
The Ipurge Unwinding Theorem
for CSP Noninterference Security

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A.

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjowiggins-it dot com

March 17, 2025

Abstract
The definition of noninterference security for Communicating Se-

quential Processes requires to consider any possible future, i.e. any
indefinitely long sequence of subsequent events and any indefinitely
large set of refused events associated to that sequence, for each process
trace. In order to render the verification of the security of a process
more straightforward, there is a need of some sufficient condition for
security such that just individual accepted and refused events, rather
than unbounded sequences and sets of events, have to be considered.

Of course, if such a sufficient condition were necessary as well, it
would be even more valuable, since it would permit to prove not only
that a process is secure by verifying that the condition holds, but also
that a process is not secure by verifying that the condition fails to hold.

This paper provides a necessary and sufficient condition for CSP
noninterference security, which indeed requires to just consider indi-
vidual accepted and refused events and applies to the general case of
a possibly intransitive policy. This condition follows Rushby’s output
consistency for deterministic state machines with outputs, and has to
be satisfied by a specific function mapping security domains into equiv-
alence relations over process traces. The definition of this function
makes use of an intransitive purge function following Rushby’s one;
hence the name given to the condition, Ipurge Unwinding Theorem.

Furthermore, in accordance with Hoare’s formal definition of de-
terministic processes, it is shown that a process is deterministic just
in case it is a trace set process, i.e. it may be identified by means of
a trace set alone, matching the set of its traces, in place of a failures-
divergences pair. Then, variants of the Ipurge Unwinding Theorem are
proven for deterministic processes and trace set processes.

Contents
1 The Ipurge Unwinding Theorem in its general form 2

1

1.1 Propaedeutic definitions and lemmas 3
1.2 Additional intransitive purge functions and their properties . 10
1.3 A domain-relation map based on intransitive purge 25
1.4 The Ipurge Unwinding Theorem: proof of condition sufficiency 27
1.5 The Ipurge Unwinding Theorem: proof of condition necessity 40

2 The Ipurge Unwinding Theorem for deterministic and trace
set processes 44
2.1 Deterministic processes . 45
2.2 Trace set processes . 50

1 The Ipurge Unwinding Theorem in its general
form

theory IpurgeUnwinding
imports Noninterference-CSP.CSPNoninterference List-Interleaving.ListInterleaving
begin

The definition of noninterference security for Communicating Sequential
Processes given in [6] requires to consider any possible future, i.e. any indef-
initely long sequence of subsequent events and any indefinitely large set of
refused events associated to that sequence, for each process trace. In order
to render the verification of the security of a process more straightforward,
there is a need of some sufficient condition for security such that just indi-
vidual accepted and refused events, rather than unbounded sequences and
sets of events, have to be considered.
Of course, if such a sufficient condition were necessary as well, it would be
even more valuable, since it would permit to prove not only that a process
is secure by verifying that the condition holds, but also that a process is not
secure by verifying that the condition fails to hold.
This section provides a necessary and sufficient condition for CSP noninter-
ference security, which indeed requires to just consider individual accepted
and refused events and applies to the general case of a possibly intransitive
policy. This condition follows Rushby’s output consistency for determin-
istic state machines with outputs [8], and has to be satisfied by a specific
function mapping security domains into equivalence relations over process
traces. The definition of this function makes use of an intransitive purge
function following Rushby’s one; hence the name given to the condition,
Ipurge Unwinding Theorem.
The contents of this paper are based on those of [6]. The salient points of
definitions and proofs are commented; for additional information, cf. Isabelle
documentation, particularly [5], [4], [3], and [2].

2

For the sake of brevity, given a function F of type ′a1 ⇒ . . . ⇒ ′am ⇒ ′am+1

⇒ . . . ⇒ ′an ⇒ ′b, the explanatory text may discuss of F using attributes
that would more exactly apply to a term of type ′am+1 ⇒ . . . ⇒ ′an ⇒ ′b.
In this case, it shall be understood that strictly speaking, such attributes
apply to a term matching pattern F a1 . . . am.

1.1 Propaedeutic definitions and lemmas

The definition of CSP noninterference security formulated in [6] requires that
some sets of events be refusals, i.e. sets of refused events, for some traces.
Therefore, a sufficient condition for security just involving individual refused
events will require that some single events be refused, viz. form singleton
refusals, after the occurrence of some traces. However, such a statement may
actually be a sufficient condition for security just in the case of a process
such that the union of any set of singleton refusals for a given trace is itself
a refusal for that trace.
This turns out to be true if and only if the union of any set A of refusals,
not necessarily singletons, is still a refusal. The direct implication is trivial.
As regards the converse one, let A’ be the set of the singletons included in
some element of A. Then, each element of A’ is a singleton refusal by virtue
of rule [[(?xs, ?Y) ∈ failures ?P; ?X ⊆ ?Y]] =⇒ (?xs, ?X) ∈ failures ?P,
so that the union of the elements of A’, which is equal to the union of the
elements of A, is a refusal by hypothesis.
This property, henceforth referred to as refusals union closure and formal-
ized in what follows, clearly holds for any process admitting a meaningful
interpretation, as it would be a nonsense, in the case of a process modeling a
real system, to say that some sets of events are refused after the occurrence
of a trace, but their union is not. Thus, taking the refusals union closure of
the process as an assumption for the equivalence between process security
and a given condition, as will be done in the Ipurge Unwinding Theorem,
does not give rise to any actual limitation on the applicability of such a
result.
As for predicates view partition and future consistent, defined here below as
well, they translate Rushby’s predicates view-partitioned and output consis-
tent [8], applying to deterministic state machines with outputs, into Hoare’s
Communicating Sequential Processes model of computation [1]. The reason
for the verbal difference between the active form of predicate view partition
and the passive form of predicate view-partitioned is that the implied subject
of the former is a domain-relation map rather than a process, whose homol-
ogous in [8], viz. a machine, is the implied subject of the latter predicate
instead.
More remarkably, the formal differences with respect to Rushby’s original
predicates are the following ones:

3

• The relations in the range of the domain-relation map hold between
event lists rather than machine states.

• The domains appearing as inputs of the domain-relation map do not
unnecessarily encompass all the possible values of the data type of
domains, but just the domains in the range of the event-domain map.

• The equality of the outputs in domain u produced by machine states
equivalent for u, as required by output consistency, is replaced by the
equality of the events in domain u accepted or refused after the occur-
rence of event lists equivalent for u; hence the name of the property,
future consistency.

An additional predicate, weakly future consistent, renders future consistency
less strict by requiring the equality of subsequent accepted and refused events
to hold only for event domains not allowed to be affected by some event
domain.

type-synonym (′a, ′d) dom-rel-map = ′d ⇒ (′a list × ′a list) set

type-synonym (′a, ′d) domset-rel-map = ′d set ⇒ (′a list × ′a list) set

definition ref-union-closed :: ′a process ⇒ bool where
ref-union-closed P ≡
∀ xs A. (∃X . X ∈ A) −→ (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

definition view-partition ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

view-partition P D R ≡ ∀ u ∈ range D. equiv (traces P) (R u)

definition next-dom-events ::
′a process ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a set where

next-dom-events P D u xs ≡ {x. u = D x ∧ x ∈ next-events P xs}

definition ref-dom-events ::
′a process ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a set where

ref-dom-events P D u xs ≡ {x. u = D x ∧ {x} ∈ refusals P xs}

definition future-consistent ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

future-consistent P D R ≡
∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

definition weakly-future-consistent ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

4

weakly-future-consistent P I D R ≡
∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

Here below are some lemmas propaedeutic for the proof of the Ipurge Un-
winding Theorem, just involving constants defined in [6].

lemma process-rule-2-traces:
xs @ xs ′ ∈ traces P =⇒ xs ∈ traces P

proof (simp add: traces-def Domain-iff , erule exE , rule-tac x = {} in exI)
qed (rule process-rule-2-failures)

lemma process-rule-4 [rule-format]:
(xs, X) ∈ failures P −→ (xs @ [x], {}) ∈ failures P ∨ (xs, insert x X) ∈ failures

P
proof (simp add: failures-def)

have Rep-process P ∈ process-set (is ?P ′ ∈ -) by (rule Rep-process)
hence ∀ xs x X . (xs, X) ∈ fst ?P ′ −→
(xs @ [x], {}) ∈ fst ?P ′ ∨ (xs, insert x X) ∈ fst ?P ′

by (simp add: process-set-def process-prop-4-def)
thus (xs, X) ∈ fst ?P ′ −→
(xs @ [x], {}) ∈ fst ?P ′ ∨ (xs, insert x X) ∈ fst ?P ′

by blast
qed

lemma failures-traces:
(xs, X) ∈ failures P =⇒ xs ∈ traces P

by (simp add: traces-def Domain-iff , rule exI)

lemma traces-failures:
xs ∈ traces P =⇒ (xs, {}) ∈ failures P

proof (simp add: traces-def Domain-iff , erule exE)
qed (erule process-rule-3 , simp)

lemma sinks-interference [rule-format]:
D x ∈ sinks I D u xs −→
(u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)

proof (induction xs rule: rev-induct, simp, rule impI)
fix x ′ xs
assume

A: D x ∈ sinks I D u xs −→
(u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I) and

B: D x ∈ sinks I D u (xs @ [x ′])
show (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u (xs @ [x ′]). (v, D x) ∈ I)
proof (cases (u, D x ′) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x ′) ∈ I))

case True
hence D x = D x ′ ∨ D x ∈ sinks I D u xs using B by simp

5

moreover {
assume C : D x = D x ′

have ?thesis using True
proof (rule disjE , erule-tac [2] bexE)

assume (u, D x ′) ∈ I
hence (u, D x) ∈ I using C by simp
thus ?thesis ..

next
fix v
assume (v, D x ′) ∈ I
hence (v, D x) ∈ I using C by simp
moreover assume v ∈ sinks I D u xs
hence v ∈ sinks I D u (xs @ [x ′]) by simp
ultimately have ∃ v ∈ sinks I D u (xs @ [x ′]). (v, D x) ∈ I ..
thus ?thesis ..

qed
}
moreover {

assume D x ∈ sinks I D u xs
with A have (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I) ..
hence ?thesis
proof (rule disjE , erule-tac [2] bexE)

assume (u, D x) ∈ I
thus ?thesis ..

next
fix v
assume (v, D x) ∈ I
moreover assume v ∈ sinks I D u xs
hence v ∈ sinks I D u (xs @ [x ′]) by simp
ultimately have ∃ v ∈ sinks I D u (xs @ [x ′]). (v, D x) ∈ I ..
thus ?thesis ..

qed
}
ultimately show ?thesis ..

next
case False
hence C : sinks I D u (xs @ [x ′]) = sinks I D u xs by simp
hence D x ∈ sinks I D u xs using B by simp
with A have (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I) ..
thus ?thesis using C by simp

qed
qed

lemma sinks-interference-eq:
((u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)) =
(D x ∈ sinks I D u (xs @ [x]))

proof (rule iffI , erule-tac [2] contrapos-pp, simp-all (no-asm-simp))
qed (erule contrapos-nn, rule sinks-interference)

6

In what follows, some lemmas concerning the constants defined above are
proven.
In the definition of predicate ref-union-closed, the conclusion that the union
of a set of refusals is itself a refusal for the same trace is subordinated to the
condition that the set of refusals be nonempty. The first lemma shows that
in the absence of this condition, the predicate could only be satisfied by a
process admitting any event list as a trace, which proves that the condition
must be present for the definition to be correct.
The subsequent lemmas prove that, for each domain u in the ranges respec-
tively taken into consideration, the image of u under a future consistent or
weakly future consistent domain-relation map may only correlate a pair of
event lists such that either both are traces, or both are not traces. Finally,
it is demonstrated that future consistency implies weak future consistency.

lemma
assumes A: ∀ xs A. (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

shows ∀ xs. xs ∈ traces P
proof

fix xs
have (∀X ∈ {}. (xs, X) ∈ failures P) −→ (xs,

⋃
X ∈ {}. X) ∈ failures P

using A by blast
moreover have ∀X ∈ {}. (xs, X) ∈ failures P by simp
ultimately have (xs,

⋃
X ∈ {}. X) ∈ failures P ..

thus xs ∈ traces P by (rule failures-traces)
qed

lemma traces-dom-events:
assumes A: u ∈ range D
shows xs ∈ traces P =
(next-dom-events P D u xs ∪ ref-dom-events P D u xs 6= {})
(is - = (?S 6= {}))

proof
have ∃ x. u = D x using A by (simp add: image-def)
then obtain x where B: u = D x ..
assume xs ∈ traces P
hence (xs, {}) ∈ failures P by (rule traces-failures)
hence (xs @ [x], {}) ∈ failures P ∨ (xs, {x}) ∈ failures P by (rule process-rule-4)
moreover {

assume (xs @ [x], {}) ∈ failures P
hence xs @ [x] ∈ traces P by (rule failures-traces)
hence x ∈ next-dom-events P D u xs
using B by (simp add: next-dom-events-def next-events-def)

hence x ∈ ?S ..
}
moreover {

assume (xs, {x}) ∈ failures P

7

hence x ∈ ref-dom-events P D u xs
using B by (simp add: ref-dom-events-def refusals-def)

hence x ∈ ?S ..
}
ultimately have x ∈ ?S ..
hence ∃ x. x ∈ ?S ..
thus ?S 6= {} by (subst ex-in-conv [symmetric])

next
assume ?S 6= {}
hence ∃ x. x ∈ ?S by (subst ex-in-conv)
then obtain x where x ∈ ?S ..
moreover {

assume x ∈ next-dom-events P D u xs
hence xs @ [x] ∈ traces P by (simp add: next-dom-events-def next-events-def)
hence xs ∈ traces P by (rule process-rule-2-traces)

}
moreover {

assume x ∈ ref-dom-events P D u xs
hence (xs, {x}) ∈ failures P by (simp add: ref-dom-events-def refusals-def)
hence xs ∈ traces P by (rule failures-traces)

}
ultimately show xs ∈ traces P ..

qed

lemma fc-traces:
assumes

A: future-consistent P D R and
B: u ∈ range D and
C : (xs, ys) ∈ R u

shows (xs ∈ traces P) = (ys ∈ traces P)
proof −

have ∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→
next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using A by (simp add: future-consistent-def)
hence ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using B ..
hence (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

by blast
hence next-dom-events P D u xs = next-dom-events P D u ys ∧

ref-dom-events P D u xs = ref-dom-events P D u ys
using C ..

hence next-dom-events P D u xs ∪ ref-dom-events P D u xs 6= {} =
(next-dom-events P D u ys ∪ ref-dom-events P D u ys 6= {})

by simp

8

moreover have xs ∈ traces P =
(next-dom-events P D u xs ∪ ref-dom-events P D u xs 6= {})

using B by (rule traces-dom-events)
moreover have ys ∈ traces P =
(next-dom-events P D u ys ∪ ref-dom-events P D u ys 6= {})

using B by (rule traces-dom-events)
ultimately show ?thesis by simp

qed

lemma wfc-traces:
assumes

A: weakly-future-consistent P I D R and
B: u ∈ range D ∩ (−I) ‘‘ range D and
C : (xs, ys) ∈ R u

shows (xs ∈ traces P) = (ys ∈ traces P)
proof −

have ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→
next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using A by (simp add: weakly-future-consistent-def)
hence ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using B ..
hence (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

by blast
hence next-dom-events P D u xs = next-dom-events P D u ys ∧

ref-dom-events P D u xs = ref-dom-events P D u ys
using C ..

hence next-dom-events P D u xs ∪ ref-dom-events P D u xs 6= {} =
(next-dom-events P D u ys ∪ ref-dom-events P D u ys 6= {})

by simp
moreover have B ′: u ∈ range D using B ..
hence xs ∈ traces P =
(next-dom-events P D u xs ∪ ref-dom-events P D u xs 6= {})

by (rule traces-dom-events)
moreover have ys ∈ traces P =
(next-dom-events P D u ys ∪ ref-dom-events P D u ys 6= {})

using B ′ by (rule traces-dom-events)
ultimately show ?thesis by simp

qed

lemma fc-implies-wfc:
future-consistent P D R =⇒ weakly-future-consistent P I D R

by (simp only: future-consistent-def weakly-future-consistent-def , blast)

9

Finally, the definition is given of an auxiliary function singleton-set, whose
output is the set of the singleton subsets of a set taken as input, and then
some basic properties of this function are proven.

definition singleton-set :: ′a set ⇒ ′a set set where
singleton-set X ≡ {Y . ∃ x ∈ X . Y = {x}}

lemma singleton-set-some:
(∃Y . Y ∈ singleton-set X) = (∃ x. x ∈ X)

proof (rule iffI , simp-all add: singleton-set-def , erule-tac [!] exE , erule bexE)
fix x
assume x ∈ X
thus ∃ x. x ∈ X ..

next
fix x
assume A: x ∈ X
have {x} = {x} ..
hence ∃ x ′ ∈ X . {x} = {x ′} using A ..
thus ∃Y . ∃ x ′ ∈ X . Y = {x ′} by (rule exI)

qed

lemma singleton-set-union:
(
⋃

Y ∈ singleton-set X . Y) = X
proof (subst singleton-set-def , rule equalityI , rule-tac [!] subsetI)

fix x
assume A: x ∈ (

⋃
Y ∈ {Y ′. ∃ x ′ ∈ X . Y ′ = {x ′}}. Y)

show x ∈ X
proof (rule UN-E [OF A], simp)
qed (erule bexE , simp)

next
fix x
assume A: x ∈ X
show x ∈ (

⋃
Y ∈ {Y ′. ∃ x ′ ∈ X . Y ′ = {x ′}}. Y)

proof (rule UN-I [of {x}])
qed (simp-all add: A)

qed

1.2 Additional intransitive purge functions and their prop-
erties

Functions sinks-aux, ipurge-tr-aux, and ipurge-ref-aux, defined here below,
are auxiliary versions of functions sinks, ipurge-tr, and ipurge-ref taking
as input a set of domains rather than a single domain. As shown below,
these functions are useful for the study of single domain ones, involved in
the definition of CSP noninterference security [6], since they distribute over
list concatenation, while being susceptible to be expressed in terms of the
corresponding single domain functions in case the input set of domains is a

10

singleton.
A further function, unaffected-domains, takes as inputs a set of domains U
and an event list xs, and outputs the set of the event domains not allowed
to be affected by U after the occurrence of xs.

function sinks-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

sinks-aux - - U [] = U |
sinks-aux I D U (xs @ [x]) = (if ∃ v ∈ sinks-aux I D U xs. (v, D x) ∈ I

then insert (D x) (sinks-aux I D U xs)
else sinks-aux I D U xs)

proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disjI1 , assumption, simp)
termination by lexicographic-order

function ipurge-tr-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list where

ipurge-tr-aux - - - [] = [] |
ipurge-tr-aux I D U (xs @ [x]) = (if ∃ v ∈ sinks-aux I D U xs. (v, D x) ∈ I

then ipurge-tr-aux I D U xs
else ipurge-tr-aux I D U xs @ [x])

proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disjI1 , assumption, simp)
termination by lexicographic-order

definition ipurge-ref-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a set where

ipurge-ref-aux I D U xs X ≡
{x ∈ X . ∀ v ∈ sinks-aux I D U xs. (v, D x) /∈ I}

definition unaffected-domains ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

unaffected-domains I D U xs ≡
{u ∈ range D. ∀ v ∈ sinks-aux I D U xs. (v, u) /∈ I}

Function ipurge-tr-rev, defined here below in terms of function sources, is the
reverse of function ipurge-tr with regard to both the order in which events
are considered, and the criterion by which they are purged.
In some detail, both functions sources and ipurge-tr-rev take as inputs a
domain u and an event list xs, whose recursive decomposition is performed
by item prepending rather than appending. Then:

• sources outputs the set of the domains of the events in xs allowed to
affect u;

• ipurge-tr-rev outputs the sublist of xs obtained by recursively deleting
the events not allowed to affect u, as detected via function sources.

11

In other words, these functions follow Rushby’s ones sources and ipurge [8],
formalized in [6] as c-sources and c-ipurge. The only difference consists of
dropping the implicit supposition that the noninterference policy be reflex-
ive, as done in the definition of CPS noninterference security [6]. This goal
is achieved by defining the output of function sources, when it is applied to
the empty list, as being the empty set rather than the singleton comprised
of the input domain.
As for functions sources-aux and ipurge-tr-rev-aux, they are auxiliary ver-
sions of functions sources and ipurge-tr-rev taking as input a set of domains
rather than a single domain. As shown below, these functions distribute
over list concatenation, while being susceptible to be expressed in terms of
the corresponding single domain functions in case the input set of domains
is a singleton.

primrec sources :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′d set where
sources - - - [] = {} |
sources I D u (x # xs) =
(if (D x, u) ∈ I ∨ (∃ v ∈ sources I D u xs. (D x, v) ∈ I)
then insert (D x) (sources I D u xs)
else sources I D u xs)

primrec ipurge-tr-rev :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a list where
ipurge-tr-rev - - - [] = [] |
ipurge-tr-rev I D u (x # xs) = (if D x ∈ sources I D u (x # xs)

then x # ipurge-tr-rev I D u xs
else ipurge-tr-rev I D u xs)

primrec sources-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set where

sources-aux - - U [] = U |
sources-aux I D U (x # xs) = (if ∃ v ∈ sources-aux I D U xs. (D x, v) ∈ I

then insert (D x) (sources-aux I D U xs)
else sources-aux I D U xs)

primrec ipurge-tr-rev-aux ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list where

ipurge-tr-rev-aux - - - [] = [] |
ipurge-tr-rev-aux I D U (x # xs) = (if ∃ v ∈ sources-aux I D U xs. (D x, v) ∈ I

then x # ipurge-tr-rev-aux I D U xs
else ipurge-tr-rev-aux I D U xs)

Here below are some lemmas on functions sinks-aux, ipurge-tr-aux, ipurge-ref-aux,
and unaffected-domains. As anticipated above, these lemmas essentially con-
cern distributivity over list concatenation and expressions in terms of single
domain functions in the degenerate case of a singleton set of domains.

12

lemma sinks-aux-subset:
U ⊆ sinks-aux I D U xs

proof (induction xs rule: rev-induct, simp-all, rule impI)
qed (rule subset-insertI2)

lemma sinks-aux-single-dom:
sinks-aux I D {u} xs = insert u (sinks I D u xs)

by (induction xs rule: rev-induct, simp-all add: insert-commute)

lemma sinks-aux-single-event:
sinks-aux I D U [x] = (if ∃ v ∈ U . (v, D x) ∈ I

then insert (D x) U
else U)

proof −
have sinks-aux I D U [x] = sinks-aux I D U ([] @ [x]) by simp
thus ?thesis by (simp only: sinks-aux.simps)

qed

lemma sinks-aux-cons:
sinks-aux I D U (x # xs) = (if ∃ v ∈ U . (v, D x) ∈ I

then sinks-aux I D (insert (D x) U) xs
else sinks-aux I D U xs)

proof (induction xs rule: rev-induct, case-tac [!] ∃ v ∈ U . (v, D x) ∈ I ,
simp-all add: sinks-aux-single-event del: sinks-aux.simps(2))
fix x ′ xs
assume A: sinks-aux I D U (x # xs) = sinks-aux I D (insert (D x) U) xs
(is ?S = ?S ′)

show sinks-aux I D U (x # xs @ [x ′]) =
sinks-aux I D (insert (D x) U) (xs @ [x ′])

proof (cases ∃ v ∈ ?S . (v, D x ′) ∈ I)
case True
hence sinks-aux I D U ((x # xs) @ [x ′]) = insert (D x ′) ?S
by (simp only: sinks-aux.simps, simp)

moreover have ∃ v ∈ ?S ′. (v, D x ′) ∈ I using A and True by simp
hence sinks-aux I D (insert (D x) U) (xs @ [x ′]) = insert (D x ′) ?S ′

by simp
ultimately show ?thesis using A by simp

next
case False
hence sinks-aux I D U ((x # xs) @ [x ′]) = ?S
by (simp only: sinks-aux.simps, simp)

moreover have ¬ (∃ v ∈ ?S ′. (v, D x ′) ∈ I) using A and False by simp
hence sinks-aux I D (insert (D x) U) (xs @ [x ′]) = ?S ′ by simp
ultimately show ?thesis using A by simp

qed
next

fix x ′ xs
assume A: sinks-aux I D U (x # xs) = sinks-aux I D U xs
(is ?S = ?S ′)

13

show sinks-aux I D U (x # xs @ [x ′]) = sinks-aux I D U (xs @ [x ′])
proof (cases ∃ v ∈ ?S . (v, D x ′) ∈ I)

case True
hence sinks-aux I D U ((x # xs) @ [x ′]) = insert (D x ′) ?S
by (simp only: sinks-aux.simps, simp)

moreover have ∃ v ∈ ?S ′. (v, D x ′) ∈ I using A and True by simp
hence sinks-aux I D U (xs @ [x ′]) = insert (D x ′) ?S ′ by simp
ultimately show ?thesis using A by simp

next
case False
hence sinks-aux I D U ((x # xs) @ [x ′]) = ?S
by (simp only: sinks-aux.simps, simp)

moreover have ¬ (∃ v ∈ ?S ′. (v, D x ′) ∈ I) using A and False by simp
hence sinks-aux I D U (xs @ [x ′]) = ?S ′ by simp
ultimately show ?thesis using A by simp

qed
qed

lemma ipurge-tr-aux-single-dom:
ipurge-tr-aux I D {u} xs = ipurge-tr I D u xs

proof (induction xs rule: rev-induct, simp)
fix x xs
assume A: ipurge-tr-aux I D {u} xs = ipurge-tr I D u xs
show ipurge-tr-aux I D {u} (xs @ [x]) = ipurge-tr I D u (xs @ [x])
proof (cases ∃ v ∈ sinks-aux I D {u} xs. (v, D x) ∈ I ,
simp-all only: ipurge-tr-aux.simps if-True if-False)
case True
hence (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)
by (simp add: sinks-aux-single-dom)

hence ipurge-tr I D u (xs @ [x]) = ipurge-tr I D u xs by simp
thus ipurge-tr-aux I D {u} xs = ipurge-tr I D u (xs @ [x])
using A by simp

next
case False
hence ¬ ((u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I))
by (simp add: sinks-aux-single-dom)

hence D x /∈ sinks I D u (xs @ [x])
by (simp only: sinks-interference-eq, simp)

hence ipurge-tr I D u (xs @ [x]) = ipurge-tr I D u xs @ [x] by simp
thus ipurge-tr-aux I D {u} xs @ [x] = ipurge-tr I D u (xs @ [x])
using A by simp

qed
qed

lemma ipurge-ref-aux-single-dom:
ipurge-ref-aux I D {u} xs X = ipurge-ref I D u xs X

by (simp add: ipurge-ref-aux-def ipurge-ref-def sinks-aux-single-dom)

lemma ipurge-ref-aux-all [rule-format]:

14

(∀ u ∈ U . ¬ (∃ v ∈ D ‘ (X ∪ set xs). (u, v) ∈ I)) −→
ipurge-ref-aux I D U xs X = X

proof (induction xs, simp-all add: ipurge-ref-aux-def sinks-aux-cons)
qed (rule impI , rule equalityI , rule-tac [!] subsetI , simp-all)

lemma ipurge-ref-all:
¬ (∃ v ∈ D ‘ (X ∪ set xs). (u, v) ∈ I) =⇒ ipurge-ref I D u xs X = X

by (subst ipurge-ref-aux-single-dom [symmetric], rule ipurge-ref-aux-all, simp)

lemma unaffected-domains-single-dom:
{x ∈ X . D x ∈ unaffected-domains I D {u} xs} = ipurge-ref I D u xs X

by (simp add: ipurge-ref-def unaffected-domains-def sinks-aux-single-dom)

Here below are some lemmas on functions sources, ipurge-tr-rev, sources-aux,
and ipurge-tr-rev-aux. As anticipated above, the lemmas on the last two
functions basically concern distributivity over list concatenation and ex-
pressions in terms of single domain functions in the degenerate case of a
singleton set of domains.

lemma sources-sinks:
sources I D u xs = sinks (I−1) D u (rev xs)

by (induction xs, simp-all)

lemma sources-sinks-aux:
sources-aux I D U xs = sinks-aux (I−1) D U (rev xs)

by (induction xs, simp-all)

lemma sources-aux-subset:
U ⊆ sources-aux I D U xs

by (subst sources-sinks-aux, rule sinks-aux-subset)

lemma sources-aux-append:
sources-aux I D U (xs @ ys) = sources-aux I D (sources-aux I D U ys) xs

by (induction xs, simp-all)

lemma sources-aux-append-nil [rule-format]:
sources-aux I D U ys = U −→
sources-aux I D U (xs @ ys) = sources-aux I D U xs

by (induction xs, simp-all)

lemma ipurge-tr-rev-aux-append:
ipurge-tr-rev-aux I D U (xs @ ys) =
ipurge-tr-rev-aux I D (sources-aux I D U ys) xs @ ipurge-tr-rev-aux I D U ys

by (induction xs, simp-all add: sources-aux-append)

lemma ipurge-tr-rev-aux-nil-1 [rule-format]:
ipurge-tr-rev-aux I D U xs = [] −→ (∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (v, u) ∈ I))

15

by (induction xs rule: rev-induct, simp-all add: ipurge-tr-rev-aux-append)

lemma ipurge-tr-rev-aux-nil-2 [rule-format]:
(∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (v, u) ∈ I)) −→ ipurge-tr-rev-aux I D U xs = []

by (induction xs rule: rev-induct, simp-all add: ipurge-tr-rev-aux-append)

lemma ipurge-tr-rev-aux-nil:
(ipurge-tr-rev-aux I D U xs = []) = (∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (v, u) ∈ I))

proof (rule iffI , rule ballI , erule ipurge-tr-rev-aux-nil-1 , assumption)
qed (rule ipurge-tr-rev-aux-nil-2 , erule bspec)

lemma ipurge-tr-rev-aux-nil-sources [rule-format]:
ipurge-tr-rev-aux I D U xs = [] −→ sources-aux I D U xs = U

by (induction xs, simp-all)

lemma ipurge-tr-rev-aux-append-nil-1 [rule-format]:
ipurge-tr-rev-aux I D U ys = [] −→
ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs

by (induction xs, simp-all add: ipurge-tr-rev-aux-nil-sources sources-aux-append-nil)

lemma ipurge-tr-rev-aux-first [rule-format]:
ipurge-tr-rev-aux I D U xs = x # ws −→
(∃ ys zs. xs = ys @ x # zs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I))

proof (induction xs, simp, rule impI)
fix x ′ xs
assume

A: ipurge-tr-rev-aux I D U xs = x # ws −→
(∃ ys zs. xs = ys @ x # zs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I)) and

B: ipurge-tr-rev-aux I D U (x ′ # xs) = x # ws
show ∃ ys zs. x ′ # xs = ys @ x # zs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I)

proof (cases ∃ v ∈ sources-aux I D U xs. (D x ′, v) ∈ I)
case True
then have x ′ = x using B by simp
with True have x ′ # xs = x # xs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # xs)) [] = [] ∧
(∃ v ∈ sources-aux I D U xs. (D x, v) ∈ I)

by simp
thus ?thesis by blast

next
case False
hence ipurge-tr-rev-aux I D U xs = x # ws using B by simp
with A have ∃ ys zs. xs = ys @ x # zs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧

16

(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I) ..
then obtain ys and zs where xs: xs = ys @ x # zs ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I)

by blast
then have
¬ (∃ v ∈ sources-aux I D (sources-aux I D U (x # zs)) ys. (D x ′, v) ∈ I)

using False by (simp add: sources-aux-append)
hence ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) (x ′ # ys) =

ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys
by simp

with xs have x ′ # xs = (x ′ # ys) @ x # zs ∧
ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) (x ′ # ys) = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I)

by (simp del: sources-aux.simps)
thus ?thesis by blast

qed
qed

lemma ipurge-tr-rev-aux-last-1 [rule-format]:
ipurge-tr-rev-aux I D U xs = ws @ [x] −→ (∃ v ∈ U . (D x, v) ∈ I)

proof (induction xs rule: rev-induct, simp, rule impI)
fix xs x ′

assume
A: ipurge-tr-rev-aux I D U xs = ws @ [x] −→ (∃ v ∈ U . (D x, v) ∈ I) and
B: ipurge-tr-rev-aux I D U (xs @ [x ′]) = ws @ [x]

show ∃ v ∈ U . (D x, v) ∈ I
proof (cases ∃ v ∈ U . (D x ′, v) ∈ I)

case True
hence ipurge-tr-rev-aux I D U (xs @ [x ′]) =

ipurge-tr-rev-aux I D (insert (D x ′) U) xs @ [x ′]
by (simp add: ipurge-tr-rev-aux-append)

hence x ′ = x using B by simp
thus ?thesis using True by simp

next
case False
hence ipurge-tr-rev-aux I D U (xs @ [x ′]) = ipurge-tr-rev-aux I D U xs
by (simp add: ipurge-tr-rev-aux-append)

hence ipurge-tr-rev-aux I D U xs = ws @ [x] using B by simp
with A show ?thesis ..

qed
qed

lemma ipurge-tr-rev-aux-last-2 [rule-format]:
ipurge-tr-rev-aux I D U xs = ws @ [x] −→
(∃ ys zs. xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D U zs = [])

proof (induction xs rule: rev-induct, simp, rule impI)
fix xs x ′

assume

17

A: ipurge-tr-rev-aux I D U xs = ws @ [x] −→
(∃ ys zs. xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D U zs = []) and

B: ipurge-tr-rev-aux I D U (xs @ [x ′]) = ws @ [x]
show ∃ ys zs. xs @ [x ′] = ys @ x # zs ∧ ipurge-tr-rev-aux I D U zs = []
proof (cases ∃ v ∈ U . (D x ′, v) ∈ I)

case True
hence ipurge-tr-rev-aux I D U (xs @ [x ′]) =

ipurge-tr-rev-aux I D (insert (D x ′) U) xs @ [x ′]
by (simp add: ipurge-tr-rev-aux-append)

hence xs @ [x ′] = xs @ x # [] ∧ ipurge-tr-rev-aux I D U [] = []
using B by simp

thus ?thesis by blast
next

case False
hence ipurge-tr-rev-aux I D U (xs @ [x ′]) = ipurge-tr-rev-aux I D U xs
by (simp add: ipurge-tr-rev-aux-append)

hence ipurge-tr-rev-aux I D U xs = ws @ [x] using B by simp
with A have ∃ ys zs. xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D U zs = [] ..
then obtain ys and zs where

C : xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D U zs = []
by blast

hence xs @ [x ′] = ys @ x # zs @ [x ′] by simp
moreover have
ipurge-tr-rev-aux I D U (zs @ [x ′]) = ipurge-tr-rev-aux I D U zs
using False by (simp add: ipurge-tr-rev-aux-append)

hence ipurge-tr-rev-aux I D U (zs @ [x ′]) = [] using C by simp
ultimately have xs @ [x ′] = ys @ x # zs @ [x ′] ∧

ipurge-tr-rev-aux I D U (zs @ [x ′]) = [] ..
thus ?thesis by blast

qed
qed

lemma ipurge-tr-rev-aux-all [rule-format]:
(∀ v ∈ D ‘ set xs. ∃ u ∈ U . (v, u) ∈ I) −→ ipurge-tr-rev-aux I D U xs = xs

proof (induction xs, simp, rule impI , simp, erule conjE)
fix x xs
assume ∃ u ∈ U . (D x, u) ∈ I
then obtain u where A: u ∈ U and B: (D x, u) ∈ I ..
have U ⊆ sources-aux I D U xs by (rule sources-aux-subset)
hence u ∈ sources-aux I D U xs using A ..
with B show ∃ u ∈ sources-aux I D U xs. (D x, u) ∈ I ..

qed

Here below, further properties of the functions defined above are investigated
thanks to the introduction of function offset, which searches a list for a given
item and returns the offset of its first occurrence, if any, from the first item
of the list.

18

primrec offset :: nat ⇒ ′a ⇒ ′a list ⇒ nat option where
offset - - [] = None |
offset n x (y # ys) = (if y = x then Some n else offset (Suc n) x ys)

lemma offset-not-none-1 [rule-format]:
offset k x xs 6= None −→ (∃ ys zs. xs = ys @ x # zs)

proof (induction xs arbitrary: k, simp, rule impI)
fix w xs k
assume

A:
∧

k. offset k x xs 6= None −→ (∃ ys zs. xs = ys @ x # zs) and
B: offset k x (w # xs) 6= None

show ∃ ys zs. w # xs = ys @ x # zs
proof (cases w = x, simp)

case True
hence x # xs = [] @ x # xs by simp
thus ∃ ys zs. x # xs = ys @ x # zs by blast

next
case False
hence offset k x (w # xs) = offset (Suc k) x xs by simp
hence offset (Suc k) x xs 6= None using B by simp
moreover have offset (Suc k) x xs 6= None −→ (∃ ys zs. xs = ys @ x # zs)
using A .

ultimately have ∃ ys zs. xs = ys @ x # zs by simp
then obtain ys and zs where xs = ys @ x # zs by blast
hence w # xs = (w # ys) @ x # zs by simp
thus ∃ ys zs. w # xs = ys @ x # zs by blast

qed
qed

lemma offset-not-none-2 [rule-format]:
xs = ys @ x # zs −→ offset k x xs 6= None

proof (induction xs arbitrary: ys k, simp-all del: not-None-eq, rule impI)
fix w xs ys k
assume

A:
∧

ys ′ k ′. xs = ys ′ @ x # zs −→ offset k ′ x (ys ′ @ x # zs) 6= None and
B: w # xs = ys @ x # zs

show offset k x (ys @ x # zs) 6= None
proof (cases ys, simp-all del: not-None-eq, rule impI)

fix y ′ ys ′

have xs = ys ′ @ x # zs −→ offset (Suc k) x (ys ′ @ x # zs) 6= None
using A .

moreover assume ys = y ′ # ys ′

hence xs = ys ′ @ x # zs using B by simp
ultimately show offset (Suc k) x (ys ′ @ x # zs) 6= None ..

qed
qed

lemma offset-not-none:
(offset k x xs 6= None) = (∃ ys zs. xs = ys @ x # zs)

19

by (rule iffI , erule offset-not-none-1 , (erule exE)+, rule offset-not-none-2)

lemma offset-addition [rule-format]:
offset k x xs 6= None −→ offset (n + m) x xs = Some (the (offset n x xs) + m)

proof (induction xs arbitrary: k n, simp, rule impI)
fix w xs k n
assume

A:
∧

k n. offset k x xs 6= None −→
offset (n + m) x xs = Some (the (offset n x xs) + m) and

B: offset k x (w # xs) 6= None
show offset (n + m) x (w # xs) = Some (the (offset n x (w # xs)) + m)
proof (cases w = x, simp-all)

case False
hence offset k x (w # xs) = offset (Suc k) x xs by simp
hence offset (Suc k) x xs 6= None using B by simp
moreover have offset (Suc k) x xs 6= None −→

offset (Suc n + m) x xs = Some (the (offset (Suc n) x xs) + m)
using A .

ultimately show offset (Suc (n + m)) x xs =
Some (the (offset (Suc n) x xs) + m)

by simp
qed

qed

lemma offset-suc:
assumes A: offset k x xs 6= None
shows offset (Suc n) x xs = Some (Suc (the (offset n x xs)))

proof −
have offset (Suc n) x xs = offset (n + Suc 0) x xs by simp
also have . . . = Some (the (offset n x xs) + Suc 0) using A by (rule off-

set-addition)
also have . . . = Some (Suc (the (offset n x xs))) by simp
finally show ?thesis .

qed

lemma ipurge-tr-rev-aux-first-offset [rule-format]:
xs = ys @ x # zs ∧ ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧

(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I) −→
ys = take (the (offset 0 x xs)) xs

proof (induction xs arbitrary: ys, simp, rule impI , (erule conjE)+)
fix x ′ xs ys
assume

A:
∧

ys. xs = ys @ x # zs ∧
ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I) −→

ys = take (the (offset 0 x xs)) xs and
B: x ′ # xs = ys @ x # zs and
C : ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys = [] and
D: ∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I

20

show ys = take (the (offset 0 x (x ′ # xs))) (x ′ # xs)
proof (cases ys)

case Nil
then have x ′ = x using B by simp
with Nil show ?thesis by simp

next
case (Cons y ys ′)
hence E : xs = ys ′ @ x # zs using B by simp
moreover have

F : ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) (y # ys ′) = []
using Cons and C by simp

hence
G: ¬ (∃ v ∈ sources-aux I D (sources-aux I D U (x # zs)) ys ′. (D y, v) ∈ I)

by (rule-tac notI , simp)
hence ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys ′ = []
using F by simp

ultimately have xs = ys ′ @ x # zs ∧
ipurge-tr-rev-aux I D (sources-aux I D U (x # zs)) ys ′ = [] ∧
(∃ v ∈ sources-aux I D U zs. (D x, v) ∈ I)

using D by blast
with A have H : ys ′ = take (the (offset 0 x xs)) xs ..
have I : x ′ = y using Cons and B by simp
hence

J : ¬ (∃ v ∈ sources-aux I D (sources-aux I D U zs) (ys ′ @ [x]). (D x ′, v) ∈ I)
using G by (simp add: sources-aux-append)

have x ′ 6= x
proof

assume x ′ = x
hence ∃ v ∈ sources-aux I D U zs. (D x ′, v) ∈ I using D by simp
then obtain v where K : v ∈ sources-aux I D U zs and L: (D x ′, v) ∈ I ..
have sources-aux I D U zs ⊆

sources-aux I D (sources-aux I D U zs) (ys ′ @ [x])
by (rule sources-aux-subset)

hence v ∈ sources-aux I D (sources-aux I D U zs) (ys ′ @ [x]) using K ..
with L have
∃ v ∈ sources-aux I D (sources-aux I D U zs) (ys ′ @ [x]). (D x ′, v) ∈ I ..

thus False using J by contradiction
qed
hence offset 0 x (x ′ # xs) = offset (Suc 0) x xs by simp
also have . . . = Some (Suc (the (offset 0 x xs)))
proof −

have ∃ ys zs. xs = ys @ x # zs using E by blast
hence offset 0 x xs 6= None by (simp only: offset-not-none)
thus ?thesis by (rule offset-suc)

qed
finally have take (the (offset 0 x (x ′ # xs))) (x ′ # xs) =

x ′ # take (the (offset 0 x xs)) xs
by simp

thus ?thesis using Cons and H and I by simp

21

qed
qed

lemma ipurge-tr-rev-aux-append-nil-2 [rule-format]:
ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D V xs −→
ipurge-tr-rev-aux I D U ys = []

proof (induction xs, simp, simp only: append-Cons, rule impI)
fix x xs
assume

A: ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D V xs −→
ipurge-tr-rev-aux I D U ys = [] and

B: ipurge-tr-rev-aux I D U (x # xs @ ys) = ipurge-tr-rev-aux I D V (x # xs)
show ipurge-tr-rev-aux I D U ys = []
proof (cases ∃ v ∈ sources-aux I D V xs. (D x, v) ∈ I)

case True
hence C : ipurge-tr-rev-aux I D U (x # xs @ ys) =

x # ipurge-tr-rev-aux I D V xs
using B by simp

hence ∃ vs ws. x # xs @ ys = vs @ x # ws ∧
ipurge-tr-rev-aux I D (sources-aux I D U (x # ws)) vs = [] ∧
(∃ v ∈ sources-aux I D U ws. (D x, v) ∈ I)

by (rule ipurge-tr-rev-aux-first)
then obtain vs and ws where ∗: x # xs @ ys = vs @ x # ws ∧

ipurge-tr-rev-aux I D (sources-aux I D U (x # ws)) vs = [] ∧
(∃ v ∈ sources-aux I D U ws. (D x, v) ∈ I)

by blast
then have vs = take (the (offset 0 x (x # xs @ ys))) (x # xs @ ys)

by (rule ipurge-tr-rev-aux-first-offset)
hence vs = [] by simp
with ∗ have ∃ v ∈ sources-aux I D U (xs @ ys). (D x, v) ∈ I by simp
hence ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D V xs
using C by simp

with A show ?thesis ..
next

case False
moreover have ¬ (∃ v ∈ sources-aux I D U (xs @ ys). (D x, v) ∈ I)
proof

assume ∃ v ∈ sources-aux I D U (xs @ ys). (D x, v) ∈ I
hence ipurge-tr-rev-aux I D V (x # xs) =

x # ipurge-tr-rev-aux I D U (xs @ ys)
using B by simp

hence ∃ vs ws. x # xs = vs @ x # ws ∧
ipurge-tr-rev-aux I D (sources-aux I D V (x # ws)) vs = [] ∧
(∃ v ∈ sources-aux I D V ws. (D x, v) ∈ I)

by (rule ipurge-tr-rev-aux-first)
then obtain vs and ws where ∗: x # xs = vs @ x # ws ∧

ipurge-tr-rev-aux I D (sources-aux I D V (x # ws)) vs = [] ∧
(∃ v ∈ sources-aux I D V ws. (D x, v) ∈ I)

by blast

22

then have vs = take (the (offset 0 x (x # xs))) (x # xs)
by (rule ipurge-tr-rev-aux-first-offset)

hence vs = [] by simp
with ∗ have ∃ v ∈ sources-aux I D V xs. (D x, v) ∈ I by simp
thus False using False by contradiction

qed
ultimately have ipurge-tr-rev-aux I D U (xs @ ys) =

ipurge-tr-rev-aux I D V xs
using B by simp

with A show ?thesis ..
qed

qed

lemma ipurge-tr-rev-aux-append-nil:
(ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs) =
(ipurge-tr-rev-aux I D U ys = [])

by (rule iffI , erule ipurge-tr-rev-aux-append-nil-2 , rule ipurge-tr-rev-aux-append-nil-1)

In what follows, it is proven by induction that the lists output by func-
tions ipurge-tr and ipurge-tr-rev, as well as those output by ipurge-tr-aux
and ipurge-tr-rev-aux, satisfy predicate Interleaves (cf. [7]), in correspon-
dence with suitable input predicates expressed in terms of functions sinks
and sinks-aux, respectively. Then, some lemmas on the aforesaid functions
are demonstrated without induction, using previous lemmas along with the
properties of predicate Interleaves.

lemma Interleaves-ipurge-tr :
xs ∼= {ipurge-tr-rev I D u xs, rev (ipurge-tr (I−1) D u (rev xs)),

λy ys. D y ∈ sinks (I−1) D u (rev (y # ys))}
proof (induction xs, simp, simp only: rev.simps)

fix x xs
assume A: xs ∼= {ipurge-tr-rev I D u xs, rev (ipurge-tr (I−1) D u (rev xs)),
λy ys. D y ∈ sinks (I−1) D u (rev ys @ [y])}
(is - ∼= {?ys, ?zs, ?P})

show x # xs ∼=
{ipurge-tr-rev I D u (x # xs), rev (ipurge-tr (I−1) D u (rev xs @ [x])), ?P}

proof (cases ?P x xs, simp-all add: sources-sinks del: sinks.simps)
case True
thus x # xs ∼= {x # ?ys, ?zs, ?P} using A by (cases ?zs, simp-all)

next
case False
thus x # xs ∼= {?ys, x # ?zs, ?P} using A by (cases ?ys, simp-all)

qed
qed

lemma Interleaves-ipurge-tr-aux:
xs ∼= {ipurge-tr-rev-aux I D U xs, rev (ipurge-tr-aux (I−1) D U (rev xs)),

23

λy ys. ∃ v ∈ sinks-aux (I−1) D U (rev ys). (D y, v) ∈ I}
proof (induction xs, simp, simp only: rev.simps)

fix x xs
assume A: xs ∼= {ipurge-tr-rev-aux I D U xs,

rev (ipurge-tr-aux (I−1) D U (rev xs)),
λy ys. ∃ v ∈ sinks-aux (I−1) D U (rev ys). (D y, v) ∈ I}
(is - ∼= {?ys, ?zs, ?P})

show x # xs ∼=
{ipurge-tr-rev-aux I D U (x # xs),
rev (ipurge-tr-aux (I−1) D U (rev xs @ [x])), ?P}

proof (cases ?P x xs, simp-all (no-asm-simp) add: sources-sinks-aux)
case True
thus x # xs ∼= {x # ?ys, ?zs, ?P} using A by (cases ?zs, simp-all)

next
case False
thus x # xs ∼= {?ys, x # ?zs, ?P} using A by (cases ?ys, simp-all)

qed
qed

lemma ipurge-tr-aux-all:
(ipurge-tr-aux I D U xs = xs) = (∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (u, v) ∈ I))

proof −
have A: rev xs ∼= {ipurge-tr-rev-aux (I−1) D U (rev xs),

rev (ipurge-tr-aux ((I−1)−1) D U (rev (rev xs))),
λy ys. ∃ v ∈ sinks-aux ((I−1)−1) D U (rev ys). (D y, v) ∈ (I−1)}
(is - ∼= {-, -, ?P})

by (rule Interleaves-ipurge-tr-aux)
show ?thesis
proof

assume ipurge-tr-aux I D U xs = xs
hence rev xs ∼= {ipurge-tr-rev-aux (I−1) D U (rev xs), rev xs, ?P}
using A by simp

hence rev xs ' {ipurge-tr-rev-aux (I−1) D U (rev xs), rev xs, ?P}
by (rule Interleaves-interleaves)

moreover have rev xs ' {[], rev xs, ?P} by (rule interleaves-nil-all)
ultimately have ipurge-tr-rev-aux (I−1) D U (rev xs) = []
by (rule interleaves-equal-fst)

thus ∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (u, v) ∈ I)
by (simp add: ipurge-tr-rev-aux-nil)

next
assume ∀ u ∈ U . ¬ (∃ v ∈ D ‘ set xs. (u, v) ∈ I)
hence ipurge-tr-rev-aux (I−1) D U (rev xs) = []
by (simp add: ipurge-tr-rev-aux-nil)

hence rev xs ∼= {[], rev (ipurge-tr-aux I D U xs), ?P} using A by simp
hence rev xs ' {[], rev (ipurge-tr-aux I D U xs), ?P}
by (rule Interleaves-interleaves)

hence rev xs ' {rev (ipurge-tr-aux I D U xs), [], λw ws. ¬ ?P w ws}
by (subst (asm) interleaves-swap)

moreover have rev xs ' {rev xs, [], λw ws. ¬ ?P w ws}

24

by (rule interleaves-all-nil)
ultimately have rev (ipurge-tr-aux I D U xs) = rev xs
by (rule interleaves-equal-fst)

thus ipurge-tr-aux I D U xs = xs by simp
qed

qed

lemma ipurge-tr-rev-aux-single-dom:
ipurge-tr-rev-aux I D {u} xs = ipurge-tr-rev I D u xs (is ?ys = ?ys ′)

proof −
have xs ∼= {?ys, rev (ipurge-tr-aux (I−1) D {u} (rev xs)),
λy ys. ∃ v ∈ sinks-aux (I−1) D {u} (rev ys). (D y, v) ∈ I}

by (rule Interleaves-ipurge-tr-aux)
hence xs ∼= {?ys, rev (ipurge-tr (I−1) D u (rev xs)),
λy ys. (u, D y) ∈ I−1 ∨ (∃ v ∈ sinks (I−1) D u (rev ys). (v, D y) ∈ I−1)}

by (simp add: ipurge-tr-aux-single-dom sinks-aux-single-dom)
hence xs ∼= {?ys, rev (ipurge-tr (I−1) D u (rev xs)),
λy ys. D y ∈ sinks (I−1) D u (rev (y # ys))}
(is - ∼= {-, ?zs, ?P})

by (simp only: sinks-interference-eq, simp)
moreover have xs ∼= {?ys ′, ?zs, ?P} by (rule Interleaves-ipurge-tr)
ultimately show ?thesis by (rule Interleaves-equal-fst)

qed

lemma ipurge-tr-all:
(ipurge-tr I D u xs = xs) = (¬ (∃ v ∈ D ‘ set xs. (u, v) ∈ I))

by (subst ipurge-tr-aux-single-dom [symmetric], simp add: ipurge-tr-aux-all)

lemma ipurge-tr-rev-all:
∀ v ∈ D ‘ set xs. (v, u) ∈ I =⇒ ipurge-tr-rev I D u xs = xs

proof (subst ipurge-tr-rev-aux-single-dom [symmetric], rule ipurge-tr-rev-aux-all)
qed (simp (no-asm-simp))

1.3 A domain-relation map based on intransitive purge

In what follows, constant rel-ipurge is defined as the domain-relation map
that associates each domain u to the relation comprised of the pairs of traces
whose images under function ipurge-tr-rev I D u are equal, viz. whose events
affecting u are the same.
An auxiliary domain set-relation map, rel-ipurge-aux, is also defined by re-
placing ipurge-tr-rev with ipurge-tr-rev-aux, so as to exploit the distribu-
tivity of the latter function over list concatenation. Unsurprisingly, since
ipurge-tr-rev-aux degenerates into ipurge-tr-rev for a singleton set of do-
mains, the same happens for rel-ipurge-aux and rel-ipurge.
Subsequently, some basic properties of domain-relation map rel-ipurge are
proven, namely that it is a view partition, and is future consistent if and only
if it is weakly future consistent. The nontrivial implication, viz. the direct

25

one, derives from the fact that for each domain u allowed to be affected by
any event domain, function ipurge-tr-rev I D u matches the identity function,
so that two traces are correlated by the image of rel-ipurge under u just in
case they are equal.

definition rel-ipurge ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map where

rel-ipurge P I D u ≡ {(xs, ys). xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys}

definition rel-ipurge-aux ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) domset-rel-map where

rel-ipurge-aux P I D U ≡ {(xs, ys). xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev-aux I D U xs = ipurge-tr-rev-aux I D U ys}

lemma rel-ipurge-aux-single-dom:
rel-ipurge-aux P I D {u} = rel-ipurge P I D u

by (simp add: rel-ipurge-def rel-ipurge-aux-def ipurge-tr-rev-aux-single-dom)

lemma view-partition-rel-ipurge:
view-partition P D (rel-ipurge P I D)

proof (subst view-partition-def , rule ballI , rule equivI)
fix u
show refl-on (traces P) (rel-ipurge P I D u)
proof (rule refl-onI , simp-all add: rel-ipurge-def)
qed (rule subsetI , simp add: split-paired-all)

next
fix u
show sym (rel-ipurge P I D u)
by (rule symI , simp add: rel-ipurge-def)

next
fix u
show trans (rel-ipurge P I D u)
by (rule transI , simp add: rel-ipurge-def)

qed

lemma fc-equals-wfc-rel-ipurge:
future-consistent P D (rel-ipurge P I D) =
weakly-future-consistent P I D (rel-ipurge P I D)

proof (rule iffI , erule fc-implies-wfc,
simp only: future-consistent-def weakly-future-consistent-def ,
rule ballI , (rule allI)+, rule impI)
fix u xs ys
assume

A: ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→
next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys and

B: u ∈ range D and

26

C : (xs, ys) ∈ rel-ipurge P I D u
show next-dom-events P D u xs = next-dom-events P D u ys ∧

ref-dom-events P D u xs = ref-dom-events P D u ys
proof (cases u ∈ range D ∩ (−I) ‘‘ range D)

case True
with A have ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys ..

hence (xs, ys) ∈ rel-ipurge P I D u −→
next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

by blast
thus ?thesis using C ..

next
case False
hence D: u /∈ (−I) ‘‘ range D using B by simp
have ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys
using C by (simp add: rel-ipurge-def)

moreover have ∀ zs. ipurge-tr-rev I D u zs = zs
proof (rule allI , rule ipurge-tr-rev-all, rule ballI , erule imageE , rule ccontr)

fix v x
assume (v, u) /∈ I
hence (v, u) ∈ −I by simp
moreover assume v = D x
hence v ∈ range D by simp
ultimately have u ∈ (−I) ‘‘ range D ..
thus False using D by contradiction

qed
ultimately show ?thesis by simp

qed
qed

1.4 The Ipurge Unwinding Theorem: proof of condition suf-
ficiency

The Ipurge Unwinding Theorem, formalized in what follows as theorem
ipurge-unwinding, states that a necessary and sufficient condition for the
CSP noninterference security [6] of a process being refusals union closed is
that domain-relation map rel-ipurge be weakly future consistent. Notwith-
standing the equivalence of future consistency and weak future consistency
for rel-ipurge (cf. above), expressing the theorem in terms of the latter re-
duces the range of the domains to be considered in order to prove or disprove
the security of a process, and then is more convenient.
According to the definition of CSP noninterference security formulated in
[6], a process is regarded as being secure just in case the occurrence of an
event e may only affect future events allowed to be affected by e. Identifying
security with the weak future consistency of rel-ipurge means reversing the

27

view of the problem with respect to the direction of time. In fact, from
this view, a process is secure just in case the occurrence of an event e may
only be affected by past events allowed to affect e. Therefore, what the
Ipurge Unwinding Theorem proves is that ultimately, opposite perspectives
with regard to the direction of time give rise to equivalent definitions of the
noninterference security of a process.
Here below, it is proven that the condition expressed by the Ipurge Unwind-
ing Theorem is sufficient for security.

lemma ipurge-tr-rev-ipurge-tr-aux-1 [rule-format]:
U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

proof (induction zs arbitrary: U rule: rev-induct, rule-tac [!] impI , simp)
fix U
assume A: U ⊆ unaffected-domains I D (D ‘ set ys) []
have ∀ u ∈ U . ∀ v ∈ D ‘ set ys. (v, u) /∈ I
proof

fix u
assume u ∈ U
with A have u ∈ unaffected-domains I D (D ‘ set ys) [] ..
thus ∀ v ∈ D ‘ set ys. (v, u) /∈ I by (simp add: unaffected-domains-def)

qed
hence ipurge-tr-rev-aux I D U ys = [] by (simp add: ipurge-tr-rev-aux-nil)
thus ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs
by (simp add: ipurge-tr-rev-aux-append-nil)

next
fix z zs U
let ?U ′ = insert (D z) U
assume

A:
∧

U . U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) and

B: U ⊆ unaffected-domains I D (D ‘ set ys) (zs @ [z])
have C : U ⊆ unaffected-domains I D (D ‘ set ys) zs
proof

fix u
assume u ∈ U
with B have u ∈ unaffected-domains I D (D ‘ set ys) (zs @ [z]) ..
thus u ∈ unaffected-domains I D (D ‘ set ys) zs
by (simp add: unaffected-domains-def)

qed
have D: ipurge-tr-rev-aux I D U (xs @ ys @ zs) =

ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)
proof −

have U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

28

using A .
thus ?thesis using C ..

qed
have E : ¬ (∃ v ∈ sinks-aux I D (D ‘ set ys) zs. (v, D z) ∈ I) −→

ipurge-tr-rev-aux I D ?U ′ (xs @ ys @ zs) =
ipurge-tr-rev-aux I D ?U ′ (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)
(is ?P −→ ?Q)

proof
assume ?P
have ?U ′ ⊆ unaffected-domains I D (D ‘ set ys) zs −→

ipurge-tr-rev-aux I D ?U ′ (xs @ ys @ zs) =
ipurge-tr-rev-aux I D ?U ′ (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

using A .
moreover have ?U ′ ⊆ unaffected-domains I D (D ‘ set ys) zs
by (simp add: C , simp add: unaffected-domains-def ‹?P› [simplified])

ultimately show ?Q ..
qed
show ipurge-tr-rev-aux I D U (xs @ ys @ zs @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z]))
proof (cases ∃ v ∈ sinks-aux I D (D ‘ set ys) zs. (v, D z) ∈ I ,
simp-all (no-asm-simp))
case True
have ¬ (∃ u ∈ U . (D z, u) ∈ I)
proof

assume ∃ u ∈ U . (D z, u) ∈ I
then obtain u where F : u ∈ U and G: (D z, u) ∈ I ..
have D z ∈ sinks-aux I D (D ‘ set ys) (zs @ [z]) using True by simp
with G have ∃ v ∈ sinks-aux I D (D ‘ set ys) (zs @ [z]). (v, u) ∈ I ..
moreover have u ∈ unaffected-domains I D (D ‘ set ys) (zs @ [z])
using B and F ..

hence ¬ (∃ v ∈ sinks-aux I D (D ‘ set ys) (zs @ [z]). (v, u) ∈ I)
by (simp add: unaffected-domains-def)

ultimately show False by contradiction
qed
hence ipurge-tr-rev-aux I D U ((xs @ ys @ zs) @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ys @ zs)
by (subst ipurge-tr-rev-aux-append, simp)

also have . . . = ipurge-tr-rev-aux I D U
(xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

using D .
finally show ipurge-tr-rev-aux I D U (xs @ ys @ zs @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)
by simp

next
case False
note F = this
show ipurge-tr-rev-aux I D U (xs @ ys @ zs @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs @ [z])
proof (cases ∃ u ∈ U . (D z, u) ∈ I)

29

case True
hence ipurge-tr-rev-aux I D U ((xs @ ys @ zs) @ [z]) =

ipurge-tr-rev-aux I D ?U ′ (xs @ ys @ zs) @ [z]
by (subst ipurge-tr-rev-aux-append, simp)

also have . . . =
ipurge-tr-rev-aux I D ?U ′ (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z]

using E and F by simp
also have . . . =

ipurge-tr-rev-aux I D U ((xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z])
using True by (subst ipurge-tr-rev-aux-append, simp)

finally show ?thesis by simp
next

case False
hence ipurge-tr-rev-aux I D U ((xs @ ys @ zs) @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ys @ zs)
by (subst ipurge-tr-rev-aux-append, simp)

also have . . . =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

using D .
also have . . . =

ipurge-tr-rev-aux I D U ((xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z])
using False by (subst ipurge-tr-rev-aux-append, simp)

finally show ?thesis by simp
qed

qed
qed

lemma ipurge-tr-rev-ipurge-tr-aux-2 [rule-format]:
U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ zs) =
ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)

proof (induction zs arbitrary: U rule: rev-induct, rule-tac [!] impI , simp)
fix U
assume A: U ⊆ unaffected-domains I D (D ‘ set ys) []
have ∀ u ∈ U . ∀ v ∈ D ‘ set ys. (v, u) /∈ I
proof

fix u
assume u ∈ U
with A have u ∈ unaffected-domains I D (D ‘ set ys) [] ..
thus ∀ v ∈ D ‘ set ys. (v, u) /∈ I by (simp add: unaffected-domains-def)

qed
hence ipurge-tr-rev-aux I D U ys = [] by (simp add: ipurge-tr-rev-aux-nil)
hence ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs
by (simp add: ipurge-tr-rev-aux-append-nil)

thus ipurge-tr-rev-aux I D U xs = ipurge-tr-rev-aux I D U (xs @ ys) ..
next

fix z zs U
let ?U ′ = insert (D z) U
assume

30

A:
∧

U . U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ zs) =
ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs) and

B: U ⊆ unaffected-domains I D (D ‘ set ys) (zs @ [z])
have C : U ⊆ unaffected-domains I D (D ‘ set ys) zs
proof

fix u
assume u ∈ U
with B have u ∈ unaffected-domains I D (D ‘ set ys) (zs @ [z]) ..
thus u ∈ unaffected-domains I D (D ‘ set ys) zs
by (simp add: unaffected-domains-def)

qed
have D: ipurge-tr-rev-aux I D U (xs @ zs) =

ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)
proof −

have U ⊆ unaffected-domains I D (D ‘ set ys) zs −→
ipurge-tr-rev-aux I D U (xs @ zs) =
ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)

using A .
thus ?thesis using C ..

qed
have E : ¬ (∃ v ∈ sinks-aux I D (D ‘ set ys) zs. (v, D z) ∈ I) −→

ipurge-tr-rev-aux I D ?U ′ (xs @ zs) =
ipurge-tr-rev-aux I D ?U ′ (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)
(is ?P −→ ?Q)

proof
assume ?P
have ?U ′ ⊆ unaffected-domains I D (D ‘ set ys) zs −→

ipurge-tr-rev-aux I D ?U ′ (xs @ zs) =
ipurge-tr-rev-aux I D ?U ′ (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)

using A .
moreover have ?U ′ ⊆ unaffected-domains I D (D ‘ set ys) zs
by (simp add: C , simp add: unaffected-domains-def ‹?P› [simplified])

ultimately show ?Q ..
qed
show ipurge-tr-rev-aux I D U (xs @ zs @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z]))
proof (cases ∃ v ∈ sinks-aux I D (D ‘ set ys) zs. (v, D z) ∈ I ,
simp-all (no-asm-simp))
case True
have ¬ (∃ u ∈ U . (D z, u) ∈ I)
proof

assume ∃ u ∈ U . (D z, u) ∈ I
then obtain u where F : u ∈ U and G: (D z, u) ∈ I ..
have D z ∈ sinks-aux I D (D ‘ set ys) (zs @ [z]) using True by simp
with G have ∃ v ∈ sinks-aux I D (D ‘ set ys) (zs @ [z]). (v, u) ∈ I ..
moreover have u ∈ unaffected-domains I D (D ‘ set ys) (zs @ [z])
using B and F ..

hence ¬ (∃ v ∈ sinks-aux I D (D ‘ set ys) (zs @ [z]). (v, u) ∈ I)

31

by (simp add: unaffected-domains-def)
ultimately show False by contradiction

qed
hence ipurge-tr-rev-aux I D U ((xs @ zs) @ [z]) =

ipurge-tr-rev-aux I D U (xs @ zs)
by (subst ipurge-tr-rev-aux-append, simp)

also have
. . . = ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)
using D .

finally show ipurge-tr-rev-aux I D U (xs @ zs @ [z]) =
ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)

by simp
next

case False
note F = this
show ipurge-tr-rev-aux I D U (xs @ zs @ [z]) =

ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs @ [z])
proof (cases ∃ u ∈ U . (D z, u) ∈ I)

case True
hence ipurge-tr-rev-aux I D U ((xs @ zs) @ [z]) =

ipurge-tr-rev-aux I D ?U ′ (xs @ zs) @ [z]
by (subst ipurge-tr-rev-aux-append, simp)

also have . . . =
ipurge-tr-rev-aux I D ?U ′

(xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z]
using E and F by simp

also have . . . =
ipurge-tr-rev-aux I D U
((xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z])

using True by (subst ipurge-tr-rev-aux-append, simp)
finally show ?thesis by simp

next
case False
hence ipurge-tr-rev-aux I D U ((xs @ zs) @ [z]) =

ipurge-tr-rev-aux I D U (xs @ zs)
by (subst ipurge-tr-rev-aux-append, simp)

also have . . . =
ipurge-tr-rev-aux I D U (xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs)

using D .
also have . . . =

ipurge-tr-rev-aux I D U
((xs @ ys @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z])

using False by (subst ipurge-tr-rev-aux-append, simp)
finally show ?thesis by simp

qed
qed

qed

lemma ipurge-tr-rev-ipurge-tr-1 :

32

assumes A: u ∈ unaffected-domains I D {D y} zs
shows ipurge-tr-rev I D u (xs @ y # zs) =

ipurge-tr-rev I D u (xs @ ipurge-tr I D (D y) zs)
proof −

have ipurge-tr-rev I D u (xs @ y # zs) =
ipurge-tr-rev-aux I D {u} (xs @ [y] @ zs)

by (simp add: ipurge-tr-rev-aux-single-dom)
also have . . . = ipurge-tr-rev-aux I D {u}
(xs @ ipurge-tr-aux I D (D ‘ set [y]) zs)

by (rule ipurge-tr-rev-ipurge-tr-aux-1 , simp add: A)
also have . . . = ipurge-tr-rev I D u (xs @ ipurge-tr I D (D y) zs)
by (simp add: ipurge-tr-aux-single-dom ipurge-tr-rev-aux-single-dom)

finally show ?thesis .
qed

lemma ipurge-tr-rev-ipurge-tr-2 :
assumes A: u ∈ unaffected-domains I D {D y} zs
shows ipurge-tr-rev I D u (xs @ zs) =

ipurge-tr-rev I D u (xs @ y # ipurge-tr I D (D y) zs)
proof −

have ipurge-tr-rev I D u (xs @ zs) = ipurge-tr-rev-aux I D {u} (xs @ zs)
by (simp add: ipurge-tr-rev-aux-single-dom)

also have
. . . = ipurge-tr-rev-aux I D {u} (xs @ [y] @ ipurge-tr-aux I D (D ‘ set [y]) zs)
by (rule ipurge-tr-rev-ipurge-tr-aux-2 , simp add: A)

also have . . . = ipurge-tr-rev I D u (xs @ y # ipurge-tr I D (D y) zs)
by (simp add: ipurge-tr-aux-single-dom ipurge-tr-rev-aux-single-dom)

finally show ?thesis .
qed

lemma iu-condition-imply-secure-aux-1 :
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D) and
A: (xs @ y # ys, Y) ∈ failures P and
B: xs @ ipurge-tr I D (D y) ys ∈ traces P and
C : ∃ y ′. y ′ ∈ ipurge-ref I D (D y) ys Y

shows (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P
proof −

let ?A = singleton-set (ipurge-ref I D (D y) ys Y)
have (∃X . X ∈ ?A) −→
(∀X ∈ ?A. (xs @ ipurge-tr I D (D y) ys, X) ∈ failures P) −→
(xs @ ipurge-tr I D (D y) ys,

⋃
X ∈ ?A. X) ∈ failures P

using RUC by (simp add: ref-union-closed-def)
moreover obtain y ′ where D: y ′ ∈ ipurge-ref I D (D y) ys Y using C ..
hence ∃X . X ∈ ?A by (simp add: singleton-set-some, rule exI)
ultimately have (∀X ∈ ?A. (xs @ ipurge-tr I D (D y) ys, X) ∈ failures P) −→
(xs @ ipurge-tr I D (D y) ys,

⋃
X ∈ ?A. X) ∈ failures P ..

moreover have ∀X ∈ ?A. (xs @ ipurge-tr I D (D y) ys, X) ∈ failures P

33

proof (rule ballI , simp add: singleton-set-def , erule bexE , simp)
fix y ′

have ∀ u ∈ range D ∩ (−I) ‘‘ range D.
∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→
ref-dom-events P D u xs = ref-dom-events P D u ys

using IU by (simp add: weakly-future-consistent-def)
moreover assume E : y ′ ∈ ipurge-ref I D (D y) ys Y
hence (D y, D y ′) /∈ I by (simp add: ipurge-ref-def)
hence D y ′ ∈ range D ∩ (−I) ‘‘ range D by (simp add: Image-iff , rule exI)
ultimately have ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D (D y ′) −→

ref-dom-events P D (D y ′) xs = ref-dom-events P D (D y ′) ys ..
hence

F : (xs @ y # ys, xs @ ipurge-tr I D (D y) ys) ∈ rel-ipurge P I D (D y ′) −→
ref-dom-events P D (D y ′) (xs @ y # ys) =
ref-dom-events P D (D y ′) (xs @ ipurge-tr I D (D y) ys)

by blast
have y ′ ∈ {x ∈ Y . D x ∈ unaffected-domains I D {D y} ys}
using E by (simp add: unaffected-domains-single-dom)

hence D y ′ ∈ unaffected-domains I D {D y} ys by simp
hence ipurge-tr-rev I D (D y ′) (xs @ y # ys) =

ipurge-tr-rev I D (D y ′) (xs @ ipurge-tr I D (D y) ys)
by (rule ipurge-tr-rev-ipurge-tr-1)

moreover have xs @ y # ys ∈ traces P using A by (rule failures-traces)
ultimately have
(xs @ y # ys, xs @ ipurge-tr I D (D y) ys) ∈ rel-ipurge P I D (D y ′)
using B by (simp add: rel-ipurge-def)

with F have ref-dom-events P D (D y ′) (xs @ y # ys) =
ref-dom-events P D (D y ′) (xs @ ipurge-tr I D (D y) ys) ..

moreover have y ′ ∈ ref-dom-events P D (D y ′) (xs @ y # ys)
proof (simp add: ref-dom-events-def refusals-def)

have {y ′} ⊆ Y using E by (simp add: ipurge-ref-def)
with A show (xs @ y # ys, {y ′}) ∈ failures P by (rule process-rule-3)

qed
ultimately have y ′ ∈ ref-dom-events P D (D y ′)
(xs @ ipurge-tr I D (D y) ys)

by simp
thus (xs @ ipurge-tr I D (D y) ys, {y ′}) ∈ failures P
by (simp add: ref-dom-events-def refusals-def)

qed
ultimately have (xs @ ipurge-tr I D (D y) ys,

⋃
X ∈ ?A. X) ∈ failures P ..

thus ?thesis by (simp only: singleton-set-union)
qed

lemma iu-condition-imply-secure-aux-2 :
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D) and
A: (xs @ zs, Z) ∈ failures P and
B: xs @ y # ipurge-tr I D (D y) zs ∈ traces P and

34

C : ∃ z ′. z ′ ∈ ipurge-ref I D (D y) zs Z
shows (xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P

proof −
let ?A = singleton-set (ipurge-ref I D (D y) zs Z)
have (∃X . X ∈ ?A) −→
(∀X ∈ ?A. (xs @ y # ipurge-tr I D (D y) zs, X) ∈ failures P) −→
(xs @ y # ipurge-tr I D (D y) zs,

⋃
X ∈ ?A. X) ∈ failures P

using RUC by (simp add: ref-union-closed-def)
moreover obtain z ′ where D: z ′ ∈ ipurge-ref I D (D y) zs Z using C ..
hence ∃X . X ∈ ?A by (simp add: singleton-set-some, rule exI)
ultimately have
(∀X ∈ ?A. (xs @ y # ipurge-tr I D (D y) zs, X) ∈ failures P) −→
(xs @ y # ipurge-tr I D (D y) zs,

⋃
X ∈ ?A. X) ∈ failures P ..

moreover have ∀X ∈ ?A. (xs @ y # ipurge-tr I D (D y) zs, X) ∈ failures P
proof (rule ballI , simp add: singleton-set-def , erule bexE , simp)

fix z ′

have ∀ u ∈ range D ∩ (−I) ‘‘ range D.
∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→
ref-dom-events P D u xs = ref-dom-events P D u ys

using IU by (simp add: weakly-future-consistent-def)
moreover assume E : z ′ ∈ ipurge-ref I D (D y) zs Z
hence (D y, D z ′) /∈ I by (simp add: ipurge-ref-def)
hence D z ′ ∈ range D ∩ (−I) ‘‘ range D by (simp add: Image-iff , rule exI)
ultimately have ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D (D z ′) −→

ref-dom-events P D (D z ′) xs = ref-dom-events P D (D z ′) ys ..
hence

F : (xs @ zs, xs @ y # ipurge-tr I D (D y) zs) ∈ rel-ipurge P I D (D z ′) −→
ref-dom-events P D (D z ′) (xs @ zs) =
ref-dom-events P D (D z ′) (xs @ y # ipurge-tr I D (D y) zs)

by blast
have z ′ ∈ {x ∈ Z . D x ∈ unaffected-domains I D {D y} zs}
using E by (simp add: unaffected-domains-single-dom)

hence D z ′ ∈ unaffected-domains I D {D y} zs by simp
hence ipurge-tr-rev I D (D z ′) (xs @ zs) =

ipurge-tr-rev I D (D z ′) (xs @ y # ipurge-tr I D (D y) zs)
by (rule ipurge-tr-rev-ipurge-tr-2)

moreover have xs @ zs ∈ traces P using A by (rule failures-traces)
ultimately have
(xs @ zs, xs @ y # ipurge-tr I D (D y) zs) ∈ rel-ipurge P I D (D z ′)
using B by (simp add: rel-ipurge-def)

with F have ref-dom-events P D (D z ′) (xs @ zs) =
ref-dom-events P D (D z ′) (xs @ y # ipurge-tr I D (D y) zs) ..

moreover have z ′ ∈ ref-dom-events P D (D z ′) (xs @ zs)
proof (simp add: ref-dom-events-def refusals-def)

have {z ′} ⊆ Z using E by (simp add: ipurge-ref-def)
with A show (xs @ zs, {z ′}) ∈ failures P by (rule process-rule-3)

qed
ultimately have z ′ ∈ ref-dom-events P D (D z ′)
(xs @ y # ipurge-tr I D (D y) zs)

35

by simp
thus (xs @ y # ipurge-tr I D (D y) zs, {z ′}) ∈ failures P
by (simp add: ref-dom-events-def refusals-def)

qed
ultimately have
(xs @ y # ipurge-tr I D (D y) zs,

⋃
X ∈ ?A. X) ∈ failures P ..

thus ?thesis by (simp only: singleton-set-union)
qed

lemma iu-condition-imply-secure-1 [rule-format]:
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D)

shows (xs @ y # ys, Y) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P

proof (induction ys arbitrary: Y rule: rev-induct, rule-tac [!] impI)
fix Y
assume A: (xs @ [y], Y) ∈ failures P
show (xs @ ipurge-tr I D (D y) [], ipurge-ref I D (D y) [] Y) ∈ failures P
proof (cases ∃ y ′. y ′ ∈ ipurge-ref I D (D y) [] Y)

case True
have xs @ [y] ∈ traces P using A by (rule failures-traces)
hence xs ∈ traces P by (rule process-rule-2-traces)
hence xs @ ipurge-tr I D (D y) [] ∈ traces P by simp
with RUC and IU and A show ?thesis
using True by (rule iu-condition-imply-secure-aux-1)

next
case False
moreover have (xs, {}) ∈ failures P using A by (rule process-rule-2)
ultimately show ?thesis by simp

qed
next

fix y ′ ys Y
assume

A:
∧

Y ′. (xs @ y # ys, Y ′) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y ′) ∈ failures P and

B: (xs @ y # ys @ [y ′], Y) ∈ failures P
have (xs @ y # ys, {}) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys {}) ∈ failures P
(is - −→ (-, ?Y ′) ∈ -)

using A .
moreover have ((xs @ y # ys) @ [y ′], Y) ∈ failures P using B by simp
hence C : (xs @ y # ys, {}) ∈ failures P by (rule process-rule-2)
ultimately have (xs @ ipurge-tr I D (D y) ys, ?Y ′) ∈ failures P ..
moreover have {} ⊆ ?Y ′ ..
ultimately have D: (xs @ ipurge-tr I D (D y) ys, {}) ∈ failures P
by (rule process-rule-3)

have E : xs @ ipurge-tr I D (D y) (ys @ [y ′]) ∈ traces P
proof (cases D y ′ ∈ sinks I D (D y) (ys @ [y ′]))

36

case True
hence (xs @ ipurge-tr I D (D y) (ys @ [y ′]), {}) ∈ failures P using D by simp
thus ?thesis by (rule failures-traces)

next
case False
have ∀ u ∈ range D ∩ (−I) ‘‘ range D.
∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→
next-dom-events P D u xs = next-dom-events P D u ys

using IU by (simp add: weakly-future-consistent-def)
moreover have (D y, D y ′) /∈ I
using False by (simp add: sinks-interference-eq [symmetric] del: sinks.simps)

hence D y ′ ∈ range D ∩ (−I) ‘‘ range D by (simp add: Image-iff , rule exI)
ultimately have ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D (D y ′) −→

next-dom-events P D (D y ′) xs = next-dom-events P D (D y ′) ys ..
hence

F : (xs @ y # ys, xs @ ipurge-tr I D (D y) ys) ∈ rel-ipurge P I D (D y ′) −→
next-dom-events P D (D y ′) (xs @ y # ys) =
next-dom-events P D (D y ′) (xs @ ipurge-tr I D (D y) ys)

by blast
have ∀ v ∈ insert (D y) (sinks I D (D y) ys). (v, D y ′) /∈ I
using False by (simp add: sinks-interference-eq [symmetric] del: sinks.simps)

hence ∀ v ∈ sinks-aux I D {D y} ys. (v, D y ′) /∈ I
by (simp add: sinks-aux-single-dom)

hence D y ′ ∈ unaffected-domains I D {D y} ys
by (simp add: unaffected-domains-def)

hence ipurge-tr-rev I D (D y ′) (xs @ y # ys) =
ipurge-tr-rev I D (D y ′) (xs @ ipurge-tr I D (D y) ys)

by (rule ipurge-tr-rev-ipurge-tr-1)
moreover have xs @ y # ys ∈ traces P using C by (rule failures-traces)
moreover have xs @ ipurge-tr I D (D y) ys ∈ traces P
using D by (rule failures-traces)

ultimately have
(xs @ y # ys, xs @ ipurge-tr I D (D y) ys) ∈ rel-ipurge P I D (D y ′)
by (simp add: rel-ipurge-def)

with F have next-dom-events P D (D y ′) (xs @ y # ys) =
next-dom-events P D (D y ′) (xs @ ipurge-tr I D (D y) ys) ..

moreover have y ′ ∈ next-dom-events P D (D y ′) (xs @ y # ys)
proof (simp add: next-dom-events-def next-events-def)
qed (rule failures-traces [OF B])
ultimately have y ′ ∈ next-dom-events P D (D y ′)
(xs @ ipurge-tr I D (D y) ys)

by simp
hence xs @ ipurge-tr I D (D y) ys @ [y ′] ∈ traces P
by (simp add: next-dom-events-def next-events-def)

thus ?thesis using False by simp
qed
show (xs @ ipurge-tr I D (D y) (ys @ [y ′]), ipurge-ref I D (D y) (ys @ [y ′]) Y)
∈ failures P

proof (cases ∃ x. x ∈ ipurge-ref I D (D y) (ys @ [y ′]) Y)

37

case True
with RUC and IU and B and E show ?thesis by (rule iu-condition-imply-secure-aux-1)

next
case False
moreover have (xs @ ipurge-tr I D (D y) (ys @ [y ′]), {}) ∈ failures P
using E by (rule traces-failures)

ultimately show ?thesis by simp
qed

qed

lemma iu-condition-imply-secure-2 [rule-format]:
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D) and
Y : xs @ [y] ∈ traces P

shows (xs @ zs, Z) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P

proof (induction zs arbitrary: Z rule: rev-induct, rule-tac [!] impI)
fix Z
assume A: (xs @ [], Z) ∈ failures P
show (xs @ y # ipurge-tr I D (D y) [], ipurge-ref I D (D y) [] Z) ∈ failures P
proof (cases ∃ z ′. z ′ ∈ ipurge-ref I D (D y) [] Z)

case True
have xs @ y # ipurge-tr I D (D y) [] ∈ traces P using Y by simp
with RUC and IU and A show ?thesis
using True by (rule iu-condition-imply-secure-aux-2)

next
case False
moreover have (xs @ [y], {}) ∈ failures P using Y by (rule traces-failures)
ultimately show ?thesis by simp

qed
next

fix z zs Z
assume

A:
∧

Z . (xs @ zs, Z) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P and

B: (xs @ zs @ [z], Z) ∈ failures P
have (xs @ zs, {}) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs {}) ∈ failures P
(is - −→ (-, ?Z ′) ∈ -)

using A .
moreover have ((xs @ zs) @ [z], Z) ∈ failures P using B by simp
hence C : (xs @ zs, {}) ∈ failures P by (rule process-rule-2)
ultimately have (xs @ y # ipurge-tr I D (D y) zs, ?Z ′) ∈ failures P ..
moreover have {} ⊆ ?Z ′ ..
ultimately have D: (xs @ y # ipurge-tr I D (D y) zs, {}) ∈ failures P
by (rule process-rule-3)

have E : xs @ y # ipurge-tr I D (D y) (zs @ [z]) ∈ traces P
proof (cases D z ∈ sinks I D (D y) (zs @ [z]))

38

case True
hence (xs @ y # ipurge-tr I D (D y) (zs @ [z]), {}) ∈ failures P
using D by simp

thus ?thesis by (rule failures-traces)
next

case False
have ∀ u ∈ range D ∩ (−I) ‘‘ range D.
∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→
next-dom-events P D u xs = next-dom-events P D u ys

using IU by (simp add: weakly-future-consistent-def)
moreover have (D y, D z) /∈ I
using False by (simp add: sinks-interference-eq [symmetric] del: sinks.simps)

hence D z ∈ range D ∩ (−I) ‘‘ range D by (simp add: Image-iff , rule exI)
ultimately have ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D (D z) −→

next-dom-events P D (D z) xs = next-dom-events P D (D z) ys ..
hence

F : (xs @ zs, xs @ y # ipurge-tr I D (D y) zs) ∈ rel-ipurge P I D (D z) −→
next-dom-events P D (D z) (xs @ zs) =
next-dom-events P D (D z) (xs @ y # ipurge-tr I D (D y) zs)

by blast
have ∀ v ∈ insert (D y) (sinks I D (D y) zs). (v, D z) /∈ I
using False by (simp add: sinks-interference-eq [symmetric] del: sinks.simps)

hence ∀ v ∈ sinks-aux I D {D y} zs. (v, D z) /∈ I
by (simp add: sinks-aux-single-dom)

hence D z ∈ unaffected-domains I D {D y} zs
by (simp add: unaffected-domains-def)

hence ipurge-tr-rev I D (D z) (xs @ zs) =
ipurge-tr-rev I D (D z) (xs @ y # ipurge-tr I D (D y) zs)

by (rule ipurge-tr-rev-ipurge-tr-2)
moreover have xs @ zs ∈ traces P using C by (rule failures-traces)
moreover have xs @ y # ipurge-tr I D (D y) zs ∈ traces P
using D by (rule failures-traces)

ultimately have
(xs @ zs, xs @ y # ipurge-tr I D (D y) zs) ∈ rel-ipurge P I D (D z)
by (simp add: rel-ipurge-def)

with F have next-dom-events P D (D z) (xs @ zs) =
next-dom-events P D (D z) (xs @ y # ipurge-tr I D (D y) zs) ..

moreover have z ∈ next-dom-events P D (D z) (xs @ zs)
proof (simp add: next-dom-events-def next-events-def)
qed (rule failures-traces [OF B])
ultimately have z ∈ next-dom-events P D (D z)
(xs @ y # ipurge-tr I D (D y) zs)

by simp
hence xs @ y # ipurge-tr I D (D y) zs @ [z] ∈ traces P
by (simp add: next-dom-events-def next-events-def)

thus ?thesis using False by simp
qed
show (xs @ y # ipurge-tr I D (D y) (zs @ [z]),

ipurge-ref I D (D y) (zs @ [z]) Z)

39

∈ failures P
proof (cases ∃ x. x ∈ ipurge-ref I D (D y) (zs @ [z]) Z)

case True
with RUC and IU and B and E show ?thesis by (rule iu-condition-imply-secure-aux-2)

next
case False
moreover have (xs @ y # ipurge-tr I D (D y) (zs @ [z]), {}) ∈ failures P
using E by (rule traces-failures)

ultimately show ?thesis by simp
qed

qed

theorem iu-condition-imply-secure:
assumes

RUC : ref-union-closed P and
IU : weakly-future-consistent P I D (rel-ipurge P I D)

shows secure P I D
proof (simp add: secure-def futures-def , (rule allI)+, rule impI , erule conjE)

fix xs y ys Y zs Z
assume

A: (xs @ y # ys, Y) ∈ failures P and
B: (xs @ zs, Z) ∈ failures P

show (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P ∧
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P
(is ?P ∧ ?Q)

proof
show ?P using RUC and IU and A by (rule iu-condition-imply-secure-1)

next
have ((xs @ [y]) @ ys, Y) ∈ failures P using A by simp
hence (xs @ [y], {}) ∈ failures P by (rule process-rule-2-failures)
hence xs @ [y] ∈ traces P by (rule failures-traces)
with RUC and IU show ?Q using B by (rule iu-condition-imply-secure-2)

qed
qed

1.5 The Ipurge Unwinding Theorem: proof of condition ne-
cessity

Here below, it is proven that the condition expressed by the Ipurge Un-
winding Theorem is necessary for security. Finally, the lemmas concerning
condition sufficiency and necessity are gathered in the main theorem.

lemma secure-implies-failure-consistency-aux [rule-format]:
assumes S : secure P I D
shows (xs @ ys @ zs, X) ∈ failures P −→

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys = [] −→ (xs @ zs, X) ∈ failures P
proof (induction ys rule: rev-induct, simp-all, (rule impI)+)

fix y ys

40

assume ∗: ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) (ys @ [y]) = []
then have A: ¬ (∃ v ∈ D ‘ (X ∪ set zs). (D y, v) ∈ I)

by (cases ∃ v ∈ D ‘ (X ∪ set zs). (D y, v) ∈ I ,
simp-all add: ipurge-tr-rev-aux-append)

with ∗ have B: ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys = []
by (simp add: ipurge-tr-rev-aux-append)

assume (xs @ ys @ y # zs, X) ∈ failures P
hence (y # zs, X) ∈ futures P (xs @ ys) by (simp add: futures-def)
hence (ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X)
∈ futures P (xs @ ys)
using S by (simp add: secure-def)

moreover have ipurge-tr I D (D y) zs = zs using A by (simp add: ipurge-tr-all)
moreover have ipurge-ref I D (D y) zs X = X using A by (rule ipurge-ref-all)
ultimately have (zs, X) ∈ futures P (xs @ ys) by simp
hence C : (xs @ ys @ zs, X) ∈ failures P by (simp add: futures-def)
assume (xs @ ys @ zs, X) ∈ failures P −→

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys = [] −→
(xs @ zs, X) ∈ failures P

hence ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys = [] −→
(xs @ zs, X) ∈ failures P
using C ..

thus (xs @ zs, X) ∈ failures P using B ..
qed

lemma secure-implies-failure-consistency [rule-format]:
assumes S : secure P I D
shows (xs, ys) ∈ rel-ipurge-aux P I D (D ‘ (X ∪ set zs)) −→
(xs @ zs, X) ∈ failures P −→ (ys @ zs, X) ∈ failures P

proof (induction ys arbitrary: xs zs rule: rev-induct,
simp-all add: rel-ipurge-aux-def , (rule-tac [!] impI)+, (erule-tac [!] conjE)+)
fix xs zs
assume (xs @ zs, X) ∈ failures P
hence ([] @ xs @ zs, X) ∈ failures P by simp
moreover assume ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs = []
ultimately have ([] @ zs, X) ∈ failures P
using S by (rule-tac secure-implies-failure-consistency-aux)

thus (zs, X) ∈ failures P by simp
next

fix y ys xs zs
assume

A:
∧

xs ′ zs ′. xs ′ ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs ′)) xs ′ =
ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs ′)) ys −→
(xs ′ @ zs ′, X) ∈ failures P −→ (ys @ zs ′, X) ∈ failures P and

B: (xs @ zs, X) ∈ failures P and
C : xs ∈ traces P and
D: ys @ [y] ∈ traces P and
E : ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) (ys @ [y])

41

show (ys @ y # zs, X) ∈ failures P
proof (cases ∃ v ∈ D ‘ (X ∪ set zs). (D y, v) ∈ I)

case True
hence F : ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =

ipurge-tr-rev-aux I D (D ‘ (X ∪ set (y # zs))) ys @ [y]
using E by (simp add: ipurge-tr-rev-aux-append)

hence
∃ vs ws. xs = vs @ y # ws ∧ ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ws = []
by (rule ipurge-tr-rev-aux-last-2)

then obtain vs and ws where
G: xs = vs @ y # ws ∧ ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ws = []

by blast
hence ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ((vs @ [y]) @ ws)
by simp

hence ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =
ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) (vs @ [y])

using G by (simp only: ipurge-tr-rev-aux-append-nil)
moreover have ∃ v ∈ D ‘ (X ∪ set zs). (D y, v) ∈ I
using F by (rule ipurge-tr-rev-aux-last-1)

ultimately have ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =
ipurge-tr-rev-aux I D (D ‘ (X ∪ set (y # zs))) vs @ [y]

by (simp add: ipurge-tr-rev-aux-append)
hence ipurge-tr-rev-aux I D (D ‘ (X ∪ set (y # zs))) vs =

ipurge-tr-rev-aux I D (D ‘ (X ∪ set (y # zs))) ys
using F by simp

moreover have vs @ y # ws ∈ traces P using C and G by simp
hence vs ∈ traces P by (rule process-rule-2-traces)
moreover have ys ∈ traces P using D by (rule process-rule-2-traces)
moreover have vs ∈ traces P ∧ ys ∈ traces P ∧

ipurge-tr-rev-aux I D (D ‘ (X ∪ set (y # zs))) vs =
ipurge-tr-rev-aux I D (D ‘ (X ∪ set (y # zs))) ys −→
(vs @ y # zs, X) ∈ failures P −→ (ys @ y # zs, X) ∈ failures P

using A .
ultimately have H : (vs @ y # zs, X) ∈ failures P −→
(ys @ y # zs, X) ∈ failures P

by simp
have ((vs @ [y]) @ ws @ zs, X) ∈ failures P using B and G by simp
moreover have ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ws = [] using G ..
ultimately have ((vs @ [y]) @ zs, X) ∈ failures P
using S by (rule-tac secure-implies-failure-consistency-aux)

thus ?thesis using H by simp
next

case False
hence ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys
using E by (simp add: ipurge-tr-rev-aux-append)

moreover have ys ∈ traces P using D by (rule process-rule-2-traces)
moreover have xs ∈ traces P ∧ ys ∈ traces P ∧

42

ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) xs =
ipurge-tr-rev-aux I D (D ‘ (X ∪ set zs)) ys −→
(xs @ zs, X) ∈ failures P −→ (ys @ zs, X) ∈ failures P

using A .
ultimately have (ys @ zs, X) ∈ failures P using B and C by simp
hence (zs, X) ∈ futures P ys by (simp add: futures-def)
moreover have ∃Y . ([y], Y) ∈ futures P ys
using D by (simp add: traces-def Domain-iff futures-def)

then obtain Y where ([y], Y) ∈ futures P ys ..
ultimately have
(y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs X) ∈ futures P ys

using S by (simp add: secure-def)
moreover have ipurge-tr I D (D y) zs = zs
using False by (simp add: ipurge-tr-all)

moreover have ipurge-ref I D (D y) zs X = X
using False by (rule ipurge-ref-all)

ultimately show ?thesis by (simp add: futures-def)
qed

qed

lemma secure-implies-trace-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge-aux P I D (D ‘ set zs) =⇒
xs @ zs ∈ traces P =⇒ ys @ zs ∈ traces P

proof (simp add: traces-def Domain-iff , rule-tac x = {} in exI ,
rule secure-implies-failure-consistency, simp-all)

qed (erule exE , erule process-rule-3 , simp)

lemma secure-implies-next-event-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge P I D (D x) =⇒
x ∈ next-events P xs =⇒ x ∈ next-events P ys
by (auto simp add: next-events-def rel-ipurge-aux-single-dom intro: secure-implies-trace-consistency)

lemma secure-implies-refusal-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge-aux P I D (D ‘ X) =⇒
X ∈ refusals P xs =⇒ X ∈ refusals P ys

by (simp add: refusals-def , subst append-Nil2 [symmetric],
rule secure-implies-failure-consistency, simp-all)

lemma secure-implies-ref-event-consistency:
secure P I D =⇒ (xs, ys) ∈ rel-ipurge P I D (D x) =⇒
{x} ∈ refusals P xs =⇒ {x} ∈ refusals P ys

by (rule secure-implies-refusal-consistency, simp-all add: rel-ipurge-aux-single-dom)

theorem secure-implies-iu-condition:
assumes S : secure P I D
shows future-consistent P D (rel-ipurge P I D)

proof (simp add: future-consistent-def next-dom-events-def ref-dom-events-def ,
(rule allI)+, rule impI , rule conjI , rule-tac [!] equalityI , rule-tac [!] subsetI ,
simp-all, erule-tac [!] conjE)

43

fix xs ys x
assume (xs, ys) ∈ rel-ipurge P I D (D x) and x ∈ next-events P xs
with S show x ∈ next-events P ys by (rule secure-implies-next-event-consistency)

next
fix xs ys x
have ∀ u ∈ range D. equiv (traces P) (rel-ipurge P I D u)
using view-partition-rel-ipurge by (simp add: view-partition-def)

hence sym (rel-ipurge P I D (D x)) by (simp add: equiv-def)
moreover assume (xs, ys) ∈ rel-ipurge P I D (D x)
ultimately have (ys, xs) ∈ rel-ipurge P I D (D x) by (rule symE)
moreover assume x ∈ next-events P ys
ultimately show x ∈ next-events P xs
using S by (rule-tac secure-implies-next-event-consistency)

next
fix xs ys x
assume (xs, ys) ∈ rel-ipurge P I D (D x) and {x} ∈ refusals P xs
with S show {x} ∈ refusals P ys by (rule secure-implies-ref-event-consistency)

next
fix xs ys x
have ∀ u ∈ range D. equiv (traces P) (rel-ipurge P I D u)
using view-partition-rel-ipurge by (simp add: view-partition-def)

hence sym (rel-ipurge P I D (D x)) by (simp add: equiv-def)
moreover assume (xs, ys) ∈ rel-ipurge P I D (D x)
ultimately have (ys, xs) ∈ rel-ipurge P I D (D x) by (rule symE)
moreover assume {x} ∈ refusals P ys
ultimately show {x} ∈ refusals P xs
using S by (rule-tac secure-implies-ref-event-consistency)

qed

theorem ipurge-unwinding:
ref-union-closed P =⇒
secure P I D = weakly-future-consistent P I D (rel-ipurge P I D)

proof (rule iffI , subst fc-equals-wfc-rel-ipurge [symmetric])
qed (erule secure-implies-iu-condition, rule iu-condition-imply-secure)

end

2 The Ipurge Unwinding Theorem for determin-
istic and trace set processes

theory DeterministicProcesses
imports IpurgeUnwinding
begin

In accordance with Hoare’s formal definition of deterministic processes [1],
this section shows that a process is deterministic just in case it is a trace
set process, i.e. it may be identified by means of a trace set alone, matching

44

the set of its traces, in place of a failures-divergences pair. Then, variants of
the Ipurge Unwinding Theorem are proven for deterministic processes and
trace set processes.

2.1 Deterministic processes

Here below are the definitions of predicates d-future-consistent and d-weakly-future-consistent,
which are variants of predicates future-consistent and weakly-future-consistent
meant for applying to deterministic processes. In some detail, being de-
terministic processes such that refused events are completely specified by
accepted events (cf. [1], [6]), the new predicates are such that their truth
values can be determined by just considering the accepted events of the
process taken as input.
Then, it is proven that these predicates are characterized by the same con-
nection as that of their general-purpose counterparts, viz. d-future-consistent
implies d-weakly-future-consistent, and they are equivalent for domain-relation
map rel-ipurge. Finally, the predicates are shown to be equivalent to their
general-purpose counterparts in the case of a deterministic process.

definition d-future-consistent ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

d-future-consistent P D R ≡
∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

definition d-weakly-future-consistent ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

d-weakly-future-consistent P I D R ≡
∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

lemma dfc-implies-dwfc:
d-future-consistent P D R =⇒ d-weakly-future-consistent P I D R

by (simp only: d-future-consistent-def d-weakly-future-consistent-def , blast)

lemma dfc-equals-dwfc-rel-ipurge:
d-future-consistent P D (rel-ipurge P I D) =
d-weakly-future-consistent P I D (rel-ipurge P I D)

proof (rule iffI , erule dfc-implies-dwfc,
simp only: d-future-consistent-def d-weakly-future-consistent-def ,
rule ballI , (rule allI)+, rule impI)
fix u xs ys
assume

A: ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→

45

(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys and

B: u ∈ range D and
C : (xs, ys) ∈ rel-ipurge P I D u

show (xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

proof (cases u ∈ range D ∩ (−I) ‘‘ range D)
case True
with A have ∀ xs ys. (xs, ys) ∈ rel-ipurge P I D u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys ..

hence (xs, ys) ∈ rel-ipurge P I D u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

by blast
thus ?thesis using C ..

next
case False
hence D: u /∈ (−I) ‘‘ range D using B by simp
have ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys
using C by (simp add: rel-ipurge-def)

moreover have ∀ zs. ipurge-tr-rev I D u zs = zs
proof (rule allI , rule ipurge-tr-rev-all, rule ballI , erule imageE , rule ccontr)

fix v x
assume (v, u) /∈ I
hence (v, u) ∈ −I by simp
moreover assume v = D x
hence v ∈ range D by simp
ultimately have u ∈ (−I) ‘‘ range D ..
thus False using D by contradiction

qed
ultimately show ?thesis by simp

qed
qed

lemma d-fc-equals-dfc:
assumes A: deterministic P
shows future-consistent P D R = d-future-consistent P D R

proof (rule iffI , simp-all only: d-future-consistent-def ,
rule ballI , (rule allI)+, rule impI , rule conjI , rule fc-traces, assumption+,
simp-all add: future-consistent-def del: ball-simps)
assume B: ∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

show ∀ u ∈ range D. ∀ xs ys. (xs, ys) ∈ R u −→
ref-dom-events P D u xs = ref-dom-events P D u ys

proof (rule ballI , (rule allI)+, rule impI ,
simp add: ref-dom-events-def set-eq-iff , rule allI)
fix u xs ys x

46

assume u ∈ range D
with B have ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys ..

hence (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

by blast
moreover assume (xs, ys) ∈ R u
ultimately have C : (xs ∈ traces P) = (ys ∈ traces P) ∧

next-dom-events P D u xs = next-dom-events P D u ys ..
show (u = D x ∧ {x} ∈ refusals P xs) = (u = D x ∧ {x} ∈ refusals P ys)
proof (cases u = D x, simp-all, cases xs ∈ traces P)

assume D: u = D x and E : xs ∈ traces P
have

A ′: ∀ xs ∈ traces P. ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {})
using A by (simp add: deterministic-def)

hence ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {}) using E ..
hence {x} ∈ refusals P xs = ({x} ∩ next-events P xs = {}) ..
moreover have ys ∈ traces P using C and E by simp
with A ′ have ∀X . X ∈ refusals P ys = (X ∩ next-events P ys = {}) ..
hence {x} ∈ refusals P ys = ({x} ∩ next-events P ys = {}) ..
moreover have {x} ∩ next-events P xs = {x} ∩ next-events P ys
proof (simp add: set-eq-iff , rule allI , rule iffI , erule-tac [!] conjE , simp-all)

assume x ∈ next-events P xs
hence x ∈ next-dom-events P D u xs using D by (simp add: next-dom-events-def)

hence x ∈ next-dom-events P D u ys using C by simp
thus x ∈ next-events P ys by (simp add: next-dom-events-def)

next
assume x ∈ next-events P ys

hence x ∈ next-dom-events P D u ys using D by (simp add: next-dom-events-def)
hence x ∈ next-dom-events P D u xs using C by simp
thus x ∈ next-events P xs by (simp add: next-dom-events-def)

qed
ultimately show ({x} ∈ refusals P xs) = ({x} ∈ refusals P ys) by simp

next
assume D: xs /∈ traces P
hence ∀X . (xs, X) /∈ failures P by (simp add: traces-def Domain-iff)
hence refusals P xs = {} by (rule-tac equals0I , simp add: refusals-def)
moreover have ys /∈ traces P using C and D by simp
hence ∀X . (ys, X) /∈ failures P by (simp add: traces-def Domain-iff)
hence refusals P ys = {} by (rule-tac equals0I , simp add: refusals-def)
ultimately show ({x} ∈ refusals P xs) = ({x} ∈ refusals P ys) by simp

qed
qed

qed

lemma d-wfc-equals-dwfc:
assumes A: deterministic P

47

shows weakly-future-consistent P I D R = d-weakly-future-consistent P I D R
proof (rule iffI , simp-all only: d-weakly-future-consistent-def ,
rule ballI , (rule allI)+, rule impI , rule conjI , rule wfc-traces, assumption+,
simp-all add: weakly-future-consistent-def del: ball-simps)
assume B: ∀ u ∈ range D ∩ (− I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

show ∀ u ∈ range D ∩ (− I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→
ref-dom-events P D u xs = ref-dom-events P D u ys

proof (rule ballI , (rule allI)+, rule impI ,
simp (no-asm-simp) add: ref-dom-events-def set-eq-iff , rule allI)
fix u xs ys x
assume u ∈ range D ∩ (− I) ‘‘ range D
with B have ∀ xs ys. (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys ..

hence (xs, ys) ∈ R u −→
(xs ∈ traces P) = (ys ∈ traces P) ∧
next-dom-events P D u xs = next-dom-events P D u ys

by blast
moreover assume (xs, ys) ∈ R u
ultimately have C : (xs ∈ traces P) = (ys ∈ traces P) ∧

next-dom-events P D u xs = next-dom-events P D u ys ..
show (u = D x ∧ {x} ∈ refusals P xs) = (u = D x ∧ {x} ∈ refusals P ys)
proof (cases u = D x, simp-all, cases xs ∈ traces P)

assume D: u = D x and E : xs ∈ traces P
have A ′: ∀ xs ∈ traces P. ∀X .

X ∈ refusals P xs = (X ∩ next-events P xs = {})
using A by (simp add: deterministic-def)

hence ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {}) using E ..
hence {x} ∈ refusals P xs = ({x} ∩ next-events P xs = {}) ..
moreover have ys ∈ traces P using C and E by simp
with A ′ have ∀X . X ∈ refusals P ys = (X ∩ next-events P ys = {}) ..
hence {x} ∈ refusals P ys = ({x} ∩ next-events P ys = {}) ..
moreover have {x} ∩ next-events P xs = {x} ∩ next-events P ys
proof (simp add: set-eq-iff , rule allI , rule iffI , erule-tac [!] conjE , simp-all)

assume x ∈ next-events P xs
hence x ∈ next-dom-events P D u xs using D by (simp add: next-dom-events-def)

hence x ∈ next-dom-events P D u ys using C by simp
thus x ∈ next-events P ys by (simp add: next-dom-events-def)

next
assume x ∈ next-events P ys

hence x ∈ next-dom-events P D u ys using D by (simp add: next-dom-events-def)
hence x ∈ next-dom-events P D u xs using C by simp
thus x ∈ next-events P xs by (simp add: next-dom-events-def)

qed
ultimately show ({x} ∈ refusals P xs) = ({x} ∈ refusals P ys) by simp

next
assume D: xs /∈ traces P

48

hence ∀X . (xs, X) /∈ failures P by (simp add: traces-def Domain-iff)
hence refusals P xs = {} by (rule-tac equals0I , simp add: refusals-def)
moreover have ys /∈ traces P using C and D by simp
hence ∀X . (ys, X) /∈ failures P by (simp add: traces-def Domain-iff)
hence refusals P ys = {} by (rule-tac equals0I , simp add: refusals-def)
ultimately show ({x} ∈ refusals P xs) = ({x} ∈ refusals P ys) by simp

qed
qed

qed

Here below is the proof of a variant of the Ipurge Unwinding Theorem apply-
ing to deterministic processes. Unsurprisingly, its enunciation contains pred-
icate d-weakly-future-consistent in place of weakly-future-consistent. Fur-
thermore, the assumption that the process be refusals union closed is re-
placed by the assumption that it be deterministic, since the former property
is shown to be entailed by the latter.

lemma d-implies-ruc:
assumes A: deterministic P
shows ref-union-closed P

proof (subst ref-union-closed-def , (rule allI)+, (rule impI)+, erule exE)
fix xs A X
have ∀ xs ∈ traces P. ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {})
using A by (simp add: deterministic-def)

moreover assume B: ∀X ∈ A. (xs, X) ∈ failures P and X ∈ A
hence (xs, X) ∈ failures P ..
hence xs ∈ traces P by (rule failures-traces)
ultimately have C : ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {}) ..
have D: ∀X ∈ A. X ∩ next-events P xs = {}
proof

fix X
assume X ∈ A
with B have (xs, X) ∈ failures P ..
hence X ∈ refusals P xs by (simp add: refusals-def)
thus X ∩ next-events P xs = {} using C by simp

qed
have (

⋃
X ∈ A. X) ∈ refusals P xs = ((

⋃
X ∈ A. X) ∩ next-events P xs = {})

using C ..
hence E : (xs,

⋃
X ∈ A. X) ∈ failures P =

((
⋃

X ∈ A. X) ∩ next-events P xs = {})
by (simp add: refusals-def)

show (xs,
⋃

X ∈ A. X) ∈ failures P
proof (rule ssubst [OF E], rule equals0I , erule IntE , erule UN-E)

fix x X
assume X ∈ A
with D have X ∩ next-events P xs = {} ..
moreover assume x ∈ X and x ∈ next-events P xs

49

hence x ∈ X ∩ next-events P xs ..
hence ∃ x. x ∈ X ∩ next-events P xs ..
hence X ∩ next-events P xs 6= {} by (subst ex-in-conv [symmetric])
ultimately show False by contradiction

qed
qed

theorem d-ipurge-unwinding:
assumes A: deterministic P
shows secure P I D = d-weakly-future-consistent P I D (rel-ipurge P I D)

proof (insert d-wfc-equals-dwfc [of P I D rel-ipurge P I D, OF A], erule subst)
qed (insert d-implies-ruc [OF A], rule ipurge-unwinding)

2.2 Trace set processes

In [1], section 2.8, Hoare formulates a simplified definition of a deterministic
process, identified with a trace set, i.e. a set of event lists containing the
empty list and any prefix of each of its elements. Of course, this is consis-
tent with the definition of determinism applying to processes identified with
failures-divergences pairs, which implies that their refusals are completely
specified by their traces (cf. [1], [6]).
Here below are the definitions of a function ts-process, converting the input
set of lists into a process, and a predicate trace-set, returning True just
in case the input set of lists has the aforesaid properties. An analysis is
then conducted about the output of the functions defined in [6], section 1.1,
when acting on a trace set process, i.e. a process that may be expressed as
ts-process T where trace-set T matches True.

definition ts-process :: ′a list set ⇒ ′a process where
ts-process T ≡ Abs-process ({(xs, X). xs ∈ T ∧ (∀ x ∈ X . xs @ [x] /∈ T)}, {})

definition trace-set :: ′a list set ⇒ bool where
trace-set T ≡ [] ∈ T ∧ (∀ xs x. xs @ [x] ∈ T −→ xs ∈ T)

lemma ts-process-rep:
assumes A: trace-set T
shows Rep-process (ts-process T) =
({(xs, X). xs ∈ T ∧ (∀ x ∈ X . xs @ [x] /∈ T)}, {})

proof (subst ts-process-def , rule Abs-process-inverse, simp add: process-set-def ,
(subst conj-assoc [symmetric])+, (rule conjI)+, simp-all add:
process-prop-1-def
process-prop-2-def
process-prop-3-def
process-prop-4-def
process-prop-5-def
process-prop-6-def)
show [] ∈ T using A by (simp add: trace-set-def)

50

next
show ∀ xs. (∃ x. xs @ [x] ∈ T ∧ (∃X . ∀ x ′ ∈ X . xs @ [x, x ′] /∈ T)) −→ xs ∈ T
proof (rule allI , rule impI , erule exE , erule conjE)

fix xs x
have ∀ xs x. xs @ [x] ∈ T −→ xs ∈ T using A by (simp add: trace-set-def)
hence xs @ [x] ∈ T −→ xs ∈ T by blast
moreover assume xs @ [x] ∈ T
ultimately show xs ∈ T ..

qed
next

show ∀ xs X . xs ∈ T ∧ (∃Y . (∀ x ∈ Y . xs @ [x] /∈ T) ∧ X ⊆ Y) −→
(∀ x ∈ X . xs @ [x] /∈ T)

proof ((rule allI)+, rule impI , (erule conjE , (erule exE)?)+, rule ballI)
fix xs x X Y
assume ∀ x ∈ Y . xs @ [x] /∈ T
moreover assume X ⊆ Y and x ∈ X
hence x ∈ Y ..
ultimately show xs @ [x] /∈ T ..

qed
qed

lemma ts-process-failures:
trace-set T =⇒
failures (ts-process T) = {(xs, X). xs ∈ T ∧ (∀ x ∈ X . xs @ [x] /∈ T)}

by (drule ts-process-rep, simp add: failures-def)

lemma ts-process-futures:
trace-set T =⇒
futures (ts-process T) xs =
{(ys, Y). xs @ ys ∈ T ∧ (∀ y ∈ Y . xs @ ys @ [y] /∈ T)}

by (simp add: futures-def ts-process-failures)

lemma ts-process-traces:
trace-set T =⇒ traces (ts-process T) = T

proof (drule ts-process-failures, simp add: traces-def , rule set-eqI , rule iffI , simp-all)
qed (rule-tac x = {} in exI , simp)

lemma ts-process-refusals:
trace-set T =⇒ xs ∈ T =⇒
refusals (ts-process T) xs = {X . ∀ x ∈ X . xs @ [x] /∈ T}

by (drule ts-process-failures, simp add: refusals-def)

lemma ts-process-next-events:
trace-set T =⇒ (x ∈ next-events (ts-process T) xs) = (xs @ [x] ∈ T)

by (drule ts-process-traces, simp add: next-events-def)

In what follows, the proof is given of two results which provide a connection
between the notions of deterministic and trace set processes: any trace set

51

process is deterministic, and any process is deterministic just in case it is
equal to the trace set process corresponding to the set of its traces.

lemma ts-process-d:
trace-set T =⇒ deterministic (ts-process T)

proof (frule ts-process-traces, simp add: deterministic-def , rule ballI ,
drule ts-process-refusals, assumption, simp add: next-events-def ,
rule allI , rule iffI)
fix xs X
assume ∀ x ∈ X . xs @ [x] /∈ T
thus X ∩ {x. xs @ [x] ∈ T} = {}
by (rule-tac equals0I , erule-tac IntE , simp)

next
fix xs X
assume A: X ∩ {x. xs @ [x] ∈ T} = {}
show ∀ x ∈ X . xs @ [x] /∈ T
proof (rule ballI , rule notI)

fix x
assume x ∈ X and xs @ [x] ∈ T
hence x ∈ X ∩ {x. xs @ [x] ∈ T} by simp
moreover have x /∈ X ∩ {x. xs @ [x] ∈ T} using A by (rule equals0D)
ultimately show False by contradiction

qed
qed

definition divergences :: ′a process ⇒ ′a list set where
divergences P ≡ snd (Rep-process P)

lemma d-divergences:
assumes A: deterministic P
shows divergences P = {}

proof (subst divergences-def , rule equals0I)
fix xs
have B: Rep-process P ∈ process-set (is ?P ′ ∈ -) by (rule Rep-process)
hence ∀ xs. ∃ x. xs ∈ snd ?P ′ −→ xs @ [x] ∈ snd ?P ′

by (simp add: process-set-def process-prop-5-def)
hence ∃ x. xs ∈ snd ?P ′ −→ xs @ [x] ∈ snd ?P ′ ..
then obtain x where xs ∈ snd ?P ′ −→ xs @ [x] ∈ snd ?P ′ ..
moreover assume C : xs ∈ snd ?P ′

ultimately have D: xs @ [x] ∈ snd ?P ′ ..
have E : ∀ xs X . xs ∈ snd ?P ′ −→ (xs, X) ∈ fst ?P ′

using B by (simp add: process-set-def process-prop-6-def)
hence xs ∈ snd ?P ′ −→ (xs, {x}) ∈ fst ?P ′ by blast
hence {x} ∈ refusals P xs
using C by (drule-tac mp, simp-all add: failures-def refusals-def)

moreover have xs @ [x] ∈ snd ?P ′ −→ (xs @ [x], {}) ∈ fst ?P ′

using E by blast
hence (xs @ [x], {}) ∈ failures P
using D by (drule-tac mp, simp-all add: failures-def)

52

hence F : xs @ [x] ∈ traces P by (rule failures-traces)
hence {x} ∩ next-events P xs 6= {} by (simp add: next-events-def)
ultimately have G: ({x} ∈ refusals P xs) 6= ({x} ∩ next-events P xs = {})
by simp

have ∀ xs ∈ traces P. ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {})
using A by (simp add: deterministic-def)

moreover have xs ∈ traces P using F by (rule process-rule-2-traces)
ultimately have ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {}) ..
hence {x} ∈ refusals P xs = ({x} ∩ next-events P xs = {}) ..
thus False using G by contradiction

qed

lemma trace-set-traces:
trace-set (traces P)

proof (simp only: trace-set-def traces-def failures-def Domain-iff ,
rule conjI , (rule-tac [2] allI)+, rule-tac [2] impI , erule-tac [2] exE)
have Rep-process P ∈ process-set (is ?P ′ ∈ -) by (rule Rep-process)
hence ([], {}) ∈ fst ?P ′ by (simp add: process-set-def process-prop-1-def)
thus ∃X . ([], X) ∈ fst ?P ′ ..

next
fix xs x X
have Rep-process P ∈ process-set (is ?P ′ ∈ -) by (rule Rep-process)
hence ∀ xs x X . (xs @ [x], X) ∈ fst ?P ′ −→ (xs, {}) ∈ fst ?P ′

by (simp add: process-set-def process-prop-2-def)
hence (xs @ [x], X) ∈ fst ?P ′ −→ (xs, {}) ∈ fst ?P ′ by blast
moreover assume (xs @ [x], X) ∈ fst ?P ′

ultimately have (xs, {}) ∈ fst ?P ′ ..
thus ∃X . (xs, X) ∈ fst ?P ′ ..

qed

lemma d-implies-ts-process-traces:
deterministic P =⇒ ts-process (traces P) = P

proof (simp add: Rep-process-inject [symmetric] prod-eq-iff failures-def [symmetric],
insert trace-set-traces [of P], frule ts-process-rep, frule d-divergences,
simp add: divergences-def deterministic-def)
assume A: ∀ xs ∈ traces P. ∀X .
(X ∈ refusals P xs) = (X ∩ next-events P xs = {})

assume B: trace-set (traces P)
hence C : traces (ts-process (traces P)) = traces P by (rule ts-process-traces)
show failures (ts-process (traces P)) = failures P
proof (rule equalityI , rule-tac [!] subsetI , simp-all only: split-paired-all)

fix xs X
assume D: (xs, X) ∈ failures (ts-process (traces P))
hence xs ∈ traces (ts-process (traces P)) by (rule failures-traces)
hence E : xs ∈ traces P using C by simp
with B have
refusals (ts-process (traces P)) xs = {X . ∀ x ∈ X . xs @ [x] /∈ traces P}
by (rule ts-process-refusals)

moreover have X ∈ refusals (ts-process (traces P)) xs

53

using D by (simp add: refusals-def)
ultimately have ∀ x ∈ X . xs @ [x] /∈ traces P by simp
hence X ∩ next-events P xs = {}
by (rule-tac equals0I , erule-tac IntE , simp add: next-events-def)

moreover have ∀X . (X ∈ refusals P xs) = (X ∩ next-events P xs = {})
using A and E ..

hence (X ∈ refusals P xs) = (X ∩ next-events P xs = {}) ..
ultimately have X ∈ refusals P xs by simp
thus (xs, X) ∈ failures P by (simp add: refusals-def)

next
fix xs X
assume D: (xs, X) ∈ failures P
hence E : xs ∈ traces P by (rule failures-traces)
with A have ∀X . (X ∈ refusals P xs) = (X ∩ next-events P xs = {}) ..
hence (X ∈ refusals P xs) = (X ∩ next-events P xs = {}) ..
moreover have X ∈ refusals P xs using D by (simp add: refusals-def)
ultimately have F : X ∩ {x. xs @ [x] ∈ traces P} = {}
by (simp add: next-events-def)

have ∀ x ∈ X . xs @ [x] /∈ traces P
proof (rule ballI , rule notI)

fix x
assume x ∈ X and xs @ [x] ∈ traces P
hence x ∈ X ∩ {x. xs @ [x] ∈ traces P} by simp

moreover have x /∈ X ∩ {x. xs @ [x] ∈ traces P} using F by (rule equals0D)
ultimately show False by contradiction

qed
moreover have
refusals (ts-process (traces P)) xs = {X . ∀ x ∈ X . xs @ [x] /∈ traces P}
using B and E by (rule ts-process-refusals)

ultimately have X ∈ refusals (ts-process (traces P)) xs by simp
thus (xs, X) ∈ failures (ts-process (traces P)) by (simp add: refusals-def)

qed
qed

lemma ts-process-traces-implies-d:
ts-process (traces P) = P =⇒ deterministic P

by (insert trace-set-traces [of P], drule ts-process-d, simp)

lemma d-equals-ts-process-traces:
deterministic P = (ts-process (traces P) = P)

by (rule iffI , erule d-implies-ts-process-traces, rule ts-process-traces-implies-d)

Finally, a variant of the Ipurge Unwinding Theorem applying to trace set
processes is derived from the variant for deterministic processes. Particu-
larly, the assumption that the process be deterministic is replaced by the
assumption that it be a trace set process, since the former property is en-
tailed by the latter (cf. above).

54

theorem ts-ipurge-unwinding:
trace-set T =⇒
secure (ts-process T) I D =
d-weakly-future-consistent (ts-process T) I D (rel-ipurge (ts-process T) I D)

by (rule d-ipurge-unwinding, rule ts-process-d)

end

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, May
2015. http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/prog-prove.pdf.

[5] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, May 2015. http://isabelle.in.tum.de/
website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf.

[6] P. Noce. Noninterference security in communicating sequential pro-
cesses. Archive of Formal Proofs, May 2014. http://isa-afp.org/entries/
Noninterference_CSP.shtml, Formal proof development.

[7] P. Noce. Reasoning about lists via list interleaving. Archive of Formal
Proofs, June 2015. http://isa-afp.org/entries/List_Interleaving.shtml,
Formal proof development.

[8] J. Rushby. Noninterference, transitivity, and channel-control security
policies. Technical report, SRI International, 1992.

55

http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/List_Interleaving.shtml

	The Ipurge Unwinding Theorem in its general form
	Propaedeutic definitions and lemmas
	Additional intransitive purge functions and their properties
	A domain-relation map based on intransitive purge
	The Ipurge Unwinding Theorem: proof of condition sufficiency
	The Ipurge Unwinding Theorem: proof of condition necessity

	The Ipurge Unwinding Theorem for deterministic and trace set processes
	Deterministic processes
	Trace set processes

