
Noninterference Security in
Communicating Sequential Processes

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A.

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjowiggins-it dot com

March 17, 2025

Abstract

An extension of classical noninterference security for deterministic
state machines, as introduced by Goguen and Meseguer and elegantly
formalized by Rushby, to nondeterministic systems should satisfy two
fundamental requirements: it should be based on a mathematically
precise theory of nondeterminism, and should be equivalent to (or at
least not weaker than) the classical notion in the degenerate determin-
istic case.

This paper proposes a definition of noninterference security apply-
ing to Hoare’s Communicating Sequential Processes (CSP) in the gen-
eral case of a possibly intransitive noninterference policy, and proves
the equivalence of this security property to classical noninterference
security for processes representing deterministic state machines.

Furthermore, McCullough’s generalized noninterference security is
shown to be weaker than both the proposed notion of CSP nonin-
terference security for a generic process, and classical noninterference
security for processes representing deterministic state machines. This
renders CSP noninterference security preferable as an extension of clas-
sical noninterference security to nondeterministic systems.

Contents
1 Noninterference in CSP 2

1.1 Processes . 2
1.2 Noninterference . 5

2 CSP noninterference vs. classical noninterference 7
2.1 Classical noninterference . 7
2.2 Classical processes . 10
2.3 Traces in classical processes 12

1

2.4 Noninterference in classical processes 13
2.5 Equivalence between security properties 14

3 CSP noninterference vs. generalized noninterference 16
3.1 Generalized noninterference 17
3.2 Comparison between security properties 18

1 Noninterference in CSP
theory CSPNoninterference
imports Main
begin

An extension of classical noninterference security for deterministic state
machines, as introduced by Goguen and Meseguer [1] and elegantly formal-
ized by Rushby [8], to nondeterministic systems should satisfy two funda-
mental requirements: it should be based on a mathematically precise theory
of nondeterminism, and should be equivalent to (or at least not weaker than)
the classical notion in the degenerate deterministic case.

The purpose of this section is to formulate a definition of noninterference
security that meet these requirements, applying to the concept of process as
formalized by Hoare in his remarkable theory of Communicating Sequential
Processes (CSP) [2]. The general case of a possibly intransitive noninterfer-
ence policy will be considered.

Throughout this paper, the salient points of definitions and proofs are
commented; for additional information see Isabelle documentation, particu-
larly [7], [6], [5], and [3].

1.1 Processes
It is convenient to represent CSP processes by means of a type definition
including a type variable, which stands for the process alphabet. Type
process shall then be isomorphic to the subset of the product type of failures
sets and divergences sets comprised of the pairs that satisfy the properties
enunciated in [2], section 3.9. Such subset shall be shown to contain process
STOP, which proves that it is nonempty.

Property C5 is not considered as it is entailed by C7. Moreover, the
formalization of properties C2 and C6 only takes into account event lists t
containing a single item. Such formulation is equivalent to the original one,
since the truth of C2 and C6 for a singleton list t immediately derives from
that for a generic list, and conversely:

• the truth of C2 and C6 for a generic nonempty list t results from the
repeated application of C2 and C6 for a singleton list;

2

• the truth of C2 for t matching the empty list is implied by property
C3 ;

• the truth of C6 for t matching the empty list is a tautology.

The advantage of the proposed formulation is that it facilitates the task
to prove that pairs of failures and divergences sets defined inductively indeed
be processes, viz. be included in the set of pairs isomorphic to type pro-
cess, since the introduction rules in such inductive definitions will typically
construct process traces by appending one item at a time.

In what follows, the concept of process is formalized according to the
previous considerations.

type-synonym ′a failure = ′a list × ′a set

type-synonym ′a process-prod = ′a failure set × ′a list set

definition process-prop-1 :: ′a process-prod ⇒ bool where
process-prop-1 P ≡ ([], {}) ∈ fst P

definition process-prop-2 :: ′a process-prod ⇒ bool where
process-prop-2 P ≡ ∀ xs x X . (xs @ [x], X) ∈ fst P −→ (xs, {}) ∈ fst P

definition process-prop-3 :: ′a process-prod ⇒ bool where
process-prop-3 P ≡ ∀ xs X Y . (xs, Y) ∈ fst P ∧ X ⊆ Y −→ (xs, X) ∈ fst P

definition process-prop-4 :: ′a process-prod ⇒ bool where
process-prop-4 P ≡ ∀ xs x X . (xs, X) ∈ fst P −→
(xs @ [x], {}) ∈ fst P ∨ (xs, insert x X) ∈ fst P

definition process-prop-5 :: ′a process-prod ⇒ bool where
process-prop-5 P ≡ ∀ xs x. xs ∈ snd P −→ xs @ [x] ∈ snd P

definition process-prop-6 :: ′a process-prod ⇒ bool where
process-prop-6 P ≡ ∀ xs X . xs ∈ snd P −→ (xs, X) ∈ fst P

definition process-set :: ′a process-prod set where
process-set ≡ {P.

process-prop-1 P ∧
process-prop-2 P ∧
process-prop-3 P ∧
process-prop-4 P ∧
process-prop-5 P ∧
process-prop-6 P}

typedef ′a process = process-set :: ′a process-prod set
〈proof 〉

3

Here below are the definitions of some functions acting on processes.
Functions failures, traces, and deterministic match the homonymous notions
defined in [2]. As for the other ones:

• futures P xs matches the failures set of process P / xs;

• refusals P xs matches the refusals set of process P / xs;

• next-events P xs matches the event set (P / xs)0.

definition failures :: ′a process ⇒ ′a failure set where
failures P ≡ fst (Rep-process P)

definition futures :: ′a process ⇒ ′a list ⇒ ′a failure set where
futures P xs ≡ {(ys, Y). (xs @ ys, Y) ∈ failures P}

definition traces :: ′a process ⇒ ′a list set where
traces P ≡ Domain (failures P)

definition refusals :: ′a process ⇒ ′a list ⇒ ′a set set where
refusals P xs ≡ failures P ‘‘ {xs}

definition next-events :: ′a process ⇒ ′a list ⇒ ′a set where
next-events P xs ≡ {x. xs @ [x] ∈ traces P}

definition deterministic :: ′a process ⇒ bool where
deterministic P ≡
∀ xs ∈ traces P. ∀X . X ∈ refusals P xs = (X ∩ next-events P xs = {})

In what follows, properties process-prop-2 and process-prop-3 of pro-
cesses are put into the form of introduction rules, which will turn out to be
useful in subsequent proofs. Particularly, the more general formulation of
process-prop-2 as given in [2] (section 3.9, property C2) is restored, and it
is expressed in terms of both functions failures and futures.

lemma process-rule-2 : (xs @ [x], X) ∈ failures P =⇒ (xs, {}) ∈ failures P
〈proof 〉

lemma process-rule-3 : (xs, Y) ∈ failures P =⇒ X ⊆ Y =⇒ (xs, X) ∈ failures P
〈proof 〉

lemma process-rule-2-failures [rule-format]:
(xs @ xs ′, X) ∈ failures P −→ (xs, {}) ∈ failures P
〈proof 〉

lemma process-rule-2-futures:

4

(ys @ ys ′, Y) ∈ futures P xs =⇒ (ys, {}) ∈ futures P xs
〈proof 〉

1.2 Noninterference
In the classical theory of noninterference, a deterministic state machine is
considered to be secure just in case, for any trace of the machine and any
action occurring next, the observable effect of the action, i.e. the produced
output, is compatible with the assigned noninterference policy.

Thus, by analogy, it seems reasonable to regard a process as being
noninterference-secure just in case, for any of its traces and any event oc-
curring next, the observable effect of the event, i.e. the set of the possible
futures of the process, is compatible with a given noninterference policy.

More precisely, let sinks I D u xs be the set of the security domains of the
events within event list xs that may be affected by domain u according to
interference relation I, where D is the mapping of events into their domains.
Since the general case of a possibly intransitive relation I is considered,
function sinks has to be defined recursively, similarly to what happens for
function sources in [8]. However, contrariwise to function sources, function
sinks takes into account the influence of the input domain on the input event
list, so that the recursive decomposition of the latter has to be performed
by item appending rather than prepending.

Furthermore, let ipurge-tr I D u xs be the sublist of event list xs obtained
by recursively deleting the events that may be affected by domain u as
detected via function sinks, and ipurge-ref I D u xs X be the subset of
refusal X whose elements may not be affected by either u or any domain in
sinks I D u xs.

Then, a process P is secure just in case, for each event list xs and each
(y # ys, Y), (zs, Z) ∈ futures P xs, both of the following conditions are
satisfied:

• (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ futures P xs.
Otherwise, the absence of event y after xs would affect the possibility
for pair (ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) to occur
as a future of xs, although its components, except for the deletion of y,
are those of possible future (y # ys, Y) deprived of any event allowed
to be affected by y.

• (y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z)
∈ futures P xs.
Otherwise, the presence of event y after xs would affect the possibility
for pair (y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) to occur
as a future of xs, although its components, except for the addition of
y, are those of possible future (zs, Z) deprived of any event allowed to
be affected by y.

5

Observe that this definition of security, henceforth referred to as CSP
noninterference security, does not rest on the supposition that noninterfer-
ence policy I be reflexive, even though any policy of practical significance
will be such.

Moreover, this simpler formulation is equivalent to the one obtained by
restricting the range of event list xs to the traces of process P. In fact, for
each zs, Z, (zs, Z) ∈ futures P xs just in case (xs @ zs, Z) ∈ failures P,
which by virtue of rule process-rule-2-failures implies that xs is a trace of P.
Therefore, formula (zs, Z) ∈ futures P xs is invariably false in case xs is not
a trace of P.

Here below are the formal counterparts of the definitions discussed so
far.

function sinks :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′d set where
sinks - - - [] = {} |
sinks I D u (xs @ [x]) = (if (u, D x) ∈ I ∨ (∃ v ∈ sinks I D u xs. (v, D x) ∈ I)

then insert (D x) (sinks I D u xs)
else sinks I D u xs)
〈proof 〉
termination 〈proof 〉

function ipurge-tr :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a list where
ipurge-tr - - - [] = [] |
ipurge-tr I D u (xs @ [x]) = (if D x ∈ sinks I D u (xs @ [x])

then ipurge-tr I D u xs
else ipurge-tr I D u xs @ [x])
〈proof 〉
termination 〈proof 〉

definition ipurge-ref ::
(′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a set ⇒ ′a set where

ipurge-ref I D u xs X ≡
{x ∈ X . (u, D x) /∈ I ∧ (∀ v ∈ sinks I D u xs. (v, D x) /∈ I)}

definition secure :: ′a process ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ bool where
secure P I D ≡
∀ xs y ys Y zs Z . (y # ys, Y) ∈ futures P xs ∧ (zs, Z) ∈ futures P xs −→
(ipurge-tr I D (D y) ys, ipurge-ref I D (D y) ys Y) ∈ futures P xs ∧
(y # ipurge-tr I D (D y) zs, ipurge-ref I D (D y) zs Z) ∈ futures P xs

The continuation of this section is dedicated to the demonstration of
some lemmas concerning functions sinks, ipurge-tr, and ipurge-ref which
will turn out to be useful in subsequent proofs.

lemma sinks-cons-same:
assumes R: refl I

6

shows sinks I D (D x) (x # xs) = insert (D x) (sinks I D (D x) xs)
〈proof 〉

lemma ipurge-tr-cons-same:
assumes R: refl I
shows ipurge-tr I D (D x) (x # xs) = ipurge-tr I D (D x) xs
〈proof 〉

lemma sinks-cons-nonint:
assumes A: (u, D x) /∈ I
shows sinks I D u (x # xs) = sinks I D u xs
〈proof 〉

lemma sinks-empty [rule-format]:
sinks I D u xs = {} −→ ipurge-tr I D u xs = xs
〈proof 〉

lemma ipurge-ref-eq:
assumes A: D x ∈ sinks I D u (xs @ [x])
shows ipurge-ref I D u (xs @ [x]) X =

ipurge-ref I D u xs {x ′ ∈ X . (D x, D x ′) /∈ I}
〈proof 〉

end

2 CSP noninterference vs. classical noninterfer-
ence

theory ClassicalNoninterference
imports CSPNoninterference
begin

The purpose of this section is to prove the equivalence of CSP nonin-
terference security as defined previously to the classical notion of noninter-
ference security as formulated in [8] in the case of processes representing
deterministic state machines, henceforth briefly referred to as classical pro-
cesses.

For clarity, all the constants and fact names defined in this section, with
the possible exception of main theorems, contain prefix c-.

2.1 Classical noninterference
Here below are the formalizations of the functions sources and ipurge defined
in [8], as well as of the classical notion of noninterference security as stated
ibid. for a deterministic state machine in the general case of a possibly
intransitive noninterference policy.

7

Observe that the function run used in R3 is formalized as function foldl
step, where step is the state transition function of the machine.

primrec c-sources :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′d set where
c-sources - - u [] = {u} |
c-sources I D u (x # xs) = (if ∃ v ∈ c-sources I D u xs. (D x, v) ∈ I

then insert (D x) (c-sources I D u xs)
else c-sources I D u xs)

primrec c-ipurge :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d ⇒ ′a list ⇒ ′a list where
c-ipurge - - - [] = [] |
c-ipurge I D u (x # xs) = (if D x ∈ c-sources I D u (x # xs)

then x # c-ipurge I D u xs
else c-ipurge I D u xs)

definition c-secure ::
(′s ⇒ ′a ⇒ ′s) ⇒ (′s ⇒ ′a ⇒ ′o) ⇒ ′s ⇒ (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ bool

where
c-secure step out s0 I D ≡
∀ x xs. out (foldl step s0 xs) x = out (foldl step s0 (c-ipurge I D (D x) xs)) x

In addition, the definitions are given of variants of functions c-sources
and c-ipurge accepting in input a set of security domains rather than a single
domain, and then some lemmas concerning them are demonstrated. These
definitions and lemmas will turn out to be useful in subsequent proofs.

primrec c-sources-aux :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′d set
where
c-sources-aux - - U [] = U |
c-sources-aux I D U (x # xs) = (if ∃ v ∈ c-sources-aux I D U xs. (D x, v) ∈ I

then insert (D x) (c-sources-aux I D U xs)
else c-sources-aux I D U xs)

primrec c-ipurge-aux :: (′d × ′d) set ⇒ (′a ⇒ ′d) ⇒ ′d set ⇒ ′a list ⇒ ′a list
where
c-ipurge-aux - - - [] = [] |
c-ipurge-aux I D U (x # xs) = (if D x ∈ c-sources-aux I D U (x # xs)

then x # c-ipurge-aux I D U xs
else c-ipurge-aux I D U xs)

lemma c-sources-aux-singleton-1 : c-sources-aux I D {u} xs = c-sources I D u xs
〈proof 〉

lemma c-ipurge-aux-singleton: c-ipurge-aux I D {u} xs = c-ipurge I D u xs
〈proof 〉

lemma c-sources-aux-singleton-2 :

8

D x ∈ c-sources-aux I D U [x] = (D x ∈ U ∨ (∃ v ∈ U . (D x, v) ∈ I))
〈proof 〉

lemma c-sources-aux-append:
c-sources-aux I D U (xs @ [x]) = (if D x ∈ c-sources-aux I D U [x]

then c-sources-aux I D (insert (D x) U) xs
else c-sources-aux I D U xs)

〈proof 〉

lemma c-ipurge-aux-append:
c-ipurge-aux I D U (xs @ [x]) = (if D x ∈ c-sources-aux I D U [x]

then c-ipurge-aux I D (insert (D x) U) xs @ [x]
else c-ipurge-aux I D U xs)

〈proof 〉

In what follows, a few useful lemmas are proven about functions c-sources,
c-ipurge and their relationships with functions sinks, ipurge-tr.

lemma c-sources-ipurge: c-sources I D u (c-ipurge I D u xs) = c-sources I D u xs
〈proof 〉

lemma c-sources-append-1 :
c-sources I D (D x) (xs @ [x]) = c-sources I D (D x) xs
〈proof 〉

lemma c-ipurge-append-1 :
c-ipurge I D (D x) (xs @ [x]) = c-ipurge I D (D x) xs @ [x]
〈proof 〉

lemma c-sources-append-2 :
(D x, u) /∈ I =⇒ c-sources I D u (xs @ [x]) = c-sources I D u xs
〈proof 〉

lemma c-ipurge-append-2 :
refl I =⇒ (D x, u) /∈ I =⇒ c-ipurge I D u (xs @ [x]) = c-ipurge I D u xs
〈proof 〉

lemma c-sources-mono:
assumes A: c-sources I D u ys ⊆ c-sources I D u zs
shows c-sources I D u (x # ys) ⊆ c-sources I D u (x # zs)
〈proof 〉

lemma c-sources-sinks [rule-format]:
D x /∈ c-sources I D u (x # xs) −→ sinks I D (D x) (c-ipurge I D u xs) = {}
〈proof 〉

lemmas c-ipurge-tr-ipurge = c-sources-sinks [THEN sinks-empty]

9

lemma c-ipurge-aux-ipurge-tr [rule-format]:
assumes R: refl I
shows ¬ (∃ v ∈ sinks I D u ys. ∃w ∈ U . (v, w) ∈ I) −→

c-ipurge-aux I D U (xs @ ipurge-tr I D u ys) = c-ipurge-aux I D U (xs @ ys)
〈proof 〉

lemma c-ipurge-ipurge-tr :
assumes R: refl I and D: ¬ (∃ v ∈ sinks I D u ys. (v, u ′) ∈ I)
shows c-ipurge I D u ′ (xs @ ipurge-tr I D u ys) = c-ipurge I D u ′ (xs @ ys)
〈proof 〉

2.2 Classical processes
The deterministic state machines used as model of computation in the classi-
cal theory of noninterference security, as expounded in [8], have the property
that each action produces an output. Hence, it is natural to take as alphabet
of a classical process the universe of the pairs (x, p), where x is an action
and p an output. For any state s, such an event (x, p) may occur just in
case p matches the output produced by x in s.

Therefore, a trace of a classical process can be defined as an event list
xps such that for each item (x, p), p is equal to the output produced by x in
the state resulting from the previous actions in xps. Furthermore, for each
trace xps, the refusals set associated to xps is comprised of any set of pairs
(x, p) such that p is different from the output produced by x in the state
resulting from the actions in xps.

In accordance with the previous considerations, an inductive definition is
formulated here below for the failures set c-failures step out s0 corresponding
to the deterministic state machine with state transition function step, output
function out, and initial state s0. Then, the classical process c-process step
out s0 representing this machine is defined as the process having c-failures
step out s0 as failures set and the empty set as divergences set.

inductive-set c-failures ::
(′s ⇒ ′a ⇒ ′s) ⇒ (′s ⇒ ′a ⇒ ′o) ⇒ ′s ⇒ (′a × ′o) failure set

for step :: ′s ⇒ ′a ⇒ ′s and out :: ′s ⇒ ′a ⇒ ′o and s0 :: ′s where
R0 : ([], {(x, p). p 6= out s0 x}) ∈ c-failures step out s0 |
R1 : [[(xps, -) ∈ c-failures step out s0; s = foldl step s0 (map fst xps)]] =⇒

(xps @ [(x, out s x)], {(y, p). p 6= out (step s x) y}) ∈ c-failures step out s0 |
R2 : [[(xps, Y) ∈ c-failures step out s0; X ⊆ Y]] =⇒

(xps, X) ∈ c-failures step out s0

definition c-process ::
(′s ⇒ ′a ⇒ ′s) ⇒ (′s ⇒ ′a ⇒ ′o) ⇒ ′s ⇒ (′a × ′o) process where

c-process step out s0 ≡ Abs-process (c-failures step out s0, {})

In what follows, the fact that classical processes are indeed processes is

10

proven as a theorem.

lemma c-process-prop-1 [simp]: process-prop-1 (c-failures step out s0, {})
〈proof 〉

lemma c-process-prop-2 [simp]: process-prop-2 (c-failures step out s0, {})
〈proof 〉

lemma c-process-prop-3 [simp]: process-prop-3 (c-failures step out s0, {})
〈proof 〉

lemma c-process-prop-4 [simp]: process-prop-4 (c-failures step out s0, {})
〈proof 〉

lemma c-process-prop-5 [simp]: process-prop-5 (F , {})
〈proof 〉

lemma c-process-prop-6 [simp]: process-prop-6 (F , {})
〈proof 〉

theorem c-process-process: (c-failures step out s0, {}) ∈ process-set
〈proof 〉

The continuation of this section is dedicated to the proof of a few lem-
mas on the properties of classical processes, particularly on the application
to them of the generic functions acting on processes defined previously, and
culminates in the theorem stating that classical processes are determinis-
tic. Since they are intended to be a representation of deterministic state
machines as processes, this result provides an essential confirmation of the
correctness of such correspondence.

lemma c-failures-last [rule-format]:
(xps, X) ∈ c-failures step out s0 =⇒ xps 6= [] −→
snd (last xps) = out (foldl step s0 (butlast (map fst xps))) (last (map fst xps))
〈proof 〉

lemma c-failures-ref :
(xps, X) ∈ c-failures step out s0 =⇒
X ⊆ {(x, p). p 6= out (foldl step s0 (map fst xps)) x}
〈proof 〉

lemma c-failures-failures: failures (c-process step out s0) = c-failures step out s0
〈proof 〉

lemma c-futures-failures:
(yps, Y) ∈ futures (c-process step out s0) xps =
((xps @ yps, Y) ∈ c-failures step out s0)

11

〈proof 〉

lemma c-traces:
xps ∈ traces (c-process step out s0) = (∃X . (xps, X) ∈ c-failures step out s0)
〈proof 〉

lemma c-refusals:
X ∈ refusals (c-process step out s0) xps = ((xps, X) ∈ c-failures step out s0)
〈proof 〉

lemma c-next-events:
xp ∈ next-events (c-process step out s0) xps =
(∃X . (xps @ [xp], X) ∈ c-failures step out s0)
〈proof 〉

lemma c-traces-failures:
xps ∈ traces (c-process step out s0) =⇒
(xps, {(x, p). p 6= out (foldl step s0 (map fst xps)) x}) ∈ c-failures step out s0
〈proof 〉

theorem c-process-deterministic: deterministic (c-process step out s0)
〈proof 〉

2.3 Traces in classical processes
Here below is the definition of function c-tr, where c-tr step out s xs is the
trace of classical process c-process step out s corresponding to the trace xs of
the associated deterministic state machine. Moreover, some useful lemmas
are proven about this function.

function c-tr :: (′s ⇒ ′a ⇒ ′s) ⇒ (′s ⇒ ′a ⇒ ′o) ⇒ ′s ⇒ ′a list ⇒ (′a × ′o) list
where
c-tr - - - [] = [] |
c-tr step out s (xs @ [x]) = c-tr step out s xs @ [(x, out (foldl step s xs) x)]
〈proof 〉
termination 〈proof 〉

lemma c-tr-length: length (c-tr step out s xs) = length xs
〈proof 〉

lemma c-tr-map: map fst (c-tr step out s xs) = xs
〈proof 〉

lemma c-tr-singleton: c-tr step out s [x] = [(x, out s x)]
〈proof 〉

lemma c-tr-append:
c-tr step out s (xs @ ys) = c-tr step out s xs @ c-tr step out (foldl step s xs) ys

12

〈proof 〉

lemma c-tr-hd-tl:
assumes A: xs 6= []
shows c-tr step out s xs =
(hd xs, out s (hd xs)) # c-tr step out (step s (hd xs)) (tl xs)

〈proof 〉

lemma c-failures-tr :
(xps, X) ∈ c-failures step out s0 =⇒ xps = c-tr step out s0 (map fst xps)
〈proof 〉

lemma c-futures-tr :
assumes A: (yps, Y) ∈ futures (c-process step out s0) xps
shows yps = c-tr step out (foldl step s0 (map fst xps)) (map fst yps)
〈proof 〉

lemma c-tr-failures:
(c-tr step out s0 xs, {(x, p). p 6= out (foldl step s0 xs) x})
∈ c-failures step out s0
〈proof 〉

lemma c-tr-futures:
(c-tr step out (foldl step s0 xs) ys,
{(x, p). p 6= out (foldl step (foldl step s0 xs) ys) x})
∈ futures (c-process step out s0) (c-tr step out s0 xs)
〈proof 〉

2.4 Noninterference in classical processes
Given a mapping D of the actions of a deterministic state machine into their
security domains, it is natural to map each event (x, p) of the corresponding
classical process into the domain D x of action x.

Such mapping of events into domains, formalized as function c-dom D in
the continuation, ensures that the same noninterference policy applying to a
deterministic state machine be applicable to the associated classical process
as well. This is the simplest, and thus preferable way to construct a policy
for the process such as to be isomorphic to the one assigned for the machine,
as required in order to prove the equivalence of CSP noninterference security
to the classical notion in the case of classical processes.

In what follows, function c-dom will be used in the proof of some useful
lemmas concerning the application of functions sinks, ipurge-tr, c-sources,
c-ipurge from noninterference theory to the traces of classical processes,
constructed by means of function c-tr.

definition c-dom :: (′a ⇒ ′d) ⇒ (′a × ′o) ⇒ ′d where
c-dom D xp ≡ D (fst xp)

13

lemma c-dom-sources:
c-sources I (c-dom D) u xps = c-sources I D u (map fst xps)
〈proof 〉

lemma c-dom-sinks: sinks I (c-dom D) u xps = sinks I D u (map fst xps)
〈proof 〉

lemma c-tr-sources:
c-sources I (c-dom D) u (c-tr step out s xs) = c-sources I D u xs
〈proof 〉

lemma c-tr-sinks: sinks I (c-dom D) u (c-tr step out s xs) = sinks I D u xs
〈proof 〉

lemma c-tr-ipurge:
c-ipurge I (c-dom D) u (c-tr step out s (c-ipurge I D u xs)) =
c-tr step out s (c-ipurge I D u xs)
〈proof 〉

lemma c-tr-ipurge-tr-1 [rule-format]:
(∀n ∈ {..<length xs}. D (xs ! n) /∈ sinks I D u (take (Suc n) xs) −→
out (foldl step s (ipurge-tr I D u (take n xs))) (xs ! n) =
out (foldl step s (take n xs)) (xs ! n)) −→
ipurge-tr I (c-dom D) u (c-tr step out s xs) = c-tr step out s (ipurge-tr I D u xs)
〈proof 〉

lemma c-tr-ipurge-tr-2 [rule-format]:
assumes A: ∀n ∈ {..length ys}. ∃Y .
(ipurge-tr I (c-dom D) u (c-tr step out (foldl step s0 xs) (take n ys)), Y)
∈ futures (c-process step out s0) (c-tr step out s0 xs)

shows n ∈ {..<length ys} −→ D (ys ! n) /∈ sinks I D u (take (Suc n) ys) −→
out (foldl step (foldl step s0 xs) (ipurge-tr I D u (take n ys))) (ys ! n) =
out (foldl step (foldl step s0 xs) (take n ys)) (ys ! n)

〈proof 〉

lemma c-tr-ipurge-tr [rule-format]:
assumes A: ∀n ∈ {..length ys}. ∃Y .
(ipurge-tr I (c-dom D) u (c-tr step out (foldl step s0 xs) (take n ys)), Y)
∈ futures (c-process step out s0) (c-tr step out s0 xs)

shows ipurge-tr I (c-dom D) u (c-tr step out (foldl step s0 xs) ys) =
c-tr step out (foldl step s0 xs) (ipurge-tr I D u ys)

〈proof 〉

2.5 Equivalence between security properties
The remainder of this section is dedicated to the proof of the equivalence
between the CSP noninterference security of a classical process and the
classical noninterference security of the corresponding deterministic state

14

machine.
In some detail, it will be proven that CSP noninterference security alone

is a sufficient condition for classical noninterference security, whereas the
latter security property entails the former for any reflexive noninterference
policy. Therefore, the security properties under consideration turn out to
be equivalent if the enforced noninterference policy is reflexive, which is the
case for any policy of practical significance.

lemma secure-implies-c-secure-aux:
assumes S : secure (c-process step out s0) I (c-dom D)
shows out (foldl step (foldl step s0 xs) ys) x =

out (foldl step (foldl step s0 xs) (c-ipurge I D (D x) ys)) x
〈proof 〉

theorem secure-implies-c-secure:
assumes S : secure (c-process step out s0) I (c-dom D)
shows c-secure step out s0 I D
〈proof 〉

lemma c-secure-futures-1 :
assumes R: refl I and S : c-secure step out s0 I D
shows (yps @ [yp], Y) ∈ futures (c-process step out s0) xps =⇒
(yps, {x ∈ Y . (c-dom D yp, c-dom D x) /∈ I})
∈ futures (c-process step out s0) xps

〈proof 〉

lemma c-secure-implies-secure-aux-1 [rule-format]:
assumes

R: refl I and
S : c-secure step out s0 I D

shows (yp # yps, Y) ∈ futures (c-process step out s0) xps −→
(ipurge-tr I (c-dom D) (c-dom D yp) yps,
ipurge-ref I (c-dom D) (c-dom D yp) yps Y)
∈ futures (c-process step out s0) xps

〈proof 〉

lemma c-secure-futures-2 :
assumes R: refl I and S : c-secure step out s0 I D
shows (yps @ [yp], A) ∈ futures (c-process step out s0) xps =⇒
(yps, Y) ∈ futures (c-process step out s0) xps =⇒
(yps @ [yp], {x ∈ Y . (c-dom D yp, c-dom D x) /∈ I})
∈ futures (c-process step out s0) xps

〈proof 〉

lemma c-secure-ipurge-tr :
assumes R: refl I and S : c-secure step out s0 I D
shows ipurge-tr I (c-dom D) (D x) (c-tr step out (step (foldl step s0 xs) x) ys)
= ipurge-tr I (c-dom D) (D x) (c-tr step out (foldl step s0 xs) ys)

15

〈proof 〉

lemma c-secure-implies-secure-aux-2 [rule-format]:
assumes

R: refl I and
S : c-secure step out s0 I D and
Y : (yp # yps, Y) ∈ futures (c-process step out s0) xps

shows (zps, Z) ∈ futures (c-process step out s0) xps −→
(yp # ipurge-tr I (c-dom D) (c-dom D yp) zps,
ipurge-ref I (c-dom D) (c-dom D yp) zps Z)
∈ futures (c-process step out s0) xps

〈proof 〉

theorem c-secure-implies-secure:
assumes R: refl I and S : c-secure step out s0 I D
shows secure (c-process step out s0) I (c-dom D)
〈proof 〉

theorem secure-equals-c-secure:
refl I =⇒ secure (c-process step out s0) I (c-dom D) = c-secure step out s0 I D
〈proof 〉

end

3 CSP noninterference vs. generalized noninter-
ference

theory GeneralizedNoninterference
imports ClassicalNoninterference
begin

The purpose of this section is to compare CSP noninterference security as
defined previously with McCullough’s notion of generalized noninterference
security as formulated in [4]. It will be shown that this security property
is weaker than both CSP noninterference security for a generic process, and
classical noninterference security for classical processes, viz. it is a necessary
but not sufficient condition for them. This renders CSP noninterference
security preferable as an extension of classical noninterference security to
nondeterministic systems.

For clarity, all the constants and fact names defined in this section, with
the possible exception of datatype constructors and main theorems, contain
prefix g-.

16

3.1 Generalized noninterference
The original formulation of generalized noninterference security as contained
in [4] focuses on systems whose events, split in inputs and outputs, are
mapped into either of two security levels, high and low. Such a system is
said to be secure just in case, for any trace xs and any high-level input x, the
set of the possible low-level futures of xs, i.e. of the sequences of low-level
events that may succeed xs in the traces of the system, is equal to the set
of the possible low-level futures of xs @ [x].

This definition requires the following corrections:

• Variable x must range over all high-level events rather than over high-
level inputs alone, since high-level outputs must not be allowed to
affect low-level futures as well.

• For any x, the range of trace xs must be restricted to the traces of the
system that may be succeeded by x, viz. trace xs must be such that
event list xs @ [x] be itself a trace.
Otherwise, a system that admits both high-level and low-level events
in its alphabet but never accepts any high-level event, always accepting
any low-level one instead, would turn out not to be secure, which is
paradoxical since high can by no means affect low in a system never
engaging in high-level events. The cause of the paradox is that, for
each trace xs and each high-level event x of such a system, the set of
the possible low-level futures of xs matches the Kleene closure of the
set of low-level events, whereas the set of the possible low-level futures
of xs @ [x] matches the empty set as xs @ [x] is not a trace.

Observe that the latter correction renders it unnecessary to explicitly
assume that event list xs be a trace of the system, as this follows from the
assumption that xs @ [x] be such.

Here below is a formal definition of the notion of generalized nonin-
terference security for processes, amended in accordance with the previous
considerations.

datatype g-level = High | Low

definition g-secure :: ′a process ⇒ (′a ⇒ g-level) ⇒ bool where
g-secure P L ≡ ∀ xs x. xs @ [x] ∈ traces P ∧ L x = High −→
{ys ′. ∃ ys. xs @ ys ∈ traces P ∧ ys ′ = [y←ys. L y = Low]} =
{ys ′. ∃ ys. xs @ x # ys ∈ traces P ∧ ys ′ = [y←ys. L y = Low]}

It is possible to prove that a weaker sufficient (as well as necessary, as
obvious) condition for generalized noninterference security is that the set of
the possible low-level futures of trace xs be included in the set of the possible

17

low-level futures of trace xs @ [x], because the latter is always included in
the former.

In what follows, such security property is defined formally and its suffi-
ciency for generalized noninterference security to hold is demonstrated in the
form of an introduction rule, which will turn out to be useful in subsequent
proofs.

definition g-secure-suff :: ′a process ⇒ (′a ⇒ g-level) ⇒ bool where
g-secure-suff P L ≡ ∀ xs x. xs @ [x] ∈ traces P ∧ L x = High −→
{ys ′. ∃ ys. xs @ ys ∈ traces P ∧ ys ′ = [y←ys. L y = Low]} ⊆
{ys ′. ∃ ys. xs @ x # ys ∈ traces P ∧ ys ′ = [y←ys. L y = Low]}

lemma g-secure-suff-implies-g-secure:
assumes S : g-secure-suff P L
shows g-secure P L
〈proof 〉

3.2 Comparison between security properties
In the continuation, it will be proven that CSP noninterference security is a
sufficient condition for generalized noninterference security for any process
whose events are mapped into either security domain High or Low, under
the policy that High may not affect Low.

Particularly, this is the case for any such classical process. This fact,
along with the equivalence between CSP noninterference security and clas-
sical noninterference security for classical processes, is used to additionally
prove that the classical noninterference security of a deterministic state ma-
chine is a sufficient condition for the generalized noninterference security of
the corresponding classical process under the aforesaid policy.

definition g-I :: (g-level × g-level) set where
g-I ≡ {(High, High), (Low, Low), (Low, High)}

lemma g-I-refl: refl g-I
〈proof 〉

lemma g-sinks: sinks g-I L High xs ⊆ {High}
〈proof 〉

lemma g-ipurge-tr : ipurge-tr g-I L High xs = [x←xs. L x = Low]
〈proof 〉

theorem secure-implies-g-secure:
assumes S : secure P g-I L
shows g-secure P L
〈proof 〉

18

theorem c-secure-implies-g-secure:
c-secure step out s0 g-I L =⇒ g-secure (c-process step out s0) (c-dom L)
〈proof 〉

Since the definition of generalized noninterference security does not im-
pose any explicit requirement on process refusals, intuition suggests that this
security property is likely to be generally weaker than CSP noninterference
security for nondeterministic processes, which are such that even a complete
specification of their traces leaves underdetermined their refusals. This is
not the case for deterministic processes, so the aforesaid security properties
might in principle be equivalent as regards such processes.

However, a counterexample proving the contrary is provided by a de-
terministic state machine resembling systems A and B described in [4],
section 3.1. This machine is proven not to be classical noninterference-
secure, whereas the corresponding classical process turns out to be general-
ized noninterference-secure, which proves that the generalized noninterfer-
ence security of a classical process is not a sufficient condition for the classical
noninterference security of the associated deterministic state machine.

This result, along with the equivalence between CSP noninterference se-
curity and classical noninterference security for classical processes, is then
used to demonstrate that the generalized noninterference security of the
aforesaid classical process does not entail its CSP noninterference security,
which proves that generalized noninterference security is actually not a suf-
ficient condition for CSP noninterference security even in the case of deter-
ministic processes.

The remainder of this section is dedicated to the construction of such
counterexample.

datatype g-state = Even | Odd

datatype g-action = Any | Count

primrec g-step :: g-state ⇒ g-action ⇒ g-state where
g-step s Any = (case s of Even ⇒ Odd | Odd ⇒ Even) |
g-step s Count = s

primrec g-out :: g-state ⇒ g-action ⇒ g-state option where
g-out - Any = None |
g-out s Count = Some s

primrec g-D :: g-action ⇒ g-level where
g-D Any = High |
g-D Count = Low

19

definition g-s0 :: g-state where
g-s0 ≡ Even

lemma g-secure-counterexample:
g-secure (c-process g-step g-out g-s0) (c-dom g-D)
〈proof 〉

lemma not-c-secure-counterexample:
¬ c-secure g-step g-out g-s0 g-I g-D
〈proof 〉

theorem not-g-secure-implies-c-secure:
¬ (g-secure (c-process g-step g-out g-s0) (c-dom g-D) −→
c-secure g-step g-out g-s0 g-I g-D)
〈proof 〉

theorem not-g-secure-implies-secure:
¬ (g-secure (c-process g-step g-out g-s0) (c-dom g-D) −→
secure (c-process g-step g-out g-s0) g-I (c-dom g-D))
〈proof 〉

end

References
[1] J. A. Goguen and J. Meseguer. Security policies and security models. In

IEEE Symposium on Security and Privacy, 1982.

[2] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[3] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/
doc/functions.pdf.

[4] D. McCullough. Noninterference and the composability of security prop-
erties. In Proceedings of the 1988 IEEE Conference on Security and
Privacy, 1988.

[5] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[6] T. Nipkow. Programming and Proving in Isabelle/HOL, Dec. 2013.
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/
doc/prog-prove.pdf.

20

http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/prog-prove.pdf

[7] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, Dec. 2013. http://isabelle.in.tum.de/
website-Isabelle2013-2/dist/Isabelle2013-2/doc/tutorial.pdf.

[8] J. Rushby. Noninterference, transitivity, and channel-control security
policies. Technical report, SRI International, 1992.

21

http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/tutorial.pdf

	Noninterference in CSP
	Processes
	Noninterference

	CSP noninterference vs. classical noninterference
	Classical noninterference
	Classical processes
	Traces in classical processes
	Noninterference in classical processes
	Equivalence between security properties

	CSP noninterference vs. generalized noninterference
	Generalized noninterference
	Comparison between security properties

