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Abstract

We consider the problem of comparing two multisets via the gen-
eralized multiset ordering. We show that the corresponding decision
problem is NP-complete. To be more precise, we encode multiset-
comparisons into propositional formulas or into conjunctive normal
forms of quadratic size; we further prove that satisfiability of conjunc-
tive normal forms can be encoded as multiset-comparison problems of
linear size.

As a corollary, we also show that the problem of deciding whether
two terms are related by a recursive path order is NP-hard, provided
the recursive path order is based on the generalized multiset ordering.
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1 Introduction
Given a transitive and irreflexive relation � on elements, it can be extended
to a relation on multisets (the multiset ordering �ms) where for two multisets
M and N the relation M �ms N is defined in a way that N is obtained from
M by replacing some elements a ∈M by arbitrarily many elements b1, . . . , bn
which are all smaller than a: a � bi for all 1 ≤ i ≤ n.

Now, given �, M , and N , it is easy to decide M �ms N : it is equivalent
to demand M 6= N and for each b ∈ N \M there must be some a ∈M \N
such that a � b.

The generalized multiset ordering is defined in terms of two relations �
and %. Here, one may additionally replace each element a ∈ M by exactly
one element b that satisfies a % b. The multiset ordering is an instance of
the generalized multiset ordering by choosing % as the equality relation =.

The generalized multiset ordering is used in some definitions of the re-
cursive path order (the original RPO [2] is defined via the multiset ordering,
the variants of RPO [1, 4] use the generalized multiset ordering instead)
so that more terms are in relation. A downside of the generalization is
that the decision problem of whether two multisets are in relation becomes
NP-complete, and also the decision problem for the RPO-variant in [4] is
NP-complete.

In this AFP-entry we formalize NP-completeness of the generalized mul-
tiset ordering: we provide an O(n2) encoding of multiset-comparisons into
propositional formulas (using connectives ∨,∧,¬,→,↔), an O(n2) encoding
of multiset-comparisons into conjunctive normal forms (CNF), and an O(n)
encoding of CNFs into multiset-comparisons. Moreover, we verify an O(n2)
encoding from a CNF into an RPO-constraint.

Our formalization is based on proofs in [1] (in NP) and [4] (NP-hardness).
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2 Properties of the Generalized Multiset Ordering
theory Multiset-Ordering-More

imports
Weighted-Path-Order .Multiset-Extension2

begin

We provide characterizations of s-mul-ext and ns-mul-ext via introduc-
tion and elimination rules that are based on lists.
lemma s-mul-ext-intro:

assumes xs = mset xs1 + mset xs2
and ys = mset ys1 + mset ys2
and length xs1 = length ys1
and

∧
i. i < length ys1 =⇒ (xs1 ! i, ys1 ! i) ∈ NS

and xs2 6= []
and

∧
y. y ∈ set ys2 =⇒ ∃ a ∈ set xs2 . (a, y) ∈ S

shows (xs, ys) ∈ s-mul-ext NS S
by (rule s-mul-extI [OF assms(1−2 ) multpw-listI [OF assms(3 )]], insert assms(4−),

auto)

lemma ns-mul-ext-intro:
assumes xs = mset xs1 + mset xs2
and ys = mset ys1 + mset ys2
and length xs1 = length ys1
and

∧
i. i < length ys1 =⇒ (xs1 ! i, ys1 ! i) ∈ NS

and
∧

y. y ∈ set ys2 =⇒ ∃ x ∈ set xs2 . (x, y) ∈ S
shows (xs, ys) ∈ ns-mul-ext NS S
by (rule ns-mul-extI [OF assms(1−2 ) multpw-listI [OF assms(3 )]], insert assms(4−),

auto)

lemma ns-mul-ext-elim: assumes (xs, ys) ∈ ns-mul-ext NS S
shows ∃ xs1 xs2 ys1 ys2 .

xs = mset xs1 + mset xs2
∧ ys = mset ys1 + mset ys2
∧ length xs1 = length ys1
∧ (∀ i. i < length ys1 −→ (xs1 ! i, ys1 ! i) ∈ NS)
∧ (∀ y ∈ set ys2 . ∃ x ∈ set xs2 . (x, y) ∈ S)

proof −
from ns-mul-extE [OF assms] obtain

A1 A2 B1 B2 where ∗: xs = A1 + A2 ys = B1 + B2
and NS : (A1 , B1 ) ∈ multpw NS

and S :
∧

b. b ∈# B2 =⇒ ∃ a. a ∈# A2 ∧ (a, b) ∈ S
by blast

from multpw-listE [OF NS ] obtain xs1 ys1 where ∗∗: length xs1 = length ys1
A1 = mset xs1 B1 = mset ys1

and NS :
∧

i. i < length ys1 =⇒ (xs1 ! i, ys1 ! i) ∈ NS by auto
from surj-mset obtain xs2 where A2 : A2 = mset xs2 by auto
from surj-mset obtain ys2 where B2 : B2 = mset ys2 by auto
show ?thesis
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proof (rule exI [of - xs1 ], rule exI [of - xs2 ], rule exI [of - ys1 ], rule exI [of - ys2 ],
intro conjI )

show xs = mset xs1 + mset xs2 using ∗ ∗∗ A2 B2 by auto
show ys = mset ys1 + mset ys2 using ∗ ∗∗ A2 B2 by auto
show length xs1 = length ys1 by fact
show ∀ i<length ys1 . (xs1 ! i, ys1 ! i) ∈ NS using ∗ ∗∗ A2 B2 NS by auto
show ∀ y∈set ys2 . ∃ x∈set xs2 . (x, y) ∈ S using ∗ ∗∗ A2 B2 S by auto

qed
qed

lemma s-mul-ext-elim: assumes (xs, ys) ∈ s-mul-ext NS S
shows ∃ xs1 xs2 ys1 ys2 .

xs = mset xs1 + mset xs2
∧ ys = mset ys1 + mset ys2
∧ length xs1 = length ys1
∧ xs2 6= []
∧ (∀ i. i < length ys1 −→ (xs1 ! i, ys1 ! i) ∈ NS)
∧ (∀ y ∈ set ys2 . ∃ x ∈ set xs2 . (x, y) ∈ S)

proof −
from s-mul-extE [OF assms] obtain

A1 A2 B1 B2 where ∗: xs = A1 + A2 ys = B1 + B2
and NS : (A1 , B1 ) ∈ multpw NS and nonempty: A2 6= {#}

and S :
∧

b. b ∈# B2 =⇒ ∃ a. a ∈# A2 ∧ (a, b) ∈ S
by blast

from multpw-listE [OF NS ] obtain xs1 ys1 where ∗∗: length xs1 = length ys1
A1 = mset xs1 B1 = mset ys1

and NS :
∧

i. i < length ys1 =⇒ (xs1 ! i, ys1 ! i) ∈ NS by auto
from surj-mset obtain xs2 where A2 : A2 = mset xs2 by auto
from surj-mset obtain ys2 where B2 : B2 = mset ys2 by auto
show ?thesis
proof (rule exI [of - xs1 ], rule exI [of - xs2 ], rule exI [of - ys1 ], rule exI [of - ys2 ],

intro conjI )
show xs = mset xs1 + mset xs2 using ∗ ∗∗ A2 B2 by auto
show ys = mset ys1 + mset ys2 using ∗ ∗∗ A2 B2 by auto
show length xs1 = length ys1 by fact
show ∀ i<length ys1 . (xs1 ! i, ys1 ! i) ∈ NS using ∗ ∗∗ A2 B2 NS by auto
show ∀ y∈set ys2 . ∃ x∈set xs2 . (x, y) ∈ S using ∗ ∗∗ A2 B2 S by auto
show xs2 6= [] using nonempty A2 by auto

qed
qed

We further add a lemma that shows, that it does not matter whether
one adds the strict relation to the non-strict relation or not.
lemma ns-mul-ext-some-S-in-NS : assumes S ′ ⊆ S

shows ns-mul-ext (NS ∪ S ′) S = ns-mul-ext NS S
proof

show ns-mul-ext NS S ⊆ ns-mul-ext (NS ∪ S ′) S
by (simp add: ns-mul-ext-mono)

show ns-mul-ext (NS ∪ S ′) S ⊆ ns-mul-ext NS S
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proof
fix as bs
assume (as, bs) ∈ ns-mul-ext (NS ∪ S ′) S
from ns-mul-extE [OF this] obtain nas sas nbs sbs where

as: as = nas + sas and bs: bs = nbs + sbs
and ns: (nas,nbs) ∈ multpw (NS ∪ S ′)
and s: (

∧
b. b ∈# sbs =⇒ ∃ a. a ∈# sas ∧ (a, b) ∈ S) by blast

from ns have ∃ nas2 sas2 nbs2 sbs2 . nas = nas2 + sas2 ∧ nbs = nbs2 +
sbs2 ∧ (nas2 ,nbs2 ) ∈ multpw NS

∧ (∀ b ∈# sbs2 . (∃ a. a ∈# sas2 ∧ (a,b) ∈ S))
proof (induct)

case (add a b nas nbs)
from add(3 ) obtain nas2 sas2 nbs2 sbs2 where ∗: nas = nas2 + sas2 ∧

nbs = nbs2 + sbs2 ∧ (nas2 ,nbs2 ) ∈ multpw NS
∧ (∀ b ∈# sbs2 . (∃ a. a ∈# sas2 ∧ (a,b) ∈ S)) by blast

from add(1 )
show ?case
proof

assume (a,b) ∈ S ′

with assms have ab: (a,b) ∈ S by auto
have one: add-mset a nas = nas2 + (add-mset a sas2 ) using ∗ by auto
have two: add-mset b nbs = nbs2 + (add-mset b sbs2 ) using ∗ by auto
show ?thesis

by (intro exI conjI , rule one, rule two, insert ab ∗, auto)
next

assume ab: (a,b) ∈ NS
have one: add-mset a nas = (add-mset a nas2 ) + sas2 using ∗ by auto
have two: add-mset b nbs = (add-mset b nbs2 ) + sbs2 using ∗ by auto
show ?thesis
by (intro exI conjI , rule one, rule two, insert ab ∗, auto intro: multpw.add)

qed
qed auto
then obtain nas2 sas2 nbs2 sbs2 where ∗: nas = nas2 + sas2 ∧ nbs = nbs2

+ sbs2 ∧ (nas2 ,nbs2 ) ∈ multpw NS
∧ (∀ b ∈# sbs2 . (∃ a. a ∈# sas2 ∧ (a,b) ∈ S)) by auto

have as: as = nas2 + (sas2 + sas) and bs: bs = nbs2 + (sbs2 + sbs)
unfolding as bs using ∗ by auto

show (as, bs) ∈ ns-mul-ext NS S
by (intro ns-mul-extI [OF as bs], insert ∗ s, auto)

qed
qed

lemma ns-mul-ext-NS-union-S : ns-mul-ext (NS ∪ S) S = ns-mul-ext NS S
by (rule ns-mul-ext-some-S-in-NS , auto)

Some further lemmas on multisets
lemma mset-map-filter : mset (map v (filter (λe. c e) t)) + mset (map v (filter
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(λe. ¬(c e)) t)) = mset (map v t)
by (induct t, auto)

lemma mset-map-split: assumes mset (map f xs) = mset ys1 + mset ys2
shows ∃ zs1 zs2 . mset xs = mset zs1 + mset zs2 ∧ ys1 = map f zs1 ∧ ys2 =

map f zs2
using assms

proof (induct xs arbitrary: ys1 ys2 )
case (Cons x xs ys1 ys2 )
have f x ∈# mset (map f (x # xs)) by simp
from this[unfolded Cons(2 )]
have f x ∈ set ys1 ∪ set ys2 by auto
thus ?case
proof

let ?ys1 = ys1 let ?ys2 = ys2
assume f x ∈ set ?ys1
from split-list[OF this] obtain us1 us2 where ys1 : ?ys1 = us1 @ f x # us2

by auto
let ?us = us1 @ us2
from Cons(2 )[unfolded ys1 ] have mset (map f xs) = mset ?us + mset ?ys2 by

auto
from Cons(1 )[OF this] obtain zs1 zs2 where xs: mset xs = mset zs1 + mset

zs2
and us: ?us = map f zs1 and ys: ?ys2 = map f zs2
by auto

let ?zs1 = take (length us1 ) zs1 let ?zs2 = drop (length us1 ) zs1
show ?thesis

apply (rule exI [of - ?zs1 @ x # ?zs2 ], rule exI [of - zs2 ])
apply (unfold ys1 , unfold ys, intro conjI refl)

proof −
have mset (x # xs) = {# x #} + mset xs by simp
also have . . . = mset (x # zs1 ) + mset zs2 using xs by simp
also have zs1 = ?zs1 @ ?zs2 by simp

also have mset (x # . . .) = mset (?zs1 @ x # ?zs2 ) by (simp add: union-code)
finally show mset (x # xs) = mset (?zs1 @ x # ?zs2 ) + mset zs2 .
show us1 @ f x # us2 = map f (?zs1 @ x # ?zs2 ) using us

by (smt (verit, best) ‹zs1 = take (length us1 ) zs1 @ drop (length us1 ) zs1 ›
add-diff-cancel-left ′ append-eq-append-conv length-append length-drop length-map
list.simps(9 ) map-eq-append-conv)

qed
next

let ?ys1 = ys2 let ?ys2 = ys1
assume f x ∈ set ?ys1
from split-list[OF this] obtain us1 us2 where ys1 : ?ys1 = us1 @ f x # us2

by auto
let ?us = us1 @ us2
from Cons(2 )[unfolded ys1 ] have mset (map f xs) = mset ?us + mset ?ys2 by

auto
from Cons(1 )[OF this] obtain zs1 zs2 where xs: mset xs = mset zs1 + mset
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zs2
and us: ?us = map f zs1 and ys: ?ys2 = map f zs2
by auto

let ?zs1 = take (length us1 ) zs1 let ?zs2 = drop (length us1 ) zs1
show ?thesis

apply (rule exI [of - zs2 ], rule exI [of - ?zs1 @ x # ?zs2 ])
apply (unfold ys1 , unfold ys, intro conjI refl)

proof −
have mset (x # xs) = {# x #} + mset xs by simp
also have . . . = mset zs2 + mset (x # zs1 ) using xs by simp
also have zs1 = ?zs1 @ ?zs2 by simp

also have mset (x # . . .) = mset (?zs1 @ x # ?zs2 ) by (simp add: union-code)
finally show mset (x # xs) = mset zs2 + mset (?zs1 @ x # ?zs2 ) .
show us1 @ f x # us2 = map f (?zs1 @ x # ?zs2 ) using us

by (smt (verit, best) ‹zs1 = take (length us1 ) zs1 @ drop (length us1 ) zs1 ›
add-diff-cancel-left ′ append-eq-append-conv length-append length-drop length-map
list.simps(9 ) map-eq-append-conv)

qed
qed

qed auto

lemma deciding-mult:
assumes tr : trans S and ir : irrefl S
shows (N ,M ) ∈ mult S = (M 6= N ∧ (∀ b ∈# N − M . ∃ a ∈# M − N . (b,a)
∈ S))
proof −

define I where I = M ∩# N
have N : N = (N − M ) + I unfolding I-def

by (metis add.commute diff-intersect-left-idem multiset-inter-commute sub-
set-mset.add-diff-inverse subset-mset.inf-le1 )

have M : M = (M − N ) + I unfolding I-def
by (metis add.commute diff-intersect-left-idem subset-mset.add-diff-inverse sub-

set-mset.inf-le1 )
have (N ,M ) ∈ mult S ←→

((N − M ) + I , (M − N ) + I ) ∈ mult S
using N M by auto

also have . . . ←→ (N − M , M − N ) ∈ mult S
by (rule mult-cancel[OF tr irrefl-on-subset[OF ir , simplified]])

also have . . . ←→ (M 6= N ∧ (∀ b ∈# N − M . ∃ a ∈# M − N . (b,a) ∈ S))
proof

assume ∗: (M 6= N ∧ (∀ b ∈# N − M . ∃ a ∈# M − N . (b,a) ∈ S))
have ({#} + (N − M ), {#} + (M − N )) ∈ mult S

apply (rule one-step-implies-mult, insert ∗, auto)
using M N by auto

thus (N − M , M − N ) ∈ mult S by auto
next

assume (N − M , M − N ) ∈ mult S
from mult-implies-one-step[OF tr this]
obtain E J K
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where ∗: M − N = E + J ∧
N − M = E + K and rel: J 6= {#} ∧ (∀ k∈#K . ∃ j∈#J . (k, j) ∈ S) by

auto
from ∗ have E = {#}
by (metis (full-types) M N add-diff-cancel-right add-implies-diff cancel-ab-semigroup-add-class.diff-right-commute

diff-add-zero)
with ∗ have JK : J = M − N K = N − M by auto
show (M 6= N ∧ (∀ b ∈# N − M . ∃ a ∈# M − N . (b,a) ∈ S))

using rel unfolding JK by auto
qed
finally show ?thesis .

qed

lemma s-mul-ext-map: (
∧

a b. a ∈ set as =⇒ b ∈ set bs =⇒ (a, b) ∈ S =⇒ (f a,
f b) ∈ S ′) =⇒
(
∧

a b. a ∈ set as =⇒ b ∈ set bs =⇒ (a, b) ∈ NS =⇒ (f a, f b) ∈ NS ′) =⇒
(as, bs) ∈ {(as, bs). (mset as, mset bs) ∈ s-mul-ext NS S} =⇒
(map f as, map f bs) ∈ {(as, bs). (mset as, mset bs) ∈ s-mul-ext NS ′ S ′}
using mult2-alt-map[of - - NS−1 f f (NS ′)−1 S−1 S ′−1 False] unfolding s-mul-ext-def
by fastforce

lemma fst-mul-ext-imp-fst: assumes fst (mul-ext f xs ys)
and length xs ≤ length ys

shows ∃ x y. x ∈ set xs ∧ y ∈ set ys ∧ fst (f x y)
proof −

from assms(1 )[unfolded mul-ext-def Let-def fst-conv]
have (mset xs, mset ys) ∈ s-mul-ext {(x, y). snd (f x y)} {(x, y). fst (f x y)} by

auto
from s-mul-ext-elim[OF this] obtain xs1 xs2 ys1 ys2

where ∗: mset xs = mset xs1 + mset xs2
mset ys = mset ys1 + mset ys2
length xs1 = length ys1
xs2 6= []
(∀ y∈set ys2 . ∃ x∈set xs2 . (x, y) ∈ {(x, y). fst (f x y)}) by auto

from ∗(1−3 ) assms(2 ) have length xs2 ≤ length ys2
by (metis add-le-cancel-left size-mset size-union)

with ∗(4 ) have hd ys2 ∈ set ys2 by (cases ys2 , auto)
with ∗(5 ,1 ,2 ) show ?thesis

by (metis Un-iff mem-Collect-eq prod.simps(2 ) set-mset-mset set-mset-union)
qed

lemma ns-mul-ext-point: assumes (as,bs) ∈ ns-mul-ext NS S
and b ∈# bs

shows ∃ a ∈# as. (a,b) ∈ NS ∪ S
proof −

from ns-mul-ext-elim[OF assms(1 )]
obtain xs1 xs2 ys1 ys2

where ∗: as = mset xs1 + mset xs2
bs = mset ys1 + mset ys2
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length xs1 = length ys1
(∀ i<length ys1 . (xs1 ! i, ys1 ! i) ∈ NS) (∀ y∈set ys2 . ∃ x∈set xs2 . (x, y) ∈ S)

by auto
from assms(2 )[unfolded ∗] have b ∈ set ys1 ∨ b ∈ set ys2 by auto
thus ?thesis
proof

assume b ∈ set ys2
with ∗ obtain a where a ∈ set xs2 and (a,b) ∈ S by auto
with ∗(1 ) show ?thesis by auto

next
assume b ∈ set ys1
from this[unfolded set-conv-nth] obtain i where i: i < length ys1 and b =

ys1 ! i by auto
with ∗(4 ) have (xs1 ! i, b) ∈ NS by auto
moreover from i ∗(3 ) have xs1 ! i ∈ set xs1 by auto
ultimately show ?thesis using ∗(1 ) by auto

qed
qed

lemma s-mul-ext-point: assumes (as,bs) ∈ s-mul-ext NS S
and b ∈# bs

shows ∃ a ∈# as. (a,b) ∈ NS ∪ S
by (rule ns-mul-ext-point, insert assms s-ns-mul-ext, auto)

end

3 Propositional Formulas and CNFs
We provide a straight-forward definition of propositional formulas, defined as
arbitray formulas using variables, negations, conjunctions and disjunctions.
CNFs are represented as lists of lists of literals and then converted into
formulas.
theory Propositional-Formula

imports Main
begin

3.1 Propositional Formulas
datatype ′a formula =

Prop ′a |
Conj ′a formula list |
Disj ′a formula list |
Neg ′a formula |
Impl ′a formula ′a formula |
Equiv ′a formula ′a formula

fun eval :: ( ′a ⇒ bool) ⇒ ′a formula ⇒ bool where
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eval v (Prop x) = v x
| eval v (Neg f ) = (¬ eval v f )
| eval v (Conj fs) = (∀ f ∈ set fs. eval v f )
| eval v (Disj fs) = (∃ f ∈ set fs. eval v f )
| eval v (Impl f g) = (eval v f −→ eval v g)
| eval v (Equiv f g) = (eval v f ←→ eval v g)

Definition of propositional formula size: number of connectives
fun size-pf :: ′a formula ⇒ nat where

size-pf (Prop x) = 1
| size-pf (Neg f ) = 1 + size-pf f
| size-pf (Conj fs) = 1 + sum-list (map size-pf fs)
| size-pf (Disj fs) = 1 + sum-list (map size-pf fs)
| size-pf (Impl f g) = 1 + size-pf f + size-pf g
| size-pf (Equiv f g) = 1 + size-pf f + size-pf g

3.2 Conjunctive Normal Forms
type-synonym ′a clause = ( ′a × bool) list
type-synonym ′a cnf = ′a clause list

fun formula-of-lit :: ′a × bool ⇒ ′a formula where
formula-of-lit (x,True) = Prop x
| formula-of-lit (x,False) = Neg (Prop x)

definition formula-of-cnf :: ′a cnf ⇒ ′a formula where
formula-of-cnf = (Conj o map (Disj o map formula-of-lit))

definition eval-cnf :: ( ′a ⇒ bool) ⇒ ′a cnf ⇒ bool where
eval-cnf α cnf = eval α (formula-of-cnf cnf )

lemma eval-cnf-alt-def : eval-cnf α cnf = Ball (set cnf ) (λ c. Bex (set c) (λ l. α
(fst l) = snd l))
unfolding eval-cnf-def formula-of-cnf-def o-def eval.simps set-map Ball-image-comp

bex-simps
apply (intro ball-cong bex-cong refl)
subgoal for c l by (cases l; cases snd l, auto)
done

The size of a CNF is the number of literals + the number of clauses, i.e.,
the sum of the lengths of all clauses + the length.
definition size-cnf :: ′a cnf ⇒ nat where

size-cnf cnf = sum-list (map length cnf ) + length cnf

end
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4 Deciding the Generalized Multiset Ordering is
in NP

We first define a SAT-encoding for the comparison of two multisets w.r.t.
two relations S and NS, then show soundness of the encoding and finally
show that the size of the encoding is quadratic in the input.
theory

Multiset-Ordering-in-NP
imports

Multiset-Ordering-More
Propositional-Formula

begin

4.1 Locale for Generic Encoding
We first define a generic encoding which may be instantiated for both propo-
sitional formulas and for CNFs. Here, we require some encoding primitives
with the semantics specified in the enc-sound assumptions.
locale encoder =

fixes eval :: ( ′a ⇒ bool) ⇒ ′f ⇒ bool
and enc-False :: ′f
and enc-True :: ′f
and enc-pos :: ′a ⇒ ′f
and enc-neg :: ′a ⇒ ′f
and enc-different :: ′a ⇒ ′a ⇒ ′f
and enc-equiv-and-not :: ′a ⇒ ′a ⇒ ′a ⇒ ′f
and enc-equiv-ite :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ′f
and enc-ite :: ′a ⇒ ′a ⇒ ′a ⇒ ′f
and enc-impl :: ′a ⇒ ′f ⇒ ′f
and enc-var-impl :: ′a ⇒ ′a ⇒ ′f
and enc-not-and :: ′a ⇒ ′a ⇒ ′f
and enc-not-all :: ′a list ⇒ ′f
and enc-conj :: ′f list ⇒ ′f

assumes enc-sound[simp]:
eval α (enc-False) = False
eval α (enc-True) = True
eval α (enc-pos x) = α x
eval α (enc-neg x) = (¬ α x)
eval α (enc-different x y) = (α x 6= α y)
eval α (enc-equiv-and-not x y z) = (α x ←→ α y ∧ ¬ α z)
eval α (enc-equiv-ite x y z u) = (α x ←→ (if α y then α z else α u))
eval α (enc-ite x y z) = (if α x then α y else α z)
eval α (enc-impl x f ) = (α x −→ eval α f )
eval α (enc-var-impl x y) = (α x −→ α y)
eval α (enc-not-and x y) = (¬ (α x ∧ α y))
eval α (enc-not-all xs) = (¬ (Ball (set xs) α))
eval α (enc-conj fs) = (Ball (set fs) (eval α))

begin
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4.2 Definition of the Encoding
We need to encode formulas of the shape that exactly one variable is evalu-
ated to true. Here, we use the linear encoding of [3, Section 5.3] that requires
some auxiliary variables. More precisely, for each propositional variable that
we want to count we require two auxiliary variables.
fun encode-sum-0-1-main :: ( ′a × ′a × ′a) list ⇒ ′f list × ′a × ′a where

encode-sum-0-1-main [(x, zero, one)] = ([enc-different zero x], zero, x)
| encode-sum-0-1-main ((x, zero, one) # rest) = (case encode-sum-0-1-main rest
of

(conds, fzero, fone) ⇒ let
czero = enc-equiv-and-not zero fzero x;
cone = enc-equiv-ite one x fzero fone

in (czero # cone # conds, zero, one))

definition encode-exactly-one :: ( ′a × ′a × ′a) list ⇒ ′f × ′f list where
encode-exactly-one vars = (case vars of [] ⇒ (enc-False, [])
| [(x,-,-)] ⇒ (enc-pos x, [])
| ((x,-,-) # vars) ⇒ (case encode-sum-0-1-main vars of (conds, zero, one)

⇒ (enc-ite x zero one, conds)))

fun encodeGammaCond :: ′a ⇒ ′a ⇒ bool ⇒ bool ⇒ ′f where
encodeGammaCond gam eps True True = enc-True
| encodeGammaCond gam eps False False = enc-neg gam
| encodeGammaCond gam eps False True = enc-var-impl gam eps
| encodeGammaCond gam eps True False = enc-not-and gam eps
end

The encoding of the multiset comparisons is based on [1, Sections 3.6
and 3.7]. It uses propositional variables γij and εi. We further add auxiliary
variables that are required for the exactly-one-encoding.
datatype PropVar = Gamma nat nat | Epsilon nat
| AuxZeroJI nat nat | AuxOneJI nat nat
| AuxZeroIJ nat nat | AuxOneIJ nat nat

At this point we define a new locale as an instance of encoder where the
type of propositional variables is fixed to PropVar.
locale ms-encoder = encoder eval for eval :: (PropVar ⇒ bool) ⇒ ′f ⇒ bool
begin

definition formula14 :: nat ⇒ nat ⇒ ′f list where
formula14 n m = (let

inner-left = λ j. case encode-exactly-one (map (λ i. (Gamma i j, AuxZeroJI i
j, AuxOneJI i j)) [0 ..< n])

of (one, cands) ⇒ one # cands;
left = List.maps inner-left [0 ..< m];
inner-right = λ i. encode-exactly-one (map (λ j. (Gamma i j, AuxZeroIJ i j,

AuxOneIJ i j)) [0 ..< m]);
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right = List.maps (λ i. case inner-right i of (one, cands) ⇒ enc-impl (Epsilon
i) one # cands) [0 ..< n]

in left @ right)

definition formula15 :: (nat ⇒ nat ⇒ bool) ⇒ (nat ⇒ nat ⇒ bool) ⇒ nat ⇒ nat
⇒ ′f list where
formula15 cs cns n m = (let

conjs = List.maps (λ i. List.maps (λ j. let s = cs i j; ns = cns i j in
if s ∧ ns then [] else [encodeGammaCond (Gamma i j) (Epsilon i) s ns]) [0

..< m]) [0 ..< n]
in conjs @ formula14 n m)

definition formula16 :: (nat ⇒ nat ⇒ bool) ⇒ (nat ⇒ nat ⇒ bool) ⇒ nat ⇒ nat
⇒ ′f list where
formula16 cs cns n m = (enc-not-all (map Epsilon [0 ..< n]) # formula15 cs cns
n m)

The main encoding function. It takes a function as input that returns
for each pair of elements a pair of Booleans, and these indicate whether the
elements are strictly or weakly decreasing. Moreover, two input lists are
given. Finally two formulas are returned, where the first is satisfiable iff the
two lists are strictly decreasing w.r.t. the multiset ordering, and second is
satisfiable iff there is a weak decrease w.r.t. the multiset ordering.
definition encode-mul-ext :: ( ′a ⇒ ′a ⇒ bool × bool) ⇒ ′a list ⇒ ′a list ⇒ ′f ×
′f where

encode-mul-ext s-ns xs ys = (let
n = length xs;
m = length ys;
cs = (λ i j. fst (s-ns (xs ! i) (ys ! j)));
cns = (λ i j. snd (s-ns (xs ! i) (ys ! j)));
f15 = formula15 cs cns n m;
f16 = enc-not-all (map Epsilon [0 ..< n]) # f15

in (enc-conj f16 , enc-conj f15 ))
end

4.3 Soundness of the Encoding
context encoder
begin

abbreviation eval-all :: ( ′a ⇒ bool) ⇒ ′f list ⇒ bool where
eval-all α fs ≡ (Ball (set fs) (eval α))

lemma encode-sum-0-1-main: assumes encode-sum-0-1-main vars = (conds, zero,
one)

and
∧

i x ze on re. prop =⇒ i < length vars =⇒ drop i vars = ((x,ze,on) # re)
=⇒

(α ze ←→ ¬ (∃ y ∈ insert x (fst ‘ set re). α y))
∧ (α on ←→ (∃ ! y ∈ insert x (fst ‘ set re). α y))
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and ¬ prop =⇒ eval-all α conds
and distinct (map fst vars)
and vars 6= []

shows eval-all α conds
∧ (α zero ←→ ¬ (∃ x ∈ fst ‘ set vars. α x))
∧ (α one ←→ (∃ ! x ∈ fst ‘ set vars. α x))
using assms

proof (induct vars arbitrary: conds zero one rule: encode-sum-0-1-main.induct)
case (1 x zero ′ one ′ conds zero one)
from 1 (1 ,3−) 1 (2 )[of 0 ] show ?case by (cases prop, auto)

next
case Cons: (2 x zero one r rr conds ′ zero ′ one ′)
let ?triple = (x,zero,one)
let ?rest = r # rr
obtain conds fzero fone where res: encode-sum-0-1-main ?rest = (conds, fzero,

fone)
by (cases encode-sum-0-1-main ?rest, auto)

from Cons(2 )[unfolded encode-sum-0-1-main.simps res split Let-def ]
have zero: zero ′ = zero and one: one ′ = one and

conds ′: conds ′ = enc-equiv-and-not zero fzero x # enc-equiv-ite one x fzero
fone # conds

by auto
from Cons(5 ) have x: x /∈ fst ‘ set ?rest

and dist: distinct (map fst ?rest) by auto
have eval-all α conds ∧ α fzero = (¬ (∃ a∈fst ‘ set ?rest. α a)) ∧ α fone = (∃ !x.

x ∈ fst ‘ set ?rest ∧ α x)
apply (rule Cons(1 )[OF res - - dist])
subgoal for i x ze on re using Cons(3 )[of Suc i x ze on re] by auto
subgoal using Cons(4 ) unfolding conds ′ by auto
subgoal by auto
done

hence IH : eval-all α conds α fzero = (¬ (∃ a∈fst ‘ set ?rest. α a))
α fone = (∃ !x. x ∈ fst ‘ set ?rest ∧ α x) by auto

show ?case
proof (cases prop)

case True
from Cons(3 )[of 0 x zero one ?rest, OF True]
have id: α zero = (∀ y∈ insert x (fst ‘ set ?rest). ¬ α y)
α one = (∃ !y. y ∈ insert x (fst ‘ set ?rest) ∧ α y) by auto

show ?thesis unfolding zero one conds ′ eval.simps using x IH (1 )
apply (simp add: IH id)
by blast

next
case False
from Cons(4 )[OF False, unfolded conds ′]
have id: α zero = (¬ α x ∧ α fzero)

α one = (α x ∧ α fzero ∨ ¬ α x ∧ α fone) by auto
show ?thesis unfolding zero one conds ′ eval.simps using x IH (1 )

apply (simp add: IH id)
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by blast
qed

qed auto

lemma encode-exactly-one-complete: assumes encode-exactly-one vars = (one,
conds)

and
∧

i x ze on. i < length vars =⇒
vars ! i = (x,ze,on) =⇒
(α ze ←→ ¬ (∃ y ∈ fst ‘ set (drop i vars). α y))
∧ (α on ←→ (∃ ! y ∈ fst ‘ set (drop i vars). α y))

and distinct (map fst vars)
shows eval-all α conds ∧ (eval α one ←→ (∃ ! x ∈ fst ‘ set vars. α x))
proof −

consider (empty) vars = [] | (single) x ze on where vars = [(x,ze,on)]
| (other) x ze on v vs where vars = (x,ze,on) # v # vs
by (cases vars; cases tl vars; auto)

thus ?thesis
proof cases

case (other x ze ′ on ′ v vs)
obtain on zero where res: encode-sum-0-1-main (v # vs) = (conds, zero, on)

and one: one = enc-ite x zero on
using assms(1 ) unfolding encode-exactly-one-def other split list.simps
by (cases encode-sum-0-1-main (v # vs), auto)

let ?vars = v # vs
define vars ′ where vars ′ = ?vars
from assms(3 ) other have dist: distinct (map fst ?vars) by auto
have main: eval-all α conds ∧ (α zero ←→ ¬ (∃ x ∈ fst ‘ set ?vars. α x))
∧ (α on ←→ (∃ ! x ∈ fst ‘ set ?vars. α x))
apply (rule encode-sum-0-1-main[OF res - - dist, of True])
subgoal for i x ze on re using assms(2 )[of Suc i x ze on] unfolding other

by (simp add: nth-via-drop)
by auto

hence conds: eval-all α conds and zero: α zero ←→ ¬ (∃ x ∈ fst ‘ set ?vars.
α x)

and on: α on ←→ (∃ ! x ∈ fst ‘ set ?vars. α x) by auto
have one: eval α one ←→ (∃ ! x ∈ fst ‘ set vars. α x)

unfolding one
apply (simp)
using assms(3 )
unfolding zero on other vars ′-def [symmetric] by simp blast

show ?thesis using one conds by auto
next

case empty
with assms have one = enc-False by (auto simp: encode-exactly-one-def )
hence eval α one = False by auto
with assms empty show ?thesis by (auto simp: encode-exactly-one-def )

qed (insert assms, auto simp: encode-exactly-one-def )
qed
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lemma encode-exactly-one-sound: assumes encode-exactly-one vars = (one, conds)
and distinct (map fst vars)
and eval α one
and eval-all α conds

shows ∃ ! x ∈ fst ‘ set vars. α x
proof −

consider (empty) vars = [] | (single) x ze on where vars = [(x,ze,on)]
| (other) x ze on v vs where vars = (x,ze,on) # v # vs
by (cases vars; cases tl vars; auto)

thus ?thesis
proof cases

case (other x ze ′ on ′ v vs)
obtain on zero where res: encode-sum-0-1-main (v # vs) = (conds, zero, on)

and one: one = enc-ite x zero on
using assms(1 ) unfolding encode-exactly-one-def other split list.simps
by (cases encode-sum-0-1-main (v # vs), auto)

let ?vars = v # vs
define vars ′ where vars ′ = ?vars
from assms(2 ) other have dist: distinct (map fst ?vars) by auto
have main: eval-all α conds ∧ (α zero ←→ ¬ (∃ x ∈ fst ‘ set ?vars. α x))
∧ (α on ←→ (∃ ! x ∈ fst ‘ set ?vars. α x))
by (rule encode-sum-0-1-main[OF res - assms(4 ) dist, of False], auto)

hence conds: eval-all α conds and zero: α zero ←→ ¬ (∃ x ∈ fst ‘ set ?vars.
α x)

and on: α on ←→ (∃ ! x ∈ fst ‘ set ?vars. α x) by auto
have one: eval α one ←→ (∃ ! x ∈ fst ‘ set vars. α x)

unfolding one
apply (simp)
using assms(2 )
unfolding zero on other vars ′-def [symmetric] by simp blast

with assms show ?thesis by auto
next

case empty
with assms have one = enc-False by (auto simp: encode-exactly-one-def )
hence eval α one = False by auto
with assms empty show ?thesis by (auto simp: encode-exactly-one-def )

qed (insert assms, auto simp: encode-exactly-one-def )
qed

lemma encodeGammaCond[simp]: eval α (encodeGammaCond gam eps s ns) =
(α gam −→ (α eps −→ ns) ∧ (¬ α eps −→ s))
by (cases ns; cases s, auto)

lemma eval-all-append[simp]: eval-all α (fs @ gs) = (eval-all α fs ∧ eval-all α gs)

by auto
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lemma eval-all-Cons[simp]: eval-all α (f # gs) = (eval α f ∧ eval-all α gs)
by auto

lemma eval-all-concat[simp]: eval-all α (concat fs) = (∀ f ∈ set fs. eval-all α f )
by auto

lemma eval-all-maps[simp]: eval-all α (List.maps f fs) = (∀ g ∈ set fs. eval-all α
(f g))

unfolding List.maps-def eval-all-concat by auto
end

context ms-encoder
begin

context
fixes s t :: nat ⇒ ′a

and n m :: nat
and S NS :: ′a rel
and cs cns

assumes cs:
∧

i j. cs i j = ((s i, t j) ∈ S)
and cns:

∧
i j. cns i j = ((s i, t j) ∈ NS)

begin

lemma encoding-sound:
assumes eval15 : eval-all v (formula15 cs cns n m)
shows (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ ns-mul-ext NS S

eval-all v (formula16 cs cns n m) =⇒ (mset (map s [0 ..< n]), mset (map t [0
..< m])) ∈ s-mul-ext NS S
proof −

from eval15 [unfolded formula15-def ]
have eval14 : eval-all v (formula14 n m) by auto
define property where property i = v (Epsilon i) for i
define j-of-i :: nat ⇒ nat

where j-of-i i = (THE j. j < m ∧ v (Gamma i j)) for i
define i-of-j :: nat ⇒ nat

where i-of-j j = (THE i. i < n ∧ v (Gamma i j)) for j
define xs1 where xs1 = filter (λ i. property i) [0 ..< n]
define xs2 where xs2 = filter (λ i. ¬ property i) [0 ..< n]
define ys1 where ys1 = map j-of-i xs1
define ys2 where ys2 = filter (λ j. j /∈ set ys1 ) [0 ..< m]
let ?xs1 = map s xs1
let ?xs2 = map s xs2
let ?ys1 = map t ys1
let ?ys2 = map t ys2
{

fix i
assume ∗: i < n v (Epsilon i)
let ?vars = map (λj. (Gamma i j, AuxZeroIJ i j, AuxOneIJ i j)) [0 ..<m]
obtain one conds where enc: encode-exactly-one ?vars = (one,conds) by force
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have dist: distinct (map fst ?vars) unfolding map-map o-def fst-conv
unfolding distinct-map by (auto simp: inj-on-def )

have eval-all v (enc-impl (Epsilon i) one # conds)
using eval14 [unfolded formula14-def Let-def eval-all-append, unfolded eval-all-maps,

THEN conjunct2 ] ∗(1 ) enc by force
with ∗ have eval v one eval-all v conds by auto
from encode-exactly-one-sound[OF enc dist this]
have 1 : ∃ !x. x ∈ set (map (λj. Gamma i j) [0 ..<m]) ∧ v x

by (simp add: image-comp)
have 2 : (∃ !x. x ∈ set (map (λj. Gamma i j) [0 ..<m]) ∧ v x) =

(∃ ! j. j < m ∧ v (Gamma i j)) by fastforce
have 3 : ∃ ! j. j < m ∧ v (Gamma i j) using 1 2 by auto
have j-of-i i < m ∧ v (Gamma i (j-of-i i))

using 3 unfolding j-of-i-def
by (metis (no-types, lifting) the-equality)

note this 3
} note j-of-i = this
{

fix j
assume ∗: j < m
let ?vars = map (λi. (Gamma i j, AuxZeroJI i j, AuxOneJI i j)) [0 ..<n]
have dist: distinct (map fst ?vars) unfolding map-map o-def fst-conv

unfolding distinct-map by (auto simp: inj-on-def )
obtain one conds where enc: encode-exactly-one ?vars = (one,conds) by force
have eval-all v (one # conds)
using eval14 [unfolded formula14-def Let-def eval-all-append, unfolded eval-all-maps,

THEN conjunct1 ] ∗(1 ) enc by force
hence eval v one eval-all v conds by auto
from encode-exactly-one-sound[OF enc dist this]
have 1 : ∃ !x. x ∈ set (map (λi. Gamma i j) [0 ..<n]) ∧ v x

by (simp add: image-comp)
have 2 : (∃ !x. x ∈ set (map (λi. Gamma i j) [0 ..<n]) ∧ v x) =

(∃ ! i. i < n ∧ v (Gamma i j)) by fastforce
have 3 : ∃ ! i. i < n ∧ v (Gamma i j) using 1 2 by auto
have i-of-j j < n ∧ v (Gamma (i-of-j j) j)

using 3 unfolding i-of-j-def
by (metis (no-types, lifting) the-equality)

note this 3
} note i-of-j = this

have len: length ?xs1 = length ?ys1
unfolding ys1-def by simp

note goals = len
{

fix k
define i where i = xs1 ! k
assume k < length ?ys1
hence k: k < length xs1 using len by auto
hence i ∈ set xs1 using i-def by simp
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hence ir : i < n v (Epsilon i)
unfolding xs1-def property-def by auto

from j-of-i this
have ∗∗: j-of-i i < m ∧ v (Gamma i (j-of-i i)) by auto
have ys1k: ?ys1 ! k = t (j-of-i i) unfolding i-def ys1-def using k by auto
have xs1k: ?xs1 ! k = s i unfolding i-def using k by auto
from eval15 have ∀ i∈{0 ..<n}.
∀ j∈{0 ..<m}. v (Gamma i j) −→ (v (Epsilon i) −→ cns i j)

unfolding formula15-def Let-def eval-all-append eval-all-maps
by (auto split: if-splits)

hence cns i (j-of-i i) using ∗∗ ir by auto
then have (?xs1 ! k, ?ys1 ! k) ∈ NS

unfolding xs1k ys1k using cns[of i (j-of-i i)] by (auto split: if-splits)
} note step2 = this
note goals = goals this
have xexp : mset (map s [0 ..<n]) = mset ?xs1 + mset ?xs2

unfolding xs1-def xs2-def
using mset-map-filter
by metis

note goals = goals this
{

fix i
assume i < n property i
hence i-of-j (j-of-i i) = i

using i-of-j j-of-i[of i] unfolding property-def by auto
} note i-of-j-of-i = this
have mset ys1 = mset (filter (λj. j ∈ set (map j-of-i xs1 )) [0 ..<m])
(is mset ?l = mset ?r)

proof −
have dl: distinct ?l unfolding ys1-def xs1-def distinct-map
proof

show distinct (filter property [0 ..<n]) by auto
show inj-on j-of-i (set (filter property [0 ..<n]))

by (intro inj-on-inverseI [of - i-of-j], insert i-of-j-of-i, auto)
qed
have dr : distinct ?r by simp
have id: set ?l = set ?r unfolding ys1-def xs1-def using j-of-i i-of-j

by (auto simp: property-def )
from dl dr id show ?thesis using set-eq-iff-mset-eq-distinct by blast

qed
hence ys1 : mset (map t ys1 ) = mset (map t ?r) by simp
have yeyp: mset (map t [0 ..<m]) = mset ?ys1 + mset ?ys2

unfolding ys1 ys2-def unfolding ys1-def mset-map-filter ..
note goals = goals this
{

fix y
assume y ∈ set ?ys2
then obtain j where j: j ∈ set ys2 and y: y = t j by auto
from j[unfolded ys2-def ys1-def ]
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have j: j < m and nmem: j /∈ set (map j-of-i xs1 ) by auto
let ?i = i-of-j j
from i-of-j[OF j] have i: ?i < n and gamm: v (Gamma ?i j) by auto
from eval15 [unfolded formula15-def Let-def eval-all-append eval-all-maps] i j

gamm
have ¬ v (Epsilon ?i) =⇒ cs ?i j by (force split: if-splits)
moreover have not: ¬ v (Epsilon ?i) using nmem i j i-of-j j-of-i

unfolding xs1-def property-def
by (metis atLeast0LessThan filter-set imageI lessThan-iff list.set-map mem-

ber-filter set-upt)
ultimately have cs ?i j by simp
hence sy: (s ?i,y) ∈ S unfolding y using cs[of ?i j] by (auto split: if-splits)
from not i have ?i ∈ set xs2 unfolding xs2-def property-def by auto
hence s ?i ∈ set ?xs2 by simp
hence ∃ x ∈ set ?xs2 . (x,y) ∈ S using sy by auto

}
note goals = goals this

show (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ ns-mul-ext NS S
by (rule ns-mul-ext-intro[OF goals(3 ,4 ,1 ,2 ,5 )])

assume eval-all v (formula16 cs cns n m)
from this[unfolded formula16-def Let-def ]
obtain i where i: i < n and v: ¬ v (Epsilon i) by auto
hence i ∈ set xs2 unfolding xs2-def property-def by auto
hence ?xs2 6= [] by auto
note goals = goals this
show (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ s-mul-ext NS S

by (rule s-mul-ext-intro[OF goals(3 ,4 ,1 ,2 ,6 ,5 )])
qed

lemma bex1-cong: X = Y =⇒ (
∧

x. x ∈ Y =⇒ P x = Q x) =⇒ (∃ !x. x ∈ X ∧
P x) = (∃ !x. x ∈ Y ∧ Q x)

by auto

lemma encoding-complete:
assumes (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ ns-mul-ext NS S
shows (∃ v. eval-all v (formula15 cs cns n m) ∧
((mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ s-mul-ext NS S −→ eval-all

v (formula16 cs cns n m)))
proof −

let ?S = (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ s-mul-ext NS S
from ns-mul-ext-elim[OF assms] s-mul-ext-elim[of mset (map s [0 ..<n]) mset

(map t [0 ..<m]) NS S ]
obtain Xs1 Xs2 Ys1 Ys2 where

eq1 : mset (map s [0 ..<n]) = mset Xs1 + mset Xs2 and
eq2 : mset (map t [0 ..<m]) = mset Ys1 + mset Ys2 and
len: length Xs1 = length Ys1 and
ne: ?S =⇒ Xs2 6= [] and
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NS :
∧

i. i<length Ys1 =⇒ (Xs1 ! i, Ys1 ! i) ∈ NS and
S :

∧
y. y∈set Ys2 =⇒ ∃ x∈set Xs2 . (x, y) ∈ S

by blast
from mset-map-split[OF eq1 ] obtain xs1 xs2 where

xs: mset [0 ..<n] = mset xs1 + mset xs2
and xs1 : Xs1 = map s xs1
and xs2 : Xs2 = map s xs2 by auto

from mset-map-split[OF eq2 ] obtain ys1 ys2 where
ys: mset [0 ..<m] = mset ys1 + mset ys2

and ys1 : Ys1 = map t ys1
and ys2 : Ys2 = map t ys2 by auto

from xs have dist-xs: distinct (xs1 @ xs2 )
by (metis distinct-upt mset-append mset-eq-imp-distinct-iff )

from xs have un-xs: set xs1 ∪ set xs2 = {..<n}
by (metis atLeast-upt set-mset-mset set-mset-union)

from ys have dist-ys: distinct (ys1 @ ys2 )
by (metis distinct-upt mset-append mset-eq-imp-distinct-iff )

from ys have un-ys: set ys1 ∪ set ys2 = {..<m}
by (metis atLeast-upt set-mset-mset set-mset-union)

define pos-of where pos-of xs i = (THE p. p < length xs ∧ xs ! p = i) for i
and xs :: nat list

from dist-xs dist-ys have distinct xs1 distinct ys1 by auto
{

fix xs :: nat list and x
assume dist: distinct xs and x: x ∈ set xs
hence one: ∃ ! i. i < length xs ∧ xs ! i = x by (rule distinct-Ex1 )
from theI ′[OF this, folded pos-of-def ]
have pos-of xs x < length xs xs ! pos-of xs x = x by auto
note this one

} note pos = this
note p-xs = pos[OF ‹distinct xs1 ›]
note p-ys = pos[OF ‹distinct ys1 ›]
define i-of-j2 where i-of-j2 j = (SOME i. i ∈ set xs2 ∧ cs i j) for j
define v ′ :: PropVar ⇒ bool where
v ′ x = (case x of

Epsilon i ⇒ i ∈ set xs1
| Gamma i j ⇒ (i ∈ set xs1 ∧ j ∈ set ys1 ∧ i = xs1 ! pos-of ys1 j

∨ i ∈ set xs2 ∧ j ∈ set ys2 ∧ i = i-of-j2 j)) for x
define v :: PropVar ⇒ bool where

v x = (case x of
AuxZeroJI i j ⇒ (¬ Bex (set (drop i (map (λi. (Gamma i j)) [0 ..<n]))) v ′)
| AuxOneJI i j ⇒ (∃ !y. y ∈ set (drop i (map (λi. (Gamma i j)) [0 ..<n])) ∧ v ′

y)
| AuxZeroIJ i j ⇒ (¬ Bex (set (drop j (map (λj. (Gamma i j)) [0 ..<m]))) v ′)
| AuxOneIJ i j ⇒ (∃ !y. y ∈ set (drop j (map (λj. (Gamma i j)) [0 ..<m])) ∧

v ′ y)
| - ⇒ v ′ x) for x

note v-defs = v-def v ′-def
{
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fix j
assume j2 : j ∈ set ys2
from j2 have t j ∈ set Ys2 unfolding ys2 by auto
from S [OF this, unfolded xs2 ] have ∃ i. i ∈ set xs2 ∧ cs i j

by (auto simp: cs)
from someI-ex[OF this, folded i-of-j2-def ]
have ∗: i-of-j2 j ∈ set xs2 cs (i-of-j2 j) j by auto
hence v (Gamma (i-of-j2 j) j) unfolding v-defs using j2 by auto
note ∗ this

} note j-ys2 = this
{

fix j
assume j1 : j ∈ set ys1
let ?pj = pos-of ys1 j
from p-ys[OF j1 ] have pj: ?pj < length Ys1 and yj: ys1 ! ?pj = j

unfolding ys1 by auto
have pj ′: ?pj < length Xs1 using len pj by auto
from NS [OF pj] have (Xs1 ! ?pj, Ys1 ! ?pj) ∈ NS .
also have Ys1 ! ?pj = t j using pj unfolding ys1 using yj by auto
also have Xs1 ! ?pj = s (xs1 ! ?pj) using pj ′ unfolding xs1 by auto
finally have cns: cns (xs1 ! ?pj) j unfolding cns .
have mem: xs1 ! ?pj ∈ set xs1 using pj ′ unfolding xs1 by auto
have v: v (Gamma (xs1 ! ?pj) j)

unfolding v-defs using j1 mem by auto
note mem cns v

} note j-ys1 = this
have 14 : eval-all v (formula14 n m)

unfolding formula14-def Let-def eval-all-append eval-all-maps
proof (intro conjI ballI , goal-cases)

case (1 j f )
then obtain one cands where j: j < m and f : f ∈ set (one # cands)

and enc: encode-exactly-one (map (λi. (Gamma i j, AuxZeroJI i j, AuxOneJI
i j)) [0 ..<n]) = (one, cands) (is ?e = -)

by (cases ?e, auto)
have eval-all v cands ∧

eval v one = (∃ !x. x ∈ fst ‘ set (map (λi. (Gamma i j, AuxZeroJI i j,
AuxOneJI i j)) [0 ..<n]) ∧ v x)

apply (rule encode-exactly-one-complete[OF enc])
subgoal for i y ze on
proof (goal-cases)

case 1
hence ze: ze = AuxZeroJI i j and on: on = AuxOneJI i j by auto
have id: fst ‘ set (drop i (map (λi. (Gamma i j, AuxZeroJI i j, AuxOneJI i

j)) [0 ..<n]))
= set (drop i (map (λi. (Gamma i j)) [0 ..<n]))

unfolding set-map[symmetric] drop-map by simp
show ?thesis unfolding ze on id unfolding v-def drop-map

by (intro conjI , force, simp, intro bex1-cong refl, auto)
qed
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subgoal by (auto simp: distinct-map intro: inj-onI )
done

also have fst ‘ set (map (λi. (Gamma i j, AuxZeroJI i j, AuxOneJI i j)) [0 ..<n])
= (λi. Gamma i j) ‘ set [0 ..<n] unfolding set-map image-comp o-def by

auto
also have (∃ !x. x ∈ . . . ∧ v x) = True unfolding eq-True
proof −

from j un-ys have j ∈ set ys1 ∨ j ∈ set ys2 by auto
thus ∃ !x. x ∈ (λi. Gamma i j) ‘ set [0 ..<n] ∧ v x
proof

assume j: j ∈ set ys2
from j-ys2 [OF j] un-xs have i-of-j2 j ∈ {0 ..<n} by auto
from this j-ys2 [OF j] dist-ys j
show ?thesis

by (intro ex1I [of - (Gamma (i-of-j2 j) j)], force, auto simp: v-defs)
next

assume j: j ∈ set ys1
from j-ys1 [OF j] un-xs have xs1 ! pos-of ys1 j ∈ {0 ..<n} by auto
from this j-ys1 [OF j] dist-ys j
show ?thesis
by (intro ex1I [of - (Gamma (xs1 ! pos-of ys1 j) j)], force, auto simp: v-defs)

qed
qed
finally show ?case using 1 f by auto

next
case (2 i f )
then obtain one cands where i: i < n and f : f ∈ set (enc-impl (Epsilon i)

one # cands)
and enc: encode-exactly-one (map (λj. (Gamma i j, AuxZeroIJ i j, AuxOneIJ

i j)) [0 ..<m]) = (one, cands) (is ?e = -)
by (cases ?e, auto)

have eval-all v cands ∧
eval v one = (∃ !x. x ∈ fst ‘ set (map (λj. (Gamma i j, AuxZeroIJ i j,

AuxOneIJ i j)) [0 ..<m]) ∧ v x)
apply (rule encode-exactly-one-complete[OF enc])
subgoal for j y ze on
proof (goal-cases)

case 1
hence ze: ze = AuxZeroIJ i j and on: on = AuxOneIJ i j by auto
have id: fst ‘ set (drop j (map (λj. (Gamma i j, AuxZeroIJ i j, AuxOneIJ i

j)) [0 ..<m]))
= set (drop j (map (λj. (Gamma i j)) [0 ..<m]))

unfolding set-map[symmetric] drop-map by simp
show ?thesis unfolding ze on id unfolding v-def drop-map

by (intro conjI , force, simp, intro bex1-cong refl, auto)
qed
subgoal by (auto simp: distinct-map intro: inj-onI )
done
also have fst ‘ set (map (λj. (Gamma i j, AuxZeroIJ i j, AuxOneIJ i j))
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[0 ..<m])
= (λj. Gamma i j) ‘ set [0 ..<m] unfolding set-map image-comp o-def by

auto
finally have cands: eval-all v cands

and eval v one = (∃ !x. x ∈ Gamma i ‘ set [0 ..<m] ∧ v x) by auto
note this(2 )
also have v (Epsilon i) =⇒ . . . = True unfolding eq-True
proof −

assume v: v (Epsilon i)
hence i-xs: i ∈ set xs1 i /∈ set xs2 unfolding v-defs using dist-xs by auto
from this[unfolded set-conv-nth] obtain p where p1 : p < length xs1

and xpi: xs1 ! p = i by auto
define j where j = ys1 ! p
from p1 len have p2 : p < length ys1 unfolding xs1 ys1 by auto
hence j: j ∈ set ys1 unfolding j-def by auto
from p-ys[OF j] p2 have pp: pos-of ys1 j = p by (auto simp: j-def )
from j un-ys have jm: j < m by auto
have v: v (Gamma i j) unfolding v-defs using j pp xpi i-xs by simp
{

fix k
assume vk: v (Gamma i k)
from vk[unfolded v-defs] i-xs
have k: k ∈ set ys1 and ik: i = xs1 ! pos-of ys1 k by auto
from p-ys[OF k] ik xpi have id: pos-of ys1 k = p

by (metis ‹distinct xs1 › len length-map nth-eq-iff-index-eq p1 xs1 ys1 )
have k = ys1 ! pos-of ys1 k using p-ys[OF k] by auto
also have . . . = j unfolding id j-def ..
finally have k = j .

} note unique = this
show ∃ !j. j ∈ Gamma i ‘ set [0 ..<m] ∧ v j

by (intro ex1I [of - Gamma i j], use jm v in force, use unique in auto)
qed
finally show ?case using 2 f cands enc by auto

qed
{

fix i j
assume i: i < n and j: j < m
assume v: v (Gamma i j)
have strict: ¬ v (Epsilon i) =⇒ cs i j using i j v j-ys2 [of j] unfolding v-defs

by auto
{

assume v (Epsilon i)
hence i ′: i ∈ set xs1 i /∈ set xs2 unfolding v-defs using dist-xs by auto
with v have j ′: j ∈ set ys1 unfolding v-defs using dist-ys by auto
from v[unfolded v-defs] i ′ have ii: i = xs1 ! pos-of ys1 j by auto
from j-ys1 [OF j ′, folded ii] have cns i j by auto

}
note strict this

} note compare = this
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have 15 : eval-all v (formula15 cs cns n m)
unfolding formula15-def Let-def eval-all-maps eval-all-append using 14 com-

pare by auto
{

assume ?S
have 16 : ∃ x∈{0 ..<n}. ¬ v (Epsilon x)

by (rule bexI [of - hd xs2 ]; insert ne[OF ‹?S›] xs2 un-xs dist-xs; cases xs2 ,
auto simp: v-defs)

have eval-all v (formula16 cs cns n m)
unfolding formula16-def Let-def using 15 16 by simp

}
with 15 show ?thesis by blast

qed

lemma formula15 : (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ ns-mul-ext
NS S
←→ (∃ v. eval-all v (formula15 cs cns n m))
using encoding-sound encoding-complete by blast

lemma formula16 : (mset (map s [0 ..< n]), mset (map t [0 ..< m])) ∈ s-mul-ext
NS S
←→ (∃ v. eval-all v (formula16 cs cns n m))
using encoding-sound encoding-complete s-ns-mul-ext[of - - NS S ]
unfolding formula16-def Let-def eval-all-Cons by blast

end

lemma encode-mul-ext: assumes encode-mul-ext f xs ys = (ϕS , ϕNS)
shows mul-ext f xs ys = ((∃ v. eval v ϕS), (∃ v. eval v ϕNS))

proof −
have xs: mset xs = mset (map (λ i. xs ! i) [0 ..< length xs]) by (simp add:

map-nth)
have ys: mset ys = mset (map (λ i. ys ! i) [0 ..< length ys]) by (simp add:

map-nth)
from assms[unfolded encode-mul-ext-def Let-def , simplified]
have phis: ϕNS = enc-conj (formula15 (λi j. fst (f (xs ! i) (ys ! j))) (λi j. snd

(f (xs ! i) (ys ! j))) (length xs) (length ys))
ϕS = enc-conj (formula16 (λi j. fst (f (xs ! i) (ys ! j))) (λi j. snd (f (xs ! i)

(ys ! j))) (length xs) (length ys))
by (auto simp: formula16-def )

show ?thesis unfolding mul-ext-def Let-def unfolding xs ys prod.inject phis
enc-sound

by (intro conjI ; rule formula15 formula16 , auto)
qed
end

4.4 Encoding into Propositional Formulas
global-interpretation pf-encoder : ms-encoder

Disj []
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Conj []
λ x. Prop x
λ x. Neg (Prop x)
λ x y. Equiv (Prop x) (Neg (Prop y))
λ x y z. Equiv (Prop x) (Conj [Prop y, Neg (Prop z)])
λ x y z u. Equiv (Prop x) (Disj [Conj [Prop y, Prop z], Conj [Neg (Prop y), Prop

u]])
λ x y z. Disj [Conj [Prop x, Prop y], Conj [Neg (Prop x), Prop z]]
λ x f . Impl (Prop x) f
λ x y. Impl (Prop x) (Prop y)
λ x y. Neg (Conj [Prop x, Prop y])
λ xs. Neg (Conj (map Prop xs))
Conj
eval
defines

pf-encode-sum-0-1-main = pf-encoder .encode-sum-0-1-main and
pf-encode-exactly-one = pf-encoder .encode-exactly-one and
pf-encodeGammaCond = pf-encoder .encodeGammaCond and
pf-formula14 = pf-encoder .formula14 and
pf-formula15 = pf-encoder .formula15 and
pf-formula16 = pf-encoder .formula16 and
pf-encode-mul-ext = pf-encoder .encode-mul-ext

by (unfold-locales, auto)

The soundness theorem of the propositional formula encoder
thm pf-encoder .encode-mul-ext

4.5 Size of Propositional Formula Encoding is Quadratic
lemma size-pf-encode-sum-0-1-main: assumes pf-encode-sum-0-1-main vars = (conds,
one, zero)

and vars 6= []
shows sum-list (map size-pf conds) = 16 ∗ length vars − 12
using assms

proof (induct vars arbitrary: conds one zero rule: pf-encoder .encode-sum-0-1-main.induct)
case (1 x zero ′ one ′ conds zero one)
hence conds = [Equiv (Prop zero) (Neg (Prop x))] by auto
thus ?case by simp

next
case Cons: (2 x zero one r rr conds ′ zero ′ one ′)
let ?triple = (x,zero,one)
let ?rest = r # rr
obtain conds fzero fone where res: pf-encode-sum-0-1-main ?rest = (conds,

fzero, fone)
by (cases pf-encode-sum-0-1-main ?rest, auto)

from Cons(2 )[unfolded pf-encoder .encode-sum-0-1-main.simps res split Let-def ]
have conds ′: conds ′ = Equiv (Prop zero) (Conj [Prop fzero, Neg (Prop x)]) #

Equiv (Prop one) (Disj [Conj [Prop x, Prop fzero], Conj [Neg (Prop x),
Prop fone]]) # conds

by auto
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have sum-list (map size-pf conds ′) = 16 + sum-list (map size-pf conds)
unfolding conds ′ by simp

with Cons(1 )[OF res]
show ?case by simp

qed auto

lemma size-pf-encode-exactly-one: assumes pf-encode-exactly-one vars = (one,
conds)

shows size-pf one + sum-list (map size-pf conds) = 1 + (16 ∗ length vars − 21 )

proof (cases vars = [])
case True
with assms have size-pf one = 1 conds = []

by (auto simp add: pf-encoder .encode-exactly-one-def )
thus ?thesis unfolding True by simp

next
case False
then obtain x ze ′ on ′ vs where vars: vars = (x,ze ′,on ′) # vs by (cases vars;

auto)
show ?thesis
proof (cases vs)

case Nil
have size-pf one = 1 conds = [] using assms unfolding vars Nil

by (auto simp add: pf-encoder .encode-exactly-one-def )
thus ?thesis unfolding vars Nil by simp

next
case (Cons v vs ′)
obtain on zero where res: pf-encode-sum-0-1-main vs = (conds, zero, on)

and one: one = Disj [Conj [Prop x , Prop zero], Conj [Neg (Prop x), Prop
on]]

using assms(1 ) False Cons unfolding pf-encoder .encode-exactly-one-def vars
by (cases pf-encode-sum-0-1-main vs, auto)

from size-pf-encode-sum-0-1-main[OF res]
have sum: sum-list (map size-pf conds) = (16 ∗ length vars − 28 ) using Cons

vars by auto
have one: size-pf one = 8 unfolding one by simp
show ?thesis unfolding one sum vars Cons by simp

qed
qed

lemma sum-list-concat: sum-list (concat xs) = sum-list (map sum-list xs)
by (induct xs, auto)

lemma sum-list-triv-cong: assumes length xs = n
and

∧
x. x ∈ set xs =⇒ f x = c

shows sum-list (map f xs) = n ∗ c
by (subst map-cong[OF refl, of - - λ - . c], insert assms, auto simp: sum-list-triv)
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lemma size-pf-formula14 : sum-list (map size-pf (pf-formula14 n m)) = m + 3 ∗
n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 )
proof −

have sum-list (map size-pf (pf-formula14 n m)) = m ∗ (1 + (16 ∗ n − 21 )) +
n ∗ (3 + (16 ∗ m − 21 ))

unfolding pf-encoder .formula14-def Let-def sum-list-append map-append map-concat
List.maps-def sum-list-concat map-map o-def

proof (intro arg-cong2 [of - - - - (+)], goal-cases)
case 1
show ?case

apply (rule sum-list-triv-cong, force)
subgoal for j

by (cases pf-encode-exactly-one (map (λi. (Gamma i j, AuxZeroJI i j,
AuxOneJI i j)) [0 ..<n]),

auto simp: size-pf-encode-exactly-one)
done

next
case 2
show ?case

apply (rule sum-list-triv-cong, force)
subgoal for i

by (cases pf-encode-exactly-one (map (λj. (Gamma i j, AuxZeroIJ i j,
AuxOneIJ i j)) [0 ..<m]),

auto simp: size-pf-encode-exactly-one)
done

qed
also have . . . = m + 3 ∗ n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 )

by (simp add: algebra-simps)
finally show ?thesis .

qed

lemma size-pf-encodeGammaCond: size-pf (pf-encodeGammaCond gam eps ns s)
≤ 4

by (cases ns; cases s, auto)

lemma size-pf-formula15 : sum-list (map size-pf (pf-formula15 cs cns n m)) ≤ m
+ 3 ∗ n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 ) + 4 ∗ m ∗ n
proof −

have sum-list (map size-pf (pf-formula15 cs cns n m)) ≤ sum-list (map size-pf
(pf-formula14 n m)) + 4 ∗ m ∗ n

unfolding pf-encoder .formula15-def Let-def
apply (simp add: size-list-conv-sum-list List.maps-def map-concat o-def length-concat

sum-list-triv sum-list-concat algebra-simps)
apply (rule le-trans, rule sum-list-mono, rule sum-list-mono[of - - λ -. 4 ])
by (auto simp: size-pf-encodeGammaCond sum-list-triv)

also have . . . = m + 3 ∗ n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 ) + 4 ∗
m ∗ n

unfolding size-pf-formula14 by auto
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finally show ?thesis .
qed

lemma size-pf-formula16 : sum-list (map size-pf (pf-formula16 cs cns n m)) ≤ 2
+ m + 4 ∗ n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 ) + 4 ∗ m ∗ n
proof −

have sum-list (map size-pf (pf-formula16 cs cns n m)) = sum-list (map size-pf
(pf-formula15 cs cns n m)) + (n + 2 )

unfolding pf-encoder .formula16-def Let-def by (simp add: o-def size-list-conv-sum-list
sum-list-triv)

also have . . . ≤ (m + 3 ∗ n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 ) + 4 ∗
m ∗ n) + (n + 2 )

by (rule add-right-mono[OF size-pf-formula15 ])
also have . . . = 2 + m + 4 ∗ n + m ∗ (n ∗ 16 − 21 ) + n ∗ (m ∗ 16 − 21 ) +

4 ∗ m ∗ n by simp
finally show ?thesis .

qed

lemma size-pf-encode-mul-ext: assumes pf-encode-mul-ext f xs ys = (ϕS , ϕNS)
and n: n = max (length xs) (length ys)
and n0 : n 6= 0

shows size-pf ϕS ≤ 36 ∗ n2

size-pf ϕNS ≤ 36 ∗ n2

proof −
from assms[unfolded pf-encoder .encode-mul-ext-def Let-def , simplified]
have phis: ϕNS = Conj (pf-formula15 (λi j. fst (f (xs ! i) (ys ! j))) (λi j. snd (f

(xs ! i) (ys ! j))) (length xs) (length ys))
ϕS = Conj (pf-formula16 (λi j. fst (f (xs ! i) (ys ! j))) (λi j. snd (f (xs ! i) (ys

! j))) (length xs) (length ys))
by (auto simp: pf-encoder .formula16-def )

have size-pf ϕS ≤ 1 + (2 + n + 4 ∗ n + n ∗ (n ∗ 16 − 21 ) + n ∗ (n ∗ 16 −
21 ) + 4 ∗ n ∗ n)

unfolding phis unfolding n size-pf .simps
by (rule add-left-mono, rule le-trans[OF size-pf-formula16 ], intro add-mono

mult-mono le-refl, auto)
also have . . . ≤ 36 ∗ n^2 − 24 ∗ n using n0 by (cases n; auto simp: power2-eq-square

algebra-simps)
finally show size-pf ϕS ≤ 36 ∗ n^2 by simp

have size-pf ϕNS ≤ 1 + (n + 4 ∗ n + n ∗ (n ∗ 16 − 21 ) + n ∗ (n ∗ 16 − 21 )
+ 4 ∗ n ∗ n)

unfolding phis unfolding n size-pf .simps
apply (rule add-left-mono)
apply (rule le-trans[OF size-pf-formula15 ])
by (intro max.mono add-mono mult-mono le-refl, auto)

also have . . . ≤ 36 ∗ n^2 − 25 ∗ n using n0 by (cases n; auto simp: power2-eq-square
algebra-simps)

finally show size-pf ϕNS ≤ 36 ∗ n^2 by simp
qed
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4.6 Encoding into Conjunctive Normal Form
global-interpretation cnf-encoder : ms-encoder
[[]]
[]
λ x. [[(x, True)]]
λ x. [[(x, False)]]
λ x y. [[(x, True), (y, True)], [(x, False), (y, False)]]
λ x y z. [[(x,False),(y,True)],[(x,False),(z,False)],[(x,True),(y,False),(z,True)]]
λ x y z u. [[(x,True),(y,True),(u,False)],[(x,True),(y,False),(z,False)],[(x,False),(y,False),(z,True)],[(x,False),(y,True),(u,True)]]
λ x y z. [[(x,True),(z,True)],[(x,False),(y,True)]]
λ x xs. map (λ c. (x,False) # c) xs
λ x y. [[(x,False), (y, True)]]
λ x y. [[(x,False), (y, False)]]
λ xs. [map (λ x. (x, False)) xs]
concat
eval-cnf
defines

cnf-encode-sum-0-1-main = cnf-encoder .encode-sum-0-1-main and
cnf-encode-exactly-one = cnf-encoder .encode-exactly-one and
cnf-encodeGammaCond = cnf-encoder .encodeGammaCond and
cnf-formula14 = cnf-encoder .formula14 and
cnf-formula15 = cnf-encoder .formula15 and
cnf-formula16 = cnf-encoder .formula16 and
cnf-encode-mul-ext = cnf-encoder .encode-mul-ext

by unfold-locales (force simp: eval-cnf-alt-def )+

The soundness theorem of the CNF-encoder
thm cnf-encoder .encode-mul-ext

4.7 Size of CNF-Encoding is Quadratic
lemma size-cnf-encode-sum-0-1-main: assumes cnf-encode-sum-0-1-main vars =
(conds, one, zero)

and vars 6= []
shows sum-list (map size-cnf conds) = 26 ∗ length vars − 20
using assms

proof (induct vars arbitrary: conds one zero rule: cnf-encoder .encode-sum-0-1-main.induct)
case (1 x zero ′ one ′ conds zero one)
hence conds = [[[(zero, True), (one, True)], [(zero, False), (one, False)]]] by

auto
hence sum-list (map size-cnf conds) = 6 by (simp add: size-cnf-def )
thus ?case by simp

next
case Cons: (2 x zero one r rr conds ′ zero ′ one ′)
let ?triple = (x,zero,one)
let ?rest = r # rr
obtain conds fzero fone where res: cnf-encode-sum-0-1-main ?rest = (conds,

fzero, fone)
by (cases cnf-encode-sum-0-1-main ?rest, auto)
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from Cons(2 )[unfolded cnf-encoder .encode-sum-0-1-main.simps res split Let-def ]
have conds ′: conds ′ = [[(zero, False), (fzero, True)], [(zero, False), (x, False)],

[(zero, True), (fzero, False), (x, True)]] #
[[(one, True), (x, True), (fone, False)], [(one, True), (x, False), (fzero, False)],

[(one, False), (x, False), (fzero, True)],
[(one, False), (x, True), (fone, True)]] #
conds
by auto

have sum-list (map size-cnf conds ′) = 26 + sum-list (map size-cnf conds)
unfolding conds ′ by (simp add: size-cnf-def )

with Cons(1 )[OF res]
show ?case by simp

qed auto

lemma size-cnf-encode-exactly-one: assumes cnf-encode-exactly-one vars = (one,
conds)

shows size-cnf one + sum-list (map size-cnf conds) ≤ 2 + (26 ∗ length vars −
42 ) ∧ length one ≤ 2
proof (cases vars = [])

case True
with assms have size-cnf one = 1 length one = 1 conds = []

by (auto simp add: cnf-encoder .encode-exactly-one-def size-cnf-def )
thus ?thesis unfolding True by simp

next
case False
then obtain x ze ′ on ′ vs where vars: vars = (x,ze ′,on ′) # vs by (cases vars;

auto)
show ?thesis
proof (cases vs)

case Nil
have size-cnf one = 2 length one = 1 conds = [] using assms unfolding vars

Nil
by (auto simp add: cnf-encoder .encode-exactly-one-def size-cnf-def )

thus ?thesis unfolding vars Nil by simp
next

case (Cons v vs ′)
obtain on zero where res: cnf-encode-sum-0-1-main vs = (conds, zero, on)

and one: one = [[(x, True), (on, True)], [(x, False), (zero, True)]]
using assms(1 ) False Cons unfolding cnf-encoder .encode-exactly-one-def

vars
by (cases cnf-encode-sum-0-1-main vs, auto)

from size-cnf-encode-sum-0-1-main[OF res]
have sum: sum-list (map size-cnf conds) = 26 ∗ length vars − 46 using Cons

vars by auto
have one: size-cnf one = 6 length one = 2 unfolding one by (auto simp add:

size-cnf-def )
show ?thesis unfolding one sum vars Cons by simp

qed
qed
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lemma sum-list-mono-const: assumes
∧

x. x ∈ set xs =⇒ f x ≤ c
and n = length xs

shows sum-list (map f xs) ≤ n ∗ c
unfolding assms(2 ) using assms(1 )
by (induct xs; force)

lemma size-cnf-formula14 : sum-list (map size-cnf (cnf-formula14 n m)) ≤ 2 ∗ m
+ 4 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m − 42 )
proof −

have sum-list (map size-cnf (cnf-formula14 n m)) ≤ m ∗ (2 + (26 ∗ n − 42 ))
+ n ∗ (4 + (26 ∗ m − 42 ))

unfolding cnf-encoder .formula14-def Let-def sum-list-append map-append map-concat
List.maps-def sum-list-concat map-map o-def

proof ((intro add-mono; intro sum-list-mono-const), goal-cases)
case (1 j)
obtain one conds where cnf : cnf-encode-exactly-one (map (λi. (Gamma i j,

AuxZeroJI i j, AuxOneJI i j)) [0 ..<n]) = (one, conds) (is ?e = -)
by (cases ?e, auto)

show ?case unfolding cnf split using size-cnf-encode-exactly-one[OF cnf ] by
auto

next
case (3 i)
obtain one conds where cnf : cnf-encode-exactly-one (map (λj. (Gamma i j,

AuxZeroIJ i j, AuxOneIJ i j)) [0 ..<m]) = (one, conds) (is ?e = -)
by (cases ?e, auto)

have id: size-cnf (map ((#) (Epsilon i, False)) one) = size-cnf one + length
one unfolding size-cnf-def by (induct one, auto simp: o-def )

show ?case unfolding cnf split using size-cnf-encode-exactly-one[OF cnf ] by
(simp add: id)

qed auto
also have . . . = 2 ∗ m + 4 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m − 42 )

by (simp add: algebra-simps)
finally show ?thesis .

qed

lemma size-cnf-encodeGammaCond: size-cnf (cnf-encodeGammaCond gam eps ns
s) ≤ 3

by (cases ns; cases s, auto simp: size-cnf-def )

lemma size-cnf-formula15 : sum-list (map size-cnf (cnf-formula15 cs cns n m)) ≤
2 ∗ m + 4 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m − 42 ) + 3 ∗ n ∗ m
proof −
have sum-list (map size-cnf (cnf-formula15 cs cns n m)) ≤ sum-list (map size-cnf

(cnf-formula14 n m)) + 3 ∗ n ∗ m
unfolding cnf-encoder .formula15-def Let-def

apply (simp add: size-list-conv-sum-list List.maps-def map-concat o-def length-concat
sum-list-triv sum-list-concat algebra-simps)
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apply (rule le-trans, rule sum-list-mono-const[OF - refl], rule sum-list-mono-const[OF
- refl, of - - 3 ])

by (auto simp: size-cnf-encodeGammaCond)
also have . . . ≤ (2 ∗ m + 4 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m − 42 ))

+ 3 ∗ n ∗ m
by (rule add-right-mono[OF size-cnf-formula14 ])

finally show ?thesis .
qed

lemma size-cnf-formula16 : sum-list (map size-cnf (cnf-formula16 cs cns n m)) ≤
1 + 2 ∗ m + 5 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m − 42 ) + 3 ∗ n ∗ m
proof −
have sum-list (map size-cnf (cnf-formula16 cs cns n m)) = sum-list (map size-cnf

(cnf-formula15 cs cns n m)) + (n + 1 )
unfolding cnf-encoder .formula16-def Let-def by (simp add: o-def size-list-conv-sum-list

sum-list-triv size-cnf-def )
also have . . . ≤ (2 ∗ m + 4 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m − 42 ) +

3 ∗ n ∗ m) + (n + 1 )
by (rule add-right-mono[OF size-cnf-formula15 ])

also have . . . = 1 + 2 ∗ m + 5 ∗ n + m ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ m −
42 ) + 3 ∗ n ∗ m by simp

finally show ?thesis .
qed

lemma size-cnf-concat: size-cnf (concat xs) = sum-list (map size-cnf xs) unfold-
ing size-cnf-def

by (induct xs, auto)

lemma size-cnf-encode-mul-ext: assumes cnf-encode-mul-ext f xs ys = (ϕS , ϕNS)

and n: n = max (length xs) (length ys)
and n0 : n 6= 0

shows size-cnf ϕS ≤ 55 ∗ n2

size-cnf ϕNS ≤ 55 ∗ n2

proof −
let ?fns = cnf-formula15 (λi j. fst (f (xs ! i) (ys ! j))) (λi j. snd (f (xs ! i) (ys

! j))) (length xs) (length ys)
let ?fs = cnf-formula16 (λi j. fst (f (xs ! i) (ys ! j))) (λi j. snd (f (xs ! i) (ys !

j))) (length xs) (length ys)
from assms[unfolded cnf-encoder .encode-mul-ext-def Let-def , simplified]
have phis: ϕNS = concat ?fns ϕS = concat ?fs

by (auto simp: cnf-encoder .formula16-def )
have le-s: sum-list (map size-cnf ?fs) ≤ 1 + 2 ∗ n + 5 ∗ n + n ∗ (26 ∗ n −

42 ) + n ∗ (26 ∗ n − 42 ) + 3 ∗ n ∗ n
by (rule le-trans[OF size-cnf-formula16 ], intro add-mono mult-mono le-refl,

insert n, auto)
have le-ns: sum-list (map size-cnf ?fns) ≤ 2 ∗ n + 4 ∗ n + n ∗ (26 ∗ n − 42 )

+ n ∗ (26 ∗ n − 42 ) + 3 ∗ n ∗ n
by (rule le-trans[OF size-cnf-formula15 ], intro add-mono mult-mono le-refl,
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insert n, auto)
{

fix ϕ
assume ϕ ∈ {ϕNS , ϕS}
then obtain f where f ∈ {?fs,?fns} and phi: ϕ = concat f unfolding phis

by auto
hence size-cnf ϕ ≤ 1 + 2 ∗ n + 5 ∗ n + n ∗ (26 ∗ n − 42 ) + n ∗ (26 ∗ n

− 42 ) + 3 ∗ n ∗ n
unfolding phi size-cnf-concat
using le-s le-ns by auto

also have . . . = 1 + n ∗ 7 + n ∗ n ∗ 3 + (n ∗ n ∗ 52 − n ∗ 84 ) by (simp
add: algebra-simps)

also have . . . ≤ n ∗ n ∗ 55 using n0 by (cases n; auto)
also have . . . = 55 ∗ n ^ 2 by (auto simp: power2-eq-square)
finally have size-cnf ϕ ≤ 55 ∗ n2 .

}
thus size-cnf ϕNS ≤ 55 ∗ n^2 size-cnf ϕS ≤ 55 ∗ n^2 by auto

qed

4.8 Check Executability
The constant 36 in the size-estimation for the PF-encoder is not that bad
in comparison to the actual size, since using 34 in the size-estimation would
be wrong:
value (code) let n = 20 in (36 ∗ n2, size-pf (fst (pf-encode-mul-ext (λ i j. (True,
False)) [0 ..<n] [0 ..<n])), 34 ∗ n2)

Similarly, the constant 55 in the size-estimation for the CNF-encoder is
not that bad in comparison to the actual size, since using 51 in the size-
estimation would be wrong:
value (code) let n = 20 in (55 ∗ n2, size-cnf (fst (cnf-encode-mul-ext (λ i j. (True,
False)) [0 ..<n] [0 ..<n])), 51 ∗ n2)

Example encoding
value (code) fst (pf-encode-mul-ext (λ i j. (i > j, i ≥ j)) [0 ..<3 ] [0 ..<5 ])
value (code) fst (cnf-encode-mul-ext (λ i j. (i > j, i ≥ j)) [0 ..<3 ] [0 ..<5 ])

end

5 Deciding the Generalized Multiset Ordering is
NP-hard

We prove that satisfiability of conjunctive normal forms (a NP-hard prob-
lem) can be encoded into a multiset-comparison problem of linear size.
Therefore multiset-set comparisons are NP-hard as well.
theory
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Multiset-Ordering-NP-Hard
imports

Multiset-Ordering-More
Propositional-Formula
Weighted-Path-Order .Multiset-Extension2-Impl

begin

5.1 Definition of the Encoding
The multiset-elements are either annotated variables or indices (of clauses).
We basically follow the proof in [4] where these elements are encoded as
terms (and the relation is some fixed recursive path order).
datatype Annotation = Unsigned | Positive | Negative

type-synonym ′a ms-elem = ( ′a × Annotation) + nat

fun ms-elem-of-lit :: ′a × bool ⇒ ′a ms-elem where
ms-elem-of-lit (x,True) = Inl (x,Positive)
| ms-elem-of-lit (x,False) = Inl (x,Negative)

definition vars-of-cnf :: ′a cnf ⇒ ′a list where
vars-of-cnf = (remdups o concat o map (map fst))

We encode a CNF into a multiset-problem, i.e., a quadruple (xs, ys, S,
NS) where xs and ys are the lists to compare, and S and NS are underlying
relations of the generalized multiset ordering. In the encoding, we add the
strict relation S to the non-strict relation NS as this is a somewhat more
natural order. In particular, the relations S and NS are precisely those that
are obtained when using the mentioned recursive path order of [4].
definition multiset-problem-of-cnf :: ′a cnf ⇒
( ′a ms-elem list ×
′a ms-elem list ×
( ′a ms-elem × ′a ms-elem)list ×
( ′a ms-elem × ′a ms-elem)list) where

multiset-problem-of-cnf cnf = (let
xs = vars-of-cnf cnf ;
cs = [0 ..< length cnf ];
S = List.maps (λ i. map (λ l. (ms-elem-of-lit l, Inr i)) (cnf ! i)) cs;
NS = List.maps (λ x. [(Inl (x,Positive), Inl (x,Unsigned)), (Inl (x,Negative),

Inl (x,Unsigned))]) xs
in (List.maps (λ x. [Inl (x,Positive), Inl (x,Negative)]) xs,

map (λ x. Inl (x,Unsigned)) xs @ map Inr cs,
S , NS @ S))

5.2 Soundness of the Encoding
lemma multiset-problem-of-cnf :

assumes multiset-problem-of-cnf cnf = (left, right, S , NSS)
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shows (∃ β. eval-cnf β cnf )
←→ ((mset left, mset right) ∈ ns-mul-ext (set NSS) (set S))

cnf 6= [] =⇒ (∃ β. eval-cnf β cnf )
←→ ((mset left, mset right) ∈ s-mul-ext (set NSS) (set S))

proof −
define xs where xs = vars-of-cnf cnf
define cs where cs = [0 ..< length cnf ]
define NS :: ( ′a ms-elem × ′a ms-elem)list where NS = concat (map (λ x. [(Inl

(x,Positive), Inl (x,Unsigned)), (Inl (x,Negative), Inl (x,Unsigned))]) xs)
note res = assms[unfolded multiset-problem-of-cnf-def Let-def List.maps-def ,

folded xs-def cs-def ]
have S : S = concat (map (λ i. map (λ l. (ms-elem-of-lit l, Inr i)) (cnf ! i)) cs)

using res by auto
have NSS : NSS = NS @ S unfolding S NS-def using res by auto
have left: left = concat (map (λ x. [Inl (x,Positive), Inl (x,Negative)]) xs)

using res by auto
let ?nsright = map (λ x. Inl (x,Unsigned)) xs
let ?sright = map Inr cs :: ′a ms-elem list
have right: right = ?nsright @ ?sright

using res by auto

We first consider completeness: if the formula is sat, then the lists are
decreasing w.r.t. the multiset-order.

{
assume (∃ β. eval-cnf β cnf )
then obtain β where sat: eval β (formula-of-cnf cnf ) unfolding eval-cnf-def

by auto
define f :: ′a ms-elem ⇒ bool where

f = (λ c. case c of (Inl (x,sign)) ⇒ (β x ←→ sign = Negative))
let ?nsleft = filter f left
let ?sleft = filter (Not o f ) left
have id-left: mset left = mset ?nsleft + mset ?sleft by simp
have id-right: mset right = mset ?nsright + mset ?sright unfolding right by

auto
have nsleft: ?nsleft = map (λ x. ms-elem-of-lit (x, ¬ (β x))) xs

unfolding left f-def by (induct xs, auto)
have sleft: ?sleft = map (λ x. ms-elem-of-lit (x,β x)) xs

unfolding left f-def by (induct xs, auto)
have len: length ?nsleft = length ?nsright unfolding nsleft by simp
{

fix i
assume i: i < length ?nsright
define x where x = xs ! i
have x: x ∈ set xs unfolding x-def using i by auto
have (?nsleft ! i, ?nsright ! i) = (ms-elem-of-lit (x,¬ β x), Inl (x,Unsigned))

unfolding nsleft x-def using i by auto
also have . . . ∈ set NS unfolding NS-def using x by (cases β x, auto)
finally have (?nsleft ! i, ?nsright ! i) ∈ set NSS unfolding NSS by auto

} note non-strict = this
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{
fix t
assume t ∈ set ?sright
then obtain i where i: i ∈ set cs and t: t = Inr i by auto
define c where c = cnf ! i
from i have ii: i < length cnf unfolding cs-def by auto
have c: c ∈ set cnf using i unfolding c-def cs-def by auto
from sat[unfolded formula-of-cnf-def ] c
have eval β (Disj (map formula-of-lit c)) unfolding o-def by auto
then obtain l where l: l ∈ set c and eval: eval β (formula-of-lit l)

by auto
obtain x b where l = (x, b) by (cases l, auto)
with eval have lx: l = (x, β x) by (cases b, auto)
from l c lx have x: x ∈ set xs unfolding xs-def vars-of-cnf-def by force
have mem: (ms-elem-of-lit l) ∈ set ?sleft unfolding sleft lx using x by auto
have ∃ s ∈ set ?sleft. (s,t) ∈ set S
proof (intro bexI [OF - mem])

show (ms-elem-of-lit l, t) ∈ set S
unfolding t S cs-def using ii l c-def
by (auto intro!: bexI [of - i])

qed
} note strict = this

have NS : ((mset left, mset right) ∈ ns-mul-ext (set NSS) (set S))
by (intro ns-mul-ext-intro[OF id-left id-right len non-strict strict])

{
assume ne: cnf 6= []
then obtain c where c: c ∈ set cnf by (cases cnf , auto)
with sat[unfolded formula-of-cnf-def ]
have eval β (Disj (map formula-of-lit c)) by auto
then obtain x where x: x ∈ set xs

using c unfolding vars-of-cnf-def xs-def by (cases c; cases snd (hd c);
force)

have S : ((mset left, mset right) ∈ s-mul-ext (set NSS) (set S))
proof (intro s-mul-ext-intro[OF id-left id-right len non-strict - strict])

show ?sleft 6= [] unfolding sleft using x by auto
qed

} note S = this
note NS S

} note one-direction = this

We next consider soundness: if the lists are decreasing w.r.t. the multiset-
order, then the cnf is sat.

{
assume ((mset left, mset right) ∈ ns-mul-ext (set NSS) (set S))
∨ ((mset left, mset right) ∈ s-mul-ext (set NSS) (set S))

hence ((mset left, mset right) ∈ ns-mul-ext (set NSS) (set S))
using s-ns-mul-ext by auto

also have ns-mul-ext (set NSS) (set S) = ns-mul-ext (set NS) (set S)
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unfolding NSS set-append by (rule ns-mul-ext-NS-union-S)
finally have (mset left, mset right) ∈ ns-mul-ext (set NS) (set S) .
from ns-mul-ext-elim[OF this]
obtain ns-left s-left ns-right s-right

where id-left: mset left = mset ns-left + mset s-left
and id-right: mset right = mset ns-right + mset s-right
and len: length ns-left = length ns-right
and ns:

∧
i. i<length ns-right =⇒ (ns-left ! i, ns-right ! i) ∈ set NS

and s:
∧

t. t∈set s-right =⇒ ∃ s∈set s-left. (s, t) ∈ set S by blast

This is the satisfying assignment
define β where β x = (ms-elem-of-lit (x,True) ∈ set s-left) for x
{

fix c
assume ccnf : c ∈ set cnf
then obtain i where i: i ∈ set cs

and c-def : c = cnf ! i
and ii: i < length cnf
unfolding cs-def set-conv-nth by force

from i have Inr i ∈# mset right unfolding right by auto
from this[unfolded id-right] have Inr i ∈ set ns-right ∨ Inr i ∈ set s-right by

auto
hence Inr i ∈ set s-right using ns[unfolded NSS NS-def ]

unfolding set-conv-nth[of ns-right] by force
from s[OF this] obtain s where sleft: s ∈ set s-left and si: (s, Inr i) ∈ set

S by auto
from si[unfolded S , simplified] obtain l where

lc: l ∈ set c and sl: s = ms-elem-of-lit l unfolding c-def cs-def using ii
by blast

obtain x b where lxb: l = (x,b) by force
from lc lxb ccnf have x: x ∈ set xs unfolding xs-def vars-of-cnf-def by force
have ∃ l∈set c. eval β (formula-of-lit l)
proof (intro bexI [OF - lc])

from sleft[unfolded sl lxb]
have mem: ms-elem-of-lit (x, b) ∈ set s-left by auto
have β x = b
proof (cases b)

case True
thus ?thesis unfolding β-def using mem by auto

next
case False
show ?thesis
proof (rule ccontr)

assume β x 6= b
with False have β x by auto
with False mem
have ms-elem-of-lit (x, True) ∈ set s-left

ms-elem-of-lit (x, False) ∈ set s-left
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unfolding β-def by auto
hence mem: ms-elem-of-lit (x, b) ∈ set s-left for b by (cases b, auto)

have dist: distinct left unfolding left
by (intro distinct-concat, auto simp: distinct-map xs-def vars-of-cnf-def

cs-def intro!: inj-onI )
from id-left have mset left = mset (ns-left @ s-left) by auto
from mset-eq-imp-distinct-iff [OF this] dist have set ns-left ∩ set s-left

= {} by auto
with mem have nmem: ms-elem-of-lit (x,b) /∈ set ns-left for b by auto
have Inl (x, Unsigned) ∈# mset right unfolding right using x by auto
from this[unfolded id-right]
have Inl (x, Unsigned) ∈ set ns-right ∪ set s-right by auto
with s[unfolded S ] have Inl (x, Unsigned) ∈ set ns-right by auto
with ns obtain s where pair : (s, Inl (x, Unsigned)) ∈ set NS and sns:

s ∈ set ns-left
unfolding set-conv-nth[of ns-right] using len by force

from pair [unfolded NSS ] have pair : (s, Inl (x, Unsigned)) ∈ set NS by
auto

from pair [unfolded NS-def , simplified] have s = Inl (x, Positive) ∨ s =
Inl (x, Negative) by auto

from sns this nmem[of True] nmem[of False] show False by auto
qed

qed
thus eval β (formula-of-lit l) unfolding lxb by (cases b, auto)

qed
}
hence eval β (formula-of-cnf cnf ) unfolding formula-of-cnf-def o-def by auto
hence ∃ β. eval-cnf β cnf unfolding eval-cnf-def by auto

} note other-direction = this

from one-direction other-direction show (∃ β. eval-cnf β cnf )
←→ ((mset left, mset right) ∈ ns-mul-ext (set NSS) (set S))

by blast
show cnf 6= [] =⇒ (∃ β. eval-cnf β cnf )
←→ ((mset left, mset right) ∈ s-mul-ext (set NSS) (set S))

using one-direction other-direction by blast
qed

lemma multiset-problem-of-cnf-mul-ext:
assumes multiset-problem-of-cnf cnf = (xs, ys, S , NS)
and non-trivial: cnf 6= []
shows (∃ β. eval-cnf β cnf )
←→ mul-ext (λ a b. ((a,b) ∈ set S , (a,b) ∈ set NS)) xs ys = (True,True)

proof −
have (∃ β. eval-cnf β cnf ) = ((∃ β. eval-cnf β cnf ) ∧ (∃ β. eval-cnf β cnf ))

by simp
also have . . . = (((mset xs, mset ys) ∈ s-mul-ext (set NS) (set S)) ∧ ((mset xs,

mset ys) ∈ ns-mul-ext (set NS) (set S)))
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by (subst multiset-problem-of-cnf (1 )[symmetric, OF assms(1 )], subst multi-
set-problem-of-cnf (2 )[symmetric, OF assms], simp)

also have . . . = (mul-ext (λ a b. ((a,b) ∈ set S , (a,b) ∈ set NS)) xs ys =
(True,True))

unfolding mul-ext-def Let-def by auto
finally show ?thesis .

qed

5.3 Size of Encoding is Linear
lemma size-of-multiset-problem-of-cnf : assumes multiset-problem-of-cnf cnf =
(xs, ys, S , NS)

and size-cnf cnf = s
shows length xs ≤ 2 ∗ s length ys ≤ 2 ∗ s length S ≤ s length NS ≤ 3 ∗ s
proof −

define vs where vs = vars-of-cnf cnf
have lvs: length vs ≤ s unfolding assms(2 )[symmetric] vs-def vars-of-cnf-def

o-def size-cnf-def
by (rule order .trans[OF length-remdups-leq], induct cnf , auto)

have lcnf : length cnf ≤ s using assms(2 ) unfolding size-cnf-def by auto
note res = assms(1 )[unfolded multiset-problem-of-cnf-def Let-def List.maps-def ,

folded vs-def , simplified]
have xs: xs = concat (map (λx. [Inl (x, Positive), Inl (x, Negative)]) vs) using

res by auto
have length xs ≤ length vs + length vs unfolding xs by (induct vs, auto)
also have . . . ≤ 2 ∗ s using lvs by auto
finally show length xs ≤ 2 ∗ s .
have length ys = length (map (λx. Inl (x, Unsigned)) vs @ map Inr [0 ..<length

cnf ]) using res by auto
also have . . . ≤ 2 ∗ s using lvs lcnf by auto
finally show length ys ≤ 2 ∗ s .
have S : S = concat (map (λi. map (λl. (ms-elem-of-lit l, Inr i)) (cnf ! i))

[0 ..<length cnf ])
using res by simp

have length S = sum-list (map length cnf )
unfolding S length-concat map-map o-def length-map
by (rule arg-cong[of - - sum-list], intro nth-equalityI , auto)

also have . . . ≤ s using assms(2 ) unfolding size-cnf-def by auto
finally show S : length S ≤ s .
have NS : NS = concat (map (λx. [(Inl (x, Positive), Inl (x, Unsigned)), (Inl (x,

Annotation.Negative), Inl (x, Unsigned))]) vs) @ S
using res by auto

have length NS = 2 ∗ length vs + length S
unfolding NS by (induct vs, auto)

also have . . . ≤ 3 ∗ s using lvs S by auto
finally show length NS ≤ 3 ∗ s .

qed
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5.4 Check Executability
value (code) case multiset-problem-of-cnf [
[( ′′x ′′,True),( ′′y ′′,False)], — clause 0
[( ′′x ′′,False)], — clause 1
[( ′′y ′′,True),( ′′z ′′,True)], — clause 2
[( ′′x ′′,True),( ′′y ′′,True),( ′′z ′′,False)]] — clause 3

of (left,right,S ,NS) ⇒ ( ′′SAT : ′′, mul-ext (λ x y. ((x,y) ∈ set S , (x,y) ∈ set
NS)) left right = (True,True),

′′Encoding: ′′, left, ′′ >mul ′′, right, ′′strict element order : ′′, S , ′′non−strict:
′′, NS)

end

6 Deciding RPO-constraints is NP-hard
We show that for a given an RPO it is NP-hard to decide whether two terms
are in relation, following a proof in [4].
theory RPO-NP-Hard

imports
Multiset-Ordering-NP-Hard
Weighted-Path-Order .RPO

begin

6.1 Definition of the Encoding
datatype FSyms = A | F | G | H | U | P | N

We slightly deviate from the paper encoding, since we add the three
constants U, P, N in order to be able to easily convert an encoded term
back to the multiset-element.
fun ms-elem-to-term :: ′a cnf ⇒ ′a ms-elem ⇒ (FSyms, ′a + nat)term where

ms-elem-to-term cnf (Inr i) = Var (Inr i)
|

ms-elem-to-term cnf (Inl (x, Unsigned)) = Fun F (Var (Inl x) # Fun U [] #
map (λ -. Fun A []) cnf )

| ms-elem-to-term cnf (Inl (x, Positive)) = Fun F (Var (Inl x) # Fun P [] #
map (λ i. if (x,True) ∈ set (cnf ! i) then Var (Inr i) else Fun A []) [0 ..<

length cnf ])

| ms-elem-to-term cnf (Inl (x, Negative)) = Fun F (Var (Inl x) # Fun N [] #
map (λ i. if (x,False) ∈ set (cnf ! i) then Var (Inr i) else Fun A []) [0 ..<

length cnf ])

definition term-lists-of-cnf :: ′a cnf ⇒ (FSyms, ′a + nat)term list × (FSyms, ′a
+ nat)term list where
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term-lists-of-cnf cnf = (case multiset-problem-of-cnf cnf of
(as, bs, S , NS) ⇒
(map (ms-elem-to-term cnf ) as, map (ms-elem-to-term cnf ) bs))

definition rpo-constraint-of-cnf :: ′a cnf ⇒ (-,-)term × (-,-)term where
rpo-constraint-of-cnf cnf = (case term-lists-of-cnf cnf of

(as, bs) ⇒ (Fun G as, Fun H bs))

An RPO instance where all symbols are equivalent in precedence and all
symbols have multiset-status.
interpretation trivial-rpo: rpo-with-assms λ f g. (False, True) λ f . True λ -. Mul
0

by (unfold-locales, auto)

6.2 Soundness of the Encoding
fun term-to-ms-elem :: (FSyms, ′a + nat)term ⇒ ′a ms-elem where

term-to-ms-elem (Var (Inr i)) = Inr i
| term-to-ms-elem (Fun F (Var (Inl x) # Fun U - # ts)) = Inl (x, Unsigned)
| term-to-ms-elem (Fun F (Var (Inl x) # Fun P - # ts)) = Inl (x, Positive)
| term-to-ms-elem (Fun F (Var (Inl x) # Fun N - # ts)) = Inl (x, Negative)
| term-to-ms-elem - = undefined

lemma term-to-ms-elem-ms-elem-to-term[simp]: term-to-ms-elem (ms-elem-to-term
cnf x) = x

apply (cases x)
subgoal for a by (cases a, cases snd a, auto)
by auto

lemma (in rpo-with-assms) rpo-vars-term: rpo-s s t ∨ rpo-ns s t =⇒ vars-term s
⊇ vars-term t
proof (induct s t rule: rpo.induct[of - prc prl c n], force, force)

case (3 f ss y)
thus ?case
by (smt (verit, best) fst-conv rpo.simps(3 ) snd-conv subset-eq term.set-intros(4 ))

next
case (4 f ss g ts)
show ?case
proof (cases ∃ s∈set ss. rpo-ns s (Fun g ts))

case True
from 4 (1 ) True show ?thesis by auto

next
case False
obtain ps pns where prc: prc (f , length ss) (g, length ts) = (ps, pns) by force
from False have (if (∃ s∈set ss. rpo-ns s (Fun g ts)) then b else e) = e for b

e :: bool × bool by simp
note res = 4 (5 )[unfolded rpo.simps this prc Let-def split]
from res have rel: ∀ t∈set ts. rpo-s (Fun f ss) t by (auto split: if-splits)
note IH = 4 (2 )[OF False prc[symmetric] refl]
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from rel IH show ?thesis by auto
qed

qed

lemma term-lists-of-cnf : assumes term-lists-of-cnf cnf = (as, bs)
and non-triv: cnf 6= []
shows (∃ β. eval-cnf β cnf )
←→ (mset as, mset bs) ∈ s-mul-ext (trivial-rpo.RPO-NS) (trivial-rpo.RPO-S)

length (vars-of-cnf cnf ) ≥ 2 =⇒
(∃ β. eval-cnf β cnf ) ←→ (Fun G as, Fun H bs) ∈ trivial-rpo.RPO-S

proof −
obtain xs ys S NS where mp: multiset-problem-of-cnf cnf = (xs,ys,S ,NS)

by (cases multiset-problem-of-cnf cnf , auto)
from assms(1 )[unfolded term-lists-of-cnf-def mp split]
have abs: as = map (ms-elem-to-term cnf ) xs bs = map (ms-elem-to-term cnf )

ys by auto
from mp[unfolded multiset-problem-of-cnf-def Let-def List.maps-def , simplified]
have S : S = concat (map (λi. map (λl. (ms-elem-of-lit l, Inr i)) (cnf ! i))

[0 ..<length cnf ])
and NS : NS = concat (map (λx. [(Inl (x, Positive), Inl (x, Unsigned)), (Inl

(x, Negative), Inl (x, Unsigned))]) (vars-of-cnf cnf )) @ S
and ys: ys = map (λx. Inl (x, Unsigned)) (vars-of-cnf cnf ) @ map Inr

[0 ..<length cnf ]
and xs: xs = concat (map (λx. [Inl (x, Positive), Inl (x, Negative)]) (vars-of-cnf

cnf )) by auto
show one: (∃ β. eval-cnf β cnf )
←→ (mset as, mset bs) ∈ s-mul-ext (trivial-rpo.RPO-NS) (trivial-rpo.RPO-S)
unfolding multiset-problem-of-cnf (2 )[OF mp non-triv]

proof
assume (mset xs, mset ys) ∈ s-mul-ext (set NS) (set S)
hence mem: (xs, ys) ∈ {(as, bs). (mset as, mset bs) ∈ s-mul-ext (set NS) (set

S)} by simp
have (as, bs) ∈ {(as, bs). (mset as, mset bs) ∈ s-mul-ext trivial-rpo.RPO-NS

trivial-rpo.RPO-S}
unfolding abs

proof (rule s-mul-ext-map[OF - - mem, of ms-elem-to-term cnf ])
{

fix a b
assume (a,b) ∈ set S
from this[unfolded S , simplified]
obtain i x s where i: i < length cnf and a: a = ms-elem-of-lit (x,s)

and mem: (x,s) ∈ set (cnf ! i) and b: b = Inr i by auto
from mem i obtain t ts where a: ms-elem-to-term cnf a = Fun F (Var

(Inl x) # t # ts) and len: length ts = length cnf and tsi: ts ! i = Var (Inr i)
unfolding a by (cases s, auto)

from len i tsi have mem: Var (Inr i) ∈ set ts unfolding set-conv-nth by
auto

show (ms-elem-to-term cnf a, ms-elem-to-term cnf b) ∈ trivial-rpo.RPO-S
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unfolding a b by (simp add: Let-def , intro disjI2 bexI [OF - mem], simp)
} note S = this
fix a b
assume mem: (a,b) ∈ set NS
show (ms-elem-to-term cnf a, ms-elem-to-term cnf b) ∈ trivial-rpo.RPO-NS
proof (cases (a,b) ∈ set S)

case True
from S [OF this] show ?thesis using trivial-rpo.RPO-S-subset-RPO-NS by

fastforce
next

case False
with mem[unfolded NS ] obtain x s where x ∈ set (vars-of-cnf cnf ) and

a: a = Inl (x, s) and b: b = Inl (x, Unsigned) and s: s = Positive ∨ s =
Negative

by auto
show ?thesis unfolding a b using s

apply (auto intro!: all-nstri-imp-mul-nstri)
subgoal for i by (cases i; cases i − 1 , auto intro!: all-nstri-imp-mul-nstri)
subgoal for i by (cases i; cases i − 1 , auto intro!: all-nstri-imp-mul-nstri)
done

qed
qed
thus (mset as, mset bs) ∈ s-mul-ext trivial-rpo.RPO-NS trivial-rpo.RPO-S

unfolding abs by simp
next

assume (mset as, mset bs) ∈ s-mul-ext trivial-rpo.RPO-NS trivial-rpo.RPO-S
hence mem: (as, bs) ∈ {(as, bs). (mset as, mset bs) ∈ s-mul-ext trivial-rpo.RPO-NS

trivial-rpo.RPO-S} by simp
have xsys: xs = map term-to-ms-elem as ys = map term-to-ms-elem bs un-

folding abs map-map o-def
by (rule nth-equalityI , auto)

have (xs, ys) ∈ {(as, bs). (mset as, mset bs) ∈ s-mul-ext (set NS) (set S)}
unfolding xsys

proof (rule s-mul-ext-map[OF - - mem])
fix a b
assume ab: a ∈ set as b ∈ set bs

from ab(2 )[unfolded abs] obtain y where y: y ∈ set ys and b: b =
ms-elem-to-term cnf y by auto

from ab(1 )[unfolded abs] obtain x where x: x ∈ set xs and a: a =
ms-elem-to-term cnf x by auto

from y[unfolded ys] obtain v i where y: y = Inl (v, Unsigned) ∧ v ∈ set
(vars-of-cnf cnf )

∨ y = Inr i ∧ i < length cnf by auto
from x[unfolded xs] obtain w s where s: s = Positive ∨ s = Negative and

w: w ∈ set (vars-of-cnf cnf )
and x: x = Inl (w, s) by auto

{
assume y: y = Inl (v, Unsigned) and v: v ∈ set (vars-of-cnf cnf )
{
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assume (a,b) ∈ trivial-rpo.RPO-NS
from s this v have (term-to-ms-elem a, term-to-ms-elem b) ∈ set NS

unfolding a b x y
by (cases s, auto split: if-splits simp: Let-def NS)

} note case11 = this
{

assume (a,b) ∈ trivial-rpo.RPO-S
hence trivial-rpo.rpo-s a b by simp
from s this v have False unfolding a b x y
by (cases, auto split: if-splits simp: Let-def , auto dest!: fst-mul-ext-imp-fst)

} note case12 = this
note case11 case12

} note case1 = this
{

assume y: y = Inr i and i: i < length cnf
assume (a,b) ∈ trivial-rpo.RPO-NS ∪ trivial-rpo.RPO-S
hence (a,b) ∈ trivial-rpo.RPO-NS

using trivial-rpo.RPO-S-subset-RPO-NS by blast
from s this have (term-to-ms-elem a, term-to-ms-elem b) ∈ set S unfolding

a b x y
by (cases, auto split: if-splits simp: Let-def NS S , force+)

} note case2 = this
from case1 case2 y
show (a, b) ∈ trivial-rpo.RPO-S =⇒ (term-to-ms-elem a, term-to-ms-elem b)

∈ set S by auto
from case1 case2 y
show (a, b) ∈ trivial-rpo.RPO-NS =⇒ (term-to-ms-elem a, term-to-ms-elem

b) ∈ set NS unfolding NS by auto
qed
thus (mset xs, mset ys) ∈ s-mul-ext (set NS) (set S) by simp

qed

Here the encoding for single RPO-terms is handled. We do this here and
not in a separate lemma, since some of the properties of xs, ys, as, bs, etc.
are required.

assume len2 : length (vars-of-cnf cnf ) ≥ 2
show (∃ β. eval-cnf β cnf ) ←→ (Fun G as, Fun H bs) ∈ trivial-rpo.RPO-S

unfolding one
proof
assume mul: (mset as, mset bs) ∈ s-mul-ext trivial-rpo.RPO-NS trivial-rpo.RPO-S

{
fix b
assume b ∈ set bs
hence b ∈# mset bs by auto

from s-mul-ext-point[OF mul this] have ∃ a ∈ set as. (a,b) ∈ trivial-rpo.RPO-NS
using trivial-rpo.RPO-S-subset-RPO-NS by fastforce

hence (Fun G as, b) ∈ trivial-rpo.RPO-S by (cases b, auto)
}
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with mul show (Fun G as, Fun H bs) ∈ trivial-rpo.RPO-S
by (auto simp: mul-ext-def )

next
assume rpo: (Fun G as, Fun H bs) ∈ trivial-rpo.RPO-S
have ¬ (∃ s∈set as. trivial-rpo.rpo-ns s (Fun H bs))
proof (rule ccontr)

assume ¬ ?thesis
then obtain a where a: a ∈ set as and trivial-rpo.rpo-ns a (Fun H bs) by

auto
with trivial-rpo.rpo-vars-term[of a Fun H bs]
have vars: vars-term (Fun H bs) ⊆ vars-term a by auto
from a[unfolded abs xs, simplified] obtain x where vars-term a ∩ range Inl

= {Inl x}
by force

with vars have sub: vars-term (Fun G bs) ∩ range Inl ⊆ {Inl x} by auto
from len2 obtain y z vs where vars: vars-of-cnf cnf = y # z # vs

by (cases vars-of-cnf cnf ; cases tl (vars-of-cnf cnf ), auto)
have distinct (vars-of-cnf cnf ) unfolding vars-of-cnf-def by auto
with vars have yz: y 6= z by auto
have {Inl y, Inl z} ⊆ vars-term (Fun G bs)

unfolding abs ys vars by auto
with sub yz
show False by auto

qed
with rpo have fst (mul-ext trivial-rpo.rpo-pr as bs) by (auto split: if-splits)
thus (mset as, mset bs) ∈ s-mul-ext trivial-rpo.RPO-NS trivial-rpo.RPO-S

by (auto simp: mul-ext-def Let-def )
qed

qed

lemma rpo-constraint-of-cnf : assumes non-triv: length (vars-of-cnf cnf ) ≥ 2
shows (∃ β. eval-cnf β cnf ) ←→ rpo-constraint-of-cnf cnf ∈ trivial-rpo.RPO-S
proof −

obtain as bs where res: term-lists-of-cnf cnf = (as,bs) by force
from non-triv have cnf : cnf 6= [] unfolding vars-of-cnf-def by auto
show ?thesis unfolding rpo-constraint-of-cnf-def res split

by (subst term-lists-of-cnf (2 )[OF res cnf non-triv], auto)
qed

6.3 Size of Encoding is Quadratic
fun term-size :: ( ′f , ′v)term ⇒ nat where

term-size (Var x) = 1
| term-size (Fun f ts) = 1 + sum-list (map term-size ts)

lemma size-of-rpo-constraint-of-cnf :
assumes rpo-constraint-of-cnf cnf = (s,t)
and size-cnf cnf = n
shows term-size s + term-size t ≤ 4 ∗ n2 + 12 ∗ n + 2

46



proof −
obtain as bs S NS where mp: multiset-problem-of-cnf cnf = (as, bs, S , NS)

by (cases multiset-problem-of-cnf cnf , auto)
from size-of-multiset-problem-of-cnf [OF mp assms(2 )]
have las: length as ≤ 2 ∗ n length bs ≤ 2 ∗ n by auto
have tl: term-lists-of-cnf cnf = (map (ms-elem-to-term cnf ) as, map (ms-elem-to-term

cnf ) bs)
unfolding term-lists-of-cnf-def mp split by simp

from assms(1 )[unfolded rpo-constraint-of-cnf-def tl split]
have st: s = Fun G (map (ms-elem-to-term cnf ) as) t = Fun H (map (ms-elem-to-term

cnf ) bs) by auto
have [simp]: term-size (if b then Var (Inr x) :: (FSyms, ′a + nat) Term.term

else Fun A []) = 1 for b x
by (cases b, auto)

have len-n: length cnf ≤ n using assms(2 ) unfolding size-cnf-def by auto
have term-size (ms-elem-to-term cnf a) ≤ 3 + length cnf for a

by (cases (cnf ,a) rule: ms-elem-to-term.cases, auto simp: o-def sum-list-triv)
also have . . . ≤ 3 + n using len-n by auto
finally have size-ms: term-size (ms-elem-to-term cnf a) ≤ 3 + n for a .
{

fix u
assume u ∈ {s,t}

then obtain G cs where cs ∈ {as, bs} and u: u = Fun G (map (ms-elem-to-term
cnf ) cs)

unfolding st by auto
hence lcs: length cs ≤ 2 ∗ n using las by auto
have term-size u = 1 + (

∑
x←cs. term-size (ms-elem-to-term cnf x)) unfold-

ing u by (simp add: o-def size-list-conv-sum-list)
also have . . . ≤ 1 + (

∑
x←cs. 3 + n)

by (intro add-mono lcs le-refl sum-list-mono size-ms)
also have . . . ≤ 1 + (2 ∗ n) ∗ (3 + n) unfolding sum-list-triv

by (intro add-mono le-refl mult-mono, insert lcs, auto)
also have . . . = 2 ∗ n^2 + 6 ∗ n + 1 by (simp add: field-simps power2-eq-square)
finally have term-size u ≤ 2 ∗ n2 + 6 ∗ n + 1 .

}
from this[of s] this[of t]
show term-size s + term-size t ≤ 4 ∗ n2 + 12 ∗ n + 2 by simp

qed

6.4 Check Executability
value (code) case rpo-constraint-of-cnf [
[( ′′x ′′,True),( ′′y ′′,False)], — clause 0
[( ′′x ′′,False)], — clause 1
[( ′′y ′′,True),( ′′z ′′,True)], — clause 2
[( ′′x ′′,True),( ′′y ′′,True),( ′′z ′′,False)]] — clause 3
of (s,t) ⇒ ( ′′SAT : ′′, trivial-rpo.rpo-s s t, ′′Encoding: ′′, s, ′′ >RPO ′′, t)

hide-const (open) A F G H U P N
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end
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