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Abstract

The necessary and sufficient condition for CSP noninterference se-
curity stated by the Ipurge Unwinding Theorem is expressed in terms
of a pair of event lists varying over the set of process traces. This
does not render it suitable for the subsequent application of rule in-
duction in the case of a process defined inductively, since rule induction
may rather be applied to a single variable ranging over an inductively
defined set.

Starting from the Ipurge Unwinding Theorem, this paper derives a
necessary and sufficient condition for CSP noninterference security that
involves a single event list varying over the set of process traces, and is
thus suitable for rule induction; hence its name, Inductive Unwinding
Theorem. Similarly to the Ipurge Unwinding Theorem, the new the-
orem only requires to consider individual accepted and refused events
for each process trace, and applies to the general case of a possibly in-
transitive noninterference policy. Specific variants of this theorem are
additionally proven for deterministic processes and trace set processes.

Contents
1 The Inductive Unwinding Theorem 2

1.1 Propaedeutic lemmas . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Closure of the traces of a secure process under reverse intran-

sitive purge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Step 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6 Step 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



1.2.7 Step 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.8 Step 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.9 Step 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.10 Step 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 The Inductive Unwinding Theorem in its general form . . . . 16
1.4 The Inductive Unwinding Theorem for deterministic and trace

set processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 The Inductive Unwinding Theorem
theory InductiveUnwinding
imports Noninterference-Ipurge-Unwinding.DeterministicProcesses
begin

The necessary and sufficient condition for CSP noninterference security [7]
stated by the Ipurge Unwinding Theorem [8] is expressed in terms of a pair
of event lists varying over the set of process traces. This does not render
it suitable for the subsequent application of rule induction in the case of a
process defined inductively, since rule induction may rather be applied to a
single variable ranging over an inductively defined set (cf. [5]).
However, the formulation of an inductive definition is the standard way of
defining a process that admits traces of unbounded length, indeed because
it provides rule induction as a powerful method to prove process proper-
ties, particularly noninterference security, by considering any indefinitely
long trace of the process. Therefore, it is essential to infer some condition
equivalent to CSP noninterference security and suitable for being handled
by means of rule induction.
Starting from the Ipurge Unwinding Theorem, this paper derives a necessary
and sufficient condition for CSP noninterference security that involves a
single event list varying over the set of process traces, and is thus suitable
for rule induction; hence its name, Inductive Unwinding Theorem. Similarly
to the Ipurge Unwinding Theorem, the new theorem only requires to consider
individual accepted and refused events for each process trace, and applies
to the general case of a possibly intransitive noninterference policy. Specific
variants of this theorem are additionally proven for deterministic processes
and trace set processes [8].
For details about the theory of Communicating Sequential Processes, to
which the notion of process security defined in [7] and applied in this paper
refers, cf. [1].
As regards the formal contents of this paper, the salient points of defini-
tions and proofs are commented; for additional information, cf. Isabelle
documentation, particularly [5], [4], [3], and [2].
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1.1 Propaedeutic lemmas

Here below are the proofs of some lemmas on the constants defined in [7] and
[8] which are propaedeutic to the demonstration of the Inductive Unwinding
Theorem.
Among other things, the lemmas being proven formalize the following state-
ments:

• A set of domains U may affect a set of domains V via an event list
xs, as expressed through function sinks-aux, just in case V may be
affected by U via xs, as expressed through function sources-aux.

• The event lists output by function ipurge-tr are not longer than the
corresponding input ones.

• Function ipurge-tr-rev is idempotent.

lemma sources-aux-single-dom:
sources-aux I D {u} xs = insert u (sources I D u xs)

by (simp add: sources-sinks sources-sinks-aux sinks-aux-single-dom)

lemma sources-interference-eq:
((D x, u) ∈ I ∨ (∃ v ∈ sources I D u xs. (D x, v) ∈ I )) =
(D x ∈ sources I D u (x # xs))

proof (simp only: sources-sinks rev.simps, subst (1 2 ) converse-iff [symmetric])
qed (rule sinks-interference-eq)

lemma ex-sinks-sources-aux-1 [rule-format]:
(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I ) −→
(∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I )

proof (induction xs arbitrary: V rule: rev-induct, simp, subst sources-aux-append,
rule impI )
fix x xs V
let

?V = sources-aux I D V [x] and
?V ′ = insert (D x) V

assume
A:

∧
V . (∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I ) −→

(∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I ) and
B: ∃ u ∈ sinks-aux I D U (xs @ [x]). ∃ v ∈ V . (u, v) ∈ I

show ∃ u ∈ U . ∃ v ∈ sources-aux I D ?V xs. (u, v) ∈ I
proof (cases ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I )

case True
hence (∃ v ∈ V . (D x, v) ∈ I ) ∨
(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I )
(is ?A ∨ ?B) using B by simp

moreover {
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assume ?A
have (∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V ′. (u, v) ∈ I ) −→
(∃ u ∈ U . ∃ v ∈ sources-aux I D ?V ′ xs. (u, v) ∈ I )

using A .
moreover obtain u where

C : u ∈ sinks-aux I D U xs and D: (u, D x) ∈ I
using True ..

have D x ∈ ?V ′ by simp
with D have ∃ v ∈ ?V ′. (u, v) ∈ I ..
hence ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V ′. (u, v) ∈ I using C ..
ultimately have ∃ u ∈ U . ∃ v ∈ sources-aux I D ?V ′ xs. (u, v) ∈ I ..
hence ?thesis using ‹?A› by simp

}
moreover {

assume ?B
have (∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V . (u, v) ∈ I ) −→
(∃ u ∈ U . ∃ v ∈ sources-aux I D ?V xs. (u, v) ∈ I )

using A .
moreover obtain u where

C : u ∈ sinks-aux I D U xs and D: ∃ v ∈ V . (u, v) ∈ I
using ‹?B› ..

have V ⊆ ?V by (rule sources-aux-subset)
hence ∃ v ∈ ?V . (u, v) ∈ I using D by simp
hence ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V . (u, v) ∈ I using C ..
ultimately have ?thesis ..

}
ultimately show ?thesis ..

next
case False
have (∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V . (u, v) ∈ I ) −→
(∃ u ∈ U . ∃ v ∈ sources-aux I D ?V xs. (u, v) ∈ I )

using A .
moreover have ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I
using B and False by simp

then obtain u where
C : u ∈ sinks-aux I D U xs and D: ∃ v ∈ V . (u, v) ∈ I ..

have V ⊆ ?V by (rule sources-aux-subset)
hence ∃ v ∈ ?V . (u, v) ∈ I using D by simp
hence ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V . (u, v) ∈ I using C ..
ultimately show ?thesis ..

qed
qed

lemma ex-sinks-sources-aux-2 [rule-format]:
(∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I ) −→
(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I )

proof (induction xs arbitrary: V rule: rev-induct, simp, subst sources-aux-append,
rule impI )
fix x xs V
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let
?V = sources-aux I D V [x] and
?V ′ = insert (D x) V

assume
A:

∧
V . (∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I ) −→

(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I ) and
B: ∃ u ∈ U . ∃ v ∈ sources-aux I D ?V xs. (u, v) ∈ I

show ∃ u ∈ sinks-aux I D U (xs @ [x]). ∃ v ∈ V . (u, v) ∈ I
proof (cases ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I ,
cases ∃ v ∈ V . (D x, v) ∈ I , simp-all (no-asm-simp))
have (∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I ) −→
(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I )

using A .
moreover assume ¬ (∃ v ∈ V . (D x, v) ∈ I )
hence ∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I using B by simp
ultimately show ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I ..

next
assume C : ¬ (∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I )
have (∃ u ∈ U . ∃ v ∈ sources-aux I D ?V xs. (u, v) ∈ I ) −→
(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V . (u, v) ∈ I )

using A .
hence ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ ?V . (u, v) ∈ I using B ..
then obtain u where

D: u ∈ sinks-aux I D U xs and E : ∃ v ∈ ?V . (u, v) ∈ I ..
obtain v where F : v ∈ ?V and G: (u, v) ∈ I using E ..
have v = D x ∨ v ∈ V using F by (cases ∃ v ∈ V . (D x, v) ∈ I , simp-all)
moreover {

assume v = D x
hence (u, D x) ∈ I using G by simp
hence ∃ u ∈ sinks-aux I D U xs. (u, D x) ∈ I using D ..
hence ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I
using C by contradiction

}
moreover {

assume v ∈ V
with G have ∃ v ∈ V . (u, v) ∈ I ..
hence ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I using D ..

}
ultimately show ∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I ..

qed
qed

lemma ex-sinks-sources-aux:
(∃ u ∈ sinks-aux I D U xs. ∃ v ∈ V . (u, v) ∈ I ) =
(∃ u ∈ U . ∃ v ∈ sources-aux I D V xs. (u, v) ∈ I )

by (rule iffI , erule ex-sinks-sources-aux-1 , rule ex-sinks-sources-aux-2 )

lemma ipurge-tr-rev-ipurge-tr-sources-aux-1 [rule-format]:
¬ (∃ v ∈ D ‘ set ys. ∃ u ∈ sources-aux I D U zs. (v, u) ∈ I ) −→
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ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

proof (induction zs arbitrary: U rule: rev-induct, rule-tac [!] impI ,
simp del: bex-simps)
fix U
assume ¬ (∃ v ∈ D ‘ set ys. ∃ u ∈ U . (v, u) ∈ I )
hence ipurge-tr-rev-aux I D U ys = [] by (simp add: ipurge-tr-rev-aux-nil)
thus ipurge-tr-rev-aux I D U (xs @ ys) = ipurge-tr-rev-aux I D U xs
by (simp add: ipurge-tr-rev-aux-append-nil)

next
fix z zs U
let

?U = sources-aux I D U [z] and
?U ′ = insert (D z) U

assume
∧

U . ¬ (∃ v ∈ D ‘ set ys. ∃ u ∈ sources-aux I D U zs. (v, u) ∈ I ) −→
ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

hence ¬ (∃ v ∈ D ‘ set ys. ∃ u ∈ sources-aux I D ?U zs. (v, u) ∈ I ) −→
ipurge-tr-rev-aux I D ?U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D ?U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) .

moreover assume
¬ (∃ v ∈ D ‘ set ys. ∃ u ∈ sources-aux I D U (zs @ [z]). (v, u) ∈ I )

hence A:
¬ (∃ v ∈ D ‘ set ys. ∃ u ∈ sources-aux I D ?U zs. (v, u) ∈ I )
by (subst (asm) sources-aux-append)

ultimately have B:
ipurge-tr-rev-aux I D ?U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D ?U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) ..

have
ipurge-tr-rev-aux I D U (xs @ ys @ zs @ [z]) =
ipurge-tr-rev-aux I D U ((xs @ ys @ zs) @ [z])

by simp
hence C :
ipurge-tr-rev-aux I D U (xs @ ys @ zs @ [z]) =
ipurge-tr-rev-aux I D ?U (xs @ ys @ zs) @ ipurge-tr-rev-aux I D U [z]
(is - = - @ ?ws) by (simp only: ipurge-tr-rev-aux-append)

show
ipurge-tr-rev-aux I D U (xs @ ys @ zs @ [z]) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z]))

proof (subst C , cases ∃ u ∈ U . (D z, u) ∈ I ,
simp-all (no-asm-simp) del: ipurge-tr-aux.simps)
case True
have ¬ (∃ v ∈ sinks-aux I D (D ‘ set ys) zs. ∃ u ∈ ?U . (v, u) ∈ I )
using A by (simp add: ex-sinks-sources-aux)

hence ¬ (∃ v ∈ sinks-aux I D (D ‘ set ys) zs. (v, D z) ∈ I )
using True by simp

hence
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z])) =
ipurge-tr-rev-aux I D U ((xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z])
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by simp
also have . . . =

ipurge-tr-rev-aux I D ?U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ ?ws
by (simp only: ipurge-tr-rev-aux-append)

also have . . . =
ipurge-tr-rev-aux I D ?U ′ (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z]

using True by simp
finally have
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z])) =
ipurge-tr-rev-aux I D ?U ′ (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z] .

thus
ipurge-tr-rev-aux I D ?U ′ (xs @ ys @ zs) @ [z] =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z]))

using B and True by simp
next

case False
have
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z])) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

proof (cases ∃ v ∈ sinks-aux I D (D ‘ set ys) zs. (v, D z) ∈ I , simp-all)
have
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs @ [z]) =
ipurge-tr-rev-aux I D U ((xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ [z])

by simp
also have . . . =

ipurge-tr-rev-aux I D ?U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) @ ?ws
by (simp only: ipurge-tr-rev-aux-append)

also have . . . =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs)

using False by simp
finally show
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs @ [z]) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) zs) .

qed
thus
ipurge-tr-rev-aux I D U (xs @ ys @ zs) =
ipurge-tr-rev-aux I D U (xs @ ipurge-tr-aux I D (D ‘ set ys) (zs @ [z]))

using B and False by simp
qed

qed

lemma ipurge-tr-rev-ipurge-tr-sources-1 :
assumes A: D y /∈ sources I D u (y # zs)
shows
ipurge-tr-rev I D u (xs @ y # zs) =
ipurge-tr-rev I D u (xs @ ipurge-tr I D (D y) zs)

proof −
have ¬ ((D y, u) ∈ I ∨ (∃ v ∈ sources I D u zs. (D y, v) ∈ I ))
using A by (simp only: sources-interference-eq, simp)
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hence ¬ (∃ v ∈ D ‘ set [y]. ∃ u ∈ sources-aux I D {u} zs. (v, u) ∈ I )
by (simp add: sources-aux-single-dom)

hence
ipurge-tr-rev-aux I D {u} (xs @ [y] @ zs) =
ipurge-tr-rev-aux I D {u} (xs @ ipurge-tr-aux I D (D ‘ set [y]) zs)

by (rule ipurge-tr-rev-ipurge-tr-sources-aux-1 )
thus ?thesis by (simp add: ipurge-tr-aux-single-dom ipurge-tr-rev-aux-single-dom)

qed

lemma ipurge-tr-length:
length (ipurge-tr I D u xs) ≤ length xs

by (induction xs rule: rev-induct, simp-all)

lemma sources-idem:
sources I D u (ipurge-tr-rev I D u xs) = sources I D u xs

by (induction xs, simp-all)

lemma ipurge-tr-rev-idem:
ipurge-tr-rev I D u (ipurge-tr-rev I D u xs) = ipurge-tr-rev I D u xs

by (induction xs, simp-all add: sources-idem)

1.2 Closure of the traces of a secure process under reverse
intransitive purge

The derivation of the Inductive Unwinding Theorem from the Ipurge Un-
winding Theorem requires to prove that the set of the traces of a secure
process is closed under reverse intransitive purge, i.e. function ipurge-tr-rev
[8]. This can be expressed formally by means of the following statement:

[[secure P I D; xs ∈ traces P]] =⇒ ipurge-tr-rev I D u xs ∈ traces P

The reason why such closure property holds is that the reverse intransitive
purge of a list xs with regard to a policy I, an event-domain map D, and
a domain u can equivalently be computed as follows: for each item x of xs,
if x may affect u, retain x and go on recursively using as input the sublist
of xs following x, say xs ′; otherwise, discard x and go on recursively using
ipurge-tr I D (D x) xs ′ [7] as input.
The result actually matches ipurge-tr-rev I D u xs. In fact, for each x not
affecting u, ipurge-tr I D (D x) xs ′ retains any item of xs ′ not affected by
x, which is the case for any item of xs ′ affecting u, since otherwise x would
affect u.
Furthermore, if xs is a trace of a secure process, the result is still a trace. In
fact, for each x not affecting u, if ys is the partial output for the sublist of
xs preceding x, then ys @ ipurge-tr I D (D x) xs ′ is a trace provided such
is ys @ x # xs ′, by virtue of the definition of CSP noninterference security
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[7]. Hence, the property of being a trace is conserved upon each recursive
call by the concatenation of the partial output and the residual input, until
the latter is nil and the former matches the total output.
This argument shows that in order to prove by induction, under the aforesaid
assumptions, that the output of such a reverse intransitive purge function is
a trace, the partial output has to be passed to the function as an argument,
in addition to the residual input, in the recursive calls contained within the
definition of the function. Therefore, the output of the function has to be
accumulated into one of its parameters, viz. the function needs to be tail-
recursive. This suggests to prove the properties of interest of the function by
applying the ten-step proof method for theorems on tail-recursive functions
described in [6].
The starting point is to formulate a naive definition of the function, which
will then be refined as specified by the proof method. The name of the
refined function, from which the name of the naive function here below is
derived, will be ipurge-tr-rev-t, where suffix t stands for tail-recursive.

function (sequential) ipurge-tr-rev-t-naive ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a list ⇒ ′a list where

ipurge-tr-rev-t-naive I D u (x # xs) ys =
(if D x ∈ sources I D u (x # xs)
then ipurge-tr-rev-t-naive I D u xs (ys @ [x])
else ipurge-tr-rev-t-naive I D u (ipurge-tr I D (D x) xs) ys) |

ipurge-tr-rev-t-naive - - - - ys = ys
oops

The parameter into which the output is accumulated is the last one.
As shown by the previous argument, the properties of function ipurge-tr-rev-t-naive
that would have to be proven are the following ones:

ipurge-tr-rev-t-naive I D u xs [] = ipurge-tr-rev I D u xs

[[secure P I D; xs ∈ traces P]] =⇒ ipurge-tr-rev-t-naive I D u xs [] ∈ traces
P

as they clearly entail the above formal statement of the target closure lemma.

1.2.1 Step 1

In the definition of the auxiliary tail-recursive function ipurge-tr-rev-t-aux,
the Cartesian product of the input types of function ipurge-tr-rev-t-naive
will be implemented as a record type.
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record ( ′a, ′d) ipurge-rec =
Pol :: ( ′d × ′d) set
Map :: ′a ⇒ ′d
Dom :: ′d
In :: ′a list
Out :: ′a list

function (sequential) ipurge-tr-rev-t-aux ::
( ′a, ′d) ipurge-rec ⇒ ( ′a, ′d) ipurge-rec where

ipurge-tr-rev-t-aux (|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|) =
(if D x ∈ sources I D u (x # xs)
then ipurge-tr-rev-t-aux
(|Pol = I , Map = D, Dom = u, In = xs, Out = ys @ [x]|)

else ipurge-tr-rev-t-aux
(|Pol = I , Map = D, Dom = u, In = ipurge-tr I D (D x) xs, Out = ys|)) |

ipurge-tr-rev-t-aux X = X
proof (simp-all, atomize-elim)

fix X :: ( ′a, ′d) ipurge-rec
show
(∃ I D u x xs ys.

X = (|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)) ∨
(∃ I D u ys.

X = (|Pol = I , Map = D, Dom = u, In = [], Out = ys|))
proof (cases X , simp-all)
qed (subst disj-commute, rule spec [OF list.nchotomy])

qed

termination ipurge-tr-rev-t-aux
proof (relation measure (λX . length (In X)), simp-all)

fix D :: ′a ⇒ ′d and I x xs
have length (ipurge-tr I D (D x) xs) ≤ length xs by (rule ipurge-tr-length)
thus length (ipurge-tr I D (D x) xs) < Suc (length xs) by simp

qed

As shown by this proof, the termination of function ipurge-tr-rev-t-aux is
guaranteed by the fact, proven previously, that the event lists output by
function ipurge-tr are not longer than the corresponding input ones.

1.2.2 Step 2
definition ipurge-tr-rev-t-in ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ( ′a, ′d) ipurge-rec where

ipurge-tr-rev-t-in I D u xs ≡
(|Pol = I , Map = D, Dom = u, In = xs, Out = []|)

definition ipurge-tr-rev-t-out ::
( ′a, ′d) ipurge-rec ⇒ ′a list where

ipurge-tr-rev-t-out ≡ Out
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definition ipurge-tr-rev-t ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a list where

ipurge-tr-rev-t I D u xs ≡
ipurge-tr-rev-t-out (ipurge-tr-rev-t-aux (ipurge-tr-rev-t-in I D u xs))

Since the significant inputs of function ipurge-tr-rev-t-naive match pattern
-, -, -, -, [], those of function ipurge-tr-rev-t-aux, as returned by function
ipurge-tr-rev-t-in, match pattern (|Pol = -, Map = -, Dom = -, In = -, Out
= []|).
In terms of function ipurge-tr-rev-t, the statements to be proven, henceforth
respectively named ipurge-tr-rev-t-equiv and ipurge-tr-rev-t-trace, take the
following form:

ipurge-tr-rev-t I D u xs = ipurge-tr-rev I D u xs

[[secure P I D; xs ∈ traces P]] =⇒ ipurge-tr-rev-t I D u xs ∈ traces P

1.2.3 Step 3
inductive-set ipurge-tr-rev-t-set :: ( ′a, ′d) ipurge-rec ⇒ ( ′a, ′d) ipurge-rec set

for X :: ( ′a, ′d) ipurge-rec where
R0 : X ∈ ipurge-tr-rev-t-set X |
R1 : [[(|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)

∈ ipurge-tr-rev-t-set X ;
D x ∈ sources I D u (x # xs)]] =⇒
(|Pol = I , Map = D, Dom = u, In = xs, Out = ys @ [x]|)
∈ ipurge-tr-rev-t-set X |

R2 : [[(|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)
∈ ipurge-tr-rev-t-set X ;

D x /∈ sources I D u (x # xs)]] =⇒
(|Pol = I , Map = D, Dom = u, In = ipurge-tr I D (D x) xs, Out = ys|)
∈ ipurge-tr-rev-t-set X

1.2.4 Step 4
lemma ipurge-tr-rev-t-subset:

assumes A: Y ∈ ipurge-tr-rev-t-set X
shows ipurge-tr-rev-t-set Y ⊆ ipurge-tr-rev-t-set X

proof (rule subsetI , erule ipurge-tr-rev-t-set.induct)
show Y ∈ ipurge-tr-rev-t-set X using A .

next
fix I D u x xs ys
assume
(|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)

∈ ipurge-tr-rev-t-set X and
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D x ∈ sources I D u (x # xs)
thus (|Pol = I , Map = D, Dom = u, In = xs, Out = ys @ [x]|)
∈ ipurge-tr-rev-t-set X

by (rule R1 )
next

fix I D u x xs ys
assume
(|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)

∈ ipurge-tr-rev-t-set X and
D x /∈ sources I D u (x # xs)

thus (|Pol = I , Map = D, Dom = u, In = ipurge-tr I D (D x) xs, Out = ys|)
∈ ipurge-tr-rev-t-set X

by (rule R2 )
qed

lemma ipurge-tr-rev-t-aux-set:
ipurge-tr-rev-t-aux X ∈ ipurge-tr-rev-t-set X

proof (induction rule: ipurge-tr-rev-t-aux.induct,
simp-all only: ipurge-tr-rev-t-aux.simps(2 ) R0 )
fix I u x xs ys and D :: ′a ⇒ ′d
assume

A: D x ∈ sources I D u (x # xs) =⇒
ipurge-tr-rev-t-aux
(|Pol = I , Map = D, Dom = u, In = xs, Out = ys @ [x]|)

∈ ipurge-tr-rev-t-set
(|Pol = I , Map = D, Dom = u, In = xs, Out = ys @ [x]|)

(is - =⇒ ipurge-tr-rev-t-aux ?Y ∈ -) and
B: D x /∈ sources I D u (x # xs) =⇒

ipurge-tr-rev-t-aux
(|Pol = I , Map = D, Dom = u, In = ipurge-tr I D (D x) xs, Out = ys|)

∈ ipurge-tr-rev-t-set
(|Pol = I , Map = D, Dom = u, In = ipurge-tr I D (D x) xs, Out = ys|)

(is - =⇒ ipurge-tr-rev-t-aux ?Z ∈ -)
show
ipurge-tr-rev-t-aux

(|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)
∈ ipurge-tr-rev-t-set
(|Pol = I , Map = D, Dom = u, In = x # xs, Out = ys|)

(is ipurge-tr-rev-t-aux ?X ∈ -)
proof (cases D x ∈ sources I D u (x # xs), simp-all del: sources.simps)

case True
have ?X ∈ ipurge-tr-rev-t-set ?X by (rule R0 )
moreover have ?X ∈ ipurge-tr-rev-t-set ?X =⇒ ?Y ∈ ipurge-tr-rev-t-set ?X
by (rule R1 [OF - True])

ultimately have ?Y ∈ ipurge-tr-rev-t-set ?X by simp
hence ipurge-tr-rev-t-set ?Y ⊆ ipurge-tr-rev-t-set ?X
by (rule ipurge-tr-rev-t-subset)

moreover have ipurge-tr-rev-t-aux ?Y ∈ ipurge-tr-rev-t-set ?Y
using True by (rule A)
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ultimately show ipurge-tr-rev-t-aux ?Y ∈ ipurge-tr-rev-t-set ?X ..
next

case False
have ?X ∈ ipurge-tr-rev-t-set ?X by (rule R0 )
moreover have ?X ∈ ipurge-tr-rev-t-set ?X =⇒ ?Z ∈ ipurge-tr-rev-t-set ?X
by (rule R2 [OF - False])

ultimately have ?Z ∈ ipurge-tr-rev-t-set ?X by simp
hence ipurge-tr-rev-t-set ?Z ⊆ ipurge-tr-rev-t-set ?X
by (rule ipurge-tr-rev-t-subset)

moreover have ipurge-tr-rev-t-aux ?Z ∈ ipurge-tr-rev-t-set ?Z
using False by (rule B)

ultimately show ipurge-tr-rev-t-aux ?Z ∈ ipurge-tr-rev-t-set ?X ..
qed

qed

1.2.5 Step 5
definition ipurge-tr-rev-t-inv-1 ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ( ′a, ′d) ipurge-rec ⇒ bool

where
ipurge-tr-rev-t-inv-1 I D u xs X ≡

Out X @ ipurge-tr-rev I D u (In X) = ipurge-tr-rev I D u xs

definition ipurge-tr-rev-t-inv-2 ::
′a process ⇒ ( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ′a list ⇒ ( ′a, ′d) ipurge-rec ⇒ bool

where
ipurge-tr-rev-t-inv-2 P I D xs X ≡

secure P I D −→ xs ∈ traces P −→ Out X @ In X ∈ traces P

Two invariants have been defined, one for each of lemmas ipurge-tr-rev-t-equiv,
ipurge-tr-rev-t-trace.
More precisely, the invariants are ipurge-tr-rev-t-inv-1 I D u xs and ipurge-tr-rev-t-inv-2
P I D xs, where the free variables are intended to match those appearing in
the aforesaid lemmas.

1.2.6 Step 6
lemma ipurge-tr-rev-t-input-1 :
ipurge-tr-rev-t-inv-1 I D u xs (|Pol = I , Map = D, Dom = u, In = xs, Out = []|)

by (simp add: ipurge-tr-rev-t-inv-1-def )

lemma ipurge-tr-rev-t-input-2 :
ipurge-tr-rev-t-inv-2 P I D xs (|Pol = I , Map = D, Dom = u, In = xs, Out = []|)

by (simp add: ipurge-tr-rev-t-inv-2-def )

1.2.7 Step 7
definition ipurge-tr-rev-t-form :: ( ′a, ′d) ipurge-rec ⇒ bool where
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ipurge-tr-rev-t-form X ≡ In X = []

lemma ipurge-tr-rev-t-intro-1 :
[[ipurge-tr-rev-t-inv-1 I D u xs X ; ipurge-tr-rev-t-form X ]] =⇒
ipurge-tr-rev-t-out X = ipurge-tr-rev I D u xs

by (simp add: ipurge-tr-rev-t-inv-1-def ipurge-tr-rev-t-form-def
ipurge-tr-rev-t-out-def )

lemma ipurge-tr-rev-t-intro-2 :
[[ipurge-tr-rev-t-inv-2 P I D xs X ; ipurge-tr-rev-t-form X ]] =⇒
secure P I D −→ xs ∈ traces P −→ ipurge-tr-rev-t-out X ∈ traces P

by (simp add: ipurge-tr-rev-t-inv-2-def ipurge-tr-rev-t-form-def
ipurge-tr-rev-t-out-def )

1.2.8 Step 8
lemma ipurge-tr-rev-t-form-aux:
ipurge-tr-rev-t-form (ipurge-tr-rev-t-aux X)

by (induction X rule: ipurge-tr-rev-t-aux.induct,
simp-all add: ipurge-tr-rev-t-form-def )

1.2.9 Step 9
lemma ipurge-tr-rev-t-invariance-aux:
Y ∈ ipurge-tr-rev-t-set X =⇒
Pol Y = Pol X ∧ Map Y = Map X ∧ Dom Y = Dom X

by (erule ipurge-tr-rev-t-set.induct, simp-all)

The lemma just proven, stating the invariance of the first three record fields
over inductive set ipurge-tr-rev-t-set X, is used in the following proofs of the
invariance of predicates ipurge-tr-rev-t-inv-1 I D u xs and ipurge-tr-rev-t-inv-2
P I D xs.
The equality between the free variables appearing in the predicates and
the corresponding fields of the record generating the set, which is required
for such invariance properties to hold, is asserted in the enunciation of the
properties by means of record updates. In the subsequent proofs of lemmas
ipurge-tr-rev-t-equiv, ipurge-tr-rev-t-trace, the enforcement of this equality
will be ensured by the identification of both predicate variables and record
fields with the related free variables appearing in the lemmas.

lemma ipurge-tr-rev-t-invariance-1 :
[[Y ∈ ipurge-tr-rev-t-set (X(|Pol := I , Map := D, Dom := u|));

ipurge-tr-rev-t-inv-1 I D u ws (X(|Pol := I , Map := D, Dom := u|))]] =⇒
ipurge-tr-rev-t-inv-1 I D u ws Y

proof (erule ipurge-tr-rev-t-set.induct, assumption,
drule-tac [!] ipurge-tr-rev-t-invariance-aux,
simp-all add: ipurge-tr-rev-t-inv-1-def del: sources.simps)
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fix x xs ys
assume A: D x /∈ sources I D u (x # xs)
hence ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ([] @ x # xs) by simp
also have . . . = ipurge-tr-rev I D u ([] @ ipurge-tr I D (D x) xs)
using A by (rule ipurge-tr-rev-ipurge-tr-sources-1 )

finally have
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u (ipurge-tr I D (D x) xs)
by simp

moreover assume ys @ ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ws
ultimately show
ys @ ipurge-tr-rev I D u (ipurge-tr I D (D x) xs) = ipurge-tr-rev I D u ws
by simp

qed

lemma ipurge-tr-rev-t-invariance-2 :
[[Y ∈ ipurge-tr-rev-t-set (X(|Pol := I , Map := D|));

ipurge-tr-rev-t-inv-2 P I D ws (X(|Pol := I , Map := D|))]] =⇒
ipurge-tr-rev-t-inv-2 P I D ws Y

proof (erule ipurge-tr-rev-t-set.induct, assumption,
drule-tac [!] ipurge-tr-rev-t-invariance-aux,
simp-all add: ipurge-tr-rev-t-inv-2-def , (rule impI )+)
fix x xs ys
assume

S : secure P I D and
ws ∈ traces P and
secure P I D −→ ws ∈ traces P −→ ys @ x # xs ∈ traces P

hence ys @ x # xs ∈ traces P by simp
hence (ys @ x # xs, {}) ∈ failures P by (rule traces-failures)
hence (x # xs, {}) ∈ futures P ys by (simp add: futures-def )
hence (ipurge-tr I D (D x) xs, ipurge-ref I D (D x) xs {}) ∈ futures P ys
using S by (simp add: secure-def )

hence (ys @ ipurge-tr I D (D x) xs, ipurge-ref I D (D x) xs {}) ∈ failures P
by (simp add: futures-def )

thus ys @ ipurge-tr I D (D x) xs ∈ traces P by (rule failures-traces)
qed

1.2.10 Step 10

Here below are the proofs of lemmas ipurge-tr-rev-t-equiv, ipurge-tr-rev-t-trace,
which are then applied to demonstrate the target closure lemma.

lemma ipurge-tr-rev-t-equiv:
ipurge-tr-rev-t I D u xs = ipurge-tr-rev I D u xs

proof −
let ?X = (|Pol = I , Map = D, Dom = u, In = xs, Out = []|)
have ipurge-tr-rev-t-aux ?X
∈ ipurge-tr-rev-t-set (?X(|Pol := I , Map := D, Dom := u|))

by (simp add: ipurge-tr-rev-t-aux-set)
moreover have
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ipurge-tr-rev-t-inv-1 I D u xs (?X(|Pol := I , Map := D, Dom := u|))
by (simp add: ipurge-tr-rev-t-input-1 )

ultimately have ipurge-tr-rev-t-inv-1 I D u xs (ipurge-tr-rev-t-aux ?X)
by (rule ipurge-tr-rev-t-invariance-1 )

moreover have ipurge-tr-rev-t-form (ipurge-tr-rev-t-aux ?X)
by (rule ipurge-tr-rev-t-form-aux)

ultimately have
ipurge-tr-rev-t-out (ipurge-tr-rev-t-aux ?X) = ipurge-tr-rev I D u xs
by (rule ipurge-tr-rev-t-intro-1 )

moreover have ?X = ipurge-tr-rev-t-in I D u xs
by (simp add: ipurge-tr-rev-t-in-def )

ultimately show ?thesis by (simp add: ipurge-tr-rev-t-def )
qed

lemma ipurge-tr-rev-t-trace [rule-format]:
secure P I D −→ xs ∈ traces P −→ ipurge-tr-rev-t I D u xs ∈ traces P

proof −
let ?X = (|Pol = I , Map = D, Dom = u, In = xs, Out = []|)
have ipurge-tr-rev-t-aux ?X
∈ ipurge-tr-rev-t-set (?X(|Pol := I , Map := D|))

by (simp add: ipurge-tr-rev-t-aux-set)
moreover have ipurge-tr-rev-t-inv-2 P I D xs (?X(|Pol := I , Map := D|))
by (simp add: ipurge-tr-rev-t-input-2 )

ultimately have ipurge-tr-rev-t-inv-2 P I D xs (ipurge-tr-rev-t-aux ?X)
by (rule ipurge-tr-rev-t-invariance-2 )

moreover have ipurge-tr-rev-t-form (ipurge-tr-rev-t-aux ?X)
by (rule ipurge-tr-rev-t-form-aux)

ultimately have secure P I D −→ xs ∈ traces P −→
ipurge-tr-rev-t-out (ipurge-tr-rev-t-aux ?X) ∈ traces P

by (rule ipurge-tr-rev-t-intro-2 )
moreover have ?X = ipurge-tr-rev-t-in I D u xs
by (simp add: ipurge-tr-rev-t-in-def )

ultimately show ?thesis by (simp add: ipurge-tr-rev-t-def )
qed

lemma ipurge-tr-rev-trace:
secure P I D =⇒ xs ∈ traces P =⇒ ipurge-tr-rev I D u xs ∈ traces P

by (subst ipurge-tr-rev-t-equiv [symmetric], rule ipurge-tr-rev-t-trace)

1.3 The Inductive Unwinding Theorem in its general form

In what follows, the Inductive Unwinding Theorem is proven, in the form
applying to a generic process. The equivalence of the condition expressed
by the theorem to CSP noninterference security, as defined in [7], is demon-
strated by showing that it is necessary and sufficient for the verification of
the condition expressed by the Ipurge Unwinding Theorem, under the same
assumption that the sets of refusals of the process be closed under union (cf.
[8]).
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Particularly, the closure of the traces of a secure process under function
ipurge-tr-rev and the idempotence of this function are used in the proof of
condition necessity.

lemma inductive-unwinding-1 :
assumes

R: ref-union-closed P and
S : secure P I D

shows ∀ xs ∈ traces P. ∀ u ∈ range D ∩ (−I ) ‘‘ range D.
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ∧
ref-dom-events P D u (ipurge-tr-rev I D u xs) = ref-dom-events P D u xs

proof (rule ballI )+
fix xs u
from R and S have ∀ u ∈ range D ∩ (− I ) ‘‘ range D. ∀ xs ys.

xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

by (simp add: ipurge-unwinding weakly-future-consistent-def rel-ipurge-def )
moreover assume u ∈ range D ∩ (− I ) ‘‘ range D
ultimately have ∀ xs ys.

xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys ..

hence
ipurge-tr-rev I D u xs ∈ traces P ∧ xs ∈ traces P ∧

ipurge-tr-rev I D u (ipurge-tr-rev I D u xs) = ipurge-tr-rev I D u xs −→
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ∧
ref-dom-events P D u (ipurge-tr-rev I D u xs) = ref-dom-events P D u xs

by blast
moreover assume xs: xs ∈ traces P
moreover from S and xs have ipurge-tr-rev I D u xs ∈ traces P
by (rule ipurge-tr-rev-trace)

moreover have
ipurge-tr-rev I D u (ipurge-tr-rev I D u xs) = ipurge-tr-rev I D u xs
by (rule ipurge-tr-rev-idem)

ultimately show
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ∧
ref-dom-events P D u (ipurge-tr-rev I D u xs) = ref-dom-events P D u xs

by simp
qed

lemma inductive-unwinding-2 :
assumes

R: ref-union-closed P and
S : ∀ xs ∈ traces P. ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) =
next-dom-events P D u xs ∧
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ref-dom-events P D u (ipurge-tr-rev I D u xs) =
ref-dom-events P D u xs

shows secure P I D
proof (simp add: ipurge-unwinding [OF R] weakly-future-consistent-def rel-ipurge-def ,
rule ballI , (rule allI )+, rule impI , (erule conjE)+)
fix u xs ys
assume xs ∈ traces P
with S have ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ∧
ref-dom-events P D u (ipurge-tr-rev I D u xs) = ref-dom-events P D u xs ..

moreover assume A: u ∈ range D ∩ (− I ) ‘‘ range D
ultimately have B:
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ∧
ref-dom-events P D u (ipurge-tr-rev I D u xs) = ref-dom-events P D u xs ..

assume ys ∈ traces P
with S have ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u ys) = next-dom-events P D u ys ∧
ref-dom-events P D u (ipurge-tr-rev I D u ys) = ref-dom-events P D u ys ..

hence
next-dom-events P D u (ipurge-tr-rev I D u ys) = next-dom-events P D u ys ∧
ref-dom-events P D u (ipurge-tr-rev I D u ys) = ref-dom-events P D u ys

using A ..
moreover assume ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys
ultimately show
next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using B by simp
qed

theorem inductive-unwinding:
ref-union-closed P =⇒
secure P I D =
(∀ xs ∈ traces P. ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ∧
ref-dom-events P D u (ipurge-tr-rev I D u xs) = ref-dom-events P D u xs)

by (rule iffI , rule inductive-unwinding-1 , assumption+, rule inductive-unwinding-2 )

Interestingly, this necessary and sufficient condition for the noninterference
security of a process resembles the classical definition of noninterference
security for a deterministic state machine with outputs formulated in [9],
which is formalized in [7] as predicate c-secure.
Denoting with (1) the former and with (2) the latter, the differences between
them can be summarized as follows:

• The event list appearing in (1) is constrained to vary over process
traces, whereas the action list appearing in (2) is unconstrained.
This comes as no surprise, since the state machines used as model of
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computation in [9] accept any action list as a trace.

• The definition of function ipurge-tr-rev, used in (1), does not implic-
itly assume that the noninterference policy be reflexive, even though
any policy of practical significance will be such. On the contrary, the
definition of the intransitive purge function used in (2), which is for-
malized in [7] as function c-ipurge, makes this implicit assumption, as
shown by the consideration that c-ipurge I D (D x) [x] = [x] regardless
of whether (D x, D x) ∈ I or not.
This is the mathematical reason why the equivalence between CSP
noninterference security and classical noninterference security for de-
terministic state machines with outputs, proven in [7], is subordinated
to the assumption that the noninterference policy be reflexive.

• The equality of action outputs appearing in (2) is replaced in (1) by
the equality of accepted and refused events.

The binding of the universal quantification over domains contained in (1)
does not constitute an actual difference, since in (2) the purge function is
only applied to domains in the range of the event-domain map, and its output
matches the entire input action list, thus rendering the equation trivial, for
domains allowed to be affected by any event domain.

1.4 The Inductive Unwinding Theorem for deterministic and
trace set processes

Here below are the proofs of specific variants of the Inductive Unwinding
Theorem applying to deterministic processes and trace set processes [8].
The variant for deterministic processes is derived, following the above proof
of the general form of the theorem, from the Ipurge Unwinding Theorem
for deterministic processes [8]. Then, the variant for trace set processes is
inferred from the variant for deterministic processes.
Similarly to what happens for the Ipurge Unwinding Theorem, the refusals
union closure assumption that characterizes the general form of the Induc-
tive Unwinding Theorem is replaced by the assumption that the process
actually be deterministic in the variant for deterministic processes, and by
the assumption that the set of traces actually be such in the variant for
trace set processes. Moreover, these variants involve accepted events only,
in accordance with the fact that in deterministic processes, refused events
are completely specified by accepted events (cf. [1], [7]).

lemma d-inductive-unwinding-1 :
assumes

D: deterministic P and
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S : secure P I D
shows ∀ xs ∈ traces P. ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs
proof (rule ballI )+

fix xs u
from D and S have ∀ u ∈ range D ∩ (− I ) ‘‘ range D. ∀ xs ys.

xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys −→

next-dom-events P D u xs = next-dom-events P D u ys
by (simp add: d-ipurge-unwinding d-weakly-future-consistent-def rel-ipurge-def )

moreover assume u ∈ range D ∩ (− I ) ‘‘ range D
ultimately have ∀ xs ys.

xs ∈ traces P ∧ ys ∈ traces P ∧
ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys −→

next-dom-events P D u xs = next-dom-events P D u ys ..
hence
ipurge-tr-rev I D u xs ∈ traces P ∧ xs ∈ traces P ∧

ipurge-tr-rev I D u (ipurge-tr-rev I D u xs) = ipurge-tr-rev I D u xs −→
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs
by blast

moreover assume xs: xs ∈ traces P
moreover from S and xs have ipurge-tr-rev I D u xs ∈ traces P

by (rule ipurge-tr-rev-trace)
moreover have
ipurge-tr-rev I D u (ipurge-tr-rev I D u xs) = ipurge-tr-rev I D u xs
by (rule ipurge-tr-rev-idem)

ultimately show
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs
by simp

qed

lemma d-inductive-unwinding-2 :
assumes

D: deterministic P and
S : ∀ xs ∈ traces P. ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs
shows secure P I D

proof (simp add: d-ipurge-unwinding [OF D] d-weakly-future-consistent-def rel-ipurge-def ,
rule ballI , (rule allI )+, rule impI , (erule conjE)+)
fix u xs ys
assume xs ∈ traces P
with S have ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ..
moreover assume A: u ∈ range D ∩ (− I ) ‘‘ range D
ultimately have B:
next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs ..

assume ys ∈ traces P
with S have ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u ys) = next-dom-events P D u ys ..
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hence
next-dom-events P D u (ipurge-tr-rev I D u ys) = next-dom-events P D u ys
using A ..

moreover assume ipurge-tr-rev I D u xs = ipurge-tr-rev I D u ys
ultimately show next-dom-events P D u xs = next-dom-events P D u ys
using B by simp

qed

theorem d-inductive-unwinding:
deterministic P =⇒
secure P I D =
(∀ xs ∈ traces P. ∀ u ∈ range D ∩ (−I ) ‘‘ range D.

next-dom-events P D u (ipurge-tr-rev I D u xs) = next-dom-events P D u xs)
by (rule iffI , rule d-inductive-unwinding-1 , assumption+, rule d-inductive-unwinding-2 )

theorem ts-inductive-unwinding:
assumes T : trace-set T
shows secure (ts-process T ) I D =
(∀ xs ∈ T . ∀ u ∈ range D ∩ (−I ) ‘‘ range D. ∀ x ∈ D −‘ {u}.
(ipurge-tr-rev I D u xs @ [x] ∈ T ) = (xs @ [x] ∈ T ))

(is secure ?P I D = -)
proof (subst d-inductive-unwinding, rule ts-process-d [OF T ],
simp add: next-dom-events-def ts-process-next-events [OF T ] set-eq-iff ,
rule iffI , (rule ballI )+, (rule-tac [2 ] ballI )+, rule-tac [2 ] allI )
fix xs u x
assume A: ∀ xs ∈ traces ?P. ∀ u ∈ range D ∩ (− I ) ‘‘ range D.
∀ x. (u = D x ∧ ipurge-tr-rev I D u xs @ [x] ∈ T ) = (u = D x ∧ xs @ [x] ∈ T )

assume xs ∈ T
moreover have traces ?P = T using T by (rule ts-process-traces)
ultimately have xs ∈ traces ?P by simp
with A have ∀ u ∈ range D ∩ (− I ) ‘‘ range D.
∀ x. (u = D x ∧ ipurge-tr-rev I D u xs @ [x] ∈ T ) =
(u = D x ∧ xs @ [x] ∈ T ) ..

moreover assume u ∈ range D ∩ (− I ) ‘‘ range D
ultimately have
∀ x. (u = D x ∧ ipurge-tr-rev I D u xs @ [x] ∈ T ) =

(u = D x ∧ xs @ [x] ∈ T ) ..
hence (u = D x ∧ ipurge-tr-rev I D u xs @ [x] ∈ T ) =
(u = D x ∧ xs @ [x] ∈ T ) ..

moreover assume x ∈ D −‘ {u}
hence u = D x by simp
ultimately show (ipurge-tr-rev I D u xs @ [x] ∈ T ) = (xs @ [x] ∈ T ) by simp

next
fix xs u x
assume A: ∀ xs ∈ T . ∀ u ∈ range D ∩ (− I ) ‘‘ range D.
∀ x ∈ D −‘ {u}. (ipurge-tr-rev I D u xs @ [x] ∈ T ) = (xs @ [x] ∈ T )

assume xs ∈ traces ?P
moreover have traces ?P = T using T by (rule ts-process-traces)
ultimately have xs ∈ T by simp
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with A have ∀ u ∈ range D ∩ (− I ) ‘‘ range D.
∀ x ∈ D −‘ {u}. (ipurge-tr-rev I D u xs @ [x] ∈ T ) = (xs @ [x] ∈ T ) ..

moreover assume u ∈ range D ∩ (− I ) ‘‘ range D
ultimately have B:
∀ x ∈ D −‘ {u}. (ipurge-tr-rev I D u xs @ [x] ∈ T ) = (xs @ [x] ∈ T ) ..

show (u = D x ∧ ipurge-tr-rev I D u xs @ [x] ∈ T ) =
(u = D x ∧ xs @ [x] ∈ T )

proof (cases D x = u, simp-all)
case True
hence x ∈ D −‘ {u} by simp
with B show (ipurge-tr-rev I D u xs @ [x] ∈ T ) = (xs @ [x] ∈ T ) ..

qed
qed

end
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