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Abstract

This entry is a formalization of the no-free-lunch theorem for ma-
chine learning following Section 5.1 of the book Understanding Machine
Learning: From Theory to Algorithms [1] by Shai Shalev-Shwartz and
Shai Ben-David. The theorem states that for binary classification pre-
diction tasks, there is no universal learner, meaning that for every
learning algorithms, there exists a distribution on which it fails.
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1 No-Free-Lunch Theorem for ML
theory No-Free-Lunch-ML
imports

HOL−Probability.Probability
begin

1.1 Preliminaries
lemma sum-le-card-Max-of-nat:finite A
=⇒ sum f A ≤ (of-nat :: - ⇒ - ::{semiring-1 ,ordered-comm-monoid-add}) (card

A) ∗ Max (f ‘ A)
〈proof 〉

lemma card-Min-le-sum-of-nat: finite A
=⇒ (of-nat :: - ⇒ - ::{semiring-1 ,ordered-comm-monoid-add}) (card A) ∗ Min (f

‘ A) ≤ sum f A
〈proof 〉

The following lemma is used to show the last equation of the proof of the
no-free-lunch theorem in the book [1].
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Let A be a finite set. If A is divided into the pairs (x1, y1), . . . , (xn, yn) such
that f(xi) + f(yi) = k for all i = 1, . . . , n. Then, we have

∑
x∈A f(x) =

k ∗ |A|/2.
lemma sum-of-const-pairs:

fixes k :: real
assumes A:finite A

and fst ‘ B ∪ snd ‘ B = A fst ‘ B ∩ snd ‘ B = {}
and inj-on fst B inj-on snd B
and sum:

∧
x y. (x,y) ∈ B =⇒ f x + f y = k

shows (
∑

x∈A. f x) = k ∗ real (card A) / 2
〈proof 〉

lemma(in prob-space) Markov-inequality-measure-minus:
assumes u ∈ borel-measurable M and AE x in M . 0 ≤ u x AE x in M . 1 ≥ u x

and [arith]: 0 < (a::real)
shows P(x in M . u x > 1 − a) ≥ ((

∫
x. u x ∂M ) − (1 − a)) / a

〈proof 〉

1.2 No-Free-Lunch Theorem

In our implementation, a learning algorithm of binary clasification is repre-
sented as a function A : nat ⇒ (nat ⇒ ′a × bool) ⇒ ′a ⇒ bool where the
first argument is the number of training data, the second argument is the
training data (S n= (xn, yn) denotes the nth data for a training data S),
and A m S is a predictor. The first argument, which denotes the number
of training data, is normally used to specify the number of loop executions
in learning algorithm. In this formalization, we omit the first argument
because we do not need the concrete definitions of learning algorithms.

Let X be the domain set. In order to analyze the error of predictors, we
assume that each data (x, y) is obtained from a distribution D on X × B.
The error of a predictor f with respect to D is defined as follows.

LD(f)
def
= P

(x,y)∼D
(f(x) 6= y)

= D({(x, y) ∈ X × B | f(x) 6= y})

In these settings, the no-free-lunch theorem states that for any learning
algorithm A and m < |X|/2, there exists a distribution D on X × B and a
predictor f such that

• LD(f) = 0, and

• P
S∼Dm

(
LD(A(S)) >

1

8

)
≥ 1

7
.
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theorem no-free-lunch-ML:
fixes X :: ′a measure and m :: nat

and A :: (nat ⇒ ′a × bool) ⇒ ′a ⇒ bool
assumes X1 :finite (space X) =⇒ 2 ∗ m < card (space X)

and X2 [measurable]:
∧

x. x ∈ space X =⇒ {x} ∈ sets X
and m[arith]:0 < m
and A[measurable]: (λ(s,x). A s x) ∈ (PiM {..<m} (λi. X

⊗
M count-space

(UNIV :: bool set)))
⊗

M X
→M count-space (UNIV :: bool set)

shows ∃D :: ( ′a × bool) measure. sets D = sets (X
⊗

M count-space (UNIV ::
bool set)) ∧

prob-space D ∧
(∃ f . f ∈ X →M count-space (UNIV :: bool set) ∧ P((x, y) in D. f x 6=

y) = 0 ) ∧
P(s in PiM {..<m} (λi. D). P((x, y) in D. A s x 6= y) > 1 / 8 ) ≥ 1 / 7

〈proof 〉

end
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