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Abstract

In his outstanding work on Communicating Sequential Processes,
Hoare has defined two fundamental binary operations allowing to com-
pose the input processes into another, typically more complex, process:
sequential composition and concurrent composition. Particularly, the
output of the latter operation is a process in which any event not
shared by both operands can occur whenever the operand that admits
the event can engage in it, whereas any event shared by both operands
can occur just in case both can engage in it.

This paper formalizes Hoare’s definition of concurrent composition
and proves, in the general case of a possibly intransitive policy, that
CSP noninterference security is conserved under this operation. This
result, along with the previous analogous one concerning sequential
composition, enables the construction of more and more complex pro-
cesses enforcing noninterference security by composing, sequentially or
concurrently, simpler secure processes, whose security can in turn be
proven using either the definition of security, or unwinding theorems.
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1 Concurrent composition and noninterference se-
curity

theory ConcurrentComposition
imports Noninterference-Sequential-Composition.Propaedeutics
begin

In his outstanding work on Communicating Sequential Processes [1], Hoare
has defined two fundamental binary operations allowing to compose the
input processes into another, typically more complex, process: sequential
composition and concurrent composition. Particularly, the output of the
latter operation is a process in which any event not shared by both operands
can occur whenever the operand that admits the event can engage in it,
whereas any event shared by both operands can occur just in case both can
engage in it. In other words, shared events are those that synchronize the
concurrent processes, which on the contrary can engage asynchronously in
the respective non-shared events.
This paper formalizes Hoare’s definition of concurrent composition and proves,
in the general case of a possibly intransitive policy, that CSP noninter-
ference security [6] is conserved under this operation, viz. the security of
both of the input processes implies that of the output process. This result,
along with the analogous one concerning sequential composition attained in
[10], enables the construction of more and more complex processes enforcing
noninterference security by composing, sequentially or concurrently, simpler
secure processes, whose security can in turn be proven using either the defi-
nition of security formulated in [6], or the unwinding theorems demonstrated
in [9], [7], and [8].
Throughout this paper, the salient points of definitions and proofs are com-
mented; for additional information, cf. Isabelle documentation, particularly
[5], [4], [3], and [2].

1.1 Propaedeutic definitions and lemmas

The starting point is comprised of some definitions and lemmas propaedeutic
to the proof of the target security conservation theorem.
Particularly, the definition of operator after given in [1] is formalized, and
it is proven that for any secure process P and any trace xs of P, P after xs
is still a secure process. Then, this result is used to generalize the lemma
stating the closure of the failures of a secure process P under intransitive
purge, proven in [10], to the futures of P associated to any one of its traces.
This is a generalization of the former result since futures P xs = failures P
for xs = [].
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lemma sinks-aux-elem [rule-format]:
u ∈ sinks-aux I D U xs −→ u ∈ U ∨ (∃ x ∈ set xs. u = D x)
〈proof 〉

lemma ipurge-ref-aux-cons:
ipurge-ref-aux I D U (x # xs) X = ipurge-ref-aux I D (sinks-aux I D U [x]) xs X
〈proof 〉

lemma process-rule-1-futures:
xs ∈ traces P =⇒ ([], {}) ∈ futures P xs
〈proof 〉

lemma process-rule-3-futures:
(ys, Y ) ∈ futures P xs =⇒ Y ′ ⊆ Y =⇒ (ys, Y ′) ∈ futures P xs
〈proof 〉

lemma process-rule-4-futures:
(ys, Y ) ∈ futures P xs =⇒

(ys @ [x], {}) ∈ futures P xs ∨ (ys, insert x Y ) ∈ futures P xs
〈proof 〉

lemma process-rule-5-general [rule-format]:
xs ∈ divergences P −→ xs @ ys ∈ divergences P
〈proof 〉

Here below is the definition of operator after, for which a symbolic notation
similar to the one used in [1] is introduced. Then, it is proven that for any
process P and any trace xs of P, the failures set and the divergences set of
P after xs indeed enjoy their respective characteristic properties as defined
in [6].

definition future-divergences :: ′a process ⇒ ′a list ⇒ ′a list set where
future-divergences P xs ≡ {ys. xs @ ys ∈ divergences P}

definition after :: ′a process ⇒ ′a list ⇒ ′a process (infixl ‹\› 64 ) where
P \ xs ≡ Abs-process (futures P xs, future-divergences P xs)

lemma process-rule-5-futures:
ys ∈ future-divergences P xs =⇒ ys @ [x] ∈ future-divergences P xs
〈proof 〉

lemma process-rule-6-futures:
ys ∈ future-divergences P xs =⇒ (ys, Y ) ∈ futures P xs
〈proof 〉

lemma after-rep:
assumes A: xs ∈ traces P
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shows Rep-process (P \ xs) = (futures P xs, future-divergences P xs)
(is - = ?X)

〈proof 〉

lemma after-failures:
assumes A: xs ∈ traces P
shows failures (P \ xs) = futures P xs
〈proof 〉

lemma after-futures:
assumes A: xs ∈ traces P
shows futures (P \ xs) ys = futures P (xs @ ys)
〈proof 〉

Finally, the closure of the futures of a secure process under intransitive purge
is proven.

lemma after-secure:
assumes A: xs ∈ traces P
shows secure P I D =⇒ secure (P \ xs) I D
〈proof 〉

lemma ipurge-tr-ref-aux-futures:
[[secure P I D; (ys, Y ) ∈ futures P xs]] =⇒

(ipurge-tr-aux I D U ys, ipurge-ref-aux I D U ys Y ) ∈ futures P xs
〈proof 〉

lemma ipurge-tr-ref-aux-failures-general:
[[secure P I D; (xs @ ys, Y ) ∈ failures P]] =⇒

(xs @ ipurge-tr-aux I D U ys, ipurge-ref-aux I D U ys Y ) ∈ failures P
〈proof 〉

1.2 Concurrent composition

In [1], the concurrent composition of two processes P, Q, expressed using
notation P ‖ Q, is defined as a process whose alphabet is the union of the
alphabets of P and Q, so that the shared events requiring the synchronous
participation of both processes are those in the intersection of their alpha-
bets.
In the formalization of Communicating Sequential Processes developed in
[6], the alphabets of P and Q are the data types ′a and ′b nested in their
respective types ′a process and ′b process. Therefore, for any two maps p, q,
the concurrent composition of P and Q with respect to p and q, expressed
using notation P ‖ Q <p, q>, is defined in what follows as a process of
type ′c process, where meaningful events are those in range p ∪ range q and
shared events are those in range p ∩ range q.
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The case where − (range p ∪ range q) 6= {} constitutes a generalization
of the definition given in [1], and the events in − (range p ∪ range q), not
being mapped to any event in the alphabets of the input processes, shall
be understood as fake events lacking any meaning. Consistently with this
interpretation, such events are allowed to occur in divergent traces only –
necessarily, since divergences are capable by definition of giving rise to any
sort of event. As a result, while in [1] the refusals associated to non-divergent
traces are the union of two sets, a refusal of P and a refusal of Q, in the
following definition they are the union of three sets instead, where the third
set is any subset of − (range p ∪ range q).
Since the definition given in [1] preserves the identity of the events of the
input processes, a further generalization resulting from the following defini-
tion corresponds to the case where either map p, q is not injective. However,
as shown below, these generalizations turn out to compromise neither the
compliance of the output of concurrent composition with the characteristic
properties of processes as defined in [6], nor even the validity of the target
security conservation theorem.
Since divergences can contain fake events, whereas non-divergent traces can-
not, it is necessary to add divergent failures to the failures set explicitly. The
following definition of the divergences set restricts the definition given in [1],
as it identifies a divergence with an arbitrary extension of an event sequence
xs being a divergence of both P and Q, rather than a divergence of either
process and a trace of the other one. This is a reasonable restriction, in that
it requires the concurrent composition of P and Q to admit a shared event x
in a divergent trace just in case both P and Q diverge and can then accept
x, analogously to what is required for a non-divergent trace. Anyway, the
definitions match if the input processes do not diverge, which is the case for
any process of practical significance (cf. [1]).

definition con-comp-divergences ::
′a process ⇒ ′b process ⇒ ( ′a ⇒ ′c) ⇒ ( ′b ⇒ ′c) ⇒ ′c list set where

con-comp-divergences P Q p q ≡
{xs @ ys | xs ys.

set xs ⊆ range p ∪ range q ∧
map (inv p) [x←xs. x ∈ range p] ∈ divergences P ∧
map (inv q) [x←xs. x ∈ range q] ∈ divergences Q}

definition con-comp-failures ::
′a process ⇒ ′b process ⇒ ( ′a ⇒ ′c) ⇒ ( ′b ⇒ ′c) ⇒ ′c failure set where

con-comp-failures P Q p q ≡
{(xs, X ∪ Y ∪ Z ) | xs X Y Z .

set xs ⊆ range p ∪ range q ∧
X ⊆ range p ∧ Y ⊆ range q ∧ Z ⊆ − (range p ∪ range q) ∧
(map (inv p) [x←xs. x ∈ range p], inv p ‘ X) ∈ failures P ∧
(map (inv q) [x←xs. x ∈ range q], inv q ‘ Y ) ∈ failures Q} ∪
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{(xs, X). xs ∈ con-comp-divergences P Q p q}

definition con-comp ::
′a process ⇒ ′b process ⇒ ( ′a ⇒ ′c) ⇒ ( ′b ⇒ ′c) ⇒ ′c process where

con-comp P Q p q ≡
Abs-process (con-comp-failures P Q p q, con-comp-divergences P Q p q)

abbreviation con-comp-syntax ::
′a process ⇒ ′b process ⇒ ( ′a ⇒ ′c) ⇒ ( ′b ⇒ ′c) ⇒ ′c process
(‹(- ‖ - <-, ->)› 55 )

where
P ‖ Q <p, q> ≡ con-comp P Q p q

Here below is the proof that, for any two processes P, Q and any two maps
p, q, sets con-comp-failures P Q p q and con-comp-divergences P Q p q
enjoy the characteristic properties of the failures and the divergences sets of
a process as defined in [6].

lemma con-comp-prop-1 :
([], {}) ∈ con-comp-failures P Q p q
〈proof 〉

lemma con-comp-prop-2 :
(xs @ [x], X) ∈ con-comp-failures P Q p q =⇒

(xs, {}) ∈ con-comp-failures P Q p q
〈proof 〉

lemma con-comp-prop-3 :
[[(xs, Y ) ∈ con-comp-failures P Q p q; X ⊆ Y ]] =⇒

(xs, X) ∈ con-comp-failures P Q p q
〈proof 〉

lemma con-comp-prop-4 :
(xs, X) ∈ con-comp-failures P Q p q =⇒

(xs @ [x], {}) ∈ con-comp-failures P Q p q ∨
(xs, insert x X) ∈ con-comp-failures P Q p q

〈proof 〉

lemma con-comp-prop-5 :
xs ∈ con-comp-divergences P Q p q =⇒

xs @ [x] ∈ con-comp-divergences P Q p q
〈proof 〉

lemma con-comp-prop-6 :
xs ∈ con-comp-divergences P Q p q =⇒

(xs, X) ∈ con-comp-failures P Q p q
〈proof 〉
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lemma con-comp-rep:
Rep-process (P ‖ Q <p, q>) =

(con-comp-failures P Q p q, con-comp-divergences P Q p q)
(is - = ?X)
〈proof 〉

Here below, the previous result is applied to derive useful expressions for the
outputs of the functions returning the elements of a process, as defined in [6]
and [9], when acting on the concurrent composition of a pair of processes.

lemma con-comp-failures:
failures (P ‖ Q <p, q>) = con-comp-failures P Q p q
〈proof 〉

lemma con-comp-divergences:
divergences (P ‖ Q <p, q>) = con-comp-divergences P Q p q
〈proof 〉

lemma con-comp-futures:
futures (P ‖ Q <p, q>) xs =
{(ys, Y ). (xs @ ys, Y ) ∈ con-comp-failures P Q p q}

〈proof 〉

lemma con-comp-traces:
traces (P ‖ Q <p, q>) = Domain (con-comp-failures P Q p q)
〈proof 〉

lemma con-comp-refusals:
refusals (P ‖ Q <p, q>) xs ≡ con-comp-failures P Q p q ‘‘ {xs}
〈proof 〉

lemma con-comp-next-events:
next-events (P ‖ Q <p, q>) xs =
{x. xs @ [x] ∈ Domain (con-comp-failures P Q p q)}

〈proof 〉

In what follows, three lemmas are proven. The first one, whose proof makes
use of the axiom of choice, establishes an additional property required for
the above definition of concurrent composition to be correct, namely that for
any two processes whose refusals are closed under set union, their concurrent
composition still be such, which is what is expected for any process of prac-
tical significance (cf. [9]). The other two lemmas are auxiliary properties of
concurrent composition used in the proof of the target security conservation
theorem.

lemma con-comp-ref-union-closed:
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assumes
A: ref-union-closed P and
B: ref-union-closed Q

shows ref-union-closed (P ‖ Q <p, q>)
〈proof 〉

lemma con-comp-failures-traces:
(xs, X) ∈ con-comp-failures P Q p q =⇒

map (inv p) [x←xs. x ∈ range p] ∈ traces P ∧
map (inv q) [x←xs. x ∈ range q] ∈ traces Q

〈proof 〉

lemma con-comp-failures-divergences:
(xs @ y # ys, Y ) ∈ con-comp-failures P Q p q =⇒
y /∈ range p =⇒
y /∈ range q =⇒
∃ xs ′.
(∃ ys ′. xs @ zs = xs ′ @ ys ′) ∧
set xs ′ ⊆ range p ∪ range q ∧
map (inv p) [x←xs ′. x ∈ range p] ∈ divergences P ∧
map (inv q) [x←xs ′. x ∈ range q] ∈ divergences Q

〈proof 〉

In order to prove that CSP noninterference security is conserved under con-
current composition, the first issue to be solved is to identify the noninter-
ference policy I ′ and the event-domain map D ′ with respect to which the
output process is secure.
If the events of the input processes corresponding to those of the output
process contained in range p ∩ range q were mapped by the respective
event-domain maps D, E into distinct security domains, there would be no
criterion for determining the domains of the aforesaid events of the output
process, due to the equivalence of the input processes ensuing from the
commutative property of concurrent composition. Therefore, D and E must
map the events of the input processes into security domains of the same type
′d, and for each x in range p ∩ range q, D and E must map the events of the
input processes corresponding to x into the same domain. This requirement
is formalized here below by means of predicate consistent-maps.
Similarly, if distinct noninterference policies applied to the input processes,
there would exist some ordered pair of security domains included in one
of the policies, but not in the other one. Thus, again, there would be no
criterion for determining the inclusion of such a pair of domains in the
policy I ′ applying to the output process. As a result, the input processes
are required to enforce the same noninterference policy I, so that for any
two domains d, e of type ′d, the ordered pair comprised of the corresponding
security domains for the output process will be included in I ′ just in case
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(d, e) ∈ I.
However, in case − (range p ∪ range q) 6= {}, the event-domain map D ′

for the output process must assign a security domain to the fake events in
− (range p ∪ range q) as well. Since such events lack any meaning, they
may all be mapped to the same security domain, distinct from the domains
of the meaningful events in range p ∪ range q. A simple way to do this is
to identify the type of the security domains for the output process with ′d
option. Then, for any meaningful event x, D ′ will assign x to domain Some
d, where d is the domain of the events of the input processes mapped to
x, whereas D ′ y = None for any fake event y. Such an event-domain map,
denoted using notation con-comp-map D E p q, is defined here below.
Therefore, for any two security domains Some d, Some e for the output
process, the above considerations about policy I ′ entail that (Some d, Some
e) ∈ I ′ just in case (d, e) ∈ I. Furthermore, since fake events may only occur
in divergent traces, which are extensions of divergences of the input processes
comprised of meaningful events, I ′ must allow the security domain None of
fake events to be affected by any meaningful domain matching pattern Some
-. Such a noninterference policy, denoted using notation con-comp-pol I, is
defined here below. Observe that con-comp-pol I keeps being reflexive or
transitive if I is.

definition con-comp-pol ::
( ′d × ′d) set ⇒ ( ′d option × ′d option) set where

con-comp-pol I ≡
{(Some d, Some e) | d e. (d, e) ∈ I} ∪ {(u, v). v = None}

function con-comp-map ::
( ′a ⇒ ′d) ⇒ ( ′b ⇒ ′d) ⇒ ( ′a ⇒ ′c) ⇒ ( ′b ⇒ ′c) ⇒ ′c ⇒ ′d option where

x ∈ range p =⇒
con-comp-map D E p q x = Some (D (inv p x)) |

x /∈ range p =⇒ x ∈ range q =⇒
con-comp-map D E p q x = Some (E (inv q x)) |

x /∈ range p =⇒ x /∈ range q =⇒
con-comp-map D E p q x = None
〈proof 〉
termination 〈proof 〉

definition consistent-maps ::
( ′a ⇒ ′d) ⇒ ( ′b ⇒ ′d) ⇒ ( ′a ⇒ ′c) ⇒ ( ′b ⇒ ′c) ⇒ bool where

consistent-maps D E p q ≡
∀ x ∈ range p ∩ range q. D (inv p x) = E (inv q x)

1.3 Auxiliary intransitive purge functions

Let I be a noninterference policy, D an event-domain map, U a domain set,
and xs = x # xs ′ an event list. Suppose to take event x just in case it
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satisfies predicate P, to append xs ′ to the resulting list (matching either [x]
or []), and then to compute the intransitive purge of the resulting list with
domain set U. If recursion with respect to the input list is added, replacing
xs ′ with the list produced by the same algorithm using xs ′ as input list and
sinks-aux I D U [x] as domain set, the final result matches that obtained by
applying filter P to the intransitive purge of xs with domain set U. In fact,
in each recursive step, the processed item of the input list is retained in the
output list just in case it passes filter P and may be affected neither by the
domains in U, nor by the domains of the previous items affected by some
domain in U.
Here below is the formal definition of such purge function, named ipurge-tr-aux-foldr
as its action resembles that of function foldr.

primrec ipurge-tr-aux-foldr ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ( ′a ⇒ bool) ⇒ ′d set ⇒ ′a list ⇒ ′a list

where
ipurge-tr-aux-foldr I D P U [] = [] |
ipurge-tr-aux-foldr I D P U (x # xs) = ipurge-tr-aux I D U

((if P x then [x] else []) @
ipurge-tr-aux-foldr I D P (sinks-aux I D U [x]) xs)

Likewise, given I, D, U, xs = x # xs ′, and an event set X, suppose to take
x just in case it satisfies predicate P, to append ipurge-tr-aux-foldr I D P
(sinks-aux I D U [x]) xs ′ to the resulting list (matching either [x] or []), and
then to compute the intransitive purge of X using the resulting list as input
list and U as domain set. If recursion with respect to the input list is added,
replacing X with the set produced by the same algorithm using xs ′ as input
list, X as input set, and sinks-aux I D U [x] as domain set, the final result
matches the intransitive purge of X with input list xs and domain set U. In
fact, each recursive step is such as to remove from X any event that may
be affected either by the domains in U, or by the domains of the items of xs
preceding the processed one which are affected by some domain in U.
From the above considerations on function ipurge-tr-aux-foldr, it follows that
the presence of list ipurge-tr-aux-foldr I D P (sinks-aux I D U [x]) xs ′ has
no impact on the final result, because none of its items may be affected by
the domains in U.
Here below is the formal definition of such purge function, named ipurge-ref-aux-foldr,
which at first glance just seems a uselessly complicate and inefficient way to
compute the intransitive purge of an event set.

primrec ipurge-ref-aux-foldr ::
( ′d × ′d) set ⇒ ( ′a ⇒ ′d) ⇒ ( ′a ⇒ bool) ⇒ ′d set ⇒ ′a list ⇒ ′a set ⇒ ′a set

where
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ipurge-ref-aux-foldr I D P U [] X = ipurge-ref-aux I D U [] X |
ipurge-ref-aux-foldr I D P U (x # xs) X = ipurge-ref-aux I D U

((if P x then [x] else []) @
ipurge-tr-aux-foldr I D P (sinks-aux I D U [x]) xs)

(ipurge-ref-aux-foldr I D P (sinks-aux I D U [x]) xs X)

The reason for the introduction of such intransitive purge functions is that
the recursive equations contained in their definitions, along with lemma
ipurge-tr-ref-aux-failures-general, enable to prove by induction on list ys,
assuming that process P be secure in addition to further, minor premises,
the following implication:

(map (inv p) (filter (λx. x ∈ range p) (xs @ ys)), inv p ‘ Y ) ∈ failures P −→
(map (inv p) (filter (λx. x ∈ range p) xs) @ map (inv p) (ipurge-tr-aux-foldr
(con-comp-pol I ) (con-comp-map D E p q) (λx. x ∈ range p) U ys), inv p
‘ ipurge-ref-aux-foldr (con-comp-pol I ) (con-comp-map D E p q) (λx. x ∈
range p) U ys Y ) ∈ failures P

In fact, for ys = y # ys ′, the induction hypothesis entails that the conse-
quent holds if xs, ys, and U are replaced with xs @ [y], ys ′, and sinks-aux
(con-comp-pol I ) (con-comp-map D E p q) U [y], respectively. The proof can
then be accomplished by applying lemma ipurge-tr-ref-aux-failures-general
to the resulting future of trace map (inv p) (filter (λx. x ∈ range p) xs),
moving functions ipurge-tr-aux and ipurge-ref-aux into the arguments of
map (inv p) and (‘) (inv p), and using the recursive equations contained in
the definitions of functions ipurge-tr-aux-foldr and ipurge-ref-aux-foldr.
This property, along with the match of the outputs of functions ipurge-tr-aux-foldr
and ipurge-ref-aux-foldr with the filtered intransitive purge of the input
event list and the intransitive purge of the input event set, respectively,
permits to solve the main proof obligations arising from the demonstration
of the target security conservation theorem.
Here below is the proof of the equivalence between function ipurge-tr-aux-foldr
and the filtered intransitive purge of an event list.

lemma ipurge-tr-aux-foldr-subset:
U ⊆ V =⇒
ipurge-tr-aux I D U (ipurge-tr-aux-foldr I D P V xs) =

ipurge-tr-aux-foldr I D P V xs
〈proof 〉

lemma ipurge-tr-aux-foldr-eq:
[x←ipurge-tr-aux I D U xs. P x] = ipurge-tr-aux-foldr I D P U xs
〈proof 〉
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Here below is the proof of the equivalence between function ipurge-ref-aux-foldr
and the intransitive purge of an event set.

lemma ipurge-tr-aux-foldr-sinks-aux [rule-format]:
U ⊆ V −→ sinks-aux I D U (ipurge-tr-aux-foldr I D P V xs) = U
〈proof 〉

lemma ipurge-tr-aux-foldr-ref-aux:
assumes A: U ⊆ V
shows ipurge-ref-aux I D U (ipurge-tr-aux-foldr I D P V xs) X =

ipurge-ref-aux I D U [] X
〈proof 〉

lemma ipurge-ref-aux-foldr-subset [rule-format]:
sinks-aux I D U ys ⊆ V −→
ipurge-ref-aux I D U ys (ipurge-ref-aux-foldr I D P V xs X) =

ipurge-ref-aux-foldr I D P V xs X
〈proof 〉

lemma ipurge-ref-aux-foldr-eq:
ipurge-ref-aux I D U xs X = ipurge-ref-aux-foldr I D P U xs X
〈proof 〉

Finally, here below is the proof of the implication involving functions ipurge-tr-aux-foldr
and ipurge-ref-aux-foldr discussed above.

lemma con-comp-sinks-aux-range:
assumes

A: U ⊆ range Some and
B: set xs ⊆ range p ∪ range q

shows sinks-aux (con-comp-pol I ) (con-comp-map D E p q) U xs ⊆ range Some
(is sinks-aux - ?D ′ - - ⊆ -)

〈proof 〉

lemma con-comp-sinks-aux [rule-format]:
assumes A: U ⊆ range Some
shows set xs ⊆ range p −→

sinks-aux I D (the ‘ U ) (map (inv p) xs) =
the ‘ sinks-aux (con-comp-pol I ) (con-comp-map D E p q) U xs
(is - −→ - = the ‘ sinks-aux ?I ′ ?D ′ - -)

〈proof 〉

lemma con-comp-ipurge-tr-aux [rule-format]:
assumes A: U ⊆ range Some
shows set xs ⊆ range p −→

ipurge-tr-aux I D (the ‘ U ) (map (inv p) xs) =
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map (inv p) (ipurge-tr-aux (con-comp-pol I ) (con-comp-map D E p q) U xs)
(is - −→ - = map (inv p) (ipurge-tr-aux ?I ′ ?D ′ - -))

〈proof 〉

lemma con-comp-ipurge-ref-aux:
assumes

A: U ⊆ range Some and
B: set xs ⊆ range p and
C : X ⊆ range p

shows ipurge-ref-aux I D (the ‘ U ) (map (inv p) xs) (inv p ‘ X) =
inv p ‘ ipurge-ref-aux (con-comp-pol I ) (con-comp-map D E p q) U xs X

(is - = inv p ‘ ipurge-ref-aux ?I ′ ?D ′ - - -)
〈proof 〉

lemma con-comp-sinks-filter :
sinks (con-comp-pol I ) (con-comp-map D E p q) u

[x←xs. x ∈ range p ∪ range q] =
sinks (con-comp-pol I ) (con-comp-map D E p q) u xs ∩ range Some
(is sinks ?I ′ ?D ′ - - = -)
〈proof 〉

lemma con-comp-ipurge-tr-filter :
ipurge-tr (con-comp-pol I ) (con-comp-map D E p q) u

[x←xs. x ∈ range p ∪ range q] =
ipurge-tr (con-comp-pol I ) (con-comp-map D E p q) u xs
(is ipurge-tr ?I ′ ?D ′ - - = -)
〈proof 〉

lemma con-comp-ipurge-ref-filter :
ipurge-ref (con-comp-pol I ) (con-comp-map D E p q) u

[x←xs. x ∈ range p ∪ range q] X =
ipurge-ref (con-comp-pol I ) (con-comp-map D E p q) u xs X
(is ipurge-ref ?I ′ ?D ′ - - - = -)
〈proof 〉

lemma con-comp-secure-aux [rule-format]:
assumes

A: secure P I D and
B: Y ⊆ range p

shows set ys ⊆ range p ∪ range q −→ U ⊆ range Some −→
(map (inv p) [x←xs @ ys. x ∈ range p], inv p ‘ Y ) ∈ failures P −→
(map (inv p) [x←xs. x ∈ range p] @
map (inv p) (ipurge-tr-aux-foldr (con-comp-pol I ) (con-comp-map D E p q)
(λx. x ∈ range p) U ys),

inv p ‘ ipurge-ref-aux-foldr (con-comp-pol I ) (con-comp-map D E p q)
(λx. x ∈ range p) U ys Y ) ∈ failures P

〈proof 〉
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1.4 Conservation of noninterference security under concur-
rent composition

Everything is now ready for proving the target security conservation theo-
rem. It states that for any two processes P, Q being secure with respect to
the noninterference policy I and the event-domain maps D, E, their concur-
rent composition P ‖ Q <p, q> is secure with respect to the noninterference
policy con-comp-pol I and the event-domain map con-comp-map D E p q,
provided that condition consistent-maps D E p q is satisfied.
The only assumption, in addition to the security of the input processes,
is the consistency of the respective event-domain maps. Particularly, this
assumption permits to solve the proof obligations concerning the latter input
process by just swapping D for E and p for q in the term con-comp-map D
E p q and then applying the corresponding lemmas proven for the former
input process.

lemma con-comp-secure-del-aux-1 :
assumes

A: secure P I D and
B: y ∈ range p ∨ y ∈ range q and
C : set ys ⊆ range p ∪ range q and
D: Y ⊆ range p and
E : (map (inv p) [x←xs @ y # ys. x ∈ range p], inv p ‘ Y ) ∈ failures P

shows
(map (inv p) [x←xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)

(con-comp-map D E p q y) ys. x ∈ range p],
inv p ‘ ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys Y ) ∈ failures P

(is (map (inv p) [x←xs @ ipurge-tr ?I ′ ?D ′ - -. -], -) ∈ -)
〈proof 〉

lemma con-comp-secure-add-aux-1 :
assumes

A: secure P I D and
B: y ∈ range p ∨ y ∈ range q and
C : set zs ⊆ range p ∪ range q and
D: Z ⊆ range p and
E : (map (inv p) [x←xs @ zs. x ∈ range p], inv p ‘ Z ) ∈ failures P and
F : map (inv p) [x←xs @ [y]. x ∈ range p] ∈ traces P

shows
(map (inv p) [x←xs @ y # ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)

(con-comp-map D E p q y) zs. x ∈ range p],
inv p ‘ ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) zs Z ) ∈ failures P

(is (map (inv p) [x←xs @ y # ipurge-tr ?I ′ ?D ′ - -. -], -) ∈ -)
〈proof 〉
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lemma con-comp-consistent-maps:
consistent-maps D E p q =⇒ con-comp-map D E p q = con-comp-map E D q p
〈proof 〉

lemma con-comp-secure-del-aux-2 :
assumes A: consistent-maps D E p q
shows
secure Q I E =⇒
y ∈ range p ∨ y ∈ range q =⇒
set ys ⊆ range p ∪ range q =⇒
Y ⊆ range q =⇒
(map (inv q) [x←xs @ y # ys. x ∈ range q], inv q ‘ Y ) ∈ failures Q =⇒
(map (inv q) [x←xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)

(con-comp-map D E p q y) ys. x ∈ range q],
inv q ‘ ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys Y ) ∈ failures Q

〈proof 〉

lemma con-comp-secure-add-aux-2 :
assumes A: consistent-maps D E p q
shows
secure Q I E =⇒
y ∈ range p ∨ y ∈ range q =⇒
set zs ⊆ range p ∪ range q =⇒
Z ⊆ range q =⇒
(map (inv q) [x←xs @ zs. x ∈ range q], inv q ‘ Z ) ∈ failures Q =⇒
map (inv q) [x←xs @ [y]. x ∈ range q] ∈ traces Q =⇒
(map (inv q) [x←xs @ y # ipurge-tr (con-comp-pol I )

(con-comp-map D E p q) (con-comp-map D E p q y) zs. x ∈ range q],
inv q ‘ ipurge-ref (con-comp-pol I )
(con-comp-map D E p q) (con-comp-map D E p q y) zs Z ) ∈ failures Q

〈proof 〉

lemma con-comp-secure-del-case-1 :
assumes

A: consistent-maps D E p q and
B: secure P I D and
C : secure Q I E

shows
∃R S T .

Y = R ∪ S ∪ T ∧
(y ∈ range p ∨ y ∈ range q) ∧
set xs ⊆ range p ∪ range q ∧
set ys ⊆ range p ∪ range q ∧
R ⊆ range p ∧
S ⊆ range q ∧
T ⊆ − range p ∧
T ⊆ − range q ∧
(map (inv p) [x←xs @ y # ys. x ∈ range p], inv p ‘ R) ∈ failures P ∧
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(map (inv q) [x←xs @ y # ys. x ∈ range q], inv q ‘ S) ∈ failures Q =⇒
∃R S T .

ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys Y = R ∪ S ∪ T ∧

set xs ⊆ range p ∪ range q ∧
set (ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys) ⊆ range p ∪ range q ∧

R ⊆ range p ∧
S ⊆ range q ∧
T ⊆ − range p ∧
T ⊆ − range q ∧
(map (inv p) [x←xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys. x ∈ range p], inv p ‘ R) ∈ failures P ∧

(map (inv q) [x←xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys. x ∈ range q], inv q ‘ S) ∈ failures Q

(is - =⇒ ∃ - - -. ipurge-ref ?I ′ ?D ′ - - - = - ∧ -)
〈proof 〉

lemma con-comp-secure-del-case-2 :
assumes

A: consistent-maps D E p q and
B: secure P I D and
C : secure Q I E

shows
∃ xs ′.

(∃ ys ′. xs @ y # ys = xs ′ @ ys ′) ∧
set xs ′ ⊆ range p ∪ range q ∧
map (inv p) [x←xs ′. x ∈ range p] ∈ divergences P ∧
map (inv q) [x←xs ′. x ∈ range q] ∈ divergences Q =⇒

(∃R S T .
ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys Y = R ∪ S ∪ T ∧

set xs ⊆ range p ∪ range q ∧
set (ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys) ⊆ range p ∪ range q ∧

R ⊆ range p ∧
S ⊆ range q ∧
T ⊆ − range p ∧
T ⊆ − range q ∧
(map (inv p) [x←xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys. x ∈ range p], inv p ‘ R) ∈ failures P ∧

(map (inv q) [x←xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys. x ∈ range q], inv q ‘ S) ∈ failures Q) ∨

(∃ xs ′.
(∃ ys ′. xs @ ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) ys = xs ′ @ ys ′) ∧

set xs ′ ⊆ range p ∪ range q ∧
map (inv p) [x←xs ′. x ∈ range p] ∈ divergences P ∧
map (inv q) [x←xs ′. x ∈ range q] ∈ divergences Q)
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(is - =⇒ (∃R S T . ?F R S T ys) ∨ ?G)
〈proof 〉

lemma con-comp-secure-add-case-1 :
assumes

A: consistent-maps D E p q and
B: secure P I D and
C : secure Q I E and
D: (xs @ y # ys, Y ) ∈ con-comp-failures P Q p q and
E : y ∈ range p ∨ y ∈ range q

shows
∃R S T .

Z = R ∪ S ∪ T ∧
set xs ⊆ range p ∪ range q ∧
set zs ⊆ range p ∪ range q ∧
R ⊆ range p ∧
S ⊆ range q ∧
T ⊆ − range p ∧
T ⊆ − range q ∧
(map (inv p) [x←xs @ zs. x ∈ range p], inv p ‘ R) ∈ failures P ∧
(map (inv q) [x←xs @ zs. x ∈ range q], inv q ‘ S) ∈ failures Q =⇒
∃R S T .

ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) zs Z = R ∪ S ∪ T ∧

set xs ⊆ range p ∪ range q ∧
set (ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) zs) ⊆ range p ∪ range q ∧

R ⊆ range p ∧
S ⊆ range q ∧
T ⊆ − range p ∧
T ⊆ − range q ∧
(map (inv p) [x←xs @ y # ipurge-tr (con-comp-pol I )

(con-comp-map D E p q) (con-comp-map D E p q y) zs. x ∈ range p],
inv p ‘ R) ∈ failures P ∧
(map (inv q) [x←xs @ y # ipurge-tr (con-comp-pol I )

(con-comp-map D E p q) (con-comp-map D E p q y) zs. x ∈ range q],
inv q ‘ S) ∈ failures Q

(is - =⇒ ∃ - - -. ipurge-ref ?I ′ ?D ′ - - - = - ∧ -)
〈proof 〉

lemma con-comp-secure-add-case-2 :
assumes

A: consistent-maps D E p q and
B: secure P I D and
C : secure Q I E and
D: (xs @ y # ys, Y ) ∈ con-comp-failures P Q p q and
E : y ∈ range p ∨ y ∈ range q

shows
∃ xs ′.
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(∃ ys ′. xs @ zs = xs ′ @ ys ′) ∧
set xs ′ ⊆ range p ∪ range q ∧
map (inv p) [x←xs ′. x ∈ range p] ∈ divergences P ∧
map (inv q) [x←xs ′. x ∈ range q] ∈ divergences Q =⇒

(∃R S T .
ipurge-ref (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) zs Z = R ∪ S ∪ T ∧

set xs ⊆ range p ∪ range q ∧
set (ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) zs) ⊆ range p ∪ range q ∧

R ⊆ range p ∧
S ⊆ range q ∧
T ⊆ − range p ∧
T ⊆ − range q ∧
(map (inv p) [x←xs @ y # ipurge-tr (con-comp-pol I )

(con-comp-map D E p q) (con-comp-map D E p q y) zs. x ∈ range p],
inv p ‘ R) ∈ failures P ∧
(map (inv q) [x←xs @ y # ipurge-tr (con-comp-pol I )

(con-comp-map D E p q) (con-comp-map D E p q y) zs. x ∈ range q],
inv q ‘ S) ∈ failures Q) ∨

(∃ xs ′.
(∃ ys ′. xs @ y # ipurge-tr (con-comp-pol I ) (con-comp-map D E p q)
(con-comp-map D E p q y) zs = xs ′ @ ys ′) ∧

set xs ′ ⊆ range p ∪ range q ∧
map (inv p) [x←xs ′. x ∈ range p] ∈ divergences P ∧
map (inv q) [x←xs ′. x ∈ range q] ∈ divergences Q)

(is - =⇒ (∃R S T . ?F R S T zs) ∨ ?G)
〈proof 〉

theorem con-comp-secure:
assumes

A: consistent-maps D E p q and
B: secure P I D and
C : secure Q I E

shows secure (P ‖ Q <p, q>) (con-comp-pol I ) (con-comp-map D E p q)
〈proof 〉

1.5 Conservation of noninterference security in the absence
of fake events

In what follows, it is proven that in the absence of fake events, namely if
range p ∪ range q = UNIV, the output of the concurrent composition of two
secure processes is secure with respect to the same noninterference policy
enforced by the input processes, and to the event-domain map that simply
associates each event to the same security domain as the corresponding
events of the input processes.
More formally, for any two processes P, Q being secure with respect to the
noninterference policy I and the event-domain maps D, E, their concurrent
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composition P ‖ Q <p, q> is secure with respect to the same noninterference
policy I and the event-domain map the ◦ con-comp-map D E p q, provided
that conditions range p ∪ range q = UNIV and consistent-maps D E p q
are satisfied.

lemma con-comp-sinks-range:
u ∈ range Some =⇒
set xs ⊆ range p ∪ range q =⇒

sinks (con-comp-pol I ) (con-comp-map D E p q) u xs ⊆ range Some
〈proof 〉

lemma con-comp-sinks-no-fake:
assumes

A: range p ∪ range q = UNIV and
B: u ∈ range Some

shows sinks I (the ◦ con-comp-map D E p q) (the u) xs =
the ‘ sinks (con-comp-pol I ) (con-comp-map D E p q) u xs
(is - = the ‘ sinks ?I ′ ?D ′ - -)

〈proof 〉

lemma con-comp-ipurge-tr-no-fake:
assumes

A: range p ∪ range q = UNIV and
B: u ∈ range Some

shows ipurge-tr (con-comp-pol I ) (con-comp-map D E p q) u xs =
ipurge-tr I (the ◦ con-comp-map D E p q) (the u) xs
(is ipurge-tr ?I ′ ?D ′ - - = -)

〈proof 〉

lemma con-comp-ipurge-ref-no-fake:
assumes

A: range p ∪ range q = UNIV and
B: u ∈ range Some

shows ipurge-ref (con-comp-pol I ) (con-comp-map D E p q) u xs X =
ipurge-ref I (the ◦ con-comp-map D E p q) (the u) xs X
(is ipurge-ref ?I ′ ?D ′ - - - = -)

〈proof 〉

theorem con-comp-secure-no-fake:
assumes

A: range p ∪ range q = UNIV and
B: consistent-maps D E p q and
C : secure P I D and
D: secure Q I E

shows secure (P ‖ Q <p, q>) I (the ◦ con-comp-map D E p q)
〈proof 〉

end
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