No-free-lunch theorem for machine learning

Michikazu Hirata

September 1, 2025

Abstract

This entry is a formalization of the no-free-lunch theorem for ma-
chine learning following Section 5.1 of the book Understanding Machine
Learning: From Theory to Algorithms [1] by Shai Shalev-Shwartz and
Shai Ben-David. The theorem states that for binary classification pre-
diction tasks, there is no universal learner, meaning that for every
learning algorithms, there exists a distribution on which it fails.

Contents

1 No-Free-Lunch Theorem for ML 1
1.1 Preliminaries e 1
1.2 No-Free-Lunch Theorem 4

1 No-Free-Lunch Theorem for ML

theory No-Free-Lunch-ML
imports

HOL— Probability. Probability
begin

1.1 Preliminaries

lemma sum-le-card-Maz-of-nat:finite A

= sum f A < (of-nat :: - = - :{semiring-1,ordered-comm-monoid-add}) (card
A) x« Maz (f < A)

using sum-bounded-above[of A f Max (f ¢ A)] by simp

lemma card-Min-le-sum-of-nat: finite A

= (of-nat :: - = - ::{semiring-1,ordered-comm-monoid-add}) (card A) * Min (f
“A) < sumfA

using sum-bounded-below[of A Min (f ¢ A) f] by simp

The following lemma is used to show the last equation of the proof of the
no-free-lunch theorem in the book [1].

Let A be a finite set. If A is divided into the pairs (x1,¥1),- .., (Zn, yn) such
that f(xz;) + f(y:) = k for all i = 1,...,n. Then, we have }°__, f(z) =
kx|A|/2.

lemma sum-of-const-pairs:
fixes k :: real
assumes A:finite A
and fst ‘BUsnd ‘B= A fst “BnNsnd ‘B=1{}
and inj-on fst B inj-on snd B
and sum: Az y. (z,y) e B= fz+ fy=k%
shows (Y z€A. fz) = k * real (card A) | 2
using assms
proof (induction A arbitrary: B rule: finite-psubset-induct)
case ih:(psubset A)
show Zcase
proof(cases A ={})
assume 4 # {}
then obtain z where z:z € A
by blast
then obtain y where zy:(z,y) € BV (y,z) € B
using ih(3) by fastforce
then have zy"z # y
by (metis emptyE fst-eqD ih(4) imagel mem-simps(4) snd-eqD)
have y:y € A
using h(3) zy by force
have *:(>" acA — {z,y}. fa) =k x real (card (A — {z,y})) / 2
proof —
consider (z,y) € B | (y,x) € B
using zy by blast
then show ?thesis
proof cases
assume zy:(z,y) € B
show ?thesis
proof (intro ih(2))
have x:fst ‘ (B — {(z, y)}) = fst * B — {z}
by (subst inj-on-image-set-diff[of fst B]) (use ih(5) zy in auto)
have xx: snd ‘ (B — {(z, y)}) = snd ‘ B — {y}
by (subst inj-on-image-set-diff[of snd B]) (use ih(6) zy in auto)
have z ¢ snd “By ¢ fst ‘B
using ih(4) xzy by(force simp: disjoint-iff)+
thus fst * (B — {(z,9)}) U snd * (B — {(z,y)}) = A — {z,y}
using ih(3) by(auto simp: x *x)
qed(use z ih(4) in auto introl: inj-on-diff ih(5,6,7))
next
assume zy:(y,z) € B
show ?thesis
proof (intro ih(2))
have x:fst * (B — {(y, z)}) = fst ‘B — {y}
by (subst inj-on-image-set-diff[of fst B]) (use th(5) zy in auto)
have *x: snd ‘(B — {(y,)}) = snd * B — {z}

by (subst inj-on-image-set-diff [of snd B]) (use ih(6) zy in auto)
have y ¢ snd ‘Bz ¢ fst ‘B
using ih(4) zy by(force simp: disjoint-iff)+
thus fst * (B — {(y,2)}) U snd * (B = {(y,2)}) = A — {z,y}
using ih(3) by(auto simp: * *x)
qed(use x ih(4) in auto intro': inj-on-diff ih(5,6,7))
qed
qed
have (o€ 4. fa) = (X acd — {z.y}. fa) + (fo + /)
using = y zy’ by (simp add: ih(1) sum-diff)
also have ... = k * real (card (A — {z,y})) / 2 + (fz + fy)
by (simp add: *)
also have ... = k x real (card (A — {z,y})) / 2 + k
using zy ih(7) by fastforce
also have ... = k * real (card A) | 2
using z y zy’ by(subst card-Diff-subset)
(auto simp: of-nat-diff-if card-le-SucO-iff-eq[OF ih(1)] not-less-eq-eq right-diff-distrib)
finally show ?thesis .
qed simp
qed

lemma(in prob-space) Markov-inequality-measure-minus:
assumes u € borel-measurable M and AEzin M. 0 <ux AExzinM.1>uzx
and [arith]: 0 < (a::real)
shows P(zin M. uz > 1 —a) > ((fz.uz M) — (1 —a)) / a
proof —
have [measurable,simp)|:integrable M u
using assms by (auto intro!: integrable-const-bound|where B=1])
have measure M {zc€space M. vz < 1 — a} = measure M {z€space M. a < 1
— ux}
by (rule arg-cong[where f=measure M]) auto
also have ... < ([z. 1 —uz dM) / a
using assms by (intro integral-Markov-inequality-measure) auto
finally have x:measure M {z€space M. vz < 1 — a} < ([z. 1 — uz OM) /
a.
have (([z. uz dM) — (I —a)) /a=1—(Jz. 1 —uzdM)/a
by (auto simp : prob-space diff-divide-distrib)
also have ... < 1 — measure M {z€space M. vz < 1 — a}
using *x by simp

also have ... = measure M {z€space M. —ux < 1 — a}
by (intro prob-neg[symmetric]) simp
also have ... = measure M {z€space M. uz > 1 — a}

by (rule arg-cong[where f=measure M]) auto
finally show ?thesis .
qed

1.2 No-Free-Lunch Theorem

In our implementation, a learning algorithm of binary clasification is repre-
sented as a function A : nat = (nat = 'a x bool) = 'a = bool where the
first argument is the number of training data, the second argument is the
training data (S n= (zp,y,) denotes the nth data for a training data S),
and A m S is a predictor. The first argument, which denotes the number
of training data, is normally used to specify the number of loop executions
in learning algorithm. In this formalization, we omit the first argument
because we do not need the concrete definitions of learning algorithms.

Let X be the domain set. In order to analyze the error of predictors, we
assume that each data (z,y) is obtained from a distribution D on X x B.
The error of a predictor f with respect to D is defined as follows.

def

Lp(f) P (f(z)#v)

(z,y)~D

=D({(z,y) € X xB| f(z) £ y})

In these settings, the no-free-lunch theorem states that for any learning
algorithm A and m < |X|/2, there exists a distribution D on X x B and a
predictor f such that

® ED(f) =0, and

1

. B <£D(A(S)) > 8> > %

theorem no-free-lunch-ML:
fixes X :: 'a measure and m :: nat
and A :: (nat = 'a x bool) = 'a = bool
assumes X1:finite (space X) = 2 *+ m < card (space X)
and X2[measurable]:\z. x € space X = {z} € sets X
and m[arith]:0 < m
and A[measurable]: (A(s,z). A s) € (PiM {..<m} (M. X @ rr count-space
(UNIV :: bool set))) @ amr X
— oy count-space (UNIV :: bool set)
shows 3D :: (‘a x bool) measure. sets D = sets (X @ ar count-space (UNIV ::
bool set)) A
prob-space D N
(3f. f € X = count-space (UNIV :: bool set) A P((z, y) in D. fz #
y)=0) A
P(sin Pipy {..<m} (M. D). P((z,y) inD. Asz#y)>1/8)>1/7
proof —
let ?B = count-space (UNIV :: bool set)
let B’ = UNIV :: bool set
let 2L = XD f. P((z, y) in D. fz = (- y))

have XB[measurable]: zy € space (X Q@ m ?B) = {zy} € sets (X @ n ?B)
for zy
by (auto simp: space-pair-measure sets-Pair)
have space X # {}
using X1 by force
have 3 CCspace X. finite C A card C = 2 x m
by (meson X1 infinite-arbitrarily-large obtain-subset-with-card-n order-less-le)
then obtain C where C: C C space X finite C card C = 2 x m
by blast
have C-ne:C # {}
using C assms by force
have C-sets[measurable]:C € sets X
using C by(auto intro!: sets.countable[OF X2 countable-finite])
have meas[measurable]:{(z, y). (z, y) € space (X Qm ?B) ANgz = (—y)} €
sets (X @ m ?B)
if g[measurable]: g € X —p ?B for g
proof —
have {(z, y). (z, y) € space (X @ ?B) A gz = (- y)}
= (g —“{True} N space X) x {False} U (g —‘{False} N space X) X
{True}
by (auto simp: space-pair-measure)
also have ... € sets (X Q p ?B)
by simp
finally show ?thesis .
qed

define fn where fn = from-nat-into (C —g (UNIV :: bool set))
define Dn where Dn = (An. measure-of (space (X @ ?B)) (sets (X @ m
’B))
(AU. real (card ((SIGMA z:C. {fnnz}) N U))/
real (card C)))

have fn-PiE:n < card (C —g ?B') = fan € C —g 7B’ for n
by (simp add: PiE-eq-empty-iff fn-def from-nat-into)
have ez-n:if € C =g ?B' = In < card (C —g ?B’). f = fnn for f
using bij-betw-from-nat-into-finite]| OF finite-PiE[OF C(2),0f \i. ¢B]]
by (auto simp: bij-betw-def fn-def)
have fn-inj: n < card (C —g ?B’) = n' < card (C —g B’) = (A\z. z € C
= fnnz=fann"z) = n=n'for nn’
using bij-betw-from-nat-into-finite] OF finite-PiE[OF C(2),0f Ai. ?B']] PiE-ext]|OF
fn-PiE[of n] fn-PiE[of n']]
by (auto simp: bij-betw-def fn-def inj-on-def)

have fn-meas[measurablel:fn n € X —p; ?B for n
proof —
have countable (C —g (UNIV :: bool set))
using C by(auto intro!: countable-PiF)
hence fnn € C —g (UNIV :: bool set)
by (simp add: PiE-eq-empty-iff fn-def from-nat-into)

hence fn n = (A\z. if € C then fn n z else undefined)
by auto

also have ... € X = B

proof (subst measurable-restrict-space-iff [symmetric])
have sets (restrict-space X C') = Pow C
using X2 C by/(intro sets-eq-countable) (auto simp: countable-finite sets-restrict-space-iff)
thus fn n € restrict-space X C —p; 7B

by (simp add: Measurable.pred-def assms(1))
qed auto
finally show ?thesis .
qed

have sets-Dn[measurable-congl: A\n. sets (Dn n) = sets (X @ v ?B)
and space-Dn:A\n. space (Dn n) = space (X @ pr ?B)
by (simp-all add: Dn-def)
have emeasure-Dn: emeasure (Dn n) U = ennreal (real (card ((SIGMA z:C. {fn
nz}) N U)) / real (card C))
(is - = ennreal (7 U))
if U[measurable]:U € X @ v 7B for Un
proof (rule emeasure-measure-of [where Q=space (X @ p ?B) and A=sets (X
R 7B))
let 2u’ = AU. ennreal (%u U)
show countably-additive (sets (Dn n)) u’
unfolding countably-additive-def
proof safe
fix Ui :: nat = - set
assume Ui:range Ui C sets (Dn n) disjoint-family Ui
have fin: finite {i. (SIGMA z:C. {fn n z}) N Ui i # {}} (is finite 71)
proof (rule ccontr)
assume infinite {i. (SIGMA z:C. {fn n z}) N Uii # {}}
with Ui(2)
have infinite (J ((Ai. (SIGMA z:C. {fn na}) N Uii) ‘{i. (SIGMA z:C.
{nnz}) 0 Ui £ (1)
(is infinite 2U)
by (intro infinite-disjoint-family-imp-infinite-UNION) (auto simp: dis-
joint-family-on-def)
moreover have U C (SIGMA x:C. {fn n z})
by blast
ultimately have infinite (SIGMA z:C. {fn n z})
by fastforce
with C(2) show False
by blast
qed
hence sum:summable (Ai. ?u (Ui)
by (intro summable-finitelwhere N={i. (SIGMA z:C. {fn n z}) N Ui i #
{}}]) auto
have (> 4. 2u’ (Ui i) = ennreal (3 i. ?u (Ui i))
by (intro sum suminf-ennreal2) auto
also have ... = (>_ie€?l. 2u (Ui 1))

by (subst suminf-finiteOF fin]) auto
also have ... = 2u’ (U (range Ui))
proof —
have *:(>_i€?I. real (card ((SIGMA z:C. {fn n z}) N Ui 1))) = real
(>-ie?l. (card ((SIGMA z:C. {fn n z}) N Ui 1)))
by simp
also have ... = real (card (I ((Mi. (SIGMA z:C. {fn n z}) N Uii) ‘ ?71)))
using C Ui fin unfolding disjoint-family-on-def
by (subst card-UN-disjoint) blast+
also have ... = real (card ((SIGMA z:C. {fn n z}) N |J (range Ui)))
by (rule arg-cong[where f=Az. real (card x)]) blast
finally show ?thesis
by (simp add: sum-divide-distrib[symmetric])
qed
finally show (> i. 2u’ (Uid)) = %u’ (U (range Ui)) .
qed
qed(auto simp: Dn-def positive-def introl:sets.sets-into-space)
interpret Dn: prob-space Dn n for n
proof
have [simp]: (SIGMA x:C. {fn n z}) N space (X Q m ?B) = (SIGMA z:C.
{fn n z})
using measurable-space| OF fn-meas] C(1) space-pair-measure by blast
show emeasure (Dn n) (space (Dn n)) = 1
using C-ne C by(simp add: emeasure-Dn space-Dn)
qed
interpret fp: finite-product-prob-space Ai. Dn n {..<m} for n
by standard auto
have measure-Dn: measure (Dn n) U = real (card ((SIGMA z:C. {fn n z}) N
U)) / real (card C)
ifU:UeX Qu ?Bfor Un
using emeasure-Dn[OF U] by(simp add: Dn.emeasure-eq-measure)
have measure-Dn’: measure (Dn n) U = (D> z€C. of-bool ((z,fn n z) € U)) /
real (card C)
if U[measurable]:U € X @ v ?B for Un
proof —
have #:(SIGMA z:C. {fn n z}) N U = (SIGMA z:C. {y. y = fn n x A (z,y)
€U}
by blast
have (z,fnnz) e U= {y.y=fanz A(z,y) € U} ={fanaz}
and (z,fnnz) ¢ U= {y.y=fanzA(z,y) € U} ={} forz
by blast+
hence sx:real (card {y. y = fnnz A (z,y) € U}) = of-bool ((z,fnnz) € U)
for z
by auto
show ?thesis
by (auto simp: measure-Dn * card-Sigmal[OF C(2)] *x)
qed

let ?LossA = An s. L (Dn n) (A s)

have [measurable]: (As. ?LossA n s) € borel-measurable (PiM {..<m} (Ai. X
Qv ?B)) for n
by measurable (auto simp add: space-Dn)
have Dn-fn-0:P((z, y) in Dn n. fnnx # y) = 0 for n
proof —
have (SIGMA z:C. {fn n z}) N {(z, y). (z, y) € space (X Q n count-space
UNIV) A fan s = (= 5)} = {}
by auto
thus %thesis
by (simp add: measure-Dn space-Dn)
qed

have [measurable]:(SIGMA z:C. {fn n z}) € sets (X @ m count-space UNIV')
for n
by (rule sets.countable) (use C in auto intro!: sets-Pair X2 C(1) countable-finite)
have integ[simp]:integrable (PiM {..<m} (Ai. Dn n)) (As. ?LossA n s) for n
by (auto introl: fp.P.integrable-const-bound[where B=1])

have [measurable]:{zn} € sets (Pipr {..<m} (Mi. X @ m ?B))
and fp-prob:fp.prob n {zn} = 1 / real (card C) ~m
if hian € {{.<m} —g (SIGMA z:C. {fn n z}) for zn n
proof —
have [simp]: i < m = an i € space (X Q m ?B) for i
using h C(1) by(fastforce simp: PiE-def space-pair-measure Pi-def)
have «:{azn} = (g ie{..<m}. {zn i})
proof safe
show Az. z € (IIg i€{..<m}. {zn i}) = = = n
by standard (metis PiE-E singletonD h)
ged(use h in auto)
also have ... € sets (Pip {..<m} (Ai. X @ m ?B))
by measurable
finally show {zn} € sets (Piy {..<m} (M. X Q m ?B)) .
have fp.prob n (Ilg ie{..<m}. {zn i}) = (][i<m. Dn.prob n {zn i})
using h by(intro fp.finite-measure-PiM-emb) simp
also have ... = (1 / real (card C) "m)
proof —
have A\i. i < m = ((SIGMA x:C. {fn n z}) N {zn i}) = {zn i}
using h by blast
thus ?thesis
by (simp add: measure-Dn power-one-over)
qed
finally show fp.prob n {an} = 1 / real (card C) " m
using * by simp
qed

have exp-eq:([s. ?LossA n s O(PiM {..<m} (Xi. Dn n))) = (3 se{..<m} —g
C. ?LossA n (Mie{..<m}. (s i, fan (s 1)))) / real (card C) ~ m for n
proof —

have ([s. ?LossA n s 9(PiM {..<m} (Xi. Dn n)))
= ([s. ?LossA n s * indicat-real (PiE {..<m} (\i. (SIGMA z:C. {fn n

1) s
+ ?LossA n s x indicat-real (space (PiM {..<m} (Xi. Dn n)) — (PiE
{..<m} (Ai. (SIGMA z:C. {fn n z})))) s O(PiM {..<m} (A\i. Dn n)))
by (auto introl: Bochner-Integration.integral-cong simp: indicator-def)
also have ... = ([s. ?LossA n s indicat-real (PiE {..<m} (Xi. (SIGMA z:C.
{fn nz}))) s O(PiM {..<m} (Ai. Dn n)))
+ ([s. ?LossA n s * indicat-real (space (PiM {..<m} (\i. Dn n))
— (PiE {..<m} (Ai. (SIGMA z:C. {fn n z})))) s O(PiM {..<m} (A\i. Dn n)))
by (rule Bochner-Integration.integral-add)
(auto introl: fp.P.integrable-const-bound[where B=1] simp: mult-le-one)
also have ... = ([s. ?LossA n s * indicat-real (PiE {..<m} (\i. (SIGMA z:C.
{fn nz}))) s O(PiM {..<m} (Ai. Dn n)))
proof —
have *:([s. ?LossA n s * indicat-real (space (PiM {..<m} (Xi. Dn n)) —
(PiE {..<m} (Mi. (SIGMA z:C. {fn n z})))) s O(PiM {..<m} (Ai. Dn n))) > 0
by simp
have ([s. ?LossA n s * indicat-real (space (PiM {..<m} (Xi. Dn n)) — (PiE
{..<m} (Ai. (SIGMA z:C. {fn n z})))) s O(PiM {..<m} (A\i. Dn n)))
< ([s. indicat-real (space (PiM {..<m} (Ai. Dn n)) — (PiE {..<m} (\i.
(SIGMA z:C. {fn n z})))) s O(PiM {..<m} (Ai. Dn n)))
by (intro integral-mono) (auto intro!: fp.P.integrable-const-bound[where
B=1] simp: mult-le-one indicator-def)
also have ... = I — fp.prob n (PiE {..<m} (\i. (SIGMA z:C. {fn n z})))
by (simp add: fp.P.prob-compl)
also have ... = 0
using C by(simp add: fp.finite-measure-PiM-emb measure-Dn)
finally show ?thesis
using * by simp
qed
also have ... = (> se{..<m} =g (SIGMA z:C. {fn nz}). ?LossA n s * fp.prob
n {s})
using C by(auto intro!: integral-indicator-finite-real finite-PiE le-neg-trans)
also have ... = (3 se{..<m} —g (SIGMA z:C. {fn n z}). ?LossA n s) / real
(card C) " m
by (simp add: fp-prob sum-divide-distrib)
also have ... = (3" se{..<m} =g C. ?LossA n (Aie{..<m}. (s i, fn n (s 0))))
/ real (card C) ~m
proof —
have *:{..<m} =g (SIGMA z:C. {fn n z}) = (As. Mie{..<m}. (s 4, fan (s
) (Lo<m} =5 C)
unfolding set-eq-iff
proof safe
show s € {.<m} —g (SIGMA z:C. {fn n z}) = s € (As. die{..<m}. (s
i, fan (s4)) ‘({.<m} =g C) for s
by (intro rev-image-eql[where b=s and z=Xi€{..<m}. fst (s i)]) (force
simp: PiE-def Pi-def extensional-def)+
qed auto

have xx:inj-on (As. Mie{..<m}. (s 4, fan (s 1)) ({..<m} =g C)
by (intro inj-onl) (metis (mono-tags, lifting) PiE-ext prod.simps(1) re-
strict-apply”)
show ?thesis
by (subst sum.reindex[where A={..<m} —r C and h=Ms. Aie{..<m}. (s
i, fn n (s 1)),simplified, symmetric])

(use * ** in auto)
qed

finally show ?thesis .
qged

h[measurable]:h € X — s ?B for n h

have eqL:?L (Dn n) h = (> z€C. of-bool (h z = (- fnn x))) / real (card C) if
proof —

have ?L (Dnn) h = (>, z€C. of-bool ((z, fn n x) € space (X @ p ?B) AN hx
= (= fnnx))) / real (card C)

by (simp add: space-Dn measure-Dn’)
also have ... = ()" zeC. of-bool (h z = (= fnn x))) / real (card C)

using C by (auto simp: space-pair-measure Collect-conj-eq Int-assoc[symmetric))
finally show ?thesis .

qged
have nzl[arith]:real (card (C —g ?B’)) > 0 real (card C) > 0 0 < real (card
({.<m} —g)
using C(2) C-ne by(simp-all add: card-funcsetE card-gt-0-iff)
have ne:finite ((An. fp.expectation n

(As. Dn.prob n {(z, y). (z, y) € space (Dnn) N A sz

(=9}
{.<card (C —g ?B"})
((An. fp.expectation n
(As. Dn.prob n {(z, y). (z, y) € space (Dnn) AN A sz = (= y)})) *
{..<ca7;l (C —g ?BN}) # {} (is ?ne)
proof —

have 0 < card (C —g ?B)

using C-ne C(2) by(auto simp: card-gt-0-iff finite-PiE)
thus “ne

by blast
qed simp

have maz-geg-q:(MAX ne{..<card (C —g ?B")}. ([s. ?LossA n s d(PiM {..<m}
(Mi. Dnon)))) > 1/ 4 (is - < ?Max)

proof —

have (MIN se{..<m} —g C. (> n<card (C —g ?B’). ?LossA n (Aie{..<m}.
(s i, fan (s4)))) / real (card (C —g ?B")))

< ?Maz (is ?Min1 < -)
proof —

have ?Minl

10

< (3o se{.<m} =g C.
(> n<card (C —g ?B’).
?LossA n (Aie{..<m}. (s i, fn n (s 7)))) / real (card (C —g
?B")) / real (card ({..<m} —g C))
proof (subst pos-le-divide-eq)
show ?Minl x real (card ({..<m} —g C))
< (O se{..<m} =g C. (O n<card (C —g ?B’). ?LossA n (Aie{..<m}.
(s i, fan (s4)))) / real (card (C —g ?B")))
using C by(simp add: mult.commute) (auto introl: finite- PiE card-Min-le-sum-of-nat)
qed fact
also have ...
> se{.<m} =g C.
(> n<card (C —g ?B').
?LossA n (Mi€{..<m}. (s i, fnn (s 1)))) / real (card (C —g
?B")) / real (card C) " m
by(simp add: card-PiE)
also have ...
= (O_n<card (C —pg ?B’).
- se{.<m} —E C.
?LossA n (Aie{..<m}. (s i, fnn (s 1)))) / real (card C) ~m) /
real (card (C —pg ?B’))
unfolding sum-divide-distrib[symmetric] by(subst sum.swap) simp
also have ... < ?Max
proof —
have real (card (C —g ?B’)) x ?Mazx
= real (card (C —g ?B’))
* (MAX ne{..<card (C —g ?B")}. (O se{.<m} —g C. ?LossA n
(Aie{..<m}. (s, fan (s1)))) / real (card C) ~ m)
by (simp add: exp-eq)
also have ... > (3" n<card (C —g ?B'). (3 se{.<m} —g C. ?LossA n
(Aie{.<m}. (s i, fnn (s 1)))) / real (card C) ~m)
using sum-le-card-Maz-of-nat[of {..<card (C —g ?B’)}| finite-PiE[OF
C(2)] by auto
finally show ?thesis
by (subst pos-divide-le-eq) (simp, argo)
qed
finally show ?thesis .
qed

have 1 / 4 < ?Minl
proof (safe introl: Min-ge-iff[THEN iffD2])
fix s
assume s: s € {.<m} —-g C
hence [measurable]: (Aie{..<m}. (s i, fnn (s 1)) € space (PiM {..<m} (\i.
X Q@ v ?B)) for n
using C by(auto simp: space-PiM space-pair-measure)
let 7V =C — (s ‘{..<m})
have fin-V:finite 2V

11

using C by blast
have cardV: card ?V > m
proof —
have card (s ‘{..<m}) < m
by (metis card-image-le card-lessThan finite-lessThan)
hence m < card C' — card (s ‘ {..<m})
using C(8) by simp
also have card C — card (s ‘ {..<m}) < card ?V
by (rule diff-card-le-card-Diff) simp
finally show ?thesis .
qed
hence V-ne: ¢V # {} card ?V > 0
using m by force+
have (1 / 2) % (1 /] 2)
= (1/2)
*x (MIN ve?V. (3 n<card (C —g ?B’). of-bool (A (Aie{..<m}. (s i, fn
n(si)) v= (= fnnwv)))/ real (card (C —g ?B")))
proof (rule arg-conglwhere f=(x) (1 / 2)])
have (3" n<card (C —g ?B’). of-bool (A (Mie{..<m}. (s i, fnn (s17))) v
= (- fannw))) / real (card (C =g ?B’)) =1/ 2
if viv € 2V for v
proof —
define B where B = {(n, n')jn n'. n < card (C —g ?B") A fanov =
False A n' < card (C —g ?B’)
Afnn'v= True N VzeC — {v}. fnnz =
fnn'z)}
have Bi:fst ‘B U snd ‘ B = {..<card (C —g ?B’)}
proof —
have n € fst * B U snd ‘ B if n:in < card (C —g ?B’) for n
proof(cases fn n v = True)
assume h:fn n v = True
let ?fn’ = A\z. if x = v then False else fn n x
have fn " A\z. 2 £ v = fanz = 9n’z ?Mn’ v= False
by auto
hence fn'1:?fn’ € C —g ?B’
using fn-PiE[OF n] v by auto
then obtain n’ where n”: n’ < card (C =g ?B’) fan’ = ?fn’
using ex-n by (metis (lifting))
hence (n’,n) € B
using n’ fn’l fn-PiE[OF n] n h fn’ by(auto simp: B-def)
thus ?thesis
by force
next
assume h:fn n v # True
let ?fn’ = A\z. if x = v then True else fn n x
have fn " A\z. 2 # v = fanxz = 2’z 2’ v= True
by auto
hence fn'1:?fn’ € C —g ?B’
using fn-PiE[OF n] v by auto

12

then obtain n’ where n”: n’ < card (C —g ?B’) fan’ = ?fn’
using ex-n by (metis (lifting))
hence (n,n’) € B
using n’ fn’l fn-PiE[OF n] n h fn’ by(auto simp: B-def)
thus ?thesis
by force
qed
moreover have An. n € fst ‘B U snd ‘B = n < card (C —g ?B’)
by (auto simp: B-def)
ultimately show ?Zthesis
by blast
qed
have B2:fst ‘BN snd ‘B = {}
by (auto simp: B-def)
have B3: inj-on fst B
by (auto introl: fn-inj inj-onl simp: B-def)
have Bj: inj-on snd B
by (fastforce introl: fn-inj inj-onl simp: B-def)
have B5:of-bool (A (Mi€{..<m}. (s, fnn (s19))) v
= (= fn nv)) + of-bool (A (Aie{..<m}. (s, fan' (s49))) v= (-
fan'v)) = (1: real)
if nn":(n,n’) € B for n n’
proof —
have (\ie{..<m}. (s 4, fnn (s 7)) = (Nie{.<m}. (s 4, fn n' (s1)))
by standard (use s nn’ v in auto simp: B-def)
thus Zthesis
using nn’ by (auto simp: B-def)
qed
have (3 n<card (C —g ?B’). of-bool (A (Mie{..<m}. (s i, fnn (s1))) v
— (= fonv))
= 1 % real (card {..<card (C —g ?B")}) / 2
by (intro sum-of-const-pairsijwhere B=B| B1 B2 B3 B4 B5) simp
thus ?thesis
by simp
qed
thus 1 / 2 = (MIN ve?V. (3" n<card (C —g ?B’). of-bool (A (Nie{..<m}.
(si,fnn (si))) v= (- fannwv)))/ rel (card (C —g ?B’)))
by (metis (mono-tags, lifting) V-ne(1) fin-V obtains-MIN)
qed
also have ...
<(1/2)
x (Do ve?V. (O n<card (C —g ?B’). of-bool (A (Aie{..<m}. (s i, fn
n (s i) v= (= fnnwv)))
/ real (card (C —pg ?B")))
/ real (card ?V))
using V-ne by (intro mult-le-cancel-left-pos| THEN iffD2] pos-le-divide-eq THEN
iffD2])
(simp-all add: Groups.mult-ac(2) card-Min-le-sum-of-nat fin-V)
also have ...

13

= (D n<card (C —g ?B’). (O_ve?V. of-bool (A (Nie{..<m}. (s 1, fn
n(s1)) v = (= fo n v))
/ (2 % real (card 2V))) / real (card (C —g ?B)))
unfolding sum-divide-distrib[symmetric] by(subst sum.swap) simp
also have ... < (3 n<card (C —g ?B’). ?LossA n (Aie{..<m}. (s i, fnn (s
1)) / real (card (C —g ¢?B’)))
proof (safe introl: sum-mono divide-right-mono)
fix n
have (3 ve?V. of-bool (A (Nie{..<m}. (s i, fan (s 1)) v= (= fnnw)))
/ (2 % real (card ?V))
< (D2 we?V. of-bool (A (Nie{..<m}. (s i, fan (si))) v= (- fannv))
/ real (card C)
using cardV by(auto simp: C(3) introl: divide-left-mono sum-nonneg)
also have ... < (> zeC. of-bool (A (Mie{..<m}. (s i, fnn (si))) z = (=
fannx))) / real (card C)
using C by(intro sum-mono2 divide-right-mono) auto
also have ... = ?LossA n (Aie{..<m}. (s i, fn n (s17)))
by (simp add: eqL)
finally show (3" ve?V. of-bool (A (Mie{..<m}. (s4, fan (si))) v= (- fn
nv))) / (2 * real (card ?V))
< ZLossA n (Aie{..<m}. (s i, fnn (s 1)) .
qed simp
finally show 1 / 4 < (3 n<card (C —g ?B’). ?LossA n (Aie{..<m}. (s i,
fann (s4)))) / real (card (C —g ?B))
by (simp add: sum-divide-distrib)
qed(use m C in auto intro!: finite-PiE simp: PiE-eq-empty-iff)
also have ... < ?Max
by fact
finally show ?thesis .
qed

hence In. n < card (C —g ?B’) A ([s. ?LossA n s O(PiM {..<m} (Xi. Dn
W) > 1/ 4
using Maz-ge-iff[OF ne] by blast
then obtain n where n:n < card (C =g ?B’) ([s. ?LossA n s O(PiM {..<m}
(M. Dnn))>1/4
by blast

have 1 / 7 < ((['s. ?LossA n s O(PiM {..<m} (Ai. Dn n))) — (1 — 7/ 8)) /
(7/8)
using n by argo
also have ... < P(s in Piys {..<m} (Ai. Dn n). P((z, y) in Dnn. A sz = (=
y)>1-17/8)
by (intro fp. Markov-inequality-measure-minus) auto
also have ... = P(s in Pip {..<m} (Ai. Dnn). P((z, y) in Dnn. A sz = (-
y)>1/8)
by simp
finally have 1 / 7 < P(s in Pip {..<m} (Ai. Dnn). P((z, y) in Dnn. A sz
=(y)>1/8).

14

thus ?thesis
using Dn-fn-0]of n]
by (auto intro!: exI[where x=Dn n| exI[where x=fn n] simp: sets-Dn Dn.prob-space-azioms)
qed

end

References

[1] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

15

	No-Free-Lunch Theorem for ML
	Preliminaries
	No-Free-Lunch Theorem

