
Much Ado about Two

By Sascha Böhme

March 17, 2025

Abstract

This article is an Isabelle formalisation of a paper with the same.
In a similar way as Knuth’s 0-1-principle for sorting algorithms, that
paper develops a “0-1-2-principle” for parallel prefix computations.

Contents
1 Much Ado about Two 1

2 Basic definitions 4

3 A Free Theorem 5

4 Useful lemmas 8

5 Preparatory Material 11

6 Proving Proposition 1 15
6.1 Definitions of Lemma 4 . 15
6.2 Figures and Proofs . 16
6.3 Permutations and Lemma 4 26
6.4 Lemma 5 . 30
6.5 Proposition 1 . 33

7 Proving Proposition 2 36

8 The Final Result 39

1 Much Ado about Two
Due to Donald E. Knuth, it is known for some time that certain sorting
functions for lists of arbitrary types can be proved correct by only showing
that they are correct for boolean lists ([3], see also [2]). This reduction idea,
i.e. reducing a proof for an arbitrary type to a proof for a fixed type with a

1

fixed number of values, has also instances in other fields. Recently, in [5], a
similar result as Knuth’s 0-1-principle is explained for the problem of parallel
prefix computation [1]. That is the task to compute, for given x1, . . . , xn
and an associative operation ⊕, the values x1, x1⊕x2, . . ., x1⊕x2⊕· · ·⊕xn.
There are several solutions which optimise this computation, and an obvious
question is to ask whether these solutions are correct. One way to answer this
question is given in [5]. There, a “0-1-2-principle” is proved which relates
an unspecified solution of the parallel prefix computation, expressed as a
function candidate, with scanl1, a functional representation of the parallel
prefix computation. The essence proved in the mentioned paper is as follows:
If candidate and scanl1 behave identical on all lists over a type which has
three elements, then candidate is semantically equivalent to scanl1, that is,
candidate is a correct solution of the parallel prefix computation.

Although it seems that nearly nothing is known about the function can-
didate, it turns out that the type of candidate already suffices for the proof of
the paper’s result. The key is relational parametricity [4] in the form of a free
theorem [6]. This, some rewriting and a few properties about list-processing
functions thrown in allow to proof the “0-1-2-principle”.

The paper first shows some simple properties and derives a specialisation
of the free theorem. The proof of the main theorem itself is split up in two
parts. The first, and considerably more complicated part relates lists over a
type with three values to lists of integer lists. Here, the paper uses several
figures to demonstrate and shorten several proofs. The second part then
relates lists of integer list with lists over arbitrary types, and consists of
applying the free theorem and some rewriting. The combination of these
two parts then yields the theorem.

Th article at hand formalises the proofs given in [5], which is called here
“the original paper”. Compared to that paper, there are several differences
in this article. The major differences are listed below. A more detailed
collection follows thereafter.

• The original paper requires lists to be non-empty. Eventhough lists in
Isabelle may also be empty, we stick to Isabelle’s list datatype instead
of declaring a new datatype, due to the huge, already existing theory
about lists in Isabelle. As a consequence, however, several modifica-
tions become necessary.

• The figure-based proofs of the original paper are replaced by formal
proofs. This forms a major part of this article (see Section 6).

• Instead of integers, we restrict ourselves to natural numbers. Thus,
several conditions can be simplified since every natural number is
greater than or equal to 0. This decision has no further influence
on the proofs because they never consider negative integers.

2

• Mainly due to differences between Haskell and Isabelle, certain nota-
tions are different here compared to the original paper. List concate-
nation is denoted by @ instead of ++, and in writing down intervals,
we use [0 ..<k + 1] instead of [0 ..k]. Moreover, we write f instead of ⊕
and g instead of ⊗. Functions mapping an element of the three-valued
type to an arbitrary type are denoted by h.

Whenever we use lemmas from already existing Isabelle theories, we
qualify them by their theory name. For example, instead of map-map, we
write List.map-map to point out that this lemma is taken from Isabelle’s
list theory.

The following comparison shows all differences of this article compared
to the original paper. The items below follow the structure of the original
paper (and also this article’s structure). They also highlight the challenges
which needed to be solved in formalising the original paper.

• Introductions of several list functions (e.g. length, map, take) are
dropped. They exist already in Isabelle’s list theory and are be con-
sidered familiar to the reader.

• The free theorem given in Lemma 1 of the original paper is not suf-
ficient for later proofs, because the assumption is not appropriate in
the context of Isabelle’s lists, which may also be empty. Thus, here,
Lemma 1 is a derived version of the free theorem given as Lemma 1 in
the original paper, and some additional proof-work is done.

• Before proceeding in the original paper’s way, we state and proof addi-
tional lemmas, which are not part of Isabelle’s libraries. These lemmas
are not specific to this article and may also be used in other theories.

• Laws 1 to 8 and Lemma 2 of the original paper are explicitly proved.
Most of the proofs follow directly from existing results of Isabelle’s
list theory. To proof Law 7, Law 8 and Lemma 2, more work was
necessary, especially for Law 8.

• Lemma 3 and its proof are nearly the same here as in the original
paper. Only the additional assumptions of Lemma 1, due to Isabelle’s
list datatype, have to be shown.

• Lemma 4 is split up in several smaller lemmas, and the order of them
tries to follow the structure of the original paper’s Lemma 4.
For every figure of the original paper, there is now one separate proof.
These proofs constitute the major difference in the structure of this
article compared to the original paper.
The proof of Lemma 4 in the original paper concludes by combining the
results of the figure-based proofs to a non-trivial permutation property.

3

These three sentences given in the original paper are split up in five
separate lemmas and according proofs, and therefore, they as well form
a major difference to the original paper.

• Lemma 5 is mostly identical to the version in the original paper. It
has one additional assumption required by Lemma 4. Moreover, the
proof is slightly more structured, and some steps needed a bit more
argumentation than in the original paper.

• In principle, Proposition 1 is identical to the according proposition in
the original paper. However, to fulfill the additional requirement of
Lemma 5, an additional lemma was proved. This, however, is only
necessary, because we use Isabelle’s list type which allows lists to be
empty.

• Proposition 2 contains one non-trivial step, which is proved as a seper-
ate lemma. Note that this is not due to any decisions of using special
datatypes, but inherent in the proof itself. Apart from that, the proof
is identical to the original paper’s proof of Proposition 2.

• The final theorem is, as in the original paper, just a combination of
Proposition 1 and Proposition 2. Only the assumptions are extended
due to Isabelle’s list datatype.

2 Basic definitions
fun foldl1 :: (′a ⇒ ′a ⇒ ′a) ⇒ ′a list ⇒ ′a
where

foldl1 f (x # xs) = foldl f x xs

fun scanl1 :: (′a ⇒ ′a ⇒ ′a) ⇒ ′a list ⇒ ′a list
where

scanl1 f xs = map (λk. foldl1 f (take k xs))
[1 ..<length xs + 1]

The original paper further relies on associative functions. Thus, we define
another predicate to be able to express this condition:
definition

associative f ≡ (∀ x y z. f x (f y z) = f (f x y) z)

The following constant symbols represents our unspecified function. We
want to show that this function is semantically equivalent to scanl1, provided
that the first argument is an associative function.
consts

candidate :: (′a ⇒ ′a ⇒ ′a) ⇒ ′a list ⇒ ′a list

4

With the final theorem, it suffices to show that candidate behaves like
scanl1 on all lists of the following type, to conclude that canditate is seman-
tically equivalent to scanl1.
datatype three = Zero | One | Two

Although most of the functions mentioned in the original paper already
exist in Isabelle’s list theory, we still need to define two more functions:
fun wrap :: ′a ⇒ ′a list
where

wrap x = [x]

fun ups :: nat ⇒ nat list list
where

ups n = map (λk. [0 ..<k + 1]) [0 ..<n + 1]

3 A Free Theorem
The key to proof the final theorem is the following free theorem [4, 6] of
candidate. Since there is no proof possible without specifying the underlying
(functional) language (which would be beyond the scope of this work), this
lemma is expected to hold. As a consequence, all following lemmas and also
the final theorem only hold under this provision.
axiomatization where

candidate-free-theorem:∧
x y. h (f x y) = g (h x) (h y) =⇒ map h (candidate f zs) = candidate g (map

h zs)

In what follows in this section, the previous lemma is specialised to a
lemma for non-empty lists. More precisely, we want to restrict the above
assumption to be applicable for non-empty lists. This is already possible
without modifications when having a list datatype which does not allow for
empty lists. However, before being able to also use Isabelle’s list datatype,
further conditions on f and zs are necessary.

To prove the derived lemma, we first introduce a datatype for non-
empty lists, and we furthermore define conversion functions to map the new
datatype on Isabelle lists and back.
datatype ′a nel
= NE-One ′a
| NE-Cons ′a ′a nel

fun n2l :: ′a nel ⇒ ′a list
where

n2l (NE-One x) = [x]
| n2l (NE-Cons x xs) = x # n2l xs

fun l2n :: ′a list ⇒ ′a nel

5

where
l2n [x] = NE-One x

| l2n (x # xs) = (case xs of [] ⇒ NE-One x
| (- # -) ⇒ NE-Cons x (l2n xs))

The following results relate Isabelle lists and non-empty lists:
lemma non-empty-n2l: n2l xs 6= []
by (cases xs, auto)

lemma n2l-l2n-id: x 6= [] =⇒ n2l (l2n x) = x
proof (induct x)

case Nil thus ?case by simp
next

case (Cons x xs) thus ?case by (cases xs, auto)
qed

lemma n2l-l2n-map-id:
assumes

∧
x. x ∈ set zs =⇒ x 6= []

shows map (n2l ◦ l2n) zs = zs
using assms
proof (induct zs)

case Nil thus ?case by simp
next

case (Cons z zs)
hence

∧
x. x ∈ set zs =⇒ x 6= [] using List.set-subset-Cons by auto

with Cons have IH : map (n2l ◦ l2n) zs = zs by blast

have
map (n2l ◦ l2n) (z # zs)
= (n2l ◦ l2n) z # map (n2l ◦ l2n) zs by simp

also have
. . . = z # map (n2l ◦ l2n) zs using Cons and n2l-l2n-id by auto
also have
. . . = z # zs using IH by simp
finally show ?case .

qed

Based on the previous lemmas, we can state and proof a specialised
version of candidate’s free theorem, suitable for our setting as explained
before.
lemma Lemma-1 :

assumes A1 :
∧
(x:: ′a list) (y:: ′a list).

x 6= [] =⇒ y 6= [] =⇒ h (f x y) = g (h x) (h y)
and A2 :

∧
x y. x 6= [] =⇒ y 6= [] =⇒ f x y 6= []

and A3 :
∧

x. x ∈ set zs =⇒ x 6= []
shows map h (candidate f zs) = candidate g (map h zs)

proof −

6

— We define two functions, fn :: ′a nel ⇒ ′a nel ⇒ ′a nel and
— hn :: ′a nel ⇒ b, which wrap f and h in the
— setting of non-empty lists.
let ?fn = λx y. l2n (f (n2l x) (n2l y))
let ?hn = h ◦ n2l

— Our new functions fulfill the preconditions of candidate’s
— free theorem:
have

∧
(x:: ′a nel) (y:: ′a nel). ?hn (?fn x y) = g (?hn x) (?hn y)

proof −
fix x y
let ?xl = n2l (x :: ′a nel)
let ?yl = n2l (y :: ′a nel)
have
?hn (?fn x y)
= h (n2l (l2n (f (n2l x) (n2l y)))) by simp

also have
. . . = h (f ?xl ?yl)

using A2 [where x=?xl and y=?yl]
and n2l-l2n-id [where x=f (n2l x) (n2l y)]
and non-empty-n2l [where xs=x]
and non-empty-n2l [where xs=y] by simp

also have
. . . = g (h ?xl) (h ?yl)

using A1 and non-empty-n2l and non-empty-n2l by auto
also have
. . . = g (?hn x) (?hn y) by simp
finally show ?hn (?fn x y) = g (?hn x) (?hn y) .

qed
with candidate-free-theorem [where f=?fn and h=?hn and g = g]
have ne-free-theorem:
map ?hn (candidate ?fn (map l2n zs)) = candidate g (map ?hn (map l2n zs))

by auto

— We use candidate’s free theorem again to show the following
— property:
have n2l-candidate:∧

zs. map n2l (candidate ?fn zs) = candidate f (map n2l zs)
proof −

fix zs
have

∧
x y. n2l (?fn x y) = f (n2l x) (n2l y)

proof −
fix x y
show n2l (?fn x y) = f (n2l x) (n2l y)

using n2l-l2n-id [where x=f (n2l x) (n2l y)]
and A2 [where x=n2l x and y=n2l y]
and non-empty-n2l [where xs=x] and non-empty-n2l [where xs=y]

by simp
qed

7

with candidate-free-theorem [where h=n2l and f=?fn and g=f]
show map n2l (candidate ?fn zs) = candidate f (map n2l zs) by simp

qed

— Now, with the previous preparations, we conclude the thesis by the
— following rewriting:
have
map h (candidate f zs)
= map h (candidate f (map (n2l ◦ l2n) zs))

using n2l-l2n-map-id [where zs=zs] and A3 by simp
also have
. . . = map h (candidate f (map n2l (map l2n zs)))

using List.map-map [where f=n2l and g=l2n and xs=zs] by simp
also have
. . .= map h (map n2l (candidate ?fn (map l2n zs)))

using n2l-candidate by auto
also have
. . . = map ?hn (candidate ?fn (map l2n zs))

using List.map-map by auto
also have
. . . = candidate g (map ?hn (map l2n zs))

using ne-free-theorem by simp
also have
. . . = candidate g (map ((h ◦ n2l) ◦ l2n) zs)

using List.map-map [where f=h ◦ n2l and g=l2n] by simp
also have
. . . = candidate g (map (h ◦ (n2l ◦ l2n)) zs)

using Fun.o-assoc [symmetric, where f=h and g=n2l and h=l2n] by simp
also have
. . . = candidate g (map h (map (n2l ◦ l2n) zs))

using List.map-map [where f=h and g=n2l ◦ l2n] by simp
also have
. . . = candidate g (map h zs)

using n2l-l2n-map-id [where zs=zs] and A3 by auto
finally show ?thesis .

qed

4 Useful lemmas
In this section, we state and proof several lemmas, which neither occur in
the original paper nor in Isabelle’s libraries.
lemma upt-map-Suc:

k > 0 =⇒ [0 ..<k + 1] = 0 # map Suc [0 ..<k]
using List.upt-conv-Cons and List.map-Suc-upt by simp

lemma divide-and-conquer-induct:
assumes A1 : P []

8

and A2 :
∧

x. P [x]
and A3 :

∧
xs ys. [[xs 6= [] ; ys 6= [] ; P xs ; P ys]] =⇒ P (xs @ ys)

shows P zs
proof (induct zs)

case Nil with A1 show ?case by simp
next

case (Cons z zs)
hence IH : P zs by simp
show ?case
proof (cases zs)

case Nil with A2 show ?thesis by simp
next

case Cons with IH and A2 and A3 [where xs=[z] and ys=zs]
show ?thesis by auto

qed
qed

lemmas divide-and-conquer
= divide-and-conquer-induct [case-names Nil One Partition]

lemma all-set-inter-empty-distinct:
assumes

∧
xs ys. js = xs @ ys =⇒ set xs ∩ set ys = {}

shows distinct js
using assms proof (induct js rule: divide-and-conquer)

case Nil thus ?case by simp
next

case One thus ?case by simp
next

case (Partition xs ys)
hence P:

∧
as bs. xs @ ys = as @ bs =⇒ set as ∩ set bs = {} by simp

have
∧

xs1 xs2 . xs = xs1 @ xs2 =⇒ set xs1 ∩ set xs2 = {}
proof −

fix xs1 xs2
assume xs = xs1 @ xs2
hence set xs1 ∩ set (xs2 @ ys) = {}

using P [where as=xs1 and bs=xs2 @ ys] by simp
thus set xs1 ∩ set xs2 = {}

using List.set-append and Set.Int-Un-distrib by auto
qed

with Partition have distinct-xs: distinct xs by simp
have

∧
ys1 ys2 . ys = ys1 @ ys2 =⇒ set ys1 ∩ set ys2 = {}

proof −
fix ys1 ys2
assume ys = ys1 @ ys2
hence set (xs @ ys1) ∩ set ys2 = {}

using P [where as=xs @ ys1 and bs=ys2] by simp
thus set ys1 ∩ set ys2 = {}

9

using List.set-append and Set.Int-Un-distrib by auto
qed

with Partition have distinct-ys: distinct ys by simp
from Partition and distinct-xs and distinct-ys show ?case by simp

qed

lemma partitions-sorted:
assumes

∧
xs ys x y. [[js = xs @ ys ; x ∈ set xs ; y ∈ set ys]] =⇒ x ≤ y

shows sorted js
using assms proof (induct js rule: divide-and-conquer)

case Nil thus ?case by simp
next

case One thus ?case by simp
next

case (Partition xs ys)
hence P:

∧
as bs x y. [[xs @ ys = as @ bs ; x ∈ set as ; y ∈ set bs]] =⇒ x ≤ y

by simp

have
∧

xs1 xs2 x y. [[xs = xs1 @ xs2 ; x ∈ set xs1 ; y ∈ set xs2]] =⇒ x ≤ y
proof −

fix xs1 xs2
assume xs = xs1 @ xs2
hence

∧
x y. [[x ∈ set xs1 ; y ∈ set (xs2 @ ys)]] =⇒ x ≤ y

using P [where as=xs1 and bs=xs2 @ ys] by simp
thus

∧
x y. [[x ∈ set xs1 ; y ∈ set xs2]] =⇒ x ≤ y

using List.set-append by auto
qed

with Partition have sorted-xs: sorted xs by simp
have

∧
ys1 ys2 x y. [[ys = ys1 @ ys2 ; x ∈ set ys1 ; y ∈ set ys2]] =⇒ x ≤ y

proof −
fix ys1 ys2
assume ys = ys1 @ ys2
hence

∧
x y. [[x ∈ set (xs @ ys1) ; y ∈ set ys2]] =⇒ x ≤ y

using P [where as=xs @ ys1 and bs=ys2] by simp
thus

∧
x y. [[x ∈ set ys1 ; y ∈ set ys2]] =⇒ x ≤ y

using List.set-append by auto
qed

with Partition have sorted-ys: sorted ys by simp

have ∀ x ∈ set xs. ∀ y ∈ set ys. x ≤ y
using P [where as=xs and bs=ys] by simp

with sorted-xs and sorted-ys show ?case using List.sorted-append by auto
qed

10

5 Preparatory Material
In the original paper, the following lemmas L1 to L8 are given without a
proof, although it is hinted there that most of them follow from parametricity
properties [4, 6]. Alternatively, most of them can be shown by induction over
lists. However, since we are using Isabelle’s list datatype, we rely on already
existing results.
lemma L1 : map g (map f xs) = map (g ◦ f) xs
using List.map-map by auto

lemma L2 : length (map f xs) = length xs
using List.length-map by simp

lemma L3 : take k (map f xs) = map f (take k xs)
using List.take-map by auto

lemma L4 : map f ◦ wrap = wrap ◦ f
by (simp add: fun-eq-iff)

lemma L5 : map f (xs @ ys) = (map f xs) @ (map f ys)
using List.map-append by simp

lemma L6 : k < length xs =⇒ (map f xs) ! k = f (xs ! k)
using List.nth-map by simp

lemma L7 :
∧

k. k < length xs =⇒ map (nth xs) [0 ..<k + 1] = take (k + 1) xs
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
thus ?case
proof (cases k)

case 0 thus ?thesis by simp
next

case (Suc k ′)
hence k > 0 by simp
hence map (nth (x # xs)) [0 ..<k + 1]

= map (nth (x # xs)) (0 # map Suc [0 ..<k])
using upt-map-Suc by simp

also have . . . = ((x # xs) ! 0) # (map (nth (x # xs) ◦ Suc) [0 ..<k])
using L1 by simp

also have . . . = x # map (nth xs) [0 ..<k] by simp
also have . . . = x # map (nth xs) [0 ..<k ′ + 1] using Suc by simp
also have . . . = x # take (k ′ + 1) xs using Cons and Suc by simp
also have . . . = take (k + 1) (x # xs) using Suc by simp
finally show ?thesis .

qed

11

qed

In Isabelle’s list theory, a similar result for foldl already exists. Therefore,
it is easy to prove the following lemma for foldl1. Note that this lemma does
not occur in the original paper.
lemma foldl1-append:

assumes xs 6= []
shows foldl1 f (xs @ ys) = foldl1 f (foldl1 f xs # ys)

proof −
have non-empty-list: xs 6= [] =⇒ ∃ y ys. xs = y # ys by (cases xs, auto)
with assms obtain x xs ′ where x-xs-def : xs = x # xs ′ by auto

have foldl1 f (xs @ ys) = foldl f x (xs ′ @ ys) using x-xs-def by simp
also have . . . = foldl f (foldl f x xs ′) ys using List.foldl-append by simp
also have . . . = foldl f (foldl1 f (x # xs ′)) ys by simp
also have . . . = foldl1 f (foldl1 f xs # ys) using x-xs-def by simp
finally show ?thesis .

qed

This is a special induction scheme suitable for proving L8. It is not
mentioned in the original paper.
lemma foldl1-induct ′:

assumes
∧

f x. P f [x]
and

∧
f x y. P f [x, y]

and
∧

f x y z zs. P f (f x y # z # zs) =⇒ P f (x # y # z # zs)
and

∧
f . P f []

shows P f xs
proof (induct xs rule: List.length-induct)

fix xs
assume A: ∀ ys:: ′a list. length ys < length (xs:: ′a list) −→ P f ys
thus P f xs
proof (cases xs)

case Nil with assms show ?thesis by simp
next

case (Cons x1 xs1)
hence xs1 : xs = x1 # xs1 by simp
thus ?thesis
proof (cases xs1)

case Nil with assms and xs1 show ?thesis by simp
next

case (Cons x2 xs2)
hence xs2 : xs1 = x2 # xs2 by simp
thus ?thesis
proof (cases xs2)

case Nil with assms and xs1 and xs2 show ?thesis by simp
next

case (Cons x3 xs3)
hence xs2 = x3 # xs3 by simp
with assms and xs1 xs2 and A show ?thesis by simp

12

qed
qed

qed
qed

lemmas foldl1-induct = foldl1-induct ′ [case-names One Two More Nil]

lemma L8 :
assumes associative f

and xs 6= []
and ys 6= []

shows foldl1 f (xs @ ys) = f (foldl1 f xs) (foldl1 f ys)
using assms proof (induct f ys rule: foldl1-induct)

case (One f y)
have
foldl1 f (xs @ [y])
= foldl1 f (foldl1 f xs # [y])

using foldl1-append [where xs=xs] and One by simp
also have
. . . = f (foldl1 f xs) y by simp
also have
. . . = f (foldl1 f xs) (foldl1 f [y]) by simp
finally show ?case .

next
case (Two f x y)
have
foldl1 f (xs @ [x, y])
= foldl1 f (foldl1 f xs # [x, y])

using foldl1-append [where xs=xs] and Two by simp
also have
. . . = foldl1 f (f (foldl1 f xs) x # [y]) by simp
also have
. . . = f (f (foldl1 f xs) x) y by simp
also have
. . . = f (foldl1 f xs) (f x y) using Two

unfolding associative-def by simp
also have
. . . = f (foldl1 f xs) (foldl1 f [x, y]) by simp
finally show ?case .

next
case (More f x y z zs)
hence IH : foldl1 f (xs @ f x y # z # zs)

= f (foldl1 f xs) (foldl1 f (f x y # z # zs)) by simp

have
foldl1 f (xs @ x # y # z # zs)
= foldl1 f (foldl1 f xs # x # y # z # zs)

using foldl1-append [where xs=xs] and More by simp

13

also have
. . . = foldl1 f (f (foldl1 f xs) x # y # z # zs) by simp
also have
. . . = foldl1 f (f (f (foldl1 f xs) x) y # z # zs) by simp
also have
. . . = foldl1 f (f (foldl1 f xs) (f x y) # z # zs)

using More unfolding associative-def by simp
also have
. . . = foldl1 f (foldl1 f xs # f x y # z # zs) by simp
also have
. . . = foldl1 f (xs @ f x y # z # zs)

using foldl1-append [where xs=xs] and More by simp
also have
. . . = f (foldl1 f xs) (foldl1 f (x # y # z # zs))

using IH by simp
finally show ?case .

next
case Nil thus ?case by simp

qed

The next lemma is applied in several following proofs whenever the equiv-
alence of two lists is shown.
lemma Lemma-2 :

assumes length xs = length ys
and

∧
k. k < length xs =⇒ xs ! k = ys ! k

shows xs = ys
using assms by (auto simp: List.list-eq-iff-nth-eq)

In the original paper, this lemma and its proof appear inside of Lemma
3. However, this property will be useful also in later proofs and is thus
separated.
lemma foldl1-map:

assumes associative f
and xs 6= []
and ys 6= []

shows foldl1 f (map h (xs @ ys))
= f (foldl1 f (map h xs)) (foldl1 f (map h ys))

proof −
have
foldl1 f (map h (xs @ ys))
= foldl1 f (map h xs @ map h ys)

using L5 by simp
also have
. . . = f (foldl1 f (map h xs)) (foldl1 f (map h ys))

using assms and L8 [where f=f] by auto
finally show ?thesis .

qed

14

lemma Lemma-3 :
fixes f :: ′a ⇒ ′a ⇒ ′a

and h :: nat ⇒ ′a
assumes associative f
shows map (foldl1 f ◦ map h) (candidate (@) (map wrap [0 ..<n+1]))

= candidate f (map h [0 ..<n+1])
proof −

— The following three properties P1, P2 and P3
— are preconditions of Lemma 1.
have P1 :∧

x y. [[x 6= [] ; y 6= []]]
=⇒ foldl1 f (map h (x @ y)) = f (foldl1 f (map h x)) (foldl1 f (map h y))

using assms and foldl1-map by blast

have P2 :
∧

x y. x 6= [] =⇒ y 6= [] =⇒ x @ y 6= [] by auto

have P3 :
∧

x. x ∈ set (map wrap [0 ..<n+1]) =⇒ x 6= [] by auto

— The proof for the thesis is now equal to the one of the original paper:
from Lemma-1 [where h=foldl1 f ◦ map h and zs=map wrap [0 ..<n+1]

and f=(@)] and P1 P2 P3
have
map (foldl1 f ◦ map h) (candidate (@) (map wrap [0 ..<n+1]))
= candidate f (map (foldl1 f ◦ map h) (map wrap [0 ..<n+1]))

by auto
also have
. . . = candidate f (map (foldl1 f ◦ map h ◦ wrap) [0 ..<n+1])

by (simp add: L1)
also have
. . . = candidate f (map (foldl1 f ◦ wrap ◦ h) [0 ..<n+1])

using L4 by (simp add: Fun.o-def)
also have
. . . = candidate f (map h [0 ..<n+1])

by (simp add: Fun.o-def)
finally show ?thesis .

qed

6 Proving Proposition 1
6.1 Definitions of Lemma 4
In the same way as in the original paper, the following two functions are
defined:
fun f1 :: three ⇒ three ⇒ three
where

f1 x Zero = x
| f1 Zero One = One
| f1 x y = Two

15

fun f2 :: three ⇒ three ⇒ three
where

f2 x Zero = x
| f2 x One = One
| f2 x Two = Two

Both functions are associative as is proved by case analysis:
lemma f1-assoc: associative f1
unfolding associative-def proof auto

fix x y z
show f1 x (f1 y z) = f1 (f1 x y) z
proof (cases z)

case Zero thus ?thesis by simp
next

case One
hence z-One: z = One by simp
thus ?thesis by (cases y, simp-all, cases x, simp-all)

next
case Two thus ?thesis by simp

qed
qed

lemma f2-assoc: associative f2
unfolding associative-def proof auto

fix x y z
show f2 x (f2 y z) = f2 (f2 x y) z by (cases z, auto)

qed

Next, we define two other functions, again according to the original pa-
per. Note that h1 has an extra parameter k which is only implicit in the
original paper.
fun h1 :: nat ⇒ nat ⇒ nat ⇒ three
where

h1 k i j = (if i = j then One
else if j ≤ k then Zero
else Two)

fun h2 :: nat ⇒ nat ⇒ three
where

h2 i j = (if i = j then One
else if i + 1 = j then Two
else Zero)

6.2 Figures and Proofs
In the original paper, this lemma is depicted in (and proved by) Figure 2.
Therefore, it carries this unusual name here.
lemma Figure-2 :

16

assumes i ≤ k
shows foldl1 f1 (map (h1 k i) [0 ..<k + 1]) = One

proof −
let ?mr = replicate i Zero @ [One] @ replicate (k − i) Zero

have P1 : map (h1 k i) [0 ..<k + 1] = ?mr
proof −

have Q1 : length (map (h1 k i) [0 ..<k + 1]) = length ?mr
using assms by simp

have Q2 :
∧

j. j < length (map (h1 k i) [0 ..<k + 1])
=⇒ (map (h1 k i) [0 ..<k + 1]) ! j = ?mr ! j

proof −
fix j
assume j < length (map (h1 k i) [0 ..<k + 1])
hence j-k: j < k + 1 by simp
have M1 : (map (h1 k i) [0 ..<k + 1]) ! i = One

using L6 [where f=h1 k i and xs=[0 ..<k + 1]] and assms
and List.nth-upt [where i=0 and k=i and j=k + 1] by simp

have M2 : j 6= i =⇒ (map (h1 k i) [0 ..<k + 1]) ! j = Zero
using L6 [where f=h1 k i and xs=[0 ..<k + 1]] and j-k

and List.nth-upt [where i=0 and j=k + 1] by simp
have R1 : ?mr ! i = One

using List.nth-append [where xs=replicate i Zero] by simp
have R2 : j < i =⇒ ?mr ! j = Zero

using List.nth-append [where xs=replicate i Zero] by simp
have R3 : j > i =⇒ ?mr ! j = Zero

using List.nth-append [where xs=replicate i Zero @ [One]]
and j-k by simp

show (map (h1 k i) [0 ..<k + 1]) ! j = ?mr ! j
proof (cases i = j)

assume i = j
with M1 and R1 show ?thesis by simp

next
assume i-ne-j: i 6= j
thus ?thesis
proof (cases i < j)

assume i < j
with M2 and R3 show ?thesis by simp

next
assume ¬(i < j)
with i-ne-j have i > j by simp
with M2 and R2 show ?thesis by simp

qed
qed

qed

from Q1 Q2 and Lemma-2 show ?thesis by blast

17

qed

have P2 :
∧

j. j > 0 =⇒ foldl1 f1 (replicate j Zero) = Zero
proof −

fix j
assume (j::nat) > 0
thus foldl1 f1 (replicate j Zero) = Zero
proof (induct j)

case 0 thus ?case by simp
next

case (Suc j) thus ?case by (cases j, auto)
qed

qed

have P3 :
∧

j. foldl1 f1 ([One] @ replicate j Zero) = One
proof −

fix j
show foldl1 f1 ([One] @ replicate j Zero) = One

using L8 [where f=f1 and xs=[One] and ys=replicate (Suc j) Zero]
and f1-assoc and P2 [where j=Suc j] by simp

qed

have foldl1 f1 ?mr = One
proof (cases i)

case 0
thus ?thesis using P3 by simp

next
case (Suc i)
hence
foldl1 f1 (replicate (Suc i) Zero @ [One] @ replicate (k − Suc i) Zero)
= f1 (foldl1 f1 (replicate (Suc i) Zero))

(foldl1 f1 ([One] @ replicate (k − Suc i) Zero))
using L8 [where xs=replicate (Suc i) Zero

and ys=[One] @ replicate (k − Suc i) Zero]
and f1-assoc by simp

also have
. . . = One

using P2 [where j=Suc i] and P3 [where j=k − Suc i] by simp
finally show ?thesis using Suc by simp

qed
with P1 show ?thesis by simp

qed

In the original paper, this lemma is depicted in (and proved by) Figure 3.
Therefore, it carries this unusual name here.
lemma Figure-3 :

assumes i < k
shows foldl1 f2 (map (h2 i) [0 ..<k + 1]) = Two

proof −

18

let ?mr = replicate i Zero @ [One, Two] @ replicate (k − i − 1) Zero

have P1 : map (h2 i) [0 ..<k + 1] = ?mr
proof −

have Q1 : length (map (h2 i) [0 ..<k + 1]) = length ?mr
using assms by simp

have Q2 :
∧

j. j < length (map (h2 i) [0 ..<k + 1])
=⇒ (map (h2 i) [0 ..<k + 1]) ! j = ?mr ! j

proof −
fix j
assume j < length (map (h2 i) [0 ..<k + 1])
hence j-k: j < k + 1 by simp
have M1 : (map (h2 i) [0 ..<k + 1]) ! i = One

using L6 [where xs=[0 ..<k + 1] and f=h2 i and k=i] and assms
and List.nth-upt [where i=0 and k=i and j=k + 1] by simp

have M2 : (map (h2 i) [0 ..<k + 1]) ! (i + 1) = Two
using L6 [where xs=[0 ..<k + 1] and f=h2 i and k=i + 1]
and assms and List.nth-upt [where i=0 and k=i + 1 and j=k + 1]
by simp

have M3 : j < i ∨ j > i + 1 =⇒ (map (h2 i) [0 ..<k + 1]) ! j = Zero
using L6 [where xs=[0 ..<k + 1] and f=h2 i and k=j]
and assms and List.nth-upt [where i=0 and k=j and j=k + 1]
and j-k by auto

have R1 : j < i =⇒ ?mr ! j = Zero
using List.nth-append [where xs=replicate i Zero] by simp

have R2 : ?mr ! i = One
using List.nth-append [where xs=replicate i Zero] by simp

have R3 : ?mr ! (i + 1) = Two
using List.nth-append [where xs=replicate i Zero @ [One]] by simp

have R4 : j > i + 1 =⇒ ?mr ! j = Zero
using List.nth-append [where xs=replicate i Zero @ [One,Two]]
and j-k by simp

show (map (h2 i) [0 ..<k + 1]) ! j = ?mr ! j
proof (cases j < i)

assume j < i with M3 and R1 show ?thesis by simp
next

assume ¬(j < i)
hence j-ge-i: j ≥ i by simp
thus ?thesis
proof (cases j = i)

assume j = i with M1 and R2 show ?thesis by simp
next

assume ¬(j = i)
with j-ge-i have j-gt-i: j > i by simp
thus ?thesis
proof (cases j = i + 1)

assume j = i + 1 with M2 and R3 show ?thesis by simp
next

19

assume ¬(j = i + 1)
with j-gt-i have j > i + 1 by simp
with M3 and R4 show ?thesis by simp

qed
qed

qed
qed

from Q1 Q2 and Lemma-2 show ?thesis by blast
qed

have P2 :
∧

j. j > 0 =⇒ foldl1 f2 (replicate j Zero) = Zero
proof −

fix j
assume j-0 : (j::nat) > 0
show foldl1 f2 (replicate j Zero) = Zero
using j-0 proof (induct j)

case 0 thus ?case by simp
next

case (Suc j) thus ?case by (cases j, auto)
qed

qed

have P3 :
∧

j. foldl1 f2 ([One, Two] @ replicate j Zero) = Two
proof −

fix j
show foldl1 f2 ([One, Two] @ replicate j Zero) = Two

using L8 [where f=f2 and xs=[One,Two]
and ys=replicate (Suc j) Zero] and f2-assoc and P2 [where j=Suc j]
by simp

qed

have foldl1 f2 ?mr = Two
proof (cases i)

case 0 thus ?thesis using P3 by simp
next

case (Suc i)
hence
foldl1 f2 (replicate (Suc i) Zero @ [One, Two]

@ replicate (k − Suc i − 1) Zero)
= f2 (foldl1 f2 (replicate (Suc i) Zero))

(foldl1 f2 ([One, Two] @ replicate (k − Suc i − 1) Zero))
using L8 [where f=f2 and xs=replicate (Suc i) Zero

and ys=[One, Two] @ replicate (k − Suc i − 1) Zero]
and f2-assoc by simp

also have
. . . = Two

using P2 [where j=Suc i] and P3 [where j=k − Suc i − 1] by simp
finally show ?thesis using Suc by simp

qed

20

with P1 show ?thesis by simp
qed

Counterparts of the following two lemmas are shown in the proof of
Lemma 4 in the original paper. Since here, the proof of Lemma 4 is seperated
in several smaller lemmas, also these two properties are given separately.
lemma L9 :

assumes
∧

(f :: three ⇒ three ⇒ three) h. associative f
=⇒ foldl1 f (map h js) = foldl1 f (map h [0 ..<k + 1])

and i ≤ k
shows foldl1 f1 (map (h1 k i) js) = One

using assms and f1-assoc and Figure-2 by auto

lemma L10 :
assumes

∧
(f :: three ⇒ three ⇒ three) h. associative f

=⇒ foldl1 f (map h js) = foldl1 f (map h [0 ..<k + 1])
and i < k

shows foldl1 f2 (map (h2 i) js) = Two
using assms and f2-assoc and Figure-3 by auto

In the original paper, this lemma is depicted in (and proved by) Figure 4.
Therefore, it carries this unusual name here. This lemma expresses that
every i ≤ k is contained in js at least once.
lemma Figure-4 :

assumes foldl1 f1 (map (h1 k i) js) = One
and js 6= []

shows i ∈ set js
proof (rule ccontr)

assume i-not-in-js: i /∈ set js

have One-not-in-map-js: One /∈ set (map (h1 k i) js)
proof

assume One ∈ set (map (h1 k i) js)
hence One ∈ (h1 k i) ‘ (set js) by simp
then obtain j where j-def : j ∈ set js ∧ One = h1 k i j

using Set.image-iff [where f=h1 k i] by auto
hence i = j by (simp split: if-splits)
with i-not-in-js and j-def show False by simp

qed

have f1-One:
∧

x y. x 6= One ∧ y 6= One =⇒ f1 x y 6= One
proof −

fix x y
assume x 6= One ∧ y 6= One
thus f1 x y 6= One by (cases y, cases x, auto)

qed

have
∧

xs. [[xs 6= [] ; One /∈ set xs]] =⇒ foldl1 f1 xs 6= One

21

proof −
fix xs
assume A: (xs :: three list) 6= []
thus One /∈ set xs =⇒ foldl1 f1 xs 6= One
proof (induct xs rule: divide-and-conquer)

case Nil thus ?case by simp
next

case (One x)
thus foldl1 f1 [x] 6= One by simp

next
case (Partition xs ys)
hence One /∈ set xs ∧ One /∈ set ys by simp
with Partition have foldl1 f1 xs 6= One ∧ foldl1 f1 ys 6= One by simp
with f1-One have f1 (foldl1 f1 xs) (foldl1 f1 ys) 6= One by simp
with L8 [symmetric, where f=f1] and f1-assoc and Partition
show foldl1 f1 (xs @ ys) 6= One by auto

qed
qed

with One-not-in-map-js and assms show False by auto
qed

In the original paper, this lemma is depicted in (and proved by) Figure 5.
Therefore, it carries this unusual name here. This lemma expresses that
every i ≤ k is contained in js at most once.
lemma Figure-5 :

assumes foldl1 f1 (map (h1 k i) js) = One
and js = xs @ ys

shows ¬(i ∈ set xs ∧ i ∈ set ys)
proof (rule ccontr)

assume ¬¬(i ∈ set xs ∧ i ∈ set ys)
hence i-xs-ys: i ∈ set xs ∧ i ∈ set ys by simp

from i-xs-ys have xs-not-empty: xs 6= [] by auto
from i-xs-ys have ys-not-empty: ys 6= [] by auto

have f1-Zero:
∧

x y. x 6= Zero ∨ y 6= Zero =⇒ f1 x y 6= Zero
proof −

fix x y
show x 6= Zero ∨ y 6= Zero =⇒ f1 x y 6= Zero
by (cases y, simp-all, cases x, simp-all)

qed

have One-foldl1 :
∧

xs. One ∈ set xs =⇒ foldl1 f1 xs 6= Zero
proof −

fix xs
assume One-xs: One ∈ set xs
thus foldl1 f1 xs 6= Zero
proof (induct xs rule: divide-and-conquer)

case Nil thus ?case by simp

22

next
case One thus ?case by simp

next
case (Partition xs ys)
hence One ∈ set xs ∨ One ∈ set ys by simp
with Partition have foldl1 f1 xs 6= Zero ∨ foldl1 f1 ys 6= Zero by auto
with f1-Zero have f1 (foldl1 f1 xs) (foldl1 f1 ys) 6= Zero by simp
thus ?case using L8 [symmetric, where f=f1] and f1-assoc and Partition

by auto
qed

qed

have f1-Two:
∧

x y. x 6= Zero ∧ y 6= Zero =⇒ f1 x y = Two
proof −

fix x y
show x 6= Zero ∧ y 6= Zero =⇒ f1 x y = Two
by (cases y, simp-all, cases x, simp-all)

qed

from i-xs-ys
have One ∈ set (map (h1 k i) xs) ∧ One ∈ set (map (h1 k i) ys) by simp
hence foldl1 f1 (map (h1 k i) xs) 6= Zero

∧ foldl1 f1 (map (h1 k i) ys) 6= Zero
using One-foldl1 by simp

hence f1 (foldl1 f1 (map (h1 k i) xs)) (foldl1 f1 (map (h1 k i) ys)) = Two
using f1-Two by simp

hence foldl1 f1 (map (h1 k i) (xs @ ys)) = Two
using foldl1-map [symmetric, where h=h1 k i] and f1-assoc

and xs-not-empty and ys-not-empty by auto
with assms show False by simp

qed

In the original paper, this lemma is depicted in (and proved by) Figure 6.
Therefore, it carries this unusual name here. This lemma expresses that js
contains only elements of [0 ..<k + 1].
lemma Figure-6 :

assumes
∧

i. i ≤ k =⇒ foldl1 f1 (map (h1 k i) js) = One
and i > k

shows i /∈ set js
proof

assume i-in-js: i ∈ set js

have Two-map: Two ∈ set (map (h1 k 0) js)
proof −

have Two = h1 k 0 i using assms by simp
with i-in-js show ?thesis using IntI by (auto split: if-splits)

qed

have f1-Two:
∧

x y. x = Two ∨ y = Two =⇒ f1 x y = Two

23

proof −
fix x y
show x = Two ∨ y = Two =⇒ f1 x y = Two by (cases y, auto)

qed

have
∧

xs. Two ∈ set xs =⇒ foldl1 f1 xs = Two
proof −

fix xs
assume Two-xs: Two ∈ set xs
thus foldl1 f1 xs = Two using Two-xs
proof (induct xs rule: divide-and-conquer)

case Nil thus ?case by simp
next

case One thus ?case by simp
next

case (Partition xs ys)
hence Two ∈ set xs ∨ Two ∈ set ys by simp
hence foldl1 f1 xs = Two ∨ foldl1 f1 ys = Two using Partition by auto
with f1-Two have f1 (foldl1 f1 xs) (foldl1 f1 ys) = Two by simp
thus foldl1 f1 (xs @ ys) = Two

using L8 [symmetric, where f=f1] and f1-assoc and Partition by auto
qed

qed

with Two-map have foldl1 f1 (map (h1 k 0) js) = Two by simp
with assms show False by auto

qed

In the original paper, this lemma is depicted in (and proved by) Figure 7.
Therefore, it carries this unusual name here. This lemma expresses that
every i ≤ k in js is eventually followed by i + 1.
lemma Figure-7 :

assumes foldl1 f2 (map (h2 i) js) = Two
and js = xs @ ys
and xs 6= []
and i = last xs

shows (i + 1) ∈ set ys
proof (rule ccontr)

assume Suc-i-not-in-ys: (i + 1) /∈ set ys

have last-map-One: last (map (h2 i) xs) = One
proof −

have
last (map (h2 i) xs)
= (map (h2 i) xs) ! (length (map (h2 i) xs) − 1)

using List.last-conv-nth [where xs=map (h2 i) xs] and assms by simp
also have
. . . = (map (h2 i) xs) ! (length xs − 1) using L2 by simp
also have

24

. . . = h2 i (xs ! (length xs − 1))
using L6 and assms by simp

also have
. . . = h2 i (last xs)

using List.last-conv-nth [symmetric,where xs=xs] and assms by simp
also have
. . . = One using assms by simp
finally show ?thesis .

qed

have
∧

xs. [[xs 6= [] ; last xs = One]] =⇒ foldl1 f2 xs = One
proof −

fix xs
assume last-xs-One: last xs = One
assume xs-not-empty: xs 6= []
hence xs-partition: xs = butlast xs @ [last xs] by simp
show foldl1 f2 xs = One
proof (cases butlast xs)

case Nil with xs-partition and last-xs-One show ?thesis by simp
next

case Cons
hence butlast-not-empty: butlast xs 6= [] by simp

have
foldl1 f2 xs = foldl1 f2 (butlast xs @ [last xs])

using xs-partition by simp
also have
. . . = f2 (foldl1 f2 (butlast xs)) (foldl1 f2 [last xs])

using L8 [where f=f2] and f2-assoc and butlast-not-empty by simp
also have
. . . = One using last-xs-One by simp
finally show ?thesis .

qed
qed

with last-map-One have foldl1-map-xs: foldl1 f2 (map (h2 i) xs) = One
using assms by simp

have ys-not-empty: ys 6= [] using foldl1-map-xs and assms by auto

have Two-map-ys: Two /∈ set (map (h2 i) ys)
proof

assume Two ∈ set (map (h2 i) ys)
hence Two ∈ (h2 i) ‘ (set ys) by simp
then obtain j where j-def : j ∈ set ys ∧ Two = h2 i j

using Set.image-iff [where f=h2 i] by auto
hence i + 1 = j by (simp split: if-splits)
with Suc-i-not-in-ys and j-def show False by simp

qed

25

have f2-One:
∧

x y. x 6= Two ∧ y 6= Two =⇒ f2 x y 6= Two
proof −

fix x y
show x 6= Two ∧ y 6= Two =⇒ f2 x y 6= Two by (cases y, auto)

qed

have
∧

xs. [[xs 6= [] ; Two /∈ set xs]] =⇒ foldl1 f2 xs 6= Two
proof −

fix xs
assume xs-not-empty: (xs :: three list) 6= []
thus Two /∈ set xs =⇒ foldl1 f2 xs 6= Two
proof (induct xs rule: divide-and-conquer)

case Nil thus ?case by simp
next

case One thus ?case by simp
next

case (Partition xs ys)
hence Two /∈ set xs ∧ Two /∈ set ys by simp
hence foldl1 f2 xs 6= Two ∧ foldl1 f2 ys 6= Two using Partition by simp
hence f2 (foldl1 f2 xs) (foldl1 f2 ys) 6= Two using f2-One by simp
thus foldl1 f2 (xs @ ys) 6= Two

using L8 [symmetric, where f=f2] and f2-assoc and Partition by simp
qed

qed
with Two-map-ys have foldl1-map-ys: foldl1 f2 (map (h2 i) ys) 6= Two

using ys-not-empty by simp

from f2-One
have f2 (foldl1 f2 (map (h2 i) xs)) (foldl1 f2 (map (h2 i) ys)) 6= Two

using foldl1-map-xs and foldl1-map-ys by simp
hence foldl1 f2 (map (h2 i) (xs @ ys)) 6= Two

using foldl1-map [symmetric, where h=h2 i and f=f2] and f2-assoc
and assms and ys-not-empty by simp

with assms show False by simp
qed

6.3 Permutations and Lemma 4
In the original paper, the argumentation goes as follows: From Figure-4 and
Figure-5 we can show that js contains every i ≤ k exactly once, and from
Figure-6 we can furthermore show that js contains no other elements. Thus,
js must be a permutation of [0 ..<k + 1].

Here, however, the argumentation is different, because we want to use
already existing results. Therefore, we show first, that the sets of js and
[0 ..<k + 1] are equal using the results of Figure-4 and Figure-6. Second,
we show that js is a distinct list, i.e. no element occurs twice in js. Since
also [0 ..<k + 1] is distinct, the multisets of js and [0 ..<k + 1] are equal,
and therefore, both lists are permutations.

26

lemma js-is-a-permutation:
assumes A1 :

∧
(f :: three ⇒ three ⇒ three) h. associative f

=⇒ foldl1 f (map h js) = foldl1 f (map h [0 ..<k + 1])
and A2 : js 6= []

shows mset js = mset [0 ..<k + 1]
proof −

from A1 and L9 have L9 ′:∧
i. i ≤ k =⇒ foldl1 f1 (map (h1 k i) js) = One by auto

from L9 ′ and Figure-4 and A2 have P1 :
∧

i. i ≤ k =⇒ i ∈ set js by auto
from L9 ′ and Figure-5 have P2 :∧

i xs ys. [[i ≤ k ; js = xs @ ys]] =⇒ ¬(i ∈ set xs ∧ i ∈ set ys) by blast
from L9 ′ and Figure-6 have P3 :

∧
i. i > k =⇒ i /∈ set js by auto

have set-eq: set [0 ..<k + 1] = set js
proof

from P1 show set [0 ..<k + 1] ⊆ set js by auto
next

show set js ⊆ set [0 ..<k + 1]
proof

fix j
assume j ∈ set js
hence ¬(j /∈ set js) by simp
with P3 have ¬(j > k) using HOL.contrapos-nn by auto
hence j ≤ k by simp
thus j ∈ set [0 ..<k + 1] by auto

qed
qed

have
∧

xs ys. js = xs @ ys =⇒ set xs ∩ set ys = {}
proof −

fix xs ys
assume js-xs-ys: js = xs @ ys
with set-eq have i-xs-ys:

∧
i. i ∈ set xs ∨ i ∈ set ys =⇒ i ≤ k by auto

have
∧

i. i ≤ k =⇒ (i ∈ set xs) = (i /∈ set ys)
proof

fix i
assume i ∈ set xs
moreover assume i ≤ k
ultimately show i /∈ set ys using js-xs-ys and P2 by simp

next
fix i
assume i /∈ set ys
moreover assume i ≤ k
ultimately show i ∈ set xs using js-xs-ys and P2 and P1 by auto

qed
thus set xs ∩ set ys = {} using i-xs-ys by auto

qed
with all-set-inter-empty-distinct have distinct js using A2 by auto

27

with set-eq show mset js = mset [0 ..<k + 1]
using Multiset.set-eq-iff-mset-eq-distinct

[where x=js and y=[0 ..<k + 1]] by simp
qed

The result of Figure-7 is too specific. Instead of having that every i is
eventually followed by i + 1, it more useful to know that every i is followed
by all i + r, where r > 0. This result follows easily by induction from
Figure-7.
lemma Figure-7-trans:

assumes A1 :
∧

i xs ys. [[i < k ; js = xs @ ys ; xs 6= [] ; i = last xs]]
=⇒ (i + 1) ∈ set ys

and A2 : (r ::nat) > 0
and A3 : i + r ≤ k
and A4 : js = xs @ ys
and A5 : xs 6= []
and A6 : i = last xs

shows (i + r) ∈ set ys
using A2 A3 proof (induct r)

case 0 thus ?case by simp
next

case (Suc r)
hence IH : 0 < r =⇒ (i + r) ∈ set ys by simp
from Suc have i-r-k: i + Suc r ≤ k by simp
show ?case
proof (cases r)

case 0 thus ?thesis using A1 and i-r-k and A4 and A5 and A6 by auto
next

case Suc
with IH have (i + r) ∈ set ys by simp
then obtain p where p-def : p < length ys ∧ ys ! p = i + r

using List.in-set-conv-nth [where x=i + r] by auto

let ?xs = xs @ take (p + 1) ys
let ?ys = drop (p + 1) ys

have i + r < k using i-r-k by simp
moreover have js = ?xs @ ?ys using A4 by simp
moreover have ?xs 6= [] using A5 by simp
moreover have i + r = last ?xs
using p-def and List.take-Suc-conv-app-nth [where i=p and xs=ys] by simp

ultimately have (i + Suc r) ∈ set ?ys using A1 [where i=i + r] by auto
thus (i + Suc r) ∈ set ys

using List.set-drop-subset [where xs=ys] by auto
qed

qed

Since we want to use Lemma partitions-sorted to show that js is sorted,
we need yet another result which can be obtained using the previous lemma

28

and some further argumentation:
lemma js-partition-order :

assumes A1 : mset js = mset [0 ..<k + 1]
and A2 :

∧
i xs ys. [[i < k ; js = xs @ ys ; xs 6= [] ; i = last xs]]

=⇒ (i + 1) ∈ set ys
and A3 : js = xs @ ys
and A4 : i ∈ set xs
and A5 : j ∈ set ys

shows i ≤ j
proof (rule ccontr)

from A1 have A1 ′: ‹set js = {..<k + 1}›
by (metis atLeast-upt mset-eq-setD)

assume ¬(i ≤ j)
hence i-j: i > j by simp

from A5 obtain pj where pj-def : pj < length ys ∧ ys ! pj = j
using List.in-set-conv-nth [where x=j] by auto

let ?xs = xs @ take (pj + 1) ys
let ?ys = drop (pj + 1) ys

let ?r = i − j

from A1 and A3 have distinct (xs @ ys)
using distinct-upt mset-eq-imp-distinct-iff by blast

hence xs-ys-inter-empty: set xs ∩ set ys = {} by simp

from A2 and Figure-7-trans have∧
i r xs ys. [[r > 0 ; i + r ≤ k ; js = xs @ ys ; xs 6= [] ; i = last xs]]

=⇒ (i + r) ∈ set ys by blast
moreover from i-j have ?r > 0 by simp
moreover have j + ?r ≤ k

proof −
have i ∈ set js using A4 and A3 by simp
hence i ∈ set [0 ..<k + 1]

using A1 ′ by (auto simp add: less-Suc-eq)
hence i ≤ k by auto
thus ?thesis using i-j by simp

qed
moreover have js = ?xs @ ?ys using A3 by simp
moreover have ?xs 6= [] using A4 by auto
moreover have j = last (?xs)
using pj-def and List.take-Suc-conv-app-nth [where i=pj and xs=ys] by simp

ultimately have (j + ?r) ∈ set ?ys by blast
hence i ∈ set ys using i-j and List.set-drop-subset [where xs=ys] by auto
with A4 and xs-ys-inter-empty show False by auto

qed

29

With the help of the previous lemma, we show now that js equals [0 ..<k
+ 1], if both lists are permutations and every i is eventually followed by i
+ 1 in js.
lemma js-equals-upt-k:

assumes A1 : mset js = mset [0 ..<k + 1]
and A2 :

∧
i xs ys. [[i < k ; js = xs @ ys ; xs 6= [] ; i = last xs]]

=⇒ (i + 1) ∈ set ys
shows js = [0 ..<k + 1]

proof −
from A1 and A2 and js-partition-order
have

∧
xs ys x y. [[js = xs @ ys ; x ∈ set xs ; y ∈ set ys]] =⇒ x ≤ y

by blast
hence sorted js using partitions-sorted by blast
moreover have distinct js

using A1 distinct-upt mset-eq-imp-distinct-iff by blast
moreover have sorted [0 ..<k + 1]

using List.sorted-upt by blast
moreover have distinct [0 ..<k + 1] by simp
moreover have set js = set [0 ..<k + 1]

using A1 mset-eq-setD by blast
ultimately show js = [0 ..<k + 1] using List.sorted-distinct-set-unique

by blast
qed

From all the work done before, we conclude now Lemma 4:
lemma Lemma-4 :

assumes
∧
(f :: three ⇒ three ⇒ three) h. associative f

=⇒ foldl1 f (map h js) = foldl1 f (map h [0 ..<k + 1])
and js 6= []

shows js = [0 ..<k + 1]
proof −

from assms and js-is-a-permutation have mset js = mset[0 ..<k + 1] by auto
moreover
from assms and L10 and Figure-7
have

∧
i xs ys. [[i < k ; js = xs @ ys ; xs 6= [] ; i = last xs]]

=⇒ (i + 1) ∈ set ys by blast
ultimately show ?thesis using js-equals-upt-k by auto

qed

6.4 Lemma 5
This lemma is a lifting of Lemma 4 to the overall computation of scanl1. Its
proof follows closely the one given in the original paper.
lemma Lemma-5 :

assumes
∧
(f :: three ⇒ three ⇒ three) h. associative f

=⇒ map (foldl1 f ◦ map h) jss = scanl1 f (map h [0 ..<n + 1])
and

∧
js. js ∈ set jss =⇒ js 6= []

shows jss = ups n

30

proof −
have P1 : length jss = length (ups n)

proof −
obtain f :: three ⇒ three ⇒ three where f-assoc: associative f

using f1-assoc by auto

fix h
have
length jss = length (map (foldl1 f ◦ map h) jss) by (simp add: L2)
also have
. . . = length (scanl1 f (map h [0 ..<n + 1]))

using assms and f-assoc by simp
also have
. . . = length (map (λk. foldl1 f (take (k + 1) (map h [0 ..<n + 1])))

[0 ..<length (map h [0 ..<n + 1])]) by simp
also have
. . . = length [0 ..<length (map h [0 ..<n + 1])] by (simp add: L2)
also have
. . . = length [0 ..<length [0 ..<n + 1]] by (simp add: L2)
also have
. . . = length [0 ..<n + 1] by simp
also have
. . . = length (map (λk. [0 ..<k + 1]) [0 ..<n + 1]) by (simp add: L2)
also have
. . . = length (ups n) by simp
finally show ?thesis .

qed

have P2 :
∧

k. k < length jss =⇒ jss ! k = (ups n) ! k
proof −

fix k
assume k-length-jss: k < length jss
hence non-empty-jss-k: jss ! k 6= [] using assms by simp

from k-length-jss
have k-length-length: k < length [1 ..<length [0 ..<n + 1] + 1]

using P1 by simp
hence k-length: k < length [0 ..<n + 1]

using List.length-upt [where i=1 and j=length [0 ..<n + 1] + 1]
by simp

have
∧
(f :: three ⇒ three ⇒ three) h. associative f
=⇒ foldl1 f (map h (jss ! k)) = foldl1 f (map h [0 ..<k + 1])

proof −
fix f h
assume f-assoc: associative (f :: three ⇒ three ⇒ three)
have
foldl1 f (map h (jss ! k))
= (map (foldl1 f ◦ map h) jss) ! k

31

using L6 and k-length-jss by auto
also have
. . . = (scanl1 f (map h [0 ..<n + 1])) ! k

using assms and f-assoc by simp
also have
. . . = (map (λk. foldl1 f (take k (map h [0 ..<n + 1])))

[1 ..<length (map h [0 ..<n + 1]) + 1]) ! k by simp
also have
. . . = (map (λk. foldl1 f (take k (map h [0 ..<n + 1])))

[1 ..<length [0 ..<n + 1] + 1]) ! k
by (simp add: L2)

also have
. . . = (λk. foldl1 f (take k (map h [0 ..<n + 1])))

([1 ..<length [0 ..<n + 1] + 1] ! k)
using L6 [where xs=[1 ..<length [0 ..<n + 1] + 1]

and f=(λk. foldl1 f (take k (map h [0 ..<n + 1])))]
and k-length-length by auto

also have
. . . = foldl1 f (take (k + 1) (map h [0 ..<n + 1]))

proof −
have [1 ..<length [0 ..<n + 1] + 1] ! k = k + 1

using List.nth-upt [where i=1 and j=length [0 ..<n + 1] + 1]
and k-length by simp

thus ?thesis by simp
qed

also have
. . . = foldl1 f (map h (take (k + 1) [0 ..<n + 1]))

using L3 [where k=k + 1 and xs=[0 ..<n + 1] and f=h] by simp
also have . . . = foldl1 f (map h [0 ..<k + 1])

using List.take-upt [where i=0 and m=k + 1 and n=n + 1]
and k-length by simp

finally show
foldl1 f (map h (jss ! k)) = foldl1 f (map h [0 ..<k + 1]) .

qed
with Lemma-4 and non-empty-jss-k have P3 : jss ! k = [0 ..<k + 1]

by blast

have
(ups n) ! k
= (map (λk. [0 ..<k + 1]) [0 ..<n + 1]) ! k by simp

also have
. . . = (λk. [0 ..<k + 1]) ([0 ..<n + 1] ! k)

using L6 [where xs=[0 ..<n + 1]] and k-length by auto
also have
. . . = [0 ..<k + 1]

using List.nth-upt [where i=0 and j=n + 1] and k-length by simp
finally have (ups n) ! k = [0 ..<k + 1] .

with P3 show jss ! k = (ups n) ! k by simp

32

qed

from P1 P2 and Lemma-2 show jss = ups n by blast
qed

6.5 Proposition 1
In the original paper, only non-empty lists where considered, whereas here,
the used list datatype allows also for empty lists. Therefore, we need to
exclude non-empty lists to have a similar setting as in the original paper.

In the case of Proposition 1, we need to show that every list contained
in the result of candidate (@) (map wrap [0 ..<n + 1]) is non-empty. The
idea is to interpret empty lists by the value Zero and non-empty lists by the
value One, and to apply the assumptions.
lemma non-empty-candidate-results:

assumes
∧

(f :: three ⇒ three ⇒ three) (xs :: three list).
[[associative f ; xs 6= []]] =⇒ candidate f xs = scanl1 f xs

and js ∈ set (candidate (@) (map wrap [0 ..<n + 1]))
shows js 6= []

proof −
— We define a mapping of lists to values of three as explained
— above, and a function which behaves like @ on values of
— three.
let ?h = λxs. case xs of [] ⇒ Zero | (-#-) ⇒ One
let ?g = λx y. if (x = One ∨ y = One) then One else Zero
have g-assoc: associative ?g unfolding associative-def by auto

— Our defined functions fulfill the requirements of the free theorem of
— candidate, that is:
have req-free-theorem:

∧
xs ys. ?h (xs @ ys) = ?g (?h xs) (?h ys)

proof −
fix xs ys
show ?h (xs @ ys) = ?g (?h xs) (?h ys)

by (cases xs, simp-all, cases ys, simp-all)
qed

— Before applying the assumptions, we show that candidate’s
— counterpart scanl1, applied to a non-empty list, returns only
— a repetition of the value One.
have set-scanl1-is-One:

set (scanl1 ?g (map ?h (map wrap [0 ..<n + 1]))) = {One}
proof −

have const-One: map (λx. One) [0 ..<n + 1] = replicate (n + 1) One
proof (induct n)

case 0 thus ?case by simp
next

case (Suc n)
have

33

map (λx. One) [0 ..<Suc n + 1]
= map (λx. One) ([0 ..<Suc n] @ [Suc n]) by simp

also have
. . . = map (λx. One) [0 ..<Suc n] @ map (λx. One) [Suc n]

by simp
also have . . . = replicate (Suc n) One @ replicate 1 One

using Suc by simp
also have . . . = replicate (Suc n + 1) One

using List.replicate-add
[symmetric, where x=One and n=Suc n and m=1]

by simp
finally show ?case .

qed

have foldl1-One:
∧

xs. foldl1 ?g (One # xs) = One
proof −

fix xs
show foldl1 ?g (One # xs) = One
proof (induct xs rule: measure-induct [where f=length])

fix x
assume ∀ y. length y < length (x::three list)

−→ foldl1 ?g (One # y) = One
thus foldl1 ?g (One # x) = One by (cases x, auto)

qed
qed

have
scanl1 ?g (map ?h (map wrap [0 ..<n + 1]))
= scanl1 ?g (map (?h ◦ wrap) [0 ..<n + 1])

using L1 [where g=?h and f=wrap and xs=[0 ..<n + 1]] by simp
also have
. . . = scanl1 ?g (map (λx. One) [0 ..<n + 1]) by (simp add: Fun.o-def)
also have
. . . = scanl1 ?g (replicate (n + 1) One) using const-One by auto
also have
. . . = map (λk. foldl1 ?g (take k (replicate (n + 1) One)))

[1 ..<length (replicate (n + 1) One) + 1] by simp
also have
. . . = map (λk. foldl1 ?g (take k (replicate (n + 1) One)))

(map Suc [0 ..<length (replicate (n + 1) One)])
using List.map-Suc-upt by simp

also have
. . . = map ((λk. foldl1 ?g (take k (replicate (n + 1) One))) ◦ Suc)

[0 ..<length (replicate (n + 1) One)]
using L1 by simp

also have
. . . = map (λk. foldl1 ?g (replicate (min (k + 1) (n + 1)) One))

[0 ..<n + 1] using Fun.o-def by simp
also have

34

. . . = map (λk. foldl1 ?g (One # replicate (min k n) One))
[0 ..<n + 1] by simp

also have
. . . = map (λk. One) [0 ..<n + 1] using foldl1-One by simp
also have
. . . = replicate (n + 1) One using const-One by simp
finally show ?thesis using List.set-replicate [where n=n + 1] by simp

qed

— Thus, with the assumptions and the free theorem of candidate, we show
— that results of candidate, after applying h, can only
— have the value One.
have
scanl1 ?g (map ?h (map wrap [0 ..<n + 1]))
= candidate ?g (map ?h (map wrap [0 ..<n + 1]))

using assms and g-assoc by auto
also have
. . . = map ?h (candidate (@) (map wrap [0 ..<n + 1]))

using candidate-free-theorem [symmetric, where f=(@) and g=?g
and h=?h and zs=(map wrap [0 ..<n + 1])] and req-free-theorem by auto

finally have set-is-One:∧
x. x ∈ set (map ?h (candidate (@) (map wrap [0 ..<n + 1])))
=⇒ x = One

using set-scanl1-is-One by auto

— Now, it is easy to conclude the thesis.
from assms
have ?h js ∈ ?h ‘ set (candidate (@) (map wrap [0 ..<n + 1])) by auto
with set-is-One have ?h js = One by simp
thus js 6= [] by auto

qed

Proposition 1 is very similar to the corresponding one shown in the
original paper except of a slight modification due to the choice of using
Isabelle’s list datatype.

Strictly speaking, the requirement that xs must be non-empty in the
assumptions of Proposition 1 is not necessary, because only non-empty lists
are applied in the proof. However, the additional requirement eases the
proof obligations of the final theorem, i.e. this additions allows more (or
easier) applications of the final theorem.
lemma Proposition-1 :

assumes
∧

(f :: three ⇒ three ⇒ three) (xs :: three list).
[[associative f ; xs 6= []]] =⇒ candidate f xs = scanl1 f xs

shows candidate (@) (map wrap [0 ..<n + 1]) = ups n
proof −

— This addition is necessary because we are using Isabelle’s list datatype
— which allows for empty lists.
from assms and non-empty-candidate-results have non-empty-candidate:∧

js. js ∈ set (candidate (@) (map wrap [0 ..<n + 1])) =⇒ js 6= []

35

by auto

have
∧
(f :: three ⇒ three ⇒ three) h. associative f

=⇒ map (foldl1 f ◦ map h) (candidate (@) (map wrap [0 ..<n + 1]))
= scanl1 f (map h [0 ..<n + 1])

proof −
fix f h
assume f-assoc: associative (f :: three ⇒ three ⇒ three)
hence
map (foldl1 f ◦ map h) (candidate (@) (map wrap [0 ..<n + 1]))
= candidate f (map h [0 ..<n + 1]) using Lemma-3 by auto

also have
. . . = scanl1 f (map h [0 ..<n + 1])

using assms [where xs=map h [0 ..<n + 1]] and f-assoc by simp
finally show
map (foldl1 f ◦ map h) (candidate (@) (map wrap [0 ..<n + 1]))
= scanl1 f (map h [0 ..<n + 1]) .

qed
with Lemma-5 and non-empty-candidate show ?thesis by auto

qed

7 Proving Proposition 2
Before proving Proposition 2, a non-trivial step of that proof is shown first.
In the original paper, the argumentation simply applies L7 and the definition
of map and [0 ..<k + 1]. However, since, L7 requires that k must be less
than length [0 ..<length xs] and this does not simply follow for the bound
occurrence of k, a more complicated proof is necessary. Here, it is shown
based on Lemma 2.
lemma Prop-2-step-L7 :

map (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) [0 ..<length xs]
= map (λk. foldl1 g (take (k + 1) xs)) [0 ..<length xs]

proof −
have P1 :
length (map (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) [0 ..<length xs])
= length (map (λk. foldl1 g (take (k + 1) xs)) [0 ..<length xs])

by (simp add: L2)

have P2 :∧
k. k < length (map (λk. foldl1 g (map (nth xs) [0 ..<k + 1]))

[0 ..<length xs])
=⇒ (map (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) [0 ..<length xs]) ! k

= (map (λk. foldl1 g (take (k + 1) xs)) [0 ..<length xs]) ! k
proof −

fix k
assume k-length:

k < length (map (λk. foldl1 g (map (nth xs) [0 ..<k + 1]))
[0 ..<length xs])

36

hence k-length ′: k < length xs by (simp add: L2)

have
(map (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) [0 ..<length xs]) ! k
= (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) ([0 ..<length xs] ! k)

using L6 and k-length by (simp add: L2)
also have
. . . = foldl1 g (map (nth xs) [0 ..<k + 1])

using k-length ′ by (auto simp: L2)
also have
. . . = foldl1 g (take (k + 1) xs)

using L7 [where k=k and xs=xs] and k-length ′ by simp
also have
. . . = (λk. foldl1 g (take (k + 1) xs)) ([0 ..<length xs] ! k)

using k-length ′ by (auto simp: L2)
also have
. . . = (map (λk. foldl1 g (take (k + 1) xs)) [0 ..<length xs]) ! k

using L6 [symmetric] and k-length by (simp add: L2)
finally show
(map (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) [0 ..<length xs]) ! k
= (map (λk. foldl1 g (take (k + 1) xs)) [0 ..<length xs]) ! k .

qed

from P1 P2 and Lemma-2 show ?thesis by blast
qed

Compared to the original paper, here, Proposition 2 has the additional
assumption that xs is non-empty. The proof, however, is identical to the the
one given in the original paper, except for the non-trivial step shown before.
lemma Proposition-2 :

assumes A1 :
∧

n. candidate (@) (map wrap [0 ..<n + 1]) = ups n
and A2 : associative g
and A3 : xs 6= []

shows candidate g xs = scanl1 g xs
proof −

— First, based on Lemma 2, we show that
— xs = map ((!) xs) [0 ..<length xs]
— by the following facts P1 and P2.

have P1 : length xs = length (map (nth xs) [0 ..<length xs])
proof −

have
length xs
= length [0 ..<length xs] by simp

also have
. . . = length (map (nth xs) [0 ..<length xs])

using L2 [symmetric] by auto
finally show ?thesis .

qed

37

have P2 :
∧

k. k < length xs =⇒ xs ! k = (map (nth xs) [0 ..<length xs]) ! k
proof −

fix k
assume k-length-xs: k < length xs
hence k-length-xs ′: k < length [0 ..<length xs] by simp
have
xs ! k = nth xs ([0 ..<length xs] ! k)

using k-length-xs by simp
also have
. . . = (map (nth xs) [0 ..<length xs]) ! k

using L6 [symmetric] and k-length-xs ′ by auto
finally show xs ! k = (map (nth xs) [0 ..<length xs]) ! k .

qed

from P1 P2 and Lemma-2 have xs = map (nth xs) [0 ..<length xs] by blast

— Thus, with some rewriting, we show the thesis.
hence
candidate g xs
= candidate g (map (nth xs) [0 ..<length xs]) by simp

also have
. . . = map (foldl1 g ◦ map (nth xs))

(candidate (@) (map wrap [0 ..<length xs]))
using Lemma-3 [symmetric, where h=nth xs and n=length xs − 1]
and A2 and A3 by auto

also have
. . . = map (foldl1 g ◦ map (nth xs)) (ups (length xs − 1))

using A1 [where n=length xs − 1] and A3 by simp
also have
. . . = map (foldl1 g ◦ map (nth xs)) (map (λk. [0 ..<k + 1]) [0 ..<length xs])

using A3 by simp
also have
. . . = map (λk. foldl1 g (map (nth xs) [0 ..<k + 1])) [0 ..<length xs]

using L1 [where g=foldl1 g ◦ map (nth xs) and f=(λk. [0 ..<k + 1])]
by (simp add: Fun.o-def)

also have
. . . = map (λk. foldl1 g (take (k + 1) xs)) [0 ..<length xs]

using Prop-2-step-L7 by simp
also have
. . . = map (λk. foldl1 g (take k xs)) (map (λk. k + 1) [0 ..<length xs])

by (simp add: L1)
also have
. . . = map (λk. foldl1 g (take k xs)) [1 ..<length xs + 1]

using List.map-Suc-upt by simp
also have
. . . = scanl1 g xs by simp
finally show ?thesis .

qed

38

8 The Final Result
Finally, we the main result follows directly from Proposition 1 and Propo-
sition 2.
theorem The-0-1-2-Principle:

assumes
∧

(f :: three ⇒ three ⇒ three) (xs :: three list).
[[associative f ; xs 6= []]] =⇒ candidate f xs = scanl1 f xs

and associative g
and ys 6= []

shows candidate g ys = scanl1 g ys
using Proposition-1 Proposition-2 and assms by blast

Acknowledgments
I thank Janis Voigtländer for sharing a draft of his paper before its publica-
tion with me.

References
[1] Blelloch. Prefix sums and their applications. In J. H. Reif, editor, Syn-

thesis of Parallel Algorithms. Margona Kaufmann, 1993.

[2] N. A. Day, J. Launchbury, and J. Lewis. Logical Abstractions in Haskell.
In Proceedings of the 1999 Haskell Workshop. Utrecht University Depart-
ment of Computer Science, Technical Report UU-CS-1999-28, October
1999.

[3] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting
and Searching. Addison-Wesley, 1973.

[4] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. In
IFIP Congress, pages 513–523, 1983.

[5] J. Voigtländer. Much Ado about Two – A Pearl on Parallel Prefix Com-
putation. In POPL’08. ACM, Jan. 2008.

[6] P. Wadler. Theorems for free! In FPCA ’89: Proceedings of the fourth
international conference on Functional programming languages and com-
puter architecture, pages 347–359. ACM, 1989.

39

	Much Ado about Two
	Basic definitions
	A Free Theorem
	Useful lemmas
	Preparatory Material
	Proving Proposition 1
	Definitions of Lemma 4
	Figures and Proofs
	Permutations and Lemma 4
	Lemma 5
	Proposition 1

	Proving Proposition 2
	The Final Result

