Noninterference Security in Communicating Sequential Processes

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A. pasquale dot noce dot lavoro at gmail dot com pasquale dot noce at arjowiggins-it dot com

September 13, 2023

Abstract

An extension of classical noninterference security for deterministic state machines, as introduced by Goguen and Meseguer and elegantly formalized by Rushby, to nondeterministic systems should satisfy two fundamental requirements: it should be based on a mathematically precise theory of nondeterminism, and should be equivalent to (or at least not weaker than) the classical notion in the degenerate deterministic case

This paper proposes a definition of noninterference security applying to Hoare's Communicating Sequential Processes (CSP) in the general case of a possibly intransitive noninterference policy, and proves the equivalence of this security property to classical noninterference security for processes representing deterministic state machines.

Furthermore, McCullough's generalized noninterference security is shown to be weaker than both the proposed notion of CSP noninterference security for a generic process, and classical noninterference security for processes representing deterministic state machines. This renders CSP noninterference security preferable as an extension of classical noninterference security to nondeterministic systems.

Contents

1 Noninterference in CSP 2
1.1 Processes 2
1.2 Noninterference 5
2 CSP noninterference vs. classical noninterference 11
2.1 Classical noninterference 11
2.2 Classical processes 16
2.3 Traces in classical processes 22
2.4 Noninterference in classical processes 24
2.5 Equivalence between security properties 29
3 CSP noninterference vs. generalized noninterference 48
3.1 Generalized noninterference 49
3.2 Comparison between security properties 50

1 Noninterference in CSP

theory CSPNoninterference
imports Main
begin

An extension of classical noninterference security for deterministic state machines, as introduced by Goguen and Meseguer [1] and elegantly formalized by Rushby [8], to nondeterministic systems should satisfy two fundamental requirements: it should be based on a mathematically precise theory of nondeterminism, and should be equivalent to (or at least not weaker than) the classical notion in the degenerate deterministic case.

The purpose of this section is to formulate a definition of noninterference security that meet these requirements, applying to the concept of process as formalized by Hoare in his remarkable theory of Communicating Sequential Processes (CSP) [2]. The general case of a possibly intransitive noninterference policy will be considered.

Throughout this paper, the salient points of definitions and proofs are commented; for additional information see Isabelle documentation, particularly [7], [6], [5], and [3].

1.1 Processes

It is convenient to represent CSP processes by means of a type definition including a type variable, which stands for the process alphabet. Type process shall then be isomorphic to the subset of the product type of failures sets and divergences sets comprised of the pairs that satisfy the properties enunciated in [2], section 3.9. Such subset shall be shown to contain process $S T O P$, which proves that it is nonempty.

Property $C 5$ is not considered as it is entailed by $C 7$. Moreover, the formalization of properties C2 and C6 only takes into account event lists t containing a single item. Such formulation is equivalent to the original one, since the truth of $C 2$ and $C 6$ for a singleton list t immediately derives from that for a generic list, and conversely:

- the truth of $C 2$ and $C 6$ for a generic nonempty list t results from the repeated application of $C 2$ and $C 6$ for a singleton list;
- the truth of $C 2$ for t matching the empty list is implied by property C3;
- the truth of $C 6$ for t matching the empty list is a tautology.

The advantage of the proposed formulation is that it facilitates the task to prove that pairs of failures and divergences sets defined inductively indeed be processes, viz. be included in the set of pairs isomorphic to type process, since the introduction rules in such inductive definitions will typically construct process traces by appending one item at a time.

In what follows, the concept of process is formalized according to the previous considerations.

```
type-synonym 'a failure = 'a list }\times\mathrm{ 'a set
type-synonym 'a process-prod = 'a failure set }\times\mathrm{ 'a list set
definition process-prop-1 :: 'a process-prod }=>\mathrm{ bool where
process-prop-1 P \equiv([], {})\infst P
definition process-prop-2 :: 'a process-prod }=>\mathrm{ bool where
process-prop-2 P \equiv\forallxs x X. (xs@ @x],X) \in fst P \longrightarrow (xs, {}) \in fst P
definition process-prop-3 :: 'a process-prod }=>\mathrm{ bool where
process-prop-3 P}\equiv\forallxsXY.(xs,Y)\infst P\wedgeX\subseteqY\longrightarrow(xs,X)\infst 
definition process-prop-4 :: 'a process-prod }=>\mathrm{ bool where
process-prop-4 P \equiv\forallxs x X. (xs, X) f fst P\longrightarrow
    (xs@[x],{}) \infst P\vee (xs, insert x X) \infst P
definition process-prop-5 :: 'a process-prod }=>\mathrm{ bool where
process-prop-5 P \equiv\forallxs x. xs \in snd P\longrightarrowxs @ [x] { snd P
definition process-prop-6 :: 'a process-prod }=>\mathrm{ bool where
process-prop-6 P \equiv\forallxs X. xs \in snd P\longrightarrow(xs,X)\infst P
definition process-set :: 'a process-prod set where
process-set \equiv{P.
    process-prop-1 P ^
    process-prop-2 P ^
    process-prop-3 P ^
    process-prop-4 P ^
    process-prop-5 P ^
    process-prop-6 P}
```

typedef 'a process $=$ process-set $::$ ' a process-prod set
by (rule-tac $x=(\{(x s, X)$. xs $=[]\},\{ \})$ in exI, simp add:
process-set-def
process-prop-1-def
process-prop-2-def
process-prop-3-def
process-prop-4-def
process-prop-5-def
process-prop-6-def)

Here below are the definitions of some functions acting on processes. Functions failures, traces, and deterministic match the homonymous notions defined in [2]. As for the other ones:

- futures P xs matches the failures set of process $P / x s$;
- refusals P xs matches the refusals set of process $P / x s$;
- next-events P xs matches the event set $(P / x s)^{0}$.
definition failures $::$ 'a process \Rightarrow 'a failure set where
failures $P \equiv$ fst (Rep-process P)
definition futures :: 'a process \Rightarrow 'a list \Rightarrow 'a failure set where
futures P xs $\equiv\{(y s, Y) .(x s @ y s, Y) \in$ failures $P\}$
definition traces :: ' a process \Rightarrow ' a list set where
traces $P \equiv$ Domain (failures P)
definition refusals :: ' a process \Rightarrow ' a list \Rightarrow ' a set set where refusals P xs \equiv failures P " $\{x s\}$
definition next-events :: 'a process \Rightarrow ' a list \Rightarrow ' a set where next-events $P x s \equiv\{x . x s @[x] \in$ traces $P\}$
definition deterministic $::$ 'a process \Rightarrow bool where
deterministic $P \equiv$
$\forall x s \in$ traces $P . \forall X . X \in$ refusals P xs $=(X \cap$ next-events P xs $=\{ \})$

In what follows, properties process-prop-2 and process-prop-3 of processes are put into the form of introduction rules, which will turn out to be useful in subsequent proofs. Particularly, the more general formulation of process-prop-2 as given in [2] (section 3.9, property C2) is restored, and it is expressed in terms of both functions failures and futures.

```
lemma process-rule-2: \((x s @[x], X) \in\) failures \(P \Longrightarrow(x s,\{ \}) \in\) failures \(P\)
proof (simp add: failures-def)
    have Rep-process \(P \in\) process-set (is ? \(P^{\prime} \in-\) ) by (rule Rep-process)
```

```
    hence \(\forall x s x X .(x s @[x], X) \in f s t ? P^{\prime} \longrightarrow(x s,\{ \}) \in f s t ? P^{\prime}\)
    by (simp add: process-set-def process-prop-2-def)
    thus \((x s @[x], X) \in f s t ? P^{\prime} \Longrightarrow(x s,\{ \}) \in f s t ? P^{\prime}\) by blast
qed
lemma process-rule-3: \((x s, Y) \in\) failures \(P \Longrightarrow X \subseteq Y \Longrightarrow(x s, X) \in\) failures \(P\)
proof (simp add: failures-def)
    have Rep-process \(P \in\) process-set (is ? \(P^{\prime} \in-\) ) by (rule Rep-process)
    hence \(\forall x s X Y .(x s, Y) \in f s t ? P^{\prime} \wedge X \subseteq Y \longrightarrow(x s, X) \in f s t ? P^{\prime}\)
        by (simp add: process-set-def process-prop-3-def)
    thus \((x s, Y) \in f s t ? P^{\prime} \Longrightarrow X \subseteq Y \Longrightarrow(x s, X) \in f_{s t} ? P^{\prime}\) by blast
qed
lemma process-rule-2-failures \([\) rule-format \(]\) :
    \(\left(x s @ x s^{\prime}, X\right) \in\) failures \(P \longrightarrow(x s,\{ \}) \in\) failures \(P\)
proof (induction xs' arbitrary: X rule: rev-induct, rule-tac [!] impI, simp)
    fix \(X\)
    assume \((x s, X) \in\) failures \(P\)
    moreover have \(\} \subseteq X\)..
    ultimately show (xs, \{\}) \(\in\) failures \(P\) by (rule process-rule-3)
next
    fix \(x x s^{\prime} X\)
    assume \(\bigwedge X\). \(\left(x s @ x s^{\prime}, X\right) \in\) failures \(P \longrightarrow(x s,\{ \}) \in\) failures \(P\)
    hence \(\left(x s @ x s^{\prime},\{ \}\right) \in\) failures \(P \longrightarrow(x s,\{ \}) \in\) failures \(P\).
    moreover assume (xs @ xs \(\left.{ }^{\prime} @[x], X\right) \in\) failures \(P\)
    hence \(\left(\left(x s\right.\right.\) @ \(\left.\left.x s^{\prime}\right) @[x], X\right) \in\) failures \(P\) by simp
    hence (xs @ \(\left.x s^{\prime},\{ \}\right) \in\) failures \(P\) by (rule process-rule-2)
    ultimately show \((x s,\{ \}) \in\) failures \(P\)..
qed
lemma process-rule-2-futures:
    \(\left(y s @ y s^{\prime}, Y\right) \in\) futures \(P x s \Longrightarrow(y s,\{ \}) \in\) futures \(P\) xs
by (simp add: futures-def, simp only: append-assoc [symmetric], rule process-rule-2-failures)
```


1.2 Noninterference

In the classical theory of noninterference, a deterministic state machine is considered to be secure just in case, for any trace of the machine and any action occurring next, the observable effect of the action, i.e. the produced output, is compatible with the assigned noninterference policy.

Thus, by analogy, it seems reasonable to regard a process as being noninterference-secure just in case, for any of its traces and any event occurring next, the observable effect of the event, i.e. the set of the possible futures of the process, is compatible with a given noninterference policy.

More precisely, let sinks IDuxs be the set of the security domains of the events within event list $x s$ that may be affected by domain u according to interference relation I, where D is the mapping of events into their domains. Since the general case of a possibly intransitive relation I is considered,
function sinks has to be defined recursively, similarly to what happens for function sources in [8]. However, contrariwise to function sources, function sinks takes into account the influence of the input domain on the input event list, so that the recursive decomposition of the latter has to be performed by item appending rather than prepending.

Furthermore, let ipurge-tr I Duxs be the sublist of event list xs obtained by recursively deleting the events that may be affected by domain u as detected via function sinks, and ipurge-ref $I D u$ xs X be the subset of refusal X whose elements may not be affected by either u or any domain in sinks I D u xs.

Then, a process P is secure just in case, for each event list $x s$ and each $(y \# y s, Y),(z s, Z) \in$ futures $P x s$, both of the following conditions are satisfied:

- (ipurge-tr $I D(D y) y s$, ipurge-ref $I D(D y)$ ys $Y) \in$ futures P xs. Otherwise, the absence of event y after $x s$ would affect the possibility for pair (ipurge-tr $I D(D y)$ ys, ipurge-ref $I D(D y)$ ys $Y)$ to occur as a future of $x s$, although its components, except for the deletion of y, are those of possible future $(y \# y s, Y)$ deprived of any event allowed to be affected by y.
- (y \# ipurge-tr I $D(D y) z s$, ipurge-ref I $D(D y) z s Z)$
\in futures P xs.
Otherwise, the presence of event y after $x s$ would affect the possibility for pair (y \# ipurge-tr I $D(D y) z s$, ipurge-ref $I D(D y) z s Z)$ to occur as a future of $x s$, although its components, except for the addition of y, are those of possible future $(z s, Z)$ deprived of any event allowed to be affected by y.

Observe that this definition of security, henceforth referred to as CSP noninterference security, does not rest on the supposition that noninterference policy I be reflexive, even though any policy of practical significance will be such.

Moreover, this simpler formulation is equivalent to the one obtained by restricting the range of event list $x s$ to the traces of process P. In fact, for each $z s, Z,(z s, Z) \in$ futures $P x s$ just in case $(x s @ z s, Z) \in$ failures P, which by virtue of rule process-rule-2-failures implies that $x s$ is a trace of P. Therefore, formula $(z s, Z) \in$ futures $P x s$ is invariably false in case $x s$ is not a trace of P.

Here below are the formal counterparts of the definitions discussed so far.
function sinks $::\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d \Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} d$ set where sinks - - [] $=\{ \} \mid$
sinks $I D u(x s @[x])=($ if $(u, D x) \in I \vee(\exists v \in \operatorname{sinks} I D u x s .(v, D x) \in I)$
then insert ($D x$) (sinks I D uxs)
else sinks I $D u x s)$
proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disjI1, assumption, simp)
termination by lexicographic-order
function ipurge-tr :: $\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d \Rightarrow^{\prime} a$ list $\Rightarrow^{\prime} a$ list where ipurge-tr - - [] = [] |
ipurge-tr I Du(xs @ $[x])=($ if $D x \in \operatorname{sinks} I D u(x s @[x])$
then ipurge-tr I D uxs
else ipurge-tr I D uxs @ [x])
proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disjI1, assumption, simp)
termination by lexicographic-order
definition ipurge-ref ::
$\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d \Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ set $\Rightarrow{ }^{\prime} a$ set where
ipurge-ref I D u xs $X \equiv$
$\{x \in X .(u, D x) \notin I \wedge(\forall v \in \operatorname{sinks} I D u x s .(v, D x) \notin I)\}$
definition secure :: 'a process $\Rightarrow\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow$ bool where
secure $P I D \equiv$
$\forall x s$ y ys $Y z s Z .(y \# y s, Y) \in$ futures P xs $\wedge(z s, Z) \in$ futures $P x s \longrightarrow$ (ipurge-tr I $D(D y)$ ys, ipurge-ref $I D(D y)$ ys $Y) \in$ futures P xs \wedge
(y \# ipurge-tr $I D(D y) z s$, ipurge-ref $I D(D y) z s Z) \in$ futures P xs

The continuation of this section is dedicated to the demonstration of some lemmas concerning functions sinks, ipurge-tr, and ipurge-ref which will turn out to be useful in subsequent proofs.

```
lemma sinks-cons-same:
    assumes R: refl I
    shows sinks ID (Dx) (x# xs) = insert (D x) (sinks I D (D x) xs)
proof (rule rev-induct, simp)
    have A: [x]=[]@ [x] by simp
    have sinks I D (D x ) [x]=(if (D x,D x) \inI\vee (\existsv\in{}. (v,D x)\inI)
        then insert (D x) {}
        else {})
    by (subst A, simp only: sinks.simps)
    moreover have ( }Dx,Dx)\inI\mathrm{ using R by (simp add: refl-on-def)
    ultimately show sinks I D (Dx) [x] ={D x} by simp
next
    fix }\mp@subsup{x}{}{\prime}x
    assume A: sinks I D (Dx) (x# #s) = insert (D x) (sinks I D (D x) xs)
    show sinks I D (Dx) (x# xs @ [x])=
        insert (D x) ( sinks I D (D x) (xs @ [x]))
    proof (cases (D x,D x') \inI\vee (\existsv\in\operatorname{sinks I D (D x) xs. (v,D 片)\inI),},
```

```
    simp-all (no-asm-simp))
    case True
```



```
    using A by simp
    hence sinks I D(D x) ((x#xs)@ [x])=
        insert (D x') (sinks I D (D x) (x # xs))
    by (simp only: sinks.simps if-True)
    thus sinks I D (Dx) (x#xs@ @ [ ] ) =
        insert (Dx) (insert (D x') (sinks I D (D x x xs))
    using A by (simp add: insert-commute)
    next
    case False
    hence }\neg((Dx,D\mp@subsup{x}{}{\prime})\inI\vee(\existsv\in\operatorname{sinks}ID(Dx)(x#xs).(v,D\mp@subsup{x}{}{\prime})\inI)
    using A by simp
    hence sinks I D (D x) ((x# xs)@ [x]) = sinks I D (D x) (x# xs)
    by (simp only: sinks.simps if-False)
    thus sinks I D (Dx) (x# xs@ [x]) = insert (D x) (sinks I D (D x) xs)
    using A by simp
    qed
qed
lemma ipurge-tr-cons-same:
    assumes R: refl I
    shows ipurge-tr I D (Dx) (x# xs) = ipurge-tr I D (Dx) xs
proof (induction xs rule: rev-induct, simp)
    have A: [x] = [] @ [x] by simp
    have ipurge-tr I D (D x) [x] = (if D x f sinks I D (Dx) ([] @ [x])
        then []
        else [] @ [x])
    by (subst A, simp only: ipurge-tr.simps)
    moreover have sinks I D(Dx) [x]={Dx}
    using R by (simp add: sinks-cons-same)
    ultimately show ipurge-tr I D (D x) [x] = [] by simp
next
    fix }\mp@subsup{x}{}{\prime}x
    assume A: ipurge-tr I D (D x) (x# xs) = ipurge-tr I D (D x) xs
    show ipurge-tr I D (D x) (x # xs @ [x]) = ipurge-tr I D (D x) (xs @ [x])
    proof (cases D x'\in sinks I D (D x) (x# xs @ [x]))
    assume B:D x'\in sinks ID (D x) (x# xs@ [x])
    hence D \mp@subsup{x}{}{\prime}\in sinks I D (Dx) ((x# xs)@ [x]) by simp
    hence ipurge-tr I D (D x) ((x# ms)@ @ [ ]) = ipurge-tr I D (D x) (x# #s)
    by (simp only: ipurge-tr.simps if-True)
    hence C: ipurge-tr I D (D x) (x # xs @ [x]) = ipurge-tr I D (D x) xs
    using }A\mathrm{ by simp
    have D \mp@subsup{x}{}{\prime}=Dx\veeD \mp@subsup{x}{}{\prime}\in\operatorname{sinks}ID(Dx)(xs@[x])
    using }R\mathrm{ and B by (simp add: sinks-cons-same)
    moreover {
        assume D x' = D x
        hence (D x, D 和) \inI using R by (simp add:refl-on-def)
```

```
    hence ipurge-tr I D (Dx) (xs @ [x])=ipurge-tr ID(Dx) xs by simp
    \}
    moreover \{
    assume \(D x^{\prime} \in \operatorname{sinks} I D(D x)(x s @[x])\)
    hence ipurge-tr \(I D(D x)(x s @[x])=\) ipurge-tr \(I D(D x)\) xs by simp
    \}
    ultimately have \(D\) : ipurge-tr \(I D(D x)(x s @[x])=\) ipurge-tr \(I D(D x) x s\)
    by blast
    show ?thesis using \(C\) and \(D\) by simp
    next
    assume \(B: D x^{\prime} \notin\) sinks \(I D(D x)(x \# x s @[x])\)
    hence \(D x^{\prime} \notin\) sinks \(I D(D x)((x \# x s) @[x])\) by simp
    hence ipurge-tr \(I D(D x)((x \# x s) @[x])=\)
        ipurge-tr I D ( \(D x)(x \# x s) @[x]\)
        by (simp only: ipurge-tr.simps if-False)
```



```
    using \(A\) by simp
    moreover have \(\neg\left(D x^{\prime}=D x \vee D x^{\prime} \in \operatorname{sinks} I D(D x)(x s @[x])\right)\)
    using \(R\) and \(B\) by (simp add: sinks-cons-same)
```



```
    by \(\operatorname{simp}\)
    ultimately show? ?thesis by simp
    qed
qed
lemma sinks-cons-nonint:
    assumes \(A:(u, D x) \notin I\)
    shows sinks \(I D u(x \# x s)=\) sinks \(I D u x s\)
proof (rule rev-induct, simp)
    have sinks I \(D u[x]=\) sinks \(I D u([] @[x])\) by simp
    hence sinks I Du[x]=(if \((u, D x) \in I \vee(\exists v \in\} .(v, D x) \in I)\)
        then insert ( \(D x\) ) \{\}
        else \{\})
    by (simp only: sinks.simps)
    thus sinks \(I D u[x]=\{ \}\) using \(A\) by simp
next
    fix \(x s x^{\prime}\)
    assume \(B\) : sinks \(I D u(x \# x s)=\operatorname{sinks} I D u x s\left(\right.\) is ? \(\left.d^{\prime}=? d\right)\)
    have \(x \# x s\) @ \([x]=(x \# x s) @[x]\) by \(\operatorname{simp}\)
    hence \(C\) : sinks \(I D u(x \# x s @[x])=\)
        (if \(\left(u, D x^{\prime}\right) \in I \vee\left(\exists v \in ? d^{\prime} .\left(v, D x^{\prime}\right) \in I\right)\)
        then insert ( \(D x^{\prime}\) ) ? \(d^{\prime}\)
        else? \(d^{\prime}\) )
        by (simp only: sinks.simps)
    show sinks IDu(x\#xs@ \([x])=\operatorname{sinks} I D u(x s @[x])\)
    proof \(\left(\right.\) cases \(\left.\left(u, D x^{\prime}\right) \in I \vee\left(\exists v \in ? d .\left(v, D x^{\prime}\right) \in I\right)\right)\)
        case True
        with \(B\) and \(C\) have sinks I \(D u(x \# x s @[x])=\operatorname{insert}\left(D x^{\prime}\right) ? d\)
            by \(\operatorname{simp}\)
```

```
        with True show ?thesis by simp
        next
        case False
    with B and C have sinks I Du(x# xs @ [x ]) =?d by simp
    with False show ?thesis by simp
    qed
qed
lemma sinks-empty [rule-format]:
    sinks I D u xs={} \longrightarrow ipurge-tr I D uxs=xs
proof (rule rev-induct, simp, rule impI)
    fix }x\mathrm{ xs
    assume A: sinks I Du(xs @ [x])={}
    moreover have sinks I Duxs\subseteq sinks I Du(xs @ [x])
        by (simp add: subset-insertI)
    ultimately have sinks I Duxs={} by simp
    moreover assume sinks I Duxs={}\longrightarrow ipurge-tr I Duxs=xs
    ultimately have ipurge-tr I D uxs=xs by (rule rev-mp)
    thus ipurge-tr IDu(xs@ @ [x])=xs@ @ [x] using A by simp
qed
lemma ipurge-ref-eq:
    assumes A: D x csinks I Du(xs @ [x])
    shows ipurge-ref I D u (xs @ [x]) X=
    ipurge-ref I D u xs {\mp@subsup{x}{}{\prime}\inX.(D x,D 和)\not\inI}
proof (rule equalityI, rule-tac [!] subsetI, simp-all add: ipurge-ref-def del: sinks.simps,
    (erule conjE)+,(erule-tac [2] conjE)+)
    fix y
```



```
    show (Dx,Dy)\not\inI\wedge(\forallv\in\operatorname{sinks}IDuxs. (v,Dy)\not\inI)
    proof (rule conjI, rule-tac [2] ballI)
        show (D x,D y)}\not<I using B and A ..
    next
        fix v
        assume v\in sinks I D u xs
        hence v\in sinks IDu(xs @ [x]) by simp
        with B show (v,D y) &I ..
    qed
next
    fix y
    assume
        B:(Dx,D y)\not\inI and
        C:}\forallv\in\mathrm{ sinks I D u xs. (v,D y)}\not\in
    show }\forallv\in\mathrm{ sinks I D u (xs @ [x]). (v,D y)}\not\in
    proof (rule ballI, cases (u,Dx)\inI\vee (\existsv\in\operatorname{sinks I D u xs. (v,D x) \inI))}
        fix v
        case True
        moreover assume v\in sinks I D u (xs @ [x])
        ultimately have v=Dx\veev\in\operatorname{sinks I Du xs by simp}
```

```
    moreover {
        assume v=D x
        with B have (v,D y)\not\inI by simp
    }
    moreover {
        assume v\in sinks I D u xs
        with C have (v,Dy)\not\inI ..
    }
    ultimately show (v,D y)\not\inI by blast
next
    fix v
    case False
    moreover assume v\in sinks IDu(xs @ [x])
    ultimately have v\in sinks ID u xs by simp
    with C show (v,Dy)\not\inI ..
qed
qed
end
```


2 CSP noninterference vs. classical noninterference

theory ClassicalNoninterference
imports CSPNoninterference
begin

The purpose of this section is to prove the equivalence of CSP noninterference security as defined previously to the classical notion of noninterference security as formulated in [8] in the case of processes representing deterministic state machines, henceforth briefly referred to as classical processes.

For clarity, all the constants and fact names defined in this section, with the possible exception of main theorems, contain prefix c-.

2.1 Classical noninterference

Here below are the formalizations of the functions sources and ipurge defined in $[8]$, as well as of the classical notion of noninterference security as stated ibid. for a deterministic state machine in the general case of a possibly intransitive noninterference policy.

Observe that the function run used in R3 is formalized as function foldl step, where step is the state transition function of the machine.
primrec c-sources :: $\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow^{\prime} d\right) \Rightarrow{ }^{\prime} d \Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} d$ set where

```
c-sources - - u[] ={u}|
c-sources I Du(x# xs)=(if \existsv\inc-sources I D uxs. (D x,v) \inI
    then insert (Dx) (c-sources I Duxs)
    else c-sources I D u xs)
```

primrec c-ipurge $::\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d \Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ list where
c-ipurge - - [] = [] |
c-ipurge I $D u(x \# x s)=($ if $D x \in c$-sources $I D u(x \# x s)$
then $x \#$ c-ipurge I D u xs
else c-ipurge I Duxs)
definition c-secure ::

```
\(\left({ }^{\prime} s \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} s\right) \Rightarrow\left({ }^{\prime} s \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} o\right) \Rightarrow{ }^{\prime} s \Rightarrow\left({ }^{\prime} d \times{ }^{\prime} d\right)\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow\) bool
where
c-secure step out \(s_{0} I D \equiv\)
    \(\forall x\) xs. out (foldl step \(\left.s_{0} x s\right) x=\) out (foldl step \(s_{0}(c\)-ipurge \(\left.I D(D x) x s)\right) x\)
```

In addition, the definitions are given of variants of functions c-sources and c-ipurge accepting in input a set of security domains rather than a single domain, and then some lemmas concerning them are demonstrated. These definitions and lemmas will turn out to be useful in subsequent proofs.
primrec c-sources-aux :: $\left(' d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow$ 'd set \Rightarrow 'a list \Rightarrow 'd set where
c-sources-aux - $U[]=U \mid$
c-sources-aux I D $U(x \# x s)=($ if $\exists v \in c$-sources-aux I $D \mathrm{U}$ xs. $(D x, v) \in I$ then insert ($D x$) (c-sources-aux I D U xs)
else c-sources-aux I D U xs)
primrec c-ipurge-aux :: $\left({ }^{\prime} d \times{ }^{\prime} d\right)$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow{ }^{\prime} d$ set $\Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ list where
c-ipurge-aux -- [] = [] |
c-ipurge-aux I D $U(x \#$ xs $)=($ if $D x \in c$-sources-aux I $D U(x \# x s)$
then $x \#$ c-ipurge-aux I D U xs
else c-ipurge-aux I D U xs)
lemma c-sources-aux-singleton-1: c-sources-aux I $D\{u\} x s=c$-sources $I D u x s$ by (induction xs, simp-all)
lemma c-ipurge-aux-singleton: c-ipurge-aux I $D\{u\} x s=c$-ipurge I $D u x s$ by (induction xs, simp-all add: c-sources-aux-singleton-1)
lemma c-sources-aux-singleton-2:
$D x \in c$-sources-aux I $D U[x]=(D x \in U \vee(\exists v \in U .(D x, v) \in I))$
by simp
lemma c-sources-aux-append:
c-sources-aux I D $U(x s @[x])=($ if $D x \in c$-sources-aux I D $U[x]$
then c-sources-aux I D (insert $(D x) U) x s$ else c-sources-aux I D U xs)
by (induction xs, simp-all add: insert-absorb)
lemma c-ipurge-aux-append:
c-ipurge-aux IDU(xs@ [x])=(if Dx c-sources-aux ID $U[x]$
then c-ipurge-aux I D (insert $(D x) U)$ xs @ $[x]$
else c-ipurge-aux I D U xs)
by (induction xs, simp-all add: c-sources-aux-append)

In what follows, a few useful lemmas are proven about functions c-sources, c-ipurge and their relationships with functions sinks, ipurge-tr.
lemma c-sources-ipurge: c-sources $I D u(c$-ipurge I $D u x s)=c$-sources $I D u x s$ by (induction xs, simp-all)
lemma c-sources-append-1:
c-sources $I D(D x)(x s @[x])=c$-sources $I D(D x) x s$
by (induction xs, simp-all)
lemma c-ipurge-append-1:
c-ipurge $I D(D x)(x s @[x])=c$-ipurge $I D(D x) x s @[x]$
by (induction xs, simp-all add: c-sources-append-1)
lemma c-sources-append-2:
$(D x, u) \notin I \Longrightarrow c$-sources $I D u(x s @[x])=c$-sources $I D u x s$
by (induction xs, simp-all)
lemma c-ipurge-append-2:
refl $I \Longrightarrow(D x, u) \notin I \Longrightarrow c$-ipurge I Du(xs @ $[x])=c$-ipurge I $D u x s$
proof (induction xs, simp-all add: refl-on-def c-sources-append-2)
qed (rule notI, simp)
lemma c-sources-mono:
assumes A : c-sources $I D u$ ys $\subseteq c$-sources $I D u$ zs
shows c-sources I $D u(x \# y s) \subseteq c$-sources I $D u(x \# z s)$
proof (cases $\exists v \in c$-sources I D u ys. $(D x, v) \in I)$
assume $B: \exists v \in c$-sources $I D$ u ys. $(D x, v) \in I$
then obtain v where $C: v \in c$-sources $I D u$ ys and $D:(D x, v) \in I .$.
from A and C have $v \in c$-sources $I D u z s .$.
with D have $E: \exists v \in c$-sources $I D u z s .(D x, v) \in I$..
have insert $(D x)(c$-sources I D u ys) $\subseteq \operatorname{insert}(D x)(c$-sources I $D u z s)$ using A by (rule insert-mono)
moreover have c-sources $I D u(x \# y s)=\operatorname{insert}(D x)(c$-sources $I D u y s)$ using B by simp
moreover have c-sources $I D u(x \# z s)=\operatorname{insert}(D x)(c$-sources $I D u z s)$ using E by simp
ultimately show c-sources $I D u(x \# y s) \subseteq c$-sources $I D u(x \# z s)$ by simp

```
next
    assume }\neg(\existsv\inc\mathrm{ -sources I D u ys. (D x,v) GI)
    hence c-sources I Du(x#ys)=c\mathrm{ -sources I Du ys by simp}
    hence c-sources I D u (x#ys)\subseteqc-sources I Duzs using A by simp
    moreover have c-sources I Duzs\subseteqc-sources I Du(x#zs)
    by (simp add: subset-insertI)
    ultimately show c-sources I D u(x # ys)\subseteqc-sources I D u (x # zs) by simp
qed
lemma c-sources-sinks [rule-format]:
    Dx\not\inc-sources I D u (x# xs) \longrightarrow sinks I D (D x) (c-ipurge I D u xs) ={}
proof (induction xs, simp, rule impI)
    fix }\mp@subsup{x}{}{\prime}x
    assume A: Dx\not\inc-sources I Du(x# xs)\longrightarrow
        sinks I D (D x) (c-ipurge I D u xs) ={}
```



```
    have c-sources I D u xs\subseteqc-sources I D u ( }\mp@subsup{x}{}{\prime}##xs
    by (simp add: subset-insertI)
    hence c-sources I Du(x#xs)\subseteqc-sources I Du(x# 和# xs)
    by (rule c-sources-mono)
    hence Dx\not\inc-sources I Du(x# xs) using B by (rule contra-subsetD)
    with A have C: sinks I D (D x) (c-ipurge I D uxs) = {} ..
    show sinks I D (D x) (c-ipurge I Du(x'# xs)) = {}
    proof (cases D x'\inc-sources I D u ( }\mp@subsup{x}{}{\prime}##xs)
    simp-all only: c-ipurge.simps if-True if-False)
    assume D: D x'\inc-sources I D u ( }\mp@subsup{x}{}{\prime}##xs
    have (D x, D x')}\not=
    proof
            assume (D x, D x') \inI
            hence }\existsv\inc\mathrm{ -sources I Du( (x'#xs). (D x,v) GI using D ..
            hence Dx\inc-sources I Du(x# 和# xs) by simp
            thus False using B by contradiction
    qed
    thus sinks I D (D x) (x' # c-ipurge I D u xs) = {}
        using C by (simp add: sinks-cons-nonint)
    next
        show sinks I D (Dx)(c-ipurge I Duxs) = {} using C.
    qed
qed
lemmas c-ipurge-tr-ipurge =c-sources-sinks [THEN sinks-empty]
lemma c-ipurge-aux-ipurge-tr [rule-format]:
    assumes R: refl I
    shows }\neg(\existsv\in\mathrm{ sinks I D u ys. }\exists\textrm{w}\inU
        c-ipurge-aux I D U (xs @ ipurge-tr I Du ys) = c-ipurge-aux I D U (xs @ ys)
proof (induction ys arbitrary: U rule: rev-induct, simp, rule impI)
    fix y ys U
    assume
```

```
    A: \(\bigwedge U . \neg(\exists v \in \operatorname{sinks} I D u\) ys. \(\exists w \in U .(v, w) \in I) \longrightarrow\)
    c-ipurge-aux ID \(U\) (xs @ ipurge-tr I \(D u y s)=\)
    c-ipurge-aux IDU(xs@ys) and
    \(B: \neg(\exists v \in \operatorname{sinks} I D u(y s @[y]) . \exists w \in U .(v, w) \in I)\)
have \(C: \neg(\exists v \in\) sinks I D u ys. \(\exists w \in U .(v, w) \in I)\)
proof (rule notI, (erule bexE)+)
    fix \(v w\)
    assume \((v, w) \in I\) and \(w \in U\)
    hence \(\exists w \in U .(v, w) \in I\).
    moreover assume \(v \in \operatorname{sinks} I D\) u ys
    hence \(v \in \operatorname{sinks} I D u(y s\) @ [y]) by simp
    ultimately have \(\exists v \in \operatorname{sinks} I D u(y s @[y]) . \exists w \in U .(v, w) \in I .\).
    thus False using \(B\) by contradiction
qed
show c-ipurge-aux ID \(\mathrm{U}(x s\) @ ipurge-tr I Du(ys @ \([y]))=\)
    c-ipurge-aux I D U (xs @ ys @ [y])
proof (cases D y c-sources-aux I D U [y],
case-tac [!] D y \(\operatorname{c}\) sinks I D u (ys @ [y]),
simp-all (no-asm-simp) only: ipurge-tr.simps append-assoc [symmetric]
c-ipurge-aux-append append-same-eq if-True if-False)
    assume \(D: D y \in \operatorname{sinks} I D u(y s @[y])\)
    assume \(D y \in c\)-sources-aux I \(D U[y]\)
    hence \(D y \in U \vee(\exists w \in U .(D y, w) \in I)\)
    by (simp only: c-sources-aux-singleton-2)
    moreover \{
    have \((D y, D y) \in I\) using \(R\) by (simp add: refl-on-def)
    moreover assume \(D y \in U\)
    ultimately have \(\exists w \in U .(D y, w) \in I\)..
    hence \(\exists v \in \operatorname{sinks} I D u(y s @[y]) . \exists w \in U .(v, w) \in I\) using \(D .\).
\}
moreover \{
    assume \(\exists w \in U .(D y, w) \in I\)
    hence \(\exists v \in \operatorname{sinks} I D u(y s @[y]) . \exists w \in U .(v, w) \in I\) using \(D .\).
\}
ultimately have \(\exists v \in \operatorname{sinks} I D u(y s @[y]) . \exists w \in U .(v, w) \in I\) by blast
thus c-ipurge-aux I D \(U\) (xs @ ipurge-tr I D u ys) =
    c-ipurge-aux I D (insert \((D y) U)(x s @ y s) @[y]\)
    using \(B\) by contradiction
next
    assume \(D: D\) y \(\notin \operatorname{sinks} I D u(y s @[y])\)
    have \(\neg(\exists v \in \operatorname{sinks} I D\) u ys. \(\exists w \in \operatorname{insert}(D y) U .(v, w) \in I) \longrightarrow\)
        c-ipurge-aux I \(D(\) insert \((D y) U)(x s @ i p u r g e-t r I D u y s)=\)
        c-ipurge-aux I D (insert ( \(D\) y) \(U\) ) (xs @ ys)
    using \(A\).
moreover have \(\neg(\exists v \in \operatorname{sinks} I D u\) ys. \(\exists w \in \operatorname{insert}(D y) U .(v, w) \in I)\)
proof (rule notI, (erule bexE)+, simp, erule disjE, simp)
    fix \(v\)
    assume \((v, D y) \in I\) and \(v \in \operatorname{sinks} I D u\) ys
    hence \(\exists v \in\) sinks I \(D\) u ys. \((v, D y) \in I\)..
```

```
        hence D y \in sinks I D u (ys @ [y]) by simp
        thus False using D by contradiction
    next
        fix vw
        assume (v,w)\inI and w\inU
        hence }\existsw\inU.(v,w)\inI ..
        moreover assume v\in sinks I D u ys
        ultimately have }\existsv\in\mathrm{ sinks I D u ys. }\existsw\inU.(v,w)\inI .
        thus False using C by contradiction
    qed
    ultimately show c-ipurge-aux I D (insert (D y) U) (xs @ ipurge-tr I D u ys)
        = c-ipurge-aux I D (insert (D y)U)(xs @ ys)..
    next
    have}\neg(\existsv\in\mathrm{ sinks I D u ys. }\existsw\inU.(v,w)\inI)
        c-ipurge-aux IDU(xs @ ipurge-tr I D u ys)=c-ipurge-aux ID U(xs@ ys)
        using }A\mathrm{ .
    thus c-ipurge-aux I D U (xs @ ipurge-tr I D u ys)=
        c-ipurge-aux ID U(xs @ ys)
        using C ..
    next
        have }\neg(\existsv\in\mathrm{ sinks I D u ys. }\exists\textrm{w}\inU.(v,w)\inI)
        c-ipurge-aux I D U (xs @ ipurge-tr I D u ys)=c-ipurge-aux ID U (xs @ ys)
        using }A\mathrm{ .
        thus c-ipurge-aux IDU(xs@ ipurge-tr ID u ys)=
            c-ipurge-aux I DU(xs@ys)
        using C ..
    qed
qed
lemma c-ipurge-ipurge-tr:
    assumes R: refl I and D:\neg(\existsv\in\operatorname{sinks}ID u ys. (v, u')\inI)
    shows c-ipurge I D u'(xs @ ipurge-tr I D u ys)=c-ipurge I D u'(xs@ ys)
proof -
    have}\neg(\existsv\in\mathrm{ sinks I D u ys. }\exists\textrm{w}\in{\mp@code{u}}.(v,w)\inI)\mathrm{ using D by simp
    with R have c-ipurge-aux ID {u'}(xs@ @ ipurge-tr I Duys)=
        c-ipurge-aux I D {u'} (xs @ ys)
        by (rule c-ipurge-aux-ipurge-tr)
    thus ?thesis by (simp add: c-ipurge-aux-singleton)
qed
```


2.2 Classical processes

The deterministic state machines used as model of computation in the classical theory of noninterference security, as expounded in [8], have the property that each action produces an output. Hence, it is natural to take as alphabet of a classical process the universe of the pairs (x, p), where x is an action and p an output. For any state s, such an event (x, p) may occur just in case p matches the output produced by x in s.

Therefore, a trace of a classical process can be defined as an event list
$x p s$ such that for each item $(x, p), p$ is equal to the output produced by x in the state resulting from the previous actions in xps. Furthermore, for each trace $x p s$, the refusals set associated to $x p s$ is comprised of any set of pairs (x, p) such that p is different from the output produced by x in the state resulting from the actions in $x p s$.

In accordance with the previous considerations, an inductive definition is formulated here below for the failures set c-failures step out s_{0} corresponding to the deterministic state machine with state transition function step, output function out, and initial state s_{0}. Then, the classical process c-process step out s_{0} representing this machine is defined as the process having c-failures step out s_{0} as failures set and the empty set as divergences set.

inductive-set c-failures ::

$\left(' s \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} s\right) \Rightarrow\left({ }^{\prime} s \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} o\right) \Rightarrow{ }^{\prime} s \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} o\right)$ failure set
for step $::$'s \Rightarrow ' $a \Rightarrow$'s and out $::{ }^{\prime} s \Rightarrow{ }^{\prime} a \Rightarrow$ ' o and $s_{0}::$'s where
$R 0:\left([],\left\{(x, p) . p \neq\right.\right.$ out $\left.\left.s_{0} x\right\}\right) \in c$-failures step out $s_{0} \mid$
$R 1: \llbracket(x p s,-) \in c$-failures step out $s_{0} ; s=$ foldl step $s_{0}($ map fst xps $) \rrbracket \Longrightarrow$ (xps @ $[(x$, out $s x)],\{(y, p) . p \neq$ out $($ step $s x) y\}) \in c$-failures step out $s_{0} \mid$
$R 2: \llbracket(x p s, Y) \in c$-failures step out $s_{0} ; X \subseteq Y \rrbracket \Longrightarrow$ $(x p s, X) \in c$-failures step out s_{0}
definition c-process ::
$\left({ }^{\prime} s \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} s\right) \Rightarrow\left({ }^{\prime} s \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} o\right) \Rightarrow{ }^{\prime} s \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} o\right)$ process where c-process step out $s_{0} \equiv$ Abs-process (c-failures step out $\left.s_{0},\{ \}\right)$

In what follows, the fact that classical processes are indeed processes is proven as a theorem.

```
lemma c-process-prop-1 [simp]: process-prop-1 (c-failures step out \(\left.s_{0},\{ \}\right)\)
proof (simp add: process-prop-1-def)
    have \(\left([],\left\{(x, p) . p \neq\right.\right.\) out \(\left.\left.s_{0} x\right\}\right) \in c\)-failures step out \(s_{0}\) by (rule R0)
    moreover have \(\left\} \subseteq\left\{(x, p)\right.\right.\). \(p \neq\) out \(\left.s_{0} x\right\}\)..
    ultimately show ([], \{\}) \(\in c\)-failures step out \(s_{0}\) by (rule R2)
qed
lemma c-process-prop-2 [simp]: process-prop-2 (c-failures step out \(\left.s_{0},\{ \}\right)\)
proof (simp only: process-prop-2-def fst-conv, (rule allI)+, rule impI)
    fix \(x p\) sp \(X\)
    assume (xps @ \([x p], X) \in c\)-failures step out \(s_{0}\)
    hence (butlast (xps @ \([x p]),\{ \}) \in c\)-failures step out \(s_{0}\)
    proof (rule c-failures.induct
        [where \(P=\lambda\) xps \(X\). (butlast xps, \(\}) \in c\)-failures step out \(\left.s_{0}\right]\), simp-all)
        have \(\left([],\left\{(x, p), p \neq\right.\right.\) out \(\left.\left.s_{0} x\right\}\right) \in c\)-failures step out \(s_{0}\) by (rule R0)
        moreover have \(\left\} \subseteq\left\{(x, p)\right.\right.\). \(p \neq\) out \(\left.s_{0} x\right\}\)..
        ultimately show \(([],\{ \}) \in c\)-failures step out \(s_{0}\) by (rule R2)
    next
```

```
    fix xps' X'
    assume (xps', X') \inc-failures step out so
    moreover have {}\subseteq 和..
    ultimately show (xps', {})\inc-failures step out so by (rule R2)
    qed
    thus (xps, {})\inc-failures step out so by simp
qed
lemma c-process-prop-3 [simp]: process-prop-3 (c-failures step out \(\left.s_{0},\{ \}\right)\)
by (simp only: process-prop-3-def fst-conv, (rule allI)+, rule impI, erule conjE,
rule R2)
lemma c-process-prop-4 [simp]: process-prop-4 (c-failures step out so,{})
proof (simp only: process-prop-4-def fst-conv, (rule allI)+, rule impI)
    fix xps xp X
    assume (xps,X)\inc-failures step out so
    thus (xps @ [xp],{})\inc-failures step out so \vee
        (xps, insert xp X) \inc-failures step out so
    proof (case-tac xp, rule c-failures.induct)
    fix }x
    assume A: xp = (x, p)
    have B:([],{(x,p).p\not= out sox}) \inc-failures step out so
        (is (-, ?X) \in -) by (rule R0)
    show ([] @ [xp],{})\inc-failures step out so \vee ([], insert xp ?X)
            \in-failures step out so
    proof (cases p = out so x)
            assume C: p=out sox
            have }\mp@subsup{s}{0}{}=\mathrm{ foldl step }\mp@subsup{s}{0}{}(\mathrm{ map fst []) by simp
            with B have ([]@ [(x, out so x)], {(y,p).p\not=out (step so x) y})
                    \in-failures step out so
            (is (-, ?Y) \in -) by (rule R1)
            hence ([]@ @xp], ?Y) \inc-failures step out so using A and C by simp
            moreover have {}\subseteq?Y ..
            ultimately have ([] @ [xp], {})\inc-failures step out so by (rule R2)
            thus ?thesis..
    next
            assume p}\not=\mathrm{ out so x
            hence xp\in? X using A by simp
            hence insert xp ?X = ?X by (rule insert-absorb)
            hence ([], insert xp ?X) \inc-failures step out sousing B by simp
            thus ?thesis..
        qed
    next
        fix x p xps' X's s '
        let ?s = step s }\mp@subsup{x}{}{\prime
        assume A: xp = (x,p)
        assume (xps', X') \inc-failures step out so and
            S:s=foldl step so (map fst xps')
            hence B:(xps' @ [(x',out s x')],{(y,p).p\not=out ?s y})
```

```
        \in c-failures step out so
        (is (?xps,?X) \in-) by (rule R1)
        show (?xps @ [xp],{})\inc-failures step out so\vee (?xps, insert xp ?X)
        \in-failures step out so
    proof (cases p =out ?s x)
        assume C: p=out ?s x
        have ?s = foldl step so (map fst ?xps) using S by simp
        with B have (?xps @ [(x, out ?s x)],{(y,p).p\not= out (step ?s x) y})
            c-failures step out so
            (is (-, ?Y) \in -) by (rule R1)
        hence (?xps @ [xp],?Y) \inc-failures step out so using A and C by simp
        moreover have {}\subseteq?Y ..
        ultimately have (?xps @ [xp], {}) \inc-failures step out so by (rule R2)
        thus ?thesis ..
    next
        assume p\not= out ?s x
        hence xp \in?X using A by simp
        hence insert xp ?X = ?X by (rule insert-absorb)
        hence (?xps, insert xp ?X) \inc-failures step out so using B by simp
        thus ?thesis ..
    qed
next
        fix xps' X' Y
        assume
            (xps' @ [xp], {}) \inc-failures step out so \vee
            (xps', insert xp Y)\inc-failures step out so(is ?A \vee ?B) and
            X ^ { \prime } \subseteq Y
    show (xps' @ [xp], {}) \inc-failures step out so\vee (xps', insert xp X')
            \in c-failures step out so
    using <?A\vee ?B>
    proof (rule disjE)
            assume ?A
            thus ?thesis ..
    next
        assume ?B
        moreover have insert xp \mp@subsup{X}{}{\prime}\subseteq insert xp Y using < 'X'\subseteqY\rangle
        by (rule insert-mono)
        ultimately have (xps', insert xp X') \inc-failures step out so by (rule R2)
        thus ?thesis ..
    qed
    qed
qed
lemma c-process-prop-5 [simp]: process-prop-5 (F, \{\})
by (simp add: process-prop-5-def)
lemma c-process-prop- \(6[\) simp \(]\) : process-prop- \(6(F,\{ \})\)
by (simp add: process-prop-6-def)
```


theorem c-process-process: (c-failures step out $\left.s_{0},\{ \}\right) \in$ process-set

 by (simp add: process-set-def)The continuation of this section is dedicated to the proof of a few lemmas on the properties of classical processes, particularly on the application to them of the generic functions acting on processes defined previously, and culminates in the theorem stating that classical processes are deterministic. Since they are intended to be a representation of deterministic state machines as processes, this result provides an essential confirmation of the correctness of such correspondence.
lemma c-failures-last [rule-format]:
$(x p s, X) \in c$-failures step out $s_{0} \Longrightarrow x p s \neq[] \longrightarrow$
snd $($ last xps $)=$ out (foldl step $s_{0}($ butlast $($ map fst xps $\left.))\right)($ last (map fst xps) $)$
by (erule c-failures.induct, simp-all)
lemma c-failures-ref:
$(x p s, X) \in c$-failures step out $s_{0} \Longrightarrow$
$X \subseteq\left\{(x, p) . p \neq\right.$ out $\left(\right.$ foldl step $s_{0}($ map fst $\left.\left.x p s)\right) x\right\}$
by (erule c-failures.induct, simp-all)
lemma c-failures-failures: failures (c-process step out s_{0}) $=c$-failures step out s_{0} by (simp add: failures-def c-process-def c-process-process Abs-process-inverse)
lemma c-futures-failures:
(yps, $Y) \in$ futures (c-process step out s_{0}) xps $=$
$\left((x p s @ y p s, Y) \in c\right.$-failures step out $\left.s_{0}\right)$
by (simp add: futures-def failures-def c-process-def c-process-process Abs-process-inverse)
lemma c-traces:
xps \in traces $\left(c\right.$-process step out $\left.s_{0}\right)=\left(\exists X .(x p s, X) \in c\right.$-failures step out $\left.s_{0}\right)$
by (simp add: traces-def failures-def Domain-iff c-process-def c-process-process
Abs-process-inverse)
lemma c-refusals:
$X \in$ refusals (c-process step out $\left.s_{0}\right)$ xps $=\left((x p s, X) \in c\right.$-failures step out $\left.s_{0}\right)$
by (simp add: refusals-def c-failures-failures)
lemma c-next-events:
$x p \in$ next-events (c-process step out s_{0}) xps $=$
$\left(\exists X .(x p s @[x p], X) \in c\right.$-failures step out $\left.s_{0}\right)$
by (simp add: next-events-def c-traces)
lemma c-traces-failures:
xps \in traces $\left(c\right.$-process step out $\left.s_{0}\right) \Longrightarrow$
$\left(x p s,\left\{(x, p) . p \neq\right.\right.$ out (foldl step $s_{0}($ map fst xps $\left.\left.\left.)\right) x\right\}\right) \in c$-failures step out s_{0} proof (simp add: c-traces, erule exE, rule rev-cases [of xps],

```
simp-all add: R0 split-paired-all)
    fix yps y p Y
    assume A:(yps@[(y, p)],Y)\inc-failures step out so
    let ?s = foldl step so (map fst yps)
    let ?ys' = map fst (yps @ [(y,p)])
    have (yps @ [(y,p)],Y) \in failures (c-process step out so)
    using A by (simp add: c-failures-failures)
    hence (yps, {}) \in failures (c-process step out so) by (rule process-rule-2)
    hence (yps,{})\inc-failures step out so by (simp add: c-failures-failures)
    moreover have ?s = foldl step so (map fst yps) by simp
    ultimately have (yps @ [(y,out ?s y)], {(x,p).p\not= out (step ?s y) x})
    \inc-failures step out so
    by (rule R1)
    moreover have yps @ [(y, p)]\not=[] by simp
    with A have snd (last (yps @ [(y,p)])) =
        out (foldl step so (butlast ?ys')) (last ?ys')
    by (rule c-failures-last)
hence p=out ?s y by simp
ultimately show (yps @ [(y,p)],{(x,p).p\not=out (step ?s y) x})
    c
    by simp
qed
theorem c-process-deterministic: deterministic (c-process step out so)
proof (simp add: deterministic-def c-refusals c-next-events set-eq-iff, rule ballI,
rule allI)
    fix xps X
    assume T:xps \in traces (c-process step out so)
let ?s = foldl step so (map fst xps)
show (xps,X)\inc-failures step out so
    (\forallx p. (x, p) \inX\longrightarrow(\forallX.(xps @ [(x, p)],X) #c-failures step out so))
    (is ?P = ?Q)
proof (rule iffI, (rule allI)+, rule impI, rule allI, rule notI)
    fix x pY
    let ?xs' = map fst (xps @ [(x,p)])
    assume ?P
    hence }X\subseteq{(x,p).p\not=out ?s x} (is - \subseteq? 'X') by (rule c-failures-ref) 
    moreover assume (x,p)\inX
    ultimately have (x, p) \in? ' ' ..
    hence A: p\not=out ?s x by simp
    assume (xps @ [(x,p)],Y)\inc-failures step out so
    moreover have xps@ [(x,p)] # [] by simp
    ultimately have snd (last (xps @ [(x, p)]))=
        out (foldl step so (butlast ?xs')) (last ?xs')
    by (rule c-failures-last)
    hence p=out ?s x by simp
    thus False using A by contradiction
next
    assume ?Q
```

```
    have A: (xps, {(x,p).p\not= out ?s x}) ce-failures step out so
    using T by (rule c-traces-failures)
    moreover have X\subseteq{(x,p).p\not= out ?s x}
    proof (rule subsetI, simp add: split-paired-all, rule notI)
    fix x p
    assume (x,p)\inX and p oout ?s }
    hence (xps @ [(x, out ?s x)], {(y,p).p\not= out (step ?s x) y})
        |}\mathrm{ -failures step out so
        using \?Q` by simp
        moreover have ?s = foldl step so (map fst xps) by simp
        with A have (xps @ [(x, out ?s x)], {(y,p).p\not= out (step ?s x) y})
            |}\mathrm{ -failures step out so
        by (rule R1)
        ultimately show False by contradiction
    qed
    ultimately show ?P by (rule R2)
qed
qed
```


2.3 Traces in classical processes

Here below is the definition of function c-tr, where c-tr step out s xs is the trace of classical process c-process step out s corresponding to the trace $x s$ of the associated deterministic state machine. Moreover, some useful lemmas are proven about this function.

```
function \(c\)-tr \(::\left({ }^{\prime} s \neq{ }^{\prime} a \Rightarrow{ }^{\prime} s\right) \Rightarrow\left(' s \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} o\right) \Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} a\) list \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} o\right)\) list
where
c-tr-- - [] = [] |
\(c\)-tr step out \(s(x s\) @ \([x])=c\)-tr step out \(s\) xs @ \([(x\), out (foldl step s xs) \(x)]\)
proof (atomize-elim, simp-all add: split-paired-all)
qed (rule rev-cases, rule disj11, assumption, simp)
termination by lexicographic-order
lemma \(c\)-tr-length: length ( \(c\)-tr step out \(s x s\) ) \(=\) length \(x s\)
by (rule rev-induct, simp-all)
lemma \(c\)-tr-map: map fst ( \(c-\)-tr step out \(s x s)=x s\)
by (rule rev-induct, simp-all)
lemma \(c\)-tr-singleton: \(c\)-tr step out \(s[x]=[(x\), out s \(x)]\)
proof -
    have \(c\)-tr step out \(s[x]=c\)-tr step out \(s([] @[x])\) by simp
    also have \(\ldots=c\)-tr step out \(s[]\) @ [(x, out (foldl step \(s[]) x)]\)
    by (rule \(c-t r . s i m p s(2))\)
    also have \(\ldots=[(x\), out s \(x)]\) by simp
    finally show? thesis.
qed
```

```
lemma c-tr-append:
    c-tr step out s (xs @ ys) = c-tr step out s xs @ c-tr step out (foldl step s xs) ys
proof (rule-tac xs = ys in rev-induct, simp, subst append-assoc [symmetric])
qed (simp del: append-assoc)
lemma c-tr-hd-tl:
    assumes A: xs \not=[]
    shows c-tr step out s xs =
        (hd xs, out s (hd xs)) # c-tr step out (step s (hd xs)) (tl xs)
proof -
    let ?s = foldl step s [hd xs]
    have c-tr step out s ([hd xs] @ tl xs)=
        c-tr step out s [hd xs] @ c-tr step out ?s (tl xs)
    by (rule c-tr-append)
    moreover have [hd xs] @ tl xs = xs using A by simp
    ultimately have c-tr step out s xs =
        c-tr step out s [hd xs] @ c-tr step out ?s (tl xs)
    by simp
    moreover have c-tr step out s [hd xs] = [(hd xs, out s (hd xs))]
    by (simp add: c-tr-singleton)
    ultimately show ?thesis by simp
qed
lemma c-failures-tr:
    (xps,X) cc-failures step out so C xps = c-tr step out so (map fst xps)
by (erule c-failures.induct, simp-all)
lemma c-futures-tr:
    assumes A: (yps,Y) futures (c-process step out so) xps
    shows yps = c-tr step out (foldl step so (map fst xps)) (map fst yps)
proof -
    have B: (xps @ yps,Y)\inc-failures step out so
        using A by (simp add: c-futures-failures)
    hence xps @ yps = c-tr step out so (map fst (xps @ yps))
        by (rule c-failures-tr)
    hence xps @ yps=c-tr step out so (map fst xps) @
        c-tr step out (foldl step so (map fst xps)) (map fst yps)
        by (simp add: c-tr-append)
    moreover have (xps @ yps,Y)\in failures (c-process step out so)
        using B by (simp add:c-failures-failures)
    hence (xps,{})\in failures (c-process step out so)
        by (rule process-rule-2-failures)
    hence (xps, {})\inc-failures step out so by (simp add: c-failures-failures)
    hence xps =c-tr step out so (map fst xps) by (rule c-failures-tr)
    ultimately show ?thesis by simp
qed
lemma c-tr-failures:
```

```
(c-tr step out \(s_{0} x s,\left\{(x, p) . p \neq\right.\) out (foldl step \(\left.\left.\left.s_{0} x s\right) x\right\}\right)\)
    \(\in c\)-failures step out \(s_{0}\)
proof (rule rev-induct, simp-all, rule R0)
    fix \(x x s\)
    let ?s \(=\) foldl step \(s_{0}\left(\right.\) map fst \(\left(c-t r\right.\) step out \(\left.\left.s_{0} x s\right)\right)\)
    assume ( \(c\)-tr step out \(s_{0} x s,\left\{(x, p) . p \neq\right.\) out (foldl step \(\left.\left.\left.s_{0} x s\right) x\right\}\right)\)
        \(\in c\)-failures step out \(s_{0}\)
    moreover have ?s \(=\) foldl step \(s_{0}\left(\right.\) map fst \(\left(c\right.\)-tr step out \(\left.\left.s_{0} x s\right)\right)\) by simp
    ultimately have ( \(c\)-tr step out \(s_{0} x s\) @ [(x, out ?s \(\left.\left.x\right)\right]\),
        \(\{(y, p) . p \neq\) out \((\) step ?s \(x) y\}) \in c\)-failures step out \(s_{0}\)
        by (rule R1)
    moreover have \(? s=\) foldl step \(s_{0} x s\) by (simp add: c-tr-map)
    ultimately show (c-tr step out \(s_{0} x s\) @ \(\left[\left(x\right.\right.\), out (foldl step \(\left.\left.\left.s_{0} x s\right) x\right)\right]\),
        \(\left\{(y, p) . p \neq\right.\) out (step (foldl step \(\left.\left.\left.\left.s_{0} x s\right) x\right) y\right\}\right) \in c\)-failures step out \(s_{0}\) by simp
qed
lemma \(c\)-tr-futures:
    (c-tr step out (foldl step \(\left.s_{0} x s\right) y s\),
        \(\left\{(x, p) . p \neq\right.\) out (foldl step (foldl step \(\left.\left.\left.\left.s_{0} x s\right) y s\right) x\right\}\right)\)
        \(\in\) futures (c-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(\left.s_{0} x s\right)\)
proof (simp add: c-futures-failures)
    have ( \(c\)-tr step out \(s_{0}(x s @ y s),\left\{(x, p) . p \neq\right.\) out (foldl step \(\left.\left.\left.s_{0}(x s @ y s)\right) x\right\}\right)\)
        \(\in c\)-failures step out \(s_{0}\)
        by (rule c-tr-failures)
    moreover have c-tr step out \(s_{0}(x s\) @ ys) =
        c-tr step out \(s_{0}\) xs @ c-tr step out (foldl step \(s_{0} x s\) ) ys
        by (rule c-tr-append)
    ultimately show (c-tr step out \(s_{0}\) xs @ c-tr step out (foldl step \(s_{0} x s\) ) ys,
        \(\left\{(x, p) . p \neq\right.\) out (foldl step (foldl step \(\left.\left.\left.s_{0} x s\right) y s\right) x\right\}\) )
        \(\in c\)-failures step out \(s_{0}\)
        by \(\operatorname{simp}\)
qed
```


2.4 Noninterference in classical processes

Given a mapping D of the actions of a deterministic state machine into their security domains, it is natural to map each event (x, p) of the corresponding classical process into the domain $D x$ of action x.

Such mapping of events into domains, formalized as function c-dom D in the continuation, ensures that the same noninterference policy applying to a deterministic state machine be applicable to the associated classical process as well. This is the simplest, and thus preferable way to construct a policy for the process such as to be isomorphic to the one assigned for the machine, as required in order to prove the equivalence of CSP noninterference security to the classical notion in the case of classical processes.

In what follows, function c-dom will be used in the proof of some useful lemmas concerning the application of functions sinks, ipurge-tr, c-sources, c-ipurge from noninterference theory to the traces of classical processes,
constructed by means of function $c-t r$.
definition c-dom $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} d\right) \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} o\right) \Rightarrow{ }^{\prime} d$ where
c-dom $D x p \equiv D(f s t x p)$
lemma c-dom-sources:
c-sources $I(c$-dom $D) u x p s=c$-sources $I D u($ map fst xps $)$
by (induction xps, simp-all add: c-dom-def)
lemma c-dom-sinks: sinks $I(c$-dom $D) u$ xps $=\operatorname{sinks} I D u($ map fst xps $)$
by (induction xps rule: rev-induct, simp-all add: c-dom-def)
lemma c-tr-sources:
c-sources $I(c$-dom $D) u(c$-tr step out $s x s)=c$-sources $I D u x s$
by (simp add: c-dom-sources c-tr-map)
lemma c-tr-sinks: sinks $I(c$-dom $D) u(c$-tr step out $s x s)=\operatorname{sinks} I D u x s$ by (simp add: c-dom-sinks c-tr-map)
lemma c-tr-ipurge:
c-ipurge $I(c$-dom $D) u(c$-tr step out $s(c$-ipurge $I D u x s))=$ c-tr step out s (c-ipurge I Duxs)
proof (induction xs arbitrary: s, simp)
fix x xs s
assume A : $\bigwedge s$. c-ipurge $I(c$-dom $D) u(c$-tr step out $s(c$-ipurge $I D u x s))=$ c-tr step out s (c-ipurge I D uxs)
show c-ipurge $I(c$-dom $D) u(c$-tr step out $s(c$-ipurge $I D u(x \# x s)))=$ c-tr step out s (c-ipurge I Du(x\#xs))
proof (cases $D x \in c$-sources I $D u(x \# x s)$, simp-all del: c-sources.simps) have B : c-tr step out s ($x \#$ c-ipurge I $D u x s$) $=$ (x, out $s x$) \# c-tr step out (step s x) (c-ipurge I Duxs) by (simp add: c-tr-hd-tl)
assume C : $D x \in c$-sources $I D u(x \# x s)$
hence $D x \in c$-sources I $D u$ (c-ipurge I $D u(x \# x s)$)
by (subst c-sources-ipurge)
hence $D x \in c$-sources $I(c$-dom $D) u(c$-tr step out $s(x \# c$-ipurge $I D u x s))$
using C by (simp add: c-tr-sources)
hence c-dom $D(x$, out $s x) \in c$-sources $I(c$-dom $D) u$ ($(x$, out $s x)$ \# c-tr step out (step s x) (c-ipurge I Duxs))
using B by (simp add: c-dom-def)
hence c-ipurge $I(c$-dom $D) u(c$-tr step out $s(x \# c$-ipurge $I D u x s))=$ (x, out s x) \# c-ipurge $I(c$-dom $D) u$ (c-tr step out (step s x) (c-ipurge I $D u x s)$) using B by simp
moreover have c-ipurge $I(c$-dom $D) u$ $(c$-tr step out $($ step $s x)(c$-ipurge $I D u x s))=$ c-tr step out (step s x) (c-ipurge I $D u x s$)
using A.
ultimately show c-ipurge $I(c$-dom $D) u$
$(c$-tr step out $s(x \# c$-ipurge I $D u x s))=$
c-tr step out s ($x \#$ c-ipurge I $D u x s$)
using B by simp
next
show c-ipurge $I(c$-dom $D) u(c$-tr step out $s(c$-ipurge $I D u x s))=$
c-tr step out s (c-ipurge I D uxs)
using A.
qed
qed
lemma c-tr-ipurge-tr-1 [rule-format]:
$(\forall n \in\{. .<$ length $x s\} . D(x s!n) \notin$ sinks I D u (take (Suc n) xs) \longrightarrow out (foldl step $s($ ipurge-tr I $D u($ take $n x s)))(x s!n)=$
out (foldl step $s($ take n xs $))(x s!n)) \longrightarrow$
ipurge-tr $I(c$-dom $D) u(c$-tr step out s xs $)=c$-tr step out $s(i p u r g e-t r I D u x s)$
proof (induction xs rule: rev-induct, simp, rule impI)
fix x xs
assume $(\forall n \in\{. .<$ length $x s\}$.
$D(x s!n) \notin$ sinks I Du(take $($ Suc $n) x s) \longrightarrow$
out (foldl step s (ipurge-tr I D u (take n xs))) (xs ! n) $=$
out $($ foldl step $s($ take $n x s))(x s!n)) \longrightarrow$
ipurge-tr $I(c$-dom $D) u(c$-tr step out $s x s)=$
c-tr step out s (ipurge-tr I D u xs)
moreover assume $A: \forall n \in\{. .<$ length $(x s @[x])\}$.
$D((x s @[x])!n) \notin$ sinks I D u (take (Suc n) $(x s$ @ $[x])) \longrightarrow$
out (foldl step s (ipurge-tr I D u (take n (xs @ $[x])))$) ((xs @ $[x])!n)=$
out (foldl step s (take $n(x s$ @ $[x])))((x s$ @ $[x])!n)$
have $\forall n \in\{. .<$ length $x s\}$.
$D(x s!n) \notin$ sinks I D u (take $($ Suc $n) x s) \longrightarrow$
out $($ foldl step $s($ ipurge-tr I D u (take n xs $)))(x s!n)=$
out (foldl step s (take n xs) $)(x s!n)$
proof (rule ballI, rule impI)
fix n
assume $B: n \in\{. .<$ length $x s\}$
hence $n \in\{. .<$ length $(x s$ @ $[x])\}$ by simp
with A have $D((x s @[x])!n) \notin \operatorname{sinks} I D u($ take $($ Suc $n)(x s @[x])) \longrightarrow$
out (foldl step s (ipurge-tr I D u (take n (xs @ $[x]))))((x s$ @ $[x])!n)=$
out (foldl step $s($ take $n(x s$ @ $[x])))((x s$ @ $[x])!n) .$.
hence $D(x s!n) \notin$ sinks I D u (take (Suc n) xs) \longrightarrow
out (foldl step s (ipurge-tr I D u (take nxs))) (xs! n) =
out (foldl step s (take n xs) $)(x s!n)$
using B by (simp add: nth-append)
moreover assume $D(x s!n) \notin$ sinks I $D u($ take (Suc n) xs)
ultimately show out (foldl step s (ipurge-tr I Du(take n xs))) (xs!n)=
out (foldl step $s($ take $n x s))(x s!n)$..
qed
ultimately have C : ipurge-tr $I(c$-dom $D) u(c$-tr step out $s x s)=$
c-tr step out s (ipurge-tr I D u xs) ..
show ipurge-tr $I(c$-dom $D) u(c$-tr step out $s(x s @[x]))=$

```
    c-tr step out s (ipurge-tr I D u (xs @ [x]))
    proof (cases D x cinks I D u (xs @ [x]))
    case True
    then have D x f sinks I (c-dom D) u
        (c-tr step out s (xs @ [x]))
    by (subst c-tr-sinks)
    hence c-dom D (x, out (foldl step s xs) x)
        sinks I (c-dom D) u(c-tr step out s xs @ [(x,out (foldl step s xs) x)])
    by (simp add: c-dom-def)
    with True show ?thesis using C by simp
next
    case False
    then have Dx\not\in sinks I (c-dom D)u
        (c-tr step out s (xs @ [x]))
    by (subst c-tr-sinks)
    hence c-dom D (x, out (foldl step s xs) x)
        # sinks I (c-dom D) u (c-tr step out s xs @ [(x, out (foldl step s xs) x)])
    by (simp add: c-dom-def)
    with False show ?thesis
    proof (simp add:C)
        have length xs \in {..<length (xs @ [x])} by simp
        with A have D ((xs @ [x])! length xs)
            \not\in sinks I D u (take (Suc (length xs)) (xs @ [x])) \longrightarrow
            out (foldl step s (ipurge-tr I D u (take (length xs) (xs @ [x]))))
            ((xs @ [x])! (length xs)) =
            out (foldl step s (take (length xs) (xs @ [x]))) ((xs @ [x])!(length xs)) ..
    hence Dx\not\in sinks I Du(xs @ [x])}
                out (foldl step s (ipurge-tr I D u xs)) x =out (foldl step s xs) x
            by simp
            thus out (foldl step s xs) x = out (foldl step s (ipurge-tr I Duxs)) x
            using False by simp
    qed
qed
qed
lemma c-tr-ipurge-tr-2 [rule-format]:
    assumes A:}\foralln\in{..length ys}. \existsY
        (ipurge-tr I (c-dom D) u (c-tr step out (foldl step so xs) (take n ys)),Y)
    futures (c-process step out so) (c-tr step out so xs)
    shows n\in{..<length ys} \longrightarrowD (ys!n)\not\in sinks I D u (take (Suc n) ys)\longrightarrow
        out (foldl step (foldl step so xs) (ipurge-tr I Du(take n ys))) (ys ! n)=
    out (foldl step (foldl step so xs) (take n ys)) (ys ! n)
proof (rule nat-less-induct, (rule impI)+)
    fix n
    let ?s = foldl step so xs
    let ?yp = (ys!n, out (foldl step ?s (take n ys)) (ys!n))
    assume
    B:\forallm<n.m}\in{..<length ys } \longrightarrow
            D(ys!m)\not\in sinks I Du(take (Suc m) ys) \longrightarrow
```

```
out (foldl step ?s (ipurge-tr I D u (take m ys))) (ys!m)=
out (foldl step ?s (take m ys)) (ys !m) and
C:n\in{..<length ys } and
D:D (ys!n)\not\in sinks I D u (take (Suc n) ys)
```

have $n<$ length ys using C by simp
hence E : take (Suc n) ys = take n ys @ [ys!n]
by (rule take-Suc-conv-app-nth)
moreover have Suc $n \in\{$..length ys $\}$ using C by simp
with A have $\exists Y$.
(ipurge-tr I (c-dom D) u (c-tr step out ?s (take (Suc n) ys)), Y) \in futures (c-process step out $\left.s_{0}\right)\left(c\right.$-tr step out $\left.s_{0} x s\right)$..

then obtain Y where

(ipurge-tr I (c-dom D) u (c-tr step out ?s (take (Suc n) ys)), Y)
\in futures (c-process step out s_{0}) (c-tr step out $\left.s_{0} x s\right)$..
ultimately have
(ipurge-tr I (c-dom D) u (c-tr step out ?s (take n ys) @ [?yp]), Y)
\in futures (c-process step out s_{0}) (c-tr step out $\left.s_{0} x s\right)$
by simp
moreover have c-dom D ? yp
\notin sinks $I(c$-dom $D) u(c$-tr step out ?s (take (Suc n) ys))
using D by (simp add: c-dom-def c-tr-sinks)
hence c-dom D ?yp \notin sinks $I(c$-dom $D) u$
(c-tr step out?s (take n ys) @ [?yp])
using E by simp
ultimately have
(ipurge-tr $I(c$-dom $D) u(c$-tr step out ?s (take n ys)) @ [?yp], Y)
\in futures $\left(c\right.$-process step out $\left.s_{0}\right)\left(c\right.$-tr step out $\left.s_{0} x s\right)$
by simp
moreover have ipurge-tr $I(c$-dom $D) u(c$-tr step out ?s $($ take $n y s))=$
c-tr step out?s (ipurge-tr I D u (take n ys))
proof (rule c-tr-ipurge-tr-1, simp, erule conjE)
fix m
have $m<n \longrightarrow m \in\{. .<$ length $y s\} \longrightarrow$
$D(y s!m) \notin$ sinks I $D u($ take $($ Suc $m) y s) \longrightarrow$
out (foldl step ?s (ipurge-tr I Du(take mys))) (ys!m)= out (foldl step ?s (take mys)) (ys ! m) using B ..
moreover assume $m<n$
ultimately have $m \in\{. .<$ length $y s\} \longrightarrow$
$D(y s!m) \notin$ sinks I Du(take $($ Suc $m) y s) \longrightarrow$
out (foldl step ?s (ipurge-tr I Du(take mys))) (ys!m)= out (foldl step ?s (take mys)) (ys!m)..
moreover assume $m<$ length ys
hence $m \in\{. .<$ length $y s\}$ by simp
ultimately have $D(y s!m) \notin \operatorname{sinks} I D u($ take $(S u c m) y s) \longrightarrow$ out (foldl step ?s (ipurge-tr I D u (take mys))) $(y s!m)=$ out (foldl step?s (take mys)) (ys!m)..
moreover assume $D(y s!m) \notin \operatorname{sinks} I D u(t a k e(S u c ~ m) y s)$
ultimately show out (foldl step ?s (ipurge-tr I Du(take mys))) (ys!m)= out (foldl step ?s (take mys)) (ys!m)..

```
    qed
    ultimately have (c-tr step out ?s (ipurge-tr I D u (take n ys)) @ [?yp], Y)
    futures (c-process step out so) (c-tr step out so xs)
    by simp
    hence (c-tr step out so(xs @ ipurge-tr I D u (take n ys)) @ [?yp],Y)
    \in}\mathrm{ -failures step out so
    (is (?xps, -) \in -) by (simp add: c-futures-failures c-tr-append)
    moreover have ?xps }\not=[]\mathrm{ by simp
    ultimately have snd (last ?xps) =
        out (foldl step so (butlast (map fst ?xps))) (last (map fst ?xps))
    by (rule c-failures-last)
    thus out (foldl step ?s (ipurge-tr I D u (take n ys))) (ys!n)=
        out (foldl step ?s (take n ys)) (ys ! n)
    by (simp add: c-tr-map butlast-append)
qed
lemma c-tr-ipurge-tr [rule-format]:
    assumes A:}\foralln\in{..length ys}. \existsY
    (ipurge-tr I (c-dom D) u (c-tr step out (foldl step so xs) (take n ys)), Y)
    futures (c-process step out so) (c-tr step out so xs)
    shows ipurge-tr I (c-dom D) u (c-tr step out (foldl step soxs) ys)=
    c-tr step out (foldl step so xs) (ipurge-tr I D u ys)
proof (rule c-tr-ipurge-tr-1)
    fix n
    have }\bigwedgen.n\in{..length ys}\Longrightarrow\existsY
        (ipurge-tr I (c-dom D) u (c-tr step out (foldl step so xs) (take n ys)), Y)
        futures (c-process step out so) (c-tr step out so xs)
    using A ..
    moreover assume
        n\in{..<length ys } and
    D(ys!n)\not\in sinks I D u (take (Suc n) ys)
    ultimately show
    out (foldl step (foldl step so xs) (ipurge-tr I D u (take n ys))) (ys!n)=
    out (foldl step (foldl step so xs) (take n ys)) (ys ! n)
    by (rule c-tr-ipurge-tr-2)
qed
```


2.5 Equivalence between security properties

The remainder of this section is dedicated to the proof of the equivalence between the CSP noninterference security of a classical process and the classical noninterference security of the corresponding deterministic state machine.

In some detail, it will be proven that CSP noninterference security alone is a sufficient condition for classical noninterference security, whereas the latter security property entails the former for any reflexive noninterference policy. Therefore, the security properties under consideration turn out to be equivalent if the enforced noninterference policy is reflexive, which is the
case for any policy of practical significance.
lemma secure-implies-c-secure-aux:
assumes S : secure (c-process step out $\left.s_{0}\right) I(c$-dom $D)$
shows out (foldl step (foldl step s_{0} xs) ys) $x=$
out (foldl step (foldl step $\left.s_{0} x s\right)$ (c-ipurge I D ($D x$) ys)) x
proof (induction ys arbitrary: xs, simp)
fix y ys $x s$
assume $\bigwedge x s$. out (foldl step (foldl step $\left.s_{0} x s\right)$ ys) $x=$ out (foldl step (foldl step s_{0} xs) (c-ipurge I D (D x) ys)) x
hence A : out (foldl step (foldl step $s_{0}(x s$ @ [y])) ys) $x=$ out (foldl step (foldl step $s_{0}(x s$ @ [y])) (c-ipurge I D (D x) ys)) x.
show out (foldl step (foldl step $\left.\left.s_{0} x s\right)(y \# y s)\right) x=$ out (foldl step $\left(\right.$ foldl step $\left.s_{0} x s\right)(c$-ipurge $\left.I D(D x)(y \# y s))\right) x$
proof (cases $D y \in c$-sources $I D(D x)(y \# y s))$
assume $D y \in c$-sources $I D(D x)(y \# y s)$
thus ?thesis using A by simp
next
let $? s=$ foldl step $s_{0} x s$
let ? $y p=(y$, out ?s $y)$
have (c-tr step out ?s $[y],\left\{\left(x^{\prime}, p\right) . p \neq\right.$ out (foldl step ?s $\left.\left.[y]\right) x^{\prime}\right\}$)
\in futures $\left(c\right.$-process step out $\left.s_{0}\right)\left(c\right.$-tr step out $\left.s_{0} x s\right)($ is $(-, ? Y) \in-)$
by (rule c-tr-futures)
hence $([? y p], ? Y) \in$ futures (c-process step out s_{0}) (c-tr step out s_{0} xs)
by (simp add: c-tr-hd-tl)
moreover have (c-tr step out ?s (c-ipurge I D ($D x$) (ys @ $[x])$),
$\left\{\left(x^{\prime}, p\right) . p \neq\right.$ out (foldl step ?s (c-ipurge I D ($D x$) (ys @ $\left.[x]\right)$)) $\left.x^{\prime}\right\}$)
\in futures $\left(c\right.$-process step out $\left.s_{0}\right)\left(c\right.$-tr step out $\left.s_{0} x s\right)($ is $(-, ? Z) \in-)$
by (rule c-tr-futures)
ultimately have (?yp \# ipurge-tr I (c-dom $D)(c$-dom D ? $y p)$
(c-tr step out ?s (c-ipurge I $D(D x)(y s @[x])))$, ipurge-ref I (c-dom D) (c-dom D ?yp) (c-tr step out ?s (c-ipurge I D (D x) (ys @ [x]))) ?Z)
\in futures (c-process step out s_{0}) (c-tr step out $\left.s_{0} x s\right)$
(is $(-, ? X) \in-$) using S by (simp add: secure-def)
hence C : (?yp \# ipurge-tr I (c-dom $D)(c$-dom D ?yp)
(c-ipurge $I(c$-dom $D)(D x)$
(c-tr step out ?s (c-ipurge I D (D x) (ys @ $[x]))$)), ? X)
\in futures (c-process step out s_{0}) (c-tr step out $s_{0} x s$)
by (simp add: c-tr-ipurge)
assume $D: D$ y $\notin c$-sources $I D(D x)(y \# y s)$
hence $D y \notin c$-sources $I D(D x)((y \# y s) @[x])$
by (subst c-sources-append-1)
hence $D y \notin c$-sources $I D(D x)(y \# y s @[x])$ by simp
moreover have c-sources $I D(D x)(y \# y s @[x])=$ c-sources $I D(D x)(y \# c$-ipurge $I D(D x)(y s @[x]))$
by (simp add: c-sources-ipurge)
ultimately have $D y \notin c$-sources $I D(D x)$
(y \# c-ipurge I $D(D x)(y s @[x]))$

```
    by simp
    moreover have map fst (?yp # c-tr step out ?s
        (c-ipurge I D (D x) (ys @ [x]))) =
        y # c-ipurge I D (D x) (ys @ [x])
    by (simp add: c-tr-map)
    hence c-sources I D (D x) (y # c-ipurge I D (D x) (ys @ [x])) =
    c-sources I (c-dom D) (D x)
    (?yp # c-tr step out?s (c-ipurge I D (D x) (ys @ [x])))
    by (subst c-dom-sources, simp)
    ultimately have c-dom D ?yp & c-sources I (c-dom D) ( D x)
    (?yp # c-tr step out ?s (c-ipurge I D (D x) (ys @ [x])))
    by (simp add: c-dom-def)
    hence ipurge-tr I (c-dom D) (c-dom D ?yp) (c-ipurge I (c-dom D) (D x)
        (c-tr step out ?s (c-ipurge I D (D x) (ys @ [x])))) =
        c-ipurge I (c-dom D) (D x) (c-tr step out ?s (c-ipurge I D (D x) (ys @ [x])))
    by (rule c-ipurge-tr-ipurge)
    hence (?yp # c-tr step out ?s (c-ipurge I D (D x) (ys @ [x])), ?X)
    futures (c-process step out so) (c-tr step out so xs)
    using C by (simp add: c-tr-ipurge)
    hence (c-tr step out so xs @ ?yp #
    c-tr step out ?s (c-ipurge I D (D x) ys @ [x]), ?X)
    c-failures step out so
    (is (?xps, -) \in-) by (simp add: c-futures-failures c-ipurge-append-1)
    moreover have ?xps }\not=[] by sim
    ultimately have snd (last ?xps) =
        out (foldl step so (butlast (map fst ?xps))) (last (map fst ?xps))
        by (rule c-failures-last)
    hence snd (last ?xps) =
        out (foldl step (foldl step so (xs @ [y])) (c-ipurge I D (D x) ys)) x
    by (simp add: c-tr-map butlast-append)
    moreover have snd (last ?xps) =
    out (foldl step (foldl step soxs) (c-ipurge I D (D x) (y# ys))) x
    using D by simp
    ultimately show ?thesis using A by simp
    qed
qed
theorem secure-implies-c-secure:
    assumes S: secure (c-process step out so) I (c-dom D)
    shows c-secure step out so I D
proof (simp add: c-secure-def,(rule allI)+)
    fix x xs
    have out (foldl step (foldl step so []) xs) x =
        out (foldl step (foldl step so []) (c-ipurge I D (D x) xs)) x
    using S by (rule secure-implies-c-secure-aux)
    thus out (foldl step soxs)x= out (foldl step so (c-ipurge I D (D x) xs)) x
    by simp
qed
```

```
lemma \(c\)-secure-futures-1:
    assumes \(R\) : refl \(I\) and \(S\) : c-secure step out \(s_{0} I D\)
    shows (yps @ [yp], Y) \(\in\) futures (c-process step out \(s_{0}\) ) xps \(\Longrightarrow\)
    (yps, \(\{x \in Y\). \((c\)-dom \(D\) yp, \(c\)-dom \(D x) \notin I\})\)
    \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
proof (simp add: c-futures-failures)
    let ? zs = map fst (xps @ yps)
    let \(? y=f s t y p\)
    assume \(A\) : (xps @ yps @ [yp], \(Y) \in c\)-failures step out \(s_{0}\)
    hence \(\left((x p s\right.\) @ yps) @ \([y p], Y) \in\) failures \(\left(c\right.\)-process step out \(\left.s_{0}\right)\)
    by (simp add: c-failures-failures)
    hence (xps @ yps, \(\}) \in\) failures ( \(c\)-process step out \(s_{0}\) )
    by (rule process-rule-2-failures)
    hence (xps @yps, \(\}) \in c\)-failures step out \(s_{0}\) by (simp add: c-failures-failures)
    hence \(B: x p s\) @ yps \(=c\)-tr step out \(s_{0}\) ?zs by (rule c-failures-tr)
    have \(Y \subseteq\left\{(x, p) . p \neq\right.\) out (foldl step \(s_{0}(\) map fst \(\left.\left.(x p s @ y p s @[y p]))\right) x\right\}\)
    using \(A\) by (rule \(c\)-failures-ref)
    hence \(C: Y \subseteq\left\{(x, p) . p \neq\right.\) out (foldl step \(\left.\left.s_{0}(? z s @[? y])\right) x\right\}\)
    (is \(-\subseteq\) ? \(Y^{\prime}\) ) by simp
    have (xps @yps, \(\left\{(x, p) . p \neq\right.\) out \(\left(\right.\) foldl step \(s_{0}\) ?zs) \(\left.\left.x\right\}\right) \in c\)-failures step out \(s_{0}\)
    (is \(\left(-, ? X^{\prime}\right) \in-\) ) by (subst B, rule \(c\)-tr-failures)
    moreover have \(\{x \in Y .(c\)-dom \(D\) yp, \(c\)-dom \(D x) \notin I\} \subseteq ? X^{\prime}(\) is \(? X \subseteq-)\)
    proof (rule subsetI, simp add: split-paired-all c-dom-def del: map-append,
    erule conjE)
    fix \(x p\)
    assume \((x, p) \in Y\)
    with \(C\) have \((x, p) \in\) ? \(Y^{\prime}\)..
    hence \(p \neq\) out (foldl step \(s_{0}(? z s\) @ [?y])) x by simp
    moreover have out (foldl step \(s_{0}\) (?zs @ [?y])) \(x=\)
            out (foldl step \(s_{0}(\) c-ipurge \(\left.I D(D x)(? z s @[? y]))\right) x\)
            using \(S\) by (simp add: c-secure-def)
    ultimately have \(p \neq\) out (foldl step \(s_{0}(c\)-ipurge I \(D(D x)(? z s\) @ [?y]))) \(x\)
    by simp
    moreover assume \((D ? y, D x) \notin I\)
    with \(R\) have c-ipurge \(I D(D x)(? z s @[? y])=c\)-ipurge \(I D(D x)\) ?zs
        by (rule c-ipurge-append-2)
        ultimately have \(p \neq\) out (foldl step \(s_{0}\) (c-ipurge I \(D(D x)\) ?zs)) \(x\) by simp
    moreover have out (foldl step \(s_{0}\) (c-ipurge \(I D(D x)\) ?zs)) \(x=\)
        out (foldl step \(s_{0}\) ?zs) \(x\)
        using \(S\) by (simp add: c-secure-def)
        ultimately show \(p \neq\) out (foldl step \(s_{0}\) ? zs) \(x\) by simp
    qed
    ultimately show (xps@yps,?X) \(\in c\)-failures step out \(s_{0}\) by (rule R2)
qed
lemma \(c\)-secure-implies-secure-aux-1 [rule-format]:
    assumes
        \(R\) : refl I and
        \(S\) : c-secure step out \(s_{0} I D\)
```

```
shows (yp # yps,Y)\in futures (c-process step out so) xps \longrightarrow
    (ipurge-tr I (c-dom D) (c-dom D yp) yps,
    ipurge-ref I (c-dom D) (c-dom D yp) yps Y)
    futures (c-process step out so) xps
proof (induction yps arbitrary: Y rule: length-induct, rule impI)
    fix yps Y
    assume
    A:\forallyps'. length yps' < length yps }
        (\forall\mp@subsup{Y}{}{\prime}.(yp#yps', Y') \in futures (c-process step out so) xps \longrightarrow
        (ipurge-tr I (c-dom D) (c-dom D yp) yps',
        ipurge-ref I (c-dom D) (c-dom D yp) yps' Y')
        futures (c-process step out so) xps) and
    B:(yp # yps,Y)\infutures (c-process step out so) xps
show (ipurge-tr I (c-dom D) (c-dom D yp) yps,
    ipurge-ref I (c-dom D) (c-dom D yp) yps Y)
    futures (c-process step out so) xps
proof (cases yps, simp add: ipurge-ref-def)
    case Nil
    hence ([] @ [yp],Y)\in futures (c-process step out so) xps using B by simp
    with R and S show ([],{x\inY.(c-dom D yp,c-dom D x)\not\inI})
        futures(c-process step out so) xps
        by (rule c-secure-futures-1)
next
    case Cons
    have }\exists\mathrm{ wps wp. yps=wps@ [wp]
        by (rule rev-cases [of yps], simp-all add: Cons)
    then obtain wps and wp where C:yps=wps @ [wp] by blast
    have B':((yp # wps)@ [wp],Y)\infutures (c-process step out so) xps
        using B and C by simp
    show ?thesis
    proof (simp only:C,
    cases c-dom D wp \in sinks I (c-dom D) (c-dom D yp) (wps @ [wp]))
        let ? }\mp@subsup{Y}{}{\prime}={x\inY.(c-dom Dwp,c-dom D x)\not\inI
        have length wps < length yps \longrightarrow
            (\forall\mp@subsup{Y}{}{\prime}.(yp# wps, Y') \in futures (c-process step out so) xps \longrightarrow
            (ipurge-tr I (c-dom D) (c-dom D yp) wps,
            ipurge-ref I (c-dom D) (c-dom D yp) wps Y')
            futures (c-process step out so) xps)
            using A ..
            moreover have length wps < length yps using C by simp
            ultimately have }\forall\mp@subsup{Y}{}{\prime}\mathrm{ .
                (yp # wps, Y') f futures(c-process step out so) xps \longrightarrow
                (ipurge-tr I (c-dom D) (c-dom D yp) wps,
                ipurge-ref I (c-dom D) (c-dom D yp) wps Y')
                futures (c-process step out so) xps ..
            hence (yp # wps, ?Y') \in futures (c-process step out so) xps \longrightarrow
                (ipurge-tr I (c-dom D) (c-dom D yp) wps,
                ipurge-ref I (c-dom D) (c-dom D yp) wps ? Y')
                futures (c-process step out so) xps ..
```

```
moreover have (yp \#wps,? \(Y^{\prime}\) ) \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    using \(R\) and \(S\) and \(B^{\prime}\) by (rule c-secure-futures-1)
ultimately have (ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp) wps,
    ipurge-ref \(I(c\)-dom \(D)\left(c\right.\)-dom \(D\) yp) wps ? \(\left.Y^{\prime}\right)\)
    \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps ..
moreover assume
    \(D: c\)-dom \(D w p \in \operatorname{sinks} I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])\)
hence ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])=\)
    ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp) wps
    by \(\operatorname{simp}\)
moreover have ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p]) Y=\)
    ipurge-ref \(I(c\)-dom \(D)\left(c\right.\)-dom \(D\) yp) wps ? \(Y^{\prime}\)
    using \(D\) by (rule ipurge-ref-eq)
    ultimately show (ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])\),
    ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D\) yp) (wps @ \([w p]) Y)\)
    \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    by \(\operatorname{simp}\)
next
    let \(?\) xs \(=\) map fst \(x p s\)
    let \(? y=f s t y p\)
    let ?ws = map fst wps
    let ? \(w=f s t w p\)
    let \(? s=\) foldl step \(s_{0}\) ? \(x s\)
    have (xps @yp\#wps @ [wp], Y) f failures (c-process step out \(s_{0}\) )
    using \(B^{\prime}\) by (simp add: c-futures-failures \(c\)-failures-failures)
    hence (xps, \(\}) \in\) failures ( \(c\)-process step out \(s_{0}\) )
    by (rule process-rule-2-failures)
hence (xps, \(\}) \in c\)-failures step out \(s_{0}\)
    by (simp add: c-failures-failures)
hence \(X\) : xps \(=c\)-tr step out \(s_{0}\) ? xs by (rule c-failures-tr)
have \(W:(y p \# w p s,\{ \}) \in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    using \(B^{\prime}\) by (rule process-rule-2-futures)
    hence \(y p \#\) wps \(=c\)-tr step out ?s (map fst (yp \# wps))
    by (rule c-futures-tr)
hence \(W^{\prime}: y p \#\) wps \(=c\)-tr step out ?s (?y \# ?ws) by simp
assume \(D: c\)-dom \(D w p \notin \operatorname{sinks} I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])\)
hence ipurge-tr I (c-dom \(D)(c\)-dom \(D y p)(w p s @[w p])=\)
    ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D y p)(y p \# w p s) @[w p]\)
    using \(R\) by (simp add: ipurge-tr-cons-same)
hence ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()(w p s @[w p])=\)
    ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()(c\)-tr step out ?s \((? y \#\) ?ws \()) @[w p]\)
    using \(W^{\prime}\) by simp
also have \(\ldots=\)
    c-tr step out ?s (ipurge-tr I D (c-dom D yp) (?y \# ?ws)) @ [wp]
proof (simp, rule c-tr-ipurge-tr)
    fix \(n\)
    show \(\exists W\). (ipurge-tr \(I\) (c-dom \(D)(c\)-dom \(D\) yp)
        (c-tr step out ?s (take \(n(? y \#\) ?ws \()\) )), W)
        \(\in\) futures (c-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}\) ? \(\left.x s\right)\)
```

```
proof (cases n, simp-all add: c-tr-hd-tl)
    have ( \(c\)-tr step out ?s []\(,\{(x, p) . p \neq\) out (foldl step ?s []) \(x\})\)
        \(\in\) futures (c-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}\) ?xs)
    by (rule \(c\)-tr-futures)
    hence ( []\(,\{(x, p) . p \neq\) out ?s \(x\}\) )
        \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) ( \(c\)-tr step out \(s_{0}\) ? \(\left.x s\right)\)
    by \(\operatorname{simp}\)
    thus \(\exists W\). ([],W)
        \(\in\) futures \(\left(c\right.\)-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}\) ? \(x s\) ) ..
next
    case (Suc m)
    let ?wps' \(=c\)-tr step out (step ?s ?y) (take \(m\) ?ws)
    have length ? wps \({ }^{\prime}<\) length yps \(\longrightarrow\)
        \(\left(\forall Y^{\prime} .\left(y p \#\right.\right.\) ? wps \(\left.{ }^{\prime}, Y^{\prime}\right) \in\) futures \(\left(c\right.\)-process step out \(\left.s_{0}\right) x p s \longrightarrow\)
        (ipurge-tr I (c-dom D) (c-dom D yp) ?wps',
        ipurge-ref \(I(c\)-dom \(D)\left(c\right.\)-dom \(D\) yp) ? wps \(\left.{ }^{\prime} Y^{\prime}\right)\)
        \(\in\) futures (c-process step out \(s_{0}\) ) xps)
    using \(A\)..
    moreover have length ? wps \({ }^{\prime}<\) length yps
    using \(C\) by (simp add: c-tr-length)
    ultimately have \(\forall Y^{\prime}\).
    (yp \# ?wps',\(\left.Y^{\prime}\right) \in\) futures (c-process step out \(\left.s_{0}\right)\) xps \(\longrightarrow\)
    (ipurge-tr I (c-dom D) (c-dom D yp) ?wps',
    ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D y p)\) ? wps \(\left.{ }^{\prime} Y^{\prime}\right)\)
    \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps ..
    hence (yp \# ?wps', \(\}) \in\) futures \(\left(c\right.\)-process step out \(\left.s_{0}\right) x p s \longrightarrow\)
    (ipurge-tr I (c-dom D) (c-dom D yp) ?wps',
    ipurge-ref \(I(c\)-dom \(D)(c-d o m ~ D y p)\) ?wps' \{\})
    \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    \(\left(\right.\) is \(\left.-\longrightarrow\left(-, ? W^{\prime}\right) \in-\right) .\).
moreover have \(E:\) yp \# wps \(=(\) ? y, out ?s ?y) \#
    c-tr step out (step ?s ?y) (take m?ws @ drop m?ws)
    using \(W^{\prime}\) by (simp add: c-tr-hd-tl)
hence \(F: y p=(? y\), out ?s ?y) by simp
hence \(y p \# w p s=y p \# ? w p s^{\prime} @\)
    c-tr step out (foldl step (step ?s ?y) (take \(m\) ?ws)) (drop \(m\) ?ws)
    using \(E\) by (simp only: c-tr-append)
    hence ((yp \# ?wps') @
        \(c\)-tr step out (foldl step (step ?s ?y) (take m?ws)) (drop \(m\) ?ws), \{\})
        \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    using \(W\) by simp
    hence (yp \# ?wps', \(\}) \in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    by (rule process-rule-2-futures)
    ultimately have (ipurge-tr I (c-dom \(D\) ) (c-dom \(D\) yp) ?wps', ? \(W^{\prime}\) )
        \(\in\) futures (c-process step out \(s_{0}\) ) xps ..
    moreover have ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()\) ?wps' \(=\)
    ipurge-tr \(I\) (c-dom \(D)(c\)-dom \(D\) yp) \(((? y\), out ?s ?y) \# ?wps')
    using \(R\) and \(F\) by (simp add: ipurge-tr-cons-same)
    ultimately have
```

```
        (ipurge-tr I (c-dom D) (c-dom D yp) ((?y, out ?s ?y) # ?wps'),?W')
        futures (c-process step out so) (c-tr step out so ?xs)
        using X by simp
        thus \existsW .
            (ipurge-tr I (c-dom D) (c-dom D yp) ((?y, out ?s ?y) # ?wps'),W)
            futures (c-process step out so) (c-tr step out so ?xs)
            by (rule-tac x =? W' in exI)
    qed
qed
finally have E: ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp])=
    c-tr step out ?s (ipurge-tr I D (c-dom D yp) (?y # ?ws)) @ [wp].
have (xps @ yp # wps @ [wp],Y) \in c-failures step out so
    (is (?xps', -) \in-) using B' by (simp add: c-futures-failures)
moreover have ? xps' }\not=[]\mathrm{ by simp
ultimately have snd (last ?xps') =
    out (foldl step so (butlast (map fst ?xps'))) (last (map fst ?xps'))
    by (rule c-failures-last)
hence snd wp = out (foldl step so (?xs @ ?y # ?ws))?w
    by (simp add: butlast-append)
hence snd wp=
    out (foldl step so (c-ipurge I D (D ?w) (?xs @ ?y # ?ws))) ?w
    using S by (simp add: c-secure-def)
moreover have F:D ?w & sinks I D (c-dom D yp) (?ws @ [?w])
    using D by (simp only: c-dom-sinks, simp add: c-dom-def)
have }\neg(\existsv\in\mathrm{ sinks I D (c-dom D yp) (?y # ?ws). (v, D ?w) 
proof (rule notI, simp add: c-dom-def sinks-cons-same R, erule disjE)
    assume (D ?y, D ?w) \inI
    hence D?w \in sinks I D (c-dom D yp) (?ws @ [?w])
    by (simp add: c-dom-def)
    thus False using F by contradiction
next
    assume }\existsv\in\mathrm{ sinks I D (D ?y) ?ws. (v, D ?w) }\in
    hence D?w sinks I D (c-dom D yp) (?ws @ [?w])
    by (simp add: c-dom-def)
    thus False using F by contradiction
qed
ultimately have snd wp = out (foldl step so
    (c-ipurge I D (D ?w) (?xs @ ipurge-tr I D (c-dom D yp) (?y # ?ws)))) ?w
    using R by (simp add: c-ipurge-ipurge-tr)
hence snd wp=
    out (foldl step so (?xs @ ipurge-tr I D (c-dom D yp) (?y # ?ws))) ?w
using}S\mathrm{ by (simp add: c-secure-def)
hence ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp]) =
    c-tr step out ?s (ipurge-tr I D (c-dom D yp) (?y # ?ws)) @
    [(?w, out (foldl step ?s (ipurge-tr I D (c-dom D yp) (?y # ?ws))) ?w)]
using E by (cases wp, simp)
hence ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp])=
    c-tr step out ?s (ipurge-tr I D (c-dom D yp) (?y # ?ws)) @
    c-tr step out (foldl step ?s (ipurge-tr I D (c-dom D yp) (?y # ?ws))) [?w]
```

```
by (simp add: c-tr-singleton)
hence ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])=\)
    c-tr step out ?s (ipurge-tr I D (c-dom D yp) (?y \# ?ws) @ [?w])
by (simp add: c-tr-append)
moreover have
    (c-tr step out ?s (ipurge-tr I D (c-dom D yp) (?y \# ?ws) @ [?w]),
    \(\{(x, p) . p \neq\) out (foldl step ?s
    (ipurge-tr I \(D(c\)-dom \(D y p)(? y \# ? w s) @[? w])) x\})\)
    \(\in\) futures (c-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}\) ?xs)
    (is \(\left(-, ? Y^{\prime}\right) \in-\) ) by (rule \(c\)-tr-futures)
ultimately have
    (xps @ ipurge-tr \(I(c\)-dom \(D)(c-d o m D y p)(w p s @[w p])\) ? ? \(\left.Y^{\prime}\right)\)
    \(\in c\)-failures step out \(s_{0}\)
    using \(X\) by (simp add: c-futures-failures)
moreover have
    ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()(w p s @[w p]) Y \subseteq ? Y^{\prime}\)
proof (rule subsetI, simp add: split-paired-all ipurge-ref-def c-dom-def
    del: sinks.simps, (erule conjE)+)
    fix \(x p\)
    assume
        \(G: \forall v \in \operatorname{sinks} I(c\)-dom \(D)(D\) ? \(y)(w p s @[w p]) .(v, D x) \notin I\) and
        \(H:(D ? y, D x) \notin I\)
    have \((x p s\) @ yp \#wps @ \([w p], Y) \in c\)-failures step out \(s_{0}\)
    using \(B^{\prime}\) by (simp add: c-futures-failures)
    hence \(Y \subseteq\left\{\left(x^{\prime}, p^{\prime}\right) . p^{\prime} \neq\right.\)
        out (foldl step \(s_{0}\) (map fst (xps @ yp \# wps @ [wp]))) \(\left.x^{\prime}\right\}\)
    by (rule \(c\)-failures-ref)
hence \(Y \subseteq\left\{\left(x^{\prime}, p^{\prime}\right)\right.\). \(p^{\prime} \neq\)
    out (foldl step \(s_{0}\left(? x s\right.\) @ ?y \# ?ws @ [?w])) \(\left.x^{\prime}\right\}\)
    by \(\operatorname{simp}\)
moreover assume \((x, p) \in Y\)
ultimately have \((x, p) \in\left\{\left(x^{\prime}, p^{\prime}\right) \cdot p^{\prime} \neq\right.\)
    out (foldl step \(s_{0}\left(? x s\right.\) @ ?y \# ?ws @ [?w])) \(\left.x^{\prime}\right\} .\).
hence \(p \neq\) out (foldl step \(s_{0}\)
    (c-ipurge I \(D(D x)(? x s @ ? y \#\) ?ws @ \([? w]))) x\)
    using \(S\) by (simp add: c-secure-def)
moreover have
    \(\neg(\exists v \in \operatorname{sinks} I D(D ? y)(? y \#\) ?ws @ \([? w]) .(v, D x) \in I)\)
proof
    assume \(\exists v \in \operatorname{sinks} I D(D ? y)(? y \# ? w s @[? w]) .(v, D x) \in I\)
    then obtain \(v\) where
        A: v \(\in \operatorname{sinks} I D(D\) ?y) (?y \# ?ws @ [?w]) and
        \(B:(v, D x) \in I .\).
    have \(v=D ? y \vee v \in \operatorname{sinks} I D(D ? y)(? w s\) @ \([? w])\)
        using \(R\) and \(A\) by (simp add: sinks-cons-same)
moreover \{
            assume \(v=D\) ? \(y\)
            hence \((D\) ? \(y, D x) \in I\) using \(B\) by simp
            hence False using \(H\) by contradiction
```

```
            }
            moreover {
                    assume v\in sinks ID(D ?y) (?ws @ [?w])
                    hence v}\in\mathrm{ sinks I (c-dom D) (D ?y) (wps @ [wp])
                    by (simp only: c-dom-sinks, simp)
                with G have ( v,D x)\not\inI ..
            hence False using B by contradiction
            }
            ultimately show False by blast
        qed
        ultimately have p}\not=\mathrm{ out (foldl step so (c-ipurge I D (D x)
            (?xs@ ipurge-tr I D (D ?y) (?y # ?ws @ [?w])))) x
            using R by (simp add: c-ipurge-ipurge-tr)
            hence p}\not=\mathrm{ out (foldl step so (?xs @ ipurge-tr I D (D ?y) (?ws @ [?w])))x
            using}R\mathrm{ and S by (simp add: c-secure-def ipurge-tr-cons-same)
            hence p}=\mathrm{ out (foldl step so (?xs @ ipurge-tr I D (D ?y) ?ws @ [?w])) x
            using F by (simp add:c-dom-def)
            thus p\not=out (step (foldl step ?s
            (ipurge-tr I D (D ?y) (?y # ?ws))) ?w) x
            using R by (simp add: ipurge-tr-cons-same)
            qed
            ultimately have (xps @ ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp]),
        ipurge-ref I (c-dom D) (c-dom D yp) (wps @ [wp]) Y)
        \in-failures step out so
            by (rule R2)
            thus (ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp]),
        ipurge-ref I (c-dom D) (c-dom D yp) (wps @ [wp]) Y)
        futures (c-process step out so) xps
        by (simp add: c-futures-failures)
    qed
    qed
qed
lemma c-secure-futures-2:
    assumes R: refl I and S:c-secure step out so I D
    shows (yps @ [yp], A) \in futures (c-process step out so) xps \Longrightarrow
    (yps,Y) f futures (c-process step out so) xps \Longrightarrow
    (yps@ @yp],{x\inY.(c-dom D yp,c-dom D x)\not\inI})
    futures (c-process step out so) xps
proof (simp add: c-futures-failures)
    let ?zs = map fst (xps @ yps)
    let ?y = fst yp
    assume (xps @ yps @ [yp], A)\inc-failures step out so
    hence xps @ yps @ [yp]=c-tr step out so(map fst (xps @ yps @ [yp]))
    by (rule c-failures-tr)
    hence A:xps @ yps @ [yp]=c-tr step out so (?zs @ [?y]) by simp
    assume (xps @ yps,Y)\inc-failures step out so
    hence B: Y\subseteq{(x,p).p\not= out (foldl step so ?zs) x}
    (is - \subseteq? ? '') by (rule c-failures-ref)
```

```
    have (xps @ yps @ \([y p],\left\{(x, p) . p \neq\right.\) out (foldl step \(s_{0}(? z s\) @ \(\left.\left.\left.[? y])\right) x\right\}\right)\)
        \(\in c\)-failures step out \(s_{0}\)
    (is \(\left(-, ? X^{\prime}\right) \in-\) ) by (subst A, rule \(c\)-tr-failures)
    moreover have \(\{x \in Y\). (c-dom \(D\) yp, c-dom \(D x) \notin I\} \subseteq ? X^{\prime}(\) is ? \(X \subseteq-)\)
    proof (rule subsetI, simp add: split-paired-all c-dom-def
    del: map-append foldl-append, erule conjE)
    fix \(x p\)
    assume \((x, p) \in Y\)
    with \(B\) have \((x, p) \in ? Y^{\prime}\)..
    hence \(p \neq\) out (foldl step \(s_{0}\) ?zs) \(x\) by simp
    moreover have out (foldl step \(s_{0}\) ? zs) \(x=\)
        out (foldl step \(s_{0}(c\)-ipurge \(I D(D x)\) ?zs)) \(x\)
    using \(S\) by (simp add: c-secure-def)
    ultimately have \(p \neq\) out (foldl step \(s_{0}\) (c-ipurge \(I D(D x)\) ?zs)) \(x\) by simp
    moreover assume \((D ? y, D x) \notin I\)
    with \(R\) have c-ipurge \(I D(D x)(? z s @[? y])=c\)-ipurge \(I D(D x)\) ?zs
        by (rule c-ipurge-append-2)
    ultimately have \(p \neq\) out \(\left(\right.\) foldl step \(s_{0}(c\)-ipurge \(\left.I D(D x)(? z s @[? y]))\right) x\)
        by simp
    moreover have out (foldl step \(s_{0}(\) c-ipurge \(\left.I D(D x)(? z s @[? y]))\right) x=\)
        out (foldl step \(s_{0}(? z s\) @ [?y])) x
        using \(S\) by (simp add: c-secure-def)
    ultimately show \(p \neq\) out (foldl step \(\left.s_{0}(? z s @[? y])\right) x\) by simp
qed
    ultimately show (xps @ yps @ [yp],?X) \(\in c\)-failures step out \(s_{0}\) by (rule R2)
qed
lemma \(c\)-secure-ipurge-tr:
    assumes \(R\) : refl \(I\) and \(S\) : c-secure step out \(s_{0} I D\)
    shows ipurge-tr \(I(c\)-dom \(D)(D x)\) ( \(c\)-tr step out (step (foldl step \(\left.\left.s_{0} x s\right) x\right)\) ys)
    \(=\) ipurge-tr \(I(c\)-dom \(D)(D x)\left(c\right.\)-tr step out (foldl step \(\left.s_{0} x s\right)\) ys)
proof (induction ys rule: rev-induct, simp, simp only: c-tr.simps)
    let \(? s=\) foldl step \(s_{0} x s\)
    fix \(y s y\)
    assume \(A\) : ipurge-tr \(I(c\)-dom \(D)(D x)(c\)-tr step out \((\) step ?s \(x) y s)=\)
        ipurge-tr \(I(c\)-dom \(D)(D x)(c\)-tr step out ?s ys)
    show ipurge-tr I (c-dom \(D\) ) ( \(D\) x) (c-tr step out (step ?s \(x\) ) ys @
        \([(y\), out (foldl step \((\) step ?s \(x)\) ys) \(y)])=\)
        ipurge-tr I (c-dom D) ( \(D x\) )
        (c-tr step out ?s ys @ \([(y\), out (foldl step ?s ys) \(y)])\)
    (is - (- @ [?yp \(])=-(-\) @ [?yp]) \()\)
    proof (cases \(D y \in \operatorname{sinks} I D(D x)(y s @[y]))\)
    assume \(D: D y \in \operatorname{sinks} I D(D x)(y s @[y])\)
    hence \(c\)-dom \(D\) ?yp' \(\in\) sinks \(I(c\)-dom \(D)(D x)\)
        (c-tr step out (step ?s x) ys @ [?yp])
        using \(D\) by (simp only: c-dom-sinks, simp add: c-dom-def c-tr-map)
    hence ipurge-tr \(I(c\)-dom \(D)(D x)(c\)-tr step out (step ?s \(x)\) ys @ [?yp \(])=\)
        ipurge-tr I (c-dom \(D)(D x)(c\)-tr step out (step ?s \(x)\) ys)
        by \(\operatorname{simp}\)
```

```
moreover have c-dom D ?yp f sinks I (c-dom D) (D x)
    (c-tr step out ?s ys @ [?yp])
    using D by (simp only: c-dom-sinks, simp add: c-dom-def c-tr-map)
    hence ipurge-tr I (c-dom D) (D x) (c-tr step out ?s ys @ [?yp])=
        ipurge-tr I (c-dom D) (D x) (c-tr step out ?s ys)
    by simp
    ultimately show ?thesis using A by simp
next
    assume D: D y & sinks I D (D x) (ys @ [y])
    hence c-dom D ?yp' & sinks I (c-dom D) (D x)
        (c-tr step out (step ?s x) ys @ [?yp])
    using D by (simp only: c-dom-sinks, simp add: c-dom-def c-tr-map)
hence ipurge-tr I (c-dom D) (Dx) (c-tr step out (step ?s x) ys @ [?yp])=
        ipurge-tr I (c-dom D) (D x) (c-tr step out (step ?s x) ys)@ [?yp']
    by simp
moreover have c-dom D ?yp & sinks I (c-dom D) ( }Dx\mathrm{ )
        (c-tr step out ?s ys @ [?yp])
    using D by (simp only: c-dom-sinks, simp add: c-dom-def c-tr-map)
hence ipurge-tr I (c-dom D) (Dx) (c-tr step out ?s ys @ [?yp])=
        ipurge-tr I (c-dom D) (D x) (c-tr step out ?s ys) @ [?yp]
    by simp
ultimately show ?thesis
proof (simp add: A)
    have B:\neg (\existsv\in\operatorname{sinks I D (D x) ys. (v,D y)\inI)}\\mp@code{I}
    proof
        assume }\existsv\in\operatorname{sinks}ID(Dx) ys. (v,D y)\in
        hence Dy\in sinks I D (Dx) (ys @ [y]) by simp
        thus False using D by contradiction
    qed
    have C:}\neg(\existsv\in\operatorname{sinks}ID(Dx)(x#ys).(v,Dy)\inI
    proof (rule notI, simp add: sinks-cons-same R B)
        assume (D x,D y) \inI
        hence Dy\in sinks I D (D x) (ys @ [y]) by simp
        thus False using D by contradiction
    qed
    have out (foldl step (step ?s x) ys) y = out (foldl step so (xs @ x# ys)) y
    by simp
    also have ... = out (foldl step so (c-ipurge I D (Dy) (xs @ x # ys))) y
    using S by (simp add: c-secure-def)
    also have ... = out (foldl step so (c-ipurge I D (D y)
        (xs @ ipurge-tr I D (D x) (x# ys)))) y
    using R and C by (simp add: c-ipurge-ipurge-tr)
    also have ... = out (foldl step so (c-ipurge I D (D y)
        (xs@ ipurge-tr I D (D x) ys))) y
    using R by (simp add: ipurge-tr-cons-same)
    also have ... = out (foldl step so (c-ipurge I D (D y) (xs @ ys))) y
    using R and B by (simp add: c-ipurge-ipurge-tr)
    also have ... = out (foldl step so (xs @ ys)) y
    using}S\mathrm{ by (simp add: c-secure-def)
```

```
        also have ... = out (foldl step ?s ys) y by simp
        finally show out (foldl step (step ?s x) ys) y = out (foldl step ?s ys) y.
    qed
    qed
qed
lemma c-secure-implies-secure-aux-2 [rule-format]:
    assumes
            R: refl I and
            S:c-secure step out so I D and
            Y:(yp # yps,Y)\in futures (c-process step out so) xps
    shows (zps,Z)\in futures (c-process step out so) xps \longrightarrow
            (yp # ipurge-tr I (c-dom D) (c-dom D yp) zps,
            ipurge-ref I (c-dom D) (c-dom D yp) zps Z)
            futures (c-process step out so) xps
proof (induction zps arbitrary: Z rule: length-induct, rule impI)
    fix zps Z
    assume
            A: \forallzps'. length zps' < length zps }
            (\forallZ'.(zps', Z') \in futures (c-process step out so) xps \longrightarrow
            (yp # ipurge-tr I (c-dom D) (c-dom D yp) zps',
            ipurge-ref I (c-dom D) (c-dom D yp)zps' Z')
            futures (c-process step out so) xps) and
            B:(zps,Z)\infutures (c-process step out so) xps
    show (yp # ipurge-tr I (c-dom D) (c-dom D yp) zps,
            ipurge-ref I (c-dom D) (c-dom D yp) zps Z)
            futures (c-process step out so) xps
    proof (cases zps, simp add: ipurge-ref-def)
            case Nil
            hence C:([],Z) \in futures (c-process step out so) xps using B by simp
            have (([]@ [yp])@ yps,Y)\in futures (c-process step out so) xps
            using Y by simp
            hence ([]@ @yp], {}) \in futures (c-process step out so) xps
            by (rule process-rule-2-futures)
    with R and S have ([] @ [yp],{x\inZ. (c-dom D yp,c-dom D x)\not\inI})
                futures (c-process step out so) xps
            using C by (rule c-secure-futures-2)
            thus([yp],{x\inZ.(c-dom D yp, c-dom D x)\not\inI})
                futures (c-process step out so) xps
        by simp
    next
    case Cons
    have \exists wps wp.zps=wps @ [wp]
        by (rule rev-cases [of zps], simp-all add: Cons)
    then obtain wps and wp where C:zps=wps @ [wp] by blast
    have B':(wps@ @ wp],Z)\infutures (c-process step out so) xps
        using B and C by simp
    show ?thesis
    proof (simp only:C,
```

```
cases c-dom D wp \in sinks I (c-dom D) (c-dom D yp) (wps @ [wp]))
    let ?Z' = {x\inZ.(c-dom D wp,c-dom D x)\not\inI}
    have length wps < length zps \longrightarrow
        (\forall\mp@subsup{Z}{}{\prime}.(wps, Z}\mp@subsup{Z}{}{\prime})\in\mathrm{ futures (c-process step out so) xps }
        (yp # ipurge-tr I (c-dom D) (c-dom D yp) wps,
        ipurge-ref I (c-dom D) (c-dom D yp) wps Z')
        futures (c-process step out so) xps)
    using A ..
    moreover have length wps < length zps using C by simp
    ultimately have }\forall\mp@subsup{Z}{}{\prime}.(wps,\mp@subsup{Z}{}{\prime})\in\mathrm{ futures (c-process step out so) xps }
        (yp # ipurge-tr I (c-dom D) (c-dom D yp) wps,
        ipurge-ref I (c-dom D) (c-dom D yp) wps Z')
        futures (c-process step out so) xps ..
    hence (wps,?Z') \in futures (c-process step out so) xps }
        (yp # ipurge-tr I (c-dom D) (c-dom D yp) wps,
        ipurge-ref I (c-dom D) (c-dom D yp) wps ?Z')
        futures(c-process step out so) xps ..
    moreover have (wps, ?'Z') \in futures (c-process step out so) xps
    using R and S and B' by (rule c-secure-futures-1)
    ultimately have (yp # ipurge-tr I (c-dom D) (c-dom D yp) wps,
        ipurge-ref I (c-dom D) (c-dom D yp) wps ?Z')
        futures (c-process step out so) xps ..
    moreover assume
    D:c-dom D wp G sinks I (c-dom D) (c-dom D yp) (wps @ [wp])
    hence ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp])=
        ipurge-tr I (c-dom D) (c-dom D yp) wps
    by simp
    moreover have ipurge-ref I (c-dom D) (c-dom D yp) (wps @ [wp]) Z =
        ipurge-ref I (c-dom D) (c-dom D yp) wps ? Z'
    using D by (rule ipurge-ref-eq)
    ultimately show (yp # ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp]),
        ipurge-ref I (c-dom D) (c-dom D yp)(wps @ [wp]) Z)
        futures (c-process step out so) xps
    by simp
next
    let ?xs=map fst xps
    let ?y = fst yp
    let ?ws = map fst wps
    let ? w = fst wp
    let ?s = foldl step so ?xs
    let ? s ' = foldl step so(?xs @ [?y])
    have ((xps @ [yp]) @ yps,Y) \in failures (c-process step out so)
    using Y by (simp add: c-futures-failures c-failures-failures)
    hence (xps @ [yp], {})\in failures (c-process step out so)
    by (rule process-rule-2-failures)
    hence (xps @ [yp], {})\inc-failures step out so
    by (simp add: c-failures-failures)
    hence xps @ [yp]=c-tr step out so (map fst (xps @ [yp]))
    by (rule c-failures-tr)
```

```
hence \(X Y\) : xps @ \([y p]=c\)-tr step out \(s_{0}(? x s\) @ [?y]) by simp
hence \(X\) : xps \(=c\)-tr step out \(s_{0}\) ? \(x s\) by simp
have \(([y p] @ y p s, Y) \in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
using \(Y\) by simp
hence \(([y p],\{ \}) \in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    by (rule process-rule-2-futures)
hence \([y p]=c\)-tr step out ?s (map fst [yp]) by (rule c-futures-tr)
hence \(Y^{\prime}:[y p]=c\)-tr step out ?s ( \((\) ? ? \(]\) ) by simp
have \(W:(\) wps, \(\{ \}) \in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    using \(B^{\prime}\) by (rule process-rule-2-futures)
hence \(W^{\prime}\) : wps \(=c\)-tr step out (foldl step \(s_{0}\) ? \({ }^{\text {xs }}\) ) ?ws by (rule c-futures-tr)
assume \(D: c\)-dom \(D\) wp \(\notin \operatorname{sinks} I(c\)-dom \(D)(c\)-dom \(D\) yp) (wps @ \([w p])\)
hence ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()(w p s @[w p])=\)
    ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D\) yp \() w p s @[w p]\)
    by \(\operatorname{simp}\)
hence ipurge-tr \(I(c-\operatorname{dom} D)(c\)-dom \(D\) yp \()(w p s @[w p])=\)
    ipurge-tr I ( \(c\)-dom \(D\) ) ( \(c\)-dom \(D\) yp)
    (c-tr step out (foldl step \(s_{0}\) ? xs ) ?ws) @ [wp]
    using \(W^{\prime}\) by simp
also have \(\ldots=\)
```



```
    using \(R\) and \(S\) by (simp add: \(c\)-secure-ipurge-tr c-dom-def)
also have \(\ldots=c\)-tr step out ? \(s^{\prime}\) (ipurge-tr I D (c-dom D yp) ?ws) @ [wp]
proof (simp del: foldl-append, rule \(c\)-tr-ipurge-tr)
    fix \(n\)
    let \({ }^{2} w_{p s}{ }^{\prime}=c\)-tr step out ?s (take \(n\) ? ws )
    have length ? wps \({ }^{\prime}\) < length zps \(\longrightarrow\)
        \(\left(\forall Z^{\prime} .\left(\right.\right.\) ?wps \(\left.{ }^{\prime}, Z^{\prime}\right) \in\) futures (c-process step out \(\left.s_{0}\right)\) xps \(\longrightarrow\)
        (yp \# ipurge-tr I (c-dom D) (c-dom D yp) ?wps',
        ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()\) ?wps \(\left.{ }^{\prime} Z^{\prime}\right)\)
        \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps)
    using \(A\)..
    moreover have length ? wps \({ }^{\prime}\) < length zps
    using \(C\) by (simp add: c-tr-length)
    ultimately have \(\forall Z^{\prime}\).
        \(\left(?\right.\) ?pps \(\left.{ }^{\prime}, Z^{\prime}\right) \in\) futures ( \(c\)-process step out \(s_{0}\) ) xps \(\longrightarrow\)
        (yp \# ipurge-tr I (c-dom D) (c-dom D yp) ?wps',
        ipurge-ref \(I(c-d o m D)\left(c-d o m D\right.\) yp) ? wps \(\left.{ }^{\prime} Z^{\prime}\right)\)
        \(\in\) futures (c-process step out \(s_{0}\) ) xps ..
    hence (?wps', \{\}) \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps \(\longrightarrow\)
        (yp \# ipurge-tr \(I(c-d o m D)(c-d o m D\) yp) ?wps',
        ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D\) yp) ?wps' \(\})\)
        \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps
    (is - \(\longrightarrow\left(-, ? W^{\prime}\right) \in-\) )..
    moreover have wps \(=c\)-tr step out ?s (take \(n\) ? ws @ drop \(n\) ? ws)
    using \(W^{\prime}\) by \(\operatorname{simp}\)
    hence wps = ?wps' @
        c-tr step out (foldl step ?s (take \(n\) ?ws)) (drop \(n\) ?ws)
    by (simp only: c-tr-append)
```

```
hence (?wps' @ c-tr step out (foldl step ?s (take n ?ws)) (drop n ?ws), \{\})
    \(\in\) futures (c-process step out \(s_{0}\) ) xps
    using \(W\) by simp
    hence (?wps', \{\}) \(\in\) futures (c-process step out \(s_{0}\) ) xps
    by (rule process-rule-2-futures)
    ultimately have (yp \# ipurge-tr I (c-dom D) (c-dom D yp) ?wps', ?W')
        \(\in\) futures ( \(c\)-process step out \(s_{0}\) ) xps ..
    hence (c-tr step out \(s_{0}\) (?xs @ [?y]) @
        ipurge-tr \(I\) (c-dom D) (c-dom D yp) ?wps', ? \(W^{\prime}\) )
        \(\in c\)-failures step out \(s_{0}\)
    using \(X Y\) by (simp add: c-futures-failures)
    hence (ipurge-tr \(I\) ( \(c\)-dom \(D)(c\)-dom \(D y p)\) ? \(w p s^{\prime}\), ? \(W^{\prime}\) )
        \(\in\) futures \(\left(c\right.\)-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}(? x s\) @ [?y]))
    by (simp add: c-futures-failures)
    hence (ipurge-tr I (c-dom \(D\) ) ( \(c\)-dom \(D\) yp)
        ( \(c\)-tr step out?s' (take \(n\) ?ws)), ? \(W^{\prime}\) )
        \(\in\) futures (c-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}(? x s\) @ [?y]))
    using \(R\) and \(S\) by (simp add: c-dom-def c-secure-ipurge-tr)
    thus \(\exists W\). \((\) ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D y p)\)
        (c-tr step out? \(s^{\prime}(\) take \(n\) ?ws \()\) ), W)
        \(\in\) futures \(\left(c\right.\)-process step out \(\left.s_{0}\right)\left(c\right.\)-tr step out \(s_{0}(? x s\) @ [?y]))
    by (rule-tac \(x=? W^{\prime}\) in exI)
qed
finally have \(E\) : ipurge-tr \(I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])=\)
    c-tr step out ? \(s^{\prime}\) (ipurge-tr I D (c-dom D yp) ?ws) @ [wp].
have (xps @wps @ [wp], Z) \(\in c\)-failures step out \(s_{0}\)
    (is \(\left(? x p s^{\prime},-\right) \in-\) ) using \(B^{\prime}\) by (simp add: c-futures-failures)
moreover have ? \(\exp ^{\prime} \neq[]\) by \(\operatorname{simp}\)
ultimately have snd (last ? xps \({ }^{\prime}\) ) =
    out (foldl step \(s_{0}\) (butlast (map fst ?xps'))) (last (map fst ?xps'))
    by (rule c-failures-last)
    hence snd \(w p=\) out (foldl step \(s_{0}(? x s @\) ?ws)) ?w
    by (simp add: butlast-append)
hence snd \(w p=\) out \(\left(\right.\) foldl step \(s_{0}(c\)-ipurge \(I D(D\) ?w) \((? x s\) @ ?ws \())\) )?w
    using \(S\) by (simp add: c-secure-def)
moreover have \(F: D ? w \notin \operatorname{sinks} I D(c\)-dom \(D y p)(? w s @[? w])\)
    using \(D\) by (simp only: \(c\)-dom-sinks, simp add: c-dom-def)
have \(G: \neg(\exists v \in \operatorname{sinks} I D(c\)-dom \(D y p)\) ?ws. \((v, D\) ? \(w) \in I)\)
proof
    assume \(\exists v \in \operatorname{sinks} I D(c\)-dom \(D\) yp) ? ws. \((v, D\) ? \(w) \in I\)
    hence \(D ? w \in \operatorname{sinks} I D(c\)-dom \(D y p)(? w s @[? w])\) by simp
    thus False using \(F\) by contradiction
qed
ultimately have snd \(w p=\) out (foldl step \(s_{0}\)
    (c-ipurge \(I D(D ? w)(? x s @ i p u r g e-t r I D(c\)-dom \(D y p) ? w s)))\) ?w
    using \(R\) by (simp add: c-ipurge-ipurge-tr)
hence snd \(w p=\) out (foldl step \(s_{0}\)
    (c-ipurge I \(D(D\) ?w) (?xs @ ipurge-tr I \(D(c\)-dom \(D\) yp) (?y \# ?ws) ))) ?w
    using \(R\) by (simp add: c-dom-def ipurge-tr-cons-same)
```


moreover have

$\neg(\exists v \in \operatorname{sinks} I D(c$-dom $D y p)(? y \# ? w s) .(v, D ? w) \in I)$
proof (rule notI, simp add: sinks-cons-same c-dom-def $R G$ [simplified])
assume $(D ? y, D ? w) \in I$
hence $D ? w \in \operatorname{sinks} I D(c$-dom $D y p)(? w s @[? w])$
by (simp add: c-dom-def)
thus False using F by contradiction
qed
ultimately have snd $w p=$
out (foldl step $s_{0}(c$-ipurge I $D(D$?w) (?xs @ [?y] @ ?ws))) ?w
using R by (simp add: c-ipurge-ipurge-tr)
moreover have c-ipurge I $D(D$?w) ((?xs @ [?y]) @
ipurge-tr $I D(c$-dom $D y p)$? ws $)=$
c-ipurge I D (D ?w) ((?xs @ [?y]) @ ?ws)
using R and G by (rule c-ipurge-ipurge-tr)
ultimately have snd $w p=$ out (foldl step s_{0}
(c-ipurge I D $(D ? w)(? x s @[? y]$ @ ipurge-tr I $D(c$-dom $D y p) ? w s))$? w
by simp
hence $s n d w p=$
out (foldl step $s_{0}(? x s$ @ [?y] @ ipurge-tr I D (c-dom D yp) ?ws)) ?w
using S by (simp add: c-secure-def)
hence $y p$ \# ipurge-tr $I(c$-dom $D)(c$-dom D yp $)(w p s @[w p])=$ c-tr step out?s ([?y]) @
c-tr step out? s^{\prime} (ipurge-tr I D (c-dom D yp) ?ws) @
[(?w, out (foldl step ? s^{\prime} (ipurge-tr I D (c-dom D yp) ?ws)) ?w)]
using Y^{\prime} and E by (cases wp, simp)
hence $y p \#$ ipurge-tr $I(c$-dom $D)(c$-dom $D y p)(w p s @[w p])=$ c-tr step out?s ([?y]) @
c-tr step out ? $s^{\prime}($ ipurge-tr I $D(c-d o m ~ D y p)$?ws) @
c-tr step out (foldl step ?s' (ipurge-tr I D (c-dom D yp) ?ws)) [?w]
by (simp add: c-tr-singleton)
hence yp \# ipurge-tr I (c-dom $D)(c$-dom $D y p)(w p s @[w p])=$ c-tr step out?s ([?y]) @
c-tr step out (foldl step ?s [?y]) (ipurge-tr I D (c-dom D yp) ?ws @ [?w])
by (simp add: c-tr-append)
hence $y p$ \# ipurge-tr $I(c$-dom $D)(c$-dom $D y p)(w p s @[w p])=$ c-tr step out?s ([?y] @ ipurge-tr I D (c-dom D yp) ?ws @ [?w])
by (simp only: c-tr-append)
moreover have
(c-tr step out ?s (?y \# ipurge-tr I D (c-dom D yp) ?ws @ [?w]), $\{(x, p) . p \neq$ out (foldl step ?s
(?y \# ipurge-tr I D (c-dom D yp) ?ws @ [?w])) x\})
\in futures (c-process step out s_{0}) (c-tr step out s_{0} ?xs)
(is $\left(-, ? Z^{\prime}\right) \in-$) by (rule c-tr-futures)
ultimately have
(xps @yp\# ipurge-tr I (c-dom D) (c-dom Dyp) (wps @ [wp]),?Z')
$\in c$-failures step out s_{0}
using X by (simp add: c-futures-failures)
moreover have

```
    ipurge-ref \(I(c\)-dom \(D)(c\)-dom \(D\) yp \()(w p s @[w p]) Z \subseteq ? Z^{\prime}\)
proof (rule subsetI, simp add: split-paired-all ipurge-ref-def c-dom-def
del: sinks.simps foldl.simps, (erule conjE)+)
fix \(x p\)
assume
    \(H: \forall v \in\) sinks \(I(c\)-dom \(D)(D ? y)(w p s @[w p]) .(v, D x) \notin I\) and
    \(I:(D ? y, D x) \notin I\)
have (xps @ wps @ \([w p], Z) \in c\)-failures step out \(s_{0}\)
    using \(B^{\prime}\) by (simp add: c-futures-failures)
    hence \(Z \subseteq\left\{\left(x^{\prime}, p^{\prime}\right) . p^{\prime} \neq\right.\)
        out (foldl step \(s_{0}\) (map fst (xps @ wps @ [wp]))) \(\left.x^{\prime}\right\}\)
    by (rule c-failures-ref)
hence \(Z \subseteq\left\{\left(x^{\prime}, p^{\prime}\right)\right.\). \(p^{\prime} \neq\)
    out (foldl step \(s_{0}\) (?xs @ ?ws @ [?w])) \(\left.x^{\prime}\right\}\)
    by \(\operatorname{simp}\)
    moreover assume \((x, p) \in Z\)
ultimately have \((x, p) \in\left\{\left(x^{\prime}, p^{\prime}\right) . p^{\prime} \neq\right.\)
    out (foldl step so (?xs @ ?ws @ [?w])) \(\left.x^{\prime}\right\} .\).
hence \(p \neq\) out (foldl step \(s_{0}\)
    (c-ipurge I D (D x) (? ? x @ ?ws @ [?w]))) x
    using \(S\) by (simp add: c-secure-def)
moreover have
    \(J: \neg(\exists v \in \operatorname{sinks} I D(D ? y)(? w s\) @ \([? w]) .(v, D x) \in I)\)
proof (rule notI,
    cases \((D\) ? \(y, D\) ? \(w) \in I \vee(\exists v \in \operatorname{sinks} I D(D\) ? \(y)\) ? ws. \((v, D\) ? \(w) \in I)\),
    simp-all only: sinks.simps if-True if-False)
    case True
    hence \(c\)-dom \(D w p \in \operatorname{sinks} I(c\)-dom \(D)(c\)-dom \(D y p)(w p s @[w p])\)
    by (simp only: c-dom-sinks, simp add: c-dom-def)
    thus False using \(D\) by contradiction
next
    assume \(\exists v \in\) sinks \(I D(D\) ? \(y)\) ?ws. \((v, D x) \in I\)
    then obtain \(v\) where
        \(A: v \in \operatorname{sinks} I D(D ? y)\) ? ws and
        \(B:(v, D x) \in I .\).
    have \(v \in\) sinks \(I(c\)-dom \(D)(D\) ? \(y)(w p s @[w p])\)
    using \(A\) by (simp add: c-dom-sinks)
    with \(H\) have \((v, D x) \notin I\)..
    thus False using \(B\) by contradiction
qed
ultimately have \(p \neq\) out (foldl step \(s_{0}(c\)-ipurge \(I D(D x)\)
    (?xs @ ipurge-tr I D (D ?y) (?ws @ [?w])))) x
    using \(R\) by (simp add: c-ipurge-ipurge-tr del: ipurge-tr.simps)
hence \(p \neq\) out (foldl step \(s_{0}\) (c-ipurge I \(D(D x)\)
    (?xs @ ipurge-tr ID (D ?y) (?y \# ?ws @ [?w])))) x
    using \(R\) by (simp add: ipurge-tr-cons-same)
moreover have
    \(\neg(\exists v \in \operatorname{sinks} I D(D\) ? \(y)(? y \#\) ?ws @ \([? w]) .(v, D x) \in I)\)
proof
```

```
    assume \existsv\in\operatorname{sinks}ID(D ?y)(?y # ?ws @ [?w]). (v,D x)\inI
    then obtain v}\mathrm{ where
        A:v\in\operatorname{sinks I D (D ?y)(?y # ?ws @ [?w]) and}
        B: (v,D 片 \inI ..
    have v=D ?y \vee v\in sinks I D (D ?y)(?ws @ [?w])
        using R and A by (simp add: sinks-cons-same)
        moreover {
        assume v=D ?y
        hence (D ?y, D x) \inI using B by simp
        hence False using I by contradiction
    }
    moreover {
        assume v\in sinks I D (D ?y)(?ws @ [?w])
        with B have \existsv\in sinks I D (D ?y) (?ws @ [?w]). (v,D x)\inI ..
        hence False using J by contradiction
        }
        ultimately show False by blast
    qed
    ultimately have p\not= out (foldl step so (c-ipurge I D ( D x)
        (?xs@ [?y]@ ?ws @ [?w])))x
        using }R\mathrm{ by (simp add: c-ipurge-ipurge-tr del: ipurge-tr.simps)
    moreover have c-ipurge I D (D x) ((?xs @ [?y])@
        ipurge-tr ID (D ?y) (?ws @ [?w])) =
        c-ipurge I D (D x) ((?xs @ [?y])@ ?ws @ [?w])
        using }R\mathrm{ and }J\mathrm{ by (rule c-ipurge-ipurge-tr)
    ultimately have p\not= out (foldl step so (c-ipurge I D ( D x)
        (?xs @ ?y # ipurge-tr I D (D ?y) (?ws @ [?w])))) x
        by simp
    hence p}\not=\mathrm{ out (foldl step so
            (?xs @ ?y # ipurge-tr I D (D ?y) (?ws @ [?w]))) x
        using}S\mathrm{ by (simp add: c-secure-def)
        thus p\not= out (foldl step?s
            (?y # ipurge-tr I D (D ?y) ?ws @ [?w])) x
        using F by (simp add: c-dom-def)
    qed
    ultimately have
    (xps @ yp # ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp]),
    ipurge-ref I (c-dom D) (c-dom D yp)(wps @ [wp])Z)
    c-failures step out so
    by (rule R2)
    thus (yp # ipurge-tr I (c-dom D) (c-dom D yp) (wps @ [wp]),
        ipurge-ref I (c-dom D) (c-dom D yp) (wps @ [wp]) Z)
        futures (c-process step out so) xps
        by (simp add: c-futures-failures)
        qed
    qed
qed
theorem c-secure-implies-secure:
```

```
    assumes R: refl I and S:c-secure step out so I D
    shows secure (c-process step out so)I (c-dom D)
proof (simp only: secure-def,(rule allI)+, rule impI, erule conjE)
    fix xps yp yps Y zps Z
    assume
        Y:(yp # yps,Y)\in futures (c-process step out so) xps and
        Z:(zps,Z)\in futures (c-process step out so) xps
    show (ipurge-tr I (c-dom D) (c-dom D yp) yps,
        ipurge-ref I (c-dom D) (c-dom D yp) yps Y)
        futures (c-process step out so) xps ^
        (yp # ipurge-tr I (c-dom D) (c-dom D yp) zps,
        ipurge-ref I (c-dom D) (c-dom D yp) zps Z)
        futures (c-process step out so) xps
    (is ?P ^?Q)
    proof
        show ?P using R and S and Y
        by (rule c-secure-implies-secure-aux-1)
    next
        show ?Q using R and S and Y and Z
        by (rule c-secure-implies-secure-aux-2)
    qed
qed
theorem secure-equals-c-secure:
    refl I \Longrightarrow secure (c-process step out so) I (c-dom D) = c-secure step out so I D
by (rule iffI, rule secure-implies-c-secure, assumption, rule c-secure-implies-secure)
end
```


3 CSP noninterference vs. generalized noninterference

theory GeneralizedNoninterference
imports ClassicalNoninterference
begin

The purpose of this section is to compare CSP noninterference security as defined previously with McCullough's notion of generalized noninterference security as formulated in [4]. It will be shown that this security property is weaker than both CSP noninterference security for a generic process, and classical noninterference security for classical processes, viz. it is a necessary but not sufficient condition for them. This renders CSP noninterference security preferable as an extension of classical noninterference security to nondeterministic systems.

For clarity, all the constants and fact names defined in this section, with the possible exception of datatype constructors and main theorems, contain
prefix g-.

3.1 Generalized noninterference

The original formulation of generalized noninterference security as contained in [4] focuses on systems whose events, split in inputs and outputs, are mapped into either of two security levels, high and low. Such a system is said to be secure just in case, for any trace $x s$ and any high-level input x, the set of the possible low-level futures of $x s$, i.e. of the sequences of low-level events that may succeed $x s$ in the traces of the system, is equal to the set of the possible low-level futures of $x s$ @ $[x]$.

This definition requires the following corrections:

- Variable x must range over all high-level events rather than over highlevel inputs alone, since high-level outputs must not be allowed to affect low-level futures as well.
- For any x, the range of trace $x s$ must be restricted to the traces of the system that may be succeeded by x, viz. trace $x s$ must be such that event list $x s$ @ $[x]$ be itself a trace.
Otherwise, a system that admits both high-level and low-level events in its alphabet but never accepts any high-level event, always accepting any low-level one instead, would turn out not to be secure, which is paradoxical since high can by no means affect low in a system never engaging in high-level events. The cause of the paradox is that, for each trace $x s$ and each high-level event x of such a system, the set of the possible low-level futures of $x s$ matches the Kleene closure of the set of low-level events, whereas the set of the possible low-level futures of $x s$ @ $[x]$ matches the empty set as $x s$ @ $[x]$ is not a trace.

Observe that the latter correction renders it unnecessary to explicitly assume that event list $x s$ be a trace of the system, as this follows from the assumption that $x s @[x]$ be such.

Here below is a formal definition of the notion of generalized noninterference security for processes, amended in accordance with the previous considerations.

$$
\begin{aligned}
& \text { datatype } g \text {-level }=H \text { igh } \mid \text { Low } \\
& \text { definition } g \text {-secure }:: '^{\prime} a \text { process } \Rightarrow\left({ }^{\prime} a \Rightarrow \text { g-level }\right) \Rightarrow \text { bool where } \\
& g \text {-secure } P L \equiv \forall x s x s @[x] \in \text { traces } P \wedge L x=\text { High } \longrightarrow \\
& \left\{y s^{\prime} . \exists y s . x s @ y s \in \text { traces } P \wedge y s^{\prime}=[y \leftarrow y s . L y=\text { Low }]\right\}= \\
& \left\{y s^{\prime} . \exists y s . x s @ x \# y s \in \text { traces } P \wedge y s^{\prime}=[y \leftarrow y s . L y=\text { Low }]\right\}
\end{aligned}
$$

It is possible to prove that a weaker sufficient (as well as necessary, as obvious) condition for generalized noninterference security is that the set of the possible low-level futures of trace $x s$ be included in the set of the possible low-level futures of trace $x s$ @ $[x]$, because the latter is always included in the former.

In what follows, such security property is defined formally and its sufficiency for generalized noninterference security to hold is demonstrated in the form of an introduction rule, which will turn out to be useful in subsequent proofs.

```
definition \(g\)-secure-suff :: 'a process \(\Rightarrow\) (' \(a \Rightarrow\) g-level \() \Rightarrow\) bool where
\(g\)-secure-suff \(P L \equiv \forall x s x\).xs @ \([x] \in\) traces \(P \wedge L x=\) High \(\longrightarrow\)
    \(\left\{y s^{\prime} . \exists y s . x s @ y s \in\right.\) traces \(\left.P \wedge y s^{\prime}=[y \leftarrow y s . L y=L o w]\right\} \subseteq\)
    \(\left\{y s^{\prime} . \exists y s . x s @ x \# y s \in \operatorname{traces} P \wedge y s^{\prime}=[y \leftarrow y s . L y=L o w]\right\}\)
lemma \(g\)-secure-suff-implies- \(g\)-secure:
    assumes \(S\) : \(g\)-secure-suff \(P L\)
    shows \(g\)-secure \(P L\)
proof (simp add: g-secure-def, (rule allI)+, rule impI, erule conjE)
    fix \(x s x\)
    assume
        A: xs @ \([x] \in\) traces \(P\) and
        B: L \(x=\) High
    show \(\left\{y s^{\prime} . \exists y s . x s @ y s \in\right.\) traces \(P \wedge y s^{\prime}=[y \leftarrow y s . L y=\) Low \(\left.]\right\}=\)
        \(\left\{y s^{\prime} . \exists y s . x s @ x \# y s \in \operatorname{traces} P \wedge y s^{\prime}=[y \leftarrow y s . L y=L o w]\right\}\)
        (is \(\left\{y s^{\prime} . \exists y s\right.\). ? \(Q\) ys \(\left.y s^{\prime}\right\}=\left\{y s^{\prime} . \exists y s\right.\). ? \(Q^{\prime}\) ys ys'\})
    proof (rule equalityI, rule-tac [2] subsetI, simp-all, erule-tac [2] exE,
        erule-tac [2] conjE)
        show \(\left\{y s^{\prime} . \exists y s\right.\). ? \(Q\) ys \(\left.y s^{\prime}\right\} \subseteq\left\{y s^{\prime} . \exists y s\right.\). ? \(Q^{\prime}\) ys \(\left.y s^{\prime}\right\}\)
            using \(S\) and \(A\) and \(B\) by (simp add: \(g\)-secure-suff-def)
    next
        fix ys \(y s^{\prime}\)
        assume \(x s\) @ \(x \# y s \in\) traces \(P\)
        moreover assume \(y s^{\prime}=[y \leftarrow y s . L y=L o w]\)
        hence \(y s^{\prime}=[y \leftarrow x \# y s . L y=L o w]\) using \(B\) by \(\operatorname{simp}\)
        ultimately have? \(Q(x \# y s) y s^{\prime} .\).
        thus \(\exists y s\). ?Q ys ys' ..
    qed
qed
```


3.2 Comparison between security properties

In the continuation, it will be proven that CSP noninterference security is a sufficient condition for generalized noninterference security for any process whose events are mapped into either security domain High or Low, under the policy that High may not affect Low.

Particularly, this is the case for any such classical process. This fact,
along with the equivalence between CSP noninterference security and classical noninterference security for classical processes, is used to additionally prove that the classical noninterference security of a deterministic state machine is a sufficient condition for the generalized noninterference security of the corresponding classical process under the aforesaid policy.

```
definition \(g\) - \(I::(g\)-level \(\times\) g-level) set where
\(g-I \equiv\{(\) High, High \(),(\) Low, Low \(),(\) Low, High \()\}\)
lemma \(g\)-I-refl: refl \(g\) - \(I\)
proof (simp add: refl-on-def, rule allI)
    fix \(x\)
    show \((x, x) \in g-I\) by (cases \(x\), simp-all add: \(g-I-d e f)\)
qed
lemma g-sinks: sinks \(g\)-I L High \(x s \subseteq\{\) High \(\}\)
proof (induction xs rule: rev-induct, simp)
    fix \(x\) xs
    assume A: sinks \(g-I\) L High \(x s \subseteq\{\) High \(\}\)
    show sinks g-I L High (xs @ \([x]) \subseteq\{\) High \(\}\)
    proof (cases \(L x\) )
        assume \(L x=\) High
        thus ?thesis using \(A\) by simp
    next
        assume \(B\) : \(L x=\) Low
        have \(\neg((\) High,\(L x) \in g-I \vee(\exists v \in\) sinks \(g-I L\) High xs. \((v, L x) \in g-I))\)
        proof (rule notI, simp add: B, erule disjE)
            assume (High, Low) \(\in g-I\)
            moreover have (High, Low) \(\notin g-I\) by (simp add: g-I-def)
            ultimately show False by contradiction
        next
            assume \(\exists v \in\) sinks \(g-I\) L High xs. \((v\), Low \() \in g-I\)
            then obtain \(v\) where \(C: v \in\) sinks \(g-I\) L High xs and \(D:(v\), Low \() \in g-I\)..
            have \(v \in\{H i g h\}\) using \(A\) and \(C\)..
            hence (High, Low) \(\in g-I\) using \(D\) by simp
            moreover have (High, Low) \(\notin g-I\) by (simp add: \(g-I-d e f\) )
            ultimately show False by contradiction
        qed
        thus ?thesis using \(A\) by simp
    qed
qed
lemma g-ipurge-tr: ipurge-tr g-I L High \(x s=[x \leftarrow x s . L x=\) Low \(]\)
proof (induction xs rule: rev-induct, simp)
    fix \(x\) xs
    assume \(A\) : ipurge-tr \(g\) - \(I\) L High \(x s=\left[x^{\prime} \leftarrow x s . L x^{\prime}=\right.\) Low \(]\)
    show ipurge-tr g-I L High \((x s @[x])=\left[x^{\prime} \leftarrow x s @[x] . L x^{\prime}=L o w\right]\)
    proof (cases \(L x\) )
```

```
    assume B:L x = High
    hence ipurge-tr g-I L High (xs @ [x])= ipurge-tr g-I L High xs
        by (simp add: g-I-def)
    moreover have [ [x'\leftarrowxs@ @ [x].L 和=Low] = [\mp@subsup{x}{}{\prime}\leftarrowxs.L L x'=Low]
    using B by simp
    ultimately show ?thesis using A by simp
    next
    assume B:L x=Low
    have L x\not\in sinks g-IL High (xs @ [x])
    proof (rule notI, simp only: B)
        have sinks g-I L High (xs @ [x])\subseteq{High} by (rule g-sinks)
        moreover assume Low \in sinks g-I L High (xs @ [x])
        ultimately have Low }\in{High} ..
        thus False by simp
    qed
    hence ipurge-tr g-I L High (xs @ [x])= ipurge-tr g-I L High xs @ [x]
    by simp
    moreover have [\mp@subsup{x}{}{\prime}\leftarrowxs@ @ [x].L \mp@subsup{x}{}{\prime}=Low]=[\mp@subsup{x}{}{\prime}\leftarrowxs.L L x'=Low]@ [x]
    using B by simp
    ultimately show ?thesis using A by simp
    qed
qed
theorem secure-implies-g-secure:
    assumes S: secure P g-I L
    shows g-secure P L
proof (rule g-secure-suff-implies-g-secure, simp add: g-secure-suff-def, (rule allI)+,
    rule impI, rule subsetI, simp, erule exE, (erule conjE)+)
    fix xs x ys ys'
    assume xs @ [x] traces P
    hence }\existsX.([x],X)\in\mathrm{ futures P xs
    by (simp add: traces-def Domain-iff futures-def)
    then obtain X where ([x],X) futures P xs ..
    moreover assume xs @ ys \in traces P
    hence }\existsY.(ys,Y)\in\mathrm{ futures }P\mathrm{ xs
    by (simp add: traces-def Domain-iff futures-def)
    then obtain }Y\mathrm{ where (ys,Y) futures P xs ..
    ultimately have (x # ipurge-tr g-I L (L x) ys,
        ipurge-ref g-I L (L x) ys Y) f futures P xs
    (is (-, ? Y') f futures P xs) using S by (simp add: secure-def)
    moreover assume L x= High and A:ys'}=[y\leftarrowys.L y=Low
    ultimately have (x#ys',? ? ') \in futures P xs by (simp add: g-ipurge-tr)
    hence }\exists\mp@subsup{Y}{}{\prime}.(x#y\mp@subsup{s}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mathrm{ futures P xs ..
    hence xs @ x # ys'
    by (simp add: traces-def Domain-iff futures-def)
    moreover have ys'}=[y\leftarrowy\mp@subsup{s}{}{\prime}.Ly=Low] using A by simp
    ultimately have xs @ x#ys' \in traces }P\wedgey\mp@subsup{s}{}{\prime}=[y\leftarrowy\mp@subsup{s}{}{\prime}.Ly=Low] ..
    thus \existsys.xs@ @ # ys \in traces P ^ ys' = [y\leftarrowys.L y =Low]..
qed
```

theorem c-secure-implies-g-secure:
c-secure step out $s_{0} g$ - $I L \Longrightarrow g$-secure (c-process step out s_{0}) (c-dom L)
by (rule secure-implies-g-secure, rule c-secure-implies-secure, rule g-I-refl)

Since the definition of generalized noninterference security does not impose any explicit requirement on process refusals, intuition suggests that this security property is likely to be generally weaker than CSP noninterference security for nondeterministic processes, which are such that even a complete specification of their traces leaves underdetermined their refusals. This is not the case for deterministic processes, so the aforesaid security properties might in principle be equivalent as regards such processes.

However, a counterexample proving the contrary is provided by a deterministic state machine resembling systems A and B described in [4], section 3.1. This machine is proven not to be classical noninterferencesecure, whereas the corresponding classical process turns out to be generalized noninterference-secure, which proves that the generalized noninterference security of a classical process is not a sufficient condition for the classical noninterference security of the associated deterministic state machine.

This result, along with the equivalence between CSP noninterference security and classical noninterference security for classical processes, is then used to demonstrate that the generalized noninterference security of the aforesaid classical process does not entail its CSP noninterference security, which proves that generalized noninterference security is actually not a sufficient condition for CSP noninterference security even in the case of deterministic processes.

The remainder of this section is dedicated to the construction of such counterexample.

```
datatype \(g\)-state \(=\) Even \(\mid O d d\)
datatype \(g\)-action \(=\) Any \(\mid\) Count
primrec \(g\)-step \(:: g\)-state \(\Rightarrow g\)-action \(\Rightarrow g\)-state where
\(g\)-step \(s\) Any \(=(\) case \(s\) of Even \(\Rightarrow\) Odd \(\mid\) Odd \(\Rightarrow\) Even \() \mid\)
g-step s Count \(=s\)
primrec \(g\)-out \(:: g\)-state \(\Rightarrow g\)-action \(\Rightarrow g\)-state option where
g-out - Any = None |
g-out \(s\) Count \(=\) Some \(s\)
primrec \(g\) - \(D::\) g-action \(\Rightarrow g\)-level where
\(g-D\) Any \(=H i g h\)
g-D Count \(=\) Low
```

definition g - $s_{0}:: g$-state where
$g-s_{0} \equiv$ Even
lemma g-secure-counterexample:
g-secure (c-process g-step g-out g - s_{0}) (c-dom g - D)
proof (rule g-secure-suff-implies-g-secure, simp add: g-secure-suff-def, (rule allI)+,
rule impI, rule subsetI, simp, erule exE, (erule conjE)+)
fix xps x p yps yps ${ }^{\prime}$
assume xps @ $[(x, p)] \in$ traces $\left(c\right.$-process g-step g-out g - $\left.s_{0}\right)$
hence $\exists X$. (xps @ $[(x, p)], X) \in c$-failures g-step g-out g - s_{0} by (simp add: c-traces)
then obtain X where $(x p s @[(x, p)], X) \in c$-failures g-step g-out g - $s_{0} .$.
hence xps @ $[(x, p)]=c$-tr g-step g-out g - $s_{0}($ map fst $(x p s @[(x, p)]))$
by (rule c-failures-tr)
moreover assume c-dom g - $D(x, p)=$ High
hence $x=$ Any by (cases x, simp-all add: c-dom-def)
ultimately have xps @ $[(x, p)]=c$-tr g-step g-out g - s_{0} (map fst xps @ [Any])
(is - = - (? xs @ -)) by simp
moreover assume xps @ yps \in traces (c-process g-step g-out g - s_{0})
hence $\exists Y$. (xps @yps, $Y) \in c$-failures g-step g-out g - s_{0}
by (simp add: c-traces)
then obtain Y where (xps @ yps, $Y) \in c$-failures g-step g-out g - $s_{0} .$.
hence $(y p s, Y) \in$ futures (c-process g-step g-out g - s_{0}) xps
by (simp add: c-futures-failures)
hence yps $=c$-tr g-step g-out (foldl g-step g - s_{0} ? xs $)$ (map fst yps)
(is $-=c$-tr - - ?ys) by (rule c-futures-tr)
hence $y p s=$
c-tr g-step g-out (foldl g-step (foldl g-step g-so (?xs @ [Any])) [Any]) ?ys
(is $-=c$-tr $-($ foldl $-? s-)$-) by (cases foldl g-step g - s_{0} ? $x s$, simp-all)
hence c-tr g-step g-out ?s $[$ Any $] @ y p s=c$-tr g-step g-out ?s $([A n y] @$?ys)
(is ? yp @ - = -) by (simp only: c-tr-append)
moreover have (c-tr g-step g-out ?s ([Any] @ ?ys),
$\{(x, p) . p \neq g$-out (foldl g-step ?s $([$ Any $] @$? $y s)) x\})$
\in futures $(c$-process g-step g-out g-so $)(c$-tr g-step g-out g-so $(? x s @[A n y]))$
(is $\left(-, ? Y^{\prime}\right) \in-$) by (rule c-tr-futures)
ultimately have (?yp @ yps, ? Y^{\prime})
\in futures $\left(c\right.$-process g-step g-out g - $\left.s_{0}\right)(x p s @[(x, p)])$
by simp
hence $\left(x p s @(x, p) \#\right.$?yp @ yps, ? $\left.Y^{\prime}\right) \in c$-failures g-step g-out g - s_{0}
by (simp add: c-futures-failures)
hence $\exists Y^{\prime}$. (xps @ $(x, p) \#$? yp @ yps, $\left.Y^{\prime}\right) \in c$-failures g-step g-out g - $s_{0} .$.
hence xps @ (x, p) \#?yp @ yps \in traces (c-process g-step g-out g - s_{0})
(is ?P (?yp @ yps)) by (simp add: c-traces)
moreover assume yps ${ }^{\prime}=[y p \leftarrow y p s . c$-dom $g-D y p=L o w]$
hence $y p s^{\prime}=[y p \leftarrow$? yp @ yps. c-dom $g-D$ yp $=$ Low $]$
(is ?Q (?yp @ yps)) by (simp add: c-tr-singleton c-dom-def)
ultimately have ?P $($? yp @ yps $) \wedge$? $Q(? y p @ y p s) .$.
thus \exists yps. ? P yps \wedge ? Q yps ..
qed

```
lemma not-c-secure-counterexample:
    \(\neg c\)-secure \(g\)-step \(g\)-out \(g\) - \(s_{0} g\) - \(I g\) - \(D\)
proof (simp add: c-secure-def)
    have \(g\)-out (foldl g-step g-s \(0_{0}[\) Any \(\left.]\right)\) Count \(=\) Some Odd
    (is ?f Count \([A n y]=-)\) by (simp add: \(g\) - \(s_{0}\)-def)
    moreover have
        g-out (foldl g-step g-s \(s_{0}(c\)-ipurge \(g\)-I \(g\) - \(D(g\)-D Count \()[\) Any \(\left.])\right)\) Count \(=\)
        Some Even
    (is ? g Count \([\) Any \(]=-\) ) by (simp add: \(g\)-I-def \(g\) - \(s_{0}\)-def)
    ultimately have ?f Count \([\) Any \(] \neq\) ?g Count \([\) Any \(]\) by simp
    thus \(\exists x\) xs. ?f \(x x s \neq\) ? \(g x\) xs by blast
qed
theorem not-g-secure-implies-c-secure:
    \(\neg\left(g\right.\)-secure \(\left(c\right.\)-process \(g\)-step \(g\)-out \(g\) - \(\left.s_{0}\right)(c\)-dom \(g\) - \(D) \longrightarrow\)
    \(c\)-secure \(g\)-step \(g\)-out \(g\)-so \(g\)-I \(g\) - \(D\) )
proof (simp, rule conjI, rule g-secure-counterexample)
qed (rule not-c-secure-counterexample)
theorem not-g-secure-implies-secure:
\(\neg\left(g\right.\)-secure \(\left(c\right.\)-process \(g\)-step \(g\)-out \(g\) - \(\left.s_{0}\right)(c\)-dom \(g\) - \(D) \longrightarrow\)
    secure ( \(c\)-process \(g\)-step \(g\)-out \(g\)-s \(\left.s_{0}\right) g\) - \(I(c\)-dom \(g\) - \(D)\) )
proof (simp, rule conjI, rule \(g\)-secure-counterexample)
qed (rule notI, drule secure-implies-c-secure, erule contrapos-pp,
rule not-c-secure-counterexample)
end
```


References

[1] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on Security and Privacy, 1982.
[2] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.
[3] A. Krauss. Defining Recursive Functions in Isabelle/HOL. http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/ doc/functions.pdf.
[4] D. McCullough. Noninterference and the composability of security properties. In Proceedings of the 1988 IEEE Conference on Security and Privacy, 1988.
[5] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs. http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/ isar-overview.pdf.
[6] T. Nipkow. Programming and Proving in Isabelle/HOL, Dec. 2013. http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/ doc/prog-prove.pdf.
[7] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Dec. 2013. http://isabelle.in.tum.de/ website-Isabelle2013-2/dist/Isabelle2013-2/doc/tutorial.pdf.
[8] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical report, SRI International, 1992.

