈ sentences P

have H : ∀W ∈ R 0 . None /∈ set xs ∧ (xs, W) ∈ failures P
using D and G by simp

show ?thesis
proof (rule SCF-R1 [OF G])

have ∀ xs A. (∃W . W ∈ A) −→ (∀W ∈ A. (xs, W) ∈ failures P) −→
(xs,

⋃
W ∈ A. W) ∈ failures P

using A by (simp add: ref-union-closed-def)
hence (∃W . W ∈ R 0) −→ (∀W ∈ R 0 . (xs, W) ∈ failures P) −→
(xs,

⋃
W ∈ R 0 . W) ∈ failures P

by blast

53

thus (xs,
⋃

W ∈ R 0 . W) ∈ failures P
using F and H by simp

next
obtain W where W ∈ R 0 using F ..
thus None /∈ set xs
using H by simp

qed
next

assume
F : ∃W . W ∈ R 0 and
G: xs ∈ sentences P

have ∀W ∈ R 0 . ∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧
W = insert None U ∩ V

using D and G by simp
hence ∃F . ∀W ∈ R 0 . ∃V . (xs, F W) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None (F W) ∩ V
by (rule bchoice)

then obtain F where ∀W ∈ R 0 .
∃V . (xs, F W) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None (F W) ∩ V ..
hence ∃G. ∀W ∈ R 0 . (xs, F W) ∈ failures P ∧ ([], G W) ∈ failures Q ∧

W = insert None (F W) ∩ G W
by (rule bchoice)

then obtain G where H : ∀W ∈ R 0 .
(xs, F W) ∈ failures P ∧ ([], G W) ∈ failures Q ∧

W = insert None (F W) ∩ G W ..
have (xs, insert None (

⋃
W ∈ R 0 . F W) ∩ (

⋃
W ∈ R 0 . G W))

∈ seq-comp-failures P Q
(is (-, ?S) ∈ -)

proof (rule SCF-R2 [OF G])
have ∀ xs A. (∃X . X ∈ A) −→ (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

using A by (simp add: ref-union-closed-def)
hence (∃X . X ∈ F ‘ R 0) −→ (∀X ∈ F ‘ R 0 . (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ F ‘ R 0 . X) ∈ failures P

(is ?A −→ ?B −→ ?C)
by (erule-tac x = xs in allE , erule-tac x = F ‘ R 0 in allE)

moreover obtain W where W ∈ R 0 using F ..
hence ?A
proof (simp add: image-def , rule-tac x = F W in exI)
qed (rule bexI , simp)
ultimately have ?B −→ ?C ..
moreover have ?B
proof (rule ballI , simp add: image-def , erule bexE)

fix W X
assume W ∈ R 0
hence (xs, F W) ∈ failures P
using H by simp

moreover assume X = F W

54

ultimately show (xs, X) ∈ failures P
by simp

qed
ultimately have ?C ..
thus (xs,

⋃
W ∈ R 0 . F W) ∈ failures P

by simp
next

have ∀ xs A. (∃Y . Y ∈ A) −→ (∀Y ∈ A. (xs, Y) ∈ failures Q) −→
(xs,

⋃
Y ∈ A. Y) ∈ failures Q

using B by (simp add: ref-union-closed-def)
hence (∃Y . Y ∈ G ‘ R 0) −→ (∀Y ∈ G ‘ R 0 . ([], Y) ∈ failures Q) −→
([],

⋃
Y ∈ G ‘ R 0 . Y) ∈ failures Q

(is ?A −→ ?B −→ ?C)
by (erule-tac x = [] in allE , erule-tac x = G ‘ R 0 in allE)

moreover obtain W where W ∈ R 0 using F ..
hence ?A
proof (simp add: image-def , rule-tac x = G W in exI)
qed (rule bexI , simp)
ultimately have ?B −→ ?C ..
moreover have ?B
proof (rule ballI , simp add: image-def , erule bexE)

fix W Y
assume W ∈ R 0
hence ([], G W) ∈ failures Q
using H by simp

moreover assume Y = G W
ultimately show ([], Y) ∈ failures Q
by simp

qed
ultimately have ?C ..
thus ([],

⋃
W ∈ R 0 . G W) ∈ failures Q

by simp
qed
moreover have (

⋃
W ∈ R 0 . W) ⊆ ?S

proof (rule subsetI , simp, erule bexE)
fix x W
assume I : W ∈ R 0
hence W = insert None (F W) ∩ G W
using H by simp

moreover assume x ∈ W
ultimately have x ∈ insert None (F W) ∩ G W
by simp

thus (x = None ∨ (∃W ∈ R 0 . x ∈ F W)) ∧ (∃W ∈ R 0 . x ∈ G W)
(is ?A ∧ ?B)

proof (rule IntE , simp)
assume x = None ∨ x ∈ F W
moreover {

assume x = None
hence ?A ..

55

}
moreover {

assume x ∈ F W
hence ∃W ∈ R 0 . x ∈ F W using I ..
hence ?A ..

}
ultimately have ?A ..
moreover assume x ∈ G W
hence ?B using I ..
ultimately show ?thesis ..

qed
qed
ultimately show ?thesis
by (rule seq-comp-prop-3)

qed
moreover have ∀n ∈ {0<..length xs}.
(xs,

⋃
W ∈ R n. W) ∈ seq-comp-failures P Q

proof
fix n
assume F : n ∈ {0<..length xs}
hence G: ∀W ∈ R n.

take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q

using D by simp
show (xs,

⋃
W ∈ R n. W) ∈ seq-comp-failures P Q

proof (cases ∃W . W ∈ R n)
case False
thus ?thesis
using E by simp

next
case True
have (take (length xs − n) xs @ drop (length xs − n) xs,

⋃
W ∈ R n. W)

∈ seq-comp-failures P Q
proof (rule SCF-R3)

obtain W where W ∈ R n using True ..
thus take (length xs − n) xs ∈ sentences P
using G by simp

next
have ∀ xs A. (∃W . W ∈ A) −→ (∀W ∈ A. (xs, W) ∈ failures Q) −→
(xs,

⋃
W ∈ A. W) ∈ failures Q

using B by (simp add: ref-union-closed-def)
hence (∃W . W ∈ R n) −→
(∀W ∈ R n. (drop (length xs − n) xs, W) ∈ failures Q) −→
(drop (length xs − n) xs,

⋃
W ∈ R n. W) ∈ failures Q

by blast
thus (drop (length xs − n) xs,

⋃
W ∈ R n. W) ∈ failures Q

using G and True by simp
next

show drop (length xs − n) xs 6= []

56

using F by (simp, arith)
qed
thus ?thesis
by simp

qed
qed
ultimately have F : ∀n ∈ {..length xs}.
(xs,

⋃
W ∈ R n. W) ∈ seq-comp-failures P Q

by auto
have (xs,

⋃
n ∈ {..length xs}.

⋃
W ∈ R n. W) ∈ seq-comp-failures P Q

proof (rule seq-comp-refusals-finite [OF C], simp)
fix n
assume n ∈ {..length xs}
with F show (xs,

⋃
W ∈ R n. W) ∈ seq-comp-failures P Q ..

qed
moreover have X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R n. W)

using D by simp
ultimately show ?thesis
by simp

qed

In what follows, the previous results are used to prove that refusals union
closure, weak sequentiality, and sequentiality are conserved under sequential
composition. The proof of the first of these lemmas makes use of the axiom
of choice.
Since the target security conservation theorem, in addition to the security of
both of the processes to be composed, also requires to assume that the first
process be refusals union closed and sequential (cf. below), these further
conservation lemmas will permit to generalize the theorem to the sequential
composition of an arbitrary list of processes.

lemma seq-comp-ref-union-closed:
assumes

WS : weakly-sequential P and
A: ref-union-closed P and
B: ref-union-closed Q

shows ref-union-closed (P ; Q)
proof (simp only: ref-union-closed-def seq-comp-failures [OF WS],
(rule allI)+, (rule impI)+, erule exE)
fix xs A X ′

assume
C : ∀X ∈ A. (xs, X) ∈ seq-comp-failures P Q and
D: X ′ ∈ A

have ∀X ∈ A. ∃R.
X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W) ∈ failures P ∨

57

xs ∈ sentences P ∧ (∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧
W = insert None U ∩ V)) ∧

(∀n ∈ {0<..length xs}. ∀W ∈ R n.
take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q)

(is ∀X ∈ A. ∃R. ?T R X)
proof

fix X
assume X ∈ A
with C have (xs, X) ∈ seq-comp-failures P Q ..
hence ∃R. X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)) ∧
(∀n ∈ {0<..length xs}. ∀W ∈ R n.

take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q) ∧

(∃n ∈ {..length xs}. ∃W . W ∈ R n)
by (rule seq-comp-refusals-1)

thus ∃R. ?T R X
by blast

qed
hence ∃R. ∀X ∈ A. ?T (R X) X
by (rule bchoice)

then obtain R where E : ∀X ∈ A. ?T (R X) X ..
have xs ∈ Domain (seq-comp-failures P Q)
proof (simp add: Domain-iff)

have (xs, X ′) ∈ seq-comp-failures P Q
using C and D ..

thus ∃X . (xs, X) ∈ seq-comp-failures P Q ..
qed
moreover have ?T (λn.

⋃
X ∈ A. R X n) (

⋃
X ∈ A. X)

proof (rule conjI , rule-tac [2] conjI)
show (

⋃
X ∈ A. X) = (

⋃
n ∈ {..length xs}.

⋃
W ∈

⋃
X ∈ A. R X n. W)

proof (rule equalityI , rule-tac [!] subsetI , simp-all,
erule bexE , (erule-tac [2] bexE)+)
fix x X
assume F : X ∈ A
hence X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R X n. W)

using E by simp
moreover assume x ∈ X
ultimately have x ∈ (

⋃
n ∈ {..length xs}.

⋃
W ∈ R X n. W)

by simp
hence ∃n ∈ {..length xs}. ∃W ∈ R X n. x ∈ W
by simp

hence ∃X ∈ A. ∃n ∈ {..length xs}. ∃W ∈ R X n. x ∈ W
using F ..

thus ∃n ∈ {..length xs}. ∃X ∈ A. ∃W ∈ R X n. x ∈ W

58

by blast
next

fix x n X W
assume F : X ∈ A
hence G: X = (

⋃
n ∈ {..length xs}.

⋃
W ∈ R X n. W)

using E by simp
assume x ∈ W and W ∈ R X n
hence ∃W ∈ R X n. x ∈ W ..
moreover assume n ∈ {..length xs}
ultimately have ∃n ∈ {..length xs}. ∃W ∈ R X n. x ∈ W ..
hence x ∈ (

⋃
n ∈ {..length xs}.

⋃
W ∈ R X n. W)

by simp
hence x ∈ X
by (subst G)

thus ∃X ∈ A. x ∈ X
using F ..

qed
next

show ∀W ∈
⋃

X ∈ A. R X 0 .
xs /∈ sentences P ∧ None /∈ set xs ∧ (xs, W) ∈ failures P ∨
xs ∈ sentences P ∧ (∃U V . (xs, U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)
(is ∀W ∈ -. ?T W)

proof (rule ballI , simp only: UN-iff , erule bexE)
fix W X
assume X ∈ A
hence ∀W ∈ R X 0 . ?T W
using E by simp

moreover assume W ∈ R X 0
ultimately show ?T W ..

qed
next

show ∀n ∈ {0<..length xs}. ∀W ∈
⋃

X ∈ A. R X n.
take (length xs − n) xs ∈ sentences P ∧
(drop (length xs − n) xs, W) ∈ failures Q
(is ∀n ∈ -. ∀W ∈ -. ?T n W)

proof ((rule ballI)+, simp only: UN-iff , erule bexE)
fix n W X
assume X ∈ A
hence ∀n ∈ {0<..length xs}. ∀W ∈ R X n. ?T n W
using E by simp

moreover assume n ∈ {0<..length xs}
ultimately have ∀W ∈ R X n. ?T n W ..
moreover assume W ∈ R X n
ultimately show ?T n W ..

qed
qed
ultimately show (xs,

⋃
X ∈ A. X) ∈ seq-comp-failures P Q

by (rule seq-comp-refusals-2 [OF A B])

59

qed

lemma seq-comp-weakly-sequential:
assumes

A: weakly-sequential P and
B: weakly-sequential Q

shows weakly-sequential (P ; Q)
proof (subst weakly-sequential-def , rule ballI , drule traces-failures,
subst (asm) seq-comp-failures [OF A], erule seq-comp-failures.induct, simp-all)
fix xs :: ′a option list
assume C : None /∈ set xs
show None /∈ set (butlast xs)
proof

assume None ∈ set (butlast xs)
hence None ∈ set xs
by (rule in-set-butlastD)

thus False
using C by contradiction

qed
next

fix xs
assume xs ∈ sentences P
with A have C : None /∈ set xs
by (rule weakly-seq-sentences-none)

show None /∈ set (butlast xs)
proof

assume None ∈ set (butlast xs)
hence None ∈ set xs
by (rule in-set-butlastD)

thus False
using C by contradiction

qed
next

fix xs ys Y
assume xs ∈ sentences P
with A have C : None /∈ set xs
by (rule weakly-seq-sentences-none)

have ∀ xs ∈ traces Q. None /∈ set (butlast xs)
using B by (simp add: weakly-sequential-def)

moreover assume (ys, Y) ∈ failures Q
hence ys ∈ traces Q
by (rule failures-traces)

ultimately have None /∈ set (butlast ys) ..
hence None /∈ set (xs @ butlast ys)
using C by simp

moreover assume ys 6= []
hence butlast (xs @ ys) = xs @ butlast ys
by (simp add: butlast-append)

ultimately show None /∈ set (butlast (xs @ ys))

60

by simp
qed

lemma seq-comp-sequential:
assumes

A: sequential P and
B: sequential Q

shows sequential (P ; Q)
proof (subst sequential-def , rule conjI)

have weakly-sequential P
using A by (rule seq-implies-weakly-seq)

moreover have weakly-sequential Q
using B by (rule seq-implies-weakly-seq)

ultimately have weakly-sequential (P ; Q)
by (rule seq-comp-weakly-sequential)

thus ∀ xs ∈ traces (P ; Q). None /∈ set (butlast xs)
by (simp add: weakly-sequential-def)

next
have C : weakly-sequential P
using A by (rule seq-implies-weakly-seq)

show ∀ xs ∈ sentences (P ; Q). next-events (P ; Q) xs = {None}
proof (rule ballI , simp add: sentences-def next-events-def , rule equalityI ,
rule-tac [!] subsetI , simp-all, (drule traces-failures)+,
simp add: seq-comp-failures [OF C])
fix xs x
assume

D: (xs @ [None], {}) ∈ seq-comp-failures P Q and
E : (xs @ [x], {}) ∈ seq-comp-failures P Q

have ∃R. {} = (
⋃

n ∈ {..length (xs @ [None])}.
⋃

W ∈ R n. W) ∧
(∀W ∈ R 0 .

xs @ [None] /∈ sentences P ∧
None /∈ set (xs @ [None]) ∧ (xs @ [None], W) ∈ failures P ∨

xs @ [None] ∈ sentences P ∧
(∃U V . (xs @ [None], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)) ∧
(∀n ∈ {0<..length (xs @ [None])}. ∀W ∈ R n.

take (length (xs @ [None]) − n) (xs @ [None]) ∈ sentences P ∧
(drop (length (xs @ [None]) − n) (xs @ [None]), W) ∈ failures Q) ∧

(∃n ∈ {..length (xs @ [None])}. ∃W . W ∈ R n)
(is ∃R. ?T R)

using D by (rule seq-comp-refusals-1)
then obtain R where F : ?T R ..
hence ∃n ∈ {..Suc (length xs)}. ∃W . W ∈ R n
by simp

moreover have R 0 = {}
proof (rule equals0I)

fix W
assume W ∈ R 0
hence xs @ [None] ∈ sentences P

61

using F by simp
with C have None /∈ set (xs @ [None])
by (rule weakly-seq-sentences-none)

thus False
by simp

qed
ultimately have ∃n ∈ {0<..Suc (length xs)}. ∃W . W ∈ R n
proof −

assume ∃n ∈ {..Suc (length xs)}. ∃W . W ∈ R n
then obtain n where G: n ∈ {..Suc (length xs)} and H : ∃W . W ∈ R n ..
assume I : R 0 = {}
show ∃n ∈ {0<..Suc (length xs)}. ∃W . W ∈ R n
proof (cases n)

case 0
hence ∃W . W ∈ R 0
using H by simp

then obtain W where W ∈ R 0 ..
moreover have W /∈ R 0
using I by (rule equals0D)

ultimately show ?thesis
by contradiction

next
case (Suc m)
hence n ∈ {0<..Suc (length xs)}
using G by simp

with H show ?thesis ..
qed

qed
then obtain n and W where G: n ∈ {0<..Suc (length xs)} and W ∈ R n
by blast

hence
take (Suc (length xs) − n) (xs @ [None]) ∈ sentences P ∧
(drop (Suc (length xs) − n) (xs @ [None]), W) ∈ failures Q

using F by simp
moreover have H : Suc (length xs) − n ≤ length xs
using G by (simp, arith)

ultimately have I :
take (Suc (length xs) − n) xs ∈ sentences P ∧
(drop (Suc (length xs) − n) xs @ [None], W) ∈ failures Q

by simp
have ∃R. {} = (

⋃
n ∈ {..length (xs @ [x])}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs @ [x] /∈ sentences P ∧

None /∈ set (xs @ [x]) ∧ (xs @ [x], W) ∈ failures P ∨
xs @ [x] ∈ sentences P ∧
(∃U V . (xs @ [x], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)) ∧
(∀n ∈ {0<..length (xs @ [x])}. ∀W ∈ R n.

take (length (xs @ [x]) − n) (xs @ [x]) ∈ sentences P ∧

62

(drop (length (xs @ [x]) − n) (xs @ [x]), W) ∈ failures Q) ∧
(∃n ∈ {..length (xs @ [x])}. ∃W . W ∈ R n)
(is ∃R. ?T R)

using E by (rule seq-comp-refusals-1)
then obtain R ′ where J : ?T R ′ ..
hence ∃n ∈ {..Suc (length xs)}. ∃W . W ∈ R ′ n
by simp

then obtain n ′ where K : n ′ ∈ {..Suc (length xs)} and L: ∃W . W ∈ R ′ n ′ ..
have n ′ = 0 ∨ n ′ ∈ {0<..Suc (length xs)}
using K by auto

thus x = None
proof

assume n ′ = 0
hence ∃W . W ∈ R ′ 0
using L by simp

then obtain W ′ where W ′ ∈ R ′ 0 ..
hence
xs @ [x] /∈ sentences P ∧

None /∈ set (xs @ [x]) ∧ (xs @ [x], W ′) ∈ failures P ∨
xs @ [x] ∈ sentences P ∧
(∃U V . (xs @ [x], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W ′ = insert None U ∩ V)
using J by simp

hence M : xs @ [x] ∈ traces P ∧ None /∈ set (xs @ [x])
proof (cases xs @ [x] ∈ sentences P, simp-all, (erule-tac [2] conjE)+,
simp-all)
case False
assume (xs @ [x], W ′) ∈ failures P
thus xs @ [x] ∈ traces P
by (rule failures-traces)

next
case True
hence (xs @ [x]) @ [None] ∈ traces P
by (simp add: sentences-def)

hence xs @ [x] ∈ traces P
by (rule process-rule-2-traces)

moreover have None /∈ set (xs @ [x])
using C and True by (rule weakly-seq-sentences-none)

ultimately show xs @ [x] ∈ traces P ∧ None 6= x ∧ None /∈ set xs
by simp

qed
have xs @ [x] = take (Suc (length xs) − n) (xs @ [x]) @

drop (Suc (length xs) − n) (xs @ [x])
by (simp only: append-take-drop-id)

hence xs @ [x] = take (Suc (length xs) − n) xs @
drop (Suc (length xs) − n) xs @ [x]

using H by simp
moreover have ∃ y ys. drop (Suc (length xs) − n) xs @ [x] = y # ys
by (cases drop (Suc (length xs) − n) xs @ [x], simp-all)

63

then obtain y and ys where drop (Suc (length xs) − n) xs @ [x] = y # ys
by blast

ultimately have N : xs @ [x] = take (Suc (length xs) − n) xs @ y # ys
by simp

have take (Suc (length xs) − n) xs ∈ sentences P
using I ..

moreover have take (Suc (length xs) − n) xs @ y # ys ∈ traces P
using M and N by simp

ultimately have y = None
by (rule seq-sentences-none [OF A])

moreover have y 6= None
using M and N by (rule-tac not-sym, simp)

ultimately show ?thesis
by contradiction

next
assume M : n ′ ∈ {0<..Suc (length xs)}
moreover obtain W ′ where W ′ ∈ R ′ n ′

using L ..
ultimately have
take (Suc (length xs) − n ′) (xs @ [x]) ∈ sentences P ∧
(drop (Suc (length xs) − n ′) (xs @ [x]), W ′) ∈ failures Q

using J by simp
moreover have N : Suc (length xs) − n ′ ≤ length xs
using M by (simp, arith)

ultimately have O:
take (Suc (length xs) − n ′) xs ∈ sentences P ∧
(drop (Suc (length xs) − n ′) xs @ [x], W ′) ∈ failures Q

by simp
moreover have n = n ′

proof (rule ccontr , simp add: neq-iff , erule disjE)
assume P: n < n ′

have take (Suc (length xs) − n) xs =
take (Suc (length xs) − n ′) (take (Suc (length xs) − n) xs) @
drop (Suc (length xs) − n ′) (take (Suc (length xs) − n) xs)

by (simp only: append-take-drop-id)
also have . . . =

take (Suc (length xs) − n ′) xs @
drop (Suc (length xs) − n ′) (take (Suc (length xs) − n) xs)

using P by (simp add: min-def)
also have . . . =

take (Suc (length xs) − n ′) xs @
take (n ′ − n) (drop (Suc (length xs) − n ′) xs)

using M by (subst drop-take, simp)
finally have take (Suc (length xs) − n) xs =

take (Suc (length xs) − n ′) xs @
take (n ′ − n) (drop (Suc (length xs) − n ′) xs) .

moreover have take (n ′ − n) (drop (Suc (length xs) − n ′) xs) 6= []
proof (rule-tac notI , simp, erule disjE)

assume n ′ ≤ n

64

thus False
using P by simp

next
assume length xs ≤ Suc (length xs) − n ′

moreover have Suc (length xs) − n ′ < Suc (length xs) − n
using M and P by simp

hence Suc (length xs) − n ′ < length xs
using H by simp

ultimately show False
by simp

qed
hence ∃ y ys. take (n ′ − n) (drop (Suc (length xs) − n ′) xs) = y # ys
by (cases take (n ′ − n) (drop (Suc (length xs) − n ′) xs), simp-all)

then obtain y and ys where
take (n ′ − n) (drop (Suc (length xs) − n ′) xs) = y # ys
by blast

ultimately have Q: take (Suc (length xs) − n) xs =
take (Suc (length xs) − n ′) xs @ y # ys

by simp
have take (Suc (length xs) − n ′) xs ∈ sentences P
using O ..

moreover have R: take (Suc (length xs) − n) xs ∈ sentences P
using I ..

hence take (Suc (length xs) − n) xs @ [None] ∈ traces P
by (simp add: sentences-def)

hence take (Suc (length xs) − n) xs ∈ traces P
by (rule process-rule-2-traces)

hence take (Suc (length xs) − n ′) xs @ y # ys ∈ traces P
using Q by simp

ultimately have y = None
by (rule seq-sentences-none [OF A])

moreover have None /∈ set (take (Suc (length xs) − n) xs)
using C and R by (rule weakly-seq-sentences-none)

hence y 6= None
using Q by (rule-tac not-sym, simp)

ultimately show False
by contradiction

next
assume P: n ′ < n
have take (Suc (length xs) − n ′) xs =

take (Suc (length xs) − n) (take (Suc (length xs) − n ′) xs) @
drop (Suc (length xs) − n) (take (Suc (length xs) − n ′) xs)

by (simp only: append-take-drop-id)
also have . . . =

take (Suc (length xs) − n) xs @
drop (Suc (length xs) − n) (take (Suc (length xs) − n ′) xs)

using P by (simp add: min-def)
also have . . . =

take (Suc (length xs) − n) xs @

65

take (n − n ′) (drop (Suc (length xs) − n) xs)
using G by (subst drop-take, simp)

finally have take (Suc (length xs) − n ′) xs =
take (Suc (length xs) − n) xs @
take (n − n ′) (drop (Suc (length xs) − n) xs) .

moreover have take (n − n ′) (drop (Suc (length xs) − n) xs) 6= []
proof (rule-tac notI , simp, erule disjE)

assume n ≤ n ′

thus False
using P by simp

next
assume length xs ≤ Suc (length xs) − n
moreover have Suc (length xs) − n < Suc (length xs) − n ′

using G and P by simp
hence Suc (length xs) − n < length xs
using N by simp

ultimately show False
by simp

qed
hence ∃ y ys. take (n − n ′) (drop (Suc (length xs) − n) xs) = y # ys
by (cases take (n − n ′) (drop (Suc (length xs) − n) xs), simp-all)

then obtain y and ys where
take (n − n ′) (drop (Suc (length xs) − n) xs) = y # ys
by blast

ultimately have Q: take (Suc (length xs) − n ′) xs =
take (Suc (length xs) − n) xs @ y # ys

by simp
have take (Suc (length xs) − n) xs ∈ sentences P
using I ..

moreover have R: take (Suc (length xs) − n ′) xs ∈ sentences P
using O ..

hence take (Suc (length xs) − n ′) xs @ [None] ∈ traces P
by (simp add: sentences-def)

hence take (Suc (length xs) − n ′) xs ∈ traces P
by (rule process-rule-2-traces)

hence take (Suc (length xs) − n) xs @ y # ys ∈ traces P
using Q by simp

ultimately have y = None
by (rule seq-sentences-none [OF A])

moreover have None /∈ set (take (Suc (length xs) − n ′) xs)
using C and R by (rule weakly-seq-sentences-none)

hence y 6= None
using Q by (rule-tac not-sym, simp)

ultimately show False
by contradiction

qed
ultimately have (drop (Suc (length xs) − n) xs @ [x], W ′) ∈ failures Q
by simp

hence P: drop (Suc (length xs) − n) xs @ [x] ∈ traces Q

66

by (rule failures-traces)
have (drop (Suc (length xs) − n) xs @ [None], W) ∈ failures Q
using I ..

hence drop (Suc (length xs) − n) xs @ [None] ∈ traces Q
by (rule failures-traces)

hence drop (Suc (length xs) − n) xs ∈ sentences Q
by (simp add: sentences-def)

with B show ?thesis
using P by (rule seq-sentences-none)

qed
qed

qed

2.4 Conservation of noninterference security under sequen-
tial composition

Everything is now ready for proving the target security conservation the-
orem. The two closure properties that the definition of noninterference
security requires process futures to satisfy, one for the addition of events
into traces and the other for the deletion of events from traces (cf. [8]),
will be faced separately; here below is the proof of the former property.
Unsurprisingly, rule induction on set seq-comp-failures is applied, and the
closure of the failures of a secure process under intransitive purge (proven
in the previous section) is used to meet the proof obligations arising from
rule SCF-R3.

lemma seq-comp-secure-aux-1-case-1 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: xs @ y # ys /∈ sentences P and
E : (xs @ y # ys, X) ∈ failures P and
F : None 6= y and
G: None /∈ set xs and
H : None /∈ set ys

shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
∈ seq-comp-failures P Q

proof −
have (y # ys, X) ∈ futures P xs
using E by (simp add: futures-def)

hence (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X) ∈
futures P xs

using C by (simp add: secure-def)
hence I : (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X) ∈

failures P
by (simp add: futures-def)

67

show ?thesis
proof (cases xs @ ipurge-tr I D (D y) ys ∈ sentences P,
cases (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) ys. (u, D None) ∈ I),
simp-all)
assume xs @ ipurge-tr I D (D y) ys /∈ sentences P
thus ?thesis using I
proof (rule SCF-R1 , simp add: F G)

have set (ipurge-tr I D (D y) ys) ⊆ set ys
by (rule ipurge-tr-set)

thus None /∈ set (ipurge-tr I D (D y) ys)
using H by (rule contra-subsetD)

qed
next

assume
J : xs @ ipurge-tr I D (D y) ys ∈ sentences P and
K : (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) ys. (u, D None) ∈ I)

have ipurge-ref I D (D y) ys X = {}
proof (rule disjE [OF K], erule-tac [2] bexE)

assume L: (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-ref-empty [of D y], simp)

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)
using A by (simp add: secure-termination-def)

hence ∀ u ∈ range D. (D y, u) ∈ I
using F and L by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

L: u ∈ sinks I D (D y) ys and
M : (u, D None) ∈ I

have ∃ y ′ ∈ set ys. u = D y ′

using L by (rule sinks-elem)
then obtain y ′ where N : y ′ ∈ set ys and O: u = D y ′ ..
have P: y ′ 6= None
proof

assume y ′ = None
hence None ∈ set ys
using N by simp

thus False
using H by contradiction

qed
show ?thesis
proof (rule ipurge-ref-empty [of u], simp add: L)

fix x
have (D y ′, D None) ∈ I ∧ y ′ 6= None −→ (∀ v ∈ range D. (D y ′, v) ∈ I)

68

using A by (simp add: secure-termination-def)
moreover have (D y ′, D None) ∈ I
using M and O by simp

ultimately have ∀ v ∈ range D. (D y ′, v) ∈ I
using P by simp

thus (u, D x) ∈ I
using O by simp

qed
qed
thus ?thesis
proof simp

have ([], {}) ∈ failures Q
by (rule process-rule-1)

with J and I have (xs @ ipurge-tr I D (D y) ys,
insert None (ipurge-ref I D (D y) ys X) ∩ {}) ∈ seq-comp-failures P Q

by (rule SCF-R2)
thus (xs @ ipurge-tr I D (D y) ys, {}) ∈ seq-comp-failures P Q
by simp

qed
next

assume
J : xs @ ipurge-tr I D (D y) ys ∈ sentences P and
K : (D y, D None) /∈ I ∧ (∀ u ∈ sinks I D (D y) ys. (u, D None) /∈ I)

have (xs @ [y]) @ ys ∈ sentences P
proof (simp add: sentences-def del: append-assoc, subst (2) append-assoc,
rule ipurge-tr-del-traces [OF C , where u = D y], simp-all add: K)
have (y # ys, X) ∈ futures P xs
using E by (simp add: futures-def)

moreover have xs @ ipurge-tr I D (D y) ys @ [None] ∈ traces P
using J by (simp add: sentences-def)

hence (xs @ ipurge-tr I D (D y) ys @ [None], {}) ∈ failures P
by (rule traces-failures)

hence (ipurge-tr I D (D y) ys @ [None], {}) ∈ futures P xs
by (simp add: futures-def)

ultimately have (y # ipurge-tr I D (D y) (ipurge-tr I D (D y) ys @ [None]),
ipurge-ref I D (D y) (ipurge-tr I D (D y) ys @ [None]) {}) ∈ futures P xs

using C by (simp add: secure-def del: ipurge-tr .simps)
hence (xs @ y # ipurge-tr I D (D y) (ipurge-tr I D (D y) ys @ [None]), {})
∈ failures P

by (simp add: futures-def ipurge-ref-def)
moreover have sinks I D (D y) (ipurge-tr I D (D y) ys) = {}
by (rule sinks-idem)

hence ¬ ((D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) (ipurge-tr I D (D y) ys). (u, D None) ∈ I))

using K by simp
hence D None /∈ sinks I D (D y) (ipurge-tr I D (D y) ys @ [None])
by (simp only: sinks-interference-eq, simp)

ultimately have (xs @ y # ipurge-tr I D (D y) (ipurge-tr I D (D y) ys)
@ [None], {}) ∈ failures P

69

by simp
hence (xs @ y # ipurge-tr I D (D y) ys @ [None], {}) ∈ failures P
by (simp add: ipurge-tr-idem)

thus xs @ y # ipurge-tr I D (D y) ys @ [None] ∈ traces P
by (rule failures-traces)

next
show xs @ y # ys ∈ traces P
using E by (rule failures-traces)

qed
hence xs @ y # ys ∈ sentences P
by simp

thus ?thesis
using D by contradiction

qed
qed

lemma seq-comp-secure-aux-1-case-2 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: secure Q I D and
E : xs @ y # ys ∈ sentences P and
F : (xs @ y # ys, X) ∈ failures P and
G: ([], Y) ∈ failures Q

shows (xs @ ipurge-tr I D (D y) ys,
ipurge-ref I D (D y) ys (insert None X ∩ Y)) ∈ seq-comp-failures P Q

proof −
have (y # ys, X) ∈ futures P xs
using F by (simp add: futures-def)

hence (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
∈ futures P xs

using C by (simp add: secure-def)
hence H : (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
∈ failures P

by (simp add: futures-def)
have weakly-sequential P
using B by (rule seq-implies-weakly-seq)

hence I : None /∈ set (xs @ y # ys)
using E by (rule weakly-seq-sentences-none)

show ?thesis
proof (cases xs @ ipurge-tr I D (D y) ys ∈ sentences P,
case-tac [2] (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) ys. (u, D None) ∈ I),
simp-all)
assume J : xs @ ipurge-tr I D (D y) ys ∈ sentences P
have ipurge-ref I D (D y) ys Y ⊆ Y
by (rule ipurge-ref-subset)

with G have ([], ipurge-ref I D (D y) ys Y) ∈ failures Q
by (rule process-rule-3)

70

with J and H have (xs @ ipurge-tr I D (D y) ys,
insert None (ipurge-ref I D (D y) ys X) ∩ ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures P Q

by (rule SCF-R2)
moreover have
ipurge-ref I D (D y) ys (insert None X) ∩ ipurge-ref I D (D y) ys Y ⊆
insert None (ipurge-ref I D (D y) ys X) ∩ ipurge-ref I D (D y) ys Y

proof (rule subsetI , simp del: insert-iff , erule conjE)
fix x
have ipurge-ref I D (D y) ys (insert None X) ⊆

insert None (ipurge-ref I D (D y) ys X)
by (rule ipurge-ref-subset-insert)

moreover assume x ∈ ipurge-ref I D (D y) ys (insert None X)
ultimately show x ∈ insert None (ipurge-ref I D (D y) ys X) ..

qed
ultimately have (xs @ ipurge-tr I D (D y) ys,

ipurge-ref I D (D y) ys (insert None X) ∩ ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures P Q

by (rule seq-comp-prop-3)
thus ?thesis
by (simp add: ipurge-ref-distrib-inter)

next
assume

J : xs @ ipurge-tr I D (D y) ys /∈ sentences P and
K : (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) ys. (u, D None) ∈ I)

have ipurge-ref I D (D y) ys (insert None X ∩ Y) = {}
proof (rule disjE [OF K], erule-tac [2] bexE)

assume L: (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-ref-empty [of D y], simp)

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)
using A by (simp add: secure-termination-def)

moreover have y 6= None
using I by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using L by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

L: u ∈ sinks I D (D y) ys and
M : (u, D None) ∈ I

have ∃ y ′ ∈ set ys. u = D y ′

using L by (rule sinks-elem)
then obtain y ′ where N : y ′ ∈ set ys and O: u = D y ′ ..
have P: y ′ 6= None

71

proof
assume y ′ = None
hence None ∈ set ys
using N by simp

moreover have None /∈ set ys
using I by simp

ultimately show False
by contradiction

qed
show ?thesis
proof (rule ipurge-ref-empty [of u], simp add: L)

fix x
have (D y ′, D None) ∈ I ∧ y ′ 6= None −→ (∀ v ∈ range D. (D y ′, v) ∈ I)
using A by (simp add: secure-termination-def)

moreover have (D y ′, D None) ∈ I
using M and O by simp

ultimately have ∀ v ∈ range D. (D y ′, v) ∈ I
using P by simp

thus (u, D x) ∈ I
using O by simp

qed
qed
thus ?thesis
proof simp

have {} ⊆ ipurge-ref I D (D y) ys X ..
with H have (xs @ ipurge-tr I D (D y) ys, {}) ∈ failures P
by (rule process-rule-3)

with J show (xs @ ipurge-tr I D (D y) ys, {}) ∈ seq-comp-failures P Q
proof (rule SCF-R1)

show None /∈ set (xs @ ipurge-tr I D (D y) ys)
using I

proof (simp, (erule-tac conjE)+)
have set (ipurge-tr I D (D y) ys) ⊆ set ys
by (rule ipurge-tr-set)

moreover assume None /∈ set ys
ultimately show None /∈ set (ipurge-tr I D (D y) ys)
by (rule contra-subsetD)

qed
qed

qed
next

assume
J : xs @ ipurge-tr I D (D y) ys /∈ sentences P and
K : (D y, D None) /∈ I ∧ (∀ u ∈ sinks I D (D y) ys. (u, D None) /∈ I)

have xs @ y # ys @ [None] ∈ traces P
using E by (simp add: sentences-def)

hence (xs @ y # ys @ [None], {}) ∈ failures P
by (rule traces-failures)

hence (y # ys @ [None], {}) ∈ futures P xs

72

by (simp add: futures-def)
hence (ipurge-tr I D (D y) (ys @ [None]),

ipurge-ref I D (D y) (ys @ [None]) {}) ∈ futures P xs
(is (-, ?Y) ∈ -)

using C by (simp add: secure-def del: ipurge-tr .simps)
hence (xs @ ipurge-tr I D (D y) (ys @ [None]), ?Y) ∈ failures P
by (simp add: futures-def)

hence xs @ ipurge-tr I D (D y) (ys @ [None]) ∈ traces P
by (rule failures-traces)

moreover have ¬ ((D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ys. (u, D None) ∈ I))

using K by simp
hence D None /∈ sinks I D (D y) (ys @ [None])
by (simp only: sinks-interference-eq, simp)

ultimately have xs @ ipurge-tr I D (D y) ys @ [None] ∈ traces P
by simp

hence xs @ ipurge-tr I D (D y) ys ∈ sentences P
by (simp add: sentences-def)

thus ?thesis
using J by contradiction

qed
qed

lemma seq-comp-secure-aux-1-case-3 :
assumes

A: secure-termination I D and
B: ref-union-closed Q and
C : sequential Q and
D: secure Q I D and
E : secure R I D and
F : ws ∈ sentences Q and
G: (ys ′, Y) ∈ failures R and
H : ws @ ys ′ = xs @ y # ys

shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures Q R

proof (cases length xs < length ws)
case True
have drop (Suc (length xs)) (xs @ y # ys) = drop (Suc (length xs)) (ws @ ys ′)
using H by simp

hence I : ys = drop (Suc (length xs)) ws @ ys ′

(is - = ?ws ′ @ -)
using True by simp

let ?U = insert (D y) (sinks I D (D y) ?ws ′)
have ipurge-tr I D (D y) ys =

ipurge-tr I D (D y) ?ws ′ @ ipurge-tr-aux I D ?U ys ′

using I by (simp add: ipurge-tr-append)
moreover have ipurge-ref I D (D y) ys Y = ipurge-ref-aux I D ?U ys ′ Y
using I by (simp add: ipurge-ref-append)

ultimately show ?thesis

73

proof (cases xs @ ipurge-tr I D (D y) ?ws ′ ∈ sentences Q, simp-all)
assume J : xs @ ipurge-tr I D (D y) ?ws ′ ∈ sentences Q
have K : (ipurge-tr-aux I D ?U ys ′, ipurge-ref-aux I D ?U ys ′ Y) ∈ failures R
using E and G by (rule ipurge-tr-ref-aux-failures)

show (xs @ ipurge-tr I D (D y) ?ws ′ @ ipurge-tr-aux I D ?U ys ′,
ipurge-ref-aux I D ?U ys ′ Y) ∈ seq-comp-failures Q R

proof (cases ipurge-tr-aux I D ?U ys ′)
case Nil
have (xs @ ipurge-tr I D (D y) ?ws ′, {x. x 6= None}) ∈ failures Q
using B and C and J by (rule seq-sentences-ref)

moreover have ([], ipurge-ref-aux I D ?U ys ′ Y) ∈ failures R
using K and Nil by simp

ultimately have (xs @ ipurge-tr I D (D y) ?ws ′,
insert None {x. x 6= None} ∩ ipurge-ref-aux I D ?U ys ′ Y)
∈ seq-comp-failures Q R

by (rule SCF-R2 [OF J])
moreover have insert None {x. x 6= None} ∩

ipurge-ref-aux I D ?U ys ′ Y = ipurge-ref-aux I D ?U ys ′ Y
by blast

ultimately show ?thesis
using Nil by simp

next
case Cons
hence ipurge-tr-aux I D ?U ys ′ 6= []
by simp

with J and K have
((xs @ ipurge-tr I D (D y) ?ws ′) @ ipurge-tr-aux I D ?U ys ′,

ipurge-ref-aux I D ?U ys ′ Y) ∈ seq-comp-failures Q R
by (rule SCF-R3)

thus ?thesis
by simp

qed
next

assume J : xs @ ipurge-tr I D (D y) ?ws ′ /∈ sentences Q
have ws = take (Suc (length xs)) ws @ ?ws ′

by simp
moreover have take (Suc (length xs)) (ws @ ys ′) =

take (Suc (length xs)) (xs @ y # ys)
using H by simp

hence take (Suc (length xs)) ws = xs @ [y]
using True by simp

ultimately have K : xs @ y # ?ws ′ ∈ sentences Q
using F by simp

hence xs @ y # ?ws ′ @ [None] ∈ traces Q
by (simp add: sentences-def)

hence (xs @ y # ?ws ′ @ [None], {}) ∈ failures Q
by (rule traces-failures)

hence (y # ?ws ′ @ [None], {}) ∈ futures Q xs
by (simp add: futures-def)

74

hence (ipurge-tr I D (D y) (?ws ′ @ [None]),
ipurge-ref I D (D y) (?ws ′ @ [None]) {}) ∈ futures Q xs

using D by (simp add: secure-def del: ipurge-tr .simps)
hence L: (xs @ ipurge-tr I D (D y) (?ws ′ @ [None]), {}) ∈ failures Q
by (simp add: futures-def ipurge-ref-def)

have weakly-sequential Q
using C by (rule seq-implies-weakly-seq)

hence N : None /∈ set (xs @ y # ?ws ′)
using K by (rule weakly-seq-sentences-none)

show (xs @ ipurge-tr I D (D y) ?ws ′ @ ipurge-tr-aux I D ?U ys ′,
ipurge-ref-aux I D ?U ys ′ Y) ∈ seq-comp-failures Q R

proof (cases (D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ?ws ′. (u, D None) ∈ I))
assume M : (D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ?ws ′. (u, D None) ∈ I)

have ipurge-tr-aux I D ?U ys ′ = []
proof (rule disjE [OF M], erule-tac [2] bexE)

assume O: (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-tr-aux-nil [of D y], simp)

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)
using A by (simp add: secure-termination-def)

moreover have y 6= None
using N by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using O by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

O: u ∈ sinks I D (D y) ?ws ′ and
P: (u, D None) ∈ I

have ∃w ∈ set ?ws ′. u = D w
using O by (rule sinks-elem)

then obtain w where Q: w ∈ set ?ws ′ and R: u = D w ..
have S : w 6= None
proof

assume w = None
hence None ∈ set ?ws ′

using Q by simp
moreover have None /∈ set ?ws ′

using N by simp
ultimately show False
by contradiction

qed
show ?thesis

75

proof (rule ipurge-tr-aux-nil [of u], simp add: O)
fix x
have (D w, D None) ∈ I ∧ w 6= None −→ (∀ v ∈ range D. (D w, v) ∈ I)
using A by (simp add: secure-termination-def)

moreover have (D w, D None) ∈ I
using P and R by simp

ultimately have ∀ v ∈ range D. (D w, v) ∈ I
using S by simp

thus (u, D x) ∈ I
using R by simp

qed
qed
moreover have ipurge-ref-aux I D ?U ys ′ Y = {}
proof (rule disjE [OF M], erule-tac [2] bexE)

assume O: (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-ref-aux-empty [of D y])

have ?U ⊆ sinks-aux I D ?U ys ′

by (rule sinks-aux-subset)
moreover have D y ∈ ?U
by simp

ultimately show D y ∈ sinks-aux I D ?U ys ′ ..
next

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)
using A by (simp add: secure-termination-def)

moreover have y 6= None
using N by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using O by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

O: u ∈ sinks I D (D y) ?ws ′ and
P: (u, D None) ∈ I

have ∃w ∈ set ?ws ′. u = D w
using O by (rule sinks-elem)

then obtain w where Q: w ∈ set ?ws ′ and R: u = D w ..
have S : w 6= None
proof

assume w = None
hence None ∈ set ?ws ′

using Q by simp
moreover have None /∈ set ?ws ′

using N by simp
ultimately show False

76

by contradiction
qed
show ?thesis
proof (rule ipurge-ref-aux-empty [of u])

have ?U ⊆ sinks-aux I D ?U ys ′

by (rule sinks-aux-subset)
moreover have u ∈ ?U
using O by simp

ultimately show u ∈ sinks-aux I D ?U ys ′ ..
next

fix x
have (D w, D None) ∈ I ∧ w 6= None −→ (∀ v ∈ range D. (D w, v) ∈ I)
using A by (simp add: secure-termination-def)

moreover have (D w, D None) ∈ I
using P and R by simp

ultimately have ∀ v ∈ range D. (D w, v) ∈ I
using S by simp

thus (u, D x) ∈ I
using R by simp

qed
qed
ultimately show ?thesis
proof simp

have D None ∈ sinks I D (D y) (?ws ′ @ [None])
using M by (simp only: sinks-interference-eq)

hence (xs @ ipurge-tr I D (D y) ?ws ′, {}) ∈ failures Q
using L by simp

moreover have None /∈ set (xs @ ipurge-tr I D (D y) ?ws ′)
proof −

show ?thesis
using N

proof (simp, (erule-tac conjE)+)
have set (ipurge-tr I D (D y) ?ws ′) ⊆ set ?ws ′

by (rule ipurge-tr-set)
moreover assume None /∈ set ?ws ′

ultimately show None /∈ set (ipurge-tr I D (D y) ?ws ′)
by (rule contra-subsetD)

qed
qed
ultimately show (xs @ ipurge-tr I D (D y) ?ws ′, {})
∈ seq-comp-failures Q R

by (rule SCF-R1 [OF J])
qed

next
assume ¬ ((D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ?ws ′. (u, D None) ∈ I))

hence D None /∈ sinks I D (D y) (?ws ′ @ [None])
by (simp only: sinks-interference-eq, simp)

hence (xs @ ipurge-tr I D (D y) ?ws ′ @ [None], {}) ∈ failures Q

77

using L by simp
hence xs @ ipurge-tr I D (D y) ?ws ′ @ [None] ∈ traces Q
by (rule failures-traces)

hence xs @ ipurge-tr I D (D y) ?ws ′ ∈ sentences Q
by (simp add: sentences-def)

thus ?thesis
using J by contradiction

qed
qed

next
case False
have drop (length ws) (ws @ ys ′) = drop (length ws) (xs @ y # ys)
using H by simp

hence ys ′ = drop (length ws) xs @ y # ys
(is - = ?xs ′ @ -)

using False by simp
hence (?xs ′ @ y # ys, Y) ∈ failures R
using G by simp

hence (y # ys, Y) ∈ futures R ?xs ′

by (simp add: futures-def)
hence (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ futures R ?xs ′

using E by (simp add: secure-def)
hence I : (?xs ′ @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ failures R

by (simp add: futures-def)
have xs = take (length ws) xs @ ?xs ′

by simp
hence xs = take (length ws) (xs @ y # ys) @ ?xs ′

using False by simp
hence xs = take (length ws) (ws @ ys ′) @ ?xs ′

using H by simp
hence J : xs = ws @ ?xs ′

by simp
show ?thesis
proof (cases ?xs ′ @ ipurge-tr I D (D y) ys = [], insert I , subst J , simp)

have (ws, {x. x 6= None}) ∈ failures Q
using B and C and F by (rule seq-sentences-ref)

moreover assume ([], ipurge-ref I D (D y) ys Y) ∈ failures R
ultimately have (ws, insert None {x. x 6= None} ∩

ipurge-ref I D (D y) ys Y) ∈ seq-comp-failures Q R
by (rule SCF-R2 [OF F])

moreover have insert None {x. x 6= None} ∩ ipurge-ref I D (D y) ys Y =
ipurge-ref I D (D y) ys Y

by blast
ultimately show (ws, ipurge-ref I D (D y) ys Y) ∈ seq-comp-failures Q R
by simp

next
assume ?xs ′ @ ipurge-tr I D (D y) ys 6= []

78

with F and I have
(ws @ ?xs ′ @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures Q R

by (rule SCF-R3)
hence ((ws @ ?xs ′) @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures Q R

by simp
thus ?thesis
using J by simp

qed
qed

lemma seq-comp-secure-aux-1 [rule-format]:
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (ws, Y) ∈ seq-comp-failures P Q =⇒
ws = xs @ y # ys −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures P Q

proof (erule seq-comp-failures.induct, rule-tac [!] impI , simp-all, (erule conjE)+)
fix X
assume
xs @ y # ys /∈ sentences P and
(xs @ y # ys, X) ∈ failures P and
None 6= y and
None /∈ set xs and
None /∈ set ys

thus (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)
∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-1-case-1 [OF A C D])
next

fix X Y
assume
xs @ y # ys ∈ sentences P and
(xs @ y # ys, X) ∈ failures P and
([], Y) ∈ failures Q

thus (xs @ ipurge-tr I D (D y) ys,
ipurge-ref I D (D y) ys (insert None X ∩ Y)) ∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-1-case-2 [OF A C D E])
next

fix ws ys ′ Y
assume
ws ∈ sentences P and
(ys ′, Y) ∈ failures Q and
ws @ ys ′ = xs @ y # ys

79

thus (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-1-case-3 [OF A B C D E])
next

fix X Y
assume
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys X)

∈ seq-comp-failures P Q and
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)

∈ seq-comp-failures P Q
hence (xs @ ipurge-tr I D (D y) ys,

ipurge-ref I D (D y) ys X ∪ ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures P Q

by (rule SCF-R4)
thus (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys (X ∪ Y))
∈ seq-comp-failures P Q

by (simp add: ipurge-ref-distrib-union)
qed

lemma seq-comp-secure-1 :
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (xs @ y # ys, Y) ∈ seq-comp-failures P Q =⇒
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)
∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-1 [OF A B C D E , where ws = xs @ y # ys],
simp-all)

This completes the proof that the former requirement for noninterference
security is satisfied, so it is the turn of the latter one. Again, rule induction
on set seq-comp-failures is applied, and the closure of the failures of a secure
process under intransitive purge is used to meet the proof obligations arising
from rule SCF-R3. In more detail, rule induction is applied to the trace into
which the event is inserted, and then a case distinction is performed on the
trace from which the event is extracted, using the expression of its refusal
as union of a set of refusals derived previously.

lemma seq-comp-secure-aux-2-case-1 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: xs @ zs /∈ sentences P and

80

E : (xs @ zs, X) ∈ failures P and
F : None /∈ set xs and
G: None /∈ set zs and
H : (xs @ [y], {}) ∈ seq-comp-failures P Q

shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
∈ seq-comp-failures P Q

proof −
have ∃R. {} = (

⋃
n ∈ {..length (xs @ [y])}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs @ [y] /∈ sentences P ∧ None /∈ set (xs @ [y]) ∧
(xs @ [y], W) ∈ failures P ∨

xs @ [y] ∈ sentences P ∧ (∃U V . (xs @ [y], U) ∈ failures P ∧
([], V) ∈ failures Q ∧ W = insert None U ∩ V)) ∧

(∀n ∈ {0<..length (xs @ [y])}. ∀W ∈ R n.
take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ∧
(drop (length (xs @ [y]) − n) (xs @ [y]), W) ∈ failures Q) ∧

(∃n ∈ {..length (xs @ [y])}. ∃W . W ∈ R n)
(is ∃R. ?T R)

using H by (rule seq-comp-refusals-1)
then obtain R where I : ?T R ..
hence ∃n ∈ {..length (xs @ [y])}. ∃W . W ∈ R n
by simp

moreover have ∀n ∈ {0<..length (xs @ [y])}. R n = {}
proof (rule ballI , rule equals0I)

fix n W
assume J : n ∈ {0<..length (xs @ [y])}
hence ∀W ∈ R n. take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P
using I by simp

moreover assume W ∈ R n
ultimately have take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ..
moreover have take (length (xs @ [y]) − n) (xs @ [y]) =

take (length (xs @ [y]) − n) (xs @ zs)
using J by simp

ultimately have K : take (length (xs @ [y]) − n) (xs @ zs) ∈ sentences P
by simp

show False
proof (cases drop (length (xs @ [y]) − n) (xs @ zs))

case Nil
hence xs @ zs ∈ sentences P
using K by simp

thus False
using D by contradiction

next
case (Cons v vs)
moreover have xs @ zs = take (length (xs @ [y]) − n) (xs @ zs) @

drop (length (xs @ [y]) − n) (xs @ zs)
by (simp only: append-take-drop-id)

ultimately have L: xs @ zs =
take (length (xs @ [y]) − n) (xs @ zs) @ v # vs

81

by (simp del: take-append)
hence (take (length (xs @ [y]) − n) (xs @ zs) @ v # vs, X)
∈ failures P

using E by (simp del: take-append)
hence take (length (xs @ [y]) − n) (xs @ zs) @ v # vs ∈ traces P
by (rule failures-traces)

with B and K have v = None
by (rule seq-sentences-none)

moreover have None /∈ set (xs @ zs)
using F and G by simp

hence None /∈ set (take (length (xs @ [y]) − n) (xs @ zs) @ v # vs)
by (subst (asm) L)

hence v 6= None
by (rule-tac not-sym, simp)

ultimately show False
by contradiction

qed
qed
ultimately have ∃W . W ∈ R 0
proof simp

assume ∃n ∈ {..Suc (length xs)}. ∃W . W ∈ R n
then obtain n where J : n ∈ {..Suc (length xs)} and K : ∃W . W ∈ R n ..
assume L: ∀n ∈ {0<..Suc (length xs)}. R n = {}
show ?thesis
proof (cases n)

case 0
thus ?thesis
using K by simp

next
case (Suc m)
obtain W where W ∈ R n
using K ..

moreover have 0 < n
using Suc by simp

hence n ∈ {0<..Suc (length xs)}
using J by simp

with L have R n = {} ..
hence W /∈ R n
by (rule equals0D)

ultimately show ?thesis
by contradiction

qed
qed
then obtain W where J : W ∈ R 0 ..
have ∀W ∈ R 0 .

xs @ [y] /∈ sentences P ∧
None /∈ set (xs @ [y]) ∧ (xs @ [y], W) ∈ failures P ∨

xs @ [y] ∈ sentences P ∧
(∃U V . (xs @ [y], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

82

W = insert None U ∩ V)
(is ∀W ∈ R 0 . ?T W)

using I by simp
hence ?T W using J ..
hence K : (xs @ [y], {}) ∈ failures P ∧ None 6= y
proof (cases xs @ [y] ∈ sentences P, simp-all del: ex-simps,
(erule-tac exE)+, (erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y], W) ∈ failures P
moreover have {} ⊆ W ..
ultimately show (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

next
fix U
case True
assume (xs @ [y], U) ∈ failures P
moreover have {} ⊆ U ..
ultimately have (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

moreover have weakly-sequential P
using B by (rule seq-implies-weakly-seq)

hence None /∈ set (xs @ [y])
using True by (rule weakly-seq-sentences-none)

hence None 6= y
by simp

ultimately show ?thesis ..
qed
have (zs, X) ∈ futures P xs
using E by (simp add: futures-def)

moreover have ([y], {}) ∈ futures P xs
using K by (simp add: futures-def)

ultimately have (y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X) ∈
futures P xs

using C by (simp add: secure-def)
hence L: (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X) ∈

failures P
by (simp add: futures-def)

show ?thesis
proof (cases xs @ y # ipurge-tr I D (D y) zs ∈ sentences P,
cases (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) zs. (u, D None) ∈ I),
simp-all)
assume xs @ y # ipurge-tr I D (D y) zs /∈ sentences P
thus ?thesis using L
proof (rule SCF-R1 , simp add: F K)

have set (ipurge-tr I D (D y) zs) ⊆ set zs
by (rule ipurge-tr-set)

thus None /∈ set (ipurge-tr I D (D y) zs)
using G by (rule contra-subsetD)

qed

83

next
assume

M : xs @ y # ipurge-tr I D (D y) zs ∈ sentences P and
N : (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) zs. (u, D None) ∈ I)

have ipurge-ref I D (D y) zs X = {}
proof (rule disjE [OF N], erule-tac [2] bexE)

assume O: (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-ref-empty [of D y], simp)

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)
using A by (simp add: secure-termination-def)

moreover have y 6= None
using K by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using O by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

O: u ∈ sinks I D (D y) zs and
P: (u, D None) ∈ I

have ∃ z ∈ set zs. u = D z
using O by (rule sinks-elem)

then obtain z where Q: z ∈ set zs and R: u = D z ..
have S : z 6= None
proof

assume z = None
hence None ∈ set zs
using Q by simp

thus False
using G by contradiction

qed
show ?thesis
proof (rule ipurge-ref-empty [of u], simp add: O)

fix x
have (D z, D None) ∈ I ∧ z 6= None −→ (∀ v ∈ range D. (D z, v) ∈ I)
using A by (simp add: secure-termination-def)

moreover have (D z, D None) ∈ I
using P and R by simp

ultimately have ∀ v ∈ range D. (D z, v) ∈ I
using S by simp

thus (u, D x) ∈ I
using R by simp

qed
qed
thus ?thesis

84

proof simp
have ([], {}) ∈ failures Q
by (rule process-rule-1)

with M and L have (xs @ y # ipurge-tr I D (D y) zs,
insert None (ipurge-ref I D (D y) zs X) ∩ {}) ∈ seq-comp-failures P Q

by (rule SCF-R2)
thus (xs @ y # ipurge-tr I D (D y) zs, {}) ∈ seq-comp-failures P Q
by simp

qed
next

assume
M : xs @ y # ipurge-tr I D (D y) zs ∈ sentences P and
N : (D y, D None) /∈ I ∧ (∀ u ∈ sinks I D (D y) zs. (u, D None) /∈ I)

have xs @ zs ∈ sentences P
proof (simp add: sentences-def ,
rule ipurge-tr-del-traces [OF C , where u = D y], simp add: N)
have xs @ y # ipurge-tr I D (D y) zs @ [None] ∈ traces P
using M by (simp add: sentences-def)

hence (xs @ y # ipurge-tr I D (D y) zs @ [None], {}) ∈ failures P
by (rule traces-failures)

hence (y # ipurge-tr I D (D y) zs @ [None], {}) ∈ futures P xs
by (simp add: futures-def)

hence (ipurge-tr I D (D y) (ipurge-tr I D (D y) zs @ [None]),
ipurge-ref I D (D y) (ipurge-tr I D (D y) zs @ [None]) {}) ∈ futures P xs

using C by (simp add: secure-def del: ipurge-tr .simps)
hence (xs @ ipurge-tr I D (D y) (ipurge-tr I D (D y) zs @ [None]), {})
∈ failures P

by (simp add: futures-def ipurge-ref-def)
moreover have sinks I D (D y) (ipurge-tr I D (D y) zs) = {}
by (rule sinks-idem)

hence ¬ ((D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) (ipurge-tr I D (D y) zs). (u, D None) ∈ I))

using N by simp
hence D None /∈ sinks I D (D y) (ipurge-tr I D (D y) zs @ [None])
by (simp only: sinks-interference-eq, simp)

ultimately have (xs @ ipurge-tr I D (D y) (ipurge-tr I D (D y) zs)
@ [None], {}) ∈ failures P

by simp
hence (xs @ ipurge-tr I D (D y) zs @ [None], {}) ∈ failures P
by (simp add: ipurge-tr-idem)

thus xs @ ipurge-tr I D (D y) zs @ [None] ∈ traces P
by (rule failures-traces)

next
show xs @ zs ∈ traces P
using E by (rule failures-traces)

qed
thus ?thesis
using D by contradiction

qed

85

qed

lemma seq-comp-secure-aux-2-case-2 :
assumes

A: secure-termination I D and
B: sequential P and
C : secure P I D and
D: secure Q I D and
E : xs @ zs ∈ sentences P and
F : (xs @ zs, X) ∈ failures P and
G: ([], Y) ∈ failures Q and
H : (xs @ [y], {}) ∈ seq-comp-failures P Q

shows (xs @ y # ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs (insert None X ∩ Y)) ∈ seq-comp-failures P Q

proof −
have ∃R. {} = (

⋃
n ∈ {..length (xs @ [y])}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs @ [y] /∈ sentences P ∧ None /∈ set (xs @ [y]) ∧
(xs @ [y], W) ∈ failures P ∨

xs @ [y] ∈ sentences P ∧ (∃U V . (xs @ [y], U) ∈ failures P ∧
([], V) ∈ failures Q ∧ W = insert None U ∩ V)) ∧

(∀n ∈ {0<..length (xs @ [y])}. ∀W ∈ R n.
take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ∧
(drop (length (xs @ [y]) − n) (xs @ [y]), W) ∈ failures Q) ∧

(∃n ∈ {..length (xs @ [y])}. ∃W . W ∈ R n)
(is ∃R. ?T R)

using H by (rule seq-comp-refusals-1)
then obtain R where I : ?T R ..
hence ∃n ∈ {..length (xs @ [y])}. ∃W . W ∈ R n
by simp

then obtain n where J : n ∈ {..length (xs @ [y])} and K : ∃W . W ∈ R n ..
have weakly-sequential P
using B by (rule seq-implies-weakly-seq)

hence L: None /∈ set (xs @ zs)
using E by (rule weakly-seq-sentences-none)

have n = 0 ∨ n ∈ {0<..length (xs @ [y])}
using J by auto

thus ?thesis
proof

assume n = 0
hence ∃W . W ∈ R 0
using K by simp

then obtain W where M : W ∈ R 0 ..
have ∀W ∈ R 0 .

xs @ [y] /∈ sentences P ∧
None /∈ set (xs @ [y]) ∧ (xs @ [y], W) ∈ failures P ∨

xs @ [y] ∈ sentences P ∧
(∃U V . (xs @ [y], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)

86

(is ∀W ∈ R 0 . ?T W)
using I by simp

hence ?T W using M ..
hence N : (xs @ [y], {}) ∈ failures P ∧ None /∈ set xs ∧ None 6= y
proof (cases xs @ [y] ∈ sentences P, simp-all del: ex-simps,
(erule-tac exE)+, (erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y], W) ∈ failures P
moreover have {} ⊆ W ..
ultimately show (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

next
fix U
case True
assume (xs @ [y], U) ∈ failures P
moreover have {} ⊆ U ..
ultimately have (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

moreover have weakly-sequential P
using B by (rule seq-implies-weakly-seq)

hence None /∈ set (xs @ [y])
using True by (rule weakly-seq-sentences-none)

hence None /∈ set xs ∧ None 6= y
by simp

ultimately show ?thesis ..
qed
have (zs, X) ∈ futures P xs
using F by (simp add: futures-def)

moreover have ([y], {}) ∈ futures P xs
using N by (simp add: futures-def)

ultimately have (y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
∈ futures P xs

using C by (simp add: secure-def)
hence O: (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
∈ failures P

by (simp add: futures-def)
show ?thesis
proof (cases xs @ y # ipurge-tr I D (D y) zs ∈ sentences P,
case-tac [2] (D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) zs. (u, D None) ∈ I),

simp-all)
assume P: xs @ y # ipurge-tr I D (D y) zs ∈ sentences P
have ipurge-ref I D (D y) zs Y ⊆ Y
by (rule ipurge-ref-subset)

with G have ([], ipurge-ref I D (D y) zs Y) ∈ failures Q
by (rule process-rule-3)

with P and O have (xs @ y # ipurge-tr I D (D y) zs,
insert None (ipurge-ref I D (D y) zs X) ∩ ipurge-ref I D (D y) zs Y)
∈ seq-comp-failures P Q

87

by (rule SCF-R2)
moreover have
ipurge-ref I D (D y) zs (insert None X) ∩ ipurge-ref I D (D y) zs Y ⊆
insert None (ipurge-ref I D (D y) zs X) ∩ ipurge-ref I D (D y) zs Y

proof (rule subsetI , simp del: insert-iff , erule conjE)
fix x
have ipurge-ref I D (D y) zs (insert None X) ⊆

insert None (ipurge-ref I D (D y) zs X)
by (rule ipurge-ref-subset-insert)

moreover assume x ∈ ipurge-ref I D (D y) zs (insert None X)
ultimately show x ∈ insert None (ipurge-ref I D (D y) zs X) ..

qed
ultimately have (xs @ y # ipurge-tr I D (D y) zs,

ipurge-ref I D (D y) zs (insert None X) ∩ ipurge-ref I D (D y) zs Y)
∈ seq-comp-failures P Q

by (rule seq-comp-prop-3)
thus ?thesis
by (simp add: ipurge-ref-distrib-inter)

next
assume

P: xs @ y # ipurge-tr I D (D y) zs /∈ sentences P and
Q: (D y, D None) ∈ I ∨ (∃ u ∈ sinks I D (D y) zs. (u, D None) ∈ I)

have ipurge-ref I D (D y) zs (insert None X ∩ Y) = {}
proof (rule disjE [OF Q], erule-tac [2] bexE)

assume R: (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-ref-empty [of D y], simp)

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)
using A by (simp add: secure-termination-def)

moreover have y 6= None
using N by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using R by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

R: u ∈ sinks I D (D y) zs and
S : (u, D None) ∈ I

have ∃ z ∈ set zs. u = D z
using R by (rule sinks-elem)

then obtain z where T : z ∈ set zs and U : u = D z ..
have V : z 6= None
proof

assume z = None
hence None ∈ set zs

88

using T by simp
moreover have None /∈ set zs
using L by simp

ultimately show False
by contradiction

qed
show ?thesis
proof (rule ipurge-ref-empty [of u], simp add: R)

fix x
have (D z, D None) ∈ I ∧ z 6= None −→ (∀ v ∈ range D. (D z, v) ∈ I)
using A by (simp add: secure-termination-def)

moreover have (D z, D None) ∈ I
using S and U by simp

ultimately have ∀ v ∈ range D. (D z, v) ∈ I
using V by simp

thus (u, D x) ∈ I
using U by simp

qed
qed
thus ?thesis
proof simp

have {} ⊆ ipurge-ref I D (D y) zs X ..
with O have (xs @ y # ipurge-tr I D (D y) zs, {}) ∈ failures P
by (rule process-rule-3)

with P show (xs @ y # ipurge-tr I D (D y) zs, {})
∈ seq-comp-failures P Q

proof (rule SCF-R1 , simp add: N)
have set (ipurge-tr I D (D y) zs) ⊆ set zs
by (rule ipurge-tr-set)

moreover have None /∈ set zs
using L by simp

ultimately show None /∈ set (ipurge-tr I D (D y) zs)
by (rule contra-subsetD)

qed
qed

next
assume

P: xs @ y # ipurge-tr I D (D y) zs /∈ sentences P and
Q: (D y, D None) /∈ I ∧ (∀ u ∈ sinks I D (D y) zs. (u, D None) /∈ I)

have xs @ zs @ [None] ∈ traces P
using E by (simp add: sentences-def)

hence (xs @ zs @ [None], {}) ∈ failures P
by (rule traces-failures)

hence (zs @ [None], {}) ∈ futures P xs
by (simp add: futures-def)

moreover have ([y], {}) ∈ futures P xs
using N by (simp add: futures-def)

ultimately have (y # ipurge-tr I D (D y) (zs @ [None]),
ipurge-ref I D (D y) (zs @ [None]) {}) ∈ futures P xs

89

(is (-, ?Z) ∈ -)
using C by (simp add: secure-def del: ipurge-tr .simps)

hence (xs @ y # ipurge-tr I D (D y) (zs @ [None]), ?Z) ∈ failures P
by (simp add: futures-def)

hence xs @ y # ipurge-tr I D (D y) (zs @ [None]) ∈ traces P
by (rule failures-traces)

moreover have ¬ ((D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) zs. (u, D None) ∈ I))

using Q by simp
hence D None /∈ sinks I D (D y) (zs @ [None])
by (simp only: sinks-interference-eq, simp)

ultimately have xs @ y # ipurge-tr I D (D y) zs @ [None] ∈ traces P
by simp

hence xs @ y # ipurge-tr I D (D y) zs ∈ sentences P
by (simp add: sentences-def)

thus ?thesis
using P by contradiction

qed
next

assume M : n ∈ {0<..length (xs @ [y])}
have ∀n ∈ {0<..length (xs @ [y])}. ∀W ∈ R n.

take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ∧
(drop (length (xs @ [y]) − n) (xs @ [y]), W) ∈ failures Q
(is ∀n ∈ -. ∀W ∈ -. ?T n W)

using I by simp
hence ∀W ∈ R n. ?T n W
using M ..

moreover obtain W where W ∈ R n
using K ..

ultimately have N : ?T n W ..
moreover have O: take (length (xs @ [y]) − n) (xs @ [y]) =

take (length (xs @ [y]) − n) (xs @ zs)
using M by simp

ultimately have P: take (length (xs @ [y]) − n) (xs @ zs) ∈ sentences P
by simp

have Q: drop (length (xs @ [y]) − n) (xs @ zs) = []
proof (cases drop (length (xs @ [y]) − n) (xs @ zs), simp)

case (Cons v vs)
moreover have xs @ zs = take (length (xs @ [y]) − n) (xs @ zs) @

drop (length (xs @ [y]) − n) (xs @ zs)
by (simp only: append-take-drop-id)

ultimately have R: xs @ zs =
take (length (xs @ [y]) − n) (xs @ zs) @ v # vs

by (simp del: take-append)
hence (take (length (xs @ [y]) − n) (xs @ zs) @ v # vs, X)
∈ failures P

using F by (simp del: take-append)
hence take (length (xs @ [y]) − n) (xs @ zs) @ v # vs ∈ traces P
by (rule failures-traces)

90

with B and P have v = None
by (rule seq-sentences-none)

moreover have
None /∈ set (take (length (xs @ [y]) − n) (xs @ zs) @ v # vs)
using L by (subst (asm) R)

hence v 6= None
by (rule-tac not-sym, simp)

ultimately show ?thesis
by contradiction

qed
hence R: zs = []
using M by simp

moreover have xs @ zs = take (length (xs @ [y]) − n) (xs @ zs) @
drop (length (xs @ [y]) − n) (xs @ zs)

by (simp only: append-take-drop-id)
ultimately have take (length (xs @ [y]) − n) (xs @ zs) = xs
using Q by simp

hence take (length (xs @ [y]) − n) (xs @ [y]) = xs
using O by simp

moreover have xs @ [y] = take (length (xs @ [y]) − n) (xs @ [y]) @
drop (length (xs @ [y]) − n) (xs @ [y])

by (simp only: append-take-drop-id)
ultimately have drop (length (xs @ [y]) − n) (xs @ [y]) = [y]
by simp

hence S : ([y], W) ∈ failures Q
using N by simp

show ?thesis using E and R
proof (rule-tac SCF-R3 , simp-all)

have ∀ xs y ys Y zs Z .
(y # ys, Y) ∈ futures Q xs ∧ (zs, Z) ∈ futures Q xs −→
(ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ futures Q xs ∧
(y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ futures Q xs

using D by (simp add: secure-def)
hence ([y], W) ∈ futures Q [] ∧ ([], Y) ∈ futures Q [] −→
(ipurge-tr I D (D y) [], ipurge-ref I D (D y) [] W) ∈ futures Q [] ∧
(y # ipurge-tr I D (D y) [], ipurge-ref I D (D y) [] Y) ∈ futures Q []

by blast
moreover have ([y], W) ∈ futures Q []
using S by (simp add: futures-def)

moreover have ([], Y) ∈ futures Q []
using G by (simp add: futures-def)

ultimately have ([y], ipurge-ref I D (D y) [] Y) ∈ failures Q
(is (-, ?Y ′) ∈ -)

by (simp add: futures-def)
moreover have ipurge-ref I D (D y) [] (insert None X) ∩ ?Y ′ ⊆ ?Y ′

by simp
ultimately have ([y], ipurge-ref I D (D y) [] (insert None X) ∩ ?Y ′)
∈ failures Q

by (rule process-rule-3)

91

thus ([y], ipurge-ref I D (D y) [] (insert None X ∩ Y)) ∈ failures Q
by (simp add: ipurge-ref-distrib-inter)

qed
qed

qed

lemma seq-comp-secure-aux-2-case-3 :
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D and
F : ws ∈ sentences P and
G: (ys, Y) ∈ failures Q and
H : ys 6= [] and
I : ws @ ys = xs @ zs and
J : (xs @ [y], {}) ∈ seq-comp-failures P Q

shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)
∈ seq-comp-failures P Q

proof −
have ∃R. {} = (

⋃
n ∈ {..length (xs @ [y])}.

⋃
W ∈ R n. W) ∧

(∀W ∈ R 0 .
xs @ [y] /∈ sentences P ∧ None /∈ set (xs @ [y]) ∧
(xs @ [y], W) ∈ failures P ∨

xs @ [y] ∈ sentences P ∧ (∃U V . (xs @ [y], U) ∈ failures P ∧
([], V) ∈ failures Q ∧ W = insert None U ∩ V)) ∧

(∀n ∈ {0<..length (xs @ [y])}. ∀W ∈ R n.
take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ∧
(drop (length (xs @ [y]) − n) (xs @ [y]), W) ∈ failures Q) ∧

(∃n ∈ {..length (xs @ [y])}. ∃W . W ∈ R n)
(is ∃R. ?T R)

using J by (rule seq-comp-refusals-1)
then obtain R where J : ?T R ..
hence ∃n ∈ {..length (xs @ [y])}. ∃W . W ∈ R n
by simp

then obtain n where K : n ∈ {..length (xs @ [y])} and L: ∃W . W ∈ R n ..
have M : n = 0 ∨ n ∈ {0<..length (xs @ [y])}
using K by auto

show ?thesis
proof (cases length xs < length ws)

case True
have ∀W ∈ R 0 .

xs @ [y] /∈ sentences P ∧
None /∈ set (xs @ [y]) ∧ (xs @ [y], W) ∈ failures P ∨

xs @ [y] ∈ sentences P ∧
(∃U V . (xs @ [y], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)
(is ∀W ∈ -. ?T W)

92

using J by simp
moreover have n /∈ {0<..length (xs @ [y])}
proof

assume N : n ∈ {0<..length (xs @ [y])}
hence ∀W ∈ R n. take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P
using J by simp

moreover obtain W where W ∈ R n
using L ..

ultimately have take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ..
moreover have take (length (xs @ [y]) − n) (xs @ [y]) =

take (length (xs @ [y]) − n) (xs @ zs)
using N by simp

ultimately have take (length (xs @ [y]) − n) (xs @ zs) ∈ sentences P
by simp

hence take (length (xs @ [y]) − n) (ws @ ys) ∈ sentences P
using I by simp

moreover have length (xs @ [y]) − n ≤ length xs
using N by (simp, arith)

hence O: length (xs @ [y]) − n < length ws
using True by simp

ultimately have P: take (length (xs @ [y]) − n) ws ∈ sentences P
by simp

show False
proof (cases drop (length (xs @ [y]) − n) ws)

case Nil
thus False
using O by simp

next
case (Cons v vs)
moreover have ws = take (length (xs @ [y]) − n) ws @

drop (length (xs @ [y]) − n) ws
by simp

ultimately have Q: ws = take (length (xs @ [y]) − n) ws @ v # vs
by simp

hence take (length (xs @ [y]) − n) ws @ v # vs ∈ sentences P
using F by simp

hence (take (length (xs @ [y]) − n) ws @ v # vs) @ [None] ∈ traces P
by (simp add: sentences-def)

hence take (length (xs @ [y]) − n) ws @ v # vs ∈ traces P
by (rule process-rule-2-traces)

with C and P have v = None
by (rule seq-sentences-none)

moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)

hence None /∈ set ws
using F by (rule weakly-seq-sentences-none)

hence None /∈ set (take (length (xs @ [y]) − n) ws @ v # vs)
by (subst (asm) Q)

hence v 6= None

93

by (rule-tac not-sym, simp)
ultimately show False
by contradiction

qed
qed
hence n = 0
using M by blast

hence ∃W . W ∈ R 0
using L by simp

then obtain W where W ∈ R 0 ..
ultimately have ?T W ..
hence N : (xs @ [y], {}) ∈ failures P ∧ None /∈ set xs ∧ None 6= y
proof (cases xs @ [y] ∈ sentences P, simp-all del: ex-simps,
(erule-tac exE)+, (erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y], W) ∈ failures P
moreover have {} ⊆ W ..
ultimately show (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

next
fix U
case True
assume (xs @ [y], U) ∈ failures P
moreover have {} ⊆ U ..
ultimately have (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)

hence None /∈ set (xs @ [y])
using True by (rule weakly-seq-sentences-none)

hence None /∈ set xs ∧ None 6= y
by simp

ultimately show ?thesis ..
qed
have drop (length xs) (xs @ zs) = drop (length xs) (ws @ ys)
using I by simp

hence O: zs = drop (length xs) ws @ ys
(is - = ?ws ′ @ -)

using True by simp
let ?U = insert (D y) (sinks I D (D y) ?ws ′)
have ipurge-tr I D (D y) zs =

ipurge-tr I D (D y) ?ws ′ @ ipurge-tr-aux I D ?U ys
using O by (simp add: ipurge-tr-append)

moreover have ipurge-ref I D (D y) zs Y = ipurge-ref-aux I D ?U ys Y
using O by (simp add: ipurge-ref-append)

ultimately show ?thesis
proof (cases xs @ y # ipurge-tr I D (D y) ?ws ′ ∈ sentences P, simp-all)

assume P: xs @ y # ipurge-tr I D (D y) ?ws ′ ∈ sentences P
have Q: (ipurge-tr-aux I D ?U ys, ipurge-ref-aux I D ?U ys Y) ∈ failures Q

94

using E and G by (rule ipurge-tr-ref-aux-failures)
show (xs @ y # ipurge-tr I D (D y) ?ws ′ @ ipurge-tr-aux I D ?U ys,

ipurge-ref-aux I D ?U ys Y) ∈ seq-comp-failures P Q
proof (cases ipurge-tr-aux I D ?U ys)

case Nil
have (xs @ y # ipurge-tr I D (D y) ?ws ′, {x. x 6= None}) ∈ failures P
using B and C and P by (rule seq-sentences-ref)

moreover have ([], ipurge-ref-aux I D ?U ys Y) ∈ failures Q
using Q and Nil by simp

ultimately have (xs @ y # ipurge-tr I D (D y) ?ws ′,
insert None {x. x 6= None} ∩ ipurge-ref-aux I D ?U ys Y)
∈ seq-comp-failures P Q

by (rule SCF-R2 [OF P])
moreover have insert None {x. x 6= None} ∩

ipurge-ref-aux I D ?U ys Y = ipurge-ref-aux I D ?U ys Y
by blast

ultimately show ?thesis
using Nil by simp

next
case Cons
hence ipurge-tr-aux I D ?U ys 6= []
by simp

with P and Q have
((xs @ y # ipurge-tr I D (D y) ?ws ′) @ ipurge-tr-aux I D ?U ys,

ipurge-ref-aux I D ?U ys Y) ∈ seq-comp-failures P Q
by (rule SCF-R3)

thus ?thesis
by simp

qed
next

assume P: xs @ y # ipurge-tr I D (D y) ?ws ′ /∈ sentences P
have ws = take (length xs) ws @ ?ws ′

by simp
moreover have take (length xs) (ws @ ys) = take (length xs) (xs @ zs)
using I by simp

hence take (length xs) ws = xs
using True by simp

ultimately have xs @ ?ws ′ ∈ sentences P
using F by simp

hence xs @ ?ws ′ @ [None] ∈ traces P
by (simp add: sentences-def)

hence (xs @ ?ws ′ @ [None], {}) ∈ failures P
by (rule traces-failures)

hence (?ws ′ @ [None], {}) ∈ futures P xs
by (simp add: futures-def)

moreover have ([y], {}) ∈ futures P xs
using N by (simp add: futures-def)

ultimately have (y # ipurge-tr I D (D y) (?ws ′ @ [None]),
ipurge-ref I D (D y) (?ws ′ @ [None]) {}) ∈ futures P xs

95

using D by (simp add: secure-def del: ipurge-tr .simps)
hence Q: (xs @ y # ipurge-tr I D (D y) (?ws ′ @ [None]), {}) ∈ failures P
by (simp add: futures-def ipurge-ref-def)

have set ?ws ′ ⊆ set ws
by (rule set-drop-subset)

moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)

hence None /∈ set ws
using F by (rule weakly-seq-sentences-none)

ultimately have R: None /∈ set ?ws ′

by (rule contra-subsetD)
show (xs @ y # ipurge-tr I D (D y) ?ws ′ @ ipurge-tr-aux I D ?U ys,

ipurge-ref-aux I D ?U ys Y) ∈ seq-comp-failures P Q
proof (cases (D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ?ws ′. (u, D None) ∈ I))
assume S : (D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ?ws ′. (u, D None) ∈ I)

have ipurge-tr-aux I D ?U ys = []
proof (rule disjE [OF S], erule-tac [2] bexE)

assume T : (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-tr-aux-nil [of D y], simp)

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)

using A by (simp add: secure-termination-def)
moreover have y 6= None
using N by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using T by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

T : u ∈ sinks I D (D y) ?ws ′ and
U : (u, D None) ∈ I

have ∃w ∈ set ?ws ′. u = D w
using T by (rule sinks-elem)

then obtain w where V : w ∈ set ?ws ′ and W : u = D w ..
have X : w 6= None
proof

assume w = None
hence None ∈ set ?ws ′

using V by simp
moreover have None /∈ set ?ws ′

using R by simp
ultimately show False
by contradiction

96

qed
show ?thesis
proof (rule ipurge-tr-aux-nil [of u], simp add: T)

fix x
have (D w, D None) ∈ I ∧ w 6= None −→
(∀ v ∈ range D. (D w, v) ∈ I)

using A by (simp add: secure-termination-def)
moreover have (D w, D None) ∈ I
using U and W by simp

ultimately have ∀ v ∈ range D. (D w, v) ∈ I
using X by simp

thus (u, D x) ∈ I
using W by simp

qed
qed
moreover have ipurge-ref-aux I D ?U ys Y = {}
proof (rule disjE [OF S], erule-tac [2] bexE)

assume T : (D y, D None) ∈ I
show ?thesis
proof (rule ipurge-ref-aux-empty [of D y])

have ?U ⊆ sinks-aux I D ?U ys
by (rule sinks-aux-subset)

moreover have D y ∈ ?U
by simp

ultimately show D y ∈ sinks-aux I D ?U ys ..
next

fix x
have (D y, D None) ∈ I ∧ y 6= None −→ (∀ u ∈ range D. (D y, u) ∈ I)

using A by (simp add: secure-termination-def)
moreover have y 6= None
using N by (rule-tac not-sym, simp)

ultimately have ∀ u ∈ range D. (D y, u) ∈ I
using T by simp

thus (D y, D x) ∈ I
by simp

qed
next

fix u
assume

T : u ∈ sinks I D (D y) ?ws ′ and
U : (u, D None) ∈ I

have ∃w ∈ set ?ws ′. u = D w
using T by (rule sinks-elem)

then obtain w where V : w ∈ set ?ws ′ and W : u = D w ..
have X : w 6= None
proof

assume w = None
hence None ∈ set ?ws ′

using V by simp

97

moreover have None /∈ set ?ws ′

using R by simp
ultimately show False
by contradiction

qed
show ?thesis
proof (rule ipurge-ref-aux-empty [of u])

have ?U ⊆ sinks-aux I D ?U ys
by (rule sinks-aux-subset)

moreover have u ∈ ?U
using T by simp

ultimately show u ∈ sinks-aux I D ?U ys ..
next

fix x
have (D w, D None) ∈ I ∧ w 6= None −→
(∀ v ∈ range D. (D w, v) ∈ I)

using A by (simp add: secure-termination-def)
moreover have (D w, D None) ∈ I
using U and W by simp

ultimately have ∀ v ∈ range D. (D w, v) ∈ I
using X by simp

thus (u, D x) ∈ I
using W by simp

qed
qed
ultimately show ?thesis
proof simp

have D None ∈ sinks I D (D y) (?ws ′ @ [None])
using S by (simp only: sinks-interference-eq)

hence (xs @ y # ipurge-tr I D (D y) ?ws ′, {}) ∈ failures P
using Q by simp

moreover have None /∈ set (xs @ y # ipurge-tr I D (D y) ?ws ′)
proof (simp add: N)

have set (ipurge-tr I D (D y) ?ws ′) ⊆ set ?ws ′

by (rule ipurge-tr-set)
thus None /∈ set (ipurge-tr I D (D y) ?ws ′)
using R by (rule contra-subsetD)

qed
ultimately show (xs @ y # ipurge-tr I D (D y) ?ws ′, {})
∈ seq-comp-failures P Q

by (rule SCF-R1 [OF P])
qed

next
assume ¬ ((D y, D None) ∈ I ∨
(∃ u ∈ sinks I D (D y) ?ws ′. (u, D None) ∈ I))

hence D None /∈ sinks I D (D y) (?ws ′ @ [None])
by (simp only: sinks-interference-eq, simp)

hence (xs @ y # ipurge-tr I D (D y) ?ws ′ @ [None], {}) ∈ failures P
using Q by simp

98

hence xs @ y # ipurge-tr I D (D y) ?ws ′ @ [None] ∈ traces P
by (rule failures-traces)

hence xs @ y # ipurge-tr I D (D y) ?ws ′ ∈ sentences P
by (simp add: sentences-def)

thus ?thesis
using P by contradiction

qed
qed

next
case False
have ∀n ∈ {0<..length (xs @ [y])}. ∀W ∈ R n.

take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P ∧
(drop (length (xs @ [y]) − n) (xs @ [y]), W) ∈ failures Q
(is ∀n ∈ -. ∀W ∈ -. ?T n W)

using J by simp
moreover have n 6= 0
proof

have ∀W ∈ R 0 .
xs @ [y] /∈ sentences P ∧

None /∈ set (xs @ [y]) ∧ (xs @ [y], W) ∈ failures P ∨
xs @ [y] ∈ sentences P ∧
(∃U V . (xs @ [y], U) ∈ failures P ∧ ([], V) ∈ failures Q ∧

W = insert None U ∩ V)
(is ∀W ∈ -. ?T ′ W)

using J by blast
moreover assume n = 0
hence ∃W . W ∈ R 0
using L by simp

then obtain W where W ∈ R 0 ..
ultimately have ?T ′ W ..
hence N : xs @ [y] ∈ traces P ∧ None /∈ set (xs @ [y])
proof (cases xs @ [y] ∈ sentences P, simp-all del: ex-simps,
(erule-tac exE)+, (erule-tac [!] conjE)+, simp-all)
case False
assume (xs @ [y], W) ∈ failures P
moreover have {} ⊆ W ..
ultimately have (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

thus xs @ [y] ∈ traces P
by (rule failures-traces)

next
fix U
case True
assume (xs @ [y], U) ∈ failures P
moreover have {} ⊆ U ..
ultimately have (xs @ [y], {}) ∈ failures P
by (rule process-rule-3)

hence xs @ [y] ∈ traces P
by (rule failures-traces)

99

moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)

hence None /∈ set (xs @ [y])
using True by (rule weakly-seq-sentences-none)

hence None 6= y ∧ None /∈ set xs
by simp

ultimately show xs @ [y] ∈ traces P ∧ None 6= y ∧ None /∈ set xs ..
qed
have take (length xs) (xs @ zs) @ [y] = take (length xs) (ws @ ys) @ [y]
using I by simp

hence xs @ [y] = ws @ take (length xs − length ws) ys @ [y]
using False by simp

moreover have ∃ v vs. take (length xs − length ws) ys @ [y] = v # vs
by (cases take (length xs − length ws) ys @ [y], simp-all)

then obtain v and vs where
take (length xs − length ws) ys @ [y] = v # vs
by blast

ultimately have O: xs @ [y] = ws @ v # vs
by simp

hence ws @ v # vs ∈ traces P
using N by simp

with C and F have v = None
by (rule seq-sentences-none)

moreover have v 6= None
using N and O by (rule-tac not-sym, simp)

ultimately show False
by contradiction

qed
hence N : n ∈ {0<..length (xs @ [y])}
using M by blast

ultimately have ∀W ∈ R n. ?T n W ..
moreover obtain W where W ∈ R n
using L ..

ultimately have O: ?T n W ..
have P: length (xs @ [y]) − n ≤ length xs
using N by (simp, arith)

have length (xs @ [y]) − n = length ws
proof (rule ccontr , simp only: neq-iff , erule disjE)

assume Q: length (xs @ [y]) − n < length ws
moreover have ws = take (length (xs @ [y]) − n) ws @

drop (length (xs @ [y]) − n) ws
(is - = - @ ?ws ′)

by simp
ultimately have ws = take (length (xs @ [y]) − n) (ws @ ys) @ ?ws ′

by simp
hence ws = take (length (xs @ [y]) − n) (xs @ zs) @ ?ws ′

using I by simp
hence ws = take (length (xs @ [y]) − n) (xs @ [y]) @ ?ws ′

using P by simp

100

moreover have ?ws ′ 6= []
using Q by simp

hence ∃ v vs. ?ws ′ = v # vs
by (cases ?ws ′, simp-all)

then obtain v and vs where ?ws ′ = v # vs
by blast

ultimately have S : ws = take (length (xs @ [y]) − n) (xs @ [y]) @ v # vs
by simp

hence (take (length (xs @ [y]) − n) (xs @ [y]) @ v # vs) @ [None]
∈ traces P

using F by (simp add: sentences-def)
hence T : take (length (xs @ [y]) − n) (xs @ [y]) @ v # vs ∈ traces P
by (rule process-rule-2-traces)

have take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P
using O ..

with C have v = None
using T by (rule seq-sentences-none)

moreover have weakly-sequential P
using C by (rule seq-implies-weakly-seq)

hence None /∈ set ws
using F by (rule weakly-seq-sentences-none)

hence v 6= None
using S by (rule-tac not-sym, simp)

ultimately show False
by contradiction

next
assume Q: length ws < length (xs @ [y]) − n
have take (length (xs @ [y]) − n) (xs @ [y]) =

take (length (xs @ [y]) − n) (xs @ zs)
using P by simp

also have . . . = take (length (xs @ [y]) − n) (ws @ ys)
using I by simp

also have . . . = take (length (xs @ [y]) − n) ws @
take (length (xs @ [y]) − n − length ws) ys
(is - = - @ ?ys ′)

by simp
also have . . . = ws @ ?ys ′

using Q by simp
finally have take (length (xs @ [y]) − n) (xs @ [y]) = ws @ ?ys ′ .
moreover have ?ys ′ 6= []
using Q and H by simp

hence ∃ v vs. ?ys ′ = v # vs
by (cases ?ys ′, simp-all)

then obtain v and vs where ?ys ′ = v # vs
by blast

ultimately have S : take (length (xs @ [y]) − n) (xs @ [y]) = ws @ v # vs
by simp

hence (ws @ v # vs) @ [None] ∈ traces P
using O by (simp add: sentences-def)

101

hence ws @ v # vs ∈ traces P
by (rule process-rule-2-traces)

with C and F have T : v = None
by (rule seq-sentences-none)

have weakly-sequential P
using C by (rule seq-implies-weakly-seq)

moreover have take (length (xs @ [y]) − n) (xs @ [y]) ∈ sentences P
using O ..

ultimately have None /∈ set (take (length (xs @ [y]) − n) (xs @ [y]))
by (rule weakly-seq-sentences-none)

hence v 6= None
using S by (rule-tac not-sym, simp)

thus False
using T by contradiction

qed
hence (drop (length ws) (xs @ [y]), W) ∈ failures Q
using O by simp

hence (drop (length ws) xs @ [y], W) ∈ failures Q
(is (?xs ′ @ -, -) ∈ -)

using False by simp
hence ([y], W) ∈ futures Q ?xs ′

by (simp add: futures-def)
moreover have drop (length ws) (ws @ ys) = drop (length ws) (xs @ zs)
using I by simp

hence ys = ?xs ′ @ zs
using False by simp

hence (?xs ′ @ zs, Y) ∈ failures Q
using G by simp

hence (zs, Y) ∈ futures Q ?xs ′

by (simp add: futures-def)
ultimately have (y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)
∈ futures Q ?xs ′

using E by (simp add: secure-def)
hence (?xs ′ @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)
∈ failures Q

by (simp add: futures-def)
moreover have ?xs ′ @ y # ipurge-tr I D (D y) zs 6= []
by simp

ultimately have (ws @ ?xs ′ @ y # ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs Y) ∈ seq-comp-failures P Q

by (rule SCF-R3 [OF F])
hence ((ws @ ?xs ′) @ y # ipurge-tr I D (D y) zs,

ipurge-ref I D (D y) zs Y) ∈ seq-comp-failures P Q
by simp

moreover have xs = take (length ws) xs @ ?xs ′

by simp
hence xs = take (length ws) (xs @ zs) @ ?xs ′

using False by simp
hence xs = take (length ws) (ws @ ys) @ ?xs ′

102

using I by simp
hence xs = ws @ ?xs ′

by simp
ultimately show ?thesis
by simp

qed
qed

lemma seq-comp-secure-aux-2 [rule-format]:
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (ws, Z) ∈ seq-comp-failures P Q =⇒
ws = xs @ zs −→
(xs @ [y], {}) ∈ seq-comp-failures P Q −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
∈ seq-comp-failures P Q

proof (erule seq-comp-failures.induct, (rule-tac [!] impI)+, simp-all, (erule conjE)+)
fix X
assume
xs @ zs /∈ sentences P and
(xs @ zs, X) ∈ failures P and
None /∈ set xs and
None /∈ set zs and
(xs @ [y], {}) ∈ seq-comp-failures P Q

thus (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-2-case-1 [OF A C D])
next

fix X Y
assume
xs @ zs ∈ sentences P and
(xs @ zs, X) ∈ failures P and
([], Y) ∈ failures Q and
(xs @ [y], {}) ∈ seq-comp-failures P Q

thus (xs @ y # ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs (insert None X ∩ Y)) ∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-2-case-2 [OF A C D E])
next

fix ws ys Y
assume
ws ∈ sentences P and
(ys, Y) ∈ failures Q and
ys 6= [] and
ws @ ys = xs @ zs and
(xs @ [y], {}) ∈ seq-comp-failures P Q

103

thus (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)
∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-2-case-3 [OF A B C D E])
next

fix X Y
assume
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)

∈ seq-comp-failures P Q and
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Y)

∈ seq-comp-failures P Q
hence (xs @ y # ipurge-tr I D (D y) zs,

ipurge-ref I D (D y) zs X ∪ ipurge-ref I D (D y) zs Y)
∈ seq-comp-failures P Q

by (rule SCF-R4)
thus (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs (X ∪ Y))
∈ seq-comp-failures P Q

by (simp add: ipurge-ref-distrib-union)
qed

lemma seq-comp-secure-2 :
assumes

A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows (xs @ zs, Z) ∈ seq-comp-failures P Q =⇒
(xs @ [y], {}) ∈ seq-comp-failures P Q =⇒
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
∈ seq-comp-failures P Q

by (rule seq-comp-secure-aux-2 [OF A B C D E , where ws = xs @ zs], simp-all)

Finally, the target security conservation theorem can be enunciated and
proven, which is done here below. The theorem states that for any two
processes P, Q defined over the same alphabet containing successful termi-
nation, to which the noninterference policy I and the event-domain map D
apply, if:

• I and D enforce termination security,

• P is refusals union closed and sequential, and

• both P and Q are secure with respect to I and D,

then P ; Q is secure as well.

theorem seq-comp-secure:

104

assumes
A: secure-termination I D and
B: ref-union-closed P and
C : sequential P and
D: secure P I D and
E : secure Q I D

shows secure (P ; Q) I D
proof (simp add: secure-def seq-comp-futures seq-implies-weakly-seq [OF C],
(rule allI)+, rule impI , erule conjE)
fix xs y ys Y zs Z
assume

F : (xs @ y # ys, Y) ∈ seq-comp-failures P Q and
G: (xs @ zs, Z) ∈ seq-comp-failures P Q

show
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y)

∈ seq-comp-failures P Q ∧
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
∈ seq-comp-failures P Q

(is ?A ∧ ?B)
proof

show ?A
by (rule seq-comp-secure-1 [OF A B C D E F])

next
have H : weakly-sequential P
using C by (rule seq-implies-weakly-seq)

hence ((xs @ [y]) @ ys, Y) ∈ failures (P ; Q)
using F by (simp add: seq-comp-failures)

hence (xs @ [y], {}) ∈ failures (P ; Q)
by (rule process-rule-2-failures)

hence (xs @ [y], {}) ∈ seq-comp-failures P Q
using H by (simp add: seq-comp-failures)

thus ?B
by (rule seq-comp-secure-2 [OF A B C D E G])

qed
qed

2.5 Generalization of the security conservation theorem to
lists of processes

The target security conservation theorem, in the basic version just proven,
applies to the sequential composition of a pair of processes. However, given
an arbitrary list of processes where each process satisfies its assumptions,
the theorem could be orderly applied to the composition of the first two
processes in the list, then to the composition of the resulting process with
the third process in the list, and so on, until the last process is reached. The
final outcome would be that the sequential composition of all the processes
in the list is secure.
Of course, this argument works provided that the assumptions of the theo-

105

rem keep being satisfied by the composed processes produced in each step
of the recursion. But this is what indeed happens, by virtue of the conser-
vation of refusals union closure and sequentiality under sequential composi-
tion, proven previously, and of the conservation of security under sequential
composition, ensured by the target theorem itself.
Therefore, the target security conservation theorem can be generalized to an
arbitrary list of processes, which is done here below. The resulting theorem
states that for any nonempty list of processes defined over the same alphabet
containing successful termination, to which the noninterference policy I and
the event-domain map D apply, if:

• I and D enforce termination security,

• each process in the list, with the possible exception of the last one, is
refusals union closed and sequential, and

• each process in the list is secure with respect to I and D,

then the sequential composition of all the processes in the list is secure as
well.
As a precondition, the above conservation lemmas for weak sequentiality,
refusals union closure, and sequentiality are generalized, too.

lemma seq-comp-list-weakly-sequential [rule-format]:
(∀X ∈ set (P # PS). weakly-sequential X) −→

weakly-sequential (foldl (;) P PS)
proof (induction PS rule: rev-induct, simp, rule impI , simp, (erule conjE)+)
qed (rule seq-comp-weakly-sequential)

lemma seq-comp-list-ref-union-closed [rule-format]:
(∀X ∈ set (butlast (P # PS)). weakly-sequential X) −→
(∀X ∈ set (P # PS). ref-union-closed X) −→

ref-union-closed (foldl (;) P PS)
proof (induction PS rule: rev-induct, simp, (rule impI)+, simp, split if-split-asm,
simp, rule seq-comp-ref-union-closed, assumption+)
fix PS and Q :: ′a option process
assume

A: weakly-sequential P and
B: ∀X ∈ set PS . weakly-sequential X and
C : ref-union-closed Q and
D: (∀X ∈ set (P # butlast PS). weakly-sequential X) −→

ref-union-closed (foldl (;) P PS)
have weakly-sequential (foldl (;) P PS)
proof (rule seq-comp-list-weakly-sequential, simp, erule disjE , simp add: A)

fix X
assume X ∈ set PS
with B show weakly-sequential X ..

106

qed
moreover have ∀X ∈ set (P # butlast PS). weakly-sequential X
proof (rule ballI , simp, erule disjE , simp add: A)

fix X
assume X ∈ set (butlast PS)
hence X ∈ set PS
by (rule in-set-butlastD)

with B show weakly-sequential X ..
qed
with D have ref-union-closed (foldl (;) P PS) ..
ultimately show ref-union-closed (foldl (;) P PS ; Q)
using C by (rule seq-comp-ref-union-closed)

qed

lemma seq-comp-list-sequential [rule-format]:
(∀X ∈ set (P # PS). sequential X) −→

sequential (foldl (;) P PS)
proof (induction PS rule: rev-induct, simp, rule impI , simp, (erule conjE)+)
qed (rule seq-comp-sequential)

theorem seq-comp-list-secure [rule-format]:
assumes A: secure-termination I D
shows
(∀X ∈ set (butlast (P # PS)). ref-union-closed X ∧ sequential X) −→
(∀X ∈ set (P # PS). secure X I D) −→

secure (foldl (;) P PS) I D
proof (induction PS rule: rev-induct, simp, (rule impI)+, simp, split if-split-asm,
simp, rule seq-comp-secure [OF A], assumption+)
fix PS Q
assume

B: PS 6= [] and
C : ref-union-closed P and
D: sequential P and
E : ∀X ∈ set PS . ref-union-closed X ∧ sequential X and
F : secure Q I D and
G: (∀X ∈ set (P # butlast PS). ref-union-closed X ∧ sequential X) −→

secure (foldl (;) P PS) I D
have ref-union-closed (foldl (;) P PS)
proof (rule seq-comp-list-ref-union-closed, simp-all add: B, erule-tac [!] disjE ,
simp-all add: C)
show weakly-sequential P
using D by (rule seq-implies-weakly-seq)

next
fix X
assume X ∈ set (butlast PS)
hence X ∈ set PS
by (rule in-set-butlastD)

with E have ref-union-closed X ∧ sequential X ..
hence sequential X ..

107

thus weakly-sequential X
by (rule seq-implies-weakly-seq)

next
fix X
assume X ∈ set PS
with E have ref-union-closed X ∧ sequential X ..
thus ref-union-closed X ..

qed
moreover have sequential (foldl (;) P PS)
proof (rule seq-comp-list-sequential, simp, erule disjE , simp add: D)

fix X
assume X ∈ set PS
with E have ref-union-closed X ∧ sequential X ..
thus sequential X ..

qed
moreover have ∀X ∈ set (P # butlast PS). ref-union-closed X ∧ sequential X
proof (rule ballI , simp, erule disjE , simp add: C D)

fix X
assume X ∈ set (butlast PS)
hence X ∈ set PS
by (rule in-set-butlastD)

with E show ref-union-closed X ∧ sequential X ..
qed
with G have secure (foldl (;) P PS) I D ..
ultimately show secure (foldl (;) P PS ; Q) I D
using F by (rule seq-comp-secure [OF A])

qed

end

3 Necessity of nontrivial assumptions
theory Counterexamples
imports SequentialComposition
begin

The security conservation theorem proven in this paper contains two non-
trivial assumptions; namely, the security policy must satisfy predicate se-
cure-termination, and the first input process must satisfy predicate sequen-
tial instead of weakly-sequential alone. This section shows, by means of
counterexamples, that both of these assumptions are necessary for the the-
orem to hold.
In more detail, two counterexamples will be constructed: the former drops
the termination security assumption, whereas the latter drops the process
sequentiality assumption, replacing it with weak sequentiality alone. In both
cases, all the other assumptions of the theorem keep being satisfied.

108

Both counterexamples make use of reflexive security policies, which is the
case for any policy of practical significance, and are based on trace set pro-
cesses as defined in [9]. The security of the processes input to sequential
composition, as well as the insecurity of the resulting process, are demon-
strated by means of the Ipurge Unwinding Theorem proven in [9].

3.1 Preliminary definitions and lemmas

Both counterexamples will use the same type event as native type of ordi-
nary events, as well as the same process Q as second input to sequential
composition. Here below are the definitions of these constants, followed by
few useful lemmas on process Q.

datatype event = a | b

definition Q :: event option process where
Q ≡ ts-process {[], [Some b]}

lemma trace-set-snd:
trace-set {[], [Some b]}

by (simp add: trace-set-def)

lemmas failures-snd = ts-process-failures [OF trace-set-snd]

lemmas traces-snd = ts-process-traces [OF trace-set-snd]

lemmas next-events-snd = ts-process-next-events [OF trace-set-snd]

lemmas unwinding-snd = ts-ipurge-unwinding [OF trace-set-snd]

3.2 Necessity of termination security

The reason why the conservation of noninterference security under sequential
composition requires the security policy to satisfy predicate secure-termination
is that the second input process cannot engage in its events unless the first
process has terminated successfully. Thus, the ordinary events of the first
process can indirectly affect the events of the second process by affecting
the successful termination of the first process. Therefore, if an ordinary
event is allowed to affect successful termination, then the policy must al-
low it to affect any other event as well, which is exactly what predicate
secure-termination states.
A counterexample showing the necessity of this assumption can then be
constructed by defining a reflexive policy I 1 that allows event Some a to
affect None, but not Some b, and a deterministic process P1 that can engage
in None only after engaging in Some a. The resulting process P1 ; Q will

109

number [Some a, Some b], but not [Some b], among its traces, so that event
Some a affects the occurrence of event Some b in contrast with policy I 1,
viz. P1 ; Q is not secure with respect to I 1.
Here below are the definitions of constants I 1 and P1, followed by few useful
lemmas on process P1.

definition I 1 :: (event option × event option) set where
I 1 ≡ {(Some a, None)}=

definition P1 :: event option process where
P1 ≡ ts-process {[], [Some a], [Some a, None]}

lemma trace-set-fst-1 :
trace-set {[], [Some a], [Some a, None]}

by (simp add: trace-set-def)

lemmas failures-fst-1 = ts-process-failures [OF trace-set-fst-1]

lemmas traces-fst-1 = ts-process-traces [OF trace-set-fst-1]

lemmas next-events-fst-1 = ts-process-next-events [OF trace-set-fst-1]

lemmas unwinding-fst-1 = ts-ipurge-unwinding [OF trace-set-fst-1]

Here below is the proof that policy I 1 does not satisfy predicate secure-termination,
whereas the remaining assumptions of the security conservation theorem
keep being satisfied. For the sake of simplicity, the identity function is used
as event-domain map.

lemma not-secure-termination-1 :
¬ secure-termination I 1 id

proof (simp add: secure-termination-def I 1-def , rule exI [where x = Some a],
simp)

qed (rule exI [where x = Some b], simp)

lemma ref-union-closed-fst-1 :
ref-union-closed P1

by (rule d-implies-ruc, subst P1-def , rule ts-process-d, rule trace-set-fst-1)

lemma sequential-fst-1 :
sequential P1

proof (simp add: sequential-def sentences-def P1-def traces-fst-1)
qed (simp add: set-eq-iff next-events-fst-1)

lemma secure-fst-1 :
secure P1 I 1 id

110

proof (simp add: P1-def unwinding-fst-1 dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-fst-1 , (rule allI)+)
fix u xs ys
show
(xs = [] ∨ xs = [Some a] ∨ xs = [Some a, None]) ∧
(ys = [] ∨ ys = [Some a] ∨ ys = [Some a, None]) ∧
ipurge-tr-rev I 1 id u xs = ipurge-tr-rev I 1 id u ys −→

next-dom-events (ts-process {[], [Some a], [Some a, None]}) id u xs =
next-dom-events (ts-process {[], [Some a], [Some a, None]}) id u ys

proof (simp add: next-dom-events-def next-events-fst-1 , cases u)
case None
show
(xs = [] ∨ xs = [Some a] ∨ xs = [Some a, None]) ∧
(ys = [] ∨ ys = [Some a] ∨ ys = [Some a, None]) ∧
ipurge-tr-rev I 1 id u xs = ipurge-tr-rev I 1 id u ys −→
{x. u = x ∧ (xs = [] ∧ x = Some a ∨ xs = [Some a] ∧ x = None)} =
{x. u = x ∧ (ys = [] ∧ x = Some a ∨ ys = [Some a] ∧ x = None)}

by (simp add: I 1-def None, rule impI , (erule conjE)+,
(((erule disjE)+)?, simp)+)

next
case (Some v)
show
(xs = [] ∨ xs = [Some a] ∨ xs = [Some a, None]) ∧
(ys = [] ∨ ys = [Some a] ∨ ys = [Some a, None]) ∧
ipurge-tr-rev I 1 id u xs = ipurge-tr-rev I 1 id u ys −→
{x. u = x ∧ (xs = [] ∧ x = Some a ∨ xs = [Some a] ∧ x = None)} =
{x. u = x ∧ (ys = [] ∧ x = Some a ∨ ys = [Some a] ∧ x = None)}

by (simp add: I 1-def Some, rule impI , (erule conjE)+, cases v,
(((erule disjE)+)?, simp, blast?)+)

qed
qed

lemma secure-snd-1 :
secure Q I 1 id

proof (simp add: Q-def unwinding-snd dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-snd, (rule allI)+)
fix u xs ys
show
(xs = [] ∨ xs = [Some b]) ∧
(ys = [] ∨ ys = [Some b]) ∧
ipurge-tr-rev I 1 id u xs = ipurge-tr-rev I 1 id u ys −→

next-dom-events (ts-process {[], [Some b]}) id u xs =
next-dom-events (ts-process {[], [Some b]}) id u ys

proof (simp add: next-dom-events-def next-events-snd, cases u)
case None
show
(xs = [] ∨ xs = [Some b]) ∧
(ys = [] ∨ ys = [Some b]) ∧
ipurge-tr-rev I 1 id u xs = ipurge-tr-rev I 1 id u ys −→

111

{x. u = x ∧ xs = [] ∧ x = Some b} = {x. u = x ∧ ys = [] ∧ x = Some b}
by (simp add: None, rule impI , (erule conjE)+,
(((erule disjE)+)?, simp)+)

next
case (Some v)
show
(xs = [] ∨ xs = [Some b]) ∧
(ys = [] ∨ ys = [Some b]) ∧
ipurge-tr-rev I 1 id u xs = ipurge-tr-rev I 1 id u ys −→
{x. u = x ∧ xs = [] ∧ x = Some b} = {x. u = x ∧ ys = [] ∧ x = Some b}

by (simp add: I 1-def Some, rule impI , (erule conjE)+, cases v,
(((erule disjE)+)?, simp)+)

qed
qed

In what follows, the insecurity of process P1 ; Q is demonstrated by proving
that event list [Some a, Some b] is a trace of the process, whereas [Some b]
is not.

lemma traces-comp-1 :
traces (P1 ; Q) = Domain (seq-comp-failures P1 Q)

by (subst seq-comp-traces, rule seq-implies-weakly-seq, rule sequential-fst-1 , simp)

lemma ref-union-closed-comp-1 :
ref-union-closed (P1 ; Q)

proof (rule seq-comp-ref-union-closed, rule seq-implies-weakly-seq,
rule sequential-fst-1 , rule ref-union-closed-fst-1)

qed (rule d-implies-ruc, subst Q-def , rule ts-process-d, rule trace-set-snd)

lemma not-secure-comp-1-aux-aux-1 :
(xs, X) ∈ seq-comp-failures P1 Q =⇒ xs 6= [Some b]

proof (rule notI , erule rev-mp, erule seq-comp-failures.induct, (rule-tac [!] impI)+,
simp-all add: P1-def Q-def sentences-def)

qed (simp-all add: failures-fst-1 traces-fst-1)

lemma not-secure-comp-1-aux-1 :
[Some b] /∈ traces (P1 ; Q)

proof (simp add: traces-comp-1 Domain-iff , rule allI , rule notI)
qed (drule not-secure-comp-1-aux-aux-1 , simp)

lemma not-secure-comp-1-aux-2 :
[Some a, Some b] ∈ traces (P1 ; Q)

proof (simp add: traces-comp-1 Domain-iff , rule exI [where x = {}])
have [Some a] ∈ sentences P1

by (simp add: P1-def sentences-def traces-fst-1)
moreover have ([Some b], {}) ∈ failures Q
by (simp add: Q-def failures-snd)

moreover have [Some b] 6= []

112

by simp
ultimately have ([Some a] @ [Some b], {}) ∈ seq-comp-failures P1 Q
by (rule SCF-R3)

thus ([Some a, Some b], {}) ∈ seq-comp-failures P1 Q
by simp

qed

lemma not-secure-comp-1 :
¬ secure (P1 ; Q) I 1 id

proof (subst ipurge-unwinding, rule ref-union-closed-comp-1 , simp
add: fc-equals-wfc-rel-ipurge [symmetric] future-consistent-def rel-ipurge-def
del: disj-not1 , rule exI [where x = Some b], rule exI [where x = []], rule conjI)
show [] ∈ traces (P1 ; Q)
by (rule failures-traces [where X = {}], rule process-rule-1)

next
show ∃ ys. ys ∈ traces (P1 ; Q) ∧

ipurge-tr-rev I 1 id (Some b) [] = ipurge-tr-rev I 1 id (Some b) ys ∧
(next-dom-events (P1 ; Q) id (Some b) [] 6=

next-dom-events (P1 ; Q) id (Some b) ys ∨
ref-dom-events (P1 ; Q) id (Some b) [] 6=

ref-dom-events (P1 ; Q) id (Some b) ys)
proof (rule exI [where x = [Some a]], rule conjI , rule-tac [2] conjI ,
rule-tac [3] disjI1)
have [Some a] @ [Some b] ∈ traces (P1 ; Q)
by (simp add: not-secure-comp-1-aux-2)

thus [Some a] ∈ traces (P1 ; Q)
by (rule process-rule-2-traces)

next
show ipurge-tr-rev I 1 id (Some b) [] = ipurge-tr-rev I 1 id (Some b) [Some a]
by (simp add: I 1-def)

next
show
next-dom-events (P1 ; Q) id (Some b) [] 6=
next-dom-events (P1 ; Q) id (Some b) [Some a]

proof (simp add: next-dom-events-def next-events-def set-eq-iff ,
rule exI [where x = Some b], simp)

qed (simp add: not-secure-comp-1-aux-1 not-secure-comp-1-aux-2)
qed

qed

Here below, the previous results are used to show that constants I 1, P1,
Q, and id indeed constitute a counterexample to the statement obtained by
removing termination security from the assumptions of the security conser-
vation theorem.

lemma counterexample-1 :
¬ (ref-union-closed P1 ∧

sequential P1 ∧

113

secure P1 I 1 id ∧
secure Q I 1 id −→

secure (P1 ; Q) I 1 id)
proof (simp, simp only: conj-assoc [symmetric], (rule conjI)+)

show ref-union-closed P1

by (rule ref-union-closed-fst-1)
next

show sequential P1

by (rule sequential-fst-1)
next

show secure P1 I 1 id
by (rule secure-fst-1)

next
show secure Q I 1 id
by (rule secure-snd-1)

next
show ¬ secure (P1 ; Q) I 1 id
by (rule not-secure-comp-1)

qed

3.3 Necessity of process sequentiality

The reason why the conservation of noninterference security under sequen-
tial composition requires the first input process to satisfy predicate sequen-
tial, instead of the more permissive predicate weakly-sequential, is that the
possibility for the first process to engage in events alternative to success-
ful termination entails the possibility for the resulting process to engage in
events alternative to the initial ones of the second process. Namely, the
resulting process would admit some state in which events of the first process
can occur in alternative to events of the second process. But neither pro-
cess, though being secure on its own, will in general be prepared to handle
securely the alternative events added by the other process. Therefore, the
first process must not admit alternatives to successful termination, which is
exactly what predicate sequential states in addition to weakly-sequential.
A counterexample showing the necessity of this assumption can then be
constructed by defining a reflexive policy I 2 that does not allow event Some
b to affect Some a, and a deterministic process P2 that can engage in Some
a in alternative to None. The resulting process P2 ; Q will number both
[Some b] and [Some a], but not [Some b, Some a], among its traces, so that
event Some b affects the occurrence of event Some a in contrast with policy
I 2, viz. P2 ; Q is not secure with respect to I 2.
Here below are the definitions of constants I 2 and P2, followed by few useful
lemmas on process P2.

definition I 2 :: (event option × event option) set where
I 2 ≡ {(None, Some a)}=

114

definition P2 :: event option process where
P2 ≡ ts-process {[], [None], [Some a], [Some a, None]}

lemma trace-set-fst-2 :
trace-set {[], [None], [Some a], [Some a, None]}

by (simp add: trace-set-def)

lemmas failures-fst-2 = ts-process-failures [OF trace-set-fst-2]

lemmas traces-fst-2 = ts-process-traces [OF trace-set-fst-2]

lemmas next-events-fst-2 = ts-process-next-events [OF trace-set-fst-2]

lemmas unwinding-fst-2 = ts-ipurge-unwinding [OF trace-set-fst-2]

Here below is the proof that process P2 does not satisfy predicate sequential,
but rather predicate weakly-sequential only, whereas the remaining assump-
tions of the security conservation theorem keep being satisfied. For the sake
of simplicity, the identity function is used as event-domain map.

lemma secure-termination-2 :
secure-termination I 2 id

by (simp add: secure-termination-def I 2-def)

lemma ref-union-closed-fst-2 :
ref-union-closed P2

by (rule d-implies-ruc, subst P2-def , rule ts-process-d, rule trace-set-fst-2)

lemma weakly-sequential-fst-2 :
weakly-sequential P2

by (simp add: weakly-sequential-def P2-def traces-fst-2)

lemma not-sequential-fst-2 :
¬ sequential P2

proof (simp add: sequential-def , rule disjI2 , rule bexI [where x = []])
show next-events P2 [] 6= {None}
proof (rule notI , drule eqset-imp-iff [where x = Some a], simp)
qed (simp add: P2-def next-events-fst-2)

next
show [] ∈ sentences P2

by (simp add: sentences-def P2-def traces-fst-2)
qed

lemma secure-fst-2 :
secure P2 I 2 id

proof (simp add: P2-def unwinding-fst-2 dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-fst-2 , (rule allI)+)

115

fix u xs ys
show
(xs = [] ∨ xs = [None] ∨ xs = [Some a] ∨ xs = [Some a, None]) ∧
(ys = [] ∨ ys = [None] ∨ ys = [Some a] ∨ ys = [Some a, None]) ∧
ipurge-tr-rev I 2 id u xs = ipurge-tr-rev I 2 id u ys −→

next-dom-events (ts-process {[], [None], [Some a], [Some a, None]}) id u xs =
next-dom-events (ts-process {[], [None], [Some a], [Some a, None]}) id u ys

proof (simp add: next-dom-events-def next-events-fst-2 , cases u)
case None
show
(xs = [] ∨ xs = [None] ∨ xs = [Some a] ∨ xs = [Some a, None]) ∧
(ys = [] ∨ ys = [None] ∨ ys = [Some a] ∨ ys = [Some a, None]) ∧
ipurge-tr-rev I 2 id u xs = ipurge-tr-rev I 2 id u ys −→
{x. u = x ∧ (xs = [] ∧ x = None ∨ xs = [] ∧ x = Some a ∨

xs = [Some a] ∧ x = None)} =
{x. u = x ∧ (ys = [] ∧ x = None ∨ ys = [] ∧ x = Some a ∨

ys = [Some a] ∧ x = None)}
by (simp add: I 2-def None, rule impI , (erule conjE)+,
(((erule disjE)+)?, simp, blast?)+)

next
case (Some v)
show
(xs = [] ∨ xs = [None] ∨ xs = [Some a] ∨ xs = [Some a, None]) ∧
(ys = [] ∨ ys = [None] ∨ ys = [Some a] ∨ ys = [Some a, None]) ∧
ipurge-tr-rev I 2 id u xs = ipurge-tr-rev I 2 id u ys −→
{x. u = x ∧ (xs = [] ∧ x = None ∨ xs = [] ∧ x = Some a ∨

xs = [Some a] ∧ x = None)} =
{x. u = x ∧ (ys = [] ∧ x = None ∨ ys = [] ∧ x = Some a ∨

ys = [Some a] ∧ x = None)}
by (simp add: I 2-def Some, rule impI , (erule conjE)+, cases v,
(((erule disjE)+)?, simp, blast?)+)

qed
qed

lemma secure-snd-2 :
secure Q I 2 id

proof (simp add: Q-def unwinding-snd dfc-equals-dwfc-rel-ipurge [symmetric]
d-future-consistent-def rel-ipurge-def traces-snd, (rule allI)+)
fix u xs ys
show
(xs = [] ∨ xs = [Some b]) ∧
(ys = [] ∨ ys = [Some b]) ∧
ipurge-tr-rev I 2 id u xs = ipurge-tr-rev I 2 id u ys −→

next-dom-events (ts-process {[], [Some b]}) id u xs =
next-dom-events (ts-process {[], [Some b]}) id u ys

proof (simp add: next-dom-events-def next-events-snd, cases u)
case None
show
(xs = [] ∨ xs = [Some b]) ∧

116

(ys = [] ∨ ys = [Some b]) ∧
ipurge-tr-rev I 2 id u xs = ipurge-tr-rev I 2 id u ys −→
{x. u = x ∧ xs = [] ∧ x = Some b} = {x. u = x ∧ ys = [] ∧ x = Some b}

by (simp add: None, rule impI , (erule conjE)+,
(((erule disjE)+)?, simp)+)

next
case (Some v)
show
(xs = [] ∨ xs = [Some b]) ∧
(ys = [] ∨ ys = [Some b]) ∧
ipurge-tr-rev I 2 id u xs = ipurge-tr-rev I 2 id u ys −→
{x. u = x ∧ xs = [] ∧ x = Some b} = {x. u = x ∧ ys = [] ∧ x = Some b}

by (simp add: I 2-def Some, rule impI , (erule conjE)+, cases v,
(((erule disjE)+)?, simp)+)

qed
qed

In what follows, the insecurity of process P2 ; Q is demonstrated by proving
that event lists [Some b] and [Some a] are traces of the process, whereas
[Some b, Some a] is not.

lemma traces-comp-2 :
traces (P2 ; Q) = Domain (seq-comp-failures P2 Q)

by (subst seq-comp-traces, rule weakly-sequential-fst-2 , simp)

lemma ref-union-closed-comp-2 :
ref-union-closed (P2 ; Q)

proof (rule seq-comp-ref-union-closed, rule weakly-sequential-fst-2 ,
rule ref-union-closed-fst-2)

qed (rule d-implies-ruc, subst Q-def , rule ts-process-d, rule trace-set-snd)

lemma not-secure-comp-2-aux-aux-1 :
(xs, X) ∈ seq-comp-failures P2 Q =⇒ xs 6= [Some b, Some a]

proof (rule notI , erule rev-mp, erule seq-comp-failures.induct, (rule-tac [!] impI)+,
simp-all add: P2-def Q-def sentences-def)

qed (simp-all add: failures-fst-2 traces-fst-2 failures-snd)

lemma not-secure-comp-2-aux-1 :
[Some b, Some a] /∈ traces (P2 ; Q)

proof (simp add: traces-comp-2 Domain-iff , rule allI , rule notI)
qed (drule not-secure-comp-2-aux-aux-1 , simp)

lemma not-secure-comp-2-aux-2 :
[Some a] ∈ traces (P2 ; Q)

proof (simp add: traces-comp-2 Domain-iff , rule exI [where x = {}])
have [Some a] ∈ sentences P2

by (simp add: P2-def sentences-def traces-fst-2)
moreover have ([Some a], {}) ∈ failures P2

117

by (simp add: P2-def failures-fst-2)
moreover have ([], {}) ∈ failures Q
by (simp add: Q-def failures-snd)

ultimately have ([Some a], insert None {} ∩ {}) ∈ seq-comp-failures P2 Q
by (rule SCF-R2)

thus ([Some a], {}) ∈ seq-comp-failures P2 Q
by simp

qed

lemma not-secure-comp-2-aux-3 :
[Some b] ∈ traces (P2 ; Q)

proof (simp add: traces-comp-2 Domain-iff , rule exI [where x = {}])
have [] ∈ sentences P2

by (simp add: P2-def sentences-def traces-fst-2)
moreover have ([Some b], {}) ∈ failures Q
by (simp add: Q-def failures-snd)

moreover have [Some b] 6= []
by simp

ultimately have ([] @ [Some b], {}) ∈ seq-comp-failures P2 Q
by (rule SCF-R3)

thus ([Some b], {}) ∈ seq-comp-failures P2 Q
by simp

qed

lemma not-secure-comp-2 :
¬ secure (P2 ; Q) I 2 id

proof (subst ipurge-unwinding, rule ref-union-closed-comp-2 , simp
add: fc-equals-wfc-rel-ipurge [symmetric] future-consistent-def rel-ipurge-def
del: disj-not1 , rule exI [where x = Some a], rule exI [where x = []], rule conjI)
show [] ∈ traces (P2 ; Q)
by (rule failures-traces [where X = {}], rule process-rule-1)

next
show ∃ ys. ys ∈ traces (P2 ; Q) ∧

ipurge-tr-rev I 2 id (Some a) [] = ipurge-tr-rev I 2 id (Some a) ys ∧
(next-dom-events (P2 ; Q) id (Some a) [] 6=

next-dom-events (P2 ; Q) id (Some a) ys ∨
ref-dom-events (P2 ; Q) id (Some a) [] 6=

ref-dom-events (P2 ; Q) id (Some a) ys)
proof (rule exI [where x = [Some b]], rule conjI , rule-tac [2] conjI ,
rule-tac [3] disjI1)
show [Some b] ∈ traces (P2 ; Q)
by (rule not-secure-comp-2-aux-3)

next
show ipurge-tr-rev I 2 id (Some a) [] = ipurge-tr-rev I 2 id (Some a) [Some b]
by (simp add: I 2-def)

next
show
next-dom-events (P2 ; Q) id (Some a) [] 6=
next-dom-events (P2 ; Q) id (Some a) [Some b]

118

proof (simp add: next-dom-events-def next-events-def set-eq-iff ,
rule exI [where x = Some a], simp)

qed (simp add: not-secure-comp-2-aux-1 not-secure-comp-2-aux-2)
qed

qed

Here below, the previous results are used to show that constants I 2, P2,
Q, and id indeed constitute a counterexample to the statement obtained by
replacing process sequentiality with weak sequentiality in the assumptions
of the security conservation theorem.

lemma counterexample-2 :
¬ (secure-termination I 2 id ∧

ref-union-closed P2 ∧
weakly-sequential P2 ∧
secure P2 I 2 id ∧
secure Q I 2 id −→

secure (P2 ; Q) I 2 id)
proof (simp, simp only: conj-assoc [symmetric], (rule conjI)+)

show secure-termination I 2 id
by (rule secure-termination-2)

next
show ref-union-closed P2

by (rule ref-union-closed-fst-2)
next

show weakly-sequential P2

by (rule weakly-sequential-fst-2)
next

show secure P2 I 2 id
by (rule secure-fst-2)

next
show secure Q I 2 id
by (rule secure-snd-2)

next
show ¬ secure (P2 ; Q) I 2 id
by (rule not-secure-comp-2)

qed

end

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

119

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, Feb.
2016. http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/
doc/prog-prove.pdf.

[5] T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL.
Springer, 2014. http://www.concrete-semantics.org/concrete-semantics.
pdf.

[6] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, Feb. 2016. http://isabelle.in.tum.de/
website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf.

[7] P. Noce. A general method for the proof of theorems on tail-recursive
functions. Archive of Formal Proofs, Dec. 2013. http://isa-afp.org/
entries/Tail_Recursive_Functions.shtml, Formal proof development.

[8] P. Noce. Noninterference security in communicating sequential pro-
cesses. Archive of Formal Proofs, May 2014. http://isa-afp.org/entries/
Noninterference_CSP.shtml, Formal proof development.

[9] P. Noce. The ipurge unwinding theorem for csp noninterference secu-
rity. Archive of Formal Proofs, June 2015. http://isa-afp.org/entries/
Noninterference_Ipurge_Unwinding.shtml, Formal proof development.

120

http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/prog-prove.pdf
http://www.concrete-semantics.org/concrete-semantics.pdf
http://www.concrete-semantics.org/concrete-semantics.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2016/dist/Isabelle2016/doc/tutorial.pdf
http://isa-afp.org/entries/Tail_Recursive_Functions.shtml
http://isa-afp.org/entries/Tail_Recursive_Functions.shtml
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/Noninterference_Ipurge_Unwinding.shtml
http://isa-afp.org/entries/Noninterference_Ipurge_Unwinding.shtml

	Propaedeutic definitions and lemmas
	Preliminary propaedeutic lemmas
	Intransitive purge of event sets with trivial base case
	Closure of the failures of a secure process under intransitive purge
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Additional propaedeutic lemmas

	Sequential composition and noninterference security
	Sequential processes
	Sequential composition
	Conservation of refusals union closure and sequentiality under sequential composition
	Conservation of noninterference security under sequential composition
	Generalization of the security conservation theorem to lists of processes

	Necessity of nontrivial assumptions
	Preliminary definitions and lemmas
	Necessity of termination security
	Necessity of process sequentiality

