
Von Neumann Morgenstern Utility Theorem ∗

Julian Parsert Cezary Kaliszyk

March 17, 2025

Abstract

Utility functions form an essential part of game theory and eco-
nomics. In order to guarantee the existence of utility functions most of
the time sufficient properties are assumed in an axiomatic manner. One
famous and very common set of such assumptions is that of expected
utility theory. Here, the rationality, continuity, and independence of
preferences is assumed. The von-Neumann-Morgenstern Utility theo-
rem shows that these assumptions are necessary and sufficient for an
expected utility function to exists. This theorem was proven by Neu-
mann and Morgenstern in “Theory of Games and Economic Behavior”
which is regarded as one of the most influential works in game theory.

We formalize these results in Isabelle/HOL. The formalization in-
cludes formal definitions of the underlying concepts including continu-
ity and independence of preferences.

Contents
1 Composition of Probability Mass functions 2

2 Lotteries 12

3 Properties of Preferences 15
3.1 Independent Preferences . 15
3.2 Continuity . 19

4 System U start, as per vNM 20

5 This lemma is in called step 1 in literature. In Von Neumann
and Morgenstern’s book this is A:A (albeit more general) 23
5.1 Add finiteness and non emptyness of outcomes 29
5.2 Add continuity to assumptions 34

∗This work is supported by the Austrian Science Fund (FWF) project P26201 and the
European Research Council (ERC) grant no 714034 SMART.

1

6 Definition of vNM-utility function 47

7 Finite outcomes 49

8 Related work 53

theory PMF-Composition
imports

HOL−Probability.Probability
begin

1 Composition of Probability Mass functions
definition mix-pmf :: real ⇒ ′a pmf ⇒ ′a pmf ⇒ ′a pmf where

mix-pmf α p q = (bernoulli-pmf α)>>= (λX . if X then p else q)

lemma pmf-mix: a ∈ {0 ..1} =⇒ pmf (mix-pmf a p q) x = a ∗ pmf p x + (1 −
a) ∗ pmf q x

by (simp add: mix-pmf-def pmf-bind)

lemma pmf-mix-deeper : a ∈ {0 ..1} =⇒ pmf (mix-pmf a p q) x = a ∗ pmf p x +
pmf q x − a ∗ pmf q x

by (simp add: left-diff-distrib ′ pmf-mix)

lemma bernoulli-pmf-0 [simp]: bernoulli-pmf 0 = return-pmf False
by (intro pmf-eqI) (auto simp: bernoulli-pmf .rep-eq)

lemma bernoulli-pmf-1 [simp]: bernoulli-pmf 1 = return-pmf True
by (intro pmf-eqI) (auto simp: bernoulli-pmf .rep-eq)

lemma pmf-mix-0 [simp]: mix-pmf 0 p q = q
by (simp add: mix-pmf-def bind-return-pmf)

lemma pmf-mix-1 [simp]: mix-pmf 1 p q = p
by (simp add: mix-pmf-def bind-return-pmf)

lemma set-pmf-mix: a ∈ {0<..<1} =⇒ set-pmf (mix-pmf a p q) = set-pmf p ∪
set-pmf q

by (auto simp add: mix-pmf-def split: if-splits)

lemma set-pmf-mix-eq: a ∈ {0 ..1} =⇒ mix-pmf a p p = p
by (simp add: mix-pmf-def)

lemma pmf-equiv-intro[intro]:
assumes

∧
e. e ∈ set-pmf p =⇒ pmf p e = pmf q e

assumes
∧

e. e ∈ set-pmf q =⇒ pmf q e = pmf p e

2

shows p = q
by (metis assms(2) less-irrefl pmf-neq-exists-less pmf-not-neg set-pmf-iff)

lemma pmf-equiv-intro1 [intro]:
assumes

∧
e. e ∈ set-pmf p =⇒ pmf p e = pmf q e

shows p = q
by (standard, auto simp: assms, metis assms set-pmf-iff assms

linorder-not-le order-refl pmf-neq-exists-less pmf-not-neg set-pmf-iff)

lemma pmf-inverse-switch-eqals:
assumes a ∈ {0 ..1}
shows mix-pmf a p q = mix-pmf (1−a) q p

proof −
have fst: ∀ x ∈ set-pmf p. pmf (mix-pmf a p q) x = pmf (mix-pmf (1−a) q p) x
proof

fix x
assume x ∈ set-pmf p
have pmf (mix-pmf a p q) x = a ∗ pmf p x + (1 − a) ∗ pmf q x

using pmf-mix[of a p q x] assms by blast
also have ... = a ∗ pmf p x + pmf q x − a ∗ pmf q x

by (simp add: left-diff-distrib)
from pmf-mix[of 1−a q p x] assms
have pmf (mix-pmf (1 − a) q p) x = (1 − a) ∗ pmf q x + (1 − (1 − a)) ∗

pmf p x
by auto

then show pmf (mix-pmf a p q) x = pmf (mix-pmf (1 − a) q p) x
using calculation by auto

qed
have ∀ x ∈ set-pmf q. pmf (mix-pmf a p q) x = pmf (mix-pmf (1−a) q p) x
proof

fix x
assume x ∈ set-pmf q
have pmf (mix-pmf a p q) x = a ∗ pmf p x + (1 − a) ∗ pmf q x

using pmf-mix[of a p q x] assms by blast
also have ... = a ∗ pmf p x + pmf q x − a ∗ pmf q x

by (simp add: left-diff-distrib)
from pmf-mix[of 1−a q p x] assms
show pmf (mix-pmf a p q) x = pmf (mix-pmf (1 − a) q p) x

using calculation by auto
qed
then have ∀ x ∈ set-pmf (mix-pmf a p q). pmf (mix-pmf a p q) x = pmf

(mix-pmf (1−a) q p) x
by (metis (no-types) fst add-0-left assms mult-eq-0-iff pmf-mix set-pmf-iff)

thus ?thesis
by (simp add: pmf-equiv-intro1)

qed

lemma mix-pmf-comp-left-div:
assumes α ∈ {0 ..(1 ::real)}

3

and β ∈ {0 ..(1 ::real)}
assumes α > β
shows pmf (mix-pmf (β/α) (mix-pmf α p q) q) e = β ∗ pmf p e + pmf q e −

β ∗ pmf q e
proof−

let ?l = (mix-pmf (β/α) (mix-pmf α p q) q)
have fst: pmf ?l e = (β/α) ∗ pmf (mix-pmf α p q) e + (1−β/α) ∗ pmf q e

by (meson assms(1) assms(2) assms(3) atLeastAtMost-iff less-divide-eq-1
less-eq-real-def not-less pmf-mix zero-le-divide-iff)

then have pmf (mix-pmf α p q) e = α ∗ pmf p e + (1 − α) ∗ pmf q e
using pmf-mix[of α p q] assms(2) assms(3) assms(1) by blast

have pmf ?l e = (β/α) ∗ (α ∗ pmf p e + (1 − α) ∗ pmf q e) + (1−β/α) ∗ pmf
q e

using fst assms(1) pmf-mix by fastforce
then have pmf ?l e = ((β/α) ∗α ∗ pmf p e + (β/α) ∗(1 − α) ∗ pmf q e) +

(1−β/α) ∗ pmf q e
using fst assms(1) by (metis mult.assoc ring-class.ring-distribs(1))

then have ∗: pmf ?l e = (β ∗ pmf p e + (β/α) ∗(1 − α) ∗ pmf q e) + (1−β/α)
∗ pmf q e

using fst assms(1) assms(2) assms(3) by auto
then have pmf ?l e = (β ∗ pmf p e + ((β/α) − (β/α)∗α) ∗ pmf q e) + (1−β/α)
∗ pmf q e

using fst assms(1) assms(2) assms(3) by (simp add: ∗ diff-divide-distrib
right-diff-distrib ′)

then have pmf ?l e = (β ∗ pmf p e + ((β/α) − β) ∗ pmf q e) + (1−β/α) ∗ pmf
q e

using fst assms(1) assms(2) assms(3) by auto
then have pmf ?l e = (β ∗ pmf p e + (β/α) ∗ pmf q e − β ∗ pmf q e) + 1∗

pmf q e−β/α∗ pmf q e
by (simp add: left-diff-distrib)

thus ?thesis
by linarith

qed

lemma mix-pmf-comp-with-dif-equiv:
assumes α ∈ {0 ..(1 ::real)}

and β ∈ {0 ..(1 ::real)}
assumes α > β
shows mix-pmf (β/α) (mix-pmf α p q) q = mix-pmf β p q (is ?l = ?r)

proof (rule pmf-equiv-intro1 [symmetric])
fix e
assume a: e ∈ set-pmf ?r
have e ∈ set-pmf ?l
using a pmf-mix-deeper by (metis assms(1) assms(2) assms(3) mix-pmf-comp-left-div

pmf-eq-0-set-pmf)
then have pmf ?l e = β ∗ pmf p e − β ∗ pmf q e + pmf q e

using pmf-mix-deeper [of β/α p q e] mix-pmf-comp-left-div[of α β p q e] assms
by auto

then show pmf (mix-pmf β p q) e = pmf (mix-pmf (β / α) (mix-pmf α p q)

4

q) e
by (metis (full-types) assms(1) assms(2) assms(3) mix-pmf-comp-left-div pmf-mix-deeper)

qed

lemma product-mix-pmf-prob-distrib:
assumes a ∈ {0 ..1}

and b ∈ {0 ..1}
shows mix-pmf a (mix-pmf b p q) q = mix-pmf (a∗b) p q

proof −
define γ where g: γ = (a ∗ b)
define l where l: l = (mix-pmf b p q)
define r where r : r = mix-pmf (a∗b) p q
have y: γ ∈ {0 ..1}

using assms(2) mult-le-one assms g by auto
have alt-: ∀ e ∈ set-pmf l. pmf r e = γ ∗ pmf p e + pmf q e − γ ∗ pmf q e
proof

fix e
have pmf r e = γ ∗ pmf p e + (1−γ) ∗ pmf q e

using ‹γ ∈ {0 ..1}› g pmf-mix r by fastforce
moreover have ... = γ ∗ pmf p e + 1 ∗ pmf q e − γ ∗ pmf q e

by (simp add: algebra-simps)
moreover have ... = pmf (mix-pmf γ p q) e

using calculation g r by auto
moreover have ... = γ ∗ pmf p e + pmf q e − γ ∗ pmf q e

using calculation by auto
ultimately show pmf r e = γ ∗ pmf p e + pmf q e − γ ∗ pmf q e

by auto
qed
have ∀ e ∈ set-pmf r . pmf l e = b ∗ pmf p e + pmf q e − b ∗ pmf q e

using allI pmf-mix-deeper assms(2) l by fastforce
have mix-pmf a (mix-pmf b p q) q = mix-pmf (a ∗ b) p q
proof (rule ccontr)

assume neg:¬mix-pmf a (mix-pmf b p q) q = mix-pmf (a ∗ b) p q
then have b: b 6= 0

by (metis (no-types) assms(1) mult-cancel-right2 pmf-mix-0 set-pmf-mix-eq)
have f3 : b − (a ∗ b) > 0 −→ mix-pmf a (mix-pmf b p q) q = mix-pmf (a ∗ b)

p q
by (metis assms(2) diff-le-0-iff-le g mix-pmf-comp-with-dif-equiv mult-eq-0-iff

nonzero-mult-div-cancel-right not-le order-refl y)
thus False

using b neg assms(1) assms(2) by auto
qed
then show ?thesis by auto

qed

lemma mix-pmf-subset-of-original:
assumes a ∈ {0 ..1}
shows (set-pmf (mix-pmf a p q)) ⊆ set-pmf p ∪ set-pmf q

proof −

5

have a ∈ {0<..<1} =⇒ ?thesis
by (simp add: set-pmf-mix)

moreover have a = 1 =⇒ ?thesis
by simp

moreover have a = 0 =⇒ ?thesis
by simp

ultimately show ?thesis
using assms less-eq-real-def by auto

qed

lemma mix-pmf-preserves-finite-support:
assumes a ∈ {0 ..1}
assumes finite (set-pmf p)

and finite (set-pmf q)
shows finite (set-pmf (mix-pmf a p q))
by (meson assms(1) assms(2) assms(3) finite-Un finite-subset mix-pmf-subset-of-original)

lemma ex-certain-iff-singleton-support:
shows (∃ x. pmf p x = 1) ←→ card (set-pmf p) = 1

proof (rule iffI , goal-cases)
case 1
show ?case
proof (rule ccontr)

assume neg: ¬ card (set-pmf p) = 1
then have card (set-pmf p) 6= 1

by blast
have finite (set-pmf p)

by (metis 1 empty-iff finite.emptyI finite-insert insert-iff
not-le pmf-le-1 pmf-neq-exists-less pmf-nonneg set-pmf-iff set-return-pmf)

then have sumeq-1 : (
∑

i ∈ set-pmf p. pmf p i) = 1
using sum-pmf-eq-1 [of set-pmf p p] by auto

have set-pmf-nemtpy: set-pmf p 6= {}
by (simp add: set-pmf-not-empty)

then have g1 : card (set-pmf p) > 1
by (metis card-0-eq less-one nat-neq-iff neg sum.infinite sumeq-1 zero-neq-one)

have card (set-pmf p) > 1 −→ (
∑

i ∈ set-pmf p. pmf p i) > 1
proof

assume card (set-pmf p) > 1
have ∃ x y. pmf p x = 1 ∧ y 6= x ∧ y ∈ set-pmf p

using set-pmf-nemtpy is-singletonI ′ is-singleton-altdef
by (metis 1 neg)

then show (
∑

i ∈ set-pmf p. pmf p i) > 1
by (metis AE-measure-pmf-iff UNIV-I empty-iff insert-iff

measure-pmf .prob-eq-1 pmf .rep-eq sets-measure-pmf)
qed
then have card (set-pmf p) < 1

using sumeq-1 neg by linarith
then show False

using g1 by linarith

6

qed
qed (metis card-1-singletonE less-numeral-extra(1) pmf .rep-eq subset-eq

sum-pmf-eq-1 [of set-pmf p p] card-gt-0-iff [of set-pmf p]
measure-measure-pmf-finite[of set-pmf p])

We thank Manuel Eberl for suggesting the following two lemmas.
lemma mix-pmf-partition:

fixes p :: ′a pmf
assumes y ∈ set-pmf p set-pmf p − {y} 6= {}
obtains a q where a ∈ {0<..<1} set-pmf q = set-pmf p − {y}

p = mix-pmf a q (return-pmf y)
proof −

from assms obtain x where x: x ∈ set-pmf p − {y} by auto
define a where a = 1 − pmf p y
have a-n1 :a 6= 1

by (simp add: a-def assms(1) pmf-eq-0-set-pmf)
have pmf p y 6= 1

using ex-certain-iff-singleton-support by (metis (full-types)
Diff-cancel assms(1) assms(2) card-1-singletonE singletonD)

hence y: pmf p y < 1 using pmf-le-1 [of p y] unfolding a-def by linarith
hence a: a > 0 by (simp add: a-def)
define q where q = embed-pmf (λz. if z = y then 0 else pmf p z / a)
have q: pmf q z = (if z = y then 0 else pmf p z / a) for z

unfolding q-def
proof (rule pmf-embed-pmf)

have 1 = (
∫

+ x. ennreal (pmf p x) ∂count-space UNIV)
by (rule nn-integral-pmf-eq-1 [symmetric])

also have . . . = (
∫

+ x. ennreal (pmf p x) ∗ indicator {y} x +
ennreal (pmf p x) ∗ indicator (−{y}) x ∂count-space UNIV)

by (intro nn-integral-cong) (auto simp: indicator-def)
also have . . . = (

∫
+ x. ennreal (pmf p x) ∗ indicator {y} x ∂count-space

UNIV) +
(
∫

+ x. ennreal (pmf p x) ∗ indicator (−{y}) x ∂count-space UNIV)
by (subst nn-integral-add) auto

also have (
∫

+ x. ennreal (pmf p x) ∗ indicator {y} x ∂count-space UNIV) =
pmf p y

by (subst nn-integral-indicator-finite) auto
also have ennreal (pmf p y) + (

∫
+ x. ennreal (pmf p x) ∗ indicator (−{y}) x

∂count-space UNIV)
− ennreal (pmf p y) = (

∫
+ x. ennreal (pmf p x) ∗ indicator (−{y})

x ∂count-space UNIV)
by simp

also have 1 − ennreal (pmf p y) = ennreal (1 − pmf p y)
by (subst ennreal-1 [symmetric], subst ennreal-minus) auto

finally have eq: (
∫

+x∈−{y}. ennreal (pmf p x)∂count-space UNIV) = 1 −
pmf p y ..

have (
∫

+ x. ennreal (if x = y then 0 else pmf p x / a) ∂count-space UNIV) =
(
∫

+ x. inverse a ∗ (ennreal (pmf p x) ∗ indicator (−{y}) x) ∂count-space
UNIV)

7

using a by (intro nn-integral-cong) (auto simp: divide-simps ennreal-mult ′

[symmetric])
also have . . . = inverse a ∗ (

∫
+ x∈−{y}. ennreal (pmf p x) ∂count-space

UNIV)
using a by (subst nn-integral-cmult [symmetric]) (auto simp: ennreal-mult ′)

also note eq
also have ennreal (inverse a) ∗ ennreal (1 − pmf p y) = ennreal ((1 − pmf p

y) / a)
using a by (subst ennreal-mult ′ [symmetric]) (auto simp: field-simps)

also have (1 − pmf p y) / a = 1 using y by (simp add: a-def)
finally show (

∫
+ x. ennreal (if x = y then 0 else pmf p x / a) ∂count-space

UNIV) = 1
by simp

qed (insert a, auto)
have mix-pmf (1 − pmf p y) q (return-pmf y) = p

using y by (intro pmf-eqI) (auto simp: q pmf-mix pmf-le-1 a-def)
moreover have set-pmf q = set-pmf p − {y}

using y by (auto simp: q set-pmf-eq a-def)
ultimately show ?thesis using that[of 1 − pmf p y q] y assms by (auto simp:

set-pmf-eq)
qed

lemma pmf-mix-induct [consumes 2 , case-names degenerate mix]:
assumes finite A set-pmf p ⊆ A
assumes degenerate:

∧
x. x ∈ A =⇒ P (return-pmf x)

assumes mix:
∧

p a y. set-pmf p ⊆ A =⇒ a ∈ {0<..<1} =⇒ y ∈ A =⇒
P p =⇒ P (mix-pmf a p (return-pmf y))

shows P p
proof −

have finite (set-pmf p) set-pmf p 6= {} set-pmf p ⊆ A
using assms(1 ,2) by (auto simp: set-pmf-not-empty dest: finite-subset)

thus ?thesis
proof (induction set-pmf p arbitrary: p rule: finite-ne-induct)

case (singleton x p)
hence p = return-pmf x using set-pmf-subset-singleton[of p x] by auto
thus ?case using singleton by (auto intro: degenerate)

next
case (insert x B p)
from insert.hyps have x ∈ set-pmf p set-pmf p − {x} 6= {} by auto
from mix-pmf-partition[OF this] obtain a q

where decomp: a ∈ {0<..<1} set-pmf q = set-pmf p − {x}
p = mix-pmf a q (return-pmf x) by blast

have P (mix-pmf a q (return-pmf x))
using insert.prems decomp(1) insert.hyps
by (intro mix insert) (auto simp: decomp(2))

with decomp(3) show ?case by simp
qed

qed

8

lemma pmf-mix-induct ′ [consumes 2 , case-names degenerate mix]:
assumes finite A set-pmf p ⊆ A
assumes degenerate:

∧
x. x ∈ A =⇒ P (return-pmf x)

assumes mix:
∧

p q a. set-pmf p ⊆ A =⇒ set-pmf q ⊆ A =⇒ a ∈ {0<..<1}
=⇒

P p =⇒ P q =⇒ P (mix-pmf a p q)
shows P p
using assms by (induct p rule: pmf-mix-induct)(auto)+

lemma finite-sum-distribute-mix-pmf :
assumes finite (set-pmf (mix-pmf a p q))
assumes finite (set-pmf p)
assumes finite (set-pmf q)
shows (

∑
i ∈ set-pmf (mix-pmf a p q). pmf (mix-pmf a p q) i) = (

∑
i∈set-pmf

p. a ∗ pmf p i) + (
∑

i∈set-pmf q. (1−a) ∗ pmf q i)
proof −

have fst: (
∑

i ∈ set-pmf (mix-pmf a p q). pmf (mix-pmf a p q) i) = 1
using sum-pmf-eq-1 assms by auto

have (
∑

i∈set-pmf p. a ∗ pmf p i) = a ∗ (
∑

i∈set-pmf p. pmf p i)
by (simp add: sum-distrib-left)

also have ... = a ∗ 1
using assms sum-pmf-eq-1 by (simp add: sum-pmf-eq-1)

then show ?thesis
by (metis fst add.assoc add-diff-cancel-left ′ add-uminus-conv-diff assms(3)

mult.right-neutral order-refl sum-distrib-left sum-pmf-eq-1)
qed

lemma distribute-alpha-over-sum:
shows (

∑
i∈set-pmf T . a ∗ pmf p i ∗ f i) = a ∗ (

∑
i∈set-pmf T . pmf p i ∗ f i)

by (metis (mono-tags, lifting) semiring-normalization-rules(18) sum.cong sum-distrib-left)

lemma sum-over-subset-pmf-support:
assumes finite T
assumes set-pmf p ⊆ T
shows (

∑
i∈T . a ∗ pmf p i ∗ f i) = (

∑
i∈set-pmf p. a ∗ pmf p i ∗ f i)

proof −
consider (eq) set-pmf p = T | (sub) set-pmf p ⊂ T

using assms by blast
then show ?thesis
proof (cases)
next

case sub
define A where A = T − (set-pmf p)
have finite (set-pmf p)

using assms(1) assms(2) finite-subset by auto
moreover have finite A

using A-def assms(1) by blast
moreover have A ∩ set-pmf p = {}

using A-def assms(1) by blast

9

ultimately have ∗: (
∑

i∈T . a ∗ pmf p i ∗ f i) = (
∑

i∈set-pmf p. a ∗ pmf p i
∗ f i) + (

∑
i∈A. a ∗ pmf p i ∗ f i)

using sum.union-disjoint by (metis (no-types) A-def Un-Diff-cancel2
Un-absorb2 assms(2) inf .commute inf-sup-aci(5) sum.union-disjoint)

have ∀ e ∈ A. pmf p e = 0
by (simp add: A-def pmf-eq-0-set-pmf)

hence (
∑

i∈A. a ∗ pmf p i ∗ f i) = 0
by simp

then show ?thesis
by (simp add: ∗)

qed (auto)
qed

lemma expected-value-mix-pmf-distrib:
assumes finite (set-pmf p)

and finite (set-pmf q)
assumes a ∈ {0<..<1}
shows measure-pmf .expectation (mix-pmf a p q) f = a ∗ measure-pmf .expectation

p f + (1−a) ∗ measure-pmf .expectation q f
proof −

have fn: finite (set-pmf (mix-pmf a p q))
using mix-pmf-preserves-finite-support assms less-eq-real-def by auto

have subsets: set-pmf p ⊆ set-pmf (mix-pmf a p q) set-pmf q ⊆ set-pmf (mix-pmf
a p q)

using assms assms set-pmf-mix by(fastforce)+
have ∗: (

∑
i ∈ set-pmf (mix-pmf a p q). a ∗ pmf p i ∗ f i) = a ∗ (

∑
i ∈ set-pmf

(mix-pmf a p q). pmf p i ∗ f i)
by (metis (mono-tags, lifting) mult.assoc sum.cong sum-distrib-left)

have ∗∗: (
∑

i ∈ set-pmf (mix-pmf a p q). (1−a) ∗ pmf q i ∗ f i) = (1−a) ∗ (
∑

i
∈ set-pmf (mix-pmf a p q). pmf q i ∗ f i)

using distribute-alpha-over-sum[of (1 − a) q f (mix-pmf a p q)] by auto
have ∗∗∗: measure-pmf .expectation (mix-pmf a p q) f = (

∑
i ∈ set-pmf (mix-pmf

a p q). pmf (mix-pmf a p q) i ∗ f i)
by (metis fn pmf-integral-code-unfold pmf-integral-pmf-set-integral

pmf-set-integral-code-alt-finite)
also have g: ... = (

∑
i ∈ set-pmf (mix-pmf a p q). (a ∗ pmf p i + (1−a) ∗ pmf

q i) ∗ f i)
using pmf-mix[of a p q] assms(3) by auto

also have ∗∗∗∗: ... = (
∑

i ∈ set-pmf (mix-pmf a p q). a ∗ pmf p i ∗ f i + (1−a)
∗ pmf q i ∗ f i)

by (simp add: mult.commute ring-class.ring-distribs(1))
also have f : ... = (

∑
i ∈ set-pmf (mix-pmf a p q). a ∗ pmf p i ∗ f i) + (

∑
i ∈

set-pmf (mix-pmf a p q). (1−a) ∗ pmf q i ∗ f i)
by (simp add: sum.distrib)

also have ... = a ∗ (
∑

i ∈ set-pmf (mix-pmf a p q). pmf p i ∗ f i) + (1−a) ∗
(
∑

i ∈ set-pmf (mix-pmf a p q). pmf q i ∗ f i)
using ∗ ∗∗ by simp

also have h: ... = a ∗ (
∑

i ∈ set-pmf p. pmf p i ∗ f i) + (1−a) ∗ (
∑

i ∈ set-pmf
q. pmf q i ∗ f i)

10

proof −
have (

∑
i ∈ set-pmf (mix-pmf a p q). pmf p i ∗ f i) = (

∑
i ∈ set-pmf p. pmf

p i ∗ f i)
using subsets sum-over-subset-pmf-support[of (mix-pmf a p q) p 1 f] fn by

auto
moreover have (

∑
i ∈ set-pmf (mix-pmf a p q). pmf q i ∗ f i) = (

∑
i ∈

set-pmf q. pmf q i ∗ f i)
using subsets sum-over-subset-pmf-support[of (mix-pmf a p q) q 1 f] fn by

auto
ultimately show ?thesis

by (simp)
qed
finally show ?thesis
proof −

have (
∑

i∈set-pmf q. pmf q i ∗ f i) = measure-pmf .expectation q f
by (metis (full-types) assms(2) pmf-integral-code-unfold pmf-integral-pmf-set-integral

pmf-set-integral-code-alt-finite)
moreover have (

∑
i∈set-pmf p. pmf p i ∗ f i) = measure-pmf .expectation p f

by (metis (full-types) assms(1) pmf-integral-code-unfold pmf-integral-pmf-set-integral
pmf-set-integral-code-alt-finite)

ultimately show ?thesis
by (simp add: ∗ ∗∗ ∗∗∗ ∗∗∗∗ f g h)

qed
qed

lemma expected-value-mix-pmf :
assumes finite (set-pmf p)

and finite (set-pmf q)
assumes a ∈ {0 ..1}
shows measure-pmf .expectation (mix-pmf a p q) f = a ∗ measure-pmf .expectation

p f + (1−a) ∗ measure-pmf .expectation q f
proof −

consider (0) a = 0 | (b) a ∈ {0<..<1} | (1) a = 1
using assms(3) less-eq-real-def by auto

then show ?thesis
proof (cases)

case 0
have (mix-pmf a p q) = q

using 0 pmf-mix-0 by blast
have measure-pmf .expectation q f = (1−a) ∗ measure-pmf .expectation q f

by (simp add: 0)
show ?thesis

using 0 by auto
next

case b
show ?thesis

using assms(1) assms(2) b expected-value-mix-pmf-distrib by blast
next

case 1

11

have (mix-pmf a p q) = p
using 1 pmf-mix-0 by simp

then show ?thesis
by (simp add: 1)

qed
qed

end

theory Lotteries
imports

PMF-Composition
HOL−Probability.Probability

begin

2 Lotteries
definition lotteries-on

where
lotteries-on Oc = {p . (set-pmf p) ⊆ Oc}

lemma lotteries-on-subset:
assumes A ⊆ B
shows lotteries-on A ⊆ lotteries-on B
by (metis (no-types, lifting) Collect-mono assms gfp.leq-trans lotteries-on-def)

lemma support-in-outcomes:
∀ oc. ∀ p ∈ lotteries-on oc. ∀ a ∈ set-pmf p. a ∈ oc
by (simp add: lotteries-on-def subsetD)

lemma lotteries-on-nonempty:
assumes outcomes 6= {}
shows lotteries-on outcomes 6= {}
by (auto simp: lotteries-on-def) (metis (full-types) assms

empty-subsetI ex-in-conv insert-subset set-return-pmf)

lemma finite-support-one-oc:
assumes card outcomes = 1
shows ∀ l ∈ lotteries-on outcomes. finite (set-pmf l)
by (metis assms card.infinite finite-subset lotteries-on-def mem-Collect-eq zero-neq-one)

lemma one-outcome-card-support-1 :
assumes card outcomes = 1
shows ∀ l ∈ lotteries-on outcomes. card (set-pmf l) = 1

proof
fix l
assume l ∈ lotteries-on outcomes

12

have finite outcomes
using assms card.infinite by force

then have l ∈ lotteries-on outcomes −→ 1 = card (set-pmf l)
by (metis assms card-eq-0-iff card-mono finite-support-one-oc le-neq-implies-less

less-one lotteries-on-def mem-Collect-eq set-pmf-not-empty)
then show card (set-pmf l) = 1

by (simp add: ‹l ∈ lotteries-on outcomes›)
qed

lemma finite-nempty-ex-degernate-in-lotteries:
assumes out 6= {}
assumes finite out
shows ∃ e ∈ lotteries-on out. ∃ x ∈ out. pmf e x = 1

proof (rule ccontr)
assume a: ¬ (∃ e∈lotteries-on out. ∃ x∈out. pmf e x = 1)
then have subset: ∀ e ∈ lotteries-on out. set-pmf e ⊆ out

using lotteries-on-def by (simp add: lotteries-on-def)
then have ∀ e. e ∈ lotteries-on out −→ ((

∑
i∈set-pmf e. pmf e i) = 1)

using sum-pmf-eq-1 by (metis subset assms(2) finite-subset order-refl)
then show False

by (metis (no-types, lifting) a assms(1) assms(2) card.empty card-gt-0-iff
card-seteq

empty-subsetI finite.emptyI finite-insert insert-subset lotteries-on-def subsetI
measure-measure-pmf-finite mem-Collect-eq nat-less-le pmf .rep-eq set-pmf-of-set

)
qed

lemma card-support-1-probability-1 :
assumes card (set-pmf p) = 1
shows ∀ e ∈ set-pmf p. pmf p e = 1
by(auto) (metis assms card-1-singletonE card-ge-0-finite

card-subset-eq ex-card le-numeral-extra(4) measure-measure-pmf-finite
pmf .rep-eq singletonD sum-pmf-eq-1 zero-less-one)

lemma one-outcome-card-lotteries-1 :
assumes card outcomes = 1
shows card (lotteries-on outcomes) = 1

proof −
obtain x :: ′a where

x: outcomes = {x}
using assms card-1-singletonE by blast

have exl: ∃ l ∈ lotteries-on outcomes. pmf l x = 1
by (metis x assms card.infinite empty-iff

finite-nempty-ex-degernate-in-lotteries insert-iff zero-neq-one)
have pmfs: ∀ l ∈ lotteries-on outcomes. set-pmf l = {x}

by (simp add: lotteries-on-def set-pmf-subset-singleton x)
have ∀ l ∈ lotteries-on outcomes. pmf l x = 1

by (simp add: lotteries-on-def set-pmf-subset-singleton x)

13

then show ?thesis
by (metis exl empty-iff is-singletonI ′ is-singleton-altdef

order-refl pmfs set-pmf-subset-singleton)
qed

lemma return-pmf-card-equals-set:
shows card {return-pmf x |x. x ∈ S} = card S

proof−
have {return-pmf x |x. x ∈ S} = return-pmf ‘ S

by blast
also have card . . . = card S

by (intro card-image) (auto simp: inj-on-def)
finally show card {return-pmf x |x. x ∈ S} = card S .

qed

lemma mix-pmf-in-lotteries:
assumes p ∈ lotteries-on A

and q ∈ lotteries-on A
and a ∈ {0<..<1}

shows (mix-pmf a p q) ∈ lotteries-on A
proof −

have set-pmf (mix-pmf a p q) = set-pmf p ∪ set-pmf q
by (meson assms(3) set-pmf-mix)

then show ?thesis
by (metis Un-subset-iff assms(1) assms(2) lotteries-on-def mem-Collect-eq)

qed

lemma card-degen-lotteries-equals-outcomes:
shows card {x ∈ lotteries-on out. card (set-pmf x) = 1} = card out

proof −
consider (empty) out = {} | (not-empty) out 6= {}

by blast
then show ?thesis
proof (cases)

case not-empty
define DG where

DG: DG = {x ∈ lotteries-on out. card (set-pmf x) = 1}
define AP where

AP: AP = {return-pmf x |x. x ∈ out}
have ∗∗: card AP = card out

using AP return-pmf-card-equals-set by blast
have ∗: ∀ d ∈ DG. d ∈ AP
proof

fix l
assume l ∈ DG
then have l ∈ lotteries-on out ∧ 1 = card (set-pmf l)

using DG by force
then obtain x where

x: x ∈ out set-pmf l = {x}

14

by (metis (no-types) card-1-singletonE singletonI support-in-outcomes)
have return-pmf x = l

using set-pmf-subset-singleton x(2) by fastforce
then show l ∈ AP

using AP x(1) by blast
qed
moreover have AP = DG
proof

have ∀ e ∈ AP. e ∈ lotteries-on out
by(auto simp: lotteries-on-def AP)

then show AP ⊆ DG using DG AP by force
qed (auto simp: ∗)
ultimately show ?thesis

using DG ∗∗ by blast
qed (simp add: lotteries-on-def set-pmf-not-empty)

qed

end

theory Neumann-Morgenstern-Utility-Theorem
imports

HOL−Probability.Probability
First-Welfare-Theorem.Utility-Functions
Lotteries

begin

3 Properties of Preferences
3.1 Independent Preferences

Independence is sometimes called substitution

Notice how r is "added" to the right of mix-pmf and the element to the left
q/p changes
definition independent-vnm

where
independent-vnm C P =
(∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀ (α::real) ∈ {0<..1}. p �[P] q ←→ mix-pmf α p

r �[P] mix-pmf α q r)

lemma independent-vnmI1 :
assumes (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀α ∈ {0<..1}. p �[P] q ←→ mix-pmf α

p r �[P] mix-pmf α q r)
shows independent-vnm C P
using assms independent-vnm-def by blast

15

lemma independent-vnmI2 :
assumes

∧
p q r α. p ∈ C =⇒ q ∈ C =⇒ r ∈ C =⇒ α ∈ {0<..1} =⇒ p �[P]

q ←→ mix-pmf α p r �[P] mix-pmf α q r
shows independent-vnm C P
by (rule independent-vnmI1 , standard, standard, standard,

standard, simp add: assms) (meson assms greaterThanAtMost-iff)

lemma independent-vnm-alt-def :
shows independent-vnm C P ←→ (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀α ∈ {0<..<1}.
p �[P] q ←→ mix-pmf α p r �[P] mix-pmf α q r) (is ?L ←→ ?R)

proof (rule iffI)
assume a: ?R
have independent-vnm C P

by(rule independent-vnmI2 , simp add: a) (metis a greaterThanLessThan-iff
linorder-neqE-linordered-idom not-le pmf-mix-1)

then show ?L by auto
qed (simp add: independent-vnm-def)

lemma independece-dest-alt:
assumes independent-vnm C P
shows (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀ (α::real) ∈ {0<..1}. p �[P] q ←→ mix-pmf

α p r �[P] mix-pmf α q r)
proof (standard, standard, standard, standard)

fix p q r α
assume as1 : p ∈ C
assume as2 : q ∈ C
assume as3 : r ∈ C
assume as4 : (α::real) ∈ {0<..1}
then show p �[P] q = mix-pmf α p r �[P] mix-pmf α q r

using as1 as2 as3 assms(1) independent-vnm-def by blast
qed

lemma independent-vnmD1 :
assumes independent-vnm C P
shows (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . ∀α ∈ {0<..1}. p �[P] q ←→ mix-pmf α p

r �[P] mix-pmf α q r)
using assms independent-vnm-def by blast

lemma independent-vnmD2 :
fixes p q r α
assumes α ∈ {0<..1}

and p ∈ C
and q ∈ C
and r ∈ C

assumes independent-vnm C P
assumes p �[P] q
shows mix-pmf α p r �[P] mix-pmf α q r
using assms independece-dest-alt by blast

16

lemma independent-vnmD3 :
fixes p q r α
assumes α ∈ {0<..1}

and p ∈ C
and q ∈ C
and r ∈ C

assumes independent-vnm C P
assumes mix-pmf α p r �[P] mix-pmf α q r
shows p �[P] q
using assms independece-dest-alt by blast

lemma independent-vnmD4 :
assumes independent-vnm C P
assumes refl-on C P
assumes p ∈ C

and q ∈ C
and r ∈ C
and α ∈ {0 ..1}
and p �[P] q

shows mix-pmf α p r �[P] mix-pmf α q r
using assms
by (cases α = 0 ∨ α ∈ {0<..1},metis assms(1 ,2 ,3 ,4)

independece-dest-alt pmf-mix-0 refl-onD, auto)

lemma approx-indep-ge:
assumes x ≈[R] y
assumes α ∈ {0 ..(1 ::real)}
assumes rpr : rational-preference (lotteries-on outcomes) R

and ind: independent-vnm (lotteries-on outcomes) R
shows ∀ r ∈ lotteries-on outcomes. (mix-pmf α y r) �[R] (mix-pmf α x r)

proof
fix r
assume a: r ∈ lotteries-on outcomes (is r ∈ ?lo)
have clct: y �[R] x ∧ independent-vnm ?lo R ∧ y ∈ ?lo ∧ x ∈ ?lo ∧ r ∈ ?lo

by (meson a assms(1) assms(2) atLeastAtMost-iff greaterThanAtMost-iff
ind preference-def rational-preference-def rpr)

then have in-lo: mix-pmf α y r ∈ ?lo (mix-pmf α x r) ∈ ?lo
by (metis assms(2) atLeastAtMost-iff greaterThanLessThan-iff

less-eq-real-def mix-pmf-in-lotteries pmf-mix-0 pmf-mix-1 a)+
have 0 = α ∨ 0 < α

using assms by auto
then show mix-pmf α y r �[R] mix-pmf α x r

using in-lo(2) rational-preference.compl rpr
by (auto,blast) (meson assms(2) atLeastAtMost-iff clct

greaterThanAtMost-iff independent-vnmD2)
qed

lemma approx-imp-approx-ind:

17

assumes x ≈[R] y
assumes α ∈ {0 ..(1 ::real)}
assumes rpr : rational-preference (lotteries-on outcomes) R

and ind: independent-vnm (lotteries-on outcomes) R
shows ∀ r ∈ lotteries-on outcomes. (mix-pmf α y r) ≈[R] (mix-pmf α x r)
using approx-indep-ge assms(1) assms(2) ind rpr by blast

lemma geq-imp-mix-geq-right:
assumes x �[R] y
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R
assumes α ∈ {0 ..(1 ::real)}
shows (mix-pmf α x y) �[R] y

proof −
have xy-p: x ∈ (lotteries-on outcomes) y ∈ (lotteries-on outcomes)

by (meson assms(1) preference.not-outside rational-preference-def rpr)
(meson assms(1) preference-def rational-preference-def rpr)

have (mix-pmf α x y) ∈ (lotteries-on outcomes) (is ?mpf ∈ ?lot)
using mix-pmf-in-lotteries [of x outcomes y α] xy-p assms(2)
by (meson approx-indep-ge assms(4) ind preference.not-outside

rational-preference.compl rational-preference-def)
have all: ∀ r ∈ ?lot. (mix-pmf α x r) �[R] (mix-pmf α y r)

by (metis assms assms(2) atLeastAtMost-iff greaterThanAtMost-iff indepen-
dece-dest-alt

less-eq-real-def pmf-mix-0 rational-preference.compl rpr ind xy-p)
thus ?thesis

by (metis all assms(4) set-pmf-mix-eq xy-p(2))
qed

lemma geq-imp-mix-geq-left:
assumes x �[R] y
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R
assumes α ∈ {0 ..(1 ::real)}
shows (mix-pmf α y x) �[R] y

proof −
define β where

b: β = 1 − α
have β ∈ {0 ..1}

using assms(4) b by auto
then have mix-pmf β x y �[R] y

using geq-imp-mix-geq-right[OF assms] assms(1) geq-imp-mix-geq-right ind rpr
by blast

moreover have mix-pmf β x y = mix-pmf α y x
by (metis assms(4) b pmf-inverse-switch-eqals)

ultimately show ?thesis
by simp

qed

18

lemma sg-imp-mix-sg:
assumes x �[R] y
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R
assumes α ∈ {0<..(1 ::real)}
shows (mix-pmf α x y) �[R] y

proof −
have xy-p: x ∈ (lotteries-on outcomes) y ∈ (lotteries-on outcomes)

by (meson assms(1) preference.not-outside rational-preference-def rpr)
(meson assms(1) preference-def rational-preference-def rpr)

have (mix-pmf α x y) ∈ (lotteries-on outcomes) (is ?mpf ∈ ?lot)
using mix-pmf-in-lotteries [of x outcomes y α] xy-p assms(2)
using assms(4) by fastforce

have all: ∀ r ∈ ?lot. (mix-pmf α x r) �[R] (mix-pmf α y r)
by (metis assms(1 ,3 ,4) independece-dest-alt ind xy-p)

have (mix-pmf α x y) �[R] y
by (metis all assms(4) atLeastAtMost-iff greaterThanAtMost-iff

less-eq-real-def set-pmf-mix-eq xy-p(2))
have all2 : ∀ r ∈ ?lot. (mix-pmf α x r) �[R] (mix-pmf α y r)

using assms(1) assms(4) ind independece-dest-alt xy-p(1) xy-p(2) by blast
then show ?thesis

by (metis assms(4) atLeastAtMost-iff greaterThanAtMost-iff
less-eq-real-def set-pmf-mix-eq xy-p(2))

qed

3.2 Continuity

Continuity is sometimes called Archimedean Axiom
definition continuous-vnm

where
continuous-vnm C P = (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . p �[P] q ∧ q �[P] r −→
(∃α ∈ {0 ..1}. (mix-pmf α p r) ≈[P] q))

lemma continuous-vnmD:
assumes continuous-vnm C P
shows (∀ p ∈ C . ∀ q ∈ C . ∀ r ∈ C . p �[P] q ∧ q �[P] r −→
(∃α ∈ {0 ..1}. (mix-pmf α p r) ≈[P] q))

using continuous-vnm-def assms by blast

lemma continuous-vnmI :
assumes

∧
p q r . p ∈ C =⇒ q ∈ C =⇒ r ∈ C =⇒ p �[P] q ∧ q �[P] r =⇒

∃α ∈ {0 ..1}. (mix-pmf α p r) ≈[P] q
shows continuous-vnm C P
by (simp add: assms continuous-vnm-def)

lemma mix-in-lot:
assumes x ∈ lotteries-on outcomes

and y ∈ lotteries-on outcomes
and α ∈ {0 ..1}

19

shows (mix-pmf α x y) ∈ lotteries-on outcomes
using assms(1) assms(2) assms(3) less-eq-real-def mix-pmf-in-lotteries by fast-

force

lemma non-unique-continuous-unfolding:
assumes cnt: continuous-vnm (lotteries-on outcomes) R
assumes rational-preference (lotteries-on outcomes) R
assumes p �[R] q

and q �[R] r
and p �[R] r

shows ∃α ∈ {0 ..1}. q ≈[R] mix-pmf α p r
using assms(1) assms(2) cnt continuous-vnmD assms

proof −
have ∀ p q. p∈ (lotteries-on outcomes) ∧ q ∈ (lotteries-on outcomes) ←→ p �[R]

q ∨ q �[R] p
using assms rational-preference.compl[of lotteries-on outcomes R]
by (metis (no-types, opaque-lifting) preference-def rational-preference-def)

then show ?thesis
using continuous-vnmD[OF assms(1)] by (metis assms(3) assms(4))

qed

4 System U start, as per vNM

These are the first two assumptions which we use to derive the first re-
sults. We assume rationality and independence. In this system U the von-
Neumann-Morgenstern Utility Theorem is proven.
context

fixes outcomes :: ′a set
fixes R
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R

begin

abbreviation P ≡ lotteries-on outcomes

lemma relation-in-carrier :
x �[R] y =⇒ x ∈ P ∧ y ∈ P
by (meson preference-def rational-preference-def rpr)

lemma mix-pmf-preferred-independence:
assumes r ∈ P

and α ∈ {0 ..1}
assumes p �[R] q
shows mix-pmf α p r �[R] mix-pmf α q r
using ind by (metis relation-in-carrier antisym-conv1 assms atLeastAtMost-iff

greaterThanAtMost-iff independece-dest-alt pmf-mix-0
rational-preference.no-better-thansubset-rel rpr subsetI)

20

lemma mix-pmf-strict-preferred-independence:
assumes r ∈ P

and α ∈ {0<..1}
assumes p �[R] q
shows mix-pmf α p r �[R] mix-pmf α q r
by (meson assms(1) assms(2) assms(3) ind independent-vnmD2

independent-vnmD3 relation-in-carrier)

lemma mix-pmf-preferred-independence-rev:
assumes p ∈ P

and q ∈ P
and r ∈ P
and α ∈ {0<..1}

assumes mix-pmf α p r �[R] mix-pmf α q r
shows p �[R] q

proof −
have mix-pmf α p r ∈ P

using assms mix-in-lot relation-in-carrier by blast
moreover have mix-pmf α q r ∈ P

using assms mix-in-lot assms(2) relation-in-carrier by blast
ultimately show ?thesis

using ind independent-vnmD3 [of α p P q r R] assms by blast
qed

lemma x-sg-y-sg-mpmf-right:
assumes x �[R] y
assumes b ∈ {0<..(1 ::real)}
shows x �[R] mix-pmf b y x

proof −
consider b = 1 | b 6= 1

by blast
then show ?thesis
proof (cases)

case 2
have sg: (mix-pmf b x y) �[R] y

using assms(1) assms(2) assms ind rpr sg-imp-mix-sg 2 by fastforce
have mix-pmf b x y ∈ P

by (meson sg preference-def rational-preference-def rpr)
have mix-pmf b x x ∈ P

using relation-in-carrier assms(2) mix-in-lot assms by fastforce
have b ∈ {0<..<1}

using 2 assms(2) by auto
have mix-pmf b x x �[R] mix-pmf b y x

using mix-pmf-preferred-independence[of x b] assms
by (meson ‹b ∈ {0<..<1}› greaterThanAtMost-iff greaterThanLessThan-iff

ind
independece-dest-alt less-eq-real-def preference-def
rational-preference.axioms(1) relation-in-carrier rpr)

21

then show ?thesis
using mix-pmf-preferred-independence
by (metis assms(2) atLeastAtMost-iff greaterThanAtMost-iff less-eq-real-def

set-pmf-mix-eq)
qed (simp add: assms(1))

qed

lemma neumann-3B-b:
assumes u �[R] v
assumes α ∈ {0<..<1}
shows u �[R] mix-pmf α u v

proof −
have ∗: preorder-on P R ∧ rational-preference-axioms P R

by (metis (no-types) preference-def rational-preference-def rpr)
have 1 − α ∈ {0<..1}

using assms(2) by auto
then show ?thesis

using ∗ assms by (metis atLeastAtMost-iff greaterThanLessThan-iff
less-eq-real-def pmf-inverse-switch-eqals x-sg-y-sg-mpmf-right)

qed

lemma neumann-3B-b-non-strict:
assumes u �[R] v
assumes α ∈ {0 ..1}
shows u �[R] mix-pmf α u v

proof −
have f2 : mix-pmf α (u:: ′a pmf) v = mix-pmf (1 − α) v u

using pmf-inverse-switch-eqals assms(2) by auto
have 1 − α ∈ {0 ..1}

using assms(2) by force
then show ?thesis

using f2 relation-in-carrier
by (metis (no-types) assms(1) mix-pmf-preferred-independence set-pmf-mix-eq)

qed

lemma greater-mix-pmf-greater-step-1-aux:
assumes v �[R] u
assumes α ∈ {0<..<(1 ::real)}

and β ∈ {0<..<(1 ::real)}
assumes β > α
shows (mix-pmf β v u) �[R] (mix-pmf α v u)

proof −
define t where

t: t = mix-pmf β v u
obtain γ where

g: α = β ∗ γ
by (metis assms(2) assms(4) greaterThanLessThan-iff

mult.commute nonzero-eq-divide-eq not-less-iff-gr-or-eq)
have g1 : γ > 0 ∧ γ < 1

22

by (metis (full-types) assms(2) assms(4) g greaterThanLessThan-iff
less-trans mult.right-neutral mult-less-cancel-left-pos not-le
sgn-le-0-iff sgn-pos zero-le-one zero-le-sgn-iff zero-less-mult-iff)

have t-in: mix-pmf β v u ∈ P
by (meson assms(1) assms(3) mix-pmf-in-lotteries preference-def rational-preference-def

rpr)
have v �[R] mix-pmf (1 − β) v u

using x-sg-y-sg-mpmf-right[of u v 1−β] assms
by (metis atLeastAtMost-iff greaterThanAtMost-iff greaterThanLessThan-iff

less-eq-real-def pmf-inverse-switch-eqals x-sg-y-sg-mpmf-right)
have t �[R] u

using assms(1) assms(3) ind rpr sg-imp-mix-sg t by fastforce
hence t-s: t �[R] (mix-pmf γ t u)
proof −

have (mix-pmf γ t u) ∈ P
by (metis assms(1) assms(3) atLeastAtMost-iff g1 mix-in-lot mix-pmf-in-lotteries

not-less order .asym preference-def rational-preference-def rpr t)
have t �[R] mix-pmf γ (mix-pmf β v u) u

using neumann-3B-b[of t u γ] assms t g1
by (meson greaterThanAtMost-iff greaterThanLessThan-iff

ind less-eq-real-def rpr sg-imp-mix-sg)
thus ?thesis

using t by blast
qed
from product-mix-pmf-prob-distrib[of - β v u] assms
have mix-pmf β v u �[R] mix-pmf α v u

by (metis t-s atLeastAtMost-iff g g1 greaterThanLessThan-iff less-eq-real-def
mult.commute t)

then show ?thesis by blast
qed

5 This lemma is in called step 1 in literature. In
Von Neumann and Morgenstern’s book this is
A:A (albeit more general)

lemma step-1-most-general:
assumes x �[R] y
assumes α ∈ {0 ..(1 ::real)}

and β ∈ {0 ..(1 ::real)}
assumes α > β
shows (mix-pmf α x y) �[R] (mix-pmf β x y)

proof −
consider (ex) α = 1 ∧ β = 0 | (m) α 6= 1 ∨ β 6= 0

by blast
then show ?thesis
proof (cases)

case m

23

consider β = 0 | β 6= 0
by blast

then show ?thesis
proof (cases)

case 1
then show ?thesis

using assms(1) assms(2) assms(4) ind rpr sg-imp-mix-sg by fastforce
next

case 2
let ?d = (β/α)
have sg: (mix-pmf α x y) �[R] y

using assms(1) assms(2) assms(3) assms(4) ind rpr sg-imp-mix-sg by
fastforce

have a: α > 0
using assms(3) assms(4) by auto

then have div-in: ?d ∈ {0<..1}
using assms(3) assms(4) 2 by auto

have mx-p: (mix-pmf α x y) ∈ P
by (meson sg preference-def rational-preference-def rpr)

have y-P: y ∈ P
by (meson assms(1) preference-def rational-preference-def rpr)

hence (mix-pmf ?d (mix-pmf α x y) y) ∈ P
using div-in mx-p by (simp add: mix-in-lot)

have mix-pmf β (mix-pmf α x y) y �[R] y
using sg-imp-mix-sg[of (mix-pmf α x y) y R outcomes β] sg div-in rpr ind

a assms(2) 2 assms(3) by auto
have al1 : ∀ r ∈ P. (mix-pmf α x r) �[R] (mix-pmf α y r)

by (meson a assms(1) assms(2) atLeastAtMost-iff greaterThanAtMost-iff
ind

independece-dest-alt preference.not-outside rational-preference-def rpr y-P)
then show ?thesis

using greater-mix-pmf-greater-step-1-aux assms
by (metis a div-in divide-less-eq-1-pos greaterThanAtMost-iff

greaterThanLessThan-iff mix-pmf-comp-with-dif-equiv neumann-3B-b sg)
qed

qed (simp add: assms(1))
qed

Kreps refers to this lemma as 5.6 c. The lemma after that is also significant.
lemma approx-remains-after-same-comp:

assumes p ≈[R] q
and r ∈ P
and α ∈ {0 ..1}

shows mix-pmf α p r ≈[R] mix-pmf α q r
using approx-indep-ge assms(1) assms(2) assms(3) ind rpr by blast

This lemma is the symmetric version of the previous lemma. This lemma is
never mentioned in literature anywhere. Even though it looks trivial now,
due to the asymmetric nature of the independence axiom, it is not so trivial,

24

and definitely worth mentioning.
lemma approx-remains-after-same-comp-left:

assumes p ≈[R] q
and r ∈ P
and α ∈ {0 ..1}

shows mix-pmf α r p ≈[R] mix-pmf α r q
proof −

have 1 : α ≤ 1 ∧ α ≥ 0 1 − α ∈ {0 ..1}
using assms(3) by auto+

have fst: mix-pmf α r p ≈[R] mix-pmf (1−α) p r
using assms by (metis mix-in-lot pmf-inverse-switch-eqals
rational-preference.compl relation-in-carrier rpr)

moreover have mix-pmf α r p ≈[R] mix-pmf α r q
using approx-remains-after-same-comp[of - - - α] pmf-inverse-switch-eqals[of α

p q] 1
pmf-inverse-switch-eqals rpr mix-pmf-preferred-independence[of - α - -]

by (metis assms(1) assms(2) assms(3) mix-pmf-preferred-independence)
thus ?thesis

by blast
qed

lemma mix-of-preferred-is-preferred:
assumes p �[R] w
assumes q �[R] w
assumes α ∈ {0 ..1}
shows mix-pmf α p q �[R] w

proof −
consider p �[R] q | q �[R] p

using rpr assms(1) assms(2) rational-preference.compl relation-in-carrier by
blast

then show ?thesis
proof (cases)

case 1
have mix-pmf α p q �[R] q

using 1 assms(3) geq-imp-mix-geq-right ind rpr by blast
moreover have q �[R] w

using assms by auto
ultimately show ?thesis using rpr preference.transitivity[of P R]

by (meson rational-preference-def transE)
next

case 2
have mix-pmf α p q �[R] p

using 2 assms geq-imp-mix-geq-left ind rpr by blast
moreover have p �[R] w

using assms by auto
ultimately show ?thesis using rpr preference.transitivity[of P R]

by (meson rational-preference-def transE)
qed

qed

25

lemma mix-of-not-preferred-is-not-preferred:
assumes w �[R] p
assumes w �[R] q
assumes α ∈ {0 ..1}
shows w �[R] mix-pmf α p q

proof −
consider p �[R] q | q �[R] p

using rpr assms(1) assms(2) rational-preference.compl relation-in-carrier by
blast

then show ?thesis
proof (cases)

case 1
moreover have p �[R] mix-pmf α p q

using assms(3) neumann-3B-b-non-strict calculation by blast
moreover show ?thesis

using rpr preference.transitivity[of P R]
by (meson assms(1) calculation(2) rational-preference-def transE)

next
case 2
moreover have q �[R] mix-pmf α p q

using assms(3) neumann-3B-b-non-strict calculation
by (metis mix-pmf-preferred-independence relation-in-carrier set-pmf-mix-eq)

moreover show ?thesis
using rpr preference.transitivity[of P R]
by (meson assms(2) calculation(2) rational-preference-def transE)

qed
qed

private definition degenerate-lotteries where
degenerate-lotteries = {x ∈ P. card (set-pmf x) = 1}

private definition best where
best = {x ∈ P. (∀ y ∈ P. x �[R] y)}

private definition worst where
worst = {x ∈ P. (∀ y ∈ P. y �[R] x)}

lemma degenerate-total:
∀ e ∈ degenerate-lotteries. ∀m ∈ P. e �[R] m ∨ m �[R] e
using degenerate-lotteries-def rational-preference.compl rpr by fastforce

lemma degen-outcome-cardinalities:
card degenerate-lotteries = card outcomes
using card-degen-lotteries-equals-outcomes degenerate-lotteries-def by auto

lemma degenerate-lots-subset-all: degenerate-lotteries ⊆ P
by (simp add: degenerate-lotteries-def)

26

lemma alt-definition-of-degenerate-lotteries[iff]:
{return-pmf x |x. x∈ outcomes} = degenerate-lotteries

proof (standard, goal-cases)
case 1
have ∀ x ∈ {return-pmf x |x. x ∈ outcomes}. x ∈ degenerate-lotteries
proof

fix x
assume a: x ∈ {return-pmf x |x. x ∈ outcomes}
then have card (set-pmf x) = 1

by auto
moreover have set-pmf x ⊆ outcomes

using a set-pmf-subset-singleton by auto
moreover have x ∈ P

by (simp add: lotteries-on-def calculation)
ultimately show x ∈ degenerate-lotteries

by (simp add: degenerate-lotteries-def)
qed
then show ?case by blast

next
case 2
have ∀ x ∈ degenerate-lotteries. x ∈ {return-pmf x |x. x ∈ outcomes}
proof

fix x
assume a: x ∈ degenerate-lotteries
hence card (set-pmf x) = 1

using degenerate-lotteries-def by blast
moreover have set-pmf x ⊆ outcomes

by (meson a degenerate-lots-subset-all subset-iff support-in-outcomes)
moreover obtain e where {e} = set-pmf x

using calculation
by (metis card-1-singletonE)

moreover have e ∈ outcomes
using calculation(2) calculation(3) by blast

moreover have x = return-pmf e
using calculation(3) set-pmf-subset-singleton by fast

ultimately show x ∈ {return-pmf x |x. x ∈ outcomes}
by blast

qed
then show ?case by blast

qed

lemma best-indifferent:
∀ x ∈ best. ∀ y ∈ best. x ≈[R] y
by (simp add: best-def)

lemma worst-indifferent:
∀ x ∈ worst. ∀ y ∈ worst. x ≈[R] y
by (simp add: worst-def)

27

lemma best-worst-indiff-all-indiff :
assumes b ∈ best

and w ∈ worst
and b ≈[R] w

shows ∀ e ∈ P. e ≈[R] w ∀ e ∈ P. e ≈[R] b
proof −

show ∀ e ∈ P. e ≈[R] w
proof (standard)

fix e
assume a: e ∈ P
then have b �[R] e

using a best-def assms by blast
moreover have e �[R] w

using a assms worst-def by auto
moreover have b �[R] e

by (simp add: calculation(1))
moreover show e ≈[R] w
proof (rule ccontr)

assume ¬ e ≈[R] w
then consider e �[R] w | w �[R] e

by (simp add: calculation(2))
then show False
proof (cases)

case 2
then show ?thesis

using calculation(2) by blast
qed (meson assms(3) calculation(1)

rational-preference.strict-is-neg-transitive relation-in-carrier rpr)
qed

qed
then show ∀ e∈local.P. e ≈[R] b

using assms by (meson rational-preference.compl
rational-preference.strict-is-neg-transitive relation-in-carrier rpr)

qed

Like Step 1 most general but with IFF.
lemma mix-pmf-pref-iff-more-likely [iff]:

assumes b �[R] w
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
shows α > β ←→ mix-pmf α b w �[R] mix-pmf β b w (is ?L ←→ ?R)
using assms step-1-most-general[of b w α β]
by (metis linorder-neqE-linordered-idom step-1-most-general)

lemma better-worse-good-mix-preferred[iff]:
assumes b �[R] w
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes α ≥ β

28

shows mix-pmf α b w �[R] mix-pmf β b w
proof−

have (0 ::real) ≤ 1
by simp

then show ?thesis
by (metis (no-types) assms assms(1) assms(2) assms(3) atLeastAtMost-iff

less-eq-real-def mix-of-not-preferred-is-not-preferred
mix-of-preferred-is-preferred mix-pmf-preferred-independence
pmf-mix-0 relation-in-carrier step-1-most-general)

qed

5.1 Add finiteness and non emptyness of outcomes
context

assumes fnt: finite outcomes
assumes nempty: outcomes 6= {}

begin

lemma finite-degenerate-lotteries:
finite degenerate-lotteries
using degen-outcome-cardinalities fnt nempty by fastforce

lemma degenerate-has-max-preferred:
{x ∈ degenerate-lotteries. (∀ y ∈ degenerate-lotteries. x �[R] y)} 6= {} (is ?l 6=
{})
proof

assume a: ?l = {}
let ?DG = degenerate-lotteries
obtain R where

R: rational-preference ?DG R R ⊆ R
using degenerate-lots-subset-all rational-preference.all-carrier-ex-sub-rel rpr by

blast
then have ∃ e ∈ ?DG. ∀ e ′ ∈ ?DG. e �[R] e ′

by (metis R(1) R(2) card-0-eq degen-outcome-cardinalities
finite-degenerate-lotteries fnt nempty subset-eq
rational-preference.finite-nonempty-carrier-has-maximum)

then show False
using a by auto

qed

lemma degenerate-has-min-preferred:
{x ∈ degenerate-lotteries. (∀ y ∈ degenerate-lotteries. y �[R] x)} 6= {} (is ?l 6=
{})
proof

assume a: ?l = {}
let ?DG = degenerate-lotteries
obtain R where

R: rational-preference ?DG R R ⊆ R
using degenerate-lots-subset-all rational-preference.all-carrier-ex-sub-rel rpr by

29

blast
have ∃ e ∈ ?DG. ∀ e ′ ∈ ?DG. e ′ �[R] e

by (metis R(1) R(2) card-0-eq degen-outcome-cardinalities
finite-degenerate-lotteries fnt nempty subset-eq
rational-preference.finite-nonempty-carrier-has-minimum)

then show False
using a by auto

qed

lemma exists-best-degenerate:
∃ x ∈ degenerate-lotteries. ∀ y ∈ degenerate-lotteries. x �[R] y
using degenerate-has-max-preferred by blast

lemma exists-worst-degenerate:
∃ x ∈ degenerate-lotteries. ∀ y ∈ degenerate-lotteries. y �[R] x
using degenerate-has-min-preferred by blast

lemma best-degenerate-in-best-overall:
∃ x ∈ degenerate-lotteries. ∀ y ∈ P. x �[R] y

proof −
obtain b where

b: b ∈ degenerate-lotteries ∀ y ∈ degenerate-lotteries. b �[R] y
using exists-best-degenerate by blast

have asm: finite outcomes set-pmf b ⊆ outcomes
by (simp add: fnt) (meson b(1) degenerate-lots-subset-all subset-iff support-in-outcomes)

obtain B where B: set-pmf b = {B}
using b card-1-singletonE degenerate-lotteries-def by blast

have deg: ∀ d∈outcomes. b �[R] return-pmf d
using alt-definition-of-degenerate-lotteries b(2) by blast

define P where
P = (λp. p ∈ P −→ return-pmf B �[R] p)

have P p for p
proof −

consider set-pmf p ⊆ outcomes | ¬set-pmf p ⊆ outcomes
by blast

then show ?thesis
proof (cases)

case 1
have finite outcomes set-pmf p ⊆ outcomes

by (auto simp: 1 asm)
then show ?thesis
proof (induct rule: pmf-mix-induct ′)

case (degenerate x)
then show ?case

using B P-def deg set-pmf-subset-singleton by fastforce
qed (simp add: P-def lotteries-on-def mix-of-not-preferred-is-not-preferred

mix-of-not-preferred-is-not-preferred[of b p q a])
qed (simp add: lotteries-on-def P-def)

qed

30

moreover have ∀ e ∈ P. b �[R] e
using calculation B P-def set-pmf-subset-singleton by fastforce

ultimately show ?thesis
using b degenerate-lots-subset-all by blast

qed

lemma worst-degenerate-in-worst-overall:
∃ x ∈ degenerate-lotteries. ∀ y ∈ P. y �[R] x

proof −
obtain b where

b: b ∈ degenerate-lotteries ∀ y ∈ degenerate-lotteries. y �[R] b
using exists-worst-degenerate by blast

have asm: finite outcomes set-pmf b ⊆ outcomes
by (simp add: fnt) (meson b(1) degenerate-lots-subset-all subset-iff support-in-outcomes)

obtain B where B: set-pmf b = {B}
using b card-1-singletonE degenerate-lotteries-def by blast

have deg: ∀ d∈outcomes. return-pmf d �[R] b
using alt-definition-of-degenerate-lotteries b(2) by blast

define P where
P = (λp. p ∈ P −→ p �[R] return-pmf B)

have P p for p
proof −

consider set-pmf p ⊆ outcomes | ¬set-pmf p ⊆ outcomes
by blast

then show ?thesis
proof (cases)

case 1
have finite outcomes set-pmf p ⊆ outcomes

by (auto simp: 1 asm)
then show ?thesis
proof (induct rule: pmf-mix-induct ′)

case (degenerate x)
then show ?case

using B P-def deg set-pmf-subset-singleton by fastforce
next
qed (simp add: P-def lotteries-on-def mix-of-preferred-is-preferred

mix-of-not-preferred-is-not-preferred[of b p])
qed (simp add: lotteries-on-def P-def)

qed
moreover have ∀ e ∈ P. e �[R] b

using calculation B P-def set-pmf-subset-singleton by fastforce
ultimately show ?thesis

using b degenerate-lots-subset-all by blast
qed

lemma overall-best-nonempty:
best 6= {}
using best-def best-degenerate-in-best-overall degenerate-lots-subset-all by blast

31

lemma overall-worst-nonempty:
worst 6= {}
using degenerate-lots-subset-all worst-def worst-degenerate-in-worst-overall by

auto

lemma trans-approx:
assumes x≈[R] y

and y ≈[R] z
shows x ≈[R] z
using preference.indiff-trans[of P R x y z] assms rpr rational-preference-def by

blast

First EXPLICIT use of the axiom of choice
private definition some-best where

some-best = (SOME x. x ∈ degenerate-lotteries ∧ x ∈ best)

private definition some-worst where
some-worst = (SOME x. x ∈ degenerate-lotteries ∧ x ∈ worst)

private definition my-U :: ′a pmf ⇒ real
where

my-U p = (SOME α. α∈{0 ..1} ∧ p ≈[R] mix-pmf α some-best some-worst)

lemma exists-best-and-degenerate: degenerate-lotteries ∩ best 6= {}
using best-def best-degenerate-in-best-overall degenerate-lots-subset-all by blast

lemma exists-worst-and-degenerate: degenerate-lotteries ∩ worst 6= {}
using worst-def worst-degenerate-in-worst-overall degenerate-lots-subset-all by

blast

lemma some-best-in-best: some-best ∈ best
using exists-best-and-degenerate some-best-def
by (metis (mono-tags, lifting) Int-emptyI some-eq-ex)

lemma some-worst-in-worst: some-worst ∈ worst
using exists-worst-and-degenerate some-worst-def
by (metis (mono-tags, lifting) Int-emptyI some-eq-ex)

lemma best-always-at-least-as-good-mix:
assumes α ∈ {0 ..1}

and p ∈ P
shows mix-pmf α some-best p �[R] p
using assms(1) assms(2) best-def mix-of-preferred-is-preferred

rational-preference.compl rpr some-best-in-best by fastforce

lemma geq-mix-imp-weak-pref :

32

assumes α ∈ {0 ..1}
and β ∈ {0 ..1}

assumes α ≥ β
shows mix-pmf α some-best some-worst �[R] mix-pmf β some-best some-worst
using assms(1) assms(2) assms(3) best-def some-best-in-best some-worst-in-worst

worst-def by auto

lemma gamma-inverse:
assumes α ∈ {0<..<1}

and β ∈ {0<..<1}
shows (1 ::real) − (α − β) / (1 − β) = (1 − α) / (1 − β)

proof −
have 1 − (α − β) / (1 − β) = (1 − β)/(1 − β) − (α − β) / (1 − β)

using assms(2) by auto
also have ... = (1 − β − (α − β)) / (1 − β)

by (metis diff-divide-distrib)
also have ... = (1 − α) / (1 − β)

by simp
finally show ?thesis .

qed

lemma all-mix-pmf-indiff-indiff-best-worst:
assumes l ∈ P
assumes b ∈ best
assumes w ∈ worst
assumes b ≈[R] w
shows ∀α ∈{0 ..1}. l ≈[R] mix-pmf α b w
by (meson assms best-worst-indiff-all-indiff (1) mix-of-preferred-is-preferred

best-worst-indiff-all-indiff (2) mix-of-not-preferred-is-not-preferred)

lemma indiff-imp-same-utility-value:
assumes some-best �[R] some-worst
assumes α ∈ {0 ..1}
assumes β ∈ {0 ..1}
assumes mix-pmf β some-best some-worst ≈[R] mix-pmf α some-best some-worst
shows β = α
using assms(1) assms(2) assms(3) assms(4) linorder-neqE-linordered-idom by

blast

lemma leq-mix-imp-weak-inferior :
assumes some-best �[R] some-worst
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes mix-pmf β some-best some-worst �[R] mix-pmf α some-best some-worst
shows β ≥ α

proof −
have ∗: mix-pmf β some-best some-worst ≈[R] mix-pmf α some-best some-worst

=⇒ α ≤ β
using assms(1) assms(2) assms(3) indiff-imp-same-utility-value by blast

33

consider mix-pmf β some-best some-worst �[R] mix-pmf α some-best some-worst
|

mix-pmf β some-best some-worst ≈[R] mix-pmf α some-best some-worst
using assms(4) by blast

then show ?thesis
by(cases) (meson assms(2) assms(3) geq-mix-imp-weak-pref le-cases ∗)+

qed

lemma ge-mix-pmf-preferred:
assumes x �[R] y
assumes α ∈ {0 ..1}

and β ∈ {0 ..1}
assumes α ≥ β
shows (mix-pmf α x y) �[R] (mix-pmf β x y)
using assms(1) assms(2) assms(3) assms(4) by blast

5.2 Add continuity to assumptions
context

assumes cnt: continuous-vnm (lotteries-on outcomes) R
begin

In Literature this is referred to as step 2.
lemma step-2-unique-continuous-unfolding:

assumes p �[R] q
and q �[R] r
and p �[R] r

shows ∃ !α ∈ {0 ..1}. q ≈[R] mix-pmf α p r
proof (rule ccontr)

assume neg-a: @ !α. α ∈ {0 ..1} ∧ q ≈[R] mix-pmf α p r
have ∃α ∈ {0 ..1}. q ≈[R] mix-pmf α p r

using non-unique-continuous-unfolding[of outcomes R p q r]
assms cnt rpr by blast

then obtain α β :: real where
a-b: α∈{0 ..1} β ∈{0 ..1} q ≈[R] mix-pmf α p r q ≈[R] mix-pmf β p r α 6= β
using neg-a by blast

consider α > β | β > α
using a-b by linarith

then show False
proof (cases)

case 1
with step-1-most-general[of p r α β] assms
have mix-pmf α p r �[R] mix-pmf β p r

using a-b(1) a-b(2) by blast
then show ?thesis using a-b

by (meson rational-preference.strict-is-neg-transitive relation-in-carrier rpr)
next

case 2
with step-1-most-general[of p r β α] assms have mix-pmf β p r �[R]mix-pmf

34

α p r
using a-b(1) a-b(2) by blast

then show ?thesis using a-b
by (meson rational-preference.strict-is-neg-transitive relation-in-carrier rpr)

qed
qed

These folowing two lemmas are referred to sometimes called step 2.
lemma create-unique-indiff-using-distinct-best-worst:

assumes l ∈ P
assumes b ∈ best
assumes w ∈ worst
assumes b �[R] w
shows ∃ !α ∈{0 ..1}. l ≈[R] mix-pmf α b w

proof −
have b �[R] l

using best-def
using assms by blast

moreover have l �[R] w
using worst-def assms by blast

ultimately show ∃ !α∈{0 ..1}. l ≈[R] mix-pmf α b w
using step-2-unique-continuous-unfolding[of b l w] assms by linarith

qed

lemma exists-element-bw-mix-is-approx:
assumes l ∈ P
assumes b ∈ best
assumes w ∈ worst
shows ∃α ∈{0 ..1}. l ≈[R] mix-pmf α b w

proof −
consider b �[R] w | b ≈[R] w

using assms(2) assms(3) best-def worst-def by auto
then show ?thesis
proof (cases)

case 1
then show ?thesis

using create-unique-indiff-using-distinct-best-worst assms by blast
qed (auto simp: all-mix-pmf-indiff-indiff-best-worst assms)

qed

lemma my-U-is-defined:
assumes p ∈ P
shows my-U p ∈ {0 ..1} p ≈[R] mix-pmf (my-U p) some-best some-worst

proof −
have some-best ∈ best

by (simp add: some-best-in-best)
moreover have some-worst ∈ worst

by (simp add: some-worst-in-worst)
with exists-element-bw-mix-is-approx[of p some-best some-worst] calculation assms

35

have e: ∃α∈{0 ..1}. p ≈[R] mix-pmf α some-best some-worst by blast
then show my-U p ∈ {0 ..1}

by (metis (mono-tags, lifting) my-U-def someI-ex)
show p ≈[R] mix-pmf (my-U p) some-best some-worst

by (metis (mono-tags, lifting) e my-U-def someI-ex)
qed

lemma weak-pref-mix-with-my-U-weak-pref :
assumes p �[R] q
shows mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q) some-best

some-worst
by (meson assms my-U-is-defined(2) relation-in-carrier rpr

rational-preference.weak-is-transitive)

lemma preferred-greater-my-U :
assumes p ∈ P

and q ∈ P
assumes mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)

some-best some-worst
shows my-U p > my-U q

proof (rule ccontr)
assume ¬ my-U p > my-U q
then consider my-U p = my-U q | my-U p < my-U q

by linarith
then show False
proof (cases)

case 1
then have mix-pmf (my-U p) some-best some-worst ≈[R] mix-pmf (my-U q)

some-best some-worst
using assms by auto

then show ?thesis using assms by blast
next

case 2
moreover have my-U q ∈ {0 ..1}

using assms(2) my-U-is-defined(1) by blast
moreover have my-U p ∈ {0 ..1}

using assms(1) my-U-is-defined(1) by blast
moreover have mix-pmf (my-U q) some-best some-worst �[R] mix-pmf (my-U

p) some-best some-worst
using calculation geq-mix-imp-weak-pref by auto

then show ?thesis using assms by blast
qed

qed

lemma geq-my-U-imp-weak-preference:
assumes p ∈ P

and q ∈ P
assumes some-best �[R] some-worst
assumes my-U p ≥ my-U q

36

shows p �[R] q
proof −

have p-q: my-U p ∈ {0 ..1} my-U q ∈ {0 ..1}
using assms my-U-is-defined(1) by blast+

with ge-mix-pmf-preferred[of some-best some-worst my-U p my-U q]
p-q assms(1) assms(3) assms(4)

have mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q) some-best
some-worst by blast

consider my-U p = my-U q | my-U p > my-U q
using assms by linarith

then show ?thesis
proof (cases)

case 2
then show ?thesis
by (meson assms(1) assms(2) assms(3) p-q(1) p-q(2) rational-preference.compl

rpr step-1-most-general weak-pref-mix-with-my-U-weak-pref)
qed (metis assms(1) assms(2) my-U-is-defined(2) trans-approx)

qed

lemma my-U-represents-pref :
assumes some-best �[R] some-worst
assumes p ∈ P

and q ∈ P
shows p �[R] q ←→ my-U p ≥ my-U q (is ?L ←→ ?R)

proof −
have p-def : my-U p∈ {0 ..1} my-U q ∈ {0 ..1}

using assms my-U-is-defined by blast+
show ?thesis
proof

assume a: ?L
hence mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)

some-best some-worst
using weak-pref-mix-with-my-U-weak-pref by auto

then show ?R using leq-mix-imp-weak-inferior [of my-U p my-U q] p-def a
assms(1) leq-mix-imp-weak-inferior by blast

next
assume ?R
then show ?L using geq-my-U-imp-weak-preference

using assms(1) assms(2) assms(3) by blast
qed

qed

lemma first-iff-u-greater-strict-preff :
assumes p ∈ P

and q ∈ P
assumes some-best �[R] some-worst
shows my-U p > my-U q ←→ mix-pmf (my-U p) some-best some-worst �[R]

mix-pmf (my-U q) some-best some-worst

37

proof
assume a: my-U p > my-U q
have my-U p ∈ {0 ..1} my-U q ∈ {0 ..1}

using assms my-U-is-defined(1) by blast+
then show mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)

some-best some-worst
using a assms(3) by blast

next
assume a: mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)

some-best some-worst
have my-U p ∈ {0 ..1} my-U q ∈ {0 ..1}

using assms my-U-is-defined(1) by blast+
then show my-U p > my-U q

using preferred-greater-my-U [of p q] assms a by blast
qed

lemma second-iff-calib-mix-pref-strict-pref :
assumes p ∈ P

and q ∈ P
assumes some-best �[R] some-worst
shows mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q) some-best

some-worst ←→ p �[R] q
proof

assume a: mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)
some-best some-worst

have my-U p ∈ {0 ..1} my-U q ∈ {0 ..1}
using assms my-U-is-defined(1) by blast+

then show p �[R] q
using a assms(3) assms(1) assms(2) geq-my-U-imp-weak-preference

leq-mix-imp-weak-inferior weak-pref-mix-with-my-U-weak-pref by blast
next

assume a: p �[R] q
have my-U p ∈ {0 ..1} my-U q ∈ {0 ..1}

using assms my-U-is-defined(1) by blast+
then show mix-pmf (my-U p) some-best some-worst �[R] mix-pmf (my-U q)

some-best some-worst
using a assms(1) assms(2) assms(3) leq-mix-imp-weak-inferior my-U-represents-pref

by blast
qed

lemma my-U-is-linear-function:
assumes p ∈ P

and q ∈ P
and α ∈ {0 ..1}

assumes some-best �[R] some-worst
shows my-U (mix-pmf α p q) = α ∗ my-U p + (1 − α) ∗ my-U q

proof −
define B where B: B = some-best
define W where W :W = some-worst

38

define Up where Up: Up = my-U p
define Uq where Uq: Uq = my-U q
have long-in: (α ∗ Up + (1 − α) ∗ Uq) ∈ {0 ..1}
proof −

have Up ∈ {0 ..1}
using assms Up my-U-is-defined(1) by blast

moreover have Uq ∈ {0 ..1}
using assms Uq my-U-is-defined(1) by blast

moreover have α ∗ Up ∈ {0 ..1}
using ‹Up ∈ {0 ..1}› assms(3) mult-le-one by auto

moreover have 1−α ∈ {0 ..1}
using assms(3) by auto

moreover have (1 − α) ∗ Uq ∈ {0 ..1}
using mult-le-one[of 1−α Uq] calculation(2) calculation(4) by auto

ultimately show ?thesis
using add-nonneg-nonneg[of α ∗ Up (1 − α) ∗ Uq]

convex-bound-le[of Up 1 Uq α 1−α] by simp
qed
have fst: p ≈[R] (mix-pmf Up B W)

using assms my-U-is-defined[of p] B W Up by simp
have snd: q ≈[R] (mix-pmf Uq B W)

using assms my-U-is-defined[of q] B W Uq by simp
have mp-in: (mix-pmf Up B W) ∈ P

using fst relation-in-carrier by blast
have f2 : mix-pmf α p q ≈[R] mix-pmf α (mix-pmf Up B W) q

using fst assms(2) assms(3) mix-pmf-preferred-independence by blast
have ∗∗: mix-pmf α (mix-pmf Up B W) (mix-pmf Uq B W) =

mix-pmf (α ∗ Up + (1−α) ∗ Uq) B W (is ?L = ?R)
proof −

let ?mixPQ = (mix-pmf (α ∗ Up + (1 − α) ∗ Uq) B W)
have ∀ e∈set-pmf ?L. pmf (?L) e = pmf ?mixPQ e
proof

fix e
assume asm: e ∈ set-pmf ?L
have i1 : pmf (?L) e = α ∗ pmf (mix-pmf Up B W) e +

pmf (mix-pmf Uq B W) e − α ∗ pmf (mix-pmf Uq B W) e
using pmf-mix-deeper [of α mix-pmf Up B W (mix-pmf Uq B W) e] assms(3)

by blast
have i3 : ... = α ∗ Up ∗ pmf B e + α ∗ pmf W e − α ∗ Up ∗ pmf W e + Uq

∗ pmf B e +
pmf W e − Uq ∗ pmf W e − α ∗ Uq ∗ pmf B e − α ∗ pmf W e + α ∗ Uq ∗

pmf W e
using left-diff-distrib ′ pmf-mix-deeper [of Up B W e] pmf-mix-deeper [of Uq

B W e]
assms Up Uq my-U-is-defined(1) by (simp add: distrib-left right-diff-distrib)

have j4 : pmf ?mixPQ e = (α ∗ Up + (1 − α) ∗ Uq) ∗ pmf B e +
pmf W e − (α ∗ Up + (1 − α) ∗ Uq) ∗ pmf W e
using pmf-mix-deeper [of (α ∗ Up + (1 − α) ∗ Uq) B W e] long-in by blast

then show pmf (?L) e = pmf ?mixPQ e

39

by (simp add: i1 i3 mult.commute right-diff-distrib ′ ring-class.ring-distribs(1))
qed
then show ?thesis using pmf-equiv-intro1 by blast

qed
have mix-pmf α (mix-pmf Up B W) q ≈[R] ?L

using approx-remains-after-same-comp-left assms(3) mp-in snd by blast
hence ∗: mix-pmf α p q ≈[R] mix-pmf α (mix-pmf (my-U p) B W) (mix-pmf

(my-U q) B W)
using Up Uq f2 trans-approx by blast

have mix-pmf α (mix-pmf (my-U p) B W) (mix-pmf (my-U q) B W) = ?R
using Up Uq ∗∗ by blast

hence my-U (mix-pmf α p q) = α ∗ Up + (1−α) ∗ Uq
by (metis ∗ B W assms(4) indiff-imp-same-utility-value long-in

my-U-is-defined(1) my-U-is-defined(2) my-U-represents-pref relation-in-carrier)
then show ?thesis

using Up Uq by blast
qed

Now we define a more general Utility function that also takes the degenerate
case into account
private definition general-U

where
general-U p = (if some-best ≈[R] some-worst then 1 else my-U p)

lemma general-U-is-linear-function:
assumes p ∈ P

and q ∈ P
and α ∈ {0 ..1}

shows general-U (mix-pmf α p q) = α ∗ (general-U p) + (1 − α) ∗ (general-U
q)
proof −

consider some-best �[R] some-worst | some-best ≈[R] some-worst
using best-def some-best-in-best some-worst-in-worst worst-def by auto

then show ?thesis
proof (cases, goal-cases)

case 1
then show ?case

using assms(1) assms(2) assms(3) general-U-def my-U-is-linear-function by
auto

next
case 2
then show ?case

using assms(1) assms(2) assms(3) general-U-def by auto
qed

qed

lemma general-U-ordinal-Utility:
shows ordinal-utility P R general-U

proof (standard, goal-cases)

40

case (1 x y)
consider (a) some-best �[R] some-worst | (b) some-best ≈[R] some-worst

using best-def some-best-in-best some-worst-in-worst worst-def by auto
then show ?case
proof (cases, goal-cases)

case a
have some-best �[R] some-worst

using a by auto
then show x �[R] y = (general-U y ≤ general-U x)

using 1 my-U-represents-pref [of x y] general-U-def by simp
next

case b
have general-U x = 1 general-U y = 1

by (simp add: b general-U-def)+
moreover have x ≈[R] y using b

by (meson 1 (1) 1 (2) best-worst-indiff-all-indiff (1)
some-best-in-best some-worst-in-worst trans-approx)

ultimately show x �[R] y = (general-U y ≤ general-U x)
using general-U-def by linarith

qed
next

case (2 x y)
then show ?case

using relation-in-carrier by blast
next

case (3 x y)
then show ?case

using relation-in-carrier by blast
qed

Proof of the linearity of general-U. If we consider the definition of expected
utility functions from Maschler, Solan, Zamir we are done.
theorem is-linear :

assumes p ∈ P
and q ∈ P
and α ∈ {0 ..1}

shows ∃ u. u (mix-pmf α p q) = α ∗ (u p) + (1−α) ∗ (u q)
proof

let ?u = general-U
consider some-best �[R] some-worst | some-best ≈[R] some-worst

using best-def some-best-in-best some-worst-in-worst worst-def by auto
then show ?u (mix-pmf α p q) = α ∗ ?u p + (1 − α) ∗ ?u q
proof (cases)

case 1
then show ?thesis

using assms(1) assms(2) assms(3) general-U-def my-U-is-linear-function by
auto

next
case 2

41

then show ?thesis
by (simp add: general-U-def)

qed
qed

Now I define a Utility function that assigns a utility to all outcomes. These
are only finitely many
private definition ocU

where
ocU p = general-U (return-pmf p)

lemma geral-U-is-expected-value-of-ocU :
assumes set-pmf p ⊆ outcomes
shows general-U p = measure-pmf .expectation p ocU
using fnt assms

proof (induct rule: pmf-mix-induct ′)
case (mix p q a)
hence general-U (mix-pmf a p q) = a ∗ general-U p + (1−a) ∗ general-U q

using general-U-is-linear-function[of p q a] mix.hyps assms lotteries-on-def
mix.hyps by auto
also have ... = a ∗ measure-pmf .expectation p ocU + (1−a) ∗ measure-pmf .expectation

q ocU
by (simp add: mix.hyps(4) mix.hyps(5))

also have ... = measure-pmf .expectation (mix-pmf a p q) ocU
using general-U-is-linear-function expected-value-mix-pmf-distrib fnt infinite-super

mix.hyps(1)
by (metis fnt mix.hyps(2) mix.hyps(3))

finally show ?case .
qed (auto simp: support-in-outcomes assms fnt integral-measure-pmf-real ocU-def)

lemma ordinal-utility-expected-value:
ordinal-utility P R (λx. measure-pmf .expectation x ocU)

proof (standard, goal-cases)
case (1 x y)
have ocs: set-pmf x ⊆ outcomes set-pmf y ⊆ outcomes

by (meson 1 subsetI support-in-outcomes)+
have x �[R] y =⇒ (measure-pmf .expectation y ocU ≤ measure-pmf .expectation

x ocU)
proof −

assume x �[R] y
have general-U x ≥ general-U y

by (meson ‹x �[R] y› general-U-ordinal-Utility ordinal-utility-def)
then show (measure-pmf .expectation y ocU ≤ measure-pmf .expectation x ocU)

using geral-U-is-expected-value-of-ocU ocs by auto
qed
moreover have (measure-pmf .expectation y ocU ≤ measure-pmf .expectation x

ocU) =⇒ x �[R] y
proof −

assume (measure-pmf .expectation y ocU ≤ measure-pmf .expectation x ocU)

42

then have general-U x ≥ general-U y
by (simp add: geral-U-is-expected-value-of-ocU ocs(1) ocs(2))

then show x �[R] y
by (meson 1 (1) 1 (2) general-U-ordinal-Utility ordinal-utility.util-def)

qed
ultimately show ?case

by blast
next

case (2 x y)
then show ?case

using relation-in-carrier by blast
next

case (3 x y)
then show ?case

using relation-in-carrier by auto
qed

lemma ordinal-utility-expected-value ′:
∃ u. ordinal-utility P R (λx. measure-pmf .expectation x u)
using ordinal-utility-expected-value by blast

lemma ocU-is-expected-utility-bernoulli:
shows ∀ x ∈ P. ∀ y ∈ P. x �[R] y ←→
measure-pmf .expectation x ocU ≥ measure-pmf .expectation y ocU
using ordinal-utility-expected-value by (meson ordinal-utility.util-def)

end

end

end

lemma expected-value-is-utility-function:
assumes fnt: finite outcomes and outcomes 6= {}
assumes x ∈ lotteries-on outcomes and y ∈ lotteries-on outcomes
assumes ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows measure-pmf .expectation x u ≥ measure-pmf .expectation y u ←→ x �[R]

y (is ?L ←→ ?R)
using assms(3) assms(4) assms(5) ordinal-utility.util-def-conf

ordinal-utility.ordinal-utility-left iffI by (metis (no-types, lifting))

lemma system-U-implies-vNM-utility:
assumes fnt: finite outcomes and outcomes 6= {}
assumes rpr : rational-preference (lotteries-on outcomes) R
assumes ind: independent-vnm (lotteries-on outcomes) R

43

assumes cnt: continuous-vnm (lotteries-on outcomes) R
shows ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
using ordinal-utility-expected-value ′[of outcomes R] assms by blast

lemma vNM-utility-implies-rationality:
assumes fnt: finite outcomes and outcomes 6= {}
assumes ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows rational-preference (lotteries-on outcomes) R
using assms(3) ordinal-util-imp-rat-prefs by blast

theorem vNM-utility-implies-independence:
assumes fnt: finite outcomes and outcomes 6= {}
assumes ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows independent-vnm (lotteries-on outcomes) R

proof (rule independent-vnmI2)
fix p q r

and α::real
assume a1 : p ∈ P outcomes
assume a2 : q ∈ P outcomes
assume a3 : r ∈ P outcomes
assume a4 : α ∈ {0<..1}
have in-lots: mix-pmf α p r ∈ lotteries-on outcomes mix-pmf α q r ∈ lotteries-on

outcomes
using a1 a3 a4 mix-in-lot apply fastforce
using a2 a3 a4 mix-in-lot by fastforce

have fnts: finite (set-pmf p) finite (set-pmf q) finite (set-pmf r)
using a1 a2 a3 fnt infinite-super lotteries-on-def by blast+

obtain u where
u: ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation x u)
using assms by blast

have p �[R] q =⇒ mix-pmf α p r �[R] mix-pmf α q r
proof −

assume p �[R] q
hence f : measure-pmf .expectation p u ≥ measure-pmf .expectation q u

using u a1 a2 ordinal-utility.util-def by fastforce
have measure-pmf .expectation (mix-pmf α p r) u ≥ measure-pmf .expectation

(mix-pmf α q r) u
proof −

have measure-pmf .expectation (mix-pmf α p r) u =
α ∗ measure-pmf .expectation p u + (1 − α) ∗ measure-pmf .expectation r u
using expected-value-mix-pmf-distrib[of p r α u] assms fnts a4 by fastforce

moreover have measure-pmf .expectation (mix-pmf α q r) u =
α ∗ measure-pmf .expectation q u + (1 − α) ∗ measure-pmf .expectation r u
using expected-value-mix-pmf-distrib[of q r α u] assms fnts a4 by fastforce

ultimately show ?thesis using f using a4 by auto
qed

44

then show mix-pmf α p r �[R] mix-pmf α q r
using u ordinal-utility-expected-value ′ ocU-is-expected-utility-bernoulli in-lots
by (simp add: in-lots ordinal-utility-def)

qed
moreover have mix-pmf α p r �[R] mix-pmf α q r =⇒ p �[R] q
proof −

assume mix-pmf α p r �[R] mix-pmf α q r
hence f :measure-pmf .expectation (mix-pmf α p r) u ≥ measure-pmf .expectation

(mix-pmf α q r) u
using ordinal-utility.ordinal-utility-left u by fastforce

hence measure-pmf .expectation p u ≥ measure-pmf .expectation q u
proof −

have measure-pmf .expectation (mix-pmf α p r) u =
α ∗ measure-pmf .expectation p u + (1 − α) ∗ measure-pmf .expectation r u
using expected-value-mix-pmf-distrib[of p r α u] assms fnts a4 by fastforce

moreover have measure-pmf .expectation (mix-pmf α q r) u =
α ∗ measure-pmf .expectation q u + (1 − α) ∗ measure-pmf .expectation r u
using expected-value-mix-pmf-distrib[of q r α u] assms fnts a4 by fastforce

ultimately show ?thesis using f using a4 by auto
qed
then show p �[R] q

using a1 a2 ordinal-utility.util-def-conf u by fastforce
qed
ultimately show p �[R] q = mix-pmf α p r �[R] mix-pmf α q r

by blast
qed

lemma exists-weight-for-equality:
assumes a > c and a ≥ b and b ≥ c
shows ∃ (e::real) ∈ {0 ..1}. (1−e) ∗ a + e ∗ c = b

proof −
from assms have b ∈ closed-segment a c

by (simp add: closed-segment-eq-real-ivl)
thus ?thesis by (auto simp: closed-segment-def)

qed

lemma vNM-utilty-implies-continuity:
assumes fnt: finite outcomes and outcomes 6= {}
assumes ∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation

x u)
shows continuous-vnm (lotteries-on outcomes) R

proof (rule continuous-vnmI)
fix p q r
assume a1 : p ∈ P outcomes
assume a2 : q ∈ P outcomes
assume a3 : r ∈ P outcomes
assume a4 : p �[R] q ∧ q �[R] r
then have g: p �[R] r

by (meson assms(3) ordinal-utility.util-imp-trans transD)

45

obtain u where
u: ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation x u)
using assms by blast

have geqa: measure-pmf .expectation p u ≥ measure-pmf .expectation q u
measure-pmf .expectation q u ≥ measure-pmf .expectation r u
using a4 u by (meson ordinal-utility.ordinal-utility-left)+

have fnts: finite p finite q finite r
using a1 a2 a3 fnt infinite-super lotteries-on-def by auto+

consider p �[R] r | p ≈[R] r
using g by auto

then show ∃α∈{0 ..1}. mix-pmf α p r ≈[R] q
proof (cases)

case 1
define a where a: a = measure-pmf .expectation p u
define b where b: b = measure-pmf .expectation r u
define c where c: c = measure-pmf .expectation q u
have a > b

using 1 a1 a2 a3 a b ordinal-utility.util-def-conf u by force
have c ≤ a b ≤ c

using geqa a b c by blast+
then obtain e ::real where

e: e ∈ {0 ..1} (1−e) ∗ a + e ∗ b = c
using exists-weight-for-equality[of b a c] ‹b < a› by blast

have ∗:1−e ∈ {0 ..1}
using e(1) by auto

hence measure-pmf .expectation (mix-pmf (1−e) p r) u =
(1−e) ∗ measure-pmf .expectation p u + e ∗ measure-pmf .expectation r u
using expected-value-mix-pmf-distrib[of p r 1−e u] fnts by fastforce

also have ... = (1−e) ∗ a + e ∗ b
using a b by auto

also have ... = c
using c e by auto
finally have f : measure-pmf .expectation (mix-pmf (1−e) p r) u = mea-

sure-pmf .expectation q u
using c by blast

hence mix-pmf (1−e) p r ≈[R] q
using expected-value-is-utility-function[of outcomes mix-pmf (1−e) p r q R

u] ∗
proof −

have mix-pmf (1 − e) p r ∈ P outcomes
using ‹1 − e ∈ {0 ..1}› a1 a3 mix-in-lot by blast

then show ?thesis
using f a2 ordinal-utility.util-def u by fastforce

qed
then show ?thesis

using exists-weight-for-equality expected-value-mix-pmf-distrib ∗ by blast
next

case 2
have r ≈[R] q

46

by (meson 2 a4 assms(3) ordinal-utility.util-imp-trans transD)
then show ?thesis by force

qed
qed

theorem Von-Neumann-Morgenstern-Utility-Theorem:
assumes fnt: finite outcomes and outcomes 6= {}
shows rational-preference (lotteries-on outcomes) R ∧

independent-vnm (lotteries-on outcomes) R ∧
continuous-vnm (lotteries-on outcomes) R ←→

(∃ u. ordinal-utility (lotteries-on outcomes) R (λx. measure-pmf .expectation x
u))

using vNM-utility-implies-independence[OF assms, of R]
system-U-implies-vNM-utility[OF assms, of R]
vNM-utilty-implies-continuity[OF assms, of R]
ordinal-util-imp-rat-prefs[of lotteries-on outcomes R] by auto

end

theory Expected-Utility
imports

Neumann-Morgenstern-Utility-Theorem
begin

6 Definition of vNM-utility function

We define a version of the vNM Utility function using the locale mechanism.
Currently this definition and system U have no proven relation yet.

Important: u is actually not the von Neuman Utility Function, but a Bernoulli
Utility Function. The Expected value p given u is the von Neumann Utility
Function.
locale vNM-utility =

fixes outcomes :: ′a set
fixes relation :: ′a pmf relation
fixes u :: ′a ⇒ real
assumes relation ⊆ (lotteries-on outcomes × lotteries-on outcomes)
assumes

∧
p q. p ∈ lotteries-on outcomes =⇒
q ∈ lotteries-on outcomes =⇒

p �[relation] q ←→ measure-pmf .expectation p u ≥ measure-pmf .expectation
q u
begin

lemma vNM-utilityD:
shows relation ⊆ (lotteries-on outcomes × lotteries-on outcomes)

and p ∈ lotteries-on outcomes =⇒ q ∈ lotteries-on outcomes =⇒

47

p �[relation] q ←→ measure-pmf .expectation p u ≥ measure-pmf .expectation q
u

using vNM-utility-axioms vNM-utility-def by (blast+)

lemma not-outside:
assumes p �[relation] q
shows p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
proof (goal-cases)

case 1
then show ?case
by (meson assms contra-subsetD mem-Sigma-iff vNM-utility-axioms vNM-utility-def)

next
case 2
then show ?case

by (metis assms mem-Sigma-iff subsetCE vNM-utility-axioms vNM-utility-def)
qed

lemma utility-ge:
assumes p �[relation] q
shows measure-pmf .expectation p u ≥ measure-pmf .expectation q u
using assms vNM-utility-axioms vNM-utility-def
by (metis (no-types, lifting) not-outside(1) not-outside(2))

end

sublocale vNM-utility ⊆ ordinal-utility (lotteries-on outcomes) relation (λp. mea-
sure-pmf .expectation p u)
proof (standard, goal-cases)

case (2 x y)
then show ?case

using not-outside(1) by blast
next

case (3 x y)
then show ?case

by (auto simp add: not-outside(2))
qed (metis (mono-tags, lifting) vNM-utility-axioms vNM-utility-def)

context vNM-utility
begin

lemma strict-preference-iff-strict-utility:
assumes p ∈ lotteries-on outcomes
assumes q ∈ lotteries-on outcomes
shows p �[relation] q ←→ measure-pmf .expectation p u > measure-pmf .expectation
q u

by (meson assms(1) assms(2) less-eq-real-def not-le util-def)

lemma pos-distrib-left:

48

assumes c > 0
shows (

∑
z∈outcomes. pmf q z ∗ (c ∗ u z)) = c ∗ (

∑
z∈outcomes. pmf q z ∗ (u

z))
proof −

have (
∑

z∈outcomes. pmf q z ∗ (c ∗ u z)) = (
∑

z∈outcomes. pmf q z ∗ c ∗ u z)
by (simp add: ab-semigroup-mult-class.mult-ac(1))

also have ... = (
∑

z∈outcomes. c ∗ pmf q z ∗ u z)
by (simp add: mult.commute)

also have ... = c ∗ (
∑

z∈outcomes. pmf q z ∗ u z)
by (simp add: ab-semigroup-mult-class.mult-ac(1) sum-distrib-left)

finally show ?thesis .
qed

lemma sum-pmf-util-commute:
(
∑

a∈outcomes. pmf p a ∗ u a) = (
∑

a∈outcomes. u a ∗ pmf p a)
by (simp add: mult.commute)

7 Finite outcomes
context

assumes fnt: finite outcomes
begin

lemma sum-equals-pmf-expectation:
assumes p ∈ lotteries-on outcomes
shows(

∑
z∈outcomes. (pmf p z) ∗ (u z)) = measure-pmf .expectation p u

proof −
have fnt: finite outcomes

by (simp add: vNM-utilityD(1) fnt)
have measure-pmf .expectation p u = (

∑
a∈outcomes. pmf p a ∗ u a)

using support-in-outcomes assms fnt integral-measure-pmf-real
sum-pmf-util-commute by fastforce

then show ?thesis
using real-scaleR-def by presburger

qed

lemma expected-utility-weak-preference:
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p �[relation] q ←→ (

∑
z∈outcomes. (pmf p z) ∗ (u z)) ≥ (

∑
z∈outcomes.

(pmf q z) ∗ (u z))
using sum-equals-pmf-expectation[of p, OF assms(1)]

sum-equals-pmf-expectation[of q, OF assms(2)]
vNM-utility-def assms(1) assms(2) util-def-conf by presburger

lemma diff-leq-zero-weak-preference:
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p � q ←→ ((

∑
a∈outcomes. pmf q a ∗ u a) − (

∑
a∈outcomes. pmf p a

49

∗ u a) ≤ 0)
using assms(1) assms(2) diff-le-0-iff-le
by (metis (mono-tags, lifting) expected-utility-weak-preference)

lemma expected-utility-strict-preference:
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p �[relation] q ←→ measure-pmf .expectation p u > measure-pmf .expectation

q u
using assms expected-utility-weak-preference less-eq-real-def not-le
by (metis (no-types, lifting) util-def-conf)

lemma scale-pos-left:
assumes c > 0
shows vNM-utility outcomes relation (λx. c ∗ u x)

proof(standard, goal-cases)
case 1
then show ?case

using vNM-utility-axioms vNM-utility-def by blast
next

case (2 p q)
have q ∈ lotteries-on outcomes and p ∈ lotteries-on outcomes

using 2 (2) by (simp add: fnt 2 (1))+
then have ∗: p � q = (measure-pmf .expectation q u ≤ measure-pmf .expectation

p u)
using expected-utility-weak-preference[of p q] assms by blast

have dist-c: (
∑

z∈outcomes. (pmf q z) ∗ (c ∗ u z)) = c ∗ (
∑

z∈outcomes. (pmf
q z) ∗ (u z))

using pos-distrib-left[of c q] assms by blast
have dist-c ′: (

∑
z∈outcomes. (pmf p z) ∗ (c ∗ u z)) = c ∗ (

∑
z∈outcomes. (pmf

p z) ∗ (u z))
using pos-distrib-left[of c p] assms by blast

have p � q ←→ ((
∑

z∈outcomes. (pmf q z) ∗ (c ∗ u z)) ≤ (
∑

z∈outcomes. (pmf
p z) ∗ (c ∗ u z)))

proof (rule iffI)
assume p � q
then have (

∑
z∈outcomes. pmf q z ∗ (u z)) ≤ (

∑
z∈outcomes. pmf p z ∗ (u

z))
using utility-ge
using 2 (1) 2 (2) sum-equals-pmf-expectation by presburger

then show (
∑

z∈outcomes. pmf q z ∗ (c ∗ u z)) ≤ (
∑

z∈outcomes. pmf p z ∗
(c ∗ u z))

using dist-c dist-c ′

by (simp add: assms)
next

assume (
∑

z∈outcomes. pmf q z ∗ (c ∗ u z)) ≤ (
∑

z∈outcomes. pmf p z ∗ (c
∗ u z))

then have (
∑

z∈outcomes. pmf q z ∗ (u z)) ≤ (
∑

z∈outcomes. pmf p z ∗ (u
z))

50

using 2 (1) mult-le-cancel-left-pos assms by (simp add: dist-c dist-c ′)
then show p � q

using 2 (2) assms 2 (1) by (simp add: ∗ sum-equals-pmf-expectation)
qed
then show ?case

by (simp add: ∗ assms)
qed

lemma strict-alt-def :
assumes p ∈ lotteries-on outcomes

and q ∈ lotteries-on outcomes
shows p �[relation] q ←→

(
∑

z∈outcomes. (pmf p z) ∗ (u z)) > (
∑

z∈outcomes. (pmf q z) ∗ (u z))
using sum-equals-pmf-expectation[of p, OF assms(1)] assms(1) assms(2)

sum-equals-pmf-expectation[of q, OF assms(2)] strict-prefernce-iff-strict-utility
by presburger

lemma strict-alt-def-utility-g:
assumes p �[relation] q
shows (

∑
z∈outcomes. (pmf p z) ∗ (u z)) > (

∑
z∈outcomes. (pmf q z) ∗ (u z))

using assms not-outside(1) not-outside(2) strict-alt-def
by meson

end

end

lemma vnm-utility-is-ordinal-utility:
assumes vNM-utility outcomes relation u
shows ordinal-utility (lotteries-on outcomes) relation (λp. measure-pmf .expectation

p u)
proof (standard, goal-cases)

case (1 x y)
then show ?case

using assms vNM-utility-def by blast
next

case (2 x y)
then show ?case

using assms vNM-utility.not-outside(1) by blast
next

case (3 x y)
then show ?case

using assms vNM-utility.not-outside(2) by blast
qed

lemma vnm-utility-imp-reational-prefs:
assumes vNM-utility outcomes relation u
shows rational-preference (lotteries-on outcomes) relation

proof (standard,goal-cases)

51

case (1 x y)
then show ?case

using assms vNM-utility.not-outside(1) by blast
next

case (2 x y)
then show ?case

using assms vNM-utility.not-outside(2) by blast
next

case 3
have t: trans relation

using assms ordinal-utility.util-imp-trans vnm-utility-is-ordinal-utility by blast
have refl-on (lotteries-on outcomes) relation

by (meson assms order-refl refl-on-def vNM-utility-def)
then show ?case

using preorder-on-def t by blast
next

case 4
have total-on (lotteries-on outcomes) relation

using ordinal-utility.util-imp-total[of lotteries-on outcomes
relation (λp. (

∑
z∈outcomes. (pmf p z) ∗ (u z)))]

assms vnm-utility-is-ordinal-utility
using ordinal-utility.util-imp-total by blast

then show ?case
by simp

qed

theorem expected-utilty-theorem-form-vnm-utility:
assumes fnt: finite outcomes and outcomes 6= {}
shows rational-preference (lotteries-on outcomes) R ∧

independent-vnm (lotteries-on outcomes) R ∧
continuous-vnm (lotteries-on outcomes) R ←→
(∃ u. vNM-utility outcomes R u)

proof
assume rational-preference (P outcomes) R ∧ independent-vnm (P outcomes)
R ∧ continuous-vnm (P outcomes) R

with Von-Neumann-Morgenstern-Utility-Theorem[of outcomes R, OF assms]
have
(∃ u. ordinal-utility (P outcomes) R (λx. measure-pmf .expectation x u)) using

assms by blast
then obtain u where

u: ordinal-utility (P outcomes) R (λx. measure-pmf .expectation x u)
by auto

have vNM-utility outcomes R u
proof (standard, goal-cases)

case 1
then show ?case

using u ordinal-utility.relation-subset-crossp by blast
next

case (2 p q)

52

then show ?case
using assms(2) expected-value-is-utility-function fnt u by blast

qed
then show ∃ u. vNM-utility outcomes R u

by blast
next

assume a: ∃ u. vNM-utility outcomes R u
then have rational-preference (P outcomes) R

using vnm-utility-imp-reational-prefs by auto
moreover have independent-vnm (P outcomes) R
using a by (meson assms(2) fnt vNM-utility-implies-independence vnm-utility-is-ordinal-utility)

moreover have continuous-vnm (P outcomes) R
using a by (meson assms(2) fnt vNM-utilty-implies-continuity vnm-utility-is-ordinal-utility)
ultimately show rational-preference (P outcomes) R ∧ independent-vnm (P

outcomes) R ∧ continuous-vnm (P outcomes) R
by auto

qed

end

8 Related work

Formalizations in Social choice theory has been formalized by Wiedijk [13],
Nipkow [7], and Gammie [4, 5]. Vestergaard [12], Le Roux, Martin-Dorel,
and Soloviev [10, 11] provide formalizations of results in game theory. A
library for algorithmic game theory in Coq is described in[1].
Related work in economics includes the verification of financial systems [9],
binomial pricing models [3], and VCG-Auctions [6]. In microeconomics we
discussed a formalization of two economic models and the First Welfare
Theorem [8].
To our knowledge the only work that uses expected utility theory is that of
Eberl [2]. Since we focus on the underlying theory of expected utility, we
found that there is only little overlap.

References

[1] A. Bagnall, S. Merten, and G. Stewart. A library for algorithmic game
theory in ssreflect/coq. Journal of Formalized Reasoning, 10(1):67–95,
2017.

[2] M. Eberl. Randomised social choice theory. Archive of Formal
Proofs, May 2016. http://isa-afp.org/entries/Randomised_Social_
Choice.shtml, Formal proof development.

53

http://isa-afp.org/entries/Randomised_Social_Choice.shtml
http://isa-afp.org/entries/Randomised_Social_Choice.shtml

[3] M. Echenim and N. Peltier. The binomial pricing model in finance: A
formalization in isabelle. In L. de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction,
Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of
LNCS, pages 546–562. Springer, 2017.

[4] P. Gammie. Some classical results in social choice theory. Archive of
Formal Proofs, Nov. 2008. http://isa-afp.org/entries/SenSocialChoice.
html, Formal proof development.

[5] P. Gammie. Stable matching. Archive of Formal Proofs, Oct. 2016.
http://isa-afp.org/entries/Stable_Matching.html, Formal proof devel-
opment.

[6] M. Kerber, C. Lange, C. Rowat, and W. Windsteiger. Developing an
auction theory toolbox. AISB 2013, pages 1–4, 2013.

[7] T. Nipkow. Arrow and Gibbard-Satterthwaite. Archive of Formal
Proofs, 2008.

[8] J. Parsert and C. Kaliszyk. Formal Microeconomic Foundations and
the First Welfare Theorem. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018,
pages 91–101. ACM, 2018.

[9] G. O. Passmore and D. Ignatovich. Formal verification of financial
algorithms. In L. de Moura, editor, Automated Deduction – CADE 26,
pages 26–41. Springer, 2017.

[10] S. L. Roux. Acyclic Preferences and Existence of Sequential Nash
Equilibria: A formal and constructive equivalence. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in
Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of
LNCS, pages 293–309. Springer, 2009.

[11] S. L. Roux, É. Martin-Dorel, and J. Smaus. An existence theorem of
Nash Equilibrium in Coq and Isabelle. In P. Bouyer, A. Orlandini, and
P. S. Pietro, editors, Proceedings Eighth International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2017,
Roma, Italy, 20-22 September 2017., volume 256 of EPTCS, pages
46–60, 2017.

[12] R. Vestergaard. A constructive approach to sequential nash equilibria.
Inf. Process. Lett., 97(2):46–51, 2006.

[13] F. Wiedijk. Formalizing Arrow’s theorem. Sadhana, 34(1):193–220, Feb
2009.

54

http://isa-afp.org/entries/SenSocialChoice.html
http://isa-afp.org/entries/SenSocialChoice.html
http://isa-afp.org/entries/Stable_Matching.html

	Composition of Probability Mass functions
	Lotteries
	Properties of Preferences
	Independent Preferences
	Continuity

	System U start, as per vNM
	This lemma is in called step 1 in literature. In Von Neumann and Morgenstern's book this is A:A (albeit more general)
	Add finiteness and non emptyness of outcomes
	Add continuity to assumptions

	Definition of vNM-utility function
	Finite outcomes
	Related work

