
Von Neumann Morgenstern Utility Theorem ∗

Julian Parsert Cezary Kaliszyk

December 14, 2021

Abstract

Utility functions form an essential part of game theory and eco-
nomics. In order to guarantee the existence of utility functions most of
the time sufficient properties are assumed in an axiomatic manner. One
famous and very common set of such assumptions is that of expected
utility theory. Here, the rationality, continuity, and independence of
preferences is assumed. The von-Neumann-Morgenstern Utility theo-
rem shows that these assumptions are necessary and sufficient for an
expected utility function to exists. This theorem was proven by Neu-
mann and Morgenstern in “Theory of Games and Economic Behavior”
which is regarded as one of the most influential works in game theory.

We formalize these results in Isabelle/HOL. The formalization in-
cludes formal definitions of the underlying concepts including continu-
ity and independence of preferences.

Contents
1 Composition of Probability Mass functions 2

2 Lotteries 5

3 Properties of Preferences 6
3.1 Independent Preferences . 6
3.2 Continuity . 9

4 System U start, as per vNM 10

5 This lemma is in called step 1 in literature. In Von Neumann
and Morgenstern’s book this is A:A (albeit more general) 11
5.1 Add finiteness and non emptyness of outcomes 13
5.2 Add continuity to assumptions 16

∗This work is supported by the Austrian Science Fund (FWF) project P26201 and the
European Research Council (ERC) grant no 714034 SMART.

1

6 Definition of vNM-utility function 20

7 Finite outcomes 21

8 Related work 23

theory PMF-Composition
imports

HOL−Probability.Probability
begin

1 Composition of Probability Mass functions
definition mix-pmf :: real ⇒ ′a pmf ⇒ ′a pmf ⇒ ′a pmf where

mix-pmf α p q = (bernoulli-pmf α)>>= (λX . if X then p else q)

lemma pmf-mix: a ∈ {0 ..1} =⇒ pmf (mix-pmf a p q) x = a ∗ pmf p x + (1 −
a) ∗ pmf q x
〈proof 〉

lemma pmf-mix-deeper : a ∈ {0 ..1} =⇒ pmf (mix-pmf a p q) x = a ∗ pmf p x +
pmf q x − a ∗ pmf q x
〈proof 〉

lemma bernoulli-pmf-0 [simp]: bernoulli-pmf 0 = return-pmf False
〈proof 〉

lemma bernoulli-pmf-1 [simp]: bernoulli-pmf 1 = return-pmf True
〈proof 〉

lemma pmf-mix-0 [simp]: mix-pmf 0 p q = q
〈proof 〉

lemma pmf-mix-1 [simp]: mix-pmf 1 p q = p
〈proof 〉

lemma set-pmf-mix: a ∈ {0<..<1} =⇒ set-pmf (mix-pmf a p q) = set-pmf p ∪
set-pmf q
〈proof 〉

lemma set-pmf-mix-eq: a ∈ {0 ..1} =⇒ mix-pmf a p p = p
〈proof 〉

lemma pmf-equiv-intro[intro]:
assumes

∧
e. e ∈ set-pmf p =⇒ pmf p e = pmf q e

assumes
∧

e. e ∈ set-pmf q =⇒ pmf q e = pmf p e

2

shows p = q
〈proof 〉

lemma pmf-equiv-intro1 [intro]:
assumes

∧
e. e ∈ set-pmf p =⇒ pmf p e = pmf q e

shows p = q
〈proof 〉

lemma pmf-inverse-switch-eqals:
assumes a ∈ {0 ..1}
shows mix-pmf a p q = mix-pmf (1−a) q p
〈proof 〉

lemma mix-pmf-comp-left-div:
assumes α ∈ {0 ..(1 ::real)}

and β ∈ {0 ..(1 ::real)}
assumes α > β
shows pmf (mix-pmf (β/α) (mix-pmf α p q) q) e = β ∗ pmf p e + pmf q e −

β ∗ pmf q e
〈proof 〉

lemma mix-pmf-comp-with-dif-equiv:
assumes α ∈ {0 ..(1 ::real)}

and β ∈ {0 ..(1 ::real)}
assumes α > β
shows mix-pmf (β/α) (mix-pmf α p q) q = mix-pmf β p q (is ?l = ?r)
〈proof 〉

lemma product-mix-pmf-prob-distrib:
assumes a ∈ {0 ..1}

and b ∈ {0 ..1}
shows mix-pmf a (mix-pmf b p q) q = mix-pmf (a∗b) p q
〈proof 〉

lemma mix-pmf-subset-of-original:
assumes a ∈ {0 ..1}
shows (set-pmf (mix-pmf a p q)) ⊆ set-pmf p ∪ set-pmf q
〈proof 〉

lemma mix-pmf-preserves-finite-support:
assumes a ∈ {0 ..1}
assumes finite (set-pmf p)

and finite (set-pmf q)
shows finite (set-pmf (mix-pmf a p q))
〈proof 〉

lemma ex-certain-iff-singleton-support:
shows (∃ x. pmf p x = 1) ←→ card (set-pmf p) = 1
〈proof 〉

3

We thank Manuel Eberl for suggesting the following two lemmas.
lemma mix-pmf-partition:

fixes p :: ′a pmf
assumes y ∈ set-pmf p set-pmf p − {y} 6= {}
obtains a q where a ∈ {0<..<1} set-pmf q = set-pmf p − {y}

p = mix-pmf a q (return-pmf y)
〈proof 〉

lemma pmf-mix-induct [consumes 2 , case-names degenerate mix]:
assumes finite A set-pmf p ⊆ A
assumes degenerate:

∧
x. x ∈ A =⇒ P (return-pmf x)

assumes mix:
∧

p a y. set-pmf p ⊆ A =⇒ a ∈ {0<..<1} =⇒ y ∈ A =⇒
P p =⇒ P (mix-pmf a p (return-pmf y))

shows P p
〈proof 〉

lemma pmf-mix-induct ′ [consumes 2 , case-names degenerate mix]:
assumes finite A set-pmf p ⊆ A
assumes degenerate:

∧
x. x ∈ A =⇒ P (return-pmf x)

assumes mix:
∧

p q a. set-pmf p ⊆ A =⇒ set-pmf q ⊆ A =⇒ a ∈ {0<..<1}
=⇒

P p =⇒ P q =⇒ P (mix-pmf a p q)
shows P p
〈proof 〉

lemma finite-sum-distribute-mix-pmf :
assumes finite (set-pmf (mix-pmf a p q))
assumes finite (set-pmf p)
assumes finite (set-pmf q)
shows (

∑
i ∈ set-pmf (mix-pmf a p q). pmf (mix-pmf a p q) i) = (

∑
i∈set-pmf

p. a ∗ pmf p i) + (
∑

i∈set-pmf q. (1−a) ∗ pmf q i)
〈proof 〉

lemma distribute-alpha-over-sum:
shows (

∑
i∈set-pmf T . a ∗ pmf p i ∗ f i) = a ∗ (

∑
i∈set-pmf T . pmf p i ∗ f i)

〈proof 〉

lemma sum-over-subset-pmf-support:
assumes finite T
assumes set-pmf p ⊆ T
shows (

∑
i∈T . a ∗ pmf p i ∗ f i) = (

∑
i∈set-pmf p. a ∗ pmf p i ∗ f i)

〈proof 〉

lemma expected-value-mix-pmf-distrib:
assumes finite (set-pmf p)

and finite (set-pmf q)
assumes a ∈ {0<..<1}
shows measure-pmf .expectation (mix-pmf a p q) f = a ∗ measure-pmf .expectation

p f + (1−a) ∗ measure-pmf .expectation q f

4

〈proof 〉

lemma expected-value-mix-pmf :
assumes finite (set-pmf p)

and finite (set-pmf q)
assumes a ∈ {0 ..1}
shows measure-pmf .expectation (mix-pmf a p q) f = a ∗ measure-pmf .expectation

p f + (1−a) ∗ measure-pmf .expectation q f
〈proof 〉

end

theory Lotteries
imports

PMF-Composition
HOL−Probability.Probability

begin

2 Lotteries
definition lotteries-on

where
lotteries-on Oc = {p . (set-pmf p) ⊆ Oc}

lemma lotteries-on-subset:
assumes A ⊆ B
shows lotteries-on A ⊆ lotteries-on B
〈proof 〉

lemma support-in-outcomes:
∀ oc. ∀ p ∈ lotteries-on oc. ∀ a ∈ set-pmf p. a ∈ oc
〈proof 〉

lemma lotteries-on-nonempty:
assumes outcomes 6= {}
shows lotteries-on outcomes 6= {}
〈proof 〉

lemma finite-support-one-oc:
assumes card outcomes = 1
shows ∀ l ∈ lotteries-on outcomes. finite (set-pmf l)
〈proof 〉

lemma one-outcome-card-support-1 :
assumes card outcomes = 1
shows ∀ l ∈ lotteries-on outcomes. card (set-pmf l) = 1
〈proof 〉

5

lemma finite-nempty-ex-degernate-in-lotteries:
assumes out 6= {}
assumes finite out
shows ∃ e ∈ lotteries-on out. ∃ x ∈ out. pmf e x = 1
〈proof 〉

lemma card-support-1-probability-1 :
assumes card (set-pmf p) = 1
shows ∀ e ∈ set-pmf p. pmf p e = 1
〈proof 〉

lemma one-outcome-card-lotteries-1 :
assumes card outcomes = 1
shows card (lotteries-on outcomes) = 1
〈proof 〉

lemma return-pmf-card-equals-set:
shows card {return-pmf x |x. x ∈ S} = card S
〈proof 〉

lemma mix-pmf-in-lotteries:
assumes p ∈ lotteries-on A

and q ∈ lotteries-on A
and a ∈ {0<..<1}

shows (mix-pmf a p q) ∈ lotteries-on A
〈proof 〉

lemma card-degen-lotteries-equals-outcomes:
shows card {x ∈ lotteries-on out. card (set-pmf x) = 1} = card out
〈proof 〉

end

theory Neumann-Morgenstern-Utility-Theorem
imports

HOL−Probability.Probability
First-Welfare-Theorem.Utility-Functions
Lotteries

begin

3 Properties of Preferences
3.1 Independent Preferences

Independence is sometimes called substitution

6

Notice how r is "added" to the right of mix-pmf and the element to the left
q/p changes
definition independent-vnm

where
independent-vnm C P =
(∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀ (α::real) ∈ {0<..1}. p �[P] q ←→ mix-pmf α p

r �[P] mix-pmf α q r)

lemma independent-vnmI1 :
assumes (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀α ∈ {0<..1}. p �[P] q ←→ mix-pmf α

p r �[P] mix-pmf α q r)
shows independent-vnm C P
〈proof 〉

lemma independent-vnmI2 :
assumes

∧
p q r α. p ∈ C =⇒ q ∈ C =⇒ r ∈ C =⇒ α ∈ {0<..1} =⇒ p �[P]

q ←→ mix-pmf α p r �[P] mix-pmf α q r
shows independent-vnm C P
〈proof 〉

lemma independent-vnm-alt-def :
shows independent-vnm C P ←→ (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀α ∈ {0<..<1}.
p �[P] q ←→ mix-pmf α p r �[P] mix-pmf α q r) (is ?L ←→ ?R)
〈proof 〉

lemma independece-dest-alt:
assumes independent-vnm C P
shows (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀ (α::real) ∈ {0<..1}. p �[P] q ←→ mix-pmf

α p r �[P] mix-pmf α q r)
〈proof 〉

lemma independent-vnmD1 :
assumes independent-vnm C P
shows (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀α ∈ {0<..1}. p �[P] q ←→ mix-pmf α p

r �[P] mix-pmf α q r)
〈proof 〉

lemma independent-vnmD2 :
fixes p q r α
assumes α ∈ {0<..1}

and p ∈ C
and q ∈ C
and r ∈ C

assumes independent-vnm C P
assumes p �[P] q
shows mix-pmf α p r �[P] mix-pmf α q r
〈proof 〉

lemma independent-vnmD3 :

7

fixes p q r α
assumes α ∈ {0<..1}

and p ∈ C
and q ∈ C
and r ∈ C

assumes independent-vnm C P
assumes mix-pmf α p r �[P] mix-pmf α q r
shows p �[P] q
〈proof 〉

lemma independent-vnmD4 :
assumes independent-vnm C P
assumes refl-on C P
assumes p ∈ C

and q ∈ C
and r ∈ C
and α ∈ {0 ..1}
and p �[P] q

shows mix-pmf α p r �[P] mix-pmf α q r
〈proof 〉

lemma approx-indep-ge:
assumes x ≈[R] y
assumes α ∈ {0 ..(1 ::real)}
assumes rpr : rational-preference (lotteries-on outcomes) R

and ind: independent-vnm (lotteries-on outcomes) R
shows ∀ r ∈ lotteries-on outcomes. (mix-pmf α y r) �[R] (mix-pmf α x r)
〈proof 〉

lemma approx-imp-approx-ind:
assumes x ≈[R] y
assumes α ∈ {0 ..(1 ::real)}
assumes rpr : rational-preference (lotteries-on outcomes) R

and ind: independent-vnm (lotteries-on outcomes) R
shows ∀ r ∈ lotteries-on outcomes. (mix-pmf α y r) ≈[R] (mix-pmf α x r)
〈proof 〉

lemma geq-imp-mix-geq-right:
assumes x �[R] y
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R
assumes α ∈ {0 ..(1 ::real)}
shows (mix-pmf α x y) �[R] y
〈proof 〉

lemma geq-imp-mix-geq-left:
assumes x �[R] y
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R

8

assumes α ∈ {0 ..(1 ::real)}
shows (mix-pmf α y x) �[R] y
〈proof 〉

lemma sg-imp-mix-sg:
assumes x �[R] y
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R
assumes α ∈ {0<..(1 ::real)}
shows (mix-pmf α x y) �[R] y
〈proof 〉

3.2 Continuity

Continuity is sometimes called Archimedean Axiom
definition continuous-vnm

where
continuous-vnm C P = (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . p �[P] q ∧ q �[P] r −→
(∃α ∈ {0 ..1}. (mix-pmf α p r) ≈[P] q))

lemma continuous-vnmD:
assumes continuous-vnm C P
shows (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . p �[P] q ∧ q �[P] r −→
(∃α ∈ {0 ..1}. (mix-pmf α p r) ≈[P] q))
〈proof 〉

lemma continuous-vnmI :
assumes

∧
p q r . p ∈ C =⇒ q ∈ C =⇒ r ∈ C =⇒ p �[P] q ∧ q �[P] r =⇒

∃α ∈ {0 ..1}. (mix-pmf α p r) ≈[P] q
shows continuous-vnm C P
〈proof 〉

lemma mix-in-lot:
assumes x ∈ lotteries-on outcomes

and y ∈ lotteries-on outcomes
and α ∈ {0 ..1}

shows (mix-pmf α x y) ∈ lotteries-on outcomes
〈proof 〉

lemma non-unique-continuous-unfolding:
assumes cnt: continuous-vnm (lotteries-on outcomes) R
assumes rational-preference (lotteries-on outcomes) R
assumes p �[R] q

and q �[R] r
and p �[R] r

shows ∃α ∈ {0 ..1}. q ≈[R] mix-pmf α p r
〈proof 〉

9

4 System U start, as per vNM

These are the first two assumptions which we use to derive the first re-
sults. We assume rationality and independence. In this system U the von-
Neumann-Morgenstern Utility Theorem is proven.
context

fixes outcomes :: ′a set
fixes R
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R

begin

abbreviation P ≡ lotteries-on outcomes

lemma relation-in-carrier :
x �[R] y =⇒ x ∈ P ∧ y ∈ P
〈proof 〉

lemma mix-pmf-preferred-independence:
assumes r ∈ P

and α ∈ {0 ..1}
assumes p �[R] q
shows mix-pmf α p r �[R] mix-pmf α q r
〈proof 〉

lemma mix-pmf-strict-preferred-independence:
assumes r ∈ P

and α ∈ {0<..1}
assumes p �[R] q
shows mix-pmf α p r �[R] mix-pmf α q r
〈proof 〉

lemma mix-pmf-preferred-independence-rev:
assumes p ∈ P

and q ∈ P
and r ∈ P
and α ∈ {0<..1}

assumes mix-pmf α p r �[R] mix-pmf α q r
shows p �[R] q
〈proof 〉

lemma x-sg-y-sg-mpmf-right:
assumes x �[R] y
assumes b ∈ {0<..(1 ::real)}
shows x �[R] mix-pmf b y x
〈proof 〉

lemma neumann-3B-b:

10

assumes u �[R] v
assumes α ∈ {0<..<1}
shows u �[R] mix-pmf α u v
〈proof 〉

lemma neumann-3B-b-non-strict:
assumes u �[R] v
assumes α ∈ {0 ..1}
shows u �[R] mix-pmf α u v
〈proof 〉

lemma greater-mix-pmf-greater-step-1-aux:
assumes v �[R] u
assumes α ∈ {0<..<(1 ::real)}

and β ∈ {0<..<(1 ::real)}
assumes β > α
shows (mix-pmf β v u) �[R] (mix-pmf α v u)
〈proof 〉

5 This lemma is in called step 1 in literature. In
Von Neumann and Morgenstern’s book this is
A:A (albeit more general)

lemma step-1-most-general:
assumes x �[R] y
assumes α ∈ {0 ..(1 ::real)}

and β ∈ {0 ..(1 ::real)}
assumes α > β
shows (mix-pmf α x y) �[R] (mix-pmf β x y)
〈proof 〉

Kreps refers to this lemma as 5.6 c. The lemma after that is also significant.
lemma approx-remains-after-same-comp:

assumes p ≈[R] q
and r ∈ P
and α ∈ {0 ..1}

shows mix-pmf α p r ≈[R] mix-pmf α q r
〈proof 〉

This lemma is the symmetric version of the previous lemma. This lemma is
never mentioned in literature anywhere. Even though it looks trivial now,
due to the asymmetric nature of the independence axiom, it is not so trivial,
and definitely worth mentioning.
lemma approx-remains-after-same-comp-left:

assumes p ≈[R] q
and r ∈ P
and α ∈ {0 ..1}

11

shows mix-pmf α r p ≈[R] mix-pmf α r q
〈proof 〉

lemma mix-of-preferred-is-preferred:
assumes p �[R] w
assumes q �[R] w
assumes α ∈ {0 ..1}
shows mix-pmf α p q �[R] w
〈proof 〉

lemma mix-of-not-preferred-is-not-preferred:
assumes w �[R] p
assumes w �[R] q
assumes α ∈ {0 ..1}
shows w �[R] mix-pmf α p q
〈proof 〉 definition degenerate-lotteries where

degenerate-lotteries = {x ∈ P. card (set-pmf x) = 1}

private definition best where
best = {x ∈ P. (∀ y ∈ P. x �[R] y)}

private definition worst where
worst = {x ∈ P. (∀ y ∈ P. y �[R] x)}

lemma degenerate-total:
∀ e ∈ degenerate-lotteries. ∀m ∈ P. e �[R] m ∨ m �[R] e
〈proof 〉

lemma degen-outcome-cardinalities:
card degenerate-lotteries = card outcomes
〈proof 〉

lemma degenerate-lots-subset-all: degenerate-lotteries ⊆ P
〈proof 〉

lemma alt-definition-of-degenerate-lotteries[iff]:
{return-pmf x |x. x∈ outcomes} = degenerate-lotteries
〈proof 〉

lemma best-indifferent:
∀ x ∈ best. ∀ y ∈ best. x ≈[R] y
〈proof 〉

lemma worst-indifferent:
∀ x ∈ worst. ∀ y ∈ worst. x ≈[R] y
〈proof 〉

lemma best-worst-indiff-all-indiff :
assumes b ∈ best

12

and w ∈ worst
and b ≈[R] w

shows ∀ e ∈ P. e ≈[R] w ∀ e ∈ P. e ≈[R] b
〈proof 〉

Like Step 1 most general but with IFF.
lemma mix-pmf-pref-iff-more-likely [iff]:

assumes b �[R] w
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
shows α > β ←→ mix-pmf α b w �[R] mix-pmf β b w (is ?L ←→ ?R)
〈proof 〉

lemma better-worse-good-mix-preferred[iff]:
assumes b �[R] w
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes α ≥ β
shows mix-pmf α b w �[R] mix-pmf β b w
〈proof 〉

5.1 Add finiteness and non emptyness of outcomes
context

assumes fnt: finite outcomes
assumes nempty: outcomes 6= {}

begin

lemma finite-degenerate-lotteries:
finite degenerate-lotteries
〈proof 〉

lemma degenerate-has-max-preferred:
{x ∈ degenerate-lotteries. (∀ y ∈ degenerate-lotteries. x �[R] y)} 6= {} (is ?l 6=
{})
〈proof 〉

lemma degenerate-has-min-preferred:
{x ∈ degenerate-lotteries. (∀ y ∈ degenerate-lotteries. y �[R] x)} 6= {} (is ?l 6=
{})
〈proof 〉

lemma exists-best-degenerate:
∃ x ∈ degenerate-lotteries. ∀ y ∈ degenerate-lotteries. x �[R] y
〈proof 〉

lemma exists-worst-degenerate:
∃ x ∈ degenerate-lotteries. ∀ y ∈ degenerate-lotteries. y �[R] x
〈proof 〉

13

lemma best-degenerate-in-best-overall:
∃ x ∈ degenerate-lotteries. ∀ y ∈ P. x �[R] y
〈proof 〉

lemma worst-degenerate-in-worst-overall:
∃ x ∈ degenerate-lotteries. ∀ y ∈ P. y �[R] x
〈proof 〉

lemma overall-best-nonempty:
best 6= {}
〈proof 〉

lemma overall-worst-nonempty:
worst 6= {}
〈proof 〉

lemma trans-approx:
assumes x≈[R] y

and y ≈[R] z
shows x ≈[R] z
〈proof 〉

First EXPLICIT use of the axiom of choice
private definition some-best where

some-best = (SOME x. x ∈ degenerate-lotteries ∧ x ∈ best)

private definition some-worst where
some-worst = (SOME x. x ∈ degenerate-lotteries ∧ x ∈ worst)

private definition my-U :: ′a pmf ⇒ real
where

my-U p = (SOME α. α∈{0 ..1} ∧ p ≈[R] mix-pmf α some-best some-worst)

lemma exists-best-and-degenerate: degenerate-lotteries ∩ best 6= {}
〈proof 〉

lemma exists-worst-and-degenerate: degenerate-lotteries ∩ worst 6= {}
〈proof 〉

lemma some-best-in-best: some-best ∈ best
〈proof 〉

lemma some-worst-in-worst: some-worst ∈ worst
〈proof 〉

14

lemma best-always-at-least-as-good-mix:
assumes α ∈ {0 ..1}

and p ∈ P
shows mix-pmf α some-best p �[R] p
〈proof 〉

lemma geq-mix-imp-weak-pref :
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes α ≥ β
shows mix-pmf α some-best some-worst �[R] mix-pmf β some-best some-worst
〈proof 〉

lemma gamma-inverse:
assumes α ∈ {0<..<1}

and β ∈ {0<..<1}
shows (1 ::real) − (α − β) / (1 − β) = (1 − α) / (1 − β)
〈proof 〉

lemma all-mix-pmf-indiff-indiff-best-worst:
assumes l ∈ P
assumes b ∈ best
assumes w ∈ worst
assumes b ≈[R] w
shows ∀α ∈{0 ..1}. l ≈[R] mix-pmf α b w
〈proof 〉

lemma indiff-imp-same-utility-value:
assumes some-best �[R] some-worst
assumes α ∈ {0 ..1}
assumes β ∈ {0 ..1}
assumes mix-pmf β some-best some-worst ≈[R] mix-pmf α some-best some-worst
shows β = α
〈proof 〉

lemma leq-mix-imp-weak-inferior :
assumes some-best �[R] some-worst
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes mix-pmf β some-best some-worst �[R] mix-pmf α some-best some-worst
shows β ≥ α
〈proof 〉

lemma ge-mix-pmf-preferred:
assumes x �[R] y
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes α ≥ β
shows (mix-pmf α x y) �[R] (mix-pmf β x y)

15

〈proof 〉

5.2 Add continuity to assumptions
context

assumes cnt: continuous-vnm (lotteries-on outcomes) R
begin

In Literature this is referred to as step 2.
lemma step-2-unique-continuous-unfolding:

assumes p �[R] q
and q �[R] r
and p �[R] r

shows ∃ !α ∈ {0 ..1}. q ≈[R] mix-pmf α p r
〈proof 〉

These folowing two lemmas are referred to sometimes called step 2.
lemma create-unique-indiff-using-distinct-best-worst:

assumes l ∈ P
assumes b ∈ best
assumes w ∈ worst
assumes b �[R] w
shows ∃ !α ∈{0 ..1}. l ≈[R] mix-pmf α b w
〈proof 〉

lemma exists-element-bw-mix-is-approx:
assumes l ∈ P
assumes b ∈ best
assumes w ∈ worst
shows ∃α ∈{0 ..1}. l ≈[R] mix-pmf α b w
〈proof 〉

lemma my-U-is-defined:
assumes p ∈ P
shows my-U p ∈ {0 ..1} p ≈[R] mix-pmf (my-U p) some-best some-worst
〈proof 〉

lemma weak-pref-mix-with-my-U-weak-pref :
assumes p �[R] q
shows mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q) some-best

some-worst
〈proof 〉

lemma preferred-greater-my-U :
assumes p ∈ P

and q ∈ P
assumes mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)

some-best some-worst
shows my-U p > my-U q

16

〈proof 〉

lemma geq-my-U-imp-weak-preference:
assumes p ∈ P

and q ∈ P
assumes some-best �[R] some-worst
assumes my-U p ≥ my-U q
shows p �[R] q
〈proof 〉

lemma my-U-represents-pref :
assumes some-best �[R] some-worst
assumes p ∈ P

and q ∈ P
shows p �[R] q ←→ my-U p ≥ my-U q (is ?L ←→ ?R)
〈proof 〉

lemma first-iff-u-greater-strict-preff :
assumes p ∈ P

and q ∈ P
assumes some-best �[R] some-worst
shows my-U p > my-U q ←→ mix-pmf (my-U p) some-best some-worst �[R]

mix-pmf (my-U q) some-best some-worst
〈proof 〉

lemma second-iff-calib-mix-pref-strict-pref :
assumes p ∈ P

and q ∈ P
assumes some-best �[R] some-worst
shows mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q) some-best

some-worst ←→ p �[R] q
〈proof 〉

lemma my-U-is-linear-function:
assumes p ∈ P

and q ∈ P
and α ∈ {0 ..1}

assumes some-best �[R] some-worst
shows my-U (mix-pmf α p q) = α ∗ my-U p + (1 − α) ∗ my-U q
〈proof 〉

Now we define a more general Utility function that also takes the degenerate
case into account
private definition general-U

where
general-U p = (if some-best ≈[R] some-worst then 1 else my-U p)

lemma general-U-is-linear-function:
assumes p ∈ P

17

and q ∈ P
and α ∈ {0 ..1}

shows general-U (mix-pmf α p q) = α ∗ (general-U p) + (1 − α) ∗ (general-U
q)
〈proof 〉

lemma general-U-ordinal-Utility:
shows ordinal-utility P R general-U
〈proof 〉

Proof of the linearity of general-U. If we consider the definition of expected
utility functions from Maschler, Solan, Zamir we are done.
theorem is-linear :

assumes p ∈ P
and q ∈ P
and α ∈ {0 ..1}

shows ∃ u. u (mix-pmf α p q) = α ∗ (u p) + (1−α) ∗ (u q)
〈proof 〉

Now I define a Utility function that assigns a utility to all outcomes. These
are only finitely many
private definition ocU

where
ocU p = general-U (return-pmf p)

lemma geral-U-is-expected-value-of-ocU :
assumes set-pmf p ⊆ outcomes
shows general-U p = measure-pmf .expectation p ocU
〈proof 〉

lemma ordinal-utility-expected-value:
ordinal-utility P R (λx. measure-pmf .expectation x ocU)
〈proof 〉

lemma ordinal-utility-expected-value ′:
∃ u. ordinal-utility P R (λx. measure-pmf .expectation x u)
〈proof 〉

lemma ocU-is-expected-utility-bernoulli:
shows ∀ x ∈ P. ∀ y ∈ P. x �[R] y ←→
measure-pmf .expectation x ocU ≥ measure-pmf .expectation y ocU
〈proof 〉

end

end

end

18

lemma expected-value-is-utility-function:
assumes fnt: finite outcomes and outcomes 6= {}
assumes x ∈ lotteries-on outcomes and y ∈ lotteries-on outcomes
assumes ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows measure-pmf .expectation x u ≥ measure-pmf .expectation y u ←→ x �[R]

y (is ?L ←→ ?R)
〈proof 〉

lemma system-U-implies-vNM-utility:
assumes fnt: finite outcomes and outcomes 6= {}
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R
assumes cnt: continuous-vnm (lotteries-on outcomes) R
shows ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
〈proof 〉

lemma vNM-utility-implies-rationality:
assumes fnt: finite outcomes and outcomes 6= {}
assumes ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows rational-preference (lotteries-on outcomes) R
〈proof 〉

theorem vNM-utility-implies-independence:
assumes fnt: finite outcomes and outcomes 6= {}
assumes ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows independent-vnm (lotteries-on outcomes) R
〈proof 〉

lemma exists-weight-for-equality:
assumes a > c and a ≥ b and b ≥ c
shows ∃ (e::real) ∈ {0 ..1}. (1−e) ∗ a + e ∗ c = b
〈proof 〉

lemma vNM-utilty-implies-continuity:
assumes fnt: finite outcomes and outcomes 6= {}
assumes ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows continuous-vnm (lotteries-on outcomes) R
〈proof 〉

theorem Von-Neumann-Morgenstern-Utility-Theorem:
assumes fnt: finite outcomes and outcomes 6= {}

19

shows rational-preference (lotteries-on outcomes) R ∧
independent-vnm (lotteries-on outcomes) R ∧
continuous-vnm (lotteries-on outcomes) R ←→

(∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation x
u))
〈proof 〉

end

theory Expected-Utility
imports

Neumann-Morgenstern-Utility-Theorem
begin

6 Definition of vNM-utility function

We define a version of the vNM Utility function using the locale mechanism.
Currently this definition and system U have no proven relation yet.

Important: u is actually not the von Neuman Utility Function, but a Bernoulli
Utility Function. The Expected value p given u is the von Neumann Utility
Function.
locale vNM-utility =

fixes outcomes :: ′a set
fixes relation :: ′a pmf relation
fixes u :: ′a ⇒ real
assumes relation ⊆ (lotteries-on outcomes × lotteries-on outcomes)
assumes

∧
p q. p ∈ lotteries-on outcomes =⇒
q ∈ lotteries-on outcomes =⇒

p �[relation] q ←→ measure-pmf .expectation p u ≥ measure-pmf .expectation
q u
begin

lemma vNM-utilityD:
shows relation ⊆ (lotteries-on outcomes × lotteries-on outcomes)

and p ∈ lotteries-on outcomes =⇒ q ∈ lotteries-on outcomes =⇒
p �[relation] q ←→ measure-pmf .expectation p u ≥ measure-pmf .expectation q

u
〈proof 〉

lemma not-outside:
assumes p �[relation] q
shows p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
〈proof 〉

20

lemma utility-ge:
assumes p �[relation] q
shows measure-pmf .expectation p u ≥ measure-pmf .expectation q u
〈proof 〉

end

sublocale vNM-utility ⊆ ordinal-utility (lotteries-on outcomes) relation (λp. mea-
sure-pmf .expectation p u)
〈proof 〉

context vNM-utility
begin

lemma strict-preference-iff-strict-utility:
assumes p ∈ lotteries-on outcomes
assumes q ∈ lotteries-on outcomes
shows p �[relation] q ←→ measure-pmf .expectation p u > measure-pmf .expectation
q u
〈proof 〉

lemma pos-distrib-left:
assumes c > 0
shows (

∑
z∈outcomes. pmf q z ∗ (c ∗ u z)) = c ∗ (

∑
z∈outcomes. pmf q z ∗ (u

z))
〈proof 〉

lemma sum-pmf-util-commute:
(
∑

a∈outcomes. pmf p a ∗ u a) = (
∑

a∈outcomes. u a ∗ pmf p a)
〈proof 〉

7 Finite outcomes
context

assumes fnt: finite outcomes
begin

lemma sum-equals-pmf-expectation:
assumes p ∈ lotteries-on outcomes
shows(

∑
z∈outcomes. (pmf p z) ∗ (u z)) = measure-pmf .expectation p u

〈proof 〉

lemma expected-utility-weak-preference:
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p �[relation] q ←→ (

∑
z∈outcomes. (pmf p z) ∗ (u z)) ≥ (

∑
z∈outcomes.

(pmf q z) ∗ (u z))
〈proof 〉

21

lemma diff-leq-zero-weak-preference:
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p � q ←→ ((

∑
a∈outcomes. pmf q a ∗ u a) − (

∑
a∈outcomes. pmf p a

∗ u a) ≤ 0)
〈proof 〉

lemma expected-utility-strict-preference:
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p �[relation] q ←→ measure-pmf .expectation p u > measure-pmf .expectation

q u
〈proof 〉

lemma scale-pos-left:
assumes c > 0
shows vNM-utility outcomes relation (λx. c ∗ u x)
〈proof 〉

lemma strict-alt-def :
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p �[relation] q ←→

(
∑

z∈outcomes. (pmf p z) ∗ (u z)) > (
∑

z∈outcomes. (pmf q z) ∗ (u z))
〈proof 〉

lemma strict-alt-def-utility-g:
assumes p �[relation] q
shows (

∑
z∈outcomes. (pmf p z) ∗ (u z)) > (

∑
z∈outcomes. (pmf q z) ∗ (u z))

〈proof 〉

end

end

lemma vnm-utility-is-ordinal-utility:
assumes vNM-utility outcomes relation u
shows ordinal-utility (lotteries-on outcomes) relation (λp. measure-pmf .expectation

p u)
〈proof 〉

lemma vnm-utility-imp-reational-prefs:
assumes vNM-utility outcomes relation u
shows rational-preference (lotteries-on outcomes) relation
〈proof 〉

theorem expected-utilty-theorem-form-vnm-utility:
assumes fnt: finite outcomes and outcomes 6= {}
shows rational-preference (lotteries-on outcomes) R ∧

22

independent-vnm (lotteries-on outcomes) R ∧
continuous-vnm (lotteries-on outcomes) R ←→
(∃ u. vNM-utility outcomes R u)

〈proof 〉

end

8 Related work

Formalizations in Social choice theory has been formalized by Wiedijk [13],
Nipkow [7], and Gammie [4, 5]. Vestergaard [12], Le Roux, Martin-Dorel,
and Soloviev [10, 11] provide formalizations of results in game theory. A
library for algorithmic game theory in Coq is described in[1].
Related work in economics includes the verification of financial systems [9],
binomial pricing models [3], and VCG-Auctions [6]. In microeconomics we
discussed a formalization of two economic models and the First Welfare
Theorem [8].
To our knowledge the only work that uses expected utility theory is that of
Eberl [2]. Since we focus on the underlying theory of expected utility, we
found that there is only little overlap.

References

[1] A. Bagnall, S. Merten, and G. Stewart. A library for algorithmic game
theory in ssreflect/coq. Journal of Formalized Reasoning, 10(1):67–95,
2017.

[2] M. Eberl. Randomised social choice theory. Archive of Formal
Proofs, May 2016. http://isa-afp.org/entries/Randomised_Social_
Choice.shtml, Formal proof development.

[3] M. Echenim and N. Peltier. The binomial pricing model in finance: A
formalization in isabelle. In L. de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction,
Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of
LNCS, pages 546–562. Springer, 2017.

[4] P. Gammie. Some classical results in social choice theory. Archive of
Formal Proofs, Nov. 2008. http://isa-afp.org/entries/SenSocialChoice.
html, Formal proof development.

[5] P. Gammie. Stable matching. Archive of Formal Proofs, Oct. 2016.
http://isa-afp.org/entries/Stable_Matching.html, Formal proof devel-
opment.

23

http://isa-afp.org/entries/Randomised_Social_Choice.shtml
http://isa-afp.org/entries/Randomised_Social_Choice.shtml
http://isa-afp.org/entries/SenSocialChoice.html
http://isa-afp.org/entries/SenSocialChoice.html
http://isa-afp.org/entries/Stable_Matching.html

[6] M. Kerber, C. Lange, C. Rowat, and W. Windsteiger. Developing an
auction theory toolbox. AISB 2013, pages 1–4, 2013.

[7] T. Nipkow. Arrow and Gibbard-Satterthwaite. Archive of Formal
Proofs, 2008.

[8] J. Parsert and C. Kaliszyk. Formal Microeconomic Foundations and
the First Welfare Theorem. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018,
pages 91–101. ACM, 2018.

[9] G. O. Passmore and D. Ignatovich. Formal verification of financial
algorithms. In L. de Moura, editor, Automated Deduction – CADE 26,
pages 26–41. Springer, 2017.

[10] S. L. Roux. Acyclic Preferences and Existence of Sequential Nash
Equilibria: A formal and constructive equivalence. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in
Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of
LNCS, pages 293–309. Springer, 2009.

[11] S. L. Roux, É. Martin-Dorel, and J. Smaus. An existence theorem of
Nash Equilibrium in Coq and Isabelle. In P. Bouyer, A. Orlandini, and
P. S. Pietro, editors, Proceedings Eighth International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2017,
Roma, Italy, 20-22 September 2017., volume 256 of EPTCS, pages
46–60, 2017.

[12] R. Vestergaard. A constructive approach to sequential nash equilibria.
Inf. Process. Lett., 97(2):46–51, 2006.

[13] F. Wiedijk. Formalizing Arrow’s theorem. Sadhana, 34(1):193–220, Feb
2009.

24

	Composition of Probability Mass functions
	Lotteries
	Properties of Preferences
	Independent Preferences
	Continuity

	System U start, as per vNM
	This lemma is in called step 1 in literature. In Von Neumann and Morgenstern's book this is A:A (albeit more general)
	Add finiteness and non emptyness of outcomes
	Add continuity to assumptions

	Definition of vNM-utility function
	Finite outcomes
	Related work

