
The Generic Unwinding Theorem
for CSP Noninterference Security

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A.

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjowiggins-it dot com

September 13, 2023

Abstract

The classical definition of noninterference security for a determin-
istic state machine with outputs requires to consider the outputs pro-
duced by machine actions after any trace, i.e. any indefinitely long
sequence of actions, of the machine. In order to render the verifica-
tion of the security of such a machine more straightforward, there is
a need of some sufficient condition for security such that just individ-
ual actions, rather than unbounded sequences of actions, have to be
considered.

By extending previous results applying to transitive noninterfer-
ence policies, Rushby has proven an unwinding theorem that provides
a sufficient condition of this kind in the general case of a possibly in-
transitive policy. This condition has to be satisfied by a generic func-
tion mapping security domains into equivalence relations over machine
states.

An analogous problem arises for CSP noninterference security, whose
definition requires to consider any possible future, i.e. any indefinitely
long sequence of subsequent events and any indefinitely large set of
refused events associated to that sequence, for each process trace.

This paper provides a sufficient condition for CSP noninterference
security, which indeed requires to just consider individual accepted and
refused events and applies to the general case of a possibly intransitive
policy. This condition follows Rushby’s one for classical noninterference
security, and has to be satisfied by a generic function mapping security
domains into equivalence relations over process traces; hence its name,
Generic Unwinding Theorem. Variants of this theorem applying to
deterministic processes and trace set processes are also proven. Finally,
the sufficient condition for security expressed by the theorem is shown
not to be a necessary condition as well, viz. there exists a secure process
such that no domain-relation map satisfying the condition exists.

1

Contents
1 The Generic Unwinding Theorem 2

1.1 Propaedeutic definitions and lemmas 3
1.2 The Generic Unwinding Theorem: proof of condition sufficiency 6
1.3 The Generic Unwinding Theorem: counterexample to condi-

tion necessity . 19

1 The Generic Unwinding Theorem
theory GenericUnwinding
imports Noninterference-Ipurge-Unwinding.DeterministicProcesses
begin

The classical definition of noninterference security for a deterministic state
machine with outputs requires to consider the outputs produced by machine
actions after any trace, i.e. any indefinitely long sequence of actions, of
the machine. In order to render the verification of the security of such a
machine more straightforward, there is a need of some sufficient condition for
security such that just individual actions, rather than unbounded sequences
of actions, have to be taken into consideration.
By extending previous results applying to transitive noninterference policies,
Rushby [8] has proven an unwinding theorem that provides a sufficient con-
dition of this kind in the general case of a possibly intransitive policy. This
condition consists of a combination of predicates, which have to be satisfied
by a generic function mapping security domains into equivalence relations
over machine states.
An analogous problem arises for CSP noninterference security, whose defini-
tion given in [6] requires to consider any possible future, i.e. any indefinitely
long sequence of subsequent events and any indefinitely large set of refused
events associated to that sequence, for each process trace.
This paper provides a sufficient condition for CSP noninterference security,
which indeed requires to just consider individual accepted and refused events
and applies to the general case of a possibly intransitive policy. This con-
dition follows Rushby’s one for classical noninterference security; in some
detail, it consists of a combination of predicates, which are the transla-
tions of Rushby’s ones into Hoare’s Communicating Sequential Processes
model of computation [1]. These predicates have to be satisfied by a generic
function mapping security domains into equivalence relations over process
traces; hence the name given to the condition, Generic Unwinding Theorem.
Variants of this theorem applying to deterministic processes and trace set
processes (cf. [7]) are also proven.
The sufficient condition for security expressed by the Generic Unwinding

2

Theorem would be even more valuable if it also provided a necessary condi-
tion, viz. if for any secure process, there existed some domain-relation map
satisfying the condition. Particularly, a constructive proof of such proposi-
tion, showing that some specified domain-relation map satisfies the condition
whatever secure process is given, would permit to determine whether a pro-
cess is secure or not by verifying whether the condition is satisfied by that
map or not. However, this paper proves by counterexample that the Generic
Unwinding Theorem does not express a necessary condition for security as
well, viz. a process and a noninterference policy for that process are con-
structed such that the process is secure with respect to the policy, but no
domain-relation map satisfying the condition exists.
The contents of this paper are based on those of [6] and [7]. The salient
points of definitions and proofs are commented; for additional information,
cf. Isabelle documentation, particularly [5], [4], [3], and [2].
For the sake of brevity, given a function F of type ′a1 ⇒ . . . ⇒ ′am ⇒ ′am+1

⇒ . . . ⇒ ′an ⇒ ′b, the explanatory text may discuss of F using attributes
that would more exactly apply to a term of type ′am+1 ⇒ . . . ⇒ ′an ⇒ ′b.
In this case, it shall be understood that strictly speaking, such attributes
apply to a term matching pattern F a1 . . . am.

1.1 Propaedeutic definitions and lemmas

Here below are the translations of Rushby’s predicates weakly step consis-
tent and locally respects [8], applying to deterministic state machines, into
Hoare’s Communicating Sequential Processes model of computation [1].
The differences with respect to Rushby’s original predicates are the following
ones:

• The relations in the range of the domain-relation map hold between
event lists rather than machine states.

• The domains appearing as inputs of the domain-relation map do not
unnecessarily encompass all the possible values of the data type of
domains, but just the domains in the range of the event-domain map.

• While every machine action is accepted in a machine state, not ev-
ery process event is generally accepted after a process trace. Thus,
whenever an event is appended to an event list in the consequent of
an implication, the antecedent of the implication constrains the event
list to be a trace, and the event to be accepted after that trace. In
this way, the predicates do not unnecessarily impose that the relations
in the range of the domain-relation map hold between event lists not
being process traces.

3

definition weakly-step-consistent ::
′a process ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

weakly-step-consistent P D R ≡ ∀ u ∈ range D. ∀ xs ys x.
(xs, ys) ∈ R u ∩ R (D x) ∧ x ∈ next-events P xs ∩ next-events P ys −→
(xs @ [x], ys @ [x]) ∈ R u

definition locally-respects ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map ⇒ bool where

locally-respects P I D R ≡ ∀ u ∈ range D. ∀ xs x.
(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u

In what follows, some lemmas propaedeutic for the proof of the Generic
Unwinding Theorem are demonstrated.

lemma ipurge-tr-aux-single-event:
ipurge-tr-aux I D U [x] = (if ∃ v ∈ U . (v, D x) ∈ I

then []
else [x])

proof (cases ∃ v ∈ U . (v, D x) ∈ I)
case True
have ipurge-tr-aux I D U [x] = ipurge-tr-aux I D U ([] @ [x]) by simp
also have . . . = [] using True by (simp only: ipurge-tr-aux.simps, simp)
finally show ?thesis using True by simp

next
case False
have ipurge-tr-aux I D U [x] = ipurge-tr-aux I D U ([] @ [x]) by simp
also have . . . = [x] using False by (simp only: ipurge-tr-aux.simps, simp)
finally show ?thesis using False by simp

qed

lemma ipurge-tr-aux-cons:
ipurge-tr-aux I D U (x # xs) = (if ∃ v ∈ U . (v, D x) ∈ I

then ipurge-tr-aux I D (insert (D x) U) xs
else x # ipurge-tr-aux I D U xs)

proof (induction xs rule: rev-induct, case-tac [!] ∃ v ∈ U . (v, D x) ∈ I ,
simp-all add: ipurge-tr-aux-single-event del: ipurge-tr-aux.simps(2))
fix x ′ xs
assume A: ipurge-tr-aux I D U (x # xs) =

ipurge-tr-aux I D (insert (D x) U) xs
(is ?T = ?T ′)

assume ∃ v ∈ U . (v, D x) ∈ I
hence B: sinks-aux I D U (x # xs) = sinks-aux I D (insert (D x) U) xs
(is ?S = ?S ′)

by (simp add: sinks-aux-cons)
show ipurge-tr-aux I D U (x # xs @ [x ′]) =

ipurge-tr-aux I D (insert (D x) U) (xs @ [x ′])
proof (cases ∃ v ∈ ?S . (v, D x ′) ∈ I)

4

case True
hence ipurge-tr-aux I D U ((x # xs) @ [x ′]) = ?T
by (simp only: ipurge-tr-aux.simps, simp)

moreover have ∃ v ∈ ?S ′. (v, D x ′) ∈ I using B and True by simp
hence ipurge-tr-aux I D (insert (D x) U) (xs @ [x ′]) = ?T ′ by simp
ultimately show ?thesis using A by simp

next
case False
hence ipurge-tr-aux I D U ((x # xs) @ [x ′]) = ?T @ [x ′]
by (simp only: ipurge-tr-aux.simps, simp)

moreover have ¬ (∃ v ∈ ?S ′. (v, D x ′) ∈ I) using B and False by simp
hence ipurge-tr-aux I D (insert (D x) U) (xs @ [x ′]) = ?T ′ @ [x ′] by simp
ultimately show ?thesis using A by simp

qed
next

fix x ′ xs
assume A: ipurge-tr-aux I D U (x # xs) = x # ipurge-tr-aux I D U xs
(is ?T = ?T ′)

assume ∀ v ∈ U . (v, D x) /∈ I
hence B: sinks-aux I D U (x # xs) = sinks-aux I D U xs
(is ?S = ?S ′)

by (simp add: sinks-aux-cons)
show ipurge-tr-aux I D U (x # xs @ [x ′]) =

x # ipurge-tr-aux I D U (xs @ [x ′])
proof (cases ∃ v ∈ ?S . (v, D x ′) ∈ I)

case True
hence ipurge-tr-aux I D U ((x # xs) @ [x ′]) = ?T
by (simp only: ipurge-tr-aux.simps, simp)

moreover have ∃ v ∈ ?S ′. (v, D x ′) ∈ I using B and True by simp
hence x # ipurge-tr-aux I D U (xs @ [x ′]) = ?T ′ by simp
ultimately show ?thesis using A by simp

next
case False
hence ipurge-tr-aux I D U ((x # xs) @ [x ′]) = ?T @ [x ′]
by (simp only: ipurge-tr-aux.simps, simp)

moreover have ¬ (∃ v ∈ ?S ′. (v, D x ′) ∈ I) using B and False by simp
hence x # ipurge-tr-aux I D U (xs @ [x ′]) = ?T ′ @ [x ′] by simp
ultimately show ?thesis using A by simp

qed
qed

lemma unaffected-domains-subset:
assumes

A: U ⊆ range D and
B: U 6= {}

shows unaffected-domains I D U xs ⊆ range D ∩ (−I) ‘‘ range D
proof (subst unaffected-domains-def , rule subsetI , simp, erule conjE)

fix v
have U ⊆ sinks-aux I D U xs by (rule sinks-aux-subset)

5

moreover have ∃ u. u ∈ U using B by (simp add: ex-in-conv)
then obtain u where C : u ∈ U ..
ultimately have D: u ∈ sinks-aux I D U xs ..
assume ∀ u ∈ sinks-aux I D U xs. (u, v) /∈ I
hence (u, v) /∈ I using D ..
hence (u, v) ∈ −I by simp
moreover have u ∈ range D using A and C ..
ultimately show v ∈ (−I) ‘‘ range D ..

qed

1.2 The Generic Unwinding Theorem: proof of condition suf-
ficiency

Rushby’s Unwinding Theorem for Intransitive Policies [8] states that a suf-
ficient condition for a deterministic state machine with outputs to be secure
is the existence of some domain-relation map R such that:

1. R is a view partition, i.e. the relations over machine states in its range
are equivalence relations;

2. R is output consistent, i.e. states equivalent with respect to the domain
of an action produce the same output as a result of that action;

3. R is weakly step consistent;

4. R locally respects the policy.

The idea behind the theorem is that a machine is secure if its states can be
partitioned, for each domain u, into equivalence classes (1), such that the
states in any such class C are indistinguishable with respect to the actions
in u (2), transition into the same equivalence class C’ as a result of an action
(3), and transition remaining inside C as a result of an action not allowed
to affect u (4).
This idea can simply be translated into the realm of Communicating Se-
quential Processes [1] by replacing the words "machine", "state", "action"
with "process", "trace", "event", respectively, as long as a clarification is pro-
vided of what it precisely means for a pair of traces to be "indistinguishable"
with respect to the events in a given domain. Intuitively, this happens just
in case the events in that domain being accepted or refused after either trace
are the same, thus the simplest choice would be to replace output consis-
tency with future consistency as defined in [7]. However, indistinguishability
between traces in the same equivalence class is not required in the case of
a domain allowed to be affected by any domain, since the policy puts no
restriction on the differences in process histories that may be detected by
such a domain. Hence, it is sufficient to replace output consistency with
weak future consistency [7].

6

Furthermore, indistinguishability with respect to individual refused events
does not imply indistinguishability with respect to sets of refused events,
i.e. refusals, unless for each trace, the corresponding refusals set is closed
under set union. Therefore, for the condition to be sufficient for process
security, the refusals union closure of the process [7] is also required. As
remarked in [7], this property holds for any process admitting a meaningful
interpretation, so that taking it as an additional assumption does not give
rise to any actual limitation on the applicability of the theorem.
As a result of these considerations, the Generic Unwinding Theorem, formal-
ized in what follows as theorem generic-unwinding, states that a sufficient
condition for the CSP noninterference security [6] of a process being refusals
union closed [7] is the existence of some domain-relation map R such that:

1. R is a view partition [7];

2. R is weakly future consistent [7];

3. R is weakly step consistent;

4. R locally respects the policy.

lemma ruc-wfc-failures:
assumes

RUC : ref-union-closed P and
WFC : weakly-future-consistent P I D R and
A: U ⊆ range D ∩ (−I) ‘‘ range D and
B: U 6= {} and
C : ∀ u ∈ U . (xs, xs ′) ∈ R u and
D: (xs, X) ∈ failures P

shows (xs ′, X ∩ D −‘ U) ∈ failures P
proof (cases ∃ x. x ∈ X ∩ D −‘ U)

let ?A = singleton-set (X ∩ D −‘ U)
have ∀ xs A. (∃X . X ∈ A) −→ (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

using RUC by (simp add: ref-union-closed-def)
hence (∃X . X ∈ ?A) −→ (∀X ∈ ?A. (xs ′, X) ∈ failures P) −→
(xs ′,

⋃
X ∈ ?A. X) ∈ failures P

by blast
moreover case True
hence ∃X . X ∈ ?A by (simp add: singleton-set-some)
ultimately have (∀X ∈ ?A. (xs ′, X) ∈ failures P) −→
(xs ′,

⋃
X ∈ ?A. X) ∈ failures P ..

moreover have ∀X ∈ ?A. (xs ′, X) ∈ failures P
proof (simp add: singleton-set-def , rule allI , rule impI , erule bexE , erule IntE ,
simp)
fix x

7

have ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→
next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using WFC by (simp add: weakly-future-consistent-def)
moreover assume E : D x ∈ U
with A have D x ∈ range D ∩ (− I) ‘‘ range D ..
ultimately have ∀ xs ys. (xs, ys) ∈ R (D x) −→

next-dom-events P D (D x) xs = next-dom-events P D (D x) ys ∧
ref-dom-events P D (D x) xs = ref-dom-events P D (D x) ys ..

hence (xs, xs ′) ∈ R (D x) −→
next-dom-events P D (D x) xs = next-dom-events P D (D x) xs ′ ∧
ref-dom-events P D (D x) xs = ref-dom-events P D (D x) xs ′

by blast
moreover have (xs, xs ′) ∈ R (D x) using C and E ..
ultimately have ref-dom-events P D (D x) xs =

ref-dom-events P D (D x) xs ′

by simp
moreover assume x ∈ X
hence {x} ⊆ X by simp
with D have (xs, {x}) ∈ failures P by (rule process-rule-3)
hence x ∈ ref-dom-events P D (D x) xs
by (simp add: ref-dom-events-def refusals-def)

ultimately have x ∈ ref-dom-events P D (D x) xs ′ by simp
thus (xs ′, {x}) ∈ failures P by (simp add: ref-dom-events-def refusals-def)

qed
ultimately have (xs ′,

⋃
X ∈ ?A. X) ∈ failures P ..

thus (xs ′, X ∩ D −‘ U) ∈ failures P by (simp only: singleton-set-union)
next

have ∃ u. u ∈ U using B by (simp add: ex-in-conv)
then obtain u where E : u ∈ U ..
with A have u ∈ range D ∩ (− I) ‘‘ range D ..
moreover have (xs, xs ′) ∈ R u using C and E ..
ultimately have (xs ∈ traces P) = (xs ′ ∈ traces P)
by (rule wfc-traces [OF WFC])

moreover have xs ∈ traces P using D by (rule failures-traces)
ultimately have xs ′ ∈ traces P by simp
hence (xs ′, {}) ∈ failures P by (rule traces-failures)
moreover case False
hence X ∩ D −‘ U = {} by (simp only: ex-in-conv, simp)
ultimately show (xs ′, X ∩ D −‘ U) ∈ failures P by simp

qed

lemma ruc-wfc-lr-failures-1 :
assumes

RUC : ref-union-closed P and
WFC : weakly-future-consistent P I D R and
LR: locally-respects P I D R and
A: (xs @ [y], Y) ∈ failures P

shows (xs, {x ∈ Y . (D y, D x) /∈ I}) ∈ failures P

8

proof (cases ∃ x. x ∈ {x ∈ Y . (D y, D x) /∈ I})
let ?A = singleton-set {x ∈ Y . (D y, D x) /∈ I}
have ∀ xs A. (∃X . X ∈ A) −→ (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

using RUC by (simp add: ref-union-closed-def)
hence (∃X . X ∈ ?A) −→ (∀X ∈ ?A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ ?A. X) ∈ failures P

by blast
moreover case True
hence ∃X . X ∈ ?A by (simp add: singleton-set-some)
ultimately have (∀X ∈ ?A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ ?A. X) ∈ failures P ..

moreover have ∀X ∈ ?A. (xs, X) ∈ failures P
proof (rule ballI , simp add: singleton-set-def , erule exE , (erule conjE)+, simp)

fix x
have ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using WFC by (simp add: weakly-future-consistent-def)
moreover assume B: (D y, D x) /∈ I
hence D x ∈ range D ∩ (−I) ‘‘ range D by (simp add: Image-iff , rule exI)
ultimately have ∀ xs ys. (xs, ys) ∈ R (D x) −→

next-dom-events P D (D x) xs = next-dom-events P D (D x) ys ∧
ref-dom-events P D (D x) xs = ref-dom-events P D (D x) ys ..

hence C : (xs, xs @ [y]) ∈ R (D x) −→
ref-dom-events P D (D x) xs = ref-dom-events P D (D x) (xs @ [y])

by simp
have ∀ xs y. (D y, D x) /∈ I ∧ y ∈ next-events P xs −→
(xs, xs @ [y]) ∈ R (D x)

using LR by (simp add: locally-respects-def)
hence (D y, D x) /∈ I ∧ y ∈ next-events P xs −→ (xs, xs @ [y]) ∈ R (D x)
by blast

moreover have xs @ [y] ∈ traces P using A by (rule failures-traces)
hence y ∈ next-events P xs by (simp add: next-events-def)
ultimately have (xs, xs @ [y]) ∈ R (D x) using B by simp
with C have ref-dom-events P D (D x) xs =

ref-dom-events P D (D x) (xs @ [y]) ..
moreover assume D: x ∈ Y
have x ∈ ref-dom-events P D (D x) (xs @ [y])
proof (simp add: ref-dom-events-def refusals-def)

have {x} ⊆ Y using D by (simp add: ipurge-ref-def)
with A show (xs @ [y], {x}) ∈ failures P by (rule process-rule-3)

qed
ultimately have x ∈ ref-dom-events P D (D x) xs by simp
thus (xs, {x}) ∈ failures P by (simp add: ref-dom-events-def refusals-def)

qed
ultimately have (xs,

⋃
X ∈ ?A. X) ∈ failures P ..

thus ?thesis by (simp only: singleton-set-union)
next

9

case False
hence {x ∈ Y . (D y, D x) /∈ I} = {} by simp
moreover have (xs, {}) ∈ failures P using A by (rule process-rule-2)
ultimately show ?thesis by (simp (no-asm-simp))

qed

lemma ruc-wfc-lr-failures-2 :
assumes

RUC : ref-union-closed P and
WFC : weakly-future-consistent P I D R and
LR: locally-respects P I D R and
A: (xs, Z) ∈ failures P and
Y : xs @ [y] ∈ traces P

shows (xs @ [y], {x ∈ Z . (D y, D x) /∈ I}) ∈ failures P
proof (cases ∃ x. x ∈ {x ∈ Z . (D y, D x) /∈ I})

let ?A = singleton-set {x ∈ Z . (D y, D x) /∈ I}
have ∀ xs A. (∃X . X ∈ A) −→ (∀X ∈ A. (xs, X) ∈ failures P) −→
(xs,

⋃
X ∈ A. X) ∈ failures P

using RUC by (simp add: ref-union-closed-def)
hence (∃X . X ∈ ?A) −→ (∀X ∈ ?A. (xs @ [y], X) ∈ failures P) −→
(xs @ [y],

⋃
X ∈ ?A. X) ∈ failures P

by blast
moreover case True
hence ∃X . X ∈ ?A by (simp add: singleton-set-some)
ultimately have (∀X ∈ ?A. (xs @ [y], X) ∈ failures P) −→
(xs @ [y],

⋃
X ∈ ?A. X) ∈ failures P ..

moreover have ∀X ∈ ?A. (xs @ [y], X) ∈ failures P
proof (rule ballI , simp add: singleton-set-def , erule exE , (erule conjE)+, simp)

fix x
have ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using WFC by (simp add: weakly-future-consistent-def)
moreover assume B: (D y, D x) /∈ I
hence D x ∈ range D ∩ (−I) ‘‘ range D by (simp add: Image-iff , rule exI)
ultimately have ∀ xs ys. (xs, ys) ∈ R (D x) −→

next-dom-events P D (D x) xs = next-dom-events P D (D x) ys ∧
ref-dom-events P D (D x) xs = ref-dom-events P D (D x) ys ..

hence C : (xs, xs @ [y]) ∈ R (D x) −→
ref-dom-events P D (D x) xs = ref-dom-events P D (D x) (xs @ [y])

by simp
have ∀ xs y. (D y, D x) /∈ I ∧ y ∈ next-events P xs −→
(xs, xs @ [y]) ∈ R (D x)

using LR by (simp add: locally-respects-def)
hence (D y, D x) /∈ I ∧ y ∈ next-events P xs −→ (xs, xs @ [y]) ∈ R (D x)
by blast

moreover have y ∈ next-events P xs using Y by (simp add: next-events-def)
ultimately have (xs, xs @ [y]) ∈ R (D x) using B by simp
with C have ref-dom-events P D (D x) xs =

10

ref-dom-events P D (D x) (xs @ [y]) ..
moreover assume D: x ∈ Z
have x ∈ ref-dom-events P D (D x) xs
proof (simp add: ref-dom-events-def refusals-def)

have {x} ⊆ Z using D by (simp add: ipurge-ref-def)
with A show (xs, {x}) ∈ failures P by (rule process-rule-3)

qed
ultimately have x ∈ ref-dom-events P D (D x) (xs @ [y]) by simp
thus (xs @ [y], {x}) ∈ failures P
by (simp add: ref-dom-events-def refusals-def)

qed
ultimately have (xs @ [y],

⋃
X ∈ ?A. X) ∈ failures P ..

thus ?thesis by (simp only: singleton-set-union)
next

case False
hence {x ∈ Z . (D y, D x) /∈ I} = {} by simp
moreover have (xs @ [y], {}) ∈ failures P using Y by (rule traces-failures)
ultimately show ?thesis by (simp (no-asm-simp))

qed

lemma gu-condition-imply-secure-aux [rule-format]:
assumes

VP: view-partition P D R and
WFC : weakly-future-consistent P I D R and
WSC : weakly-step-consistent P D R and
LR: locally-respects P I D R

shows U ⊆ range D −→ U 6= {} −→ xs @ ys ∈ traces P −→
(∀ u ∈ unaffected-domains I D U []. (xs, xs ′) ∈ R u) −→
(∀ u ∈ unaffected-domains I D U ys.
(xs @ ys, xs ′ @ ipurge-tr-aux I D U ys) ∈ R u)

proof (induction ys arbitrary: xs xs ′ U , simp-all add: unaffected-domains-def ,
((rule impI)+, (rule allI)?)+, erule conjE)
fix y ys xs xs ′ U u
assume

A:
∧

xs xs ′ U . U ⊆ range D −→ U 6= {} −→ xs @ ys ∈ traces P −→
(∀ u. u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→
(xs, xs ′) ∈ R u) −→

(∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I) −→
(xs @ ys, xs ′ @ ipurge-tr-aux I D U ys) ∈ R u) and

B: U ⊆ range D and
C : U 6= {} and
D: xs @ y # ys ∈ traces P and
E : ∀ u. u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→ (xs, xs ′) ∈ R u and
F : u ∈ range D and
G: ∀ v ∈ sinks-aux I D U (y # ys). (v, u) /∈ I

show (xs @ y # ys, xs ′ @ ipurge-tr-aux I D U (y # ys)) ∈ R u
proof (cases ∃ v ∈ U . (v, D y) ∈ I ,
simp-all (no-asm-simp) add: ipurge-tr-aux-cons)
case True

11

let ?U ′ = insert (D y) U
have ?U ′ ⊆ range D −→ ?U ′ 6= {} −→ (xs @ [y]) @ ys ∈ traces P −→
(∀ u. u ∈ range D ∧ (∀ v ∈ ?U ′. (v, u) /∈ I) −→
(xs @ [y], xs ′) ∈ R u) −→

(∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D ?U ′ ys. (v, u) /∈ I) −→
((xs @ [y]) @ ys, xs ′ @ ipurge-tr-aux I D ?U ′ ys) ∈ R u)

using A .
hence
(∀ u. u ∈ range D ∧ (∀ v ∈ ?U ′. (v, u) /∈ I) −→

(xs @ [y], xs ′) ∈ R u) −→
(∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D ?U ′ ys. (v, u) /∈ I) −→
(xs @ y # ys, xs ′ @ ipurge-tr-aux I D ?U ′ ys) ∈ R u)

using B and D by simp
moreover have
∀ u. u ∈ range D ∧ (∀ v ∈ ?U ′. (v, u) /∈ I) −→

(xs @ [y], xs ′) ∈ R u
proof (rule allI , rule impI , erule conjE)

fix u
assume F : u ∈ range D and G: ∀ v ∈ ?U ′. (v, u) /∈ I
moreover have u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→ (xs, xs ′) ∈ R u
using E ..

ultimately have H : (xs, xs ′) ∈ R u by simp
have ∀ u ∈ range D. (D y, u) /∈ I ∧ y ∈ next-events P xs −→
(xs, xs @ [y]) ∈ R u

using LR by (simp add: locally-respects-def)
hence (D y, u) /∈ I ∧ y ∈ next-events P xs −→ (xs, xs @ [y]) ∈ R u
using F ..

moreover have D y ∈ ?U ′ by simp
with G have (D y, u) /∈ I ..
moreover have (xs @ [y]) @ ys ∈ traces P using D by simp
hence y ∈ next-events P xs
by (simp (no-asm-simp) add: next-events-def , rule process-rule-2-traces)

ultimately have I : (xs, xs @ [y]) ∈ R u by simp
have ∀ u ∈ range D. equiv (traces P) (R u)
using VP by (simp add: view-partition-def)

hence J : equiv (traces P) (R u) using F ..
hence trans (R u) by (simp add: equiv-def)
moreover have sym (R u) using J by (simp add: equiv-def)
hence (xs @ [y], xs) ∈ R u using I by (rule symE)
ultimately show (xs @ [y], xs ′) ∈ R u using H by (rule transE)

qed
ultimately have
∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D ?U ′ ys. (v, u) /∈ I) −→

(xs @ y # ys, xs ′ @ ipurge-tr-aux I D ?U ′ ys) ∈ R u ..
hence
u ∈ range D ∧ (∀ v ∈ sinks-aux I D ?U ′ ys. (v, u) /∈ I) −→

(xs @ y # ys, xs ′ @ ipurge-tr-aux I D ?U ′ ys) ∈ R u ..
moreover have sinks-aux I D U (y # ys) = sinks-aux I D ?U ′ ys
using Cons and True by (simp add: sinks-aux-cons)

12

hence ∀ v ∈ sinks-aux I D ?U ′ ys. (v, u) /∈ I using G by simp
with F have u ∈ range D ∧ (∀ v ∈ sinks-aux I D ?U ′ ys. (v, u) /∈ I) ..
ultimately show (xs @ y # ys, xs ′ @ ipurge-tr-aux I D ?U ′ ys) ∈ R u ..

next
case False
have
U ⊆ range D −→ U 6= {} −→ (xs @ [y]) @ ys ∈ traces P −→
(∀ u. u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→
(xs @ [y], xs ′ @ [y]) ∈ R u) −→

(∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I) −→
((xs @ [y]) @ ys, (xs ′ @ [y]) @ ipurge-tr-aux I D U ys) ∈ R u)

using A .
hence
(∀ u. u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→

(xs @ [y], xs ′ @ [y]) ∈ R u) −→
(∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I) −→
(xs @ y # ys, xs ′ @ y # ipurge-tr-aux I D U ys) ∈ R u)

using B and C and D by simp
moreover have
∀ u. u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→

(xs @ [y], xs ′ @ [y]) ∈ R u
proof (rule allI , rule impI , erule conjE)

fix u
assume F : u ∈ range D and G: ∀ v ∈ U . (v, u) /∈ I
moreover have u ∈ range D ∧ (∀ v ∈ U . (v, u) /∈ I) −→ (xs, xs ′) ∈ R u
using E ..

ultimately have (xs, xs ′) ∈ R u by simp
moreover have D y ∈ range D ∧
(∀ v ∈ U . (v, D y) /∈ I) −→ (xs, xs ′) ∈ R (D y)

using E ..
hence (xs, xs ′) ∈ R (D y) using False by simp
ultimately have H : (xs, xs ′) ∈ R u ∩ R (D y) ..
have ∃ v. v ∈ U using C by (simp add: ex-in-conv)
then obtain v where I : v ∈ U ..
hence (v, D y) ∈ −I using False by simp
moreover have v ∈ range D using B and I ..
ultimately have D y ∈ (−I) ‘‘ range D ..
hence J : D y ∈ range D ∩ (−I) ‘‘ range D by simp
have ∀ u ∈ range D ∩ (−I) ‘‘ range D. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events P D u xs = next-dom-events P D u ys ∧
ref-dom-events P D u xs = ref-dom-events P D u ys

using WFC by (simp add: weakly-future-consistent-def)
hence ∀ xs ys. (xs, ys) ∈ R (D y) −→

next-dom-events P D (D y) xs = next-dom-events P D (D y) ys ∧
ref-dom-events P D (D y) xs = ref-dom-events P D (D y) ys

using J ..
hence (xs, xs ′) ∈ R (D y) −→

next-dom-events P D (D y) xs = next-dom-events P D (D y) xs ′ ∧
ref-dom-events P D (D y) xs = ref-dom-events P D (D y) xs ′

13

by blast
hence next-dom-events P D (D y) xs = next-dom-events P D (D y) xs ′

using H by simp
moreover have (xs @ [y]) @ ys ∈ traces P using D by simp
hence K : y ∈ next-events P xs
by (simp (no-asm-simp) add: next-events-def , rule process-rule-2-traces)

hence y ∈ next-dom-events P D (D y) xs
by (simp add: next-dom-events-def)

ultimately have y ∈ next-events P xs ′ by (simp add: next-dom-events-def)
with K have L: y ∈ next-events P xs ∩ next-events P xs ′ ..
have ∀ u ∈ range D. ∀ xs ys x.
(xs, ys) ∈ R u ∩ R (D x) ∧ x ∈ next-events P xs ∩ next-events P ys −→
(xs @ [x], ys @ [x]) ∈ R u

using WSC by (simp add: weakly-step-consistent-def)
hence ∀ xs ys x.
(xs, ys) ∈ R u ∩ R (D x) ∧ x ∈ next-events P xs ∩ next-events P ys −→
(xs @ [x], ys @ [x]) ∈ R u

using F ..
hence
(xs, xs ′) ∈ R u ∩ R (D y) ∧ y ∈ next-events P xs ∩ next-events P xs ′ −→
(xs @ [y], xs ′ @ [y]) ∈ R u

by blast
thus (xs @ [y], xs ′ @ [y]) ∈ R u using H and L by simp

qed
ultimately have
∀ u. u ∈ range D ∧ (∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I) −→
(xs @ y # ys, xs ′ @ y # ipurge-tr-aux I D U ys) ∈ R u ..

hence u ∈ range D ∧ (∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I) −→
(xs @ y # ys, xs ′ @ y # ipurge-tr-aux I D U ys) ∈ R u ..

moreover have sinks-aux I D U (y # ys) = sinks-aux I D U ys
using Cons and False by (simp add: sinks-aux-cons)

hence ∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I using G by simp
with F have u ∈ range D ∧ (∀ v ∈ sinks-aux I D U ys. (v, u) /∈ I) ..
ultimately show (xs @ y # ys, xs ′ @ y # ipurge-tr-aux I D U ys) ∈ R u ..

qed
qed

lemma gu-condition-imply-secure-1 [rule-format]:
assumes

RUC : ref-union-closed P and
VP: view-partition P D R and
WFC : weakly-future-consistent P I D R and
WSC : weakly-step-consistent P D R and
LR: locally-respects P I D R

shows (xs @ y # ys, Y) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P

proof (induction ys arbitrary: Y rule: rev-induct, rule-tac [!] impI ,
simp add: ipurge-ref-def)
fix Y

14

assume (xs @ [y], Y) ∈ failures P
with RUC and WFC and LR show
(xs, {x ∈ Y . (D y, D x) /∈ I}) ∈ failures P
by (rule ruc-wfc-lr-failures-1)

next
fix y ′ ys Y
assume

A:
∧

Y ′. (xs @ y # ys, Y ′) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y ′) ∈ failures P and

B: (xs @ y # ys @ [y ′], Y) ∈ failures P
show (xs @ ipurge-tr I D (D y) (ys @ [y ′]), ipurge-ref I D (D y) (ys @ [y ′]) Y)
∈ failures P

proof (cases D y ′ ∈ sinks I D (D y) (ys @ [y ′]), simp del: sinks.simps)
let ?Y ′ = {x ∈ Y . (D y ′, D x) /∈ I}
have (xs @ y # ys, ?Y ′) ∈ failures P −→
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys ?Y ′) ∈ failures P

using A .
moreover have ((xs @ y # ys) @ [y ′], Y) ∈ failures P using B by simp
with RUC and WFC and LR have (xs @ y # ys, ?Y ′) ∈ failures P
by (rule ruc-wfc-lr-failures-1)

ultimately have
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys ?Y ′) ∈ failures P ..

moreover case True
hence ipurge-ref I D (D y) (ys @ [y ′]) Y = ipurge-ref I D (D y) ys ?Y ′

by (rule ipurge-ref-eq)
ultimately show
(xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) (ys @ [y ′]) Y) ∈ failures P
by simp

next
case False
have unaffected-domains I D {D y} (ys @ [y ′]) ⊆ range D ∩ (−I) ‘‘ range D
(is ?U ⊆ -)
by (rule unaffected-domains-subset, simp-all)

moreover have ?U 6= {}
proof −

have (D y, D y ′) /∈ I using False by (rule-tac notI , simp)
moreover
have ¬ ((D y, D y ′) ∈ I ∨ (∃ v ∈ sinks I D (D y) ys. (v, D y ′) ∈ I))

using False by (simp only: sinks-interference-eq, simp)
then have ∀ v ∈ sinks I D (D y) (ys @ [y ′]). (v, D y ′) /∈ I by simp
ultimately show ?U 6= {}
apply (simp (no-asm-simp) add: unaffected-domains-def sinks-aux-single-dom

set-eq-iff)
using ‹(D y, D y ′) /∈ I › by auto

qed
moreover have C : xs @ y # ys @ [y ′] ∈ traces P

using B by (rule failures-traces)
have ∀ u ∈ ?U . ((xs @ [y]) @ ys @ [y ′],

xs @ ipurge-tr-aux I D {D y} (ys @ [y ′])) ∈ R u

15

proof (rule ballI , rule gu-condition-imply-secure-aux [OF VP WFC WSC LR],
simp-all add: unaffected-domains-def C , (erule conjE)+)

fix u
have ∀ u ∈ range D. ∀ xs x.

(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u
using LR by (simp add: locally-respects-def)

moreover assume D: u ∈ range D
ultimately have ∀ xs x.

(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u ..
hence (D y, u) /∈ I ∧ y ∈ next-events P xs −→

(xs, xs @ [y]) ∈ R u
by blast

moreover assume (D y, u) /∈ I
moreover have (xs @ [y]) @ ys @ [y ′] ∈ traces P using C by simp
hence xs @ [y] ∈ traces P by (rule process-rule-2-traces)
hence y ∈ next-events P xs by (simp add: next-events-def)
ultimately have E : (xs, xs @ [y]) ∈ R u by simp
have ∀ u ∈ range D. equiv (traces P) (R u)

using VP by (simp add: view-partition-def)
hence equiv (traces P) (R u) using D ..
hence sym (R u) by (simp add: equiv-def)
thus (xs @ [y], xs) ∈ R u using E by (rule symE)

qed
hence ∀ u ∈ ?U . (xs @ y # ys @ [y ′],

xs @ ipurge-tr I D (D y) (ys @ [y ′])) ∈ R u
by (simp only: ipurge-tr-aux-single-dom, simp)

ultimately have (xs @ ipurge-tr I D (D y) (ys @ [y ′]), Y ∩ D −‘ ?U)
∈ failures P

using B by (rule ruc-wfc-failures [OF RUC WFC])
moreover have
Y ∩ D −‘ ?U = {x ∈ Y . D x ∈ unaffected-domains I D {D y} (ys @ [y ′])}
by (simp add: set-eq-iff)

ultimately show ?thesis by (simp only: unaffected-domains-single-dom)
qed

qed

lemma gu-condition-imply-secure-2 [rule-format]:
assumes

RUC : ref-union-closed P and
VP: view-partition P D R and
WFC : weakly-future-consistent P I D R and
WSC : weakly-step-consistent P D R and
LR: locally-respects P I D R and
Y : xs @ [y] ∈ traces P

shows (xs @ zs, Z) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P

proof (induction zs arbitrary: Z rule: rev-induct, rule-tac [!] impI ,
simp add: ipurge-ref-def)
fix Z

16

assume (xs, Z) ∈ failures P
with RUC and WFC and LR show
(xs @ [y], {x ∈ Z . (D y, D x) /∈ I}) ∈ failures P
using Y by (rule ruc-wfc-lr-failures-2)

next
fix z zs Z
assume

A:
∧

Z ′. (xs @ zs, Z ′) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs,
ipurge-ref I D (D y) zs Z ′) ∈ failures P and

B: (xs @ zs @ [z], Z) ∈ failures P
show (xs @ y # ipurge-tr I D (D y) (zs @ [z]),

ipurge-ref I D (D y) (zs @ [z]) Z) ∈ failures P
proof (cases D z ∈ sinks I D (D y) (zs @ [z]), simp del: sinks.simps)

let ?Z ′ = {x ∈ Z . (D z, D x) /∈ I}
have (xs @ zs, ?Z ′) ∈ failures P −→
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs ?Z ′) ∈ failures P

using A .
moreover have ((xs @ zs) @ [z], Z) ∈ failures P using B by simp
with RUC and WFC and LR have (xs @ zs, ?Z ′) ∈ failures P
by (rule ruc-wfc-lr-failures-1)

ultimately have
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs ?Z ′) ∈ failures P ..

moreover case True
hence ipurge-ref I D (D y) (zs @ [z]) Z = ipurge-ref I D (D y) zs ?Z ′

by (rule ipurge-ref-eq)
ultimately show
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) (zs @ [z]) Z)

∈ failures P
by simp

next
case False
have unaffected-domains I D {D y} (zs @ [z]) ⊆ range D ∩ (−I) ‘‘ range D
(is ?U ⊆ -)
by (rule unaffected-domains-subset, simp-all)

moreover have ?U 6= {}
proof −

have (D y, D z) /∈ I using False by (rule-tac notI , simp)
moreover
have ¬ ((D y, D z) ∈ I ∨ (∃ v ∈ sinks I D (D y) zs. (v, D z) ∈ I))

using False by (simp only: sinks-interference-eq, simp)
then have ∀ v ∈ sinks I D (D y) (zs @ [z]). (v, D z) /∈ I by simp
ultimately show ?U 6= {}
apply (simp (no-asm-simp) add: unaffected-domains-def sinks-aux-single-dom

set-eq-iff)
using ‹(D y, D z) /∈ I › by auto

qed
moreover have C : xs @ zs @ [z] ∈ traces P using B by (rule failures-traces)
have ∀ u ∈ ?U . (xs @ zs @ [z],

17

(xs @ [y]) @ ipurge-tr-aux I D {D y} (zs @ [z])) ∈ R u
proof (rule ballI , rule gu-condition-imply-secure-aux [OF VP WFC WSC LR],

simp-all add: unaffected-domains-def C , (erule conjE)+)
fix u
have ∀ u ∈ range D. ∀ xs x.

(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u
using LR by (simp add: locally-respects-def)

moreover assume D: u ∈ range D
ultimately have ∀ xs x.

(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u ..
hence (D y, u) /∈ I ∧ y ∈ next-events P xs −→ (xs, xs @ [y]) ∈ R u by blast
moreover assume (D y, u) /∈ I
moreover have y ∈ next-events P xs using Y by (simp add: next-events-def)
ultimately show (xs, xs @ [y]) ∈ R u by simp

qed
hence ∀ u ∈ ?U . (xs @ zs @ [z],

xs @ y # ipurge-tr I D (D y) (zs @ [z])) ∈ R u
by (simp only: ipurge-tr-aux-single-dom, simp)

ultimately have (xs @ y # ipurge-tr I D (D y) (zs @ [z]), Z ∩ D −‘ ?U)
∈ failures P

using B by (rule ruc-wfc-failures [OF RUC WFC])
moreover have

Z ∩ D −‘ ?U = {x ∈ Z . D x ∈ unaffected-domains I D {D y} (zs @ [z])}
by (simp add: set-eq-iff)

ultimately show ?thesis by (simp only: unaffected-domains-single-dom)
qed

qed

theorem generic-unwinding:
assumes

RUC : ref-union-closed P and
VP: view-partition P D R and
WFC : weakly-future-consistent P I D R and
WSC : weakly-step-consistent P D R and
LR: locally-respects P I D R

shows secure P I D
proof (simp add: secure-def futures-def , (rule allI)+, rule impI , erule conjE)

fix xs y ys Y zs Z
assume

A: (xs @ y # ys, Y) ∈ failures P and
B: (xs @ zs, Z) ∈ failures P

show (xs @ ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ failures P ∧
(xs @ y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ failures P
(is ?P ∧ ?Q)

proof
show ?P using RUC and VP and WFC and WSC and LR and A
by (rule gu-condition-imply-secure-1)

next
have ((xs @ [y]) @ ys, Y) ∈ failures P using A by simp

18

hence (xs @ [y], {}) ∈ failures P by (rule process-rule-2-failures)
hence xs @ [y] ∈ traces P by (rule failures-traces)
with RUC and VP and WFC and WSC and LR show ?Q using B
by (rule gu-condition-imply-secure-2)

qed
qed

It is interesting to observe that unlike symmetry and transitivity, the as-
sumed reflexivity of the relations in the range of the domain-relation map
is never used in the proof of the Generic Unwinding Theorem. Nonethe-
less, by assuming that such relations be equivalence relations over process
traces rather than just symmetric and transitive ones, reflexivity has been
kept among assumptions for both historical reasons – Rushby’s Unwinding
Theorem for deterministic state machines deals with equivalence relations
– and practical reasons – predicate refl-on (traces P) may only be verified
by a relation included in traces P × traces P, thus ensuring that traces be
not correlated with non-trace event lists, which is a necessary condition for
weak future consistency (cf. [7]).
Here below are convenient variants of the Generic Unwinding Theorem ap-
plying to deterministic processes and trace set processes (cf. [7]).

theorem d-generic-unwinding:
deterministic P =⇒
view-partition P D R =⇒
d-weakly-future-consistent P I D R =⇒
weakly-step-consistent P D R =⇒
locally-respects P I D R =⇒
secure P I D

proof (rule generic-unwinding, rule d-implies-ruc, simp-all)
qed (drule d-wfc-equals-dwfc [of P I D R], simp)

theorem ts-generic-unwinding:
trace-set T =⇒
view-partition (ts-process T) D R =⇒
d-weakly-future-consistent (ts-process T) I D R =⇒
weakly-step-consistent (ts-process T) D R =⇒
locally-respects (ts-process T) I D R =⇒
secure (ts-process T) I D

proof (rule d-generic-unwinding, simp-all)
qed (rule ts-process-d)

1.3 The Generic Unwinding Theorem: counterexample to
condition necessity

At a first glance, it seems reasonable to hypothesize that the Generic Un-
winding Theorem expresses a necessary, as well as sufficient, condition for

19

security, viz. that whenever a process is secure with respect to a policy, there
should exist a set of "views" of process traces, one per domain, satisfying the
apparently simple assumptions of the theorem.
It can thus be surprising to discover that this hypothesis is false, as proven
in what follows by constructing a counterexample. The key observation for
attaining this result is that symmetry, transitivity, weak step consistency,
and local policy respect permit to infer the correlation of pairs of traces, and
can then be given the form of introduction rules in the inductive definition of
a set. In this way, a "minimum" domain-relation map rel-induct is obtained,
viz. a map such that, for each domain u, the image of u under this map is
included in the image of u under any map which has the aforesaid properties
– particularly, which satisfies the assumptions of the Generic Unwinding
Theorem.
Although reflexivity can be given the form of an introduction rule, too, it
has been omitted from the inductive definition. This has been done in or-
der to ensure that the "minimum" domain-relation map, and consequently
the counterexample as well, still remain such even if reflexivity, being un-
necessary (cf. above), were removed from the assumptions of the Generic
Unwinding Theorem.

inductive-set rel-induct-aux ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′d × ′a list × ′a list) set

for P :: ′a process and I :: (′d × ′d) set and D :: ′a ⇒ ′d where
rule-sym: (u, xs, ys) ∈ rel-induct-aux P I D =⇒

(u, ys, xs) ∈ rel-induct-aux P I D |
rule-trans: [[(u, xs, ys) ∈ rel-induct-aux P I D;

(u, ys, zs) ∈ rel-induct-aux P I D]] =⇒
(u, xs, zs) ∈ rel-induct-aux P I D |

rule-WSC : [[(u, xs, ys) ∈ rel-induct-aux P I D;
(D x, xs, ys) ∈ rel-induct-aux P I D;
x ∈ next-events P xs ∩ next-events P ys]] =⇒
(u, xs @ [x], ys @ [x]) ∈ rel-induct-aux P I D |

rule-LR: [[u ∈ range D; (D x, u) /∈ I ; x ∈ next-events P xs]] =⇒
(u, xs, xs @ [x]) ∈ rel-induct-aux P I D

definition rel-induct ::
′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ (′a, ′d) dom-rel-map where

rel-induct P I D u ≡ rel-induct-aux P I D ‘‘ {u}

lemma rel-induct-subset:
assumes

VP: view-partition P D R and
WSC : weakly-step-consistent P D R and
LR: locally-respects P I D R

shows rel-induct P I D u ⊆ R u
proof (rule subsetI , simp add: rel-induct-def split-paired-all,

20

erule rel-induct-aux.induct)
fix u xs ys
have ∀ u ∈ range D. equiv (traces P) (R u)
using VP by (simp add: view-partition-def)

moreover assume (u, xs, ys) ∈ rel-induct-aux P I D
hence u ∈ range D by (rule rel-induct-aux.induct)
ultimately have equiv (traces P) (R u) ..
hence sym (R u) by (simp add: equiv-def)
moreover assume (xs, ys) ∈ R u
ultimately show (ys, xs) ∈ R u by (rule symE)

next
fix u xs ys zs
have ∀ u ∈ range D. equiv (traces P) (R u)
using VP by (simp add: view-partition-def)

moreover assume (u, xs, ys) ∈ rel-induct-aux P I D
hence u ∈ range D by (rule rel-induct-aux.induct)
ultimately have equiv (traces P) (R u) ..
hence trans (R u) by (simp add: equiv-def)
moreover assume (xs, ys) ∈ R u and (ys, zs) ∈ R u
ultimately show (xs, zs) ∈ R u by (rule transE)

next
fix u xs ys x
have ∀ u ∈ range D. ∀ xs ys x.
(xs, ys) ∈ R u ∩ R (D x) ∧ x ∈ next-events P xs ∩ next-events P ys −→
(xs @ [x], ys @ [x]) ∈ R u

using WSC by (simp add: weakly-step-consistent-def)
moreover assume (u, xs, ys) ∈ rel-induct-aux P I D
hence u ∈ range D by (rule rel-induct-aux.induct)
ultimately have ∀ xs ys x.
(xs, ys) ∈ R u ∩ R (D x) ∧ x ∈ next-events P xs ∩ next-events P ys −→
(xs @ [x], ys @ [x]) ∈ R u ..

hence (xs, ys) ∈ R u ∩ R (D x) ∧ x ∈ next-events P xs ∩ next-events P ys −→
(xs @ [x], ys @ [x]) ∈ R u

by blast
moreover assume
(xs, ys) ∈ R u and
(xs, ys) ∈ R (D x) and
x ∈ next-events P xs ∩ next-events P ys

ultimately show (xs @ [x], ys @ [x]) ∈ R u by simp
next

fix u xs x
have ∀ u ∈ range D. ∀ xs x.
(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u

using LR by (simp add: locally-respects-def)
moreover assume u ∈ range D
ultimately have ∀ xs x.
(D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u ..

hence (D x, u) /∈ I ∧ x ∈ next-events P xs −→ (xs, xs @ [x]) ∈ R u by blast
moreover assume (D x, u) /∈ I and x ∈ next-events P xs

21

ultimately show (xs, xs @ [x]) ∈ R u by simp
qed

The next step consists of the definition of a trace set T c, the corresponding
trace set process Pc (cf. [7]), and a reflexive, intransitive noninterference
policy I c for this process, where subscript "c" stands for "counterexample".
As event-domain map, the identity function is used, which explains why the
policy is defined over events themselves.

datatype eventc = ac | bc | cc

definition T c :: eventc list set where
T c ≡ {[],
[ac], [ac, bc], [ac, bc, cc], [ac, bc, cc, ac],
[bc], [bc, ac], [bc, cc], [bc, ac, cc]}

definition Pc :: eventc process where
Pc ≡ ts-process T c

definition I c :: (eventc × eventc) set where
I c ≡ {(ac, ac), (bc, bc), (bc, cc), (cc, cc), (cc, ac)}

Process Pc can be shown to be secure with respect to policy I c. This result
can be obtained by applying the Ipurge Unwinding Theorem, in the version
for trace set processes [7], and then performing an exhaustive case distinction
over all traces and domains, which obviously is possible by virtue of their
finiteness.
Nevertheless, Pc and I c are such that there exists no domain-relation map
satisfying the assumptions of the Generic Unwinding Theorem. A proof
ad absurdum is given, based on the fact that the pair of traces ([ac, bc,
cc], [bc, ac, cc]) can be shown to be contained in the image of ac under
the "minimum" domain-relation map rel-induct. Therefore, it would also be
contained in the image of ac under a map satisfying the assumptions of the
Generic Unwinding Theorem, so that according to weak future consistency,
ac should be a possible subsequent event for trace [ac, bc, cc] just in case
it were such for trace [bc, ac, cc]. However, this conclusion contradicts the
fact that ac is a possible subsequent event for the former trace only.

lemma counterexample-trace-set:
trace-set T c

by (simp add: trace-set-def T c-def)

lemma counterexample-next-events-1 :
(x ∈ next-events (ts-process T c) xs) = (xs @ [x] ∈ T c)

22

by (rule ts-process-next-events, rule counterexample-trace-set)

lemma counterexample-next-events-2 :
(x ∈ next-events Pc xs) = (xs @ [x] ∈ T c)

by (subst Pc-def , rule counterexample-next-events-1)

lemma counterexample-secure:
secure Pc I c id

proof (simp add: Pc-def ts-ipurge-unwinding [OF counterexample-trace-set]
dfc-equals-dwfc-rel-ipurge [symmetric] d-future-consistent-def , (rule allI)+)
fix u xs ys
show (xs, ys) ∈ rel-ipurge (ts-process T c) I c id u −→
(xs ∈ traces (ts-process T c)) = (ys ∈ traces (ts-process T c)) ∧
next-dom-events (ts-process T c) id u xs =
next-dom-events (ts-process T c) id u ys

proof (simp add: rel-ipurge-def ts-process-traces [OF counterexample-trace-set]
next-dom-events-def counterexample-next-events-1)
show xs ∈ T c ∧ ys ∈ T c ∧

ipurge-tr-rev I c id u xs = ipurge-tr-rev I c id u ys −→
{x. u = x ∧ xs @ [x] ∈ T c} = {x. u = x ∧ ys @ [x] ∈ T c}

apply (simp add: T c-def I c-def)
apply clarify
apply (cases u; elim disjE ; simp; blast)
done

qed
qed

lemma counterexample-not-gu-condition-aux:
([ac, bc, cc], [bc, ac, cc]) ∈ rel-induct Pc I c id ac

proof (simp add: rel-induct-def)
have (ac, [ac, bc], [bc, ac]) ∈ rel-induct-aux Pc I c id
proof −

have A: ac ∈ range id by simp
moreover have B: (id bc, ac) /∈ I c by (simp add: I c-def)
moreover have bc ∈ next-events Pc []

by (simp add: counterexample-next-events-2 T c-def)
ultimately have (ac, [], [] @ [bc]) ∈ rel-induct-aux Pc I c id by (rule rule-LR)
hence C : (ac, [], [bc]) ∈ rel-induct-aux Pc I c id by simp
moreover from C have (id ac, [], [bc]) ∈ rel-induct-aux Pc I c id by simp
moreover have ac ∈ next-events Pc [] ∩ next-events Pc [bc]

by (simp add: counterexample-next-events-2 T c-def)
ultimately have (ac, [] @ [ac], [bc] @ [ac]) ∈ rel-induct-aux Pc I c id

by (rule rule-WSC)
hence D: (ac, [ac], [bc, ac]) ∈ rel-induct-aux Pc I c id by simp
have bc ∈ next-events Pc [ac]

by (simp add: counterexample-next-events-2 T c-def)
with A and B have (ac, [ac], [ac] @ [bc]) ∈ rel-induct-aux Pc I c id

by (rule rule-LR)

23

hence (ac, [ac], [ac, bc]) ∈ rel-induct-aux Pc I c id by simp
hence (ac, [ac, bc], [ac]) ∈ rel-induct-aux Pc I c id by (rule rule-sym)
thus ?thesis using D by (rule rule-trans)

qed
moreover have (id cc, [ac, bc], [bc, ac]) ∈ rel-induct-aux Pc I c id
proof simp

have A: cc ∈ range id by simp
moreover have B: (id ac, cc) /∈ I c by (simp add: I c-def)
moreover have C : ac ∈ next-events Pc []

by (simp add: counterexample-next-events-2 T c-def)
ultimately have (cc, [], [] @ [ac]) ∈ rel-induct-aux Pc I c id by (rule rule-LR)
hence D: (cc, [], [ac]) ∈ rel-induct-aux Pc I c id by simp
have bc ∈ range id by simp
moreover have (id ac, bc) /∈ I c by (simp add: I c-def)
ultimately have (bc, [], [] @ [ac]) ∈ rel-induct-aux Pc I c id

using C by (rule rule-LR)
hence (id bc, [], [ac]) ∈ rel-induct-aux Pc I c id by simp
moreover have bc ∈ next-events Pc [] ∩ next-events Pc [ac]

by (simp add: counterexample-next-events-2 T c-def)
ultimately have (cc, [] @ [bc], [ac] @ [bc]) ∈ rel-induct-aux Pc I c id

by (rule rule-WSC [OF D])
hence (cc, [bc], [ac, bc]) ∈ rel-induct-aux Pc I c id by simp
hence (cc, [ac, bc], [bc]) ∈ rel-induct-aux Pc I c id by (rule rule-sym)
moreover have ac ∈ next-events Pc [bc]

by (simp add: counterexample-next-events-2 T c-def)
with A and B have (cc, [bc], [bc] @ [ac]) ∈ rel-induct-aux Pc I c id

by (rule rule-LR)
hence (cc, [bc], [bc, ac]) ∈ rel-induct-aux Pc I c id by simp
ultimately show (cc, [ac, bc], [bc, ac]) ∈ rel-induct-aux Pc I c id

by (rule rule-trans)
qed
moreover have cc ∈ next-events Pc [ac, bc] ∩ next-events Pc [bc, ac]

by (simp add: counterexample-next-events-2 T c-def)
ultimately have (ac, [ac, bc] @ [cc], [bc, ac] @ [cc]) ∈ rel-induct-aux Pc I c id

by (rule rule-WSC)
thus (ac, [ac, bc, cc], [bc, ac, cc]) ∈ rel-induct-aux Pc I c id by simp

qed

lemma counterexample-not-gu-condition:
¬ (∃R. view-partition Pc id R ∧

weakly-future-consistent Pc I c id R ∧
weakly-step-consistent Pc id R ∧
locally-respects Pc I c id R)

proof (rule notI , erule exE , (erule conjE)+)
fix R
assume weakly-future-consistent Pc I c id R
hence ∀ u ∈ range id ∩ (−I c) ‘‘ range id. ∀ xs ys. (xs, ys) ∈ R u −→

next-dom-events Pc id u xs = next-dom-events Pc id u ys
by (simp add: weakly-future-consistent-def)

24

moreover have ac ∈ range id ∩ (−I c) ‘‘ range id
by (simp add: I c-def , rule ImageI [of bc], simp-all)

ultimately have ∀ xs ys. (xs, ys) ∈ R ac −→
next-dom-events Pc id ac xs = next-dom-events Pc id ac ys ..

hence ([ac, bc, cc], [bc, ac, cc]) ∈ R ac −→
next-dom-events Pc id ac [ac, bc, cc] = next-dom-events Pc id ac [bc, ac, cc]

by blast
moreover assume

view-partition Pc id R and
weakly-step-consistent Pc id R and
locally-respects Pc I c id R

hence rel-induct Pc I c id ac ⊆ R ac by (rule rel-induct-subset)
hence ([ac, bc, cc], [bc, ac, cc]) ∈ R ac

using counterexample-not-gu-condition-aux ..
ultimately have
next-dom-events Pc id ac [ac, bc, cc] = next-dom-events Pc id ac [bc, ac, cc] ..

thus False
by (simp add: next-dom-events-def counterexample-next-events-2 T c-def)

qed

theorem not-secure-implies-gu-condition:
¬ (secure Pc I c id −→

(∃R. view-partition Pc id R ∧
weakly-future-consistent Pc I c id R ∧
weakly-step-consistent Pc id R ∧
locally-respects Pc I c id R))

proof (simp del: not-ex, rule conjI , rule counterexample-secure)
qed (rule counterexample-not-gu-condition)

end

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, May
2015. http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/prog-prove.pdf.

25

http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf

[5] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, May 2015. http://isabelle.in.tum.de/
website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf.

[6] P. Noce. Noninterference security in communicating sequential pro-
cesses. Archive of Formal Proofs, May 2014. http://isa-afp.org/entries/
Noninterference_CSP.shtml, Formal proof development.

[7] P. Noce. The ipurge unwinding theorem for csp noninterference secu-
rity. Archive of Formal Proofs, June 2015. http://isa-afp.org/entries/
Noninterference_Ipurge_Unwinding.shtml, Formal proof development.

[8] J. Rushby. Noninterference, transitivity, and channel-control security
policies. Technical report, SRI International, 1992.

26

http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/Noninterference_CSP.shtml
http://isa-afp.org/entries/Noninterference_Ipurge_Unwinding.shtml
http://isa-afp.org/entries/Noninterference_Ipurge_Unwinding.shtml

	The Generic Unwinding Theorem
	Propaedeutic definitions and lemmas
	The Generic Unwinding Theorem: proof of condition sufficiency
	The Generic Unwinding Theorem: counterexample to condition necessity

