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Abstract

Building on the formalization of basic category theory set out in the author’s
previous AFP article [6], the present article formalizes some basic aspects of the the-
ory of monoidal categories. Among the notions defined here are monoidal category,
monoidal functor, and equivalence of monoidal categories. The main theorems for-
malized are MacLane’s coherence theorem and the constructions of the free monoidal
category and free strict monoidal category generated by a given category. The co-
herence theorem is proved syntactically, using a structurally recursive approach to
reduction of terms that might have some novel aspects. We also give proofs of some
results given by Etingof et al [2], which may prove useful in a formal setting. In
particular, we show that the left and right unitors need not be taken as given data
in the definition of monoidal category, nor does the definition of monoidal functor
need to take as given a specific isomorphism expressing the preservation of the unit
object. Our definitions of monoidal category and monoidal functor are stated so as
to take advantage of the economy afforded by these facts.

Revisions made subsequent to the first version of this article added material on
cartesian monoidal categories; showing that the underlying category of a cartesian
monoidal category is a cartesian category, and that every cartesian category extends
to a cartesian monoidal category.
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Chapter 1

Introduction

A monoidal category is a category C equipped with a binary “tensor product” functor ⊗ :
C×C → C, which is associative up to a given natural isomorphism, and an object I that
behaves up to isomorphism like a unit for ⊗. The associativity and unit isomorphisms are
assumed to satisfy certain axioms known as coherence conditions. Monoidal categories
were introduced by Bénabou [1] and MacLane [4]. MacLane showed that the axioms for a
monoidal category imply that all diagrams in a large class are commutative. This result,
known as MacLane’s Coherence Theorem, is the first important result in the theory of
monoidal categories.

Monoidal categories are important partly because of their ubiquity. The category of
sets and functions is monoidal; more generally any category with binary products and a
terminal object becomes a monoidal category if we take the categorical product as ⊗ and
the terminal object as I. The category of vector spaces over a field, with linear maps as
morphisms, not only admits monoidal structure with respect to the categorical product,
but also with respect to the usual tensor product of vector spaces. Monoidal categories
serve as the starting point for enriched category theory in that they provide a setting in
which ordinary categories, having “homs in the category of sets,” can be generalized to
“categories having homs in a monoidal category V”. In addition, the theory of monoidal
categories can be regarded as a stepping stone to the theory of bicategories, as monoidal
categories are the same thing as one-object bicategories.

Building on the formalization of basic category theory set out in the author’s previous
AFP article [6], the present article formalizes some basic aspects of the theory of monoidal
categories. In Chapter 2, we give a definition of the notion of monoidal category and
develop consequences of the axioms. We then give a proof of MacLane’s coherence
theorem. The proof is syntactic: we define a language of terms built from arrows of a
given category C using constructors that correspond to formal composition and tensor
product as well as to the associativity and unit isomorphisms and their formal inverses,
we then define a mapping that interprets terms of the language in an arbitrary monoidal
category D via a valuation functor V : C → D, and finally we syntactically characterize
a class of equations between terms that hold in any such interpretation. Among these
equations are all those that relate formally parallel “canonical” terms, where a term is
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canonical if the only arrows of C that are used in its construction are identities. Thus, all
formally parallel canonical terms have identical interpretations in any monoidal category,
which is the content of MacLane’s coherence theorem.

In Chapter 3, we define the notion of a monoidal functor between monoidal categories.
A monoidal functor from a monoidal category C to a monoidal category D is a functor
F : C → D, equipped with additional data that express that the monoidal structure is
preserved by F up to natural isomorphism. A monoidal functor is strict if it preserves the
monoidal structure “on the nose” (i.e. the natural isomorphism is an identity). We also
define the notion of an equivalence of monoidal categories, which is a monoidal functor
F : C → D that is part of an ordinary equivalence of categories between C and D.

In Chapter 4, we use the language of terms defined in Chapter 2 to give a syntac-
tic construction of the free monoidal category FC generated by a category C. The
arrows FC are defined to be certain equivalence classes of terms, where composition
and tensor product, as well as the associativity and unit isomorphisms, are determined
by the syntactic operations. After proving that the construction does in fact yield a
monoidal category, we establish its freeness: every functor from C to a monoidal cate-
gory D extends uniquely to a strict monoidal functor from FC to D. We then consider
the subcategory FSC of FC whose arrows are equivalence classes of terms that we call
“diagonal.” Diagonal terms amount to lists of arrows of C, composition in FSC is given
by elementwise composition of compatible lists of arrows, and tensor product in FSC is
given by concatenation of lists. We show that the subcategory FSC is monoidally equiv-
alent to the category FC and in addition that FSC is the free strict monoidal category
generated by C.

The formalizations of the notions of monoidal category and monoidal functor that
we give here are not quite the traditional ones. The traditional definition of monoidal
category assumes as given not only an “associator” natural isomorphism, which expresses
the associativity of the tensor product, but also left and right “unitor” isomorphisms,
which correspond to unit laws. However, as pointed out in [2], it is not necessary to take
the unitors as given, because they are uniquely determined by the other structure and
the condition that left and right tensoring with the unit object are endo-equivalences.
This leads to a definition of monoidal category that requires fewer data to be given and
fewer conditions to be verified in applications. As this is likely to be especially important
in a formal setting, we adopt this more economical definition and go to the trouble to
obtain the unitors as defined notions. A similar situation occurs with the definition of
monoidal functor. The traditional definition requires two natural isomorphisms to be
given: one that expresses the preservation of tensor product and another that expresses
the preservation of the unit object. Once again, as indicated in [2], it is logically unnec-
essary to take the latter isomorphism as given, since there is a canonical definition of it
in terms of the other structure. We adopt the more economical definition of monoidal
functor and prove that the traditionally assumed structure can be derived from it.

Finally, the proof of the coherence theorem given here potentially has some novel
aspects. A typical syntactic proof of this theorem, such as that described in [5], involves
the identification, for each term constructed as a formal tensor product of the unit object
I and “primitive objects” (i.e. the elements of a given set of generators), of a “reduction”

4



isomorphism obtained by composing “basic reductions” in which occurrences of I are
eliminated using components of the left and right unitors and “parentheses are moved
to one end” using components of the associator. The construction of these reductions
is performed, as in [5], using an approach that can be thought of as the application
of an iterative strategy for normalizing a term. My thoughts were initially along these
lines, and I did succeed in producing a formal proof of the coherence theorem in this
way. However, proving the termination of the reduction strategy was complicated by
the necessity of using of a “rank function” on terms, and the lemmas required for the
remainder of the proof had to be proved by induction on rank, which was messy. At
some point, I realized that it ought to be possible to define reductions in a structurally
recursive way, which would permit the lemmas in the rest of the proof to be proved
by structural induction, rather than induction on rank. It took some time to find the
right definitions, but in the end this approach worked out more simply, and is what is
presented here.

Revision Notes
The original version of this document dates from May, 2017. The current version of

this document incorporates revisions made in mid-2020 after the release of Isabelle2020.
Aside from various minor improvements, the main change was the addition of a new the-
ory, concerning cartesian monoidal categories, which coordinates with material on carte-
sian categories that was simultaneously added to [6]. The new theory defines “cartesian
monoidal category” as an extension of “monoidal category” obtained by adding addi-
tional functors, natural transformations, and coherence conditions. The main results
proved are that the underlying category of a cartesian monoidal category is a cartesian
category, and that every cartesian category extends to a cartesian monoidal category.
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Chapter 2

Monoidal Category

In this theory, we define the notion “monoidal category,” and develop consequences of
the definition. The main result is a proof of MacLane’s coherence theorem.
theory MonoidalCategory
imports Category3 .EquivalenceOfCategories
begin

2.1 Monoidal Category
A typical textbook presentation defines a monoidal category to be a category C equipped
with (among other things) a binary “tensor product” functor ⊗: C × C → C and an
“associativity” natural isomorphism α, whose components are isomorphisms α (a, b, c):
(a ⊗ b) ⊗ c → a ⊗ (b ⊗ c) for objects a, b, and c of C. This way of saying things avoids
an explicit definition of the functors that are the domain and codomain of α and, in
particular, what category serves as the domain of these functors. The domain category
is in fact the product category C × C × C and the domain and codomain of α are
the functors T o (T × C ): C × C × C → C and T o (C × T ): C × C × C → C.
In a formal development, though, we can’t gloss over the fact that C × C × C has to
mean either C × (C × C ) or (C × C ) × C, which are not formally identical, and that
associativities are somehow involved in the definitions of the functors T o (T × C ) and
T o (C × T ). Here we use the binary-endofunctor locale to codify our choices about
what C × C × C, T o (T × C ), and T o (C × T ) actually mean. In particular, we
choose C × C × C to be C × (C × C ) and define the functors T o (T × C ), and T o
(C × T ) accordingly.

Our primary definition for “monoidal category” follows the somewhat non-traditional
development in [2]. There a monoidal category is defined to be a category C equipped
with a binary tensor product functor T : C × C → C, an associativity isomorphism,
which is a natural isomorphism α: T o (T × C ) → T o (C × T ), a unit object I of C,
and an isomorphism ι: T (I, I) → I, subject to two axioms: the pentagon axiom, which
expresses the commutativity of certain pentagonal diagrams involving components of α,
and the left and right unit axioms, which state that the endofunctors T (I, −) and T (−,
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I) are equivalences of categories. This definition is formalized in the monoidal-category
locale.

In more traditional developments, the definition of monoidal category involves addi-
tional left and right unitor isomorphisms λ and % and associated axioms involving their
components. However, as is shown in [2] and formalized here, the unitors are uniquely
determined by α and their values λ(I) and %(I) at I, which coincide. Treating λ and
% as defined notions results in a more economical basic definition of monoidal category
that requires less data to be given, and has a similar effect on the definition of “monoidal
functor.” Moreover, in the context of the formalization of categories that we use here, the
unit object I also need not be given separately, as it can be obtained as the codomain
of the isomorphism ι.

locale monoidal-category =
category C +
CC : product-category C C +
CCC : product-category C CC .comp +
T : binary-endofunctor C T +
α: natural-isomorphism CCC .comp C T .ToTC T .ToCT α +
L: equivalence-functor C C λf . T (cod ι, f ) +
R: equivalence-functor C C λf . T (f , cod ι)

for C :: ′a comp (infixr ‹·› 55 )
and T :: ′a ∗ ′a ⇒ ′a
and α :: ′a ∗ ′a ∗ ′a ⇒ ′a
and ι :: ′a +
assumes unit-in-hom-ax: «ι : T (cod ι, cod ι) → cod ι»
and unit-is-iso: iso ι
and pentagon: [[ ide a; ide b; ide c; ide d ]] =⇒

T (a, α (b, c, d)) · α (a, T (b, c), d) · T (α (a, b, c), d) =
α (a, b, T (c, d)) · α (T (a, b), c, d)

begin

We now define helpful notation and abbreviations to improve readability. We did
not define and use the notation ⊗ for the tensor product in the definition of the locale
because to define ⊗ as a binary operator requires that it be in curried form, whereas for
T to be a binary functor requires that it take a pair as its argument.

abbreviation unity :: ′a (‹I›)
where unity ≡ cod ι

abbreviation L :: ′a ⇒ ′a
where L f ≡ T (I, f )

abbreviation R :: ′a ⇒ ′a
where R f ≡ T (f , I)

abbreviation tensor (infixr ‹⊗› 53 )
where f ⊗ g ≡ T (f , g)

abbreviation assoc (‹a[-, -, -]›)
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where a[a, b, c] ≡ α (a, b, c)

In HOL we can just give the definitions of the left and right unitors “up front” without
any preliminary work. Later we will have to show that these definitions have the right
properties. The next two definitions define the values of the unitors when applied to
identities; that is, their components as natural transformations.

definition lunit (‹l[-]›)
where lunit a ≡ THE f . «f : I ⊗ a → a» ∧ I ⊗ f = (ι ⊗ a) · inv a[I, I, a]

definition runit (‹r[-]›)
where runit a ≡ THE f . «f : a ⊗ I → a» ∧ f ⊗ I = (a ⊗ ι) · a[a, I, I]

We now embark upon a development of the consequences of the monoidal cate-
gory axioms. One of our objectives is to be able to show that an interpretation of
the monoidal-category locale induces an interpretation of a locale corresponding to a
more traditional definition of monoidal category. Another is to obtain the facts we need
to prove the coherence theorem.

lemma unit-in-hom [intro]:
shows «ι : I ⊗ I → I»
〈proof 〉

lemma ide-unity [simp]:
shows ide I
〈proof 〉

lemma tensor-in-hom [simp]:
assumes «f : a → b» and «g : c → d»
shows «f ⊗ g : a ⊗ c → b ⊗ d»
〈proof 〉

lemma tensor-in-homI [intro]:
assumes «f : a → b» and «g : c → d» and x = a ⊗ c and y = b ⊗ d
shows «f ⊗ g : x → y»
〈proof 〉

lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f ⊗ g)
〈proof 〉

lemma dom-tensor [simp]:
assumes «f : a → b» and «g : c → d»
shows dom (f ⊗ g) = a ⊗ c
〈proof 〉

lemma cod-tensor [simp]:
assumes «f : a → b» and «g : c → d»
shows cod (f ⊗ g) = b ⊗ d
〈proof 〉
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lemma tensor-preserves-ide [simp]:
assumes ide a and ide b
shows ide (a ⊗ b)
〈proof 〉

lemma tensor-preserves-iso [simp]:
assumes iso f and iso g
shows iso (f ⊗ g)
〈proof 〉

lemma inv-tensor [simp]:
assumes iso f and iso g
shows inv (f ⊗ g) = inv f ⊗ inv g
〈proof 〉

lemma interchange:
assumes seq h g and seq h ′ g ′

shows (h ⊗ h ′) · (g ⊗ g ′) = h · g ⊗ h ′ · g ′

〈proof 〉

lemma α-simp:
assumes arr f and arr g and arr h
shows α (f , g, h) = (f ⊗ g ⊗ h) · a[dom f , dom g, dom h]
〈proof 〉

lemma assoc-in-hom [intro]:
assumes ide a and ide b and ide c
shows «a[a, b, c] : (a ⊗ b) ⊗ c → a ⊗ b ⊗ c»
〈proof 〉

lemma arr-assoc [simp]:
assumes ide a and ide b and ide c
shows arr a[a, b, c]
〈proof 〉

lemma dom-assoc [simp]:
assumes ide a and ide b and ide c
shows dom a[a, b, c] = (a ⊗ b) ⊗ c
〈proof 〉

lemma cod-assoc [simp]:
assumes ide a and ide b and ide c
shows cod a[a, b, c] = a ⊗ b ⊗ c
〈proof 〉

lemma assoc-naturality:
assumes arr f0 and arr f1 and arr f2
shows a[cod f0 , cod f1 , cod f2 ] · ((f0 ⊗ f1 ) ⊗ f2 ) =

9



(f0 ⊗ f1 ⊗ f2 ) · a[dom f0 , dom f1 , dom f2 ]
〈proof 〉

lemma iso-assoc [simp]:
assumes ide a and ide b and ide c
shows iso a[a, b, c]
〈proof 〉

The next result uses the fact that the functor L is an equivalence (and hence faithful)
to show the existence of a unique solution to the characteristic equation used in the
definition of a component l[a] of the left unitor. It follows that l[a], as given by our
definition using definite description, satisfies this characteristic equation and is therefore
uniquely determined by by ⊗, α, and ι.

lemma lunit-char :
assumes ide a
shows «l[a] : I ⊗ a → a» and I ⊗ l[a] = (ι ⊗ a) · inv a[I, I, a]
and ∃ !f . «f : I ⊗ a → a» ∧ I ⊗ f = (ι ⊗ a) · inv a[I, I, a]
〈proof 〉

lemma lunit-in-hom [intro]:
assumes ide a
shows «l[a] : I ⊗ a → a»
〈proof 〉

lemma arr-lunit [simp]:
assumes ide a
shows arr l[a]
〈proof 〉

lemma dom-lunit [simp]:
assumes ide a
shows dom l[a] = I ⊗ a
〈proof 〉

lemma cod-lunit [simp]:
assumes ide a
shows cod l[a] = a
〈proof 〉

As the right-hand side of the characteristic equation for I ⊗ l[a] is an isomorphism,
and the equivalence functor L reflects isomorphisms, it follows that l[a] is an isomorphism.

lemma iso-lunit [simp]:
assumes ide a
shows iso l[a]
〈proof 〉

To prove that an arrow f is equal to l[a] we need only show that it is parallel to l[a]
and that I ⊗ f satisfies the same characteristic equation as I ⊗ l[a] does.

lemma lunit-eqI :
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assumes «f : I ⊗ a → a» and I ⊗ f = (ι ⊗ a) · inv a[I, I, a]
shows f = l[a]
〈proof 〉

The next facts establish the corresponding results for the components of the right
unitor.

lemma runit-char :
assumes ide a
shows «r[a] : a ⊗ I → a» and r[a] ⊗ I = (a ⊗ ι) · a[a, I, I]
and ∃ !f . «f : a ⊗ I → a» ∧ f ⊗ I = (a ⊗ ι) · a[a, I, I]
〈proof 〉

lemma runit-in-hom [intro]:
assumes ide a
shows «r[a] : a ⊗ I → a»
〈proof 〉

lemma arr-runit [simp]:
assumes ide a
shows arr r[a]
〈proof 〉

lemma dom-runit [simp]:
assumes ide a
shows dom r[a] = a ⊗ I
〈proof 〉

lemma cod-runit [simp]:
assumes ide a
shows cod r[a] = a
〈proof 〉

lemma runit-eqI :
assumes «f : a ⊗ I → a» and f ⊗ I = (a ⊗ ι) · a[a, I, I]
shows f = r[a]
〈proof 〉

lemma iso-runit [simp]:
assumes ide a
shows iso r[a]
〈proof 〉

We can now show that the components of the left and right unitors have the naturality
properties required of a natural transformation.

lemma lunit-naturality:
assumes arr f
shows l[cod f ] · (I ⊗ f ) = f · l[dom f ]
〈proof 〉
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lemma runit-naturality:
assumes arr f
shows r[cod f ] · (f ⊗ I) = f · r[dom f ]
〈proof 〉

The next two definitions extend the unitors to all arrows, not just identities. Un-
fortunately, the traditional symbol λ for the left unitor is already reserved for a higher
purpose, so we have to make do with a poor substitute.

abbreviation l
where l f ≡ if arr f then f · l[dom f ] else null

abbreviation %
where % f ≡ if arr f then f · r[dom f ] else null

lemma l-ide-simp:
assumes ide a
shows l a = l[a]
〈proof 〉

lemma %-ide-simp:
assumes ide a
shows % a = r[a]
〈proof 〉

end

context monoidal-category
begin

sublocale l: natural-transformation C C L map l
〈proof 〉

sublocale l: natural-isomorphism C C L map l
〈proof 〉

sublocale %: natural-transformation C C R map %
〈proof 〉

sublocale %: natural-isomorphism C C R map %
〈proof 〉

sublocale l ′: inverse-transformation C C L map l 〈proof 〉
sublocale % ′: inverse-transformation C C R map % 〈proof 〉
sublocale α ′: inverse-transformation CCC .comp C T .ToTC T .ToCT α 〈proof 〉

abbreviation α ′

where α ′ ≡ α ′.map

abbreviation assoc ′ (‹a−1[-, -, -]›)
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where a−1[a, b, c] ≡ inv a[a, b, c]

lemma α ′-ide-simp:
assumes ide a and ide b and ide c
shows α ′ (a, b, c) = a−1[a, b, c]
〈proof 〉

lemma α ′-simp:
assumes arr f and arr g and arr h
shows α ′ (f , g, h) = ((f ⊗ g) ⊗ h) · a−1[dom f , dom g, dom h]
〈proof 〉

lemma assoc-inv:
assumes ide a and ide b and ide c
shows inverse-arrows a[a, b, c] a−1[a, b, c]
〈proof 〉

lemma assoc ′-in-hom [intro]:
assumes ide a and ide b and ide c
shows «a−1[a, b, c] : a ⊗ b ⊗ c → (a ⊗ b) ⊗ c»
〈proof 〉

lemma arr-assoc ′ [simp]:
assumes ide a and ide b and ide c
shows arr a−1[a, b, c]
〈proof 〉

lemma dom-assoc ′ [simp]:
assumes ide a and ide b and ide c
shows dom a−1[a, b, c] = a ⊗ b ⊗ c
〈proof 〉

lemma cod-assoc ′ [simp]:
assumes ide a and ide b and ide c
shows cod a−1[a, b, c] = (a ⊗ b) ⊗ c
〈proof 〉

lemma comp-assoc-assoc ′ [simp]:
assumes ide a and ide b and ide c
shows a[a, b, c] · a−1[a, b, c] = a ⊗ (b ⊗ c)
and a−1[a, b, c] · a[a, b, c] = (a ⊗ b) ⊗ c
〈proof 〉

lemma assoc ′-naturality:
assumes arr f0 and arr f1 and arr f2
shows ((f0 ⊗ f1 ) ⊗ f2 ) · a−1[dom f0 , dom f1 , dom f2 ] =

a−1[cod f0 , cod f1 , cod f2 ] · (f0 ⊗ f1 ⊗ f2 )
〈proof 〉
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abbreviation l ′

where l ′ ≡ l ′.map

abbreviation lunit ′ (‹l−1[-]›)
where l−1[a] ≡ inv l[a]

lemma l ′-ide-simp:
assumes ide a
shows l ′.map a = l−1[a]
〈proof 〉

lemma lunit-inv:
assumes ide a
shows inverse-arrows l[a] l−1[a]
〈proof 〉

lemma lunit ′-in-hom [intro]:
assumes ide a
shows «l−1[a] : a → I ⊗ a»
〈proof 〉

lemma comp-lunit-lunit ′ [simp]:
assumes ide a
shows l[a] · l−1[a] = a
and l−1[a] · l[a] = I ⊗ a
〈proof 〉

lemma lunit ′-naturality:
assumes arr f
shows (I ⊗ f ) · l−1[dom f ] = l−1[cod f ] · f
〈proof 〉

abbreviation % ′

where % ′ ≡ % ′.map

abbreviation runit ′ (‹r−1[-]›)
where r−1[a] ≡ inv r[a]

lemma % ′-ide-simp:
assumes ide a
shows % ′.map a = r−1[a]
〈proof 〉

lemma runit-inv:
assumes ide a
shows inverse-arrows r[a] r−1[a]
〈proof 〉

lemma runit ′-in-hom [intro]:
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assumes ide a
shows «r−1[a] : a → a ⊗ I»
〈proof 〉

lemma comp-runit-runit ′ [simp]:
assumes ide a
shows r[a] · r−1[a] = a
and r−1[a] · r[a] = a ⊗ I
〈proof 〉

lemma runit ′-naturality:
assumes arr f
shows (f ⊗ I) · r−1[dom f ] = r−1[cod f ] · f
〈proof 〉

lemma lunit-commutes-with-L:
assumes ide a
shows l[I ⊗ a] = I ⊗ l[a]
〈proof 〉

lemma runit-commutes-with-R:
assumes ide a
shows r[a ⊗ I] = r[a] ⊗ I
〈proof 〉

The components of the left and right unitors are related via a “triangle” diagram
that also involves the associator. The proof follows [2], Proposition 2.2.3.

lemma triangle:
assumes ide a and ide b
shows (a ⊗ l[b]) · a[a, I, b] = r[a] ⊗ b
〈proof 〉

lemma lunit-tensor-gen:
assumes ide a and ide b and ide c
shows (a ⊗ l[b ⊗ c]) · (a ⊗ a[I, b, c]) = a ⊗ l[b] ⊗ c
〈proof 〉

The following result is quoted without proof as Theorem 7 of [3] where it is attributed
to MacLane [4]. It also appears as [5], Exercise 1, page 161. I did not succeed within a
few hours to construct a proof following MacLane’s hint. The proof below is based on
[2], Proposition 2.2.4.

lemma lunit-tensor ′:
assumes ide a and ide b
shows l[a ⊗ b] · a[I, a, b] = l[a] ⊗ b
〈proof 〉

lemma lunit-tensor :
assumes ide a and ide b
shows l[a ⊗ b] = (l[a] ⊗ b) · a−1[I, a, b]
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〈proof 〉

We next show the corresponding result for the right unitor.
lemma runit-tensor-gen:
assumes ide a and ide b and ide c
shows r[a ⊗ b] ⊗ c = ((a ⊗ r[b]) ⊗ c) · (a[a, b, I] ⊗ c)
〈proof 〉

lemma runit-tensor :
assumes ide a and ide b
shows r[a ⊗ b] = (a ⊗ r[b]) · a[a, b, I]
〈proof 〉

lemma runit-tensor ′:
assumes ide a and ide b
shows r[a ⊗ b] · a−1[a, b, I] = a ⊗ r[b]
〈proof 〉

Sometimes inverted forms of the triangle and pentagon axioms are useful.
lemma triangle ′:
assumes ide a and ide b
shows (a ⊗ l[b]) = (r[a] ⊗ b) · a−1[a, I, b]
〈proof 〉

lemma pentagon ′:
assumes ide a and ide b and ide c and ide d
shows ((a−1[a, b, c] ⊗ d) · a−1[a, b ⊗ c, d]) · (a ⊗ a−1[b, c, d])

= a−1[a ⊗ b, c, d] · a−1[a, b, c ⊗ d]
〈proof 〉

The following non-obvious fact is Corollary 2.2.5 from [2]. The statement that l[I] =
r[I] is Theorem 6 from [3]. MacLane [5] does not show this, but assumes it as an axiom.

lemma unitor-coincidence:
shows l[I] = ι and r[I] = ι
〈proof 〉

lemma unit-triangle:
shows ι ⊗ I = (I ⊗ ι) · a[I, I, I]
and (ι ⊗ I) · a−1[I, I, I] = I ⊗ ι
〈proof 〉

The only isomorphism that commutes with ι is I.
lemma iso-commuting-with-unit-equals-unity:
assumes «f : I → I» and iso f and f · ι = ι · (f ⊗ f )
shows f = I
〈proof 〉

end
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We now show that the unit ι of a monoidal category is unique up to a unique iso-
morphism (Proposition 2.2.6 of [2]).

locale monoidal-category-with-alternate-unit =
monoidal-category C T α ι +
C 1: monoidal-category C T α ι1

for C :: ′a comp (infixr ‹·› 55 )
and T :: ′a ∗ ′a ⇒ ′a
and α :: ′a ∗ ′a ∗ ′a ⇒ ′a
and ι :: ′a
and ι1 :: ′a
begin

no-notation C 1.tensor (infixr ‹⊗› 53 )
no-notation C 1.unity (‹I›)
no-notation C 1.lunit (‹l[-]›)
no-notation C 1.runit (‹r[-]›)
no-notation C 1.assoc (‹a[-, -, -]›)
no-notation C 1.assoc ′ (‹a−1[-, -, -]›)

notation C 1.tensor (infixr ‹⊗1› 53 )
notation C 1.unity (‹I1›)
notation C 1.lunit (‹l1[-]›)
notation C 1.runit (‹r1[-]›)
notation C 1.assoc (‹a1[-, -, -]›)
notation C 1.assoc ′ (‹a1−1[-, -, -]›)

definition i
where i ≡ l[I1] · inv r1[I]

lemma iso-i:
shows «i : I → I1» and iso i
〈proof 〉

The following is Exercise 2.2.7 of [2].
lemma i-maps-ι-to-ι1:
shows i · ι = ι1 · (i ⊗ i)
〈proof 〉

lemma inv-i-iso-ι:
assumes «f : I → I1» and iso f and f · ι = ι1 · (f ⊗ f )
shows «inv i · f : I → I» and iso (inv i · f )
and (inv i · f ) · ι = ι · (inv i · f ⊗ inv i · f )
〈proof 〉

lemma unit-unique-upto-unique-iso:
shows ∃ !f . «f : I → I1» ∧ iso f ∧ f · ι = ι1 · (f ⊗ f )
〈proof 〉

end
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2.2 Elementary Monoidal Category
Although the economy of data assumed by monoidal-category is useful for general results,
to establish interpretations it is more convenient to work with a traditional definition
of monoidal category. The following locale provides such a definition. It permits a
monoidal category to be specified by giving the tensor product and the components
of the associator and unitors, which are required only to satisfy elementary conditions
that imply functoriality and naturality, without having to worry about extensionality or
formal interpretations for the various functors and natural transformations.

locale elementary-monoidal-category =
category C

for C :: ′a comp (infixr ‹·› 55 )
and tensor :: ′a ⇒ ′a ⇒ ′a (infixr ‹⊗› 53 )
and unity :: ′a (‹I›)
and lunit :: ′a ⇒ ′a (‹l[-]›)
and runit :: ′a ⇒ ′a (‹r[-]›)
and assoc :: ′a ⇒ ′a ⇒ ′a ⇒ ′a (‹a[-, -, -]›) +
assumes ide-unity [simp]: ide I
and iso-lunit: ide a =⇒ iso l[a]
and iso-runit: ide a =⇒ iso r[a]
and iso-assoc: [[ ide a; ide b; ide c ]] =⇒ iso a[a, b, c]
and tensor-in-hom [simp]: [[ «f : a → b»; «g : c → d» ]] =⇒ «f ⊗ g : a ⊗ c → b ⊗ d»
and tensor-preserves-ide: [[ ide a; ide b ]] =⇒ ide (a ⊗ b)
and interchange: [[ seq g f ; seq g ′ f ′ ]] =⇒ (g ⊗ g ′) · (f ⊗ f ′) = g · f ⊗ g ′ · f ′

and lunit-in-hom [simp]: ide a =⇒ «l[a] : I ⊗ a → a»
and lunit-naturality: arr f =⇒ l[cod f ] · (I ⊗ f ) = f · l[dom f ]
and runit-in-hom [simp]: ide a =⇒ «r[a] : a ⊗ I → a»
and runit-naturality: arr f =⇒ r[cod f ] · (f ⊗ I) = f · r[dom f ]
and assoc-in-hom [simp]:

[[ ide a; ide b; ide c ]] =⇒ «a[a, b, c] : (a ⊗ b) ⊗ c → a ⊗ b ⊗ c»
and assoc-naturality:

[[ arr f0 ; arr f1 ; arr f2 ]] =⇒ a[cod f0 , cod f1 , cod f2 ] · ((f0 ⊗ f1 ) ⊗ f2 )
= (f0 ⊗ (f1 ⊗ f2 )) · a[dom f0 , dom f1 , dom f2 ]

and triangle: [[ ide a; ide b ]] =⇒ (a ⊗ l[b]) · a[a, I, b] = r[a] ⊗ b
and pentagon: [[ ide a; ide b; ide c; ide d ]] =⇒

(a ⊗ a[b, c, d]) · a[a, b ⊗ c, d] · (a[a, b, c] ⊗ d)
= a[a, b, c ⊗ d] · a[a ⊗ b, c, d]

An interpretation for the monoidal-category locale readily induces an interpretation
for the elementary-monoidal-category locale.

context monoidal-category
begin

lemma induces-elementary-monoidal-category:
shows elementary-monoidal-category C tensor I lunit runit assoc
〈proof 〉

end
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context elementary-monoidal-category
begin

interpretation CC : product-category C C 〈proof 〉
interpretation CCC : product-category C CC .comp 〈proof 〉

definition T :: ′a ∗ ′a ⇒ ′a
where T f ≡ if CC .arr f then (fst f ⊗ snd f ) else null

lemma T-simp [simp]:
assumes arr f and arr g
shows T (f , g) = f ⊗ g
〈proof 〉

lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f ⊗ g)
〈proof 〉

lemma dom-tensor [simp]:
assumes arr f and arr g
shows dom (f ⊗ g) = dom f ⊗ dom g
〈proof 〉

lemma cod-tensor [simp]:
assumes arr f and arr g
shows cod (f ⊗ g) = cod f ⊗ cod g
〈proof 〉

interpretation T : binary-endofunctor C T
〈proof 〉

lemma binary-endofunctor-T :
shows binary-endofunctor C T 〈proof 〉

interpretation ToTC : functor CCC .comp C T .ToTC
〈proof 〉

interpretation ToCT : functor CCC .comp C T .ToCT
〈proof 〉

definition α
where α f ≡ if CCC .arr f

then (fst f ⊗ (fst (snd f ) ⊗ snd (snd f ))) ·
a[dom (fst f ), dom (fst (snd f )), dom (snd (snd f ))]

else null

lemma α-ide-simp [simp]:

19



assumes ide a and ide b and ide c
shows α (a, b, c) = a[a, b, c]
〈proof 〉

lemma arr-assoc [simp]:
assumes ide a and ide b and ide c
shows arr a[a, b, c]
〈proof 〉

lemma dom-assoc [simp]:
assumes ide a and ide b and ide c
shows dom a[a, b, c] = (a ⊗ b) ⊗ c
〈proof 〉

lemma cod-assoc [simp]:
assumes ide a and ide b and ide c
shows cod a[a, b, c] = a ⊗ b ⊗ c
〈proof 〉

interpretation α: natural-isomorphism CCC .comp C T .ToTC T .ToCT α
〈proof 〉

interpretation α ′: inverse-transformation CCC .comp C T .ToTC T .ToCT α 〈proof 〉

interpretation L: functor C C ‹λf . T (I, f )›
〈proof 〉

interpretation R: functor C C ‹λf . T (f , I)›
〈proof 〉

interpretation l: natural-isomorphism C C ‹λf . T (I, f )› map
‹λf . if arr f then f · l[dom f ] else null›

〈proof 〉

interpretation %: natural-isomorphism C C ‹λf . T (f , I)› map
‹λf . if arr f then f · r[dom f ] else null›

〈proof 〉

The endofunctors λf . T (I, f ) and λf . T (f , I) are equivalence functors, due to the
existence of the unitors.

interpretation L: equivalence-functor C C ‹λf . T (I, f )›
〈proof 〉

interpretation R: equivalence-functor C C ‹λf . T (f , I)›
〈proof 〉

To complete an interpretation of the monoidal-category locale, we define ι ≡ l[I]. We
could also have chosen ι ≡ % [I] as the two are equal, though to prove that requires some
work yet.
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definition ι
where ι ≡ l[I]

lemma ι-in-hom:
shows «ι : I ⊗ I → I»
〈proof 〉

lemma induces-monoidal-category:
shows monoidal-category C T α ι
〈proof 〉

interpretation MC : monoidal-category C T α ι
〈proof 〉

We now show that the notions defined in the interpretation MC agree with their
counterparts in the present locale. These facts are needed if we define an interpretation
for the elementary-monoidal-category locale, use it to obtain the induced interpretation
for monoidal-category, and then want to transfer facts obtained in the induced interpre-
tation back to the original one.

lemma I-agreement:
shows MC .unity = I
〈proof 〉

lemma L-agreement:
shows MC .L = (λf . T (I, f ))
〈proof 〉

lemma R-agreement:
shows MC .R = (λf . T (f , I))
〈proof 〉

We wish to show that the components of the unitors MC .l and MC .% defined in the
induced interpretation MC agree with those given by the parameters lunit and runit
to the present locale. To avoid a lengthy development that repeats work already done
in the monoidal-category locale, we establish the agreement in a special case and then
use the properties already shown for MC to prove the general case. In particular, we
first show that l[I] = MC .lunit MC .unity and r[I] = MC .runit MC .unity, from which
it follows by facts already proved for MC that both are equal to ι. We then show that
for an arbitrary identity a the arrows l[a] and r[a] satisfy the equations that uniquely
characterize the components MC .lunit a and MC .runit a, respectively, and are therefore
equal to those components.

lemma unitor-coincidence:
shows l[I] = ι and r[I] = ι
〈proof 〉

lemma lunit-char :
assumes ide a
shows I ⊗ l[a] = (ι ⊗ a) · inv a[I, I, a]
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〈proof 〉

lemma runit-char :
assumes ide a
shows r[a] ⊗ I = (a ⊗ ι) · a[a, I, I]
〈proof 〉

lemma l-agreement:
shows MC .l = (λf . if arr f then f · l[dom f ] else null)
〈proof 〉

lemma %-agreement:
shows MC .% = (λf . if arr f then f · r[dom f ] else null)
〈proof 〉

lemma lunit-agreement:
assumes ide a
shows MC .lunit a = l[a]
〈proof 〉

lemma runit-agreement:
assumes ide a
shows MC .runit a = r[a]
〈proof 〉

end

2.3 Strict Monoidal Category
A monoidal category is strict if the components of the associator and unitors are all
identities.

locale strict-monoidal-category =
monoidal-category +

assumes strict-assoc: [[ ide a0 ; ide a1 ; ide a2 ]] =⇒ ide a[a0 , a1 , a2 ]
and strict-lunit: ide a =⇒ l[a] = a
and strict-runit: ide a =⇒ r[a] = a
begin

lemma strict-unit:
shows ι = I
〈proof 〉

lemma tensor-assoc [simp]:
assumes arr f0 and arr f1 and arr f2
shows (f0 ⊗ f1 ) ⊗ f2 = f0 ⊗ f1 ⊗ f2
〈proof 〉

end
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2.4 Opposite Monoidal Category
The opposite of a monoidal category has the same underlying category, but the arguments
to the tensor product are reversed and the associator is inverted and its arguments
reversed.

locale opposite-monoidal-category =
C : monoidal-category C TC αC ι

for C :: ′a comp (infixr ‹·› 55 )
and TC :: ′a ∗ ′a ⇒ ′a
and αC :: ′a ∗ ′a ∗ ′a ⇒ ′a
and ι :: ′a
begin

abbreviation T
where T f ≡ TC (snd f , fst f )

abbreviation α
where α f ≡ C .α ′ (snd (snd f ), fst (snd f ), fst f )

end

sublocale opposite-monoidal-category ⊆ monoidal-category C T α ι
〈proof 〉

context opposite-monoidal-category
begin

lemma lunit-simp:
assumes C .ide a
shows lunit a = C .runit a
〈proof 〉

lemma runit-simp:
assumes C .ide a
shows runit a = C .lunit a
〈proof 〉

end

2.5 Dual Monoidal Category
The dual of a monoidal category is obtained by reversing the arrows of the underlying
category. The tensor product remains the same, but the associators and unitors are
inverted.

locale dual-monoidal-category =
M : monoidal-category

begin
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sublocale dual-category C 〈proof 〉
sublocale MM : product-category comp comp 〈proof 〉
interpretation T : binary-functor comp comp comp T
〈proof 〉

interpretation T : binary-endofunctor comp 〈proof 〉
interpretation ToTC : functor T .CCC .comp comp T .ToTC
〈proof 〉

interpretation ToCT : functor T .CCC .comp comp T .ToCT
〈proof 〉

interpretation α: natural-transformation T .CCC .comp comp T .ToTC T .ToCT M .α ′

〈proof 〉
interpretation α: natural-isomorphism T .CCC .comp comp T .ToTC T .ToCT M .α ′

〈proof 〉
interpretation L: equivalence-functor comp comp ‹M .tensor (cod (M .inv ι))›
〈proof 〉
interpretation R: equivalence-functor comp comp ‹λf . M .tensor f (cod (M .inv ι))›
〈proof 〉

sublocale monoidal-category comp T M .α ′ ‹M .inv ι›
〈proof 〉

lemma is-monoidal-category:
shows monoidal-category comp T M .α ′ (M .inv ι)
〈proof 〉

no-notation comp (infixr ‹·› 55 )

lemma assoc-char :
assumes ide a and ide b and ide c
shows assoc a b c = M .assoc ′ a b c and assoc ′ a b c = M .assoc a b c
〈proof 〉

lemma lunit-char :
assumes ide a
shows lunit a = M .lunit ′ a
〈proof 〉

lemma runit-char :
assumes ide a
shows runit a = M .runit ′ a
〈proof 〉

end
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2.6 Monoidal Language
In this section we assume that a category C is given, and we define a formal syntax of
terms constructed from arrows of C using function symbols that correspond to unity,
composition, tensor, the associator and its formal inverse, and the left and right unitors
and their formal inverses. We will use this syntax to state and prove the coherence
theorem and then to construct the free monoidal category generated by C.

locale monoidal-language =
C : category C
for C :: ′a comp (infixr ‹·› 55 )

begin

datatype (discs-sels) ′t term =
Prim ′t (‹〈-〉›)
| Unity (‹I›)
| Tensor ′t term ′t term (infixr ‹⊗› 53 )
| Comp ′t term ′t term (infixr ‹·› 55 )
| Lunit ′t term (‹l[-]›)
| Lunit ′ ′t term (‹l−1[-]›)
| Runit ′t term (‹r[-]›)
| Runit ′ ′t term (‹r−1[-]›)
| Assoc ′t term ′t term ′t term (‹a[-, -, -]›)
| Assoc ′ ′t term ′t term ′t term (‹a−1[-, -, -]›)

lemma not-is-Tensor-Unity:
shows ¬ is-Tensor Unity
〈proof 〉

We define formal domain and codomain functions on terms.
primrec Dom :: ′a term ⇒ ′a term
where Dom 〈f〉 = 〈C .dom f〉
| Dom I = I
| Dom (t ⊗ u) = (Dom t ⊗ Dom u)
| Dom (t · u) = Dom u
| Dom l[t] = (I ⊗ Dom t)
| Dom l−1[t] = Dom t
| Dom r[t] = (Dom t ⊗ I)
| Dom r−1[t] = Dom t
| Dom a[t, u, v] = ((Dom t ⊗ Dom u) ⊗ Dom v)
| Dom a−1[t, u, v] = (Dom t ⊗ (Dom u ⊗ Dom v))

primrec Cod :: ′a term ⇒ ′a term
where Cod 〈f〉 = 〈C .cod f〉
| Cod I = I
| Cod (t ⊗ u) = (Cod t ⊗ Cod u)
| Cod (t · u) = Cod t
| Cod l[t] = Cod t
| Cod l−1[t] = (I ⊗ Cod t)
| Cod r[t] = Cod t
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| Cod r−1[t] = (Cod t ⊗ I)
| Cod a[t, u, v] = (Cod t ⊗ (Cod u ⊗ Cod v))
| Cod a−1[t, u, v] = ((Cod t ⊗ Cod u) ⊗ Cod v)

A term is a “formal arrow” if it is constructed from arrows of C in such a way that
composition is applied only to formally composable pairs of terms.

primrec Arr :: ′a term ⇒ bool
where Arr 〈f〉 = C .arr f
| Arr I = True
| Arr (t ⊗ u) = (Arr t ∧ Arr u)
| Arr (t · u) = (Arr t ∧ Arr u ∧ Dom t = Cod u)
| Arr l[t] = Arr t
| Arr l−1[t] = Arr t
| Arr r[t] = Arr t
| Arr r−1[t] = Arr t
| Arr a[t, u, v] = (Arr t ∧ Arr u ∧ Arr v)
| Arr a−1[t, u, v] = (Arr t ∧ Arr u ∧ Arr v)

abbreviation Par :: ′a term ⇒ ′a term ⇒ bool
where Par t u ≡ Arr t ∧ Arr u ∧ Dom t = Dom u ∧ Cod t = Cod u

abbreviation Seq :: ′a term ⇒ ′a term ⇒ bool
where Seq t u ≡ Arr t ∧ Arr u ∧ Dom t = Cod u

abbreviation Hom :: ′a term ⇒ ′a term ⇒ ′a term set
where Hom a b ≡ { t. Arr t ∧ Dom t = a ∧ Cod t = b }

A term is a “formal identity” if it is constructed from identity arrows of C and I
using only the ⊗ operator.

primrec Ide :: ′a term ⇒ bool
where Ide 〈f〉 = C .ide f
| Ide I = True
| Ide (t ⊗ u) = (Ide t ∧ Ide u)
| Ide (t · u) = False
| Ide l[t] = False
| Ide l−1[t] = False
| Ide r[t] = False
| Ide r−1[t] = False
| Ide a[t, u, v] = False
| Ide a−1[t, u, v] = False

lemma Ide-implies-Arr [simp]:
shows Ide t =⇒ Arr t
〈proof 〉

lemma Arr-implies-Ide-Dom:
shows Arr t =⇒ Ide (Dom t)
〈proof 〉
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lemma Arr-implies-Ide-Cod:
shows Arr t =⇒ Ide (Cod t)
〈proof 〉

lemma Ide-in-Hom [simp]:
shows Ide t =⇒ t ∈ Hom t t
〈proof 〉

A formal arrow is “canonical” if the only arrows of C used in its construction are
identities.

primrec Can :: ′a term ⇒ bool
where Can 〈f〉 = C .ide f
| Can I = True
| Can (t ⊗ u) = (Can t ∧ Can u)
| Can (t · u) = (Can t ∧ Can u ∧ Dom t = Cod u)
| Can l[t] = Can t
| Can l−1[t] = Can t
| Can r[t] = Can t
| Can r−1[t] = Can t
| Can a[t, u, v] = (Can t ∧ Can u ∧ Can v)
| Can a−1[t, u, v] = (Can t ∧ Can u ∧ Can v)

lemma Ide-implies-Can:
shows Ide t =⇒ Can t
〈proof 〉

lemma Can-implies-Arr :
shows Can t =⇒ Arr t
〈proof 〉

We next define the formal inverse of a term. This is only sensible for formal arrows
built using only isomorphisms of C ; in particular, for canonical formal arrows.

primrec Inv :: ′a term ⇒ ′a term
where Inv 〈f〉 = 〈C .inv f〉
| Inv I = I
| Inv (t ⊗ u) = (Inv t ⊗ Inv u)
| Inv (t · u) = (Inv u · Inv t)
| Inv l[t] = l−1[Inv t]
| Inv l−1[t] = l[Inv t]
| Inv r[t] = r−1[Inv t]
| Inv r−1[t] = r[Inv t]
| Inv a[t, u, v] = a−1[Inv t, Inv u, Inv v]
| Inv a−1[t, u, v] = a[Inv t, Inv u, Inv v]

lemma Inv-preserves-Ide:
shows Ide t =⇒ Ide (Inv t)
〈proof 〉

lemma Inv-preserves-Can:
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assumes Can t
shows Can (Inv t) and Dom (Inv t) = Cod t and Cod (Inv t) = Dom t
〈proof 〉

lemma Inv-in-Hom [simp]:
assumes Can t
shows Inv t ∈ Hom (Cod t) (Dom t)
〈proof 〉

lemma Inv-Ide [simp]:
assumes Ide a
shows Inv a = a
〈proof 〉

lemma Inv-Inv [simp]:
assumes Can t
shows Inv (Inv t) = t
〈proof 〉

We call a term “diagonal” if it is either I or it is constructed from arrows of C using
only the ⊗ operator associated to the right. Essentially, such terms are lists of arrows of
C, where I represents the empty list and ⊗ is used as the list constructor. We call them
“diagonal” because terms can regarded as defining “interconnection matrices” of arrows
connecting “inputs” to “outputs”, and from this point of view diagonal terms correspond
to diagonal matrices. The matrix point of view is suggestive for the extension of the
results presented here to the symmetric monoidal and cartesian monoidal cases.

fun Diag :: ′a term ⇒ bool
where Diag I = True
| Diag 〈f〉 = C .arr f
| Diag (〈f〉 ⊗ u) = (C .arr f ∧ Diag u ∧ u 6= I)
| Diag - = False

lemma Diag-TensorE :
assumes Diag (Tensor t u)
shows 〈un-Prim t〉 = t and C .arr (un-Prim t) and Diag t and Diag u and u 6= I
〈proof 〉

lemma Diag-implies-Arr :
shows Diag t =⇒ Arr t
〈proof 〉

lemma Dom-preserves-Diag:
shows Diag t =⇒ Diag (Dom t)
〈proof 〉

lemma Cod-preserves-Diag:
shows Diag t =⇒ Diag (Cod t)
〈proof 〉
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lemma Inv-preserves-Diag:
assumes Can t and Diag t
shows Diag (Inv t)
〈proof 〉

The following function defines the “dimension” of a term, which is the number of
arrows of (·) it contains. For diagonal terms, this is just the length of the term when
regarded as a list of arrows of (·). Alternatively, if a term is regarded as defining an
interconnection matrix, then the dimension is the number of inputs (or outputs).

primrec dim :: ′a term ⇒ nat
where dim 〈f〉 = 1
| dim I = 0
| dim (t ⊗ u) = (dim t + dim u)
| dim (t · u) = dim t
| dim l[t] = dim t
| dim l−1[t] = dim t
| dim r[t] = dim t
| dim r−1[t] = dim t
| dim a[t, u, v] = dim t + dim u + dim v
| dim a−1[t, u, v] = dim t + dim u + dim v

The following function defines a tensor product for diagonal terms. If terms are
regarded as lists, this is just list concatenation. If terms are regarded as matrices, this
corresponds to constructing a block diagonal matrix.

fun TensorDiag (infixr ‹b⊗c› 53 )
where I b⊗c u = u
| t b⊗c I = t
| 〈f〉 b⊗c u = 〈f〉 ⊗ u
| (t ⊗ u) b⊗c v = t b⊗c (u b⊗c v)
| t b⊗c u = undefined

lemma TensorDiag-Prim [simp]:
assumes t 6= I
shows 〈f〉 b⊗c t = 〈f〉 ⊗ t
〈proof 〉

lemma TensorDiag-term-Unity [simp]:
shows t b⊗c I = t
〈proof 〉

lemma TensorDiag-Diag:
assumes Diag (t ⊗ u)
shows t b⊗c u = t ⊗ u
〈proof 〉

lemma TensorDiag-preserves-Diag:
assumes Diag t and Diag u
shows Diag (t b⊗c u)
and Dom (t b⊗c u) = Dom t b⊗c Dom u
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and Cod (t b⊗c u) = Cod t b⊗c Cod u
〈proof 〉

lemma TensorDiag-in-Hom:
assumes Diag t and Diag u
shows t b⊗c u ∈ Hom (Dom t b⊗c Dom u) (Cod t b⊗c Cod u)
〈proof 〉

lemma Dom-TensorDiag:
assumes Diag t and Diag u
shows Dom (t b⊗c u) = Dom t b⊗c Dom u
〈proof 〉

lemma Cod-TensorDiag:
assumes Diag t and Diag u
shows Cod (t b⊗c u) = Cod t b⊗c Cod u
〈proof 〉

lemma not-is-Tensor-TensorDiagE :
assumes ¬ is-Tensor (t b⊗c u) and Diag t and Diag u
and t 6= I and u 6= I
shows False
〈proof 〉

lemma TensorDiag-assoc:
assumes Diag t and Diag u and Diag v
shows (t b⊗c u) b⊗c v = t b⊗c (u b⊗c v)
〈proof 〉

lemma TensorDiag-preserves-Ide:
assumes Ide t and Ide u and Diag t and Diag u
shows Ide (t b⊗c u)
〈proof 〉

lemma TensorDiag-preserves-Can:
assumes Can t and Can u and Diag t and Diag u
shows Can (t b⊗c u)
〈proof 〉

lemma Inv-TensorDiag:
assumes Can t and Can u and Diag t and Diag u
shows Inv (t b⊗c u) = Inv t b⊗c Inv u
〈proof 〉

The following function defines composition for compatible diagonal terms, by “push-
ing the composition down” to arrows of C.

fun CompDiag :: ′a term ⇒ ′a term ⇒ ′a term (infixr ‹b·c› 55 )
where I b·c u = u
| 〈f〉 b·c 〈g〉 = 〈f · g〉
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| (u ⊗ v) b·c (w ⊗ x) = (u b·c w ⊗ v b·c x)
| t b·c I = t
| t b·c - = undefined · undefined

Note that the last clause above is not relevant to diagonal terms. We have chosen a
provably non-diagonal value in order to validate associativity.

lemma CompDiag-preserves-Diag:
assumes Diag t and Diag u and Dom t = Cod u
shows Diag (t b·c u)
and Dom (t b·c u) = Dom u
and Cod (t b·c u) = Cod t
〈proof 〉

lemma CompDiag-in-Hom:
assumes Diag t and Diag u and Dom t = Cod u
shows t b·c u ∈ Hom (Dom u) (Cod t)
〈proof 〉

lemma Dom-CompDiag:
assumes Diag t and Diag u and Dom t = Cod u
shows Dom (t b·c u) = Dom u
〈proof 〉

lemma Cod-CompDiag:
assumes Diag t and Diag u and Dom t = Cod u
shows Cod (t b·c u) = Cod t
〈proof 〉

lemma CompDiag-Cod-Diag [simp]:
assumes Diag t
shows Cod t b·c t = t
〈proof 〉

lemma CompDiag-Diag-Dom [simp]:
assumes Diag t
shows t b·c Dom t = t
〈proof 〉

lemma CompDiag-Ide-Diag [simp]:
assumes Diag t and Ide a and Dom a = Cod t
shows a b·c t = t
〈proof 〉

lemma CompDiag-Diag-Ide [simp]:
assumes Diag t and Ide a and Dom t = Cod a
shows t b·c a = t
〈proof 〉

lemma CompDiag-assoc:
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assumes Diag t and Diag u and Diag v
and Dom t = Cod u and Dom u = Cod v
shows (t b·c u) b·c v = t b·c (u b·c v)
〈proof 〉

lemma CompDiag-preserves-Ide:
assumes Ide t and Ide u and Diag t and Diag u and Dom t = Cod u
shows Ide (t b·c u)
〈proof 〉

lemma CompDiag-preserves-Can:
assumes Can t and Can u and Diag t and Diag u and Dom t = Cod u
shows Can (t b·c u)
〈proof 〉

lemma Inv-CompDiag:
assumes Can t and Can u and Diag t and Diag u and Dom t = Cod u
shows Inv (t b·c u) = Inv u b·c Inv t
〈proof 〉

lemma Can-and-Diag-implies-Ide:
assumes Can t and Diag t
shows Ide t
〈proof 〉

lemma CompDiag-Can-Inv [simp]:
assumes Can t and Diag t
shows t b·c Inv t = Cod t
〈proof 〉

lemma CompDiag-Inv-Can [simp]:
assumes Can t and Diag t
shows Inv t b·c t = Dom t
〈proof 〉

The next fact is a syntactic version of the interchange law, for diagonal terms.
lemma CompDiag-TensorDiag:
assumes Diag t and Diag u and Diag v and Diag w
and Seq t v and Seq u w
shows (t b⊗c u) b·c (v b⊗c w) = (t b·c v) b⊗c (u b·c w)
〈proof 〉

The following function reduces an arrow to diagonal form. The precise relationship
between a term and its diagonalization is developed below.

fun Diagonalize :: ′a term ⇒ ′a term (‹b-c›)
where b〈f〉c = 〈f〉
| bIc = I
| bt ⊗ uc = btc b⊗c buc
| bt · uc = btc b·c buc
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| bl[t]c = btc
| bl−1[t]c = btc
| br[t]c = btc
| br−1[t]c = btc
| ba[t, u, v]c = (btc b⊗c buc) b⊗c bvc
| ba−1[t, u, v]c = btc b⊗c (buc b⊗c bvc)

lemma Diag-Diagonalize:
assumes Arr t
shows Diag btc and Dom btc = bDom tc and Cod btc = bCod tc
〈proof 〉

lemma Diagonalize-in-Hom:
assumes Arr t
shows btc ∈ Hom bDom tc bCod tc
〈proof 〉

lemma Diagonalize-Dom:
assumes Arr t
shows bDom tc = Dom btc
〈proof 〉

lemma Diagonalize-Cod:
assumes Arr t
shows bCod tc = Cod btc
〈proof 〉

lemma Diagonalize-preserves-Ide:
assumes Ide a
shows Ide bac
〈proof 〉

The diagonalizations of canonical arrows are identities.
lemma Ide-Diagonalize-Can:
assumes Can t
shows Ide btc
〈proof 〉

lemma Diagonalize-preserves-Can:
assumes Can t
shows Can btc
〈proof 〉

lemma Diagonalize-Diag [simp]:
assumes Diag t
shows btc = t
〈proof 〉

lemma Diagonalize-Diagonalize [simp]:
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assumes Arr t
shows bbtcc = btc
〈proof 〉

lemma Diagonalize-Tensor :
assumes Arr t and Arr u
shows bt ⊗ uc = bbtc ⊗ bucc
〈proof 〉

lemma Diagonalize-Tensor-Unity-Arr [simp]:
assumes Arr u
shows bI ⊗ uc = buc
〈proof 〉

lemma Diagonalize-Tensor-Arr-Unity [simp]:
assumes Arr t
shows bt ⊗ Ic = btc
〈proof 〉

lemma Diagonalize-Tensor-Prim-Arr [simp]:
assumes arr f and Arr u and buc 6= Unity
shows b〈f〉 ⊗ uc = 〈f〉 ⊗ buc
〈proof 〉

lemma Diagonalize-Tensor-Tensor :
assumes Arr t and Arr u and Arr v
shows b(t ⊗ u) ⊗ vc = bbtc ⊗ (buc ⊗ bvc)c
〈proof 〉

lemma Diagonalize-Comp-Cod-Arr :
assumes Arr t
shows bCod t · tc = btc
〈proof 〉

lemma Diagonalize-Comp-Arr-Dom:
assumes Arr t
shows bt · Dom tc = btc
〈proof 〉

lemma Diagonalize-Inv:
assumes Can t
shows bInv tc = Inv btc
〈proof 〉

Our next objective is to begin making the connection, to be completed in a subsequent
section, between arrows and their diagonalizations. To summarize, an arrow t and its
diagonalization btc are opposite sides of a square whose other sides are certain canonical
terms Dom t↓ ∈ Hom (Dom t) bDom tc and Cod t↓ ∈ Hom (Cod t) bCod tc, where Dom
t↓ and Cod t↓ are defined by the function red below. The coherence theorem amounts
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to the statement that every such square commutes when the formal terms involved are
evaluated in the evident way in any monoidal category.

Function red defined below takes an identity term a to a canonical arrow a↓ ∈ Hom
a bac. The auxiliary function red2 takes a pair (a, b) of diagonal identity terms and
produces a canonical arrow a ⇓ b ∈ Hom (a ⊗ b) ba ⊗ bc. The canonical arrow a↓
amounts to a “parallel innermost reduction” from a to bac, where the reduction steps are
canonical arrows that involve the unitors and associator only in their uninverted forms.
In general, a parallel innermost reduction from a will not be unique: at some points
there is a choice available between left and right unitors and at other points there are
choices between unitors and associators. These choices are inessential, and the ordering
of the clauses in the function definitions below resolves them in an arbitrary way. What
is more important is having chosen an innermost reduction, which is what allows us to
write these definitions in structurally recursive form.

The essence of coherence is that the axioms for a monoidal category allow us to
prove that any reduction from a to bac is equivalent (under evaluation of terms) to a
parallel innermost reduction. The problematic cases are terms of the form ((a ⊗ b) ⊗
c) ⊗ d, which present a choice between an inner and outer reduction that lead to terms
with different structures. It is of course the pentagon axiom that ensures the confluence
(under evaluation) of the two resulting paths.

Although simple in appearance, the structurally recursive definitions below were dif-
ficult to get right even after I started to understand what I was doing. I wish I could
have just written them down straightaway. If so, then I could have avoided laboriously
constructing and then throwing away thousands of lines of proof text that used a non-
structural, “operational” approach to defining a reduction from a to bac.

fun red2 (infixr ‹⇓› 53 )
where I ⇓ a = l[a]
| 〈f〉 ⇓ I = r[〈f〉]
| 〈f〉 ⇓ a = 〈f〉 ⊗ a
| (a ⊗ b) ⇓ I = r[a ⊗ b]
| (a ⊗ b) ⇓ c = (a ⇓ bb ⊗ cc) · (a ⊗ (b ⇓ c)) · a[a, b, c]
| a ⇓ b = undefined

fun red (‹-↓› [56 ] 56 )
where I↓ = I
| 〈f〉↓ = 〈f〉
| (a ⊗ b)↓ = (if Diag (a ⊗ b) then a ⊗ b else (bac ⇓ bbc) · (a↓ ⊗ b↓))
| a↓ = undefined

lemma red-Diag [simp]:
assumes Diag a
shows a↓ = a
〈proof 〉

lemma red2-Diag:
assumes Diag (a ⊗ b)
shows a ⇓ b = a ⊗ b
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〈proof 〉

lemma Can-red2 :
assumes Ide a and Diag a and Ide b and Diag b
shows Can (a ⇓ b)
and a ⇓ b ∈ Hom (a ⊗ b) ba ⊗ bc
〈proof 〉

lemma red2-in-Hom:
assumes Ide a and Diag a and Ide b and Diag b
shows a ⇓ b ∈ Hom (a ⊗ b) ba ⊗ bc
〈proof 〉

lemma Can-red:
assumes Ide a
shows Can (a↓) and a↓ ∈ Hom a bac
〈proof 〉

lemma red-in-Hom:
assumes Ide a
shows a↓ ∈ Hom a bac
〈proof 〉

lemma Diagonalize-red [simp]:
assumes Ide a
shows ba↓c = bac
〈proof 〉

lemma Diagonalize-red2 [simp]:
assumes Ide a and Ide b and Diag a and Diag b
shows ba ⇓ bc = ba ⊗ bc
〈proof 〉

end

2.7 Coherence
If D is a monoidal category, then a functor V : C → D extends in an evident way to an
evaluation map that interprets each formal arrow of the monoidal language of C as an
arrow of D.

locale evaluation-map =
monoidal-language C +
monoidal-category D T α ι +
V : functor C D V

for C :: ′c comp (infixr ‹·C› 55 )
and D :: ′d comp (infixr ‹·› 55 )
and T :: ′d ∗ ′d ⇒ ′d
and α :: ′d ∗ ′d ∗ ′d ⇒ ′d
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and ι :: ′d
and V :: ′c ⇒ ′d
begin

no-notation C .in-hom (‹«- : - → -»›)

notation unity (‹I›)
notation runit (‹r[-]›)
notation lunit (‹l[-]›)
notation assoc ′ (‹a−1[-, -, -]›)
notation runit ′ (‹r−1[-]›)
notation lunit ′ (‹l−1[-]›)

primrec eval :: ′c term ⇒ ′d (‹{|-|}›)
where {|〈f〉|} = V f
| {|I|} = I
| {|t ⊗ u|} = {|t|} ⊗ {|u|}
| {|t · u|} = {|t|} · {|u|}
| {|l[t]|} = l {|t|}
| {|l−1[t]|} = l ′ {|t|}
| {|r[t]|} = % {|t|}
| {|r−1[t]|} = % ′ {|t|}
| {|a[t, u, v]|} = α ({|t|}, {|u|}, {|v|})
| {|a−1[t, u, v]|} = α ′ ({|t|}, {|u|}, {|v|})

Identity terms evaluate to identities of D and evaluation preserves domain and
codomain.

lemma ide-eval-Ide [simp]:
shows Ide t =⇒ ide {|t|}
〈proof 〉

lemma eval-in-hom:
shows Arr t =⇒ «{|t|} : {|Dom t|} → {|Cod t|}»
〈proof 〉

lemma arr-eval [simp]:
assumes Arr f
shows arr {|f |}
〈proof 〉

lemma dom-eval [simp]:
assumes Arr f
shows dom {|f |} = {|Dom f |}
〈proof 〉

lemma cod-eval [simp]:
assumes Arr f
shows cod {|f |} = {|Cod f |}
〈proof 〉
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lemma eval-Prim [simp]:
assumes C .arr f
shows {|〈f〉|} = V f
〈proof 〉

lemma eval-Tensor [simp]:
assumes Arr t and Arr u
shows {|t ⊗ u|} = {|t|} ⊗ {|u|}
〈proof 〉

lemma eval-Comp [simp]:
assumes Arr t and Arr u and Dom t = Cod u
shows {|t · u|} = {|t|} · {|u|}
〈proof 〉

lemma eval-Lunit [simp]:
assumes Arr t
shows {|l[t]|} = l[{|Cod t|}] · (I ⊗ {|t|})
〈proof 〉

lemma eval-Lunit ′ [simp]:
assumes Arr t
shows {|l−1[t]|} = l−1[{|Cod t|}] · {|t|}
〈proof 〉

lemma eval-Runit [simp]:
assumes Arr t
shows {|r[t]|} = r[{|Cod t|}] · ({|t|} ⊗ I)
〈proof 〉

lemma eval-Runit ′ [simp]:
assumes Arr t
shows {|r−1[t]|} = r−1[{|Cod t|}] · {|t|}
〈proof 〉

lemma eval-Assoc [simp]:
assumes Arr t and Arr u and Arr v
shows {|a[t, u, v]|} = a[cod {|t|}, cod {|u|}, cod {|v|}] · (({|t|} ⊗ {|u|}) ⊗ {|v|})
〈proof 〉

lemma eval-Assoc ′ [simp]:
assumes Arr t and Arr u and Arr v
shows {|a−1[t, u, v]|} = a−1[cod {|t|}, cod {|u|}, cod {|v|}] · ({|t|} ⊗ {|u|} ⊗ {|v|})
〈proof 〉

The following are conveniences for the case of identity arguments to avoid having to
get rid of the extra identities that are introduced by the general formulas above.

lemma eval-Lunit-Ide [simp]:
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assumes Ide a
shows {|l[a]|} = l[{|a|}]
〈proof 〉

lemma eval-Lunit ′-Ide [simp]:
assumes Ide a
shows {|l−1[a]|} = l−1[{|a|}]
〈proof 〉

lemma eval-Runit-Ide [simp]:
assumes Ide a
shows {|r[a]|} = r[{|a|}]
〈proof 〉

lemma eval-Runit ′-Ide [simp]:
assumes Ide a
shows {|r−1[a]|} = r−1[{|a|}]
〈proof 〉

lemma eval-Assoc-Ide [simp]:
assumes Ide a and Ide b and Ide c
shows {|a[a, b, c]|} = a[{|a|}, {|b|}, {|c|}]
〈proof 〉

lemma eval-Assoc ′-Ide [simp]:
assumes Ide a and Ide b and Ide c
shows {|a−1[a, b, c]|} = a−1[{|a|}, {|b|}, {|c|}]
〈proof 〉

Canonical arrows evaluate to isomorphisms in D, and formal inverses evaluate to
inverses in D.

lemma iso-eval-Can:
shows Can t =⇒ iso {|t|}
〈proof 〉

lemma eval-Inv-Can:
shows Can t =⇒ {|Inv t|} = inv {|t|}
〈proof 〉

The operation b·c evaluates to composition in D.
lemma eval-CompDiag:
assumes Diag t and Diag u and Seq t u
shows {|t b·c u|} = {|t|} · {|u|}
〈proof 〉

For identity terms a and b, the reduction (a ⊗ b)↓ factors (under evaluation in D)
into the parallel reduction a↓ ⊗ b↓, followed by a reduction of its codomain bac ⇓ bbc.

lemma eval-red-Tensor :
assumes Ide a and Ide b
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shows {|(a ⊗ b)↓|} = {|bac ⇓ bbc|} · ({|a↓|} ⊗ {|b↓|})
〈proof 〉

lemma eval-red2-Diag-Unity:
assumes Ide a and Diag a
shows {|a ⇓ I|} = r[{|a|}]
〈proof 〉

Define a formal arrow t to be “coherent” if the square formed by t, btc and the
reductions Dom t↓ and Cod t↓ commutes under evaluation in D. We will show that all
formal arrows are coherent. Since the diagonalizations of canonical arrows are identities,
a corollary is that parallel canonical arrows have equal evaluations.

abbreviation coherent
where coherent t ≡ {|Cod t↓|} · {|t|} = {|btc|} · {|Dom t↓|}

Diagonal arrows are coherent, since for such arrows t the reductions Dom t↓ and Cod
t↓ are identities.

lemma Diag-implies-coherent:
assumes Diag t
shows coherent t
〈proof 〉

The evaluation of a coherent arrow t has a canonical factorization in D into the
evaluations of a reduction Dom t↓, diagonalization btc, and inverse reduction Inv (Cod
t↓). This will later allow us to use the term Inv (Cod t↓) · btc · Dom t↓ as a normal
form for t.

lemma canonical-factorization:
assumes Arr t
shows coherent t ←→ {|t|} = inv {|Cod t↓|} · {|btc|} · {|Dom t↓|}
〈proof 〉

A canonical arrow is coherent if and only if its formal inverse is.
lemma Can-implies-coherent-iff-coherent-Inv:
assumes Can t
shows coherent t ←→ coherent (Inv t)
〈proof 〉

Some special cases of coherence are readily dispatched.
lemma coherent-Unity:
shows coherent I
〈proof 〉

lemma coherent-Prim:
assumes Arr 〈f〉
shows coherent 〈f〉
〈proof 〉

lemma coherent-Lunit-Ide:
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assumes Ide a
shows coherent l[a]
〈proof 〉

lemma coherent-Runit-Ide:
assumes Ide a
shows coherent r[a]
〈proof 〉

lemma coherent-Lunit ′-Ide:
assumes Ide a
shows coherent l−1[a]
〈proof 〉

lemma coherent-Runit ′-Ide:
assumes Ide a
shows coherent r−1[a]
〈proof 〉

To go further, we need the next result, which is in some sense the crux of coherence:
For diagonal identities a, b, and c, the reduction ((a b⊗c b) ⇓ c) · ((a ⇓ b) ⊗ c) from (a
⊗ b) ⊗ c that first reduces the subterm a ⊗ b and then reduces the result, is equivalent
under evaluation in D to the reduction that first applies the associator a[a, b, c] and
then applies the reduction (a ⇓ b b⊗c c) · (a ⊗ b ⇓ c) from a ⊗ b ⊗ c. The triangle
and pentagon axioms are used in the proof.

lemma coherence-key-fact:
assumes Ide a ∧ Diag a and Ide b ∧ Diag b and Ide c ∧ Diag c
shows {|(a b⊗c b) ⇓ c|} · ({|a ⇓ b|} ⊗ {|c|})

= ({|a ⇓ (b b⊗c c)|} · ({|a|} ⊗ {|b ⇓ c|})) · a[{|a|}, {|b|}, {|c|}]
〈proof 〉

lemma coherent-Assoc-Ide:
assumes Ide a and Ide b and Ide c
shows coherent a[a, b, c]
〈proof 〉

lemma coherent-Assoc ′-Ide:
assumes Ide a and Ide b and Ide c
shows coherent a−1[a, b, c]
〈proof 〉

The next lemma implies coherence for the special case of a term that is the tensor of
two diagonal arrows.

lemma eval-red2-naturality:
assumes Diag t and Diag u
shows {|Cod t ⇓ Cod u|} · ({|t|} ⊗ {|u|}) = {|t b⊗c u|} · {|Dom t ⇓ Dom u|}
〈proof 〉

lemma Tensor-preserves-coherent:
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assumes Arr t and Arr u and coherent t and coherent u
shows coherent (t ⊗ u)
〈proof 〉

lemma Comp-preserves-coherent:
assumes Arr t and Arr u and Dom t = Cod u
and coherent t and coherent u
shows coherent (t · u)
〈proof 〉

The main result: “Every formal arrow is coherent.”
theorem coherence:
assumes Arr t
shows coherent t
〈proof 〉

MacLane [5] says: “A coherence theorem asserts ‘Every diagram commutes’,” but that
is somewhat misleading. A coherence theorem provides some kind of hopefully useful way
of distinguishing diagrams that definitely commute from diagrams that might not. The
next result expresses coherence for monoidal categories in this way. As the hypotheses
can be verified algorithmically (using the functions Dom, Cod, Arr, and Diagonalize) if we
are given an oracle for equality of arrows in C, the result provides a decision procedure,
relative to C, for the word problem for the free monoidal category generated by C.

corollary eval-eqI :
assumes Par t u and btc = buc
shows {|t|} = {|u|}
〈proof 〉

Our final corollary expresses coherence in a more “MacLane-like” fashion: parallel
canonical arrows are equivalent under evaluation.

corollary maclane-coherence:
assumes Par t u and Can t and Can u
shows {|t|} = {|u|}
〈proof 〉

end

end
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Chapter 3

Monoidal Functor

theory MonoidalFunctor
imports MonoidalCategory
begin

A monoidal functor is a functor F between monoidal categories C and D that pre-
serves the monoidal structure up to isomorphism. The traditional definition assumes a
monoidal functor to be equipped with two natural isomorphisms, a natural isomorphism
ϕ that expresses the preservation of tensor product and a natural isomorphism ψ that
expresses the preservation of the unit object. These natural isomorphisms are subject to
coherence conditions; the condition for ϕ involving the associator and the conditions for
ψ involving the unitors. However, as pointed out in [2] (Section 2.4), it is not necessary
to take the natural isomorphism ψ as given, since the mere assumption that F IC is
isomorphic to ID is sufficient for there to be a canonical definition of ψ from which
the coherence conditions can be derived. This leads to a more economical definition of
monoidal functor, which is the one we adopt here.

locale monoidal-functor =
C : monoidal-category C TC αC ιC +
D: monoidal-category D TD αD ιD +
functor C D F +
CC : product-category C C +
DD: product-category D D +
FF : product-functor C C D D F F +
FoTC : composite-functor C .CC .comp C D TC F +
TDoFF : composite-functor C .CC .comp D.CC .comp D FF .map TD +
ϕ: natural-isomorphism C .CC .comp D TDoFF .map FoTC .map ϕ

for C :: ′c comp (infixr ‹·C› 55 )
and TC :: ′c ∗ ′c ⇒ ′c
and αC :: ′c ∗ ′c ∗ ′c ⇒ ′c
and ιC :: ′c
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
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and F :: ′c ⇒ ′d
and ϕ :: ′c ∗ ′c ⇒ ′d +
assumes preserves-unity: D.isomorphic D.unity (F C .unity)
and assoc-coherence:

[[ C .ide a; C .ide b; C .ide c ]] =⇒
F (αC (a, b, c)) ·D ϕ (TC (a, b), c) ·D TD (ϕ (a, b), F c)
= ϕ (a, TC (b, c)) ·D TD (F a, ϕ (b, c)) ·D αD (F a, F b, F c)

begin

notation C .tensor (infixr ‹⊗C› 53 )
and C .unity (‹IC›)
and C .lunit (‹lC [-]›)
and C .runit (‹rC [-]›)
and C .assoc (‹aC [-, -, -]›)
and D.tensor (infixr ‹⊗D› 53 )
and D.unity (‹ID›)
and D.lunit (‹lD[-]›)
and D.runit (‹rD[-]›)
and D.assoc (‹aD[-, -, -]›)

lemma ϕ-in-hom:
assumes C .ide a and C .ide b
shows «ϕ (a, b) : F a ⊗D F b →D F (a ⊗C b)»
〈proof 〉

We wish to exhibit a canonical definition of an isomorphism ψ ∈ D.hom ID (F IC)
that satisfies certain coherence conditions that involve the left and right unitors. In [2],
the isomorphism ψ is defined by the equation lD[F IC ] = F lC [IC ] ·D ϕ (IC , IC) ·D
(ψ ⊗D F IC), which suffices for the definition because the functor − ⊗D F IC is fully
faithful. It is then asserted (Proposition 2.4.3) that the coherence condition lD[F a] =
F lC [a] ·D ϕ (IC , a) ·D (ψ ⊗D F a) is satisfied for any object a of C, as well as the
corresponding condition for the right unitor. However, the proof is left as an exercise
(Exercise 2.4.4). The organization of the presentation suggests that that one should
derive the general coherence condition from the special case lD[F IC ] = F lC [IC ] ·D ϕ
(IC , IC) ·D (ψ ⊗D F IC) used as the definition of ψ. However, I did not see how to
do it that way, so I used a different approach. The isomorphism ιD

′ ≡ F ιC ·D ϕ (IC ,
IC) serves as an alternative unit for the monoidal category D. There is consequently a
unique isomorphism that maps ιD to ιD ′. We define ψ to be this isomorphism and then
use the definition to establish the desired coherence conditions.

abbreviation ι1
where ι1 ≡ F ιC ·D ϕ (IC , IC)

lemma ι1-in-hom:
shows «ι1 : F IC ⊗D F IC →D F IC»
〈proof 〉

lemma ι1-is-iso:
shows D.iso ι1
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〈proof 〉

interpretation D: monoidal-category-with-alternate-unit D TD αD ιD ι1
〈proof 〉

no-notation D.tensor (infixr ‹⊗D› 53 )
notation D.C 1.tensor (infixr ‹⊗D› 53 )
no-notation D.assoc (‹aD[-, -, -]›)
notation D.C 1.assoc (‹aD[-, -, -]›)
no-notation D.assoc ′ (‹aD−1[-, -, -]›)
notation D.C 1.assoc ′ (‹aD−1[-, -, -]›)
notation D.C 1.unity (‹I1›)
notation D.C 1.lunit (‹l1[-]›)
notation D.C 1.runit (‹r1[-]›)

lemma I1-char [simp]:
shows I1 = F IC
〈proof 〉

definition ψ
where ψ ≡ THE ψ. «ψ : ID →D F IC» ∧ D.iso ψ ∧ ψ ·D ιD = ι1 ·D (ψ ⊗D ψ)

lemma ψ-char :
shows «ψ : ID →D F IC» and D.iso ψ and ψ ·D ιD = ι1 ·D (ψ ⊗D ψ)
and ∃ !ψ. «ψ : ID →D F IC» ∧ D.iso ψ ∧ ψ ·D ιD = ι1 ·D (ψ ⊗D ψ)
〈proof 〉

lemma ψ-eqI :
assumes «f : ID →D F IC» and D.iso f and f ·D ιD = ι1 ·D (f ⊗D f )
shows f = ψ
〈proof 〉

lemma lunit-coherence1 :
assumes C .ide a
shows l1[F a] ·D (ψ ⊗D F a) = lD[F a]
〈proof 〉

lemma lunit-coherence2 :
assumes C .ide a
shows F lC [a] ·D ϕ (IC , a) = l1[F a]
〈proof 〉

Combining the two previous lemmas yields the coherence result we seek. This is the
condition that is traditionally taken as part of the definition of monoidal functor.

lemma lunit-coherence:
assumes C .ide a
shows lD[F a] = F lC [a] ·D ϕ (IC , a) ·D (ψ ⊗D F a)
〈proof 〉

We now want to obtain the corresponding result for the right unitor. To avoid a
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repetition of what would amount to essentially the same tedious diagram chases that
were carried out above, we instead show here that F becomes a monoidal functor from
the opposite of C to the opposite of D, with λf . ϕ (snd f , fst f ) as the structure map.
The fact that in the opposite monoidal categories the left and right unitors are exchanged
then permits us to obtain the result for the right unitor from the result already proved
for the left unitor.

interpretation C ′: opposite-monoidal-category C TC αC ιC 〈proof 〉
interpretation D ′: opposite-monoidal-category D TD αD ιD 〈proof 〉

interpretation TD
′oFF : composite-functor C .CC .comp D.CC .comp D FF .map D ′.T 〈proof 〉

interpretation FoTC
′: composite-functor C .CC .comp C D C ′.T F 〈proof 〉

interpretation ϕ ′: natural-transformation C .CC .comp D TD
′oFF .map FoTC

′.map
‹λf . ϕ (snd f , fst f )›

〈proof 〉
interpretation ϕ ′: natural-isomorphism C .CC .comp D TD

′oFF .map FoTC
′.map

‹λf . ϕ (snd f , fst f )›
〈proof 〉

interpretation F ′: monoidal-functor C C ′.T C ′.α ιC D D ′.T D ′.α ιD F ‹λf . ϕ (snd f , fst
f )›

〈proof 〉

lemma induces-monoidal-functor-between-opposites:
shows monoidal-functor C C ′.T C ′.α ιC D D ′.T D ′.α ιD F (λf . ϕ (snd f , fst f ))
〈proof 〉

lemma runit-coherence:
assumes C .ide a
shows rD[F a] = F rC [a] ·D ϕ (a, IC) ·D (F a ⊗D ψ)
〈proof 〉

end

3.1 Strict Monoidal Functor
A strict monoidal functor preserves the monoidal structure “on the nose”.

locale strict-monoidal-functor =
C : monoidal-category C TC αC ιC +
D: monoidal-category D TD αD ιD +
functor C D F

for C :: ′c comp (infixr ‹·C› 55 )
and TC :: ′c ∗ ′c ⇒ ′c
and αC :: ′c ∗ ′c ∗ ′c ⇒ ′c
and ιC :: ′c
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and F :: ′c ⇒ ′d +
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assumes strictly-preserves-ι: F ιC = ιD
and strictly-preserves-T : [[ C .arr f ; C .arr g ]] =⇒ F (TC (f , g)) = TD (F f , F g)
and strictly-preserves-α-ide: [[ C .ide a; C .ide b; C .ide c ]] =⇒

F (αC (a, b, c)) = αD (F a, F b, F c)
begin

notation C .tensor (infixr ‹⊗C› 53 )
and C .unity (‹IC›)
and C .lunit (‹lC [-]›)
and C .runit (‹rC [-]›)
and C .assoc (‹aC [-, -, -]›)
and D.tensor (infixr ‹⊗D› 53 )
and D.unity (‹ID›)
and D.lunit (‹lD[-]›)
and D.runit (‹rD[-]›)
and D.assoc (‹aD[-, -, -]›)

lemma strictly-preserves-tensor :
assumes C .arr f and C .arr g
shows F (f ⊗C g) = F f ⊗D F g
〈proof 〉

lemma strictly-preserves-α:
assumes C .arr f and C .arr g and C .arr h
shows F (αC (f , g, h)) = αD (F f , F g, F h)
〈proof 〉

lemma strictly-preserves-unity:
shows F IC = ID
〈proof 〉

lemma strictly-preserves-assoc:
assumes C .arr a and C .arr b and C .arr c
shows F aC [a, b, c] = aD[F a, F b, F c]
〈proof 〉

lemma strictly-preserves-lunit:
assumes C .ide a
shows F lC [a] = lD[F a]
〈proof 〉

lemma strictly-preserves-runit:
assumes C .ide a
shows F rC [a] = rD[F a]
〈proof 〉

The following are used to simplify the expression of the sublocale relationship between
strict-monoidal-functor and monoidal-functor, as the definition of the latter mentions the
structure map ϕ. For a strict monoidal functor, this is an identity transformation.
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interpretation FF : product-functor C C D D F F 〈proof 〉
interpretation FoTC : composite-functor C .CC .comp C D TC F 〈proof 〉
interpretation TDoFF : composite-functor C .CC .comp D.CC .comp D FF .map TD 〈proof 〉

lemma structure-is-trivial:
shows TDoFF .map = FoTC .map
〈proof 〉

abbreviation ϕ where ϕ ≡ TDoFF .map

lemma structure-naturalityisomorphism:
shows natural-isomorphism C .CC .comp D TDoFF .map FoTC .map ϕ
〈proof 〉

end

A strict monoidal functor is a monoidal functor.
sublocale strict-monoidal-functor ⊆ monoidal-functor C TC αC ιC D TD αD ιD F ϕ
〈proof 〉

lemma strict-monoidal-functors-compose:
assumes strict-monoidal-functor B TB αB ιB C TC αC ιC F
and strict-monoidal-functor C TC αC ιC D TD αD ιD G
shows strict-monoidal-functor B TB αB ιB D TD αD ιD (G o F)
〈proof 〉

An equivalence of monoidal categories is a monoidal functor whose underlying ordi-
nary functor is also part of an ordinary equivalence of categories.

locale equivalence-of-monoidal-categories =
C : monoidal-category C TC αC ιC +
D: monoidal-category D TD αD ιD +
equivalence-of-categories C D F G η ε +
monoidal-functor D TD αD ιD C TC αC ιC F ϕ

for C :: ′c comp (infixr ‹·C› 55 )
and TC :: ′c ∗ ′c ⇒ ′c
and αC :: ′c ∗ ′c ∗ ′c ⇒ ′c
and ιC :: ′c
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and F :: ′d ⇒ ′c
and ϕ :: ′d ∗ ′d ⇒ ′c
and ι :: ′c
and G :: ′c ⇒ ′d
and η :: ′d ⇒ ′d
and ε :: ′c ⇒ ′c

end
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Chapter 4

The Free Monoidal Category

theory FreeMonoidalCategory
imports Category3 .Subcategory MonoidalFunctor
begin

In this theory, we use the monoidal language of a category C defined in Monoidal-
Category.MonoidalCategory to give a construction of the free monoidal category FC
generated by C. The arrows of FC are the equivalence classes of formal arrows obtained
by declaring two formal arrows to be equivalent if they are parallel and have the same
diagonalization. Composition, tensor, and the components of the associator and unitors
are all defined in terms of the corresponding syntactic constructs. After defining FC
and showing that it does indeed have the structure of a monoidal category, we prove the
freeness: every functor from C to a monoidal category D extends uniquely to a strict
monoidal functor from FC to D.

We then consider the full subcategory FSC of FC whose objects are the equivalence
classes of diagonal identity terms (i.e. equivalence classes of lists of identity arrows of
C ), and we show that this category is monoidally equivalent to FC. In addition, we show
that FSC is the free strict monoidal category, as any functor from C to a strict monoidal
category D extends uniquely to a strict monoidal functor from FSC to D.

4.1 Syntactic Construction
locale free-monoidal-category =

monoidal-language C
for C :: ′c comp

begin

no-notation C .in-hom (‹«- : - → -»›)
notation C .in-hom (‹«- : - →C -»›)

Two terms of the monoidal language of C are defined to be equivalent if they are
parallel formal arrows with the same diagonalization.

abbreviation equiv
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where equiv t u ≡ Par t u ∧ btc = buc

Arrows of FC will be the equivalence classes of formal arrows determined by the
relation equiv. We define here the property of being an equivalence class of the relation
equiv. Later we show that this property coincides with that of being an arrow of the
category that we will construct.

type-synonym ′a arr = ′a term set
definition ARR where ARR f ≡ f 6= {} ∧ (∀ t. t ∈ f −→ f = Collect (equiv t))

lemma not-ARR-empty:
shows ¬ARR {}
〈proof 〉

lemma ARR-eqI :
assumes ARR f and ARR g and f ∩ g 6= {}
shows f = g
〈proof 〉

We will need to choose a representative of each equivalence class as a normal form.
The requirements we have of these representatives are: (1) the normal form of an arrow
t is equivalent to t; (2) equivalent arrows have identical normal forms; (3) a normal form
is a canonical term if and only if its diagonalization is an identity. It follows from these
properties and coherence that a term and its normal form have the same evaluation in
any monoidal category. We choose here as a normal form for an arrow t the particular
term Inv (Cod t↓) · btc · Dom t↓. However, the only specific properties of this definition
we actually use are the three we have just stated.

definition norm (‹‖-‖›)
where ‖t‖ = Inv (Cod t↓) · btc · Dom t↓

If t is a formal arrow, then t is equivalent to its normal form.
lemma equiv-norm-Arr :
assumes Arr t
shows equiv ‖t‖ t
〈proof 〉

Equivalent arrows have identical normal forms.
lemma norm-respects-equiv:
assumes equiv t u
shows ‖t‖ = ‖u‖
〈proof 〉

The normal form of an arrow is canonical if and only if its diagonalization is an
identity term.

lemma Can-norm-iff-Ide-Diagonalize:
assumes Arr t
shows Can ‖t‖ ←→ Ide btc
〈proof 〉
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We now establish various additional properties of normal forms that are consequences
of the three already proved. The definition norm-def is not used subsequently.

lemma norm-preserves-Can:
assumes Can t
shows Can ‖t‖
〈proof 〉

lemma Par-Arr-norm:
assumes Arr t
shows Par ‖t‖ t
〈proof 〉

lemma Diagonalize-norm [simp]:
assumes Arr t
shows b‖t‖c = btc
〈proof 〉

lemma unique-norm:
assumes ARR f
shows ∃ !t. ∀ u. u ∈ f −→ ‖u‖ = t
〈proof 〉

lemma Dom-norm:
assumes Arr t
shows Dom ‖t‖ = Dom t
〈proof 〉

lemma Cod-norm:
assumes Arr t
shows Cod ‖t‖ = Cod t
〈proof 〉

lemma norm-in-Hom:
assumes Arr t
shows ‖t‖ ∈ Hom (Dom t) (Cod t)
〈proof 〉

As all the elements of an equivalence class have the same normal form, we can use
the normal form of an arbitrarily chosen element as a canonical representative.

definition rep where rep f ≡ ‖SOME t. t ∈ f‖

lemma rep-in-ARR:
assumes ARR f
shows rep f ∈ f
〈proof 〉

lemma Arr-rep-ARR:
assumes ARR f
shows Arr (rep f )
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〈proof 〉

We next define a function mkarr that maps formal arrows to their equivalence classes.
For terms that are not formal arrows, the function yields the empty set.

definition mkarr where mkarr t = Collect (equiv t)

lemma mkarr-extensionality:
assumes ¬Arr t
shows mkarr t = {}
〈proof 〉

lemma ARR-mkarr :
assumes Arr t
shows ARR (mkarr t)
〈proof 〉

lemma mkarr-memb-ARR:
assumes ARR f and t ∈ f
shows mkarr t = f
〈proof 〉

lemma mkarr-rep-ARR [simp]:
assumes ARR f
shows mkarr (rep f ) = f
〈proof 〉

lemma Arr-in-mkarr :
assumes Arr t
shows t ∈ mkarr t
〈proof 〉

Two terms are related by equiv iff they are both formal arrows and have identical
normal forms.

lemma equiv-iff-eq-norm:
shows equiv t u ←→ Arr t ∧ Arr u ∧ ‖t‖ = ‖u‖
〈proof 〉

lemma norm-norm [simp]:
assumes Arr t
shows ‖‖t‖‖ = ‖t‖
〈proof 〉

lemma norm-in-ARR:
assumes ARR f and t ∈ f
shows ‖t‖ ∈ f
〈proof 〉

lemma norm-rep-ARR [simp]:
assumes ARR f
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shows ‖rep f‖ = rep f
〈proof 〉

lemma norm-memb-eq-rep-ARR:
assumes ARR f and t ∈ f
shows norm t = rep f
〈proof 〉

lemma rep-mkarr :
assumes Arr f
shows rep (mkarr f ) = ‖f‖
〈proof 〉

To prove that two terms determine the same equivalence class, it suffices to show
that they are parallel formal arrows with identical diagonalizations.

lemma mkarr-eqI [intro]:
assumes Par f g and bfc = bgc
shows mkarr f = mkarr g
〈proof 〉

We use canonical representatives to lift the formal domain and codomain functions
from terms to equivalence classes.

abbreviation DOM where DOM f ≡ Dom (rep f )
abbreviation COD where COD f ≡ Cod (rep f )

lemma DOM-mkarr :
assumes Arr t
shows DOM (mkarr t) = Dom t
〈proof 〉

lemma COD-mkarr :
assumes Arr t
shows COD (mkarr t) = Cod t
〈proof 〉

A composition operation can now be defined on equivalence classes using the syntactic
constructor Comp.

definition comp (infixr ‹·› 55 )
where comp f g ≡ (if ARR f ∧ ARR g ∧ DOM f = COD g

then mkarr ((rep f ) · (rep g)) else {})

We commence the task of showing that the composition comp so defined determines
a category.

interpretation partial-composition comp
〈proof 〉

notation in-hom (‹«- : - → -»›)

The empty set serves as the null for the composition.
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lemma null-char :
shows null = {}
〈proof 〉

lemma ARR-comp:
assumes ARR f and ARR g and DOM f = COD g
shows ARR (f · g)
〈proof 〉

lemma DOM-comp [simp]:
assumes ARR f and ARR g and DOM f = COD g
shows DOM (f · g) = DOM g
〈proof 〉

lemma COD-comp [simp]:
assumes ARR f and ARR g and DOM f = COD g
shows COD (f · g) = COD f
〈proof 〉

lemma comp-assoc:
assumes g · f 6= null and h · g 6= null
shows h · (g · f ) = (h · g) · f
〈proof 〉

lemma Comp-in-comp-ARR:
assumes ARR f and ARR g and DOM f = COD g
and t ∈ f and u ∈ g
shows t · u ∈ f · g
〈proof 〉

Ultimately, we will show that that the identities of the category are those equivalence
classes, all of whose members diagonalize to formal identity arrows, having the further
property that their canonical representative is a formal endo-arrow.

definition IDE where IDE f ≡ ARR f ∧ (∀ t. t ∈ f −→ Ide btc) ∧ DOM f = COD f

lemma IDE-implies-ARR:
assumes IDE f
shows ARR f
〈proof 〉

lemma IDE-mkarr-Ide:
assumes Ide a
shows IDE (mkarr a)
〈proof 〉

lemma IDE-implies-ide:
assumes IDE a
shows ide a
〈proof 〉
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lemma ARR-iff-has-domain:
shows ARR f ←→ domains f 6= {}
〈proof 〉

lemma ARR-iff-has-codomain:
shows ARR f ←→ codomains f 6= {}
〈proof 〉

lemma arr-iff-ARR:
shows arr f ←→ ARR f
〈proof 〉

The arrows of the category are the equivalence classes of formal arrows.
lemma arr-char :
shows arr f ←→ f 6= {} ∧ (∀ t. t ∈ f −→ f = mkarr t)
〈proof 〉

lemma seq-char :
shows seq g f ←→ g · f 6= null
〈proof 〉

lemma seq-char ′:
shows seq g f ←→ ARR f ∧ ARR g ∧ DOM g = COD f
〈proof 〉

Finally, we can show that the composition comp determines a category.
interpretation category comp
〈proof 〉

lemma mkarr-rep [simp]:
assumes arr f
shows mkarr (rep f ) = f
〈proof 〉

lemma arr-mkarr [simp]:
assumes Arr t
shows arr (mkarr t)
〈proof 〉

lemma mkarr-memb:
assumes t ∈ f and arr f
shows Arr t and mkarr t = f
〈proof 〉

lemma rep-in-arr [simp]:
assumes arr f
shows rep f ∈ f
〈proof 〉
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lemma Arr-rep [simp]:
assumes arr f
shows Arr (rep f )
〈proof 〉

lemma rep-in-Hom:
assumes arr f
shows rep f ∈ Hom (DOM f ) (COD f )
〈proof 〉

lemma norm-memb-eq-rep:
assumes arr f and t ∈ f
shows ‖t‖ = rep f
〈proof 〉

lemma norm-rep:
assumes arr f
shows ‖rep f‖ = rep f
〈proof 〉

Composition, domain, and codomain on arrows reduce to the corresponding syntactic
operations on their representative terms.

lemma comp-mkarr [simp]:
assumes Arr t and Arr u and Dom t = Cod u
shows mkarr t · mkarr u = mkarr (t · u)
〈proof 〉

lemma dom-char :
shows dom f = (if arr f then mkarr (DOM f ) else null)
〈proof 〉

lemma dom-simp:
assumes arr f
shows dom f = mkarr (DOM f )
〈proof 〉

lemma cod-char :
shows cod f = (if arr f then mkarr (COD f ) else null)
〈proof 〉

lemma cod-simp:
assumes arr f
shows cod f = mkarr (COD f )
〈proof 〉

lemma Dom-memb:
assumes arr f and t ∈ f
shows Dom t = DOM f
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〈proof 〉

lemma Cod-memb:
assumes arr f and t ∈ f
shows Cod t = COD f
〈proof 〉

lemma dom-mkarr [simp]:
assumes Arr t
shows dom (mkarr t) = mkarr (Dom t)
〈proof 〉

lemma cod-mkarr [simp]:
assumes Arr t
shows cod (mkarr t) = mkarr (Cod t)
〈proof 〉

lemma mkarr-in-hom:
assumes Arr t
shows «mkarr t : mkarr (Dom t) → mkarr (Cod t)»
〈proof 〉

lemma DOM-in-dom [intro]:
assumes arr f
shows DOM f ∈ dom f
〈proof 〉

lemma COD-in-cod [intro]:
assumes arr f
shows COD f ∈ cod f
〈proof 〉

lemma DOM-dom:
assumes arr f
shows DOM (dom f ) = DOM f
〈proof 〉

lemma DOM-cod:
assumes arr f
shows DOM (cod f ) = COD f
〈proof 〉

lemma memb-equiv:
assumes arr f and t ∈ f and u ∈ f
shows Par t u and btc = buc
〈proof 〉

Two arrows can be proved equal by showing that they are parallel and have repre-
sentatives with identical diagonalizations.

57



lemma arr-eqI :
assumes par f g and t ∈ f and u ∈ g and btc = buc
shows f = g
〈proof 〉

lemma comp-char :
shows f · g = (if seq f g then mkarr (rep f · rep g) else null)
〈proof 〉

The mapping that takes identity terms to their equivalence classes is injective.
lemma mkarr-inj-on-Ide:
assumes Ide t and Ide u and mkarr t = mkarr u
shows t = u
〈proof 〉

lemma Comp-in-comp [intro]:
assumes arr f and g ∈ hom (dom g) (dom f ) and t ∈ f and u ∈ g
shows t · u ∈ f · g
〈proof 〉

An arrow is defined to be “canonical” if some (equivalently, all) its representatives
diagonalize to an identity term.

definition can
where can f ≡ arr f ∧ (∃ t. t ∈ f ∧ Ide btc)

lemma can-def-alt:
shows can f ←→ arr f ∧ (∀ t. t ∈ f −→ Ide btc)
〈proof 〉

lemma can-implies-arr :
assumes can f
shows arr f
〈proof 〉

The identities of the category are precisely the canonical endo-arrows.
lemma ide-char :
shows ide f ←→ can f ∧ dom f = cod f
〈proof 〉

lemma ide-iff-IDE :
shows ide a ←→ IDE a
〈proof 〉

lemma ide-mkarr-Ide:
assumes Ide a
shows ide (mkarr a)
〈proof 〉

lemma rep-dom:
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assumes arr f
shows rep (dom f ) = ‖DOM f‖
〈proof 〉

lemma rep-cod:
assumes arr f
shows rep (cod f ) = ‖COD f‖
〈proof 〉

lemma rep-preserves-seq:
assumes seq g f
shows Seq (rep g) (rep f )
〈proof 〉

lemma rep-comp:
assumes seq g f
shows rep (g · f ) = ‖rep g · rep f‖
〈proof 〉

The equivalence classes of canonical terms are canonical arrows.
lemma can-mkarr-Can:
assumes Can t
shows can (mkarr t)
〈proof 〉

lemma ide-implies-can:
assumes ide a
shows can a
〈proof 〉

lemma Can-rep-can:
assumes can f
shows Can (rep f )
〈proof 〉

Parallel canonical arrows are identical.
lemma can-coherence:
assumes par f g and can f and can g
shows f = g
〈proof 〉

Canonical arrows are invertible, and their inverses can be obtained syntactically.
lemma inverse-arrows-can:
assumes can f
shows inverse-arrows f (mkarr (Inv (DOM f↓) · brep fc · COD f↓))
〈proof 〉

lemma inv-mkarr [simp]:
assumes Can t
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shows inv (mkarr t) = mkarr (Inv t)
〈proof 〉

lemma iso-can:
assumes can f
shows iso f
〈proof 〉

The following function produces the unique canonical arrow between two given ob-
jects, if such an arrow exists.

definition mkcan
where mkcan a b = mkarr (Inv (COD b↓) · (DOM a↓))

lemma can-mkcan:
assumes ide a and ide b and bDOM ac = bCOD bc
shows can (mkcan a b) and «mkcan a b : a → b»
〈proof 〉

lemma dom-mkcan:
assumes ide a and ide b and bDOM ac = bCOD bc
shows dom (mkcan a b) = a
〈proof 〉

lemma cod-mkcan:
assumes ide a and ide b and bDOM ac = bCOD bc
shows cod (mkcan a b) = b
〈proof 〉

lemma can-coherence ′:
assumes can f
shows mkcan (dom f ) (cod f ) = f
〈proof 〉

lemma Ide-Diagonalize-rep-ide:
assumes ide a
shows Ide brep ac
〈proof 〉

lemma Diagonalize-DOM :
assumes arr f
shows bDOM fc = Dom brep fc
〈proof 〉

lemma Diagonalize-COD:
assumes arr f
shows bCOD fc = Cod brep fc
〈proof 〉

lemma Diagonalize-rep-preserves-seq:
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assumes seq g f
shows Seq brep gc brep fc
〈proof 〉

lemma Dom-Diagonalize-rep:
assumes arr f
shows Dom brep fc = brep (dom f )c
〈proof 〉

lemma Cod-Diagonalize-rep:
assumes arr f
shows Cod brep fc = brep (cod f )c
〈proof 〉

lemma mkarr-Diagonalize-rep:
assumes arr f and Diag (DOM f ) and Diag (COD f )
shows mkarr brep fc = f
〈proof 〉

We define tensor product of arrows via the constructor (⊗) on terms.
definition tensorFMC (infixr ‹⊗› 53 )

where f ⊗ g ≡ (if arr f ∧ arr g then mkarr (rep f ⊗ rep g) else null)

lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f ⊗ g)
〈proof 〉

lemma rep-tensor :
assumes arr f and arr g
shows rep (f ⊗ g) = ‖rep f ⊗ rep g‖
〈proof 〉

lemma Par-memb-rep:
assumes arr f and t ∈ f
shows Par t (rep f )
〈proof 〉

lemma Tensor-in-tensor [intro]:
assumes arr f and arr g and t ∈ f and u ∈ g
shows t ⊗ u ∈ f ⊗ g
〈proof 〉

lemma DOM-tensor [simp]:
assumes arr f and arr g
shows DOM (f ⊗ g) = DOM f ⊗ DOM g
〈proof 〉

lemma COD-tensor [simp]:
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assumes arr f and arr g
shows COD (f ⊗ g) = COD f ⊗ COD g
〈proof 〉

lemma tensor-in-hom [simp]:
assumes «f : a → b» and «g : c → d»
shows «f ⊗ g : a ⊗ c → b ⊗ d»
〈proof 〉

lemma dom-tensor [simp]:
assumes arr f and arr g
shows dom (f ⊗ g) = dom f ⊗ dom g
〈proof 〉

lemma cod-tensor [simp]:
assumes arr f and arr g
shows cod (f ⊗ g) = cod f ⊗ cod g
〈proof 〉

lemma tensor-mkarr [simp]:
assumes Arr t and Arr u
shows mkarr t ⊗ mkarr u = mkarr (t ⊗ u)
〈proof 〉

lemma tensor-preserves-ide:
assumes ide a and ide b
shows ide (a ⊗ b)
〈proof 〉

lemma tensor-preserves-can:
assumes can f and can g
shows can (f ⊗ g)
〈proof 〉

lemma comp-preserves-can:
assumes can f and can g and dom f = cod g
shows can (f · g)
〈proof 〉

The remaining structure required of a monoidal category is also defined syntactically.
definition unityFMC :: ′c arr (‹I›)

where I = mkarr I

definition lunitFMC :: ′c arr ⇒ ′c arr (‹l[-]›)
where l[a] = mkarr l[rep a]

definition runitFMC :: ′c arr ⇒ ′c arr (‹r[-]›)
where r[a] = mkarr r[rep a]
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definition assocFMC :: ′c arr ⇒ ′c arr ⇒ ′c arr ⇒ ′c arr (‹a[-, -, -]›)
where a[a, b, c] = mkarr a[rep a, rep b, rep c]

lemma can-lunit:
assumes ide a
shows can l[a]
〈proof 〉

lemma lunit-in-hom:
assumes ide a
shows «l[a] : I ⊗ a → a»
〈proof 〉

lemma arr-lunit [simp]:
assumes ide a
shows arr l[a]
〈proof 〉

lemma dom-lunit [simp]:
assumes ide a
shows dom l[a] = I ⊗ a
〈proof 〉

lemma cod-lunit [simp]:
assumes ide a
shows cod l[a] = a
〈proof 〉

lemma can-runit:
assumes ide a
shows can r[a]
〈proof 〉

lemma runit-in-hom [simp]:
assumes ide a
shows «r[a] : a ⊗ I → a»
〈proof 〉

lemma arr-runit [simp]:
assumes ide a
shows arr r[a]
〈proof 〉

lemma dom-runit [simp]:
assumes ide a
shows dom r[a] = a ⊗ I
〈proof 〉

lemma cod-runit [simp]:
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assumes ide a
shows cod r[a] = a
〈proof 〉

lemma can-assoc:
assumes ide a and ide b and ide c
shows can a[a, b, c]
〈proof 〉

lemma assoc-in-hom:
assumes ide a and ide b and ide c
shows «a[a, b, c] : (a ⊗ b) ⊗ c → a ⊗ b ⊗ c»
〈proof 〉

lemma arr-assoc [simp]:
assumes ide a and ide b and ide c
shows arr a[a, b, c]
〈proof 〉

lemma dom-assoc [simp]:
assumes ide a and ide b and ide c
shows dom a[a, b, c] = (a ⊗ b) ⊗ c
〈proof 〉

lemma cod-assoc [simp]:
assumes ide a and ide b and ide c
shows cod a[a, b, c] = a ⊗ b ⊗ c
〈proof 〉

lemma ide-unity [simp]:
shows ide I
〈proof 〉

lemma Unity-in-unity [simp]:
shows I ∈ I
〈proof 〉

lemma rep-unity [simp]:
shows rep I = ‖I‖
〈proof 〉

lemma Lunit-in-lunit [intro]:
assumes arr f and t ∈ f
shows l[t] ∈ l[f ]
〈proof 〉

lemma Runit-in-runit [intro]:
assumes arr f and t ∈ f
shows r[t] ∈ r[f ]
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〈proof 〉

lemma Assoc-in-assoc [intro]:
assumes arr f and arr g and arr h
and t ∈ f and u ∈ g and v ∈ h
shows a[t, u, v] ∈ a[f , g, h]
〈proof 〉

At last, we can show that we’ve constructed a monoidal category.
interpretation EMC : elementary-monoidal-category

comp tensorFMC unityFMC lunitFMC runitFMC assocFMC

〈proof 〉

lemma is-elementary-monoidal-category:
shows elementary-monoidal-category

comp tensorFMC unityFMC lunitFMC runitFMC assocFMC

〈proof 〉

abbreviation TFMC where TFMC ≡ EMC .T
abbreviation αFMC where αFMC ≡ EMC .α
abbreviation ιFMC where ιFMC ≡ EMC .ι

interpretation MC : monoidal-category comp TFMC αFMC ιFMC

〈proof 〉

lemma induces-monoidal-category:
shows monoidal-category comp TFMC αFMC ιFMC

〈proof 〉

end

sublocale free-monoidal-category ⊆
elementary-monoidal-category

comp tensorFMC unityFMC lunitFMC runitFMC assocFMC

〈proof 〉

sublocale free-monoidal-category ⊆ monoidal-category comp TFMC αFMC ιFMC

〈proof 〉

4.2 Proof of Freeness
Now we proceed on to establish the freeness of FC : each functor from C to a monoidal
category D extends uniquely to a strict monoidal functor from FC to D.

context free-monoidal-category
begin

lemma rep-lunit:
assumes ide a
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shows rep l[a] = ‖l[rep a]‖
〈proof 〉

lemma rep-runit:
assumes ide a
shows rep r[a] = ‖r[rep a]‖
〈proof 〉

lemma rep-assoc:
assumes ide a and ide b and ide c
shows rep a[a, b, c] = ‖a[rep a, rep b, rep c]‖
〈proof 〉

lemma mkarr-Unity:
shows mkarr I = I
〈proof 〉

The unitors and associator were given syntactic definitions in terms of corresponding
terms, but these were only for the special case of identity arguments (i.e. the components
of the natural transformations). We need to show that mkarr gives the correct result for
all terms.

lemma mkarr-Lunit:
assumes Arr t
shows mkarr l[t] = l (mkarr t)
〈proof 〉

lemma mkarr-Lunit ′:
assumes Arr t
shows mkarr l−1[t] = l ′ (mkarr t)
〈proof 〉

lemma mkarr-Runit:
assumes Arr t
shows mkarr r[t] = % (mkarr t)
〈proof 〉

lemma mkarr-Runit ′:
assumes Arr t
shows mkarr r−1[t] = % ′ (mkarr t)
〈proof 〉

lemma mkarr-Assoc:
assumes Arr t and Arr u and Arr v
shows mkarr a[t, u, v] = α (mkarr t, mkarr u, mkarr v)
〈proof 〉

lemma mkarr-Assoc ′:
assumes Arr t and Arr u and Arr v
shows mkarr a−1[t, u, v] = α ′ (mkarr t, mkarr u, mkarr v)
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〈proof 〉

Next, we define the “inclusion of generators” functor from C to FC.
definition inclusion-of-generators
where inclusion-of-generators ≡ λf . if C .arr f then mkarr 〈f〉 else null

lemma inclusion-is-functor :
shows functor C comp inclusion-of-generators
〈proof 〉

end

We now show that, given a functor V from C to a a monoidal category D, the
evaluation map that takes formal arrows of the monoidal language of C to arrows of D
induces a strict monoidal functor from FC to D.

locale evaluation-functor =
C : category C +
D: monoidal-category D TD αD ιD +
evaluation-map C D TD αD ιD V +
FC : free-monoidal-category C

for C :: ′c comp (infixr ‹·C› 55 )
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and V :: ′c ⇒ ′d
begin

notation eval (‹{|-|}›)

definition map
where map f ≡ if FC .arr f then {|FC .rep f |} else D.null

It follows from the coherence theorem that a formal arrow and its normal form always
have the same evaluation.

lemma eval-norm:
assumes Arr t
shows {|‖t‖|} = {|t|}
〈proof 〉

interpretation functor FC .comp D map
〈proof 〉

lemma is-functor :
shows functor FC .comp D map 〈proof 〉

interpretation FF : product-functor FC .comp FC .comp D D map map 〈proof 〉
interpretation FoT : composite-functor FC .CC .comp FC .comp D FC .TFMC map 〈proof 〉
interpretation ToFF : composite-functor FC .CC .comp D.CC .comp D FF .map TD 〈proof 〉
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interpretation strict-monoidal-functor
FC .comp FC .TFMC FC .α FC .ι D TD αD ιD map

〈proof 〉

lemma is-strict-monoidal-functor :
shows strict-monoidal-functor FC .comp FC .TFMC FC .α FC .ι D TD αD ιD map
〈proof 〉

end

sublocale evaluation-functor ⊆ strict-monoidal-functor
FC .comp FC .TFMC FC .αFMC FC .ιFMC D TD αD ιD map

〈proof 〉

The final step in proving freeness is to show that the evaluation functor is the unique
strict monoidal extension of the functor V to FC. This is done by induction, exploiting
the syntactic construction of FC.

To ease the statement and proof of the result, we define a locale that expresses that
F is a strict monoidal extension to monoidal category C, of a functor V from C 0 to a
monoidal category D, along a functor I from C 0 to C.

locale strict-monoidal-extension =
C 0: category C 0 +
C : monoidal-category C TC αC ιC +
D: monoidal-category D TD αD ιD +
I : functor C 0 C I +
V : functor C 0 D V +
strict-monoidal-functor C TC αC ιC D TD αD ιD F

for C 0 :: ′c0 comp
and C :: ′c comp (infixr ‹·C› 55 )
and TC :: ′c ∗ ′c ⇒ ′c
and αC :: ′c ∗ ′c ∗ ′c ⇒ ′c
and ιC :: ′c
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and I :: ′c0 ⇒ ′c
and V :: ′c0 ⇒ ′d
and F :: ′c ⇒ ′d +
assumes is-extension: ∀ f . C 0.arr f −→ F (I f ) = V f

sublocale evaluation-functor ⊆
strict-monoidal-extension C FC .comp FC .TFMC FC .α FC .ι D TD αD ιD

FC .inclusion-of-generators V map
〈proof 〉

A special case of interest is a strict monoidal extension to FC, of a functor V from a
category C to a monoidal category D, along the inclusion of generators from C to FC.
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The evaluation functor induced by V is such an extension.
locale strict-monoidal-extension-to-free-monoidal-category =

C : category C +
monoidal-language C +
FC : free-monoidal-category C +
strict-monoidal-extension C FC .comp FC .TFMC FC .α FC .ι D TD αD ιD

FC .inclusion-of-generators V F
for C :: ′c comp (infixr ‹·C› 55 )
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and V :: ′c ⇒ ′d
and F :: ′c free-monoidal-category.arr ⇒ ′d
begin

lemma strictly-preserves-everything:
shows C .arr f =⇒ F (FC .mkarr 〈f〉) = V f
and F (FC .mkarr I) = ID
and [[ Arr t; Arr u ]] =⇒ F (FC .mkarr (t ⊗ u)) = F (FC .mkarr t) ⊗D F (FC .mkarr u)
and [[ Arr t; Arr u; Dom t = Cod u ]] =⇒

F (FC .mkarr (t · u)) = F (FC .mkarr t) ·D F (FC .mkarr u)
and Arr t =⇒ F (FC .mkarr l[t]) = D.l (F (FC .mkarr t))
and Arr t =⇒ F (FC .mkarr l−1[t]) = D.l ′.map (F (FC .mkarr t))
and Arr t =⇒ F (FC .mkarr r[t]) = D.% (F (FC .mkarr t))
and Arr t =⇒ F (FC .mkarr r−1[t]) = D.% ′.map (F (FC .mkarr t))
and [[ Arr t; Arr u; Arr v ]] =⇒

F (FC .mkarr a[t, u, v]) = αD (F (FC .mkarr t), F (FC .mkarr u), F (FC .mkarr v))
and [[ Arr t; Arr u; Arr v ]] =⇒

F (FC .mkarr a−1[t, u, v])
= D.α ′ (F (FC .mkarr t), F (FC .mkarr u), F (FC .mkarr v))

〈proof 〉

end

sublocale evaluation-functor ⊆ strict-monoidal-extension-to-free-monoidal-category
C D TD αD ιD V map

〈proof 〉

context free-monoidal-category
begin

The evaluation functor induced by V is the unique strict monoidal extension of V to
FC.

theorem is-free:
assumes strict-monoidal-extension-to-free-monoidal-category C D TD αD ιD V F
shows F = evaluation-functor .map C D TD αD ιD V
〈proof 〉
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end

4.3 Strict Subcategory
context free-monoidal-category
begin

In this section we show that FC is monoidally equivalent to its full subcategory
FSC whose objects are the equivalence classes of diagonal identity terms, and that this
subcategory is the free strict monoidal category generated by C.

interpretation FSC : full-subcategory comp ‹λf . ide f ∧ Diag (DOM f )›
〈proof 〉

The mapping defined on equivalence classes by diagonalizing their representatives is
a functor from the free monoidal category to the subcategory FSC.

definition D
where D ≡ λf . if arr f then mkarr brep fc else FSC .null

The arrows of FSC are those equivalence classes whose canonical representative term
has diagonal formal domain and codomain.

lemma strict-arr-char :
shows FSC .arr f ←→ arr f ∧ Diag (DOM f ) ∧ Diag (COD f )
〈proof 〉

Alternatively, the arrows of FSC are those equivalence classes that are preserved by
diagonalization of representatives.

lemma strict-arr-char ′:
shows FSC .arr f ←→ arr f ∧ D f = f
〈proof 〉

interpretation D: functor comp FSC .comp D
〈proof 〉

lemma diagonalize-is-functor :
shows functor comp FSC .comp D 〈proof 〉

lemma diagonalize-strict-arr :
assumes FSC .arr f
shows D f = f
〈proof 〉

lemma diagonalize-is-idempotent:
shows D o D = D
〈proof 〉

lemma diagonalize-tensor :
assumes arr f and arr g
shows D (f ⊗ g) = D (D f ⊗ D g)
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〈proof 〉

lemma ide-diagonalize-can:
assumes can f
shows ide (D f )
〈proof 〉

We next show that the diagonalization functor and the inclusion of the full sub-
category FSC underlie an equivalence of categories. The arrows mkarr (DOM a↓),
determined by reductions of canonical representatives, are the components of a natural
isomorphism.

interpretation S : full-inclusion-functor comp ‹λf . ide f ∧ Diag (DOM f )› 〈proof 〉
interpretation DoS : composite-functor FSC .comp comp FSC .comp FSC .map D
〈proof 〉

interpretation SoD: composite-functor comp FSC .comp comp D FSC .map 〈proof 〉

interpretation ν: transformation-by-components
comp comp map SoD.map ‹λa. mkarr (DOM a↓)›

〈proof 〉

interpretation ν: natural-isomorphism comp comp map SoD.map ν.map
〈proof 〉

The restriction of the diagonalization functor to the subcategory FSC is the identity.
lemma DoS-eq-FSC :
shows DoS .map = FSC .map
〈proof 〉

interpretation µ: transformation-by-components
FSC .comp FSC .comp DoS .map FSC .map ‹λa. a›

〈proof 〉

interpretation µ: natural-isomorphism FSC .comp FSC .comp DoS .map FSC .map µ.map
〈proof 〉

interpretation equivalence-of-categories FSC .comp comp D FSC .map ν.map µ.map 〈proof 〉

We defined the natural isomorphisms µ and ν by giving their components (i.e. their
values at objects). However, it is helpful in exporting these facts to have simple charac-
terizations of their values for all arrows.

definition µ
where µ ≡ λf . if FSC .arr f then f else FSC .null

definition ν
where ν ≡ λf . if arr f then mkarr (COD f↓) · f else null

lemma µ-char :
shows µ.map = µ
〈proof 〉
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lemma ν-char :
shows ν.map = ν
〈proof 〉

lemma is-equivalent-to-strict-subcategory:
shows equivalence-of-categories FSC .comp comp D FSC .map ν µ
〈proof 〉

The inclusion of generators functor from C to FC corestricts to a functor from C to
FSC.

interpretation I : functor C comp inclusion-of-generators
〈proof 〉

interpretation DoI : composite-functor C comp FSC .comp inclusion-of-generators D 〈proof 〉

lemma DoI-eq-I :
shows DoI .map = inclusion-of-generators
〈proof 〉

end

Next, we show that the subcategory FSC inherits monoidal structure from the am-
bient category FC, and that this monoidal structure is strict.

locale free-strict-monoidal-category =
monoidal-language C +
FC : free-monoidal-category C +
full-subcategory FC .comp λf . FC .ide f ∧ Diag (FC .DOM f )
for C :: ′c comp

begin

interpretation D: functor FC .comp comp FC .D
〈proof 〉

notation comp (infixr ‹·S› 55 )

definition tensorS (infixr ‹⊗S› 53 )
where f ⊗S g ≡ FC .D (FC .tensor f g)

definition assocS (‹aS [-, -, -]›)
where assocS a b c ≡ a ⊗S b ⊗S c

lemma tensor-char :
assumes arr f and arr g
shows f ⊗S g = FC .mkarr (bFC .rep fc b⊗c bFC .rep gc)
〈proof 〉

lemma tensor-in-hom [simp]:
assumes «f : a → b» and «g : c → d»
shows «f ⊗S g : a ⊗S c → b ⊗S d»
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〈proof 〉

lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f ⊗S g)
〈proof 〉

lemma dom-tensor [simp]:
assumes arr f and arr g
shows dom (f ⊗S g) = dom f ⊗S dom g
〈proof 〉

lemma cod-tensor [simp]:
assumes arr f and arr g
shows cod (f ⊗S g) = cod f ⊗S cod g
〈proof 〉

lemma tensor-preserves-ide:
assumes ide a and ide b
shows ide (a ⊗S b)
〈proof 〉

lemma tensor-tensor :
assumes arr f and arr g and arr h
shows (f ⊗S g) ⊗S h = FC .mkarr (bFC .rep fc b⊗c bFC .rep gc b⊗c bFC .rep hc)
and f ⊗S g ⊗S h = FC .mkarr (bFC .rep fc b⊗c bFC .rep gc b⊗c bFC .rep hc)
〈proof 〉

lemma tensor-assoc:
assumes arr f and arr g and arr h
shows (f ⊗S g) ⊗S h = f ⊗S g ⊗S h
〈proof 〉

lemma arr-unity:
shows arr I
〈proof 〉

lemma tensor-unity-arr :
assumes arr f
shows I ⊗S f = f
〈proof 〉

lemma tensor-arr-unity:
assumes arr f
shows f ⊗S I = f
〈proof 〉

lemma assoc-char :
assumes ide a and ide b and ide c
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shows aS [a, b, c] = FC .mkarr (bFC .rep ac b⊗c bFC .rep bc b⊗c bFC .rep cc)
〈proof 〉

lemma assoc-in-hom:
assumes ide a and ide b and ide c
shows «aS [a, b, c] : (a ⊗S b) ⊗S c → a ⊗S b ⊗S c»
〈proof 〉

The category FSC is a monoidal category.
interpretation EMC : elementary-monoidal-category comp tensorS I ‹λa. a› ‹λa. a› assocS
〈proof 〉

lemma is-elementary-monoidal-category:
shows elementary-monoidal-category comp tensorS I (λa. a) (λa. a) assocS 〈proof 〉

abbreviation TF SMC where TF SMC ≡ EMC .T
abbreviation αF SMC where αF SMC ≡ EMC .α
abbreviation ιF SMC where ιF SMC ≡ EMC .ι

lemma is-monoidal-category:
shows monoidal-category comp TF SMC αF SMC ιF SMC

〈proof 〉

end

sublocale free-strict-monoidal-category ⊆
elementary-monoidal-category comp tensorS I λa. a λa. a assocS

〈proof 〉

sublocale free-strict-monoidal-category ⊆ monoidal-category comp TF SMC αF SMC ιF SMC

〈proof 〉

sublocale free-strict-monoidal-category ⊆
strict-monoidal-category comp TF SMC αF SMC ιF SMC

〈proof 〉

context free-strict-monoidal-category
begin

The inclusion of generators functor from C to FSC is the composition of the inclusion
of generators from C to FC and the diagonalization functor, which projects FC to FSC.
As the diagonalization functor is the identity map on the image of C, the composite
functor amounts to the corestriction to FSC of the inclusion of generators of FC.

interpretation D: functor FC .comp comp FC .D
〈proof 〉

interpretation I : composite-functor C FC .comp comp FC .inclusion-of-generators FC .D
〈proof 〉
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definition inclusion-of-generators
where inclusion-of-generators ≡ FC .inclusion-of-generators

lemma inclusion-is-functor :
shows functor C comp inclusion-of-generators
〈proof 〉

The diagonalization functor is strict monoidal.
interpretation D: strict-monoidal-functor FC .comp FC .TFMC FC .αFMC FC .ιFMC

comp TF SMC αF SMC ιF SMC

FC .D
〈proof 〉

lemma diagonalize-is-strict-monoidal-functor :
shows strict-monoidal-functor FC .comp FC .TFMC FC .αFMC FC .ιFMC

comp TF SMC αF SMC ιF SMC

FC .D
〈proof 〉

interpretation ϕ: natural-isomorphism
FC .CC .comp comp D.TDoFF .map D.FoTC .map D.ϕ

〈proof 〉

The diagonalization functor is part of a monoidal equivalence between the free monoidal
category and the subcategory FSC.

interpretation E : equivalence-of-categories comp FC .comp FC .D map FC .ν FC .µ
〈proof 〉

interpretation D: monoidal-functor FC .comp FC .TFMC FC .αFMC FC .ιFMC

comp TF SMC αF SMC ιF SMC

FC .D D.ϕ
〈proof 〉

interpretation equivalence-of-monoidal-categories comp TF SMC αF SMC ιF SMC

FC .comp FC .TFMC FC .αFMC FC .ιFMC

FC .D D.ϕ I
map FC .ν FC .µ

〈proof 〉

The category FC is monoidally equivalent to its subcategory FSC.
theorem monoidally-equivalent-to-free-monoidal-category:
shows equivalence-of-monoidal-categories comp TF SMC αF SMC ιF SMC

FC .comp FC .TFMC FC .αFMC FC .ιFMC

FC .D D.ϕ
map FC .ν FC .µ

〈proof 〉

end

We next show that the evaluation functor induced on the free monoidal category
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generated by C by a functor V from C to a strict monoidal category D restricts to a
strict monoidal functor on the subcategory FSC.

locale strict-evaluation-functor =
D: strict-monoidal-category D TD αD ιD +
evaluation-map C D TD αD ιD V +
FC : free-monoidal-category C +
E : evaluation-functor C D TD αD ιD V +
FSC : free-strict-monoidal-category C

for C :: ′c comp (infixr ‹·C› 55 )
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and V :: ′c ⇒ ′d
begin

notation FC .in-hom (‹«- : - → -»›)
notation FSC .in-hom (‹«- : - →S -»›)

definition map
where map ≡ λf . if FSC .arr f then E .map f else D.null

interpretation functor FSC .comp D map
〈proof 〉

lemma is-functor :
shows functor FSC .comp D map 〈proof 〉

Every canonical arrow is an equivalence class of canonical terms. The evaluations in
D of all such terms are identities, due to the strictness of D.

lemma ide-eval-Can:
shows Can t =⇒ D.ide {|t|}
〈proof 〉

lemma ide-eval-can:
assumes FC .can f
shows D.ide (E .map f )
〈proof 〉

Diagonalization transports formal arrows naturally along reductions, which are canon-
ical terms and therefore evaluate to identities of D. It follows that the evaluation in D
of a formal arrow is equal to the evaluation of its diagonalization.

lemma map-diagonalize:
assumes f : FC .arr f
shows E .map (FC .D f ) = E .map f
〈proof 〉
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lemma strictly-preserves-tensor :
assumes FSC .arr f and FSC .arr g
shows map (FSC .tensor f g) = map f ⊗D map g
〈proof 〉

lemma is-strict-monoidal-functor :
shows strict-monoidal-functor FSC .comp FSC .TF SMC FSC .α FSC .ι D TD αD ιD map
〈proof 〉

end

sublocale strict-evaluation-functor ⊆
strict-monoidal-functor FSC .comp FSC .TF SMC FSC .α FSC .ι D TD αD ιD map

〈proof 〉

locale strict-monoidal-extension-to-free-strict-monoidal-category =
C : category C +
monoidal-language C +
FSC : free-strict-monoidal-category C +
strict-monoidal-extension C FSC .comp FSC .TF SMC FSC .α FSC .ι D TD αD ιD

FSC .inclusion-of-generators V F
for C :: ′c comp (infixr ‹·C› 55 )
and D :: ′d comp (infixr ‹·D› 55 )
and TD :: ′d ∗ ′d ⇒ ′d
and αD :: ′d ∗ ′d ∗ ′d ⇒ ′d
and ιD :: ′d
and V :: ′c ⇒ ′d
and F :: ′c free-monoidal-category.arr ⇒ ′d

sublocale strict-evaluation-functor ⊆
strict-monoidal-extension C FSC .comp FSC .TF SMC FSC .α FSC .ι D TD αD ιD

FSC .inclusion-of-generators V map
〈proof 〉

context free-strict-monoidal-category
begin

We now have the main result of this section: the evaluation functor on FSC induced
by a functor V from C to a strict monoidal category D is the unique strict monoidal
extension of V to FSC.

theorem is-free:
assumes strict-monoidal-category D TD αD ιD
and strict-monoidal-extension-to-free-strict-monoidal-category C D TD αD ιD V F
shows F = strict-evaluation-functor .map C D TD αD ιD V
〈proof 〉

end
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Chapter 5

Cartesian Monoidal Category

theory CartesianMonoidalCategory
imports MonoidalCategory Category3 .CartesianCategory
begin

5.1 Symmetric Monoidal Category
locale symmetric-monoidal-category =

monoidal-category C T α ι +
S : symmetry-functor C C +
ToS : composite-functor CC .comp CC .comp C S .map T +
σ: natural-isomorphism CC .comp C T ToS .map σ

for C :: ′a comp (infixr ‹·› 55 )
and T :: ′a ∗ ′a ⇒ ′a
and α :: ′a ∗ ′a ∗ ′a ⇒ ′a
and ι :: ′a
and σ :: ′a ∗ ′a ⇒ ′a +
assumes sym-inverse: [[ ide a; ide b ]] =⇒ inverse-arrows (σ (a, b)) (σ (b, a))
and unitor-coherence: ide a =⇒ l[a] · σ (a, I) = r[a]
and assoc-coherence: [[ ide a; ide b; ide c ]] =⇒

α (b, c, a) · σ (a, b ⊗ c) · α (a, b, c)
= (b ⊗ σ (a, c)) · α (b, a, c) · (σ (a, b) ⊗ c)

begin

abbreviation sym (‹s[-, -]›)
where sym a b ≡ σ (a, b)

end

locale elementary-symmetric-monoidal-category =
elementary-monoidal-category C tensor unity lunit runit assoc

for C :: ′a comp (infixr ‹·› 55 )
and tensor :: ′a ⇒ ′a ⇒ ′a (infixr ‹⊗› 53 )
and unity :: ′a (‹I›)
and lunit :: ′a ⇒ ′a (‹l[-]›)
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and runit :: ′a ⇒ ′a (‹r[-]›)
and assoc :: ′a ⇒ ′a ⇒ ′a ⇒ ′a (‹a[-, -, -]›)
and sym :: ′a ⇒ ′a ⇒ ′a (‹s[-, -]›) +
assumes sym-in-hom: [[ ide a; ide b ]] =⇒ «s[a, b] : a ⊗ b → b ⊗ a»
and sym-naturality: [[ arr f ; arr g ]] =⇒ s[cod f , cod g] · (f ⊗ g) = (g ⊗ f ) · s[dom f , dom g]
and sym-inverse: [[ ide a; ide b ]] =⇒ inverse-arrows s[a, b] s[b, a]
and unitor-coherence: ide a =⇒ l[a] · s[a, I] = r[a]
and assoc-coherence: [[ ide a; ide b; ide c ]] =⇒

a[b, c, a] · s[a, b ⊗ c] · a[a, b, c]
= (b ⊗ s[a, c]) · a[b, a, c] · (s[a, b] ⊗ c)

begin

lemma sym-simps [simp]:
assumes ide a and ide b
shows arr s[a, b]
and dom s[a, b] = a ⊗ b
and cod s[a, b] = b ⊗ a
〈proof 〉

interpretation CC : product-category C C 〈proof 〉
sublocale MC : monoidal-category C T α ι
〈proof 〉

interpretation S : symmetry-functor C C 〈proof 〉
interpretation ToS : composite-functor CC .comp CC .comp C S .map T 〈proof 〉

definition σ :: ′a ∗ ′a ⇒ ′a
where σ f ≡ if CC .arr f then s[cod (fst f ), cod (snd f )] · (fst f ⊗ snd f ) else null

interpretation σ: natural-isomorphism CC .comp C T ToS .map σ
〈proof 〉

interpretation symmetric-monoidal-category C T α ι σ
〈proof 〉

lemma induces-symmetric-monoidal-categoryCMC :
shows symmetric-monoidal-category C T α ι σ
〈proof 〉

end

context symmetric-monoidal-category
begin

interpretation EMC : elementary-monoidal-category C tensor unity lunit runit assoc
〈proof 〉

lemma induces-elementary-symmetric-monoidal-categoryCMC :
shows elementary-symmetric-monoidal-category
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C tensor unity lunit runit assoc (λa b. σ (a, b))
〈proof 〉

end

locale dual-symmetric-monoidal-category =
M : symmetric-monoidal-category

begin

sublocale dual-monoidal-category C T α ι 〈proof 〉
interpretation S : symmetry-functor comp comp 〈proof 〉
interpretation ToS : composite-functor MM .comp MM .comp comp S .map T 〈proof 〉
sublocale σ ′: inverse-transformation M .CC .comp C T M .ToS .map σ 〈proof 〉
interpretation σ: natural-transformation MM .comp comp T ToS .map σ ′.map
〈proof 〉

interpretation σ: natural-isomorphism MM .comp comp T ToS .map σ ′.map
〈proof 〉

sublocale symmetric-monoidal-category comp T M .α ′ ‹M .inv ι› σ ′.map
〈proof 〉

lemma is-symmetric-monoidal-category:
shows symmetric-monoidal-category comp T M .α ′ (M .inv ι) σ ′.map
〈proof 〉

end

5.2 Cartesian Monoidal Category
Here we define “cartesian monoidal category” by imposing additional properties, but not
additional structure, on top of “monoidal category”. The additional properties are that
the unit is a terminal object and that the tensor is a categorical product, with projections
defined in terms of unitors, terminators, and tensor. It then follows that the associators
are induced by the product structure.

locale cartesian-monoidal-category =
monoidal-category C T α ι

for C :: ′a comp (infixr ‹·› 55 )
and T :: ′a ∗ ′a ⇒ ′a
and α :: ′a ∗ ′a ∗ ′a ⇒ ′a
and ι :: ′a +
assumes terminal-unity: terminal I
and tensor-is-product:

[[ide a; ide b; «ta : a → I»; «tb : b → I»]] =⇒
has-as-binary-product a b (r[a] · (a ⊗ tb)) (l[b] · (ta ⊗ b))

begin

sublocale category-with-terminal-object
〈proof 〉
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lemma is-category-with-terminal-object:
shows category-with-terminal-object C
〈proof 〉

definition the-trm (‹t[-]›)
where the-trm ≡ λf . THE t. «t : dom f → I»

lemma trm-in-hom [intro]:
assumes ide a
shows «t[a] : a → I»
〈proof 〉

lemma trm-simps [simp]:
assumes ide a
shows arr t[a] and dom t[a] = a and cod t[a] = I
〈proof 〉

interpretation elementary-category-with-terminal-object C I the-trm
〈proof 〉

lemma extends-to-elementary-category-with-terminal-objectCMC :
shows elementary-category-with-terminal-object C I the-trm
〈proof 〉

definition pr0 (‹p0[-, -]›)
where pr0 a b ≡ l[b] · (t[a] ⊗ b)

definition pr1 (‹p1[-, -]›)
where pr1 a b ≡ r[a] · (a ⊗ t[b])

sublocale ECC : elementary-category-with-binary-products C pr0 pr1

〈proof 〉

lemma induces-elementary-category-with-binary-productsCMC :
shows elementary-category-with-binary-products C pr0 pr1

〈proof 〉

lemma is-category-with-binary-products:
shows category-with-binary-products C
〈proof 〉

sublocale category-with-binary-products C
〈proof 〉

sublocale ECC : elementary-cartesian-category C pr0 pr1 I the-trm 〈proof 〉
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lemma extends-to-elementary-cartesian-categoryCMC :
shows elementary-cartesian-category C pr0 pr1 I the-trm
〈proof 〉

lemma is-cartesian-category:
shows cartesian-category C
〈proof 〉

sublocale cartesian-category C
〈proof 〉

abbreviation dup (‹d[-]›)
where dup ≡ ECC .dup

abbreviation tuple (‹〈-, -〉›)
where 〈f , g〉 ≡ ECC .tuple f g

lemma prod-eq-tensor :
shows ECC .prod = tensor
〈proof 〉

lemma Prod-eq-T :
shows ECC .Prod = T
〈proof 〉

lemma tuple-pr [simp]:
assumes ide a and ide b
shows 〈p1[a, b], p0[a, b]〉 = a ⊗ b
〈proof 〉

lemma tensor-expansion:
assumes arr f and arr g
shows f ⊗ g = 〈f · p1[dom f , dom g], g · p0[dom f , dom g]〉
〈proof 〉

It is somewhat amazing that once the tensor product has been assumed to be a
categorical product with the indicated projections, then the associators are forced to be
those induced by the categorical product.

lemma pr-assoc:
assumes ide a and ide b and ide c
shows p1[a, b ⊗ c] · a[a, b, c] = p1[a, b] · p1[a ⊗ b, c]
and p1[b, c] · p0[a, b ⊗ c] · a[a, b, c] = p0[a, b] · p1[a ⊗ b, c]
and p0[b, c] · p0[a, b ⊗ c] · a[a, b, c] = p0[a ⊗ b, c]
〈proof 〉

lemma assoc-agreement:
assumes ide a and ide b and ide c
shows ECC .assoc a b c = a[a, b, c]
〈proof 〉
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lemma lunit-eq:
assumes ide a
shows p0[I, a] = l[a]
〈proof 〉

lemma runit-eq:
assumes ide a
shows p1[a, I] = r[a]
〈proof 〉

lemma lunit ′-as-tuple:
assumes ide a
shows tuple t[a] a = lunit ′ a
〈proof 〉

lemma runit ′-as-tuple:
assumes ide a
shows tuple a t[a] = runit ′ a
〈proof 〉

interpretation S : symmetry-functor C C 〈proof 〉
interpretation ToS : composite-functor CC .comp CC .comp C S .map T 〈proof 〉

interpretation σ: natural-transformation CC .comp C T ToS .map ECC .σ
〈proof 〉

interpretation σ: natural-isomorphism CC .comp C T ToS .map ECC .σ
〈proof 〉

sublocale SMC : symmetric-monoidal-category C T α ι ECC .σ
〈proof 〉

end

5.3 Elementary Cartesian Monoidal Category
locale elementary-cartesian-monoidal-category =

elementary-monoidal-category C tensor unity lunit runit assoc
for C :: ′a comp (infixr ‹·› 55 )
and tensor :: ′a ⇒ ′a ⇒ ′a (infixr ‹⊗› 53 )
and unity :: ′a (‹I›)
and lunit :: ′a ⇒ ′a (‹l[-]›)
and runit :: ′a ⇒ ′a (‹r[-]›)
and assoc :: ′a ⇒ ′a ⇒ ′a ⇒ ′a (‹a[-, -, -]›)
and trm :: ′a ⇒ ′a (‹t[-]›)
and dup :: ′a ⇒ ′a (‹d[-]›) +
assumes trm-in-hom: ide a =⇒ «t[a] : a → I»
and trm-unity: t[I] = I
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and trm-naturality: arr f =⇒ t[cod f ] · f = t[dom f ]
and dup-in-hom [intro]: ide a =⇒ «d[a] : a → a ⊗ a»
and dup-naturality: arr f =⇒ d[cod f ] · f = (f ⊗ f ) · d[dom f ]
and prj0-dup: ide a =⇒ r[a] · (a ⊗ t[a]) · d[a] = a
and prj1-dup: ide a =⇒ l[a] · (t[a] ⊗ a) · d[a] = a
and tuple-prj: [[ ide a; ide b ]] =⇒ (r[a] · (a ⊗ t[b]) ⊗ l[b] · (t[a] ⊗ b)) · d[a ⊗ b] = a ⊗ b

context cartesian-monoidal-category
begin

interpretation elementary-category-with-terminal-object C I the-trm
〈proof 〉

interpretation elementary-monoidal-category C tensor unity lunit runit assoc
〈proof 〉

interpretation elementary-cartesian-monoidal-category C
tensor unity lunit runit assoc the-trm dup

〈proof 〉

lemma induces-elementary-cartesian-monoidal-categoryCMC :
shows elementary-cartesian-monoidal-category C tensor I lunit runit assoc the-trm dup
〈proof 〉

end

context elementary-cartesian-monoidal-category
begin

lemma trm-simps [simp]:
assumes ide a
shows arr t[a] and dom t[a] = a and cod t[a] = I
〈proof 〉

lemma dup-simps [simp]:
assumes ide a
shows arr d[a] and dom d[a] = a and cod d[a] = a ⊗ a
〈proof 〉

interpretation elementary-category-with-terminal-object C I trm
〈proof 〉

lemma is-elementary-category-with-terminal-object:
shows elementary-category-with-terminal-object C I trm
〈proof 〉

interpretation MC : monoidal-category C T α ι
〈proof 〉
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interpretation ECBP: elementary-category-with-binary-products C
‹λa b. l[b] · (t[a] ⊗ b)› ‹λa b. r[a] · (a ⊗ t[b])›

〈proof 〉

lemma induces-elementary-category-with-binary-productsECMC :
shows elementary-category-with-binary-products C

(λa b. l[b] · (t[a] ⊗ b)) (λa b. r[a] · (a ⊗ t[b]))
〈proof 〉

sublocale cartesian-monoidal-category C T α ι
〈proof 〉

lemma induces-cartesian-monoidal-categoryECMC :
shows cartesian-monoidal-category C T α ι
〈proof 〉

end

locale diagonal-functor =
C : category C +
CC : product-category C C

for C :: ′a comp
begin

abbreviation map
where map f ≡ if C .arr f then (f , f ) else CC .null

lemma is-functor :
shows functor C CC .comp map
〈proof 〉

sublocale functor C CC .comp map
〈proof 〉

end

context cartesian-monoidal-category
begin

sublocale ∆: diagonal-functor C 〈proof 〉
interpretation To∆: composite-functor C CC .comp C ∆.map T 〈proof 〉

sublocale δ: natural-transformation C C map ‹T o ∆.map› dup
〈proof 〉

end
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5.4 Cartesian Monoidal Category from Cartesian Category
A cartesian category extends to a cartesian monoidal category by using the product
structure to obtain the various canonical maps.

context elementary-cartesian-category
begin

interpretation CC : product-category C C 〈proof 〉
interpretation CCC : product-category C CC .comp 〈proof 〉
interpretation T : binary-functor C C C Prod
〈proof 〉

interpretation T : binary-endofunctor C Prod 〈proof 〉
interpretation ToTC : functor CCC .comp C T .ToTC
〈proof 〉

interpretation ToCT : functor CCC .comp C T .ToCT
〈proof 〉

interpretation α: natural-isomorphism CCC .comp C T .ToTC T .ToCT α
〈proof 〉

interpretation L: functor C C ‹λf . Prod (cod ι, f )›
〈proof 〉

interpretation L: endofunctor C ‹λf . Prod (cod ι, f )› 〈proof 〉
interpretation l: transformation-by-components C C

‹λf . Prod (cod ι, f )› map ‹λa. pr0 (cod ι) a›
〈proof 〉

interpretation l: natural-isomorphism C C ‹λf . Prod (cod ι, f )› map l.map
〈proof 〉

interpretation L: equivalence-functor C C ‹λf . Prod (cod ι, f )›
〈proof 〉

interpretation R: functor C C ‹λf . Prod (f , cod ι)›
〈proof 〉

interpretation R: endofunctor C ‹λf . Prod (f , cod ι)› 〈proof 〉
interpretation %: transformation-by-components C C

‹λf . Prod (f , cod ι)› map ‹λa. p1[a, cod ι]›
〈proof 〉

interpretation %: natural-isomorphism C C ‹λf . Prod (f , cod ι)› map %.map
〈proof 〉

interpretation R: equivalence-functor C C ‹λf . Prod (f , cod ι)›
〈proof 〉

interpretation MC : monoidal-category C Prod α ι
〈proof 〉

lemma induces-monoidal-categoryECC :
shows monoidal-category C Prod α ι
〈proof 〉
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lemma unity-agreement:
shows MC .unity = 1
〈proof 〉

lemma assoc-agreement:
assumes ide a and ide b and ide c
shows MC .assoc a b c = a[a, b, c]
〈proof 〉

lemma assoc ′-agreement:
assumes ide a and ide b and ide c
shows MC .assoc ′ a b c = a−1[a, b, c]
〈proof 〉

lemma runit-char-eqn:
assumes ide a
shows r[a] ⊗ 1 = (a ⊗ ι) · a[a, 1, 1]
〈proof 〉

lemma runit-agreement:
assumes ide a
shows MC .runit a = r[a]
〈proof 〉

lemma lunit-char-eqn:
assumes ide a
shows 1 ⊗ l[a] = (ι ⊗ a) · a−1[1, 1, a]
〈proof 〉

lemma lunit-agreement:
assumes ide a
shows MC .lunit a = l[a]
〈proof 〉

interpretation CMC : cartesian-monoidal-category C Prod α ι
〈proof 〉

lemma extends-to-cartesian-monoidal-categoryECC :
shows cartesian-monoidal-category C Prod α ι
〈proof 〉

lemma trm-agreement:
assumes ide a
shows CMC .the-trm a = t[a]
〈proof 〉

lemma pr-agreement:
assumes ide a and ide b
shows CMC .pr0 a b = p0[a, b] and CMC .pr1 a b = p1[a, b]
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〈proof 〉

lemma dup-agreement:
assumes ide a
shows CMC .dup a = d[a]
〈proof 〉

end

5.5 Cartesian Monoidal Category from Elementary Carte-
sian Category

context elementary-cartesian-category
begin

interpretation MC : monoidal-category C Prod α ι
〈proof 〉

lemma triangle:
assumes ide a and ide b
shows (a ⊗ l[b]) · a[a, 1, b] = r[a] ⊗ b
〈proof 〉

lemma induces-elementary-cartesian-monoidal-categoryECC :
shows elementary-cartesian-monoidal-category (·) prod 1 lunit runit assoc trm dup
〈proof 〉

end

context cartesian-category
begin

interpretation ECC : elementary-cartesian-category C
some-pr0 some-pr1 some-terminal some-terminator

〈proof 〉

lemma extends-to-cartesian-monoidal-categoryCC :
shows cartesian-monoidal-category C ECC .Prod ECC .α ECC .ι
〈proof 〉

end

end
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