The Myhill-Nerode Theorem
Based on Regular Expressions

Chunhan Wu, Xingyuan Zhang and Christian Urban

March 17, 2025

Abstract

There are many proofs of the Myhill-Nerode theorem using au-
tomata. In this library we give a proof entirely based on regular ex-
pressions, since regularity of languages can be conveniently defined us-
ing regular expressions (it is more painful in HOL to define regularity
in terms of automata). We prove the first direction of the Myhill-
Nerode theorem by solving equational systems that involve regular
expressions. For the second direction we give two proofs: one using
tagging-functions and another using partial derivatives. We also es-
tablish various closure properties of regular languages.’

Contents
1 “Summation” for regular expressions

2 First direction of MIN: finite partition = regular language
2.1 Equational systems oL 0oL
2.2 Arden Operation on equations
2.3 Substitution Operation on equations
2.4 While-combinator and invariants
2.5 Intial Equational Systems
2.6 Interations. o o
2.7 The conclusion of the first direction

3 Second direction of MN: reqular language = finite partition
3.1 Tagging functions oL
3.2 Base cases: Zero, One and Atom
3.3 Casefor Plus
3.4 Casefor Times i i
3.5 Casefor Star
3.6 The conclusion of the second direction

'Most details of the theories are described in the paper [2].

o U Ut UL i~ W

4 The theorem

4.1

Second direction proved using partial derivatives

5 Closure properties of regular languages

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

Closure under U, cand *
Closure under complementation
Closure under —and N.
Closure under string reversal
Closure under left-quotients
Finite and co-finite sets are regular
Continuation lemma for showing non-regularity of languages .
The language o™ 0™ isnot regular

6 Closure under SUBSEQ and SUPSEQ

6.1
6.2
6.3

Sub- and Supersequences

Regular expression that recognises every character
Closure of SUBSEQ and SUPSEQ

7 Tools for showing non-regularity of a language

7.1
7.2
7.3
7.4

Auxiliary material o 0oL
Non-regularity by giving an infinite set of equivalence classes
The Pumping Lemma
Examples

theory Folds
imports Regular— Sets. Reqular-Ezp

begin

1 “Summation” for regular expressions

28
28

29
29
30
30
31
32
32
33
34

35
36
37
39

To obtain equational system out of finite set of equivalence classes, a fold
operation on finite sets folds is defined. The use of SOMFE makes folds more
robust than the fold in the Isabelle library. The expression folds f makes

sense when f is not associative and commutitive, while fold f does not.

definition
folds :: ('a = 'b="0) = b= 'aset = b

where

folds f z S = SOME z. fold-graph f z S x

Plus-combination for a set of regular expressions

abbreviation
Setalt :: 'a rexp set = 'a rexp (<~ [1000] 999)

where

It A = folds Plus Zero A

For finite sets, Setalt is preserved under lang.

lemma folds-plus-simp [simp):

fixes rs::(‘a rexp) set

assumes a: finite rs

shows lang (lJrs) = (lang * rs)
unfolding folds-def
apply(rule set-eql)
apply(rule somel2-ex)
apply (rule-tac finite-imp-fold-graph| OF a))
apply(erule fold-graph.induct)
apply(auto)
done

end

theory Myhill-1
imports Folds

HOL- Library. While-Combinator
begin

2 First direction of MN: finite partition = reqular
language
notation

conc (infixr <> 100) and
star (¢ [101] 102)

lemma Pair-Collect [simpl:
shows (z, y) € {(z, y). Pz y} +— Puxy
by simp

Myhill-Nerode relation

definition
str-eq :: 'a lang = ('a list x 'a list) set («=-» [100] 100)
where

mA={(z,y). Vz.2Q@zc A—yQzec A)}

abbreviation

str-eg-applied :: 'a list = 'a lang = 'a list = bool (<- =-)
where

z=Ay=(z,y) € =A

lemma str-eq-conv-Derivs:
str-eq A = {(u,v). Derivs u A = Derivs v A}
by (auto simp: str-eq-def Derivs-def)

definition
finals :: 'a lang = 'a lang set

where
finals A = {=A “{s} | s.se A}

lemma lang-is-union-of-finals:
shows A = |J(finals A)

unfolding finals-def

unfolding Image-def

unfolding str-eq-def

by (auto) (metis append-Nil2)

lemma finals-in-partitions:

shows finals A C (UNIV /] =A)
unfolding finals-def quotient-def
by auto

2.1 Equational systems

The two kinds of terms in the rhs of equations.

datatype ‘a trm =
Lam 'a rexp
| Trn 'a lang 'a rexp

fun

lang-trm::'a trm = 'a lang
where

lang-trm (Lam 1) = lang
| lang-trm (Trn X r) = X - lang r

fun

lang-rhs::('a trm) set = 'a lang
where

lang-rhs rhs = |J (lang-trm * rhs)

lemma lang-rhs-set:
shows lang-rhs {Trn X r | r. P r} = J{lang-trm (Trn X r) | r. P r}
by (auto)

lemma lang-rhs-union-distrib:
shows lang-rhs A U lang-rhs B = lang-rhs (A U B)
by simp

Transitions between equivalence classes

definition

transition :: 'a lang = 'a = 'a lang = bool (<- =-=-- [100,100,100] 100)
where

YEc=X=Y {dCX

Initial equational system

definition

Init-rhs CS X =
if ([] € X) then
{Lam One} U {Trn Y (Atomc) | Yec. Y € CS A Y Ec= X}
else
{Trn Y (Atom ¢)] Yec. Y € CS AN Y Ec= X}

definition
Init CS = {(X, Init-rhs CS X) | X. X € CS}

2.2 Arden Operation on equations

fun
Append-rexp :: 'a rexp = 'a trm = 'a trm
where
Append-rexp v (Lam rexp) = Lam (Times rexp 1)
| Append-rexp r (Trn X rexp) = Trn X (Times rexp)

definition
Append-rexp-rhs rhs rexp = (Append-rexp rexp)

‘rhs

definition
Arden X rhs =
Append-rexp-rhs (ths — {Trn X r | r. Trn X r € rhs}) (Star (i) {r. Trn X r
€ rhs}))

2.3 Substitution Operation on equations

definition
Subst rhs X xrhs =
(rhs — {Trn X r | r. Trn X r € rhs}) U (Append-rexp-rhs zrhs (i) {r. Trn
X r € rhs}))

definition

Subst-all :: (‘a lang x ('a trm) set) set = 'a lang = (‘a trm) set = ('a lang %
('a trm) set) set
where

Subst-all ES X zrhs = {(Y, Subst yrhs X arhs) | Y yrhs. (Y, yrhs) € ES}

definition
Remove ES X xrhs =
Subst-all (ES — {(X, arhs)}) X (Arden X xrhs)

2.4 While-combinator and invariants

definition
Iter X ES = (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) € ES AN X £ Y
in Remove ES Y yrhs)

lemma Iterl2:

assumes (Y, yrhs) € ES
and X #Y
and AYyrhs. [(Y, yrhs) € ES; X # Y] = Q (Remove ES Y yrhs)
shows @ ([ter X ES)
unfolding Ilter-def using assms
by (rule-tac a=(Y, yrhs) in somel?2) (auto)

abbreviation
Cond ES = card ES # 1

definition
Solve X ES = while Cond (Iter X) ES

definition
distinctness ES =
YV X rhs rhs’. (X, rhs) € ES A (X, rhs’) € ES — rhs = rhs’

definition
soundness ES =V (X, rhs) € ES. X = lang-rhs rhs

definition
ardenable rhs = (VY Y r. Trn Y r € rths — [| ¢ lang r)

definition
ardenable-all ES =V (X, rhs) € ES. ardenable rhs

definition
finite-rhs ES =V (X, rhs) € ES. finite rhs

lemma finite-rhs-def2:
finite-rhs ES = (V X rhs. (X, rhs) € ES — finite rhs)
unfolding finite-rhs-def by auto

definition
rhss ths = {X | X r. Trn X r € rhs}

definition
lhss ES = {Y | Y yrhs. (Y, yrhs) € ES}

definition
validity ES =V (X, rhs) € ES. rhss rhs C lhss ES

lemma rhss-union-distrib:
shows rhss (A U B) = rhss A U rhss B
by (auto simp add: rhss-def)

lemma [hss-union-distrib:
shows lhss (A U B) = lhss A U lhss B

by (auto simp add: lhss-def)

definition
invariant ES = finite ES
A finite-rhs ES
A soundness ES
A distinctness ES
A ardenable-all ES
A wvalidity ES

lemma invariantl:
assumes soundness ES finite ES distinctness ES ardenable-all ES
finite-rhs ES validity ES
shows invariant ES
using assms by (simp add: invariant-def)

declare [[simproc add: finite-Collect]]

lemma finite-Trn:
assumes fin: finite rhs
shows finite {r. Trn Y r € rhs}
using assms by (auto introl: finite-vimagel simp add: inj-on-def)

lemma finite-Lam:
assumes fin: finite rhs
shows finite {r. Lam r € rhs}
using assms by (auto introl: finite-vimagel simp add: inj-on-def)

lemma trm-soundness:
assumes finite:finite rhs
shows lang-rhs ({Trn X r| r. Trn X v € rhs}) = X - (lang (H{r. Trn X r €
rhs?))
proof —
have finite {r. Trn X r € rhs}
by (rule finite-Trn[OF finite])
then show lang-rhs ({Trn X r| r. Trn X r € rhs}) = X - (lang (H{r. Trn X r
€ rhs}))
by (simp only: lang-rhs-set lang-trm.simps) (auto simp add: conc-def)
qged

lemma lang-of-append-rexp:

lang-trm (Append-rexp v trm) = lang-trm trm - lang r
by (induct rule: Append-rexp.induct)

(auto simp add: conc-assoc)

lemma lang-of-append-rexp-rhs:

lang-rhs (Append-rexp-rhs rhs r) = lang-rhs rhs - lang r
unfolding Append-rexp-rhs-def
by (auto simp add: conc-def lang-of-append-rezxp)

2.5 Intial Equational Systems

lemma defined-by-str:
assumes s € X X € UNIV // =A
shows X = ~4 “ {s}
using assms
unfolding quotient-def Image-def str-eq-def
by auto

lemma every-eqclass-has-transition:
assumes has-str: s Q [c] € X
and n-CS: X € UNIV // ~A
obtains Y where Y € UNIV // =Aand YV -{[¢]} C X and s € YV
proof —
define Y where ¥V = ~4 “ {s}
have Y € UNIV // =~A
unfolding Y-def quotient-def by auto
moreover
have X = ~A4 “{s @[]}
using has-str in-CS defined-by-str by blast
then have Y - {[¢]} C X
unfolding Y-def Image-def conc-def
unfolding str-eq-def
by clarsimp
moreover
have s € Y unfolding Y-def
unfolding Image-def str-eq-def by simp
ultimately show thesis using that by blast
qed

lemma [-eq-r-in-eqs:
assumes X-in-eqs: (X, rhs) € Init (UNIV /] =A)
shows X = lang-rhs rhs
proof
show X C lang-rhs rhs
proof
fix x
assume n-X: z € X
{ assume empty: z = ||
then have z € lang-rhs rhs using X-in-egs in-X
unfolding Init-def Init-rhs-def
by auto
}
moreover
{ assume not-empty: z # ||

then obtain s ¢ where decom: z = s @ [(]
using rev-cases by blast
have X € UNIV // =A using X-in-eqs unfolding Init-def by auto
then obtain ¥ where Y € UNIV // =AY -{[c]}] CXse Y
using decom in-X every-eqclass-has-transition by metis
then have z € lang-rhs {Trn Y (Atom ¢)| Ye. Y € UNIV /| =A N Y Ec=>
X}
unfolding transition-def
using decom by (force simp add: conc-def)
then have x € lang-rhs rhs using X-in-eqs in-X
unfolding Init-def Init-rhs-def by simp
}

ultimately show z € lang-rhs rhs by blast
qed
next
show lang-rhs rhs C X using X-in-egs
unfolding Init-def Init-rhs-def transition-def
by auto
qed

lemma finite-Init-rhs:
fixes CS::(('a::finite) lang) set
assumes finite: finite CS
shows finite (Init-rhs CS X)
using assms unfolding Init-rhs-def transition-def by simp

lemma [Init-ES-satisfies-invariant:

fixes A:(('a::finite) lang)

assumes finite-CS: finite (UNIV /] ~A)

shows invariant (Init (UNIV [/ =A))

proof (rule invariantl)

show soundness (Init (UNIV [/ =A))
unfolding soundness-def
using l-eq-r-in-eqs by auto

show finite (Init (UNIV // ~A)) using finite-CS
unfolding Init-def by simp

show distinctness (Init (UNIV [/ =A))
unfolding distinctness-def Init-def by simp

show ardenable-all (Init (UNIV /] =A))
unfolding ardenable-all-def Init-def Init-rhs-def ardenable-def
by auto

show finite-rhs (Init (UNIV [/ ~A))
using finite-Init-rhs|OF finite-CS]
unfolding finite-rhs-def Init-def by auto

show walidity (Init (UNIV /] =A))
unfolding validity-def Init-def Init-rhs-def rhss-def lhss-def
by auto

qed

2.6 Interations

lemma Arden-preserves-soundness:
assumes l-eq-r: X = lang-rhs rhs
and not-empty: ardenable rhs
and finite: finite Ths
shows X = lang-rhs (Arden X rhs)
proof —
define A where A = lang ({r. Trn X r € rhs})
define b where b = {Trn X r | r. Trn X r € rhs}
define B where B = lang-rhs (rhs — b)
have not-empty2: || ¢ A
using finite-Trn[OF finite] not-empty
unfolding A-def ardenable-def by simp
have X = lang-rhs rhs using l-eq-r by simp

also have ... = lang-rhs (b U (rhs — b)) unfolding b-def by auto
also have ... = lang-rhs b U B unfolding B-def by (simp only: lang-rhs-union-distrib)
alsohave ... =X - AUB

unfolding b-def

unfolding ¢rm-soundness|OF finite]

unfolding A-def

by blast
finally have X = X - AU B.
then have X = B - Ax

by (simp add: reversed-Arden|[OF not-empty2])
also have ... = lang-rhs (Arden X rhs)

unfolding Arden-def A-def B-def b-def

by (simp only: lang-of-append-rexp-rhs lang.simps)
finally show X = lang-rhs (Arden X rhs) by simp

qed

lemma Append-preserves-finite:
finite ths = finite (Append-rexp-rhs rhs r)
by (auto simp: Append-rexp-rhs-def)

lemma Arden-preserves-finite:
finite ths = finite (Arden X rhs)
by (auto simp: Arden-def Append-preserves-finite)

lemma Append-preserves-ardenable:

ardenable rths = ardenable (Append-rexp-rhs rhs r)
apply (auto simp: ardenable-def Append-rexp-rhs-def)
by (case-tac x, auto simp: conc-def)

lemma ardenable-set-sub:

ardenable rhs = ardenable (rhs — A)
by (auto simp:ardenable-def)

10

lemma ardenable-set-union:
[ardenable rhs; ardenable rhs’] = ardenable (rhs U rhs’)
by (auto simp:ardenable-def)

lemma Arden-preserves-ardenable:
ardenable rhs = ardenable (Arden X rhs)
by (simp only: Arden-def Append-preserves-ardenable ardenable-set-sub)

lemma Subst-preserves-ardenable:

[ardenable rhs; ardenable xrhs] = ardenable (Subst rhs X zrhs)
by (simp only: Subst-def Append-preserves-ardenable ardenable-set-union arden-
able-set-sub)

lemma Subst-preserves-soundness:
assumes substor: X = lang-rhs zrhs
and finite: finite Ths
shows lang-rhs (Subst rhs X xrhs) = lang-rhs rhs (is ?Left = ?Right)
proof—
define A where A = lang-rhs (ths — {Trn X r | r. Trn X r € rhs})
have ?Left = A U lang-rhs (Append-rexp-rhs zrhs (I {r. Trn X r € rhs}))
unfolding Subst-def
unfolding lang-rhs-union-distrib[symmetric]
by (simp add: A-def)
moreover have ?Right = A U lang-rhs {Trn X r | r. Trn X r € rhs}
proof—
have rhs = (ths — {Trn X r | r. Trn Xr € rhs}) U {Trn X r | r. Trn X r €
rhs}) by auto
thus Zthesis
unfolding A-def
unfolding lang-rhs-union-distrib
by simp
qed
moreover
have lang-rhs (Append-rexp-rhs xrhs (H{r. Trn X r € rhs})) = lang-rhs {Trn
Xr|r. TrnXr € rhs}
using finite substor by (simp only: lang-of-append-rexp-rhs trm-soundness)
ultimately show ?thesis by simp
qed

lemma Subst-preserves-finite-rhs:
[finite rhs; finite yrhs] = finite (Subst rhs Y yrhs)
by (auto simp: Subst-def Append-preserves-finite)

lemma Subst-all-preserves-finite:
assumes finite: finite ES
shows finite (Subst-all ES Y yrhs)
using assms unfolding Subst-all-def by simp

11

declare [[simproc del: finite-Collect])

lemma Subst-all-preserves-finite-rhs:
[finite-rhs ES; finite yrhs] = finite-rhs (Subst-all ES Y yrhs)
by (auto intro:Subst-preserves-finite-rhs simp add:Subst-all-def finite-rhs-def)

lemma append-rhs-preserves-cls:
rhss (Append-rexp-rhs rhs r) = rhss rhs
apply (auto simp: rhss-def Append-rexp-rhs-def)
apply (case-tac xa, auto simp: image-def)
by (rule-tac x = Times ra r in exl, rule-tac x = Trn x ra in bexl, simp+)

lemma Arden-removes-cl:

rhss (Arden Y yrhs) = rhss yrhs — {Y}
apply (simp add: Arden-def append-rhs-preserves-cls)
by (auto simp: rhss-def)

lemma [hss-preserves-cls:
lhss (Subst-all ES Y yrhs) = lhss ES
by (auto simp: lhss-def Subst-all-def)

lemma Subst-updates-cls:
X ¢ rhss arhs =
rhss (Subst rhs X xrhs) = rhss rhs U rhss zrhs — {X}
apply (simp only:Subst-def append-rhs-preserves-cls rhss-union-distrib)
by (auto simp: rhss-def)

lemma Subst-all-preserves-validity:
assumes sc: validity (ES U {(Y, yrhs)}) (is validity ?A)
shows wvalidity (Subst-all ES'Y (Arden Y yrhs)) (is validity ?B)
proof —
{ fix X zrhs’
assume (X, zrhs’) € 2B
then obtain zrhs
where zrhs-zrhs’s xrhs’ = Subst arhs Y (Arden Y yrhs)
and X-in: (X, zrhs) € ES by (simp add:Subst-all-def, blast)
have rhss zrhs’ C lhss ?B
proof—
have lhss B = lhss ES by (auto simp add:lhss-def Subst-all-def)
moreover have rhss zrhs’ C lhss ES
proof—
have rhss arhs’ C rhss xrhs U rhss (Arden Y yrhs) — {Y'}
proof —
have Y ¢ rhss (Arden Y yrhs)
using Arden-remouves-cl by auto
thus ?thesis using xzrhs-zrhs’ by (auto simp: Subst-updates-cls)
qged
moreover have rhss arhs C lhss ES U {Y} using X-in sc

12

apply (simp only:validity-def lhss-union-distrib)
by (drule-tac x = (X, zrhs) in bspec, auto simp:lhss-def)
moreover have rhss (Arden Y yrhs) C lhss ES U {Y}
using sc
by (auto simp add: Arden-removes-cl validity-def lhss-def)
ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp
qed
} thus ?thesis by (auto simp only:Subst-all-def validity-def)
qged

lemma Subst-all-satisfies-invariant:
assumes invariant-ES: invariant (ES U {(Y, yrhs)})
shows invariant (Subst-all ES' Y (Arden Y yrhs))
proof (rule invariantl)
have Y-eq-yrhs: Y = lang-rhs yrhs
using invariant-ES by (simp only:invariant-def soundness-def, blast)
have finite-yrhs: finite yrhs
using invariant-ES by (auto simp:invariant-def finite-rhs-def)
have ardenable-yrhs: ardenable yrhs
using invariant-ES by (auto simp:invariant-def ardenable-all-def)
show soundness (Subst-all ES Y (Arden Y yrhs))
proof —
have Y = lang-rhs (Arden Y yrhs)
using Y-eq-yrhs invariant-ES finite-yrhs
using finite-Trn[OF finite-yrhs]
apply(rule-tac Arden-preserves-soundness)
apply (simp-all)
unfolding invariant-def ardenable-all-def ardenable-def
apply (auto)
done
thus ?thesis using invariant-ES
unfolding invariant-def finite-rhs-def2 soundness-def Subst-all-def
by (auto simp add: Subst-preserves-soundness simp del: lang-rhs.simps)
qed
show finite (Subst-all ES'Y (Arden Y yrhs))
using invariant-ES by (simp add:invariant-def Subst-all-preserves-finite)
show distinctness (Subst-all ES'Y (Arden Y yrhs))
using invariant-ES
unfolding distinctness-def Subst-all-def invariant-def by auto
show ardenable-all (Subst-all ES'Y (Arden Y yrhs))
proof —
{ fix X rhs
assume (X, rhs) € ES
hence ardenable rhs using invariant-ES
by (auto simp add:invariant-def ardenable-all-def)
with ardenable-yrhs
have ardenable (Subst rhs Y (Arden Y yrhs))

13

by (simp add:ardenable-yrhs
Subst-preserves-ardenable Arden-preserves-ardenable)
} thus ?thesis by (auto simp add:ardenable-all-def Subst-all-def)
qed
show finite-rhs (Subst-all ES'Y (Arden Y yrhs))
proof—
have finite-rhs ES using invariant-ES
by (simp add:invariant-def finite-rhs-def)
moreover have finite (Arden Y yrhs)
proof —
have finite yrhs using invariant-ES
by (auto simp:invariant-def finite-rhs-def)
thus ?thesis using Arden-preserves-finite by auto
qed
ultimately show ¢thesis
by (simp add:Subst-all-preserves-finite-rhs)
qed
show validity (Subst-all ES'Y (Arden Y yrhs))
using invariant-ES Subst-all-preserves-validity by (auto simp add: invari-
ant-def)
qed

lemma Remove-in-card-measure:
assumes finite: finite ES
and in-ES: (X, rhs) € ES
shows (Remove ES X rhs, ES) € measure card
proof —
define f where fz = ((fst z)::'a lang, Subst (snd z) X (Arden X rhs)) for z
define ES’ where ES’' = ES — {(X, rhs)}
have Subst-all ES' X (Arden X rhs) = f ¢ ES’
apply (auto simp: Subst-all-def f-def image-def)
by (rule-tac z = (Y, yrhs) in bexl, simp+)
then have card (Subst-all ES' X (Arden X rhs)) < card ES’
unfolding ES’-def using finite by (auto intro: card-image-le)
also have ... < card ES unfolding ES’-def
using in-ES finite by (rule-tac card-Diff1-less)
finally show (Remove ES X rhs, ES) € measure card
unfolding Remove-def ES’-def by simp
qed

lemma Subst-all-cls-remains:
(X, zrhs) € ES = 3 zrhs’. (X, zrhs’) € (Subst-all ES Y yrhs)
by (auto simp: Subst-all-def)

lemma card-noteq-1-has-more:
assumes card:Cond ES
and e-in: (X, zrhs) € ES
and finite: finite ES

14

shows 3 (Y, yrhs) € ES. (X, xrhs) # (Y, yrhs)
proof—
have card ES > 1 using card e-in finite
by (cases card ES) (auto)
then have card (ES — {(X, zrhs)}) > 0
using finite e-in by auto
then have (ES — {(X, zrhs)}) # {} using finite by (rule-tac notl, simp)
then show 3 (Y, yrhs) € ES. (X, zrhs) # (Y, yrhs)
by auto
qed

lemma iteration-step-measure:
assumes Inv-ES: invariant ES
and X-in-ES: (X, arhs) € ES
and (Chd: Cond ES
shows (Iter X ES, ES) € measure card
proof —
have fin: finite ES using Inv-ES unfolding invariant-def by simp
then obtain Y yrhs
where Y-in-ES: (Y, yrhs) € ES and not-eq: (X, xzrhs) # (Y, yrhs)
using Cnd X-in-ES by (drule-tac card-noteq-1-has-more) (auto)
then have (Y, yrhs) € ES X £ Y
using X-in-ES Inv-ES unfolding invariant-def distinctness-def
by auto
then show (lter X ES, ES) € measure card
apply(rule Iterl2)
apply(rule Remove-in-card-measure)
apply(simp-all add: fin)
done
qed

lemma iteration-step-invariant:
assumes Inv-ES: invariant ES
and X-in-ES: (X, arhs) € ES
and Cnd: Cond ES
shows invariant (Iter X ES)
proof —
have finite-ES: finite ES using Inv-ES by (simp add: invariant-def)
then obtain Y yrhs
where Y-in-ES: (Y, yrhs) € ES and not-eq: (X, zrhs) # (Y, yrhs)
using Cnd X-in-ES by (drule-tac card-noteq-1-has-more) (auto)
then have (Y, yrhs) € ESX # Y
using X-in-ES Inv-ES unfolding invariant-def distinctness-def
by auto
then show invariant (Iter X ES)
proof (rule Iterl2)
fix Y yrhs
assume h: (Y, yrhs) € ESX # Y
then have ES — {(Y, yrhs)} U {(Y, yrhs)} = ES by auto

15

then show invariant (Remove ES Y yrhs) unfolding Remove-def
using Inv-ES
by (rule-tac Subst-all-satisfies-invariant) (simp)
qed
qed

lemma iteration-step-ex:
assumes Inv-ES: invariant ES
and X-in-ES: (X, zrhs) € ES
and Chnd: Cond ES
shows Jxrhs’. (X, arhs’) € (Iter X ES)
proof —
have finite-ES: finite ES using Inv-ES by (simp add: invariant-def)
then obtain Y yrhs
where (Y, yrhs) € ES (X, xzrhs) # (Y, yrhs)
using Cnd X-in-ES by (drule-tac card-noteq-1-has-more) (auto)
then have (Y, yrhs) € ES X # Y
using X-in-ES Inv-ES unfolding invariant-def distinctness-def
by auto
then show Jzrhs’. (X, arhs’) € (Iter X ES)
apply(rule Iterl2)
unfolding Remove-def
apply(rule Subst-all-cls-remains)
using X-in-ES
apply (auto)
done
qed

2.7 The conclusion of the first direction

lemma Solve:
fixes A::(‘a:finite) lang
assumes fin: finite (UNIV /] ~A)
and X-in: X € (UNIV /] =~A)
shows Jrhs. Solve X (Init (UNIV /] =A)) = {(X, rhs)} A invariant {(X, rhs)}
proof —
define Inv where Inv ES <— invariant ES A (3rhs. (X, rhs) € ES) for ES
have Inv (Init (UNIV // ~A)) unfolding Inv-def
using fin X-in by (simp add: Init-ES-satisfies-invariant, simp add: Init-def)
moreover
{ fix ES
assume inv: Inv ES and crd: Cond ES
then have Inv (Iter X ES)
unfolding Inv-def
by (auto simp add: iteration-step-invariant iteration-step-ex) }
moreover
{ fix ES
assume inv: Inv ES and not-crd: =Cond ES
from inv obtain rhs where (X, rhs) € ES unfolding Inv-def by auto

16

moreover
from not-crd have card ES = 1 by simp
ultimately
have ES = {(X, rhs)} by (auto simp add: card-Suc-eq)
then have Jrhs’. ES = {(X, rhs")} A invariant {(X, rhs’)} using inv
unfolding Inv-def by auto }
moreover
have wf (measure card) by simp
moreover
{ fix ES
assume inv: Inv ES and crd: Cond ES
then have (lter X ES, ES) € measure card
unfolding Inv-def
apply (clarify)
apply (rule-tac iteration-step-measure)
apply(auto)
done }
ultimately
show 3 rhs. Solve X (Init (UNIV /] =A)) = {(X, rhs)} A invariant {(X, rhs)}
unfolding Solve-def by (rule while-rule)
qed

lemma every-eqcl-has-reg:
fixes A::(‘a:finite) lang
assumes finite-CS: finite (UNIV /] ~A)
and X-in-CS: X € (UNIV // =A)
shows 3r. X = lang r
proof —
from finite-CS X-in-CS
obtain zrhs where Inv-ES: invariant {(X, zrhs)}
using Solve by metis

define A where A = Arden X zrhs
have rhss zrhs C {X} using Inv-ES
unfolding validity-def invariant-def rhss-def lhss-def
by auto
then have rhss A = {} unfolding A-def
by (simp add: Arden-removes-cl)
then have eq: {Lam r | r. Lam r € A} = A unfolding rhss-def
by (auto, case-tac z, auto)

have finite A using Inv-ES unfolding A-def invariant-def finite-rhs-def
using Arden-preserves-finite by auto
then have fin: finite {r. Lam r € A} by (rule finite-Lam)

have X = lang-rhs xrhs using Inv-ES unfolding invariant-def soundness-def
by simp

then have X = lang-rhs A using Inv-ES
unfolding A-def invariant-def ardenable-all-def finite-rhs-def

17

by (rule-tac Arden-preserves-soundness) (simp-all add: finite-Trn)
then have X = lang-rhs {Lam r | r. Lam r € A} using eq by simp
then have X = lang (| {r. Lam r € A}) using fin by auto
then show dr. X = lang r by blast
qed

lemma bchoice-finite-set:

assumes a: Vz € S. dy.z = fy

and b: finite S

shows Jys. (U S) = U(f “ys) A finite ys
using bchoice[OF a] b
apply(erule-tac exE)
apply(rule-tac z=fa * S in exl)
apply(auto)
done

theorem Myhill-Nerodel:
fixes A::('a:finite) lang
assumes finite-CS: finite (UNIV /] ~A)
shows dr. A=langr
proof —
have fin: finite (finals A)
using finals-in-partitions finite-CS by (rule finite-subset)
have VX € (UNIV // =A). 3r. X = lang r
using finite-CS every-eqcl-has-reg by blast
then have a: VX € finals A. 3r. X = lang r
using finals-in-partitions by auto
then obtain rs::('a rexp) set where |J (finals A) = J (lang ‘ rs) finite rs
using fin by (auto dest: bchoice-finite-set)
then have A = lang (|4 rs)
unfolding lang-is-union-of-finals[symmetric] by simp
then show Jr. A = lang r by blast
qed

end

theory Myhill-2
imports Myhill-1 HOL— Library. Sublist
begin

3 Second direction of MN: reqular language = finite
partition

3.1 Tagging functions

definition
tag-eq :: ('a list = 'b) = (‘a list x 'a list) set («<=-=))
where

18

=tag= = {(7, y). tag T = tag y}

abbreviation

tag-eq-applied :: 'a list = ('a list = 'b) = 'a list = bool (- =-= -»)
where

z =tag= y = (z, y) € =tag=

lemma [simp]:
shows (=A) “{z} = (mA) “{yt +— =AYy
unfolding str-eq-def by auto

lemma refined-intro:
assumes Az yz. [z =tag=y; 2 Qz € Al = yQz2€ A
shows =tag= C ~A

using assms unfolding str-eq-def tag-eq-def

apply(clarify, simp (no-asm-use))

by metis

lemma finite-eq-tag-rel:
assumes rng-fnt: finite (range tag)
shows finite (UNIV // =tag=)
proof —
let ?f = AX. tag ‘ X and ?4 = (UNIV // =tag=)
have finite (7f ¢ 2A)
proof —
have range ?f C (Pow (range tag)) unfolding Pow-def by auto
moreover
have finite (Pow (range tag)) using rng-fnt by simp
ultimately
have finite (range ?f) unfolding image-def by (blast intro: finite-subset)
moreover
have ?f ¢ A C range ?f by auto
ultimately show finite (?f ¢ ?A) by (rule rev-finite-subset)
qed
moreover
have inj-on ?f ?A
proof —
{fix XY
assume X-in: X € 2?4
and Y-in: Y € 74
and tag-eq: /f X = ?f Y
then obtain z y
where z € X y € Ytagz = tag y
unfolding quotient-def Image-def image-def tag-eq-def
by (simp) (blast)
with X-in Y-in
have X = Y
unfolding quotient-def tag-eq-def by auto
}

19

then show inj-on ?f ?A unfolding inj-on-def by auto
qed
ultimately show finite (UNIV // =tag=) by (rule finite-imageD)
qed

lemma refined-partition-finite:
assumes fnt: finite (UNIV // R1)
and refined: R1 C R2
and eql: equiv UNIV R1 and eq2: equiv UNIV R2
shows finite (UNIV // R2)
proof —
let ?f = AX. {R1 “{z} | z. z € X}
and YA = UNIV // R2 and ?B = UNIV // R1
have ?f ¢ A C Pow ?B
unfolding image-def Pow-def quotient-def by auto
moreover
have finite (Pow ?B) using fnt by simp
ultimately
have finite (2f < ?2A) by (rule finite-subset)
moreover
have inj-on ?f ?A
proof —
{fix XY
assume X-in: X € ?A and Y-in: Y € ?A and eq-f: of X = 9f Y
from quotientE [OF X-in]
obtain z where X = R2 ““ {z} by blast
with equiv-class-self[OF eq2] have z-in: x € X by simp
then have R1 ‘“{z} € ?f X by auto
with eg-f have R1 “{z} € ?f Y by simp
then obtain y
where y-in: y € Y and eg-ri-zy: R1 “ {2} = R1 “ {y} by auto
with eg-equiv-class|OF - eql]
have (z, y) € R1 by blast
with refined have (z, y) € R2 by auto
with quotient-eql [OF eq2 X-in Y-in x-in y-in]
have X = Y .
}
then show inj-on ?f A unfolding inj-on-def by blast
qed
ultimately show finite (UNIV // R2) by (rule finite-imageD)
qed

lemma tag-finite-imageD:

assumes rng-fnt: finite (range tag)

and refined: =tag= C ~A

shows finite (UNIV [/ =A)
proof (rule-tac refined-partition-finite [of =tag=])

show finite (UNIV |/ =tag=) by (rule finite-eq-tag-rel|OF rng-fnt])
next

20

show =tag= C ~A using refined .
next
show equiv UNIV =tag=
and equiv UNIV (=A)
unfolding equiv-def str-eq-def tag-eq-def refl-on-def sym-def trans-def
by auto
qed

3.2 Base cases: Zero, One and Atom

lemma quot-zero-eq:
shows UNIV // ~{} = {UNIV}
unfolding quotient-def Image-def str-eq-def by auto

lemma quot-zero-finitel [intro]:
shows finite (UNIV [/ ={})
unfolding quot-zero-eq by simp

lemma quot-one-subset:
shows UNTV // ~{[J} € {{[}, UNIV — {]}}
proof
fix z
assume z € UNIV // ~{[]}
then obtain y where h: z = {z. y ~{[]} 2}
unfolding quotient-def Image-def by blast
{ assume y = ||
with h have z = {[|]} by (auto simp: str-eq-def)
then have z € {{[|}, UNIV — {[]}} by simp }
moreover
{ assume y # [|
with h have © = UNIV — {[]} by (auto simp: str-eq-def)
then have z € {{[|}, UNIV — {[|]}} by simp }
ultimately show = € {{[]}, UNIV — {[|}} by blast
qed

lemma quot-one-finitel [introl:
shows finite (UNIV // ={[|})
by (rule finite-subset| OF quot-one-subset]) (simp)

lemma quot-atom-subset:
UNIV /] (={]el}) € ({031l UNTV — {[}, [e]}}
proof
fix z
assume z € UNIV // ={[c]}
then obtain y where h: x = {z. (y, 2) € ~{[c]|}}
unfolding quotient-def Image-def by blast

show o € {{[]}.{[c]}, UNIV —{[], [c]}}

21

proof —

{ assume y = [| hence z = {][|} using h
by (auto simp: str-eq-def) }
moreover
{ assume y = [¢] hence z = {[c|} using h
by (auto dest!: speclwhere x = [|] simp: str-eq-def) }
moreover

{ assume y # [| and y # [c]
hence V z. (y @ z2) # [¢] by (case-tac y, auto)
moreover have A p. (p # [Ap # [c]) = (Y ¢. p @ ¢ # [d])
by (case-tac p, auto)
ultimately have z = UNIV — {[],[¢]} using h
by (auto simp add: str-eg-def)

ultimately show ¢thesis by blast
qged
qed

lemma quot-atom-finitel [intro):
shows finite (UNIV // ={[c]})
by (rule finite-subset|OF quot-atom-subset]) (simp)

3.3 Case for Plus

definition

tag-Plus :: 'a lang = 'a lang = 'a list = ('a lang x 'a lang)
where

tag-Plus A B = Az. (=A “{z}, =B “ {z})

lemma quot-plus-finitel [introl:
assumes finitel: finite (UNIV [/ ~A)
and finite2: finite (UNIV /] ~B)
shows finite (UNIV // ~(A U B))
proof (rule-tac tag = tag-Plus A B in tag-finite-imageD)
have finite ((UNIV /] =A) x (UNIV /] =B))
using finitel finite2 by auto
then show finite (range (tag-Plus A B))
unfolding tag-Plus-def quotient-def
by (rule rev-finite-subset) (auto)
next
show =tag-Plus A B= C ~(A U B)
unfolding tag-eq-def tag-Plus-def str-eq-def by auto
qed

3.4 Case for Times

definition
Partitions © = {(zp, ©5). z, Q z, = z}

lemma conc-partitions-elim:

22

assumes ¢ € A - B

shows 3 (u, v) € Partitions z. u € ANv€E B
using assms unfolding conc-def Partitions-def
by auto

lemma conc-partitions-intro:
assumes (u, v) € Partitionsx N u€ AN veEB
shows x € A - B

using assms unfolding conc-def Partitions-def

by auto

lemma equiv-class-member:
assumes z € A
and =A “{z} = ~A “{y}
shows y € A

using assms

apply(simp)

apply(simp add: str-eq-def)

apply(metis append-Nil2)

done

definition

tag-Times :: 'a lang = 'a lang = 'a list = 'a lang X 'a lang set
where

tag-Times A B = Ax. (=A “{z}, {(=B “{zs}) | 2p xs. zp € A N (mp, 25) €
Partitions x})

lemma tag- Times-injl:
assumes a: tag-Times A B © = tag-Times A B y
and cr@zeA-B
shows y Q@ z€ A- B
proof —
from c obtain u v where
h1: (u, v) € Partitions (z Q z) and
h2: u € A and
h&: v € B by (auto dest: conc-partitions-elim)
from hi1 have z Q z = v @ v unfolding Partitions-def by simp
then obtain us
where (1 =uQus Aus@Qz=0v)V (z Qus=uAz=usQv)
by (auto simp add: append-eq-append-conv?2)
moreover
{assume eq: z = v Q us us @ z = v
have (=B ““ {us}) € snd (tag-Times A B x)
unfolding Partitions-def tag-Times-def using h2 eq
by (auto simp add: str-eq-def)
then have (=B ‘“ {us}) € snd (tag-Times A B y)
using a by simp
then obtain u’ us’ where
ql: v’ € A and

23

q2: =B “{us} = ~B “{us'} and
q3: (u', us’) € Partitions y
unfolding tag-Times-def by auto
from ¢2 h3 eq
have us’ @ z € B
unfolding Image-def str-eq-def by auto
then have y Q z € A - B using ¢! ¢3
unfolding Partitions-def by auto
}

moreover
{assume eg: z Q us = uz = us Qv
have (A “ {z}) = fst (tag-Times A B)
by (simp add: tag-Times-def)
then have (=A ““ {z}) = fst (tag-Times A B y)
using a by simp
then have =4 “ {2z} = =4 “ {y}
by (simp add: tag-Times-def)
moreover
have z @ us € A using h2 eq by simp
ultimately
have y @ us € A using equiv-class-member
unfolding Image-def str-eq-def by blast
then have (y @ us) @uv e A- B
using h3 unfolding conc-def by blast
then have y @ z € A - B using eq by simp
}
ultimately show y @Q z € A - B by blast
qed

lemma quot-conc-finitel [intro:
assumes finl: finite (UNIV /] ~A)
and fin2: finite (UNIV // =B)
shows finite (UNIV // =(A - B))
proof (rule-tac tag = tag-Times A B in tag-finite-imageD)
have Az y z. [tag-Times A B x = tag-Times A By;z Q@ z€ A- Bl = y Q2
€A-B
by (rule tag-Times-injI)
(auto simp add: tag-Times-def tag-eq-def)
then show =tag-Times A B= C ~(A - B)
by (rule refined-intro)
(auto simp add: tag-eq-def)
next
have x: finite ((UNIV // ~A) x (Pow (UNIV // ~B)))
using finl fin2 by auto
show finite (range (tag-Times A B))
unfolding tag-Times-def
apply(rule finite-subset|OF - x])
unfolding quotient-def
by auto

24

qed

3.5 Case for Star

lemma star-partitions-elim:
assumes ¢ Q z € Ax z #]
shows 3 (u, v) € Partitions (x @ z). strict-prefic ux A u € Ax A v € Ax
proof —
have ([], z @ 2) € Partitions (x @Q 2) strict-prefiz [| z [] € Ax x Q z € Ax
using assms by (auto simp add: Partitions-def strict-prefiz-def)
then show 3 (u, v) € Partitions (z Q z). strict-prefic uz A u € Ax AN v € Ax
by blast
qged

lemma finite-set-has-maz2:
[finite A; A # {}] = 3 maz € A. ¥V a € A. length a < length max
apply (induct rule:finite.induct)
apply(simp)
by (metis (no-types) all-not-in-conv insert-iff linorder-le-cases order-trans)

lemma finite-strict-prefix-set:
shows finite {za. strict-prefix za (x::'a list)}
apply (induct x rule:rev-induct, simp)
apply (subgoal-tac {za. strict-prefiz za (zs Q [z])} = {za. strict-prefic za zs} U
{ws})

by (auto simp:strict-prefiz-def)

lemma append-eq-cases:

assumes a: t Q@ y = m Q nm # ||

shows prefiz © m V strict-prefic m z
unfolding prefiz-def strict-prefiz-def using a
by (auto simp add: append-eg-append-conv2)

lemma star-spartitions-elim?2:
assumes a: ¢ Q z € Ax
and bz # |
shows 3 (u, v) € Partitions x. 3 (u’, v’) € Partitions z. strict-prefix vz A u €
Ax Nv@u' e ANV € Ax
proof —
define S where S = {u | v v. (u, v) € Partitions x N\ strict-prefic u x A u € Ax
ANv@ze Ax}
have finite {u. strict-prefix u x} by (rule finite-strict-prefiz-set)
then have finite S unfolding S-def
by (rule rev-finite-subset) (auto)
moreover
have S # {} using a b unfolding S-def Partitions-def
by (auto simp: strict-prefiz-def)
ultimately have 3 u-maz € S.V u € S. length u < length u-maz
using finite-set-has-maz2 by blast

25

then obtain u-maz v
where h0: (u-maz, v) € Partitions ©
and hl: strict-prefic u-mazx
and h2: u-max € A%
and h3: v Q z € Ax
and h4:V wwv. (u, v) € Partitions © A strict-prefic u z A u € Ax A v @ z €
Ax —> length u < length u-max
unfolding S-def Partitions-def by blast
have ¢: v # [] using h0 ki b unfolding Partitions-def by auto
from h3 obtain a b
where i1: (a, b) € Partitions (v Q 2)
and i2:a€ A
and 3: b € Ax
and i/: a # ||
unfolding Partitions-def
using ¢ by (auto dest: star-decom)
have prefiz v a
proof (rule ccontr)
assume a: —(prefiz v a)
from i1 have i1": a Q b = v @ z unfolding Partitions-def by simp
then have prefix a v V strict-prefix v a using append-eg-cases q by blast
then have q: strict-prefiz a v using a unfolding strict-prefiz-def prefix-def by
auto
then obtain as where eq: ¢« @ as = v unfolding strict-prefir-def prefix-def
by auto
have (u-maz Q a, as) € Partitions x using eq h0 unfolding Partitions-def
by auto
moreover
have strict-prefix (u-mazx @ a) z using h0 eq q unfolding Partitions-def
prefix-def strict-prefiz-def by auto
moreover
have u-mazr @ a € Ax using i2 h2 by simp
moreover
have as @ 2z € Ax using i1’ i2 i3 eq by auto
ultimately have length (u-maz @ a) < length u-maz using hj by blast
with ¢4 show Fulse by auto
qged
with i/ obtain za zb
where k1: v @ za = a
and k2: (za, zb) € Partitions z
and k4:2b=10
unfolding Partitions-def prefiz-def
by (auto simp add: append-eq-append-conv2)
show 3 (u, v) € Partitions x. 3 (u’, v') € Partitions z. strict-prefiv u © N\ u €
Ax Nv@Qu' € ANV € Ax
using h0 h1 h2 i2 i3 k1 k2 k4 unfolding Partitions-def by blast
qed

definition

26

tag-Star :: 'a lang = 'a list = ('a lang) set
where

tag-Star A = dz. {=A “{v} | uv. strict-prefix uz A u € Ax A (u, v) € Partitions
}

lemma tag-Star-non-empty-injl:
assumes a: tag-Star A x = tag-Star A y
and c:x @z e Ak

and d:z #]
shows y @ z € Ax
proof —

obtain u v u’ v’
where al: (u, v) € Partitions z (u', v')€ Partitions z
and a2: strict-prefiz u x
and a3: u € Ax
and af:vQu' € A
and a5: v’ € Ax
using ¢ d by (auto dest: star-spartitions-elim2)
have (=A) “{v} € tag-Star A z
apply(simp add: tag-Star-def Partitions-def str-eq-def)
using al a2 a3 by (auto simp add: Partitions-def)
then have (~A) ““ {v} € tag-Star A y using a by simp
then obtain ul v1
where b1: v =A vl
and b3: ul € Ax
and b4: (ul, vl) € Partitions y
unfolding tag-Star-def by auto
have c¢: v Q u’ € Ax using b! o unfolding str-eq-def by simp
have ! @ (v Q@ u/) @ v' € Ax
using b3 ¢ a5 by (simp only: append-in-starl)
then show y @Q z € Ax using b4 al
unfolding Partitions-def by auto
qed

lemma tag-Star-empty-injl:
assumes a: tag-Star A x = tag-Star A y
and c:x @z e Ax

and d:z =]
shows y @ z € Ax
proof —

from o have {} = tag-Star A y unfolding tag-Star-def using d by auto
then have y = [|
unfolding tag-Star-def Partitions-def strict-prefiz-def prefiz-def
by (auto) (metis Nil-in-star append-self-conv2)
then show y @Q 2 € Ax using ¢ d by simp
qed

lemma quot-star-finitel [intro]:
assumes finitel: finite (UNIV /] ~A)

27

shows finite (UNIV /] =(A%))
proof (rule-tac tag = tag-Star A in tag-finite-imageD)
have Az y z. [tag-Star A © = tag-Star A y; z Q z € Ax] = y Q z € Ax
by (case-tac x = []) (blast intro: tag-Star-empty-injI tag-Star-non-empty-injl)+
then show =(tag-Star A)= C ~(Ax)
by (rule refined-intro) (auto simp add: tag-eq-def)
next
have x: finite (Pow (UNIV /] =A))
using finitel by auto
show finite (range (tag-Star A))
unfolding tag-Star-def
by (rule finite-subset[OF - x])
(auto simp add: quotient-def)
qed

3.6 The conclusion of the second direction

lemma Myhill-Nerode2:

fixes r::'a rexp

shows finite (UNIV // ~(lang 7))
by (induct r) (auto)

end

theory Muyhill
imports Myhill-2 Reqular— Sets. Derivatives
begin

4 The theorem

theorem Myhill-Nerode:

fixes A::(‘a:finite) lang

shows (3r. A = lang r) +— finite (UNIV [/ =A)
using Myhill-Nerodel Myhill-Nerode2 by auto

4.1 Second direction proved using partial derivatives

An alternaive proof using the notion of partial derivatives for regular ex-
pressions due to Antimirov [1].

lemma MN-Rel-Derivs:

shows z ~A y +— Derivs t A = Derivs y A
unfolding Derivs-def str-eq-def
by auto

lemma Muyhill-Nerode3:

fixes r::'a rexp
shows finite (UNIV // =(lang r))

28

proof —
have finite (UNIV [/ =(Az. pderivs x r)=)
proof —
have range (Az. pderivs x r) C Pow (pderivs-lang UNIV r)
unfolding pderivs-lang-def by auto
moreover
have finite (Pow (pderivs-lang UNIV r)) by (simp add: finite-pderivs-lang)
ultimately
have finite (range (\z. pderivs x r))
by (simp add: finite-subset)
then show finite (UNIV // =(\z. pderivs x r)=)
by (rule finite-eq-tag-rel)
qed
moreover
have =(A\z. pderivs x)= C ~(lang r)
unfolding tag-eq-def
by (auto simp add: MN-Rel-Derivs Derivs-pderivs)
moreover
have equiv UNIV =(\z. pderivs © r)=
and equiv UNIV (=(lang r))
unfolding equiv-def refl-on-def sym-def trans-def
unfolding tag-eq-def str-eq-def
by auto
ultimately show finite (UNIV // =~(lang r))
by (rule refined-partition-finite)
qed

end
theory Closures

imports Myhill HOL— Library.Infinite-Set
begin

5 Closure properties of regular languages

abbreviation
reqular :: 'a lang = bool
where

reqular A = 3r. A = lang r

5.1 Closure under U, - and *

lemma closure-union [introl:
assumes regular A reqular B
shows regular (A U B)
proof —
from assms obtain r! r2::'a rexp where lang r1 = A lang r2 = B by auto
then have A U B = lang (Plus r1 r2) by simp
then show reqular (A U B) by blast

29

qed

lemma closure-seq [intro):
assumes regular A reqular B
shows regular (A - B)
proof —
from assms obtain r! r2::’a rexp where lang r1 = A lang r2 = B by auto
then have A - B = lang (Times r1 r2) by simp
then show regular (A - B) by blast
qed

lemma closure-star [intro]:
assumes regular A
shows regular (Ax)
proof —
from assms obtain r::'a rexp where lang r = A by auto
then have Ax = lang (Star) by simp
then show regular (Ax) by blast
qed

5.2 Closure under complementation

Closure under complementation is proved via the Myhill-Nerode theorem

lemma closure-complement [intro]:
fixes A::('a:finite) lang
assumes regular A
shows regular (— A)
proof —
from assms have finite (UNIV [/ =A) by (simp add: Myhill-Nerode)
then have finite (UNIV // =(—A)) by (simp add: str-eq-def)
then show regular (— A) by (simp add: Myhill-Nerode)
qed

5.3 Closure under — and N

lemma closure-difference [intro]:

fixes A::(‘a::finite) lang

assumes reqular A reqular B

shows reqular (A — B)
proof —

have A — B = — (— A U B) by blast

moreover

have regular (— (— A U B))

using assms by blast

ultimately show regular (A — B) by simp

qed

lemma closure-intersection [intro:
fixes A::('a:finite) lang

30

assumes reqular A reqular B

shows regular (A N B)
proof —

have AN B=— (— AU — B) by blast

moreover

have regular (— (— AU — B))

using assms by blast

ultimately show regular (A N B) by simp

qed

5.4 Closure under string reversal

fun
Rev :: 'a rexp = 'a rexp
where
Rev Zero = Zero
| Rev One = One
| Rev (Atom ¢) = Atom ¢
| Rev (Plus r1 r2) = Plus (Rev r1) (Rev r2)
| Rev (Times r1 r2) = Times (Rev r2) (Rev rl)
| Rev (Star r) = Star (Rev r)

lemma rev-seq[simpl:

shows rev ‘ (B - A) = (rev * A) - (rev ‘ B)
unfolding conc-def image-def
by (auto) (metis rev-append)+

lemma rev-starl:
assumes a: s € (rev * A)x
shows s € rev ‘ (Ax)
using a
proof (induct rule: star-induct)
case (append s1 s2)
have inj: inj (rev::’a list = 'a list) unfolding inj-on-def by auto
have sI € rev * A s2 € rev ‘ (Ax) by fact+
then obtain 21 22 where z1 € A 22 € Ax and egs: s1 = rev x1 s2 = rev x2
by auto
then have 21 € Ax 22 € Ax by (auto)
then have 22 Q z1 € Ax by (auto)
then have rev (22 Q z1) € rev * A using inj by (simp only: inj-image-mem-iff)
then show s1 @ s2 € rev ‘ Ax using eqs by simp
qed (auto)

lemma rev-star2:
assumes a: s € Ax
shows rev s € (rev * A)*
using a
proof (induct rule: star-induct)
case (append s1 s2)

31

have inj: inj (rev::’'a list = 'a list) unfolding inj-on-def by auto
have sI € Aby fact
then have rev s1 € rev * A using inj by (simp only: inj-image-mem-iff)
then have rev sI € (rev * A)x by (auto)
moreover
have rev s2 € (rev A)x by fact
ultimately show rev (s1 @ s2) € (rev ‘* A)x by (auto)
qed (auto)

lemma rev-star [simp:
shows rev ¢ (Ax) = (rev < A)x
using rev-starl rev-star2 by auto

lemma rev-lang:
shows rev ‘ (lang r) = lang (Rev)
by (induct r) (simp-all add: image-Un)

lemma closure-reversal [intro]:
assumes regular A
shows regular (rev © A)

proof —
from assms obtain r::'a rexp where A = lang r by auto
then have lang (Rev r) = rev * A by (simp add: rev-lang)
then show regular (rev‘ A) by blast

qed

5.5 Closure under left-quotients

abbreviation
Deriv-lang A B = Jx € A. Derivs x B

lemma closure-left-quotient:
assumes reqular A
shows reqular (Deriv-lang B A)
proof —
from assms obtain r::’a rexp where eq: lang r = A by auto
have fin: finite (pderivs-lang B r) by (rule finite-pderivs-lang)

have Deriv-lang B (lang v) = (U (lang ¢ pderivs-lang B r))
by (simp add: Derivs-pderivs pderivs-lang-def)
also have ... = lang (I (pderivs-lang B r)) using fin by simp
finally have Deriv-lang B A = lang (| (pderivs-lang B r)) using eq
by simp
then show regular (Deriv-lang B A) by auto
qed

5.6 Finite and co-finite sets are regular

lemma singleton-reqular:
shows regular {s}

32

proof (induct s)
case Nil
have {[|} = lang (One) by simp
then show regular {[]} by blast
next
case (Cons c s)
have regular {s} by fact
then obtain r where {s} = lang r by blast
then have {c¢ # s} = lang (Times (Atom c) r)
by (auto simp add: conc-def)
then show regular {c # s} by blast
qed

lemma finite-regular:
assumes finite A
shows regular A
using assms
proof (induct)
case empty
have {} = lang (Zero) by simp
then show regular {} by blast
next
case (insert s A)
have regular {s} by (simp add: singleton-regular)
moreover
have regular A by fact
ultimately have regular ({s} U A) by (rule closure-union)
then show reqular (insert s A) by simp
qed

lemma cofinite-regular:
fixes A::'a::finite lang
assumes finite (— A)
shows reqular A

proof —
from assms have reqular (— A) by (simp add: finite-regular)
then have regular (—(— A)) by (rule closure-complement)
then show regular A by simp

qed

5.7 Continuation lemma for showing non-regularity of lan-
guages
lemma continuation-lemma:
fixes A B::'a:finite lang
assumes reg: reqular A
and inf: infinite B
showsdz € B.dye B.x #yANz=Ay
proof —

33

define eqfun where eqfun = (AA z:(‘a::finite list). (=A) “ {z})

have finite (UNIV // =A) using reg by (simp add: Myhill-Nerode)

moreover

have (eqfun A) ‘B C UNIV // (=A)
unfolding eqfun-def quotient-def by auto

ultimately have finite ((eqfun A) ‘ B) by (rule rev-finite-subset)

with inf have Ja € B. infinite {b € B. eqfun A b = eqfun A a}
by (rule pigeonhole-infinite)

then obtain a where in-a: a € B and infinite {b € B. eqfun A b = eqfun A a}
by blast

moreover

have {b € B. eqfun A b = eqfun A a} = {b € B. b =A a}
unfolding eqfun-def Image-def str-eq-def by auto

ultimately have infinite {b € B. b =~A a} by simp

then have infinite ({b € B. b =~A a} — {a}) by simp

moreover

have {b € B. b =A a} — {a} ={be€ B. b~A a A b # a} by auto

ultimately have infinite {b € B. b A a A b # a} by simp

then have {b € B. b =A a AN b # a} # {}
by (metis finite.emptyl)

then obtain b where b € Bb # a b ~A a by blast

with in-a show dz € B.dye Bz £y Az ~Ay
by blast

qed

5.8 The language " b" is not regular

abbreviation

replicate-rev (-~ - [100, 100] 100)
where

a " n = replicate n a

lemma an-bn-not-reqular:
shows - regular ((Jn. {CHR "o’ =" n @ CHR "b" 7" n})
proof
define A where A = ((Un. {CHR "o =" n @ CHR "b" 77" n})
assume as: reqular A
define B where B = (|Jn. {CHR "a"" ™" n})

have sameness: \i j. CHR "o’ 7774 Q CHR "b" 77 je A+— i=j
unfolding A-def
apply auto
apply(drule-tac f=Ms. length (filter ((=) (CHR "a'’)) s) = length (filter ((=)
(CHR "b")) s)
in arg-cong)
apply (simp)
done

have b: infinite B

34

unfolding infinite-iff-countable-subset
unfolding inj-on-def B-def
by (rule-tac x=An. CHR "a" ™" n in ezl) (auto)
moreover
have Ve € B.Vye B.z £y — - (z =A y)
apply(auto)
unfolding B-def
apply(auto)
apply(simp add: str-eq-def)
apply(drule-tac z=CHR "'b" 77" za in spec)
apply(simp add: sameness)
done
ultimately
show Fulse using continuation-lemma|OF as] by blast
qed

end
theory Closures2
imports
Closures
Well-Quasi-Orders. Well-Quasi-Orders
begin

6 Closure under SUBSE(Q) and SUPSEQ

Properties about the embedding relation

lemma subseq-strict-length:
assumes a: subseq x y x # y
shows length x < length y
using a
by (induct) (auto simp add: less-Suc-eq)

lemma subseq-wf:
shows wf {(z, y). subseq x y N © # y}
proof —
have wf (measure length) by simp
moreover
have {(z, y). subseq z y N # y} C measure length
unfolding measure-def by (auto simp add: subseg-strict-length)
ultimately
show wf {(z, y). subseq x y N\ x # y} by (rule wf-subset)
qed

lemma subseq-good:

shows good subseq (f :: nat = (‘a::finite) list)
using wqo-on-imp-good[where f=f, OF wqo-on-lists-over-finite-sets]
by simp

35

lemma subseq- Higman-antichains:
assumes a: V(z:(‘a:finite) list) € A. Vy € A. x # y — —(subseq © y) A
—(subseq y x)
shows finite A
proof (rule ccontr)
assume infinite A
then obtain f:nat = ‘a::finite list where b: inj f and c¢: range f C A
by (auto simp add: infinite-iff-countable-subset)
from subseq-good[where f=f]
obtain ¢ j where d: i < j and e: subseq (fi) (fj)V fi=f]
unfolding good-def

by auto
have fi # fj using b d by (auto simp add: inj-on-def)
moreover
have fi € A using ¢ by auto
moreover

have fj € A using ¢ by auto
ultimately have —(subseq (f ¢) (fj)) using a by simp
with e show Fulse by auto

qed

6.1 Sub- and Supersequences

definition
SUBSEQ A = {x::('a::finite) list. Iy € A. subseq x y}

definition
SUPSEQ A = {z::('a::finite) list. 3y € A. subseq y z}

lemma SUPSEQ-simps [simp]:
shows SUPSEQ {} = {}
and SUPSEQ {[]} = UNIV
unfolding SUPSEQ-def by auto

lemma SUPSEQ-atom [simp]:

shows SUPSEQ {[c]} = UNIV - {[c]} - UNIV
unfolding SUPSEQ-def conc-def
by (auto dest: list-emb-ConsD)

lemma SUPSEQ-union [simp):
shows SUPSEQ (A U B) = SUPSEQ A U SUPSEQ B
unfolding SUPSEQ-def by auto

lemma SUPSEQ-conc [simp]:
shows SUPSEQ (A - B) = SUPSEQ A - SUPSEQ B
unfolding SUPSEQ-def conc-def
apply(auto)
apply (drule list-emb-appendD)

36

apply(auto)
by (metis list-emb-append-mono)

lemma SUPSEQ-star [simp]:
shows SUPSEQ (Ax) = UNIV

apply(subst star-unfold-left)

apply(simp only: SUPSEQ-union)

apply(simp)

done

6.2 Regular expression that recognises every character

definition

Allreg :: 'a::finite rexp
where

Allreg = | (Atom “ UNIV)

lemma Allreg-lang [simp]:
shows lang Allreg = (|J a. {[a]})
unfolding Allreg-def by auto

lemma [simp]:
shows (|Ja. {[a]})x = UNIV
apply (auto)
apply (induct-tac x)
apply(auto)
apply (subgoal-tac [a] @ list € (|Ja. {[a]})*)
apply (simp)
apply (rule append-in-starl)
apply(auto)
done

lemma Star-Allreg-lang [simp]:
shows lang (Star Allreg) = UNIV
by simp

fun
UP :: 'a::finite rexp = 'a rexp
where
UP (Zero) = Zero
| UP (One) = Star Allreg
| UP (Atom ¢) = Times (Star Allreg) (Times (Atom c) (Star Allreg))
| UP (Plus r1 r2) = Plus (UP r1) (UP r2)
| UP (Times r1 r2) = Times (UP r1) (UP r2)
| UP (Star r) = Star Allreg

lemma lang-UP:

fixes r::'a::finite rexp
shows lang (UP r) = SUPSEQ (lang r)

37

by (induct r) (simp-all)

lemma SUPSEQ-regular:
fixes A::'a::finite lang
assumes reqular A
shows regular (SUPSEQ A)

proof —
from assms obtain r::’a::finite rexp where lang r = A by auto
then have lang (UP r) = SUPSEQ A by (simp add: lang-UP)
then show regular (SUPSEQ A) by auto

qed

lemma SUPSEQ-subset:
fixes A::'a::finite list set
shows A C SUPSEQ A
unfolding SUPSEQ-def by auto

lemma SUBSEQ-complement:
shows — (SUBSEQ A) = SUPSEQ (— (SUBSEQ A))
proof —
have — (SUBSEQ A) C SUPSEQ (— (SUBSEQ A))
by (rule SUPSEQ-subset)
moreover
have SUPSEQ (— (SUBSEQ A)) C — (SUBSEQ A)
proof (rule ccontr)
assume — (SUPSEQ (— (SUBSEQ A)) C — (SUBSEQ A))
then obtain z where
a: z € SUPSEQ (— (SUBSEQ A)) and
b: x ¢ — (SUBSEQ A) by auto

from o obtain y where ¢: y € — (SUBSEQ A) and d: subseq y x
by (auto simp add: SUPSEQ-def)

from b have z € SUBSEQ A by simp
then obtain z’ where f: 2’ € A and e: subseq x z’
by (auto simp add: SUBSEQ-def)

from d e have subseq y z’
by (rule subseg-order.order-trans)
then have y € SUBSEQ A using f
by (auto simp add: SUBSEQ-def)
with ¢ show Fulse by simp
qed
ultimately show — (SUBSEQ A) = SUPSEQ (— (SUBSEQ A)) by simp
qed

definition

minimal :: 'a::finite list = 'a lang = bool
where

38

minimal t A = (Vy € A. subseq y x — subseq z y)

lemma main-lemma:
shows 3 M. finite M N SUPSEQ A = SUPSEQ M
proof —
define M where M = {z € A. minimal z A}
have finite M
unfolding M-def minimal-def
by (rule subseq-Higman-antichains) (auto simp add: subseg-order.antisym)
moreover
have SUPSEQ A C SUPSEQ M
proof
fix z
assume z € SUPSEQ A
then obtain y where y € A and subseq y x by (auto simp add: SUPSEQ-def)
then have a: y € {y’ € A. subseq y' z} by simp
obtain z where b: 2z € A subseq z x and ¢: Vy. subseqy z Ny # 2z — y ¢
{y’ € A. subseq y' z}
using wfE-min|OF subseq-wf a] by auto
then have z € M
unfolding M-def minimal-def
by (auto intro: subseq-order.order-trans)
with b(2) show z € SUPSEQ M
by (auto simp add: SUPSEQ-def)
qed
moreover
have SUPSEQ M C SUPSEQ A
by (auto simp add: SUPSEQ-def M-def)
ultimately
show 3 M. finite M N SUPSEQ A = SUPSEQ M by blast
qed

6.3 Closure of SUBSEQ and SUPSEQ

lemma closure-SUPSEQ:
fixes A::'a::finite lang
shows reqular (SUPSEQ A)
proof —
obtain M where a: finite M and b: SUPSEQ A = SUPSEQ M
using main-lemma by blast
have regular M using a by (rule finite-reqular)
then have regular (SUPSEQ M) by (rule SUPSEQ-regular)
then show regular (SUPSEQ A) using b by simp
qed

lemma closure-SUBSEQ:
fixes A::'a::finite lang
shows reqular (SUBSEQ A)
proof —

39

have regular (SUPSEQ (— SUBSEQ A)) by (rule closure-SUPSEQ)
then have regular (— SUBSEQ A) by (subst SUBSEQ-complement) (simp)
then have regular (— (— (SUBSEQ A))) by (rule closure-complement)
then show regular (SUBSEQ A) by simp

qed

end

7 Tools for showing non-regularity of a language

theory Non-Regular-Languages
imports Myhill
begin

7.1 Auxiliary material

lemma bij-betw-image-quotient:

bij-betw (Ay. f —*{y}) (f “A4) (A // {(a,b). fa=[b})
by (force simp: bij-betw-def inj-on-def image-image quotient-def)

lemma regular-Derivs-finite:
fixes r :: 'a :: finite rexp
shows finite (range (Aw. Derivs w (lang r)))
proof —
have ?thesis <— finite (UNIV /] =lang r)
unfolding str-eg-conv-Derivs by (rule bij-betw-finite bij-betw-image-quotient)+
also have ... by (subst Myhill-Nerode [symmetric]) auto
finally show ?thesis .
qed

lemma Nil-in-Derivs-iff: || € Derivs w A «— w € A
by (auto simp: Derivs-def)
The following operation repeats a list n times (usually written as w™).

primrec repeat :: nat = 'a list = 'a list where
repeat 0 zs = ||
| repeat (Suc n) zs = xs @ repeat n s

lemma repeat-Cons-left: repeat (Suc n) zs = zs Q repeat n xs by simp

lemma repeat-Cons-right: repeat (Suc n) xs = repeat n s @ xs
by (induction n) simp-all

lemma repeat-Cons-append-commute [simpl: repeat n xs Q s = xs Q repeat n s
by (subst repeat-Cons-right [symmetric]) simp

lemma repeat-Cons-add [simp]: repeat (m + n) zs = repeat m xs Q repeat n xs
by (induction m) simp-all

40

lemma repeat-Nil [simp]: repeat n [| = []
by (induction n) simp-all

lemma repeat-conv-replicate: repeat n xs = concat (replicate n xs)
by (induction n) simp-all

lemma nth-prefizes [simpl: n < length xs = prefizes xs | n = take n s
by (induction xs arbitrary: n) (auto simp: nth-Cons split: nat.splits)

lemma nth-suffizes [simp]: n < length xs = suffizes xs | n = drop (length xs —
n) s
by (subst suffizes-conv-prefizes) (simp-all add: rev-take)

lemma length-take-prefizes:
assumes s € set (take n (prefizes ys))
shows length zs < n
proof (cases n < Suc (length ys))
case True
with assms obtain ¢ where i < n zs = take i ys
by (subst (asm) nth-image [symmetric]) auto
thus ?thesis by simp
next
case Fulse
with assms have prefiz zs ys by simp
hence length zs < length ys by (rule prefiz-length-le)
also from Fulse have ... < n by simp
finally show ?thesis .
qed

7.2 Non-regularity by giving an infinite set of equivalence
classes

Non-regularity can be shown by giving an infinite set of non-equivalent words
(w.r.t. the Myhill-Nerode relation).

lemma not-reqular-langl:
assumes infinite B\t y t e B=—=yeB=1#y— Jw. ~(zQweA
— yQ@uwe A
shows —regular-lang (A :: 'a = finite list set)
proof —
have (Aw. Derivs w A) ‘ B C range (Aw. Derivs w A) by blast
moreover from assms(2) have inj-on (Aw. Derivs w A) B
by (auto simp: inj-on-def Derivs-def)
with assms(1) have infinite ((Aw. Derivs w A) ‘ B)
by (blast dest: finite-imageD)
ultimately have infinite (range (Aw. Derivs w A)) by (rule infinite-super)
with regular-Derivs-finite show ?thesis by blast
qed

41

lemma not-regqular-langl -
assumes infinite BAry. 2 € B=—=yeB=—=c#y=— Jw ~(frQwe A
+— fy@Quwe A
shows —regular-lang (A :: 'a = finite list set)
proof (rule not-regular-langl)
from assms(2) have inj-on f B by (force simp: inj-on-def)
with <infinite By show infinite (f ¢ B) by (simp add: finite-image-iff)
qed (insert assms, auto)

7.3 The Pumping Lemma

The Pumping lemma can be shown very easily from the Myhill-Nerode
theorem: if we have a word whose length is more than the (finite) number
of equivalence classes, then it must have two different prefixes in the same
class and the difference between these two prefixes can then be “pumped”.

lemma pumping-lemma-aux:
fixes A :: 'a list set
defines § = Aw. Derivs w A
defines n = card (range 9)
assumes 2z € A finite (range §) length z > n
shows Juvw. z=u @ v @ w A length (u Qv) <nAv#[A Vi uQ@ repeat
iv@Qwe A)
proof —
define P where P = set (take (Suc n) (prefizes z))
from <length z > n» have [simp]: card P = Suc n
unfolding P-def by (subst distinct-card) (auto intro!: distinct-take)
have length-le: length y < n if y € P for y
using length-take-prefives|OF that [unfolded P-def]] by simp

have card (§ ‘ P) < card (range 6) by (intro card-mono assms) auto
also from assms have ... < card P by simp
finally have —inj-on 6 P by (rule pigeonhole)
then obtain a b where ab: a € Pb € P a # b Derivs a A = Derivs b A
by (auto simp: inj-on-def §-def)
from ab have prefiz-ab: prefiz a z prefiz b z by (auto simp: P-def dest: in-set-takeD)
from ab have length-ab: length a < n length b < n
by (simp-all add: length-le)

have x: ?thesis
if uz’s prefiz u 2’ prefix 2z’ z length z' < n
u # 2" Derivs z' A = Derivs u A for u 2z’
proof —
from <prefiz u z"» and <u # 2"
obtain v where v [simp]: 2/ = ©v Q v v # ||
by (auto simp: prefiz-def)
from <prefix 2z’ 2> obtain w where [simp]: z = v Q@ v @ w
by (auto simp: prefiz-def)

42

hence [simp]: Derivs (repeat i v) (Derivs u A) = Derivs u A for i
by (induction i) (use uz’ in simp-all)

have Derivs z A = Derivs (u Q repeat { v Q@ w) A for i
using uz’ by simp

with (z € 4> and uz' have Vi. u Q repeat i v Q w € A
by (simp add: Nil-in-Derivs-iff [of - A, symmetric])

moreover have z = u Q v Q@ w by simp

moreover from <length z’ < n) have length (v @ v) < n by simp

ultimately show ?thesis using (v # [|» by blast

qged

from prefiz-ab have prefix a b V prefix b a by (rule prefiz-same-cases)

with x[of a b] and *[of b a] and ab and prefiz-ab and length-ab show ?thesis
by blast
qed

theorem pumping-lemma:
fixes r :: ‘a :: finite rexp
obtains n where
Nz. z € lang r = length z > n =
Juovw z=uQv@wA length (u Qv) <nAv#[A (Vi u@ repeat
iv@w € lang r)
proof —
let %n = card (range (Aw. Derivs w (lang 7)))
have Juvw. z=u Qv @ w A length (u Q@ v) < 2n A v #[] A (Vi. u @ repeat
ivQw € lang r)
if z € lang r and length z > %n for z
by (intro pumping-lemma-auz|of z] that regular-Derivs-finite)
thus ?thesis by (rule that)
qed

corollary pumping-lemma-not-regular-lang:
fixes A :: 'a :: finite list set
assumes An. length (zn) > nand An. zn € A
assumes Anuvw. zn=uQvQw=length (u@Qv) <n=—=v#[=
u @ repeat (inuvw)v@Quwé¢A
shows —regular-lang A
proof
assume reqular-lang A
then obtain r where r: lang r = A by blast
from pumping-lemmalof r| obtain n
where z n € lang r = n < length (2 n) =
Juovw. zn=uQv@QwAlength (u@Q@v) <nAv#[A NVi uQ repeat i
v @ w € lang r)
by metis
from this and assms[of n] obtain u v w
where zn =4 Q@ v @ w and length (v @ v) < n and v # [] and
Ni. u Q repeat i v @ w € lang r by (auto simp: r)
with assms(3)[of n v v w] show False by (auto simp: r)

43

qed

7.4 Examples

The language of all words containing the same number of as and bs is not
regular.

lemma —regular-lang {w. length (filter id w) = length (filter Not w)} (is —regu-
lar-lang ?A)
proof (rule not-regular-langl”)

show infinite (UNIV :: nat set) by simp
next

fix m n :: nat assume m # n

hence replicate m True Q replicate m Fualse € ?A and

replicate n True Q replicate m False ¢ ?A by simp-all

thus Jw. —~(replicate m True @ w € 24 «— replicate n True @ w € ?A) by
blast
qed

The language {a’b’ | i € N} is not regular.

lemma eg-replicate-iff:
zs = replicate n ¢ <— set xs C {z} A length zs = n
using replicate-length-same|of zs x| by (subst eq-commute) auto

lemma replicate-eq-appendE:

assumes xs Q ys = replicate n x

obtains i j where n = i + j xs = replicate i x ys = replicate j x
proof —

have n = length (replicate n x) by simp

also note assms [symmetric]

finally have n = length xs + length ys by simp

moreover have zs = replicate (length zs) © and ys = replicate (length ys)

using assms by (auto simp: eg-replicate-iff)

ultimately show ?thesis using that|of length xs length ys] by auto

qged

lemma —regular-lang (range (N\i. replicate i True @ replicate i False)) (is —regu-
lar-lang ?A)
proof (rule pumping-lemma-not-regular-lang)

fix n :: nat

show length (replicate n True @ replicate n False) > n by simp

show replicate n True Q replicate n False € ?A by simp
next

fix n :: nat and v v w :: bool list

assume decomp: replicate n True @ replicate n False = u Q v Q@ w

and length-le: length (v @ v) < n and v-ne: v # []

define w! w2 where wl = take (n — length (u@v)) w and w2 = drop (n —
length (v@Qu)) w

have w-decomp: w = wl Q w2 by (simp add: wi-def w2-def)

44

have replicate n True = take n (replicate n True @ replicate n False) by simp
also note decomp
also have take n (u @ v @ w) = u @ v @ w! using length-le by (simp add:
wl-def)
finally have u @ v @ wi = replicate n True by simp
then obtain i j k
where uvwi: n = i + j + k u = replicate © True v = replicate j True wl =
replicate k True
by (elim replicate-eq-appendE) auto

have replicate n False = drop n (replicate n True @ replicate n False) by simp
also note decomp
finally have [simp]: w2 = replicate n False using length-le by (simp add: w2-def)

have u @ repeat (Suc (Suc 0)) v @ w = replicate (n + j) True Q replicate n
False
by (simp add: uwvwl w-decomp replicate-add [symmetric])
also have ... ¢ 74
proof safe
fix m assume x*: replicate (n + j) True Q replicate n False =
replicate m True @ replicate m False (is ?lhs = 9rhs)
have n = length (filter Not ?lhs) by simp
also note *
also have length (filter Not ?rhs) = m by simp
finally have [simp]: m = n by simp
from * have v = [| by (simp add: wvwl)
with <v # []» show False by contradiction
qed
finally show u @ repeat (Suc (Suc 0)) v Q w ¢ ?A .
qed

end

References

[1] V. Antimirov. Partial Derivatives of Regular Expressions and Finite
Automata Constructions. Theoretical Computer Science, 155:291-319,
1995.

[2] C. Wu, X. Zhang, and C. Urban. A Formalisation of the Myhill-Nerode
Theorem based on Regular Expressions (Proof Pearl). In Proc. of the

2nd International Conference on Interactive Theorem Proving, volume
6898 of LNCS, pages 341-356, 2011.

45

	``Summation'' for regular expressions
	First direction of MN: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 finite partition regular language
	Equational systems
	Arden Operation on equations
	Substitution Operation on equations
	While-combinator and invariants
	Intial Equational Systems
	Interations
	The conclusion of the first direction

	Second direction of MN: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 regular language finite partition
	Tagging functions
	Base cases: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Zero, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 One and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Atom
	Case for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Plus
	Case for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Times
	Case for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Star
	The conclusion of the second direction

	The theorem
	Second direction proved using partial derivatives

	Closure properties of regular languages
	Closure under 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 , 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Closure under complementation
	Closure under 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 - and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Closure under string reversal
	Closure under left-quotients
	Finite and co-finite sets are regular
	Continuation lemma for showing non-regularity of languages
	The language 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 an bn is not regular

	Closure under 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SUBSEQ and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SUPSEQ
	Sub- and Supersequences
	Regular expression that recognises every character
	Closure of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SUBSEQ and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SUPSEQ

	Tools for showing non-regularity of a language
	Auxiliary material
	Non-regularity by giving an infinite set of equivalence classes
	The Pumping Lemma
	Examples

