
The Ipurge Unwinding Theorem
for CSP Noninterference Security

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A.

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjowiggins-it dot com

September 13, 2023

Abstract
The definition of noninterference security for Communicating Se-

quential Processes requires to consider any possible future, i.e. any
indefinitely long sequence of subsequent events and any indefinitely
large set of refused events associated to that sequence, for each process
trace. In order to render the verification of the security of a process
more straightforward, there is a need of some sufficient condition for
security such that just individual accepted and refused events, rather
than unbounded sequences and sets of events, have to be considered.

Of course, if such a sufficient condition were necessary as well, it
would be even more valuable, since it would permit to prove not only
that a process is secure by verifying that the condition holds, but also
that a process is not secure by verifying that the condition fails to hold.

This paper provides a necessary and sufficient condition for CSP
noninterference security, which indeed requires to just consider indi-
vidual accepted and refused events and applies to the general case of
a possibly intransitive policy. This condition follows Rushby’s output
consistency for deterministic state machines with outputs, and has to
be satisfied by a specific function mapping security domains into equiv-
alence relations over process traces. The definition of this function
makes use of an intransitive purge function following Rushby’s one;
hence the name given to the condition, Ipurge Unwinding Theorem.

Furthermore, in accordance with Hoare’s formal definition of de-
terministic processes, it is shown that a process is deterministic just
in case it is a trace set process, i.e. it may be identified by means of
a trace set alone, matching the set of its traces, in place of a failures-
divergences pair. Then, variants of the Ipurge Unwinding Theorem are
proven for deterministic processes and trace set processes.

Contents
1 The Ipurge Unwinding Theorem in its general form 2

1

1.1 Propaedeutic definitions and lemmas 3
1.2 Additional intransitive purge functions and their properties . 7
1.3 A domain-relation map based on intransitive purge 13
1.4 The Ipurge Unwinding Theorem: proof of condition sufficiency 14
1.5 The Ipurge Unwinding Theorem: proof of condition necessity 16

2 The Ipurge Unwinding Theorem for deterministic and trace
set processes 17
2.1 Deterministic processes . 17
2.2 Trace set processes . 19

1 The Ipurge Unwinding Theorem in its general
form

theory IpurgeUnwinding
imports Noninterference-CSP.CSPNoninterference List-Interleaving.ListInterleaving
begin

The definition of noninterference security for Communicating Sequential
Processes given in [6] requires to consider any possible future, i.e. any indef-
initely long sequence of subsequent events and any indefinitely large set of
refused events associated to that sequence, for each process trace. In order
to render the verification of the security of a process more straightforward,
there is a need of some sufficient condition for security such that just indi-
vidual accepted and refused events, rather than unbounded sequences and
sets of events, have to be considered.
Of course, if such a sufficient condition were necessary as well, it would be
even more valuable, since it would permit to prove not only that a process
is secure by verifying that the condition holds, but also that a process is not
secure by verifying that the condition fails to hold.
This section provides a necessary and sufficient condition for CSP noninter-
ference security, which indeed requires to just consider individual accepted
and refused events and applies to the general case of a possibly intransitive
policy. This condition follows Rushby’s output consistency for determin-
istic state machines with outputs [8], and has to be satisfied by a specific
function mapping security domains into equivalence relations over process
traces. The definition of this function makes use of an intransitive purge
function following Rushby’s one; hence the name given to the condition,
Ipurge Unwinding Theorem.
The contents of this paper are based on those of [6]. The salient points of
definitions and proofs are commented; for additional information, cf. Isabelle
documentation, particularly [5], [4], [3], and [2].

2

For the sake of brevity, given a function F of type ′a1 ⇒ . . . ⇒ ′am ⇒ ′am+1

⇒ . . . ⇒ ′an ⇒ ′b, the explanatory text may discuss of F using attributes
that would more exactly apply to a term of type ′am+1 ⇒ . . . ⇒ ′an ⇒ ′b.
In this case, it shall be understood that strictly speaking, such attributes
apply to a term matching pattern F a1 . . . am.

1.1 Propaedeutic definitions and lemmas

The definition of CSP noninterference security formulated in [6] requires that
some sets of events be refusals, i.e. sets of refused events, for some traces.
Therefore, a sufficient condition for security just involving individual refused
events will require that some single events be refused, viz. form singleton
refusals, after the occurrence of some traces. However, such a statement may
actually be a sufficient condition for security just in the case of a process
such that the union of any set of singleton refusals for a given trace is itself
a refusal for that trace.
This turns out to be true if and only if the union of any set A of refusals,
not necessarily singletons, is still a refusal. The direct implication is trivial.
As regards the converse one, let A’ be the set of the singletons included in
some element of A. Then, each element of A’ is a singleton refusal by virtue
of rule [[(?xs, ?Y) ∈ failures ?P; ?X ⊆ ?Y]] =⇒ (?xs, ?X) ∈ failures ?P,
so that the union of the elements of A’, which is equal to the union of the
elements of A, is a refusal by hypothesis.
This property, henceforth referred to as refusals union closure and formal-
ized in what follows, clearly holds for any process admitting a meaningful
interpretation, as it would be a nonsense, in the case of a process modeling a
real system, to say that some sets of events are refused after the occurrence
of a trace, but their union is not. Thus, taking the refusals union closure of
the process as an assumption for the equivalence between process security
and a given condition, as will be done in the Ipurge Unwinding Theorem,
does not give rise to any actual limitation on the applicability of such a
result.
As for predicates view partition and future consistent, defined here below as
well, they translate Rushby’s predicates view-partitioned and output consis-
tent [8], applying to deterministic state machines with outputs, into Hoare’s
Communicating Sequential Processes model of computation [1]. The reason
for the verbal difference between the active form of predicate view partition
and the passive form of predicate view-partitioned is that the implied subject
of the former is a domain-relation map rather than a process, whose homol-
ogous in [8], viz. a machine, is the implied subject of the latter predicate
instead.
More remarkably, the formal differences with respect to Rushby’s original
predicates are the following ones:

3

• The relations in the range of the domain-relation map hold between
event lists rather than machine states.

• The domains appearing as inputs of the domain-relation map do not
unnecessarily encompass all the possible values of the data type of
domains, but just the domains in the range of the event-domain map.

• The equality of the outputs in domain u produced by machine states
equivalent for u, as required by output consistency, is replaced by the
equality of the events in domain u accepted or refused after the occur-
rence of event lists equivalent for u; hence the name of the property,
future consistency.

An additional predicate, weakly future consistent, renders future consistency
less strict by requiring the equality of subsequent accepted and refused events
to hold only for event domains not allowed to be affected by some event
domain.

type-synonym (′a, ′d) dom-rel-map = ′d ⇒ (′a list × ′a list) set

type-synonym (′a, ′d) domset-rel-map = ′d set ⇒ (′a list × ′a list) set

definition ref-union-closed :: ′a process ⇒ bool where
ref-union-closed P ≡
∀ xs A. (∃X . X ∈ A) −→ (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

definition view-partition ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

view-partition P D R ≡ ∀ u ∈ range D. equiv (traces P) (R u)

definition next-dom-events ::
′a process ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a set where

next-dom-events P D u xs ≡ {x. u = D x ∧ x ∈ next-events P xs}

definition ref-dom-events ::
′a process ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a set where

ref-dom-events P D u xs ≡ {x. u = D x ∧ {x} ∈ refusals P xs}

definition future-consistent ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

future-consistent P D R ≡
∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

definition weakly-future-consistent ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

4

weakly-future-consistent P I D R ≡
∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

Here below are some lemmas propaedeutic for the proof of the Ipurge Un-
winding Theorem, just involving constants defined in [6].

lemma process-rule-2-traces:
xs @ xs ′ ∈ traces P =⇒ xs ∈ traces P
〈proof 〉

lemma process-rule-4 [rule-format]:
(xs, X) ∈ failures P −→ (xs @ [x], {}) ∈ failures P ∨ (xs, insert x X) ∈ failures

P
〈proof 〉

lemma failures-traces:
(xs, X) ∈ failures P =⇒ xs ∈ traces P
〈proof 〉

lemma traces-failures:
xs ∈ traces P =⇒ (xs, {}) ∈ failures P
〈proof 〉

lemma sinks-interference [rule-format]:
D x ∈ sinks I D u xs −→
(u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)

〈proof 〉

lemma sinks-interference-eq:
((u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)) =
(D x ∈ sinks I D u (xs @ [x]))

〈proof 〉

In what follows, some lemmas concerning the constants defined above are
proven.
In the definition of predicate ref-union-closed, the conclusion that the union
of a set of refusals is itself a refusal for the same trace is subordinated to the
condition that the set of refusals be nonempty. The first lemma shows that
in the absence of this condition, the predicate could only be satisfied by a
process admitting any event list as a trace, which proves that the condition
must be present for the definition to be correct.
The subsequent lemmas prove that, for each domain u in the ranges respec-
tively taken into consideration, the image of u under a future consistent or

5

weakly future consistent domain-relation map may only correlate a pair of
event lists such that either both are traces, or both are not traces. Finally,
it is demonstrated that future consistency implies weak future consistency.

lemma
assumes A: ∀ xs A. (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

shows ∀ xs. xs ∈ traces P
〈proof 〉

lemma traces-dom-events:
assumes A: u ∈ range D
shows xs ∈ traces P =
(next-dom-events P D u xs ∪ ref-dom-events P D u xs 6= {})
(is - = (?S 6= {}))

〈proof 〉

lemma fc-traces:
assumes

A: future-consistent P D R and
B: u ∈ range D and
C : (xs, ys) ∈ R u

shows (xs ∈ traces P) = (ys ∈ traces P)
〈proof 〉

lemma wfc-traces:
assumes

A: weakly-future-consistent P I D R and
B: u ∈ range D ∩ (−I) ‘‘ range D and
C : (xs, ys) ∈ R u

shows (xs ∈ traces P) = (ys ∈ traces P)
〈proof 〉

lemma fc-implies-wfc:
future-consistent P D R =⇒ weakly-future-consistent P I D R
〈proof 〉

Finally, the definition is given of an auxiliary function singleton-set, whose
output is the set of the singleton subsets of a set taken as input, and then
some basic properties of this function are proven.

definition singleton-set :: ′a set ⇒ ′a set set where
singleton-set X ≡ {Y . ∃ x ∈ X . Y = {x}}

lemma singleton-set-some:
(∃Y . Y ∈ singleton-set X) = (∃ x. x ∈ X)
〈proof 〉

6

lemma singleton-set-union:
(
⋃

Y ∈ singleton-set X . Y) = X
〈proof 〉

1.2 Additional intransitive purge functions and their prop-
erties

Functions sinks-aux, ipurge-tr-aux, and ipurge-ref-aux, defined here below,
are auxiliary versions of functions sinks, ipurge-tr, and ipurge-ref taking
as input a set of domains rather than a single domain. As shown below,
these functions are useful for the study of single domain ones, involved in
the definition of CSP noninterference security [6], since they distribute over
list concatenation, while being susceptible to be expressed in terms of the
corresponding single domain functions in case the input set of domains is a
singleton.
A further function, unaffected-domains, takes as inputs a set of domains U
and an event list xs, and outputs the set of the event domains not allowed
to be affected by U after the occurrence of xs.

function sinks-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

sinks-aux - - U [] = U |
sinks-aux I D U (xs @ [x]) = (if ∃ v ∈ sinks-aux I D U xs. (v, D x) ∈ I

then insert (D x) (sinks-aux I D U xs)
else sinks-aux I D U xs)

〈proof 〉
termination 〈proof 〉

function ipurge-tr-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list where

ipurge-tr-aux - - - [] = [] |
ipurge-tr-aux I D U (xs @ [x]) = (if ∃ v ∈ sinks-aux I D U xs. (v, D x) ∈ I

then ipurge-tr-aux I D U xs
else ipurge-tr-aux I D U xs @ [x])

〈proof 〉
termination 〈proof 〉

definition ipurge-ref-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a set where

ipurge-ref-aux I D U xs X ≡
{x ∈ X . ∀ v ∈ sinks-aux I D U xs. (v, D x) /∈ I}

definition unaffected-domains ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

unaffected-domains I D U xs ≡
{u ∈ range D. ∀ v ∈ sinks-aux I D U xs. (v, u) /∈ I}

7

Function ipurge-tr-rev, defined here below in terms of function sources, is the
reverse of function ipurge-tr with regard to both the order in which events
are considered, and the criterion by which they are purged.
In some detail, both functions sources and ipurge-tr-rev take as inputs a
domain u and an event list xs, whose recursive decomposition is performed
by item prepending rather than appending. Then:

• sources outputs the set of the domains of the events in xs allowed to
affect u;

• ipurge-tr-rev outputs the sublist of xs obtained by recursively deleting
the events not allowed to affect u, as detected via function sources.

In other words, these functions follow Rushby’s ones sources and ipurge [8],
formalized in [6] as c-sources and c-ipurge. The only difference consists of
dropping the implicit supposition that the noninterference policy be reflex-
ive, as done in the definition of CPS noninterference security [6]. This goal
is achieved by defining the output of function sources, when it is applied to
the empty list, as being the empty set rather than the singleton comprised
of the input domain.
As for functions sources-aux and ipurge-tr-rev-aux, they are auxiliary ver-
sions of functions sources and ipurge-tr-rev taking as input a set of domains
rather than a single domain. As shown below, these functions distribute
over list concatenation, while being susceptible to be expressed in terms of
the corresponding single domain functions in case the input set of domains
is a singleton.

primrec sources :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′d set where
sources - - - [] = {} |
sources I D u (x # xs) =
(if (D x, u) ∈ I ∨ (∃ v ∈ sources I D u xs. (D x, v) ∈ I)
then insert (D x) (sources I D u xs)
else sources I D u xs)

primrec ipurge-tr-rev :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a list where
ipurge-tr-rev - - - [] = [] |
ipurge-tr-rev I D u (x # xs) = (if D x ∈ sources I D u (x # xs)

then x # ipurge-tr-rev I D u xs
else ipurge-tr-rev I D u xs)

primrec sources-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

sources-aux - - U [] = U |
sources-aux I D U (x # xs) = (if ∃ v ∈ sources-aux I D U xs. (D x, v) ∈ I

8

then insert (D x) (sources-aux I D U xs)
else sources-aux I D U xs)

primrec ipurge-tr-rev-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list where

ipurge-tr-rev-aux - - - [] = [] |
ipurge-tr-rev-aux I D U (x # xs) = (if ∃ v ∈ sources-aux I D U xs. (D x, v) ∈ I

then x # ipurge-tr-rev-aux I D U xs
else ipurge-tr-rev-aux I D U xs)

Here below are some lemmas on functions sinks-aux, ipurge-tr-aux, ipurge-ref-aux,
and unaffected-domains. As anticipated above, these lemmas essentially con-
cern distributivity over list concatenation and expressions in terms of single
domain functions in the degenerate case of a singleton set of domains.

lemma sinks-aux-subset:
U ⊆ sinks-aux I D U xs
〈proof 〉

lemma sinks-aux-single-dom:
sinks-aux I D {u} xs = insert u (sinks I D u xs)
〈proof 〉

lemma sinks-aux-single-event:
sinks-aux I D U [x] = (if ∃ v ∈ U . (v, D x) ∈ I

then insert (D x) U
else U)

〈proof 〉

lemma sinks-aux-cons:
sinks-aux I D U (x # xs) = (if ∃ v ∈ U . (v, D x) ∈ I

then sinks-aux I D (insert (D x) U) xs
else sinks-aux I D U xs)

〈proof 〉

lemma ipurge-tr-aux-single-dom:
ipurge-tr-aux I D {u} xs = ipurge-tr I D u xs
〈proof 〉

lemma ipurge-ref-aux-single-dom:
ipurge-ref-aux I D {u} xs X = ipurge-ref I D u xs X
〈proof 〉

lemma ipurge-ref-aux-all [rule-format]:
(∀ u ∈ U . ¬ (∃ v ∈ D ‘ (X ∪ set xs). (u, v) ∈ I)) −→
ipurge-ref-aux I D U xs X = X

〈proof 〉

9

lemma ipurge-ref-all:
¬ (∃ v ∈ D ‘ (X ∪ set xs). (u, v) ∈ I) =⇒ ipurge-ref I D u xs X = X
〈proof 〉

lemma unaffected-domains-single-dom:
{x ∈ X . D x ∈ unaffected-domains I D {u} xs} = ipurge-ref I D u xs X
〈proof 〉

Here below are some lemmas on functions sources, ipurge-tr-rev, sources-aux,
and ipurge-tr-rev-aux. As anticipated above, the lemmas on the last two
functions basically concern distributivity over list concatenation and ex-
pressions in terms of single domain functions in the degenerate case of a
singleton set of domains.

lemma sources-sinks:
sources I D u xs = sinks (I−1) D u (rev xs)
〈proof 〉

lemma sources-sinks-aux:
sources-aux I D U xs = sinks-aux (I−1) D U (rev xs)
〈proof 〉

lemma sources-aux-subset:
U ⊆ sources-aux I D U xs
〈proof 〉

lemma sources-aux-append:
sources-aux I D U (xs @ ys) = sources-aux I D (sources-aux I D U ys) xs
〈proof 〉

lemma sources-aux-append-nil [rule-format]:
sources-aux I D U ys = U −→
sources-aux I D U (xs @ ys) = sources-aux I D U xs

〈proof 〉

lemma ipurge-tr-rev-aux-append:
ipurge-tr-rev-aux I D U (xs @ ys) =
ipurge-tr-rev-aux I D (sources-aux I D U ys) xs @ ipurge-tr-rev-aux I D U ys

〈proof 〉

lemma ipurge-tr-rev-aux-nil-1 [rule-format]:
ipurge-tr-rev-aux I D U xs = [] −→ (∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (v, u) ∈ I))
〈proof 〉

lemma ipurge-tr-rev-aux-nil-2 [rule-format]:
(∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (v, u) ∈ I)) −→ ipurge-tr-rev-aux I D U xs = []
〈proof 〉

10

lemma ipurge-tr-rev-aux-nil:
(ipurge-tr-rev-aux I D U xs = []) = (∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (v, u) ∈ I))
〈proof 〉

lemma ipurge-tr-rev-aux-nil-sources [rule-format]:
ipurge-tr-rev-aux I D U xs = [] −→ sources-aux I D U xs = U
〈proof 〉

lemma ipurge-tr-rev-aux-append-nil-1 [rule-format]:
ipurge-tr-rev-aux I D U ys = [] −→
ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs

〈proof 〉

lemma ipurge-tr-rev-aux-first [rule-format]:
ipurge-tr-rev-aux I D U xs = x # ws −→
(∃ ys zs. xs = ys @ x # zs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I))

〈proof 〉

lemma ipurge-tr-rev-aux-last-1 [rule-format]:
ipurge-tr-rev-aux I D U xs = ws @ [x] −→ (∃ v ∈ U . (D x, v) ∈ I)
〈proof 〉

lemma ipurge-tr-rev-aux-last-2 [rule-format]:
ipurge-tr-rev-aux I D U xs = ws @ [x] −→
(∃ ys zs. xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D U zs = [])

〈proof 〉

lemma ipurge-tr-rev-aux-all [rule-format]:
(∀ v ∈ D ‘ set xs. ∃ u ∈ U . (v, u) ∈ I) −→ ipurge-tr-rev-aux I D U xs = xs
〈proof 〉

Here below, further properties of the functions defined above are investigated
thanks to the introduction of function offset, which searches a list for a given
item and returns the offset of its first occurrence, if any, from the first item
of the list.

primrec offset :: nat ⇒ ′a ⇒ ′a list ⇒ nat option where
offset - - [] = None |
offset n x (y # ys) = (if y = x then Some n else offset (Suc n) x ys)

lemma offset-not-none-1 [rule-format]:
offset k x xs 6= None −→ (∃ ys zs. xs = ys @ x # zs)
〈proof 〉

lemma offset-not-none-2 [rule-format]:

11

xs = ys @ x # zs −→ offset k x xs 6= None
〈proof 〉

lemma offset-not-none:
(offset k x xs 6= None) = (∃ ys zs. xs = ys @ x # zs)
〈proof 〉

lemma offset-addition [rule-format]:
offset k x xs 6= None −→ offset (n + m) x xs = Some (the (offset n x xs) + m)
〈proof 〉

lemma offset-suc:
assumes A: offset k x xs 6= None
shows offset (Suc n) x xs = Some (Suc (the (offset n x xs)))

〈proof 〉

lemma ipurge-tr-rev-aux-first-offset [rule-format]:
xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧

(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I) −→
ys = take (the (offset 0 x xs)) xs

〈proof 〉

lemma ipurge-tr-rev-aux-append-nil-2 [rule-format]:
ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D V xs −→
ipurge-tr-rev-aux I D U ys = []

〈proof 〉

lemma ipurge-tr-rev-aux-append-nil:
(ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs) =
(ipurge-tr-rev-aux I D U ys = [])

〈proof 〉

In what follows, it is proven by induction that the lists output by func-
tions ipurge-tr and ipurge-tr-rev, as well as those output by ipurge-tr-aux
and ipurge-tr-rev-aux, satisfy predicate Interleaves (cf. [7]), in correspon-
dence with suitable input predicates expressed in terms of functions sinks
and sinks-aux, respectively. Then, some lemmas on the aforesaid functions
are demonstrated without induction, using previous lemmas along with the
properties of predicate Interleaves.

lemma Interleaves-ipurge-tr :
xs ∼= {ipurge-tr-rev I D u xs, rev (ipurge-tr (I−1) D u (rev xs)),

λy ys. D y ∈ sinks (I−1) D u (rev (y # ys))}
〈proof 〉

lemma Interleaves-ipurge-tr-aux:
xs ∼= {ipurge-tr-rev-aux I D U xs, rev (ipurge-tr-aux (I−1) D U (rev xs)),

12

λy ys. ∃ v ∈ sinks-aux (I−1) D U (rev ys). (D y, v) ∈ I}
〈proof 〉

lemma ipurge-tr-aux-all:
(ipurge-tr-aux I D U xs = xs) = (∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (u, v) ∈ I))
〈proof 〉

lemma ipurge-tr-rev-aux-single-dom:
ipurge-tr-rev-aux I D {u} xs = ipurge-tr-rev I D u xs (is ?ys = ?ys ′)
〈proof 〉

lemma ipurge-tr-all:
(ipurge-tr I D u xs = xs) = (¬ (∃ v ∈ D ‘ set xs. (u, v) ∈ I))
〈proof 〉

lemma ipurge-tr-rev-all:
∀ v ∈ D ‘ set xs. (v, u) ∈ I =⇒ ipurge-tr-rev I D u xs = xs
〈proof 〉

1.3 A domain-relation map based on intransitive purge

In what follows, constant rel-ipurge is defined as the domain-relation map
that associates each domain u to the relation comprised of the pairs of traces
whose images under function ipurge-tr-rev I D u are equal, viz. whose events
affecting u are the same.
An auxiliary domain set-relation map, rel-ipurge-aux, is also defined by re-
placing ipurge-tr-rev with ipurge-tr-rev-aux, so as to exploit the distribu-
tivity of the latter function over list concatenation. Unsurprisingly, since
ipurge-tr-rev-aux degenerates into ipurge-tr-rev for a singleton set of do-
mains, the same happens for rel-ipurge-aux and rel-ipurge.
Subsequently, some basic properties of domain-relation map rel-ipurge are
proven, namely that it is a view partition, and is future consistent if and only
if it is weakly future consistent. The nontrivial implication, viz. the direct
one, derives from the fact that for each domain u allowed to be affected by
any event domain, function ipurge-tr-rev I D u matches the identity function,
so that two traces are correlated by the image of rel-ipurge under u just in
case they are equal.

definition rel-ipurge ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map where

rel-ipurge P I D u ≡ {(xs, ys). xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys}

definition rel-ipurge-aux ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) domset-rel-map where

rel-ipurge-aux P I D U ≡ {(xs, ys). xs ∈ traces P ∧ ys ∈ traces P ∧

13

ipurge-tr-rev-aux I D U xs = ipurge-tr-rev-aux I D U ys}

lemma rel-ipurge-aux-single-dom:
rel-ipurge-aux P I D {u} = rel-ipurge P I D u
〈proof 〉

lemma view-partition-rel-ipurge:
view-partition P D (rel-ipurge P I D)
〈proof 〉

lemma fc-equals-wfc-rel-ipurge:
future-consistent P D (rel-ipurge P I D) =
weakly-future-consistent P I D (rel-ipurge P I D)

〈proof 〉

1.4 The Ipurge Unwinding Theorem: proof of condition suf-
ficiency

The Ipurge Unwinding Theorem, formalized in what follows as theorem
ipurge-unwinding, states that a necessary and sufficient condition for the
CSP noninterference security [6] of a process being refusals union closed is
that domain-relation map rel-ipurge be weakly future consistent. Notwith-
standing the equivalence of future consistency and weak future consistency
for rel-ipurge (cf. above), expressing the theorem in terms of the latter re-
duces the range of the domains to be considered in order to prove or disprove
the security of a process, and then is more convenient.
According to the definition of CSP noninterference security formulated in
[6], a process is regarded as being secure just in case the occurrence of an
event e may only affect future events allowed to be affected by e. Identifying
security with the weak future consistency of rel-ipurge means reversing the
view of the problem with respect to the direction of time. In fact, from
this view, a process is secure just in case the occurrence of an event e may
only be affected by past events allowed to affect e. Therefore, what the
Ipurge Unwinding Theorem proves is that ultimately, opposite perspectives
with regard to the direction of time give rise to equivalent definitions of the
noninterference security of a process.
Here below, it is proven that the condition expressed by the Ipurge Unwind-
ing Theorem is sufficient for security.

lemma ipurge-tr-rev-ipurge-tr-aux-1 [rule-format]:
U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

〈proof 〉

lemma ipurge-tr-rev-ipurge-tr-aux-2 [rule-format]:

14

U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ zs) =
ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)

〈proof 〉

lemma ipurge-tr-rev-ipurge-tr-1 :
assumes A: u ∈ unaffected-domains I D {D y} zs
shows ipurge-tr-rev I D u (xs @ y # zs) =

ipurge-tr-rev I D u (xs @ ipurge-tr I D (D y) zs)
〈proof 〉

lemma ipurge-tr-rev-ipurge-tr-2 :
assumes A: u ∈ unaffected-domains I D {D y} zs
shows ipurge-tr-rev I D u (xs @ zs) =

ipurge-tr-rev I D u (xs @ y # ipurge-tr I D (D y) zs)
〈proof 〉

lemma iu-condition-imply-secure-aux-1 :
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D) and
A: (xs @ y # ys, Y) ∈ failures P and
B: xs @ ipurge-tr I D (D y) ys ∈ traces P and
C : ∃ y ′. y ′ ∈ ipurge-ref I D (D y) ys Y

shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P
〈proof 〉

lemma iu-condition-imply-secure-aux-2 :
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D) and
A: (xs @ zs, Z) ∈ failures P and
B: xs @ y # ipurge-tr I D (D y) zs ∈ traces P and
C : ∃ z ′. z ′ ∈ ipurge-ref I D (D y) zs Z

shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P
〈proof 〉

lemma iu-condition-imply-secure-1 [rule-format]:
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D)

shows (xs @ y # ys, Y) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P

〈proof 〉

lemma iu-condition-imply-secure-2 [rule-format]:
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D) and

15

Y : xs @ [y] ∈ traces P
shows (xs @ zs, Z) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P

〈proof 〉

theorem iu-condition-imply-secure:
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D)

shows secure P I D
〈proof 〉

1.5 The Ipurge Unwinding Theorem: proof of condition ne-
cessity

Here below, it is proven that the condition expressed by the Ipurge Un-
winding Theorem is necessary for security. Finally, the lemmas concerning
condition sufficiency and necessity are gathered in the main theorem.

lemma secure-implies-failure-consistency-aux [rule-format]:
assumes S : secure P I D
shows (xs @ ys @ zs, X) ∈ failures P −→

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys = [] −→ (xs @ zs, X) ∈ failures P
〈proof 〉

lemma secure-implies-failure-consistency [rule-format]:
assumes S : secure P I D
shows (xs, ys) ∈ rel-ipurge-aux P I D (D ‘ (X ∪ set zs)) −→
(xs @ zs, X) ∈ failures P −→ (ys @ zs, X) ∈ failures P

〈proof 〉

lemma secure-implies-trace-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge-aux P I D (D ‘ set zs) =⇒
xs @ zs ∈ traces P =⇒ ys @ zs ∈ traces P

〈proof 〉

lemma secure-implies-next-event-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge P I D (D x) =⇒
x ∈ next-events P xs =⇒ x ∈ next-events P ys
〈proof 〉

lemma secure-implies-refusal-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge-aux P I D (D ‘ X) =⇒
X ∈ refusals P xs =⇒ X ∈ refusals P ys

〈proof 〉

lemma secure-implies-ref-event-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge P I D (D x) =⇒

16

{x} ∈ refusals P xs =⇒ {x} ∈ refusals P ys
〈proof 〉

theorem secure-implies-iu-condition:
assumes S : secure P I D
shows future-consistent P D (rel-ipurge P I D)

〈proof 〉

theorem ipurge-unwinding:
ref-union-closed P =⇒
secure P I D = weakly-future-consistent P I D (rel-ipurge P I D)

〈proof 〉

end

2 The Ipurge Unwinding Theorem for determin-
istic and trace set processes

theory DeterministicProcesses
imports IpurgeUnwinding
begin

In accordance with Hoare’s formal definition of deterministic processes [1],
this section shows that a process is deterministic just in case it is a trace
set process, i.e. it may be identified by means of a trace set alone, matching
the set of its traces, in place of a failures-divergences pair. Then, variants of
the Ipurge Unwinding Theorem are proven for deterministic processes and
trace set processes.

2.1 Deterministic processes

Here below are the definitions of predicates d-future-consistent and d-weakly-future-consistent,
which are variants of predicates future-consistent and weakly-future-consistent
meant for applying to deterministic processes. In some detail, being de-
terministic processes such that refused events are completely specified by
accepted events (cf. [1], [6]), the new predicates are such that their truth
values can be determined by just considering the accepted events of the
process taken as input.
Then, it is proven that these predicates are characterized by the same con-
nection as that of their general-purpose counterparts, viz. d-future-consistent
implies d-weakly-future-consistent, and they are equivalent for domain-relation
map rel-ipurge. Finally, the predicates are shown to be equivalent to their
general-purpose counterparts in the case of a deterministic process.

17

definition d-future-consistent ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

d-future-consistent P D R ≡
∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

definition d-weakly-future-consistent ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

d-weakly-future-consistent P I D R ≡
∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

lemma dfc-implies-dwfc:
d-future-consistent P D R =⇒ d-weakly-future-consistent P I D R
〈proof 〉

lemma dfc-equals-dwfc-rel-ipurge:
d-future-consistent P D (rel-ipurge P I D) =
d-weakly-future-consistent P I D (rel-ipurge P I D)

〈proof 〉

lemma d-fc-equals-dfc:
assumes A: deterministic P
shows future-consistent P D R = d-future-consistent P D R

〈proof 〉

lemma d-wfc-equals-dwfc:
assumes A: deterministic P
shows weakly-future-consistent P I D R = d-weakly-future-consistent P I D R

〈proof 〉

Here below is the proof of a variant of the Ipurge Unwinding Theorem apply-
ing to deterministic processes. Unsurprisingly, its enunciation contains pred-
icate d-weakly-future-consistent in place of weakly-future-consistent. Fur-
thermore, the assumption that the process be refusals union closed is re-
placed by the assumption that it be deterministic, since the former property
is shown to be entailed by the latter.

lemma d-implies-ruc:
assumes A: deterministic P
shows ref-union-closed P

〈proof 〉

theorem d-ipurge-unwinding:
assumes A: deterministic P

18

shows secure P I D = d-weakly-future-consistent P I D (rel-ipurge P I D)
〈proof 〉

2.2 Trace set processes

In [1], section 2.8, Hoare formulates a simplified definition of a deterministic
process, identified with a trace set, i.e. a set of event lists containing the
empty list and any prefix of each of its elements. Of course, this is consis-
tent with the definition of determinism applying to processes identified with
failures-divergences pairs, which implies that their refusals are completely
specified by their traces (cf. [1], [6]).
Here below are the definitions of a function ts-process, converting the input
set of lists into a process, and a predicate trace-set, returning True just
in case the input set of lists has the aforesaid properties. An analysis is
then conducted about the output of the functions defined in [6], section 1.1,
when acting on a trace set process, i.e. a process that may be expressed as
ts-process T where trace-set T matches True.

definition ts-process :: ′a list set ⇒ ′a process where
ts-process T ≡ Abs-process ({(xs, X). xs ∈ T ∧ (∀ x ∈ X . xs @ [x] /∈ T)}, {})

definition trace-set :: ′a list set ⇒ bool where
trace-set T ≡ [] ∈ T ∧ (∀ xs x. xs @ [x] ∈ T −→ xs ∈ T)

lemma ts-process-rep:
assumes A: trace-set T
shows Rep-process (ts-process T) =
({(xs, X). xs ∈ T ∧ (∀ x ∈ X . xs @ [x] /∈ T)}, {})

〈proof 〉

lemma ts-process-failures:
trace-set T =⇒
failures (ts-process T) = {(xs, X). xs ∈ T ∧ (∀ x ∈ X . xs @ [x] /∈ T)}

〈proof 〉

lemma ts-process-futures:
trace-set T =⇒
futures (ts-process T) xs =
{(ys, Y). xs @ ys ∈ T ∧ (∀ y ∈ Y . xs @ ys @ [y] /∈ T)}

〈proof 〉

lemma ts-process-traces:
trace-set T =⇒ traces (ts-process T) = T
〈proof 〉

lemma ts-process-refusals:
trace-set T =⇒ xs ∈ T =⇒

19

refusals (ts-process T) xs = {X . ∀ x ∈ X . xs @ [x] /∈ T}
〈proof 〉

lemma ts-process-next-events:
trace-set T =⇒ (x ∈ next-events (ts-process T) xs) = (xs @ [x] ∈ T)
〈proof 〉

In what follows, the proof is given of two results which provide a connection
between the notions of deterministic and trace set processes: any trace set
process is deterministic, and any process is deterministic just in case it is
equal to the trace set process corresponding to the set of its traces.

lemma ts-process-d:
trace-set T =⇒ deterministic (ts-process T)
〈proof 〉

definition divergences :: ′a process ⇒ ′a list set where
divergences P ≡ snd (Rep-process P)

lemma d-divergences:
assumes A: deterministic P
shows divergences P = {}

〈proof 〉

lemma trace-set-traces:
trace-set (traces P)
〈proof 〉

lemma d-implies-ts-process-traces:
deterministic P =⇒ ts-process (traces P) = P
〈proof 〉

lemma ts-process-traces-implies-d:
ts-process (traces P) = P =⇒ deterministic P
〈proof 〉

lemma d-equals-ts-process-traces:
deterministic P = (ts-process (traces P) = P)
〈proof 〉

Finally, a variant of the Ipurge Unwinding Theorem applying to trace set
processes is derived from the variant for deterministic processes. Particu-
larly, the assumption that the process be deterministic is replaced by the
assumption that it be a trace set process, since the former property is en-
tailed by the latter (cf. above).

20

theorem ts-ipurge-unwinding:
trace-set T =⇒
secure (ts-process T) I D =
d-weakly-future-consistent (ts-process T) I D (rel-ipurge (ts-process T) I D)

〈proof 〉

end

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, May
2015. http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/prog-prove.pdf.

[5] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, May 2015. http://isabelle.in.tum.de/
website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf.

[6] P. Noce. Noninterference security in communicating sequential pro-
cesses. Archive of Formal Proofs, May 2014. http://isa-afp.org/entries/
Noninterference_CSP.shtml, Formal proof development.

[7] P. Noce. Reasoning about lists via list interleaving. Archive of Formal
Proofs, June 2015. http://isa-afp.org/entries/List_Interleaving.shtml,
Formal proof development.

[8] J. Rushby. Noninterference, transitivity, and channel-control security
policies. Technical report, SRI International, 1992.

21

http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/List_Interleaving.shtml

	The Ipurge Unwinding Theorem in its general form
	Propaedeutic definitions and lemmas
	Additional intransitive purge functions and their properties
	A domain-relation map based on intransitive purge
	The Ipurge Unwinding Theorem: proof of condition sufficiency
	The Ipurge Unwinding Theorem: proof of condition necessity

	The Ipurge Unwinding Theorem for deterministic and trace set processes
	Deterministic processes
	Trace set processes

