Monoidal Categories

Eugene W. Stark

Department of Computer Science Stony Brook University Stony Brook, New York 11794 USA

March 17, 2025

Abstract

Building on the formalization of basic category theory set out in the author's previous AFP article [6], the present article formalizes some basic aspects of the theory of monoidal categories. Among the notions defined here are monoidal category, monoidal functor, and equivalence of monoidal categories. The main theorems formalized are MacLane's coherence theorem and the constructions of the free monoidal category and free strict monoidal category generated by a given category. The coherence theorem is proved syntactically, using a structurally recursive approach to reduction of terms that might have some novel aspects. We also give proofs of some results given by Etingof $et\ al\ [2]$, which may prove useful in a formal setting. In particular, we show that the left and right unitors need not be taken as given data in the definition of monoidal category, nor does the definition of monoidal functor need to take as given a specific isomorphism expressing the preservation of the unit object. Our definitions of monoidal category and monoidal functor are stated so as to take advantage of the economy afforded by these facts.

Revisions made subsequent to the first version of this article added material on cartesian monoidal categories; showing that the underlying category of a cartesian monoidal category is a cartesian category, and that every cartesian category extends to a cartesian monoidal category.

Contents

1	Intr	roduction	3
2	Mo	Monoidal Category	
	2.1	Monoidal Category	6
	2.2	Elementary Monoidal Category	
	2.3	Strict Monoidal Category	
	2.4	Opposite Monoidal Category	
	2.5	Dual Monoidal Category	
	2.6	Monoidal Language	
	2.7	Coherence	
3	Monoidal Functor 9		
	3.1	Strict Monoidal Functor	103
4	The Free Monoidal Category		
	4.1	Syntactic Construction	108
	4.2	Proof of Freeness	
	4.3	Strict Subcategory	
5	Cartesian Monoidal Category 17		
	5.1	Symmetric Monoidal Category	175
	5.2	Cartesian Monoidal Category	
	5.3	Elementary Cartesian Monoidal Category	
	5.4	Cartesian Monoidal Category from Cartesian Category	
	5.5	Cartesian Monoidal Category from Elementary Cartesian Category	
	J.0	cartesian interest of the property of the cartesian of the gold of the cartesian of the car	101

Chapter 1

Introduction

A monoidal category is a category C equipped with a binary "tensor product" functor \otimes : $C \times C \to C$, which is associative up to a given natural isomorphism, and an object \mathcal{I} that behaves up to isomorphism like a unit for \otimes . The associativity and unit isomorphisms are assumed to satisfy certain axioms known as *coherence conditions*. Monoidal categories were introduced by Bénabou [1] and MacLane [4]. MacLane showed that the axioms for a monoidal category imply that all diagrams in a large class are commutative. This result, known as MacLane's Coherence Theorem, is the first important result in the theory of monoidal categories.

Monoidal categories are important partly because of their ubiquity. The category of sets and functions is monoidal; more generally any category with binary products and a terminal object becomes a monoidal category if we take the categorical product as \otimes and the terminal object as \mathcal{I} . The category of vector spaces over a field, with linear maps as morphisms, not only admits monoidal structure with respect to the categorical product, but also with respect to the usual tensor product of vector spaces. Monoidal categories serve as the starting point for enriched category theory in that they provide a setting in which ordinary categories, having "homs in the category of sets," can be generalized to "categories having homs in a monoidal category \mathcal{V} ". In addition, the theory of monoidal categories can be regarded as a stepping stone to the theory of bicategories, as monoidal categories are the same thing as one-object bicategories.

Building on the formalization of basic category theory set out in the author's previous AFP article [6], the present article formalizes some basic aspects of the theory of monoidal categories. In Chapter 2, we give a definition of the notion of monoidal category and develop consequences of the axioms. We then give a proof of MacLane's coherence theorem. The proof is syntactic: we define a language of terms built from arrows of a given category C using constructors that correspond to formal composition and tensor product as well as to the associativity and unit isomorphisms and their formal inverses, we then define a mapping that interprets terms of the language in an arbitrary monoidal category D via a valuation functor $V: C \to D$, and finally we syntactically characterize a class of equations between terms that hold in any such interpretation. Among these equations are all those that relate formally parallel "canonical" terms, where a term is

canonical if the only arrows of C that are used in its construction are identities. Thus, all formally parallel canonical terms have identical interpretations in any monoidal category, which is the content of MacLane's coherence theorem.

In Chapter 3, we define the notion of a monoidal functor between monoidal categories. A monoidal functor from a monoidal category C to a monoidal category D is a functor $F:C\to D$, equipped with additional data that express that the monoidal structure is preserved by F up to natural isomorphism. A monoidal functor is *strict* if it preserves the monoidal structure "on the nose" (*i.e.* the natural isomorphism is an identity). We also define the notion of an *equivalence of monoidal categories*, which is a monoidal functor $F:C\to D$ that is part of an ordinary equivalence of categories between C and D.

In Chapter 4, we use the language of terms defined in Chapter 2 to give a syntactic construction of the free monoidal category $\mathcal{F}C$ generated by a category C. The arrows $\mathcal{F}C$ are defined to be certain equivalence classes of terms, where composition and tensor product, as well as the associativity and unit isomorphisms, are determined by the syntactic operations. After proving that the construction does in fact yield a monoidal category, we establish its freeness: every functor from C to a monoidal category D extends uniquely to a strict monoidal functor from $\mathcal{F}C$ to D. We then consider the subcategory \mathcal{F}_SC of $\mathcal{F}C$ whose arrows are equivalence classes of terms that we call "diagonal." Diagonal terms amount to lists of arrows of C, composition in \mathcal{F}_SC is given by elementwise composition of compatible lists of arrows, and tensor product in \mathcal{F}_SC is given by concatenation of lists. We show that the subcategory \mathcal{F}_SC is monoidally equivalent to the category $\mathcal{F}C$ and in addition that \mathcal{F}_SC is the free strict monoidal category generated by C.

The formalizations of the notions of monoidal category and monoidal functor that we give here are not quite the traditional ones. The traditional definition of monoidal category assumes as given not only an "associator" natural isomorphism, which expresses the associativity of the tensor product, but also left and right "unitor" isomorphisms, which correspond to unit laws. However, as pointed out in [2], it is not necessary to take the unitors as given, because they are uniquely determined by the other structure and the condition that left and right tensoring with the unit object are endo-equivalences. This leads to a definition of monoidal category that requires fewer data to be given and fewer conditions to be verified in applications. As this is likely to be especially important in a formal setting, we adopt this more economical definition and go to the trouble to obtain the unitors as defined notions. A similar situation occurs with the definition of monoidal functor. The traditional definition requires two natural isomorphisms to be given: one that expresses the preservation of tensor product and another that expresses the preservation of the unit object. Once again, as indicated in [2], it is logically unnecessary to take the latter isomorphism as given, since there is a canonical definition of it in terms of the other structure. We adopt the more economical definition of monoidal functor and prove that the traditionally assumed structure can be derived from it.

Finally, the proof of the coherence theorem given here potentially has some novel aspects. A typical syntactic proof of this theorem, such as that described in [5], involves the identification, for each term constructed as a formal tensor product of the unit object \mathcal{I} and "primitive objects" (*i.e.* the elements of a given set of generators), of a "reduction"

isomorphism obtained by composing "basic reductions" in which occurrences of \mathcal{I} are eliminated using components of the left and right unitors and "parentheses are moved to one end" using components of the associator. The construction of these reductions is performed, as in [5], using an approach that can be thought of as the application of an iterative strategy for normalizing a term. My thoughts were initially along these lines, and I did succeed in producing a formal proof of the coherence theorem in this way. However, proving the termination of the reduction strategy was complicated by the necessity of using of a "rank function" on terms, and the lemmas required for the remainder of the proof had to be proved by induction on rank, which was messy. At some point, I realized that it ought to be possible to define reductions in a structurally recursive way, which would permit the lemmas in the rest of the proof to be proved by structural induction, rather than induction on rank. It took some time to find the right definitions, but in the end this approach worked out more simply, and is what is presented here.

Revision Notes

The original version of this document dates from May, 2017. The current version of this document incorporates revisions made in mid-2020 after the release of Isabelle2020. Aside from various minor improvements, the main change was the addition of a new theory, concerning cartesian monoidal categories, which coordinates with material on cartesian categories that was simultaneously added to [6]. The new theory defines "cartesian monoidal category" as an extension of "monoidal category" obtained by adding additional functors, natural transformations, and coherence conditions. The main results proved are that the underlying category of a cartesian monoidal category is a cartesian category, and that every cartesian category extends to a cartesian monoidal category.

Chapter 2

Monoidal Category

In this theory, we define the notion "monoidal category," and develop consequences of the definition. The main result is a proof of MacLane's coherence theorem.

theory MonoidalCategory imports Category3. EquivalenceOfCategories begin

2.1 Monoidal Category

A typical textbook presentation defines a monoidal category to be a category C equipped with (among other things) a binary "tensor product" functor \otimes : $C \times C \to C$ and an "associativity" natural isomorphism α , whose components are isomorphisms α (a, b, c): $(a \otimes b) \otimes c \to a \otimes (b \otimes c)$ for objects a, b, and c of C. This way of saying things avoids an explicit definition of the functors that are the domain and codomain of α and, in particular, what category serves as the domain of these functors. The domain category is in fact the product category $C \times C \times C$ and the domain and codomain of α are the functors T o $(T \times C)$: $C \times C \times C \to C$ and T o $(C \times T)$: $C \times C \times C \to C$. In a formal development, though, we can't gloss over the fact that $C \times C \times C$ has to mean either $C \times (C \times C)$ or $(C \times C) \times C$, which are not formally identical, and that associativities are somehow involved in the definitions of the functors T o $(T \times C)$ and T o $(C \times T)$. Here we use the binary-endofunctor locale to codify our choices about what $C \times C \times C$, T o $(T \times C)$, and T o $(C \times T)$ actually mean. In particular, we choose $C \times C \times C$ to be $C \times (C \times C)$ and define the functors T o $(T \times C)$, and T o $(C \times T)$ accordingly.

Our primary definition for "monoidal category" follows the somewhat non-traditional development in [2]. There a monoidal category is defined to be a category C equipped with a binary tensor product functor $T: C \times C \to C$, an associativity isomorphism, which is a natural isomorphism $\alpha: T \circ (T \times C) \to T \circ (C \times T)$, a unit object \mathcal{I} of C, and an isomorphism $\iota: T(\mathcal{I}, \mathcal{I}) \to \mathcal{I}$, subject to two axioms: the pentagon axiom, which expresses the commutativity of certain pentagonal diagrams involving components of α , and the left and right unit axioms, which state that the endofunctors $T(\mathcal{I}, -)$ and T(-, -)

 \mathcal{I}) are equivalences of categories. This definition is formalized in the *monoidal-category* locale.

In more traditional developments, the definition of monoidal category involves additional left and right unitor isomorphisms λ and ϱ and associated axioms involving their components. However, as is shown in [2] and formalized here, the unitors are uniquely determined by α and their values $\lambda(\mathcal{I})$ and $\varrho(\mathcal{I})$ at \mathcal{I} , which coincide. Treating λ and ϱ as defined notions results in a more economical basic definition of monoidal category that requires less data to be given, and has a similar effect on the definition of "monoidal functor." Moreover, in the context of the formalization of categories that we use here, the unit object \mathcal{I} also need not be given separately, as it can be obtained as the codomain of the isomorphism ι .

```
locale monoidal-category =
  category C +
  CC: product-category C C +
  CCC: product-category C CC.comp +
  T: binary-endofunctor \ C \ T +
  \alpha: natural-isomorphism CCC.comp C T.ToTC T.ToCT \alpha +
  L: equivalence-functor C C \lambda f. T (cod \ \iota, f) +
  R: equivalence-functor C C \lambda f. T (f, cod \iota)
                             (infixr \leftrightarrow 55)
for C :: 'a \ comp
and T :: 'a * 'a \Rightarrow 'a
and \alpha :: 'a * 'a * 'a \Rightarrow 'a
and \iota :: 'a +
assumes unit-in-hom-ax: \langle \iota : T \pmod{\iota}, \operatorname{cod} \iota \rangle \to \operatorname{cod} \iota \rangle
and unit-is-iso: iso t
and pentagon: \llbracket ide \ a; ide \ b; ide \ c; ide \ d \ \rrbracket \Longrightarrow
                T(a, \alpha(b, c, d)) \cdot \alpha(a, T(b, c), d) \cdot T(\alpha(a, b, c), d) =
                \alpha (a, b, T(c, d)) \cdot \alpha (T(a, b), c, d)
begin
```

We now define helpful notation and abbreviations to improve readability. We did not define and use the notation \otimes for the tensor product in the definition of the locale because to define \otimes as a binary operator requires that it be in curried form, whereas for T to be a binary functor requires that it take a pair as its argument.

```
abbreviation unity :: 'a \ (\langle \mathcal{I} \rangle) where unity \equiv cod \ \iota abbreviation L :: 'a \Rightarrow 'a where L f \equiv T \ (\mathcal{I}, f) abbreviation R :: 'a \Rightarrow 'a where R f \equiv T \ (f, \mathcal{I}) abbreviation tensor (infix (\otimes) 53) where f \otimes g \equiv T \ (f, g) abbreviation assoc (\langle a[-, -, -] \rangle)
```

```
where a[a, b, c] \equiv \alpha (a, b, c)
```

In HOL we can just give the definitions of the left and right unitors "up front" without any preliminary work. Later we will have to show that these definitions have the right properties. The next two definitions define the values of the unitors when applied to identities; that is, their components as natural transformations.

```
definition lunit (\langle 1[-] \rangle) where lunit a \equiv THE f. \langle f : \mathcal{I} \otimes a \rightarrow a \rangle \wedge \mathcal{I} \otimes f = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a] definition runit (\langle r[-] \rangle) where runit a \equiv THE f. \langle f : a \otimes \mathcal{I} \rightarrow a \rangle \wedge f \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}]
```

We now embark upon a development of the consequences of the monoidal category axioms. One of our objectives is to be able to show that an interpretation of the *monoidal-category* locale induces an interpretation of a locale corresponding to a more traditional definition of monoidal category. Another is to obtain the facts we need to prove the coherence theorem.

```
lemma unit-in-hom [intro]:
shows \langle \iota : \mathcal{I} \otimes \mathcal{I} \rightarrow \mathcal{I} \rangle
  using unit-in-hom-ax by force
lemma ide-unity [simp]:
shows ide \mathcal{I}
  using unit-in-hom by auto
lemma tensor-in-hom [simp]:
assumes \langle f: a \rightarrow b \rangle and \langle g: c \rightarrow d \rangle
\mathbf{shows} \ \textit{``f} \otimes \textit{g} : \textit{a} \otimes \textit{c} \rightarrow \textit{b} \otimes \textit{d} \textit{``}
  using assms T.preserves-hom CC.arr-char by simp
lemma tensor-in-homI [intro]:
assumes \langle f: a \rightarrow b \rangle and \langle g: c \rightarrow d \rangle and x = a \otimes c and y = b \otimes d
shows \langle f \otimes g : x \to y \rangle
  using assms tensor-in-hom
  by force
lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f \otimes g)
  using assms by simp
lemma dom-tensor [simp]:
assumes \langle f: a \rightarrow b \rangle and \langle g: c \rightarrow d \rangle
shows dom (f \otimes g) = a \otimes c
  using assms by fastforce
lemma cod-tensor [simp]:
assumes \langle f: a \rightarrow b \rangle and \langle g: c \rightarrow d \rangle
shows cod (f \otimes g) = b \otimes d
```

```
lemma tensor-preserves-ide [simp]:
assumes ide \ a and ide \ b
shows ide (a \otimes b)
 using assms T.preserves-ide CC.ide-char by simp
lemma tensor-preserves-iso [simp]:
assumes iso f and iso g
shows iso (f \otimes g)
 using assms by simp
lemma inv-tensor [simp]:
assumes iso f and iso g
shows inv (f \otimes g) = inv f \otimes inv g
 using assms T. preserves-inv by auto
lemma interchange:
assumes seq h g and seq h' g'
shows (h \otimes h') \cdot (g \otimes g') = h \cdot g \otimes h' \cdot g'
 using assms T. preserves-comp [of (h, h') (g, g')] by simp
lemma \alpha-simp:
assumes arr f and arr g and arr h
shows \alpha (f, g, h) = (f \otimes g \otimes h) \cdot a[dom f, dom g, dom h]
 using assms \alpha.naturality1 [of (f, g, h)] by simp
lemma assoc-in-hom [intro]:
assumes ide \ a and ide \ b and ide \ c
shows \langle a[a, b, c] : (a \otimes b) \otimes c \rightarrow a \otimes b \otimes c \rangle
 using assms CCC.in-homE by auto
lemma arr-assoc [simp]:
assumes ide a and ide b and ide c
shows arr \ a[a, b, c]
 using assms assoc-in-hom by simp
lemma dom-assoc [simp]:
assumes ide \ a and ide \ b and ide \ c
shows dom a[a, b, c] = (a \otimes b) \otimes c
 using assms assoc-in-hom by simp
lemma cod-assoc [simp]:
assumes ide a and ide b and ide c
shows cod \ a[a, b, c] = a \otimes b \otimes c
 using assms assoc-in-hom by simp
lemma assoc-naturality:
```

assumes arr f0 and arr f1 and arr f2

using assms by fastforce

```
shows a[cod\ f0,\ cod\ f1,\ cod\ f2]\cdot((f0\otimes f1)\otimes f2)=(f0\otimes f1\otimes f2)\cdot a[dom\ f0,\ dom\ f1,\ dom\ f2] using assms\ \alpha.naturality by auto lemma iso-assoc\ [simp]: assumes ide\ a and ide\ b and ide\ c shows iso\ a[a,\ b,\ c] using assms\ \alpha.preserves-iso by simp
```

The next result uses the fact that the functor L is an equivalence (and hence faithful) to show the existence of a unique solution to the characteristic equation used in the definition of a component l[a] of the left unitor. It follows that l[a], as given by our definition using definite description, satisfies this characteristic equation and is therefore uniquely determined by by \otimes , α , and ι .

```
lemma lunit-char:
assumes ide a
shows \langle l[a] : \mathcal{I} \otimes a \to a \rangle and \mathcal{I} \otimes l[a] = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a]
and \exists ! f. \ \langle f : \mathcal{I} \otimes a \rightarrow a \rangle \wedge \mathcal{I} \otimes f = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a]
proof -
  obtain F \eta \varepsilon where L: equivalence-of-categories C \ C \ F \ (\lambda f. \ \mathcal{I} \otimes f) \ \eta \ \varepsilon
     using L.induces-equivalence by auto
  interpret L: equivalence-of-categories C C F \langle \lambda f. \mathcal{I} \otimes f \rangle \eta \in
     using L by auto
  let ?P = \lambda f. \langle f : \mathcal{I} \otimes a \rightarrow a \rangle \wedge \mathcal{I} \otimes f = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a]
  show \exists !f. ?P f
  proof -
    have \exists f. ?P f
     proof -
       have \langle (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a] : \mathcal{I} \otimes \mathcal{I} \otimes a \rightarrow \mathcal{I} \otimes a \rangle
       proof
          using assms ide-in-hom by blast
          show «inv a[\mathcal{I}, \mathcal{I}, a] : \mathcal{I} \otimes \mathcal{I} \otimes a \rightarrow (\mathcal{I} \otimes \mathcal{I}) \otimes a»
             using assms by auto
       qed
       moreover have ide (\mathcal{I} \otimes a) using assms by simp
       ultimately show ?thesis
          using assms L.is-full by blast
     moreover have \bigwedge f f'. ?P f \Longrightarrow ?P f' \Longrightarrow f = f'
       by (metis L.is-faithful in-homE)
     ultimately show ?thesis by blast
  qed
  hence 1: P[a]
     unfolding lunit-def using the I' [of ?P] by auto
  show \langle a| [a] : \mathcal{I} \otimes a \rightarrow a \rangle using 1 by fast
  show \mathcal{I} \otimes l[a] = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a] using 1 by fast
qed
```

```
lemma lunit-in-hom [intro]:
assumes ide a
shows \ll l[a] : \mathcal{I} \otimes a \rightarrow a \gg
 using assms lunit-char(1) by blast
lemma arr-lunit [simp]:
assumes ide a
shows arr 1[a]
 using assms lunit-in-hom by auto
lemma dom-lunit [simp]:
assumes ide a
shows dom \ l[a] = \mathcal{I} \otimes a
 using assms lunit-in-hom by auto
lemma cod-lunit [simp]:
assumes ide a
shows cod \ l[a] = a
 using assms lunit-in-hom by auto
```

As the right-hand side of the characteristic equation for $\mathcal{I} \otimes \mathbb{I}[a]$ is an isomorphism, and the equivalence functor L reflects isomorphisms, it follows that $\lfloor a \rfloor$ is an isomorphism.

```
lemma iso-lunit [simp]:
assumes ide a
shows iso 1[a]
 using assms lunit-char(2) unit-is-iso ide-unity isos-compose iso-assoc iso-inv-iso
      unit-in-hom L. reflects-iso arr-lunit arr-tensor ideD(1) ide-is-iso lunit-in-hom
      tensor-preserves-iso
 by metis
```

To prove that an arrow f is equal to l[a] we need only show that it is parallel to l[a]and that $\mathcal{I} \otimes f$ satisfies the same characteristic equation as $\mathcal{I} \otimes \mathbb{I}[a]$ does.

```
lemma lunit-eqI:
assumes \langle f : \mathcal{I} \otimes a \rightarrow a \rangle and \mathcal{I} \otimes f = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a]
shows f = l[a]
proof -
  have ide \ a \ using \ assms(1) by auto
  thus ?thesis
    using assms lunit-char the 1-equality by blast
qed
```

The next facts establish the corresponding results for the components of the right unitor.

```
lemma runit-char:
assumes ide a
shows \langle r[a] : a \otimes \mathcal{I} \to a \rangle and r[a] \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}]
and \exists ! f. \ \langle f : a \otimes \mathcal{I} \rightarrow a \rangle \land f \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}]
proof -
   obtain F \eta \varepsilon where R: equivalence-of-categories C \ C \ F \ (\lambda f. \ f \otimes \mathcal{I}) \ \eta \ \varepsilon
```

```
using R.induces-equivalence by auto
  interpret R: equivalence-of-categories C C F \langle \lambda f. f \otimes \mathcal{I} \rangle \eta \varepsilon
    using R by auto
  let P = \lambda f. f : a \otimes \mathcal{I} \to a \wedge f \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}]
  show \exists !f. ?P f
  proof -
    have \exists f. ?P f
    proof -
      have \langle (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}] : (a \otimes \mathcal{I}) \otimes \mathcal{I} \rightarrow a \otimes \mathcal{I} \rangle
         using assms by fastforce
      moreover have ide\ (a\otimes \mathcal{I}) using assms by simp
      ultimately show ?thesis
         using assms R.is-full [of a a \otimes \mathcal{I} (a \otimes \iota) · a[a, \mathcal{I}, \mathcal{I}]] by blast
    qed
    moreover have \bigwedge f f'. ?P f \Longrightarrow ?P f' \Longrightarrow f = f'
      by (metis R.is-faithful in-homE)
    ultimately show ?thesis by blast
  qed
  hence 1: P r[a] unfolding runit-def using the I' [of P] by fast
  show \langle r[a] : a \otimes \mathcal{I} \rightarrow a \rangle using 1 by fast
  show r[a] \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}] using 1 by fast
qed
lemma runit-in-hom [intro]:
assumes ide a
shows \langle r[a] : a \otimes \mathcal{I} \rightarrow a \rangle
  using assms runit-char(1) by blast
lemma arr-runit [simp]:
assumes ide \ a
shows arr r[a]
  using assms runit-in-hom by blast
lemma dom-runit [simp]:
assumes ide \ a
shows dom \ r[a] = a \otimes \mathcal{I}
  using assms runit-in-hom by blast
lemma cod-runit [simp]:
assumes ide a
shows cod \ r[a] = a
  using assms runit-in-hom by blast
lemma runit-eqI:
assumes \langle f : a \otimes \mathcal{I} \rightarrow a \rangle and f \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}]
shows f = r[a]
proof -
  have ide \ a \ using \ assms(1) by auto
  thus ?thesis
```

```
using assms runit-char the 1-equality by blast
qed
lemma iso-runit [simp]:
assumes ide a
shows iso r[a]
 using assms unit-is-iso iso-inv-iso isos-compose ide-is-iso R.preserves-reflects-arr
      arrI ide-unity iso-assoc runit-char tensor-preserves-iso R.reflects-iso
 by metis
We can now show that the components of the left and right unitors have the naturality
```

properties required of a natural transformation.

```
lemma lunit-naturality:
assumes arr f
shows l[cod f] \cdot (\mathcal{I} \otimes f) = f \cdot l[dom f]
  interpret \alpha': inverse-transformation CCC.comp C T.ToTC T.ToCT \alpha ..
  have par: par (l[cod\ f] \cdot (\mathcal{I} \otimes f)) (f \cdot l[dom\ f])
     using assms by simp
  moreover have \mathcal{I} \otimes \mathbb{I}[cod\ f] \cdot (\mathcal{I} \otimes f) = \mathcal{I} \otimes f \cdot \mathbb{I}[dom\ f]
  proof -
    have \mathcal{I} \otimes \mathbb{I}[cod\ f] \cdot (\mathcal{I} \otimes f) = ((\iota \otimes cod\ f) \cdot ((\mathcal{I} \otimes \mathcal{I}) \otimes f)) \cdot inv\ a[\mathcal{I},\ \mathcal{I},\ dom\ f]
       using assms interchange [of \mathcal{I} \mathcal{I} \mathcal{I} \otimes f 1[cod f]] lunit-char(2)
               \alpha'.naturality [of (\mathcal{I}, \mathcal{I}, f)] comp-assoc
       by auto
    also have ... = ((\mathcal{I} \otimes f) \cdot (\iota \otimes dom f)) \cdot inv \ a[\mathcal{I}, \mathcal{I}, dom f]
       using assms interchange comp-arr-dom comp-cod-arr unit-in-hom by auto
    also have ... = (\mathcal{I} \otimes f) \cdot (\mathcal{I} \otimes \mathbb{I}[dom f])
       using assms lunit-char(2) comp-assoc by auto
     also have ... = \mathcal{I} \otimes f \cdot 1[dom f]
       using assms interchange L. preserves-comp par by metis
     finally show ?thesis by blast
  qed
  ultimately show l[cod f] \cdot (\mathcal{I} \otimes f) = f \cdot l[dom f]
     using L.is-faithful by metis
qed
\mathbf{lemma} \ \mathit{runit-naturality} :
assumes arr f
shows r[cod f] \cdot (f \otimes \mathcal{I}) = f \cdot r[dom f]
proof -
  have par: par (r[cod f] \cdot (f \otimes \mathcal{I})) (f \cdot r[dom f])
     using assms by force
  moreover have \mathbf{r}[cod\ f] \cdot (f \otimes \mathcal{I}) \otimes \mathcal{I} = f \cdot \mathbf{r}[dom\ f] \otimes \mathcal{I}
  proof -
    have r[cod f] \cdot (f \otimes \mathcal{I}) \otimes \mathcal{I} = (cod f \otimes \iota) \cdot a[cod f, \mathcal{I}, \mathcal{I}] \cdot ((f \otimes \mathcal{I}) \otimes \mathcal{I})
       using assms interchange [of \mathcal{I} \mathcal{I} \mathcal{I} \otimes f r[cod f]] runit-char(2)
               comp-assoc
       by auto
```

```
also have ... = (cod f \otimes \iota) \cdot (f \otimes \mathcal{I} \otimes \mathcal{I}) \cdot a[dom f, \mathcal{I}, \mathcal{I}] using assms \alpha.naturality [of (f, \mathcal{I}, \mathcal{I})] by auto also have ... = ((cod f \otimes \iota) \cdot (f \otimes \mathcal{I} \otimes \mathcal{I})) \cdot a[dom f, \mathcal{I}, \mathcal{I}] using comp-assoc by simp also have ... = ((f \otimes \mathcal{I}) \cdot (dom f \otimes \iota)) \cdot a[dom f, \mathcal{I}, \mathcal{I}] using assms unit-in-hom interchange comp-arr-dom comp-cod-arr by auto also have ... = (f \otimes \mathcal{I}) \cdot (r[dom f] \otimes \mathcal{I}) using assms runit-char comp-assoc by auto also have ... = f \cdot r[dom f] \otimes \mathcal{I} using assms interchange R. preserves-comp par by metis finally show ?thesis by blast qed ultimately show r[cod f] \cdot (f \otimes \mathcal{I}) = f \cdot r[dom f] using R. is-faithful by metis qed
```

The next two definitions extend the unitors to all arrows, not just identities. Unfortunately, the traditional symbol λ for the left unitor is already reserved for a higher purpose, so we have to make do with a poor substitute.

```
abbreviation \mathfrak{l}
 where l f \equiv if \ arr \ f \ then \ f \cdot l[dom \ f] \ else \ null
 abbreviation \rho
 where \varrho f \equiv if \ arr f \ then \ f \cdot r[dom \ f] \ else \ null
 lemma \mathfrak{l}-ide-simp:
 assumes ide \ a
 shows l a = l[a]
   using assms lunit-char comp-cod-arr ide-in-hom by (metis in-homE)
 lemma \rho-ide-simp:
 assumes ide a
 shows \rho \ a = r[a]
   using assms runit-char [of a] comp-cod-arr by auto
end
context monoidal-category
begin
 sublocale \mathfrak{l}: natural-transformation C C L map \mathfrak{l}
 proof -
   interpret \mathfrak{l}: transformation-by-components C C L map \langle \lambda a. 1[a] \rangle
     using lunit-in-hom lunit-naturality unit-in-hom-ax L. extensionality
     by (unfold-locales, auto)
   have l.map = l
     using \( \text{l.naturality1} \) \( \text{l.extensionality by } \) auto
   thus natural-transformation C C L map 1
     using \(\mathbb{l}\). natural-transformation-axioms by auto
```

```
qed
```

```
sublocale \mathfrak{l}: natural-isomorphism C C L map \mathfrak{l}
 apply unfold-locales
  using iso-lunit 1-ide-simp by simp
sublocale \rho: natural-transformation C C R map \rho
proof -
  interpret \varrho: transformation-by-components C C R map \langle \lambda a. \mathbf{r}[a] \rangle
   using runit-naturality unit-in-hom-ax R. extensionality
   by (unfold-locales, auto)
  have \varrho.map = \varrho
   using \varrho.naturality1 \varrho.extensionality by auto
  thus natural-transformation C C R map \varrho
   using \varrho.natural-transformation-axioms by auto
qed
sublocale \varrho: natural-isomorphism C C R map \varrho
  apply unfold-locales
  using \rho-ide-simp by simp
sublocale \mathfrak{l}': inverse-transformation C C L map \mathfrak{l} ..
sublocale \varrho': inverse-transformation C C R map \varrho ...
sublocale \alpha': inverse-transformation CCC.comp C T.ToTC T.ToCT \alpha ..
abbreviation \alpha'
where \alpha' \equiv \alpha'.map
abbreviation assoc'(\langle a^{-1}[-, -, -] \rangle)
where a^{-1}[a, b, c] \equiv inv \ a[a, b, c]
lemma \alpha'-ide-simp:
assumes ide \ a and ide \ b and ide \ c
shows \alpha'(a, b, c) = a^{-1}[a, b, c]
 using assms \alpha' inverts-components inverse-unique by force
lemma \alpha'-simp:
assumes arr f and arr g and arr h
shows \alpha'(f, g, h) = ((f \otimes g) \otimes h) \cdot a^{-1}[dom f, dom g, dom h]
  using assms T. To TC-simp \alpha'.naturality1 \alpha'-ide-simp by force
lemma assoc-inv:
assumes ide a and ide b and ide c
shows inverse-arrows a[a, b, c] a^{-1}[a, b, c]
 using assms inv-is-inverse by simp
lemma assoc'-in-hom [intro]:
assumes ide a and ide b and ide c
shows \langle a^{-1}[a, b, c] : a \otimes b \otimes c \rightarrow (a \otimes b) \otimes c \rangle
```

```
using assms by auto
lemma arr-assoc' [simp]:
assumes ide a and ide b and ide c
shows arr a^{-1}[a, b, c]
 using assms by simp
lemma dom-assoc' [simp]:
assumes ide a and ide b and ide c
shows dom \ a^{-1}[a, b, c] = a \otimes b \otimes c
  using assms by simp
lemma cod-assoc' [simp]:
assumes ide a and ide b and ide c
shows cod \ a^{-1}[a, b, c] = (a \otimes b) \otimes c
 using assms by simp
lemma comp-assoc-assoc' [simp]:
assumes ide a and ide b and ide c
shows a[a, b, c] \cdot a^{-1}[a, b, c] = a \otimes (b \otimes c)
and a^{-1}[a, b, c] \cdot a[a, b, c] = (a \otimes b) \otimes c
  using assms assoc-inv comp-arr-inv comp-inv-arr by auto
lemma assoc'-naturality:
assumes arr f0 and arr f1 and arr f2
shows ((f\theta \otimes f1) \otimes f2) \cdot a^{-1}[dom \ f\theta, \ dom \ f1, \ dom \ f2] =
      a^{-1}[cod \ f0, \ cod \ f1, \ cod \ f2] \cdot (f0 \otimes f1 \otimes f2)
  using assms \alpha'.naturality by auto
abbreviation l'
where l' \equiv l'.map
abbreviation lunit'
                                     (\langle l^{-1}[-]\rangle)
where l^{-1}[a] \equiv inv \ l[a]
lemma \mathfrak{l}'-ide-simp:
assumes ide a
shows l'.map \ a = l^{-1}[a]
  using assms l'.inverts-components l-ide-simp inverse-unique by force
lemma lunit-inv:
assumes ide a
shows inverse-arrows l[a] l^{-1}[a]
  using assms inv-is-inverse by simp
lemma lunit'-in-hom [intro]:
assumes ide a
shows \langle l^{-1}[a] : a \to \mathcal{I} \otimes a \rangle
 using assms by auto
```

```
lemma comp-lunit-lunit' [simp]:
assumes ide \ a
shows l[a] \cdot l^{-1}[a] = a
and l^{-1}[a] \cdot l[a] = \mathcal{I} \otimes a
proof -
  \mathbf{show} \ \mathbf{l}[a] \cdot \mathbf{l}^{-1}[a] = a
    using assms comp-arr-inv lunit-inv by fastforce
  show l^{-1}[a] \cdot l[a] = \mathcal{I} \otimes a
    using assms comp-arr-inv lunit-inv by fastforce
qed
lemma lunit'-naturality:
assumes arr f
shows (\mathcal{I} \otimes f) \cdot l^{-1}[dom f] = l^{-1}[cod f] \cdot f
  using assms l'.naturality l'-ide-simp by simp
abbreviation \varrho'
where \varrho' \equiv \varrho'.map
abbreviation runit'(\langle r^{-1}[-] \rangle)
where r^{-1}[a] \equiv inv \ r[a]
lemma \rho'-ide-simp:
assumes ide a
shows \rho'.map\ a = r^{-1}[a]
  using assms \rho' inverts-components \rho-ide-simp inverse-unique by auto
lemma runit-inv:
assumes ide a
shows inverse-arrows r[a] r^{-1}[a]
  using assms inv-is-inverse by simp
lemma runit'-in-hom [intro]:
assumes ide a
shows \langle r^{-1}[a] : a \to a \otimes \mathcal{I} \rangle
  using assms by auto
lemma comp-runit-runit' [simp]:
assumes ide a
shows r[a] \cdot r^{-1}[a] = a
and \mathbf{r}^{-1}[a] \cdot \mathbf{r}[a] = a \otimes \mathcal{I}
proof -
  \mathbf{show}\ \mathbf{r}[a] \,\cdot\, \mathbf{r}^{-1}[a] \,=\, a
    using assms runit-inv by fastforce
  show \mathbf{r}^{-1}[a] \cdot \mathbf{r}[a] = a \otimes \mathcal{I}
    using assms runit-inv by fastforce
\mathbf{qed}
```

```
lemma runit'-naturality:
assumes arr f
shows (f \otimes \mathcal{I}) \cdot r^{-1}[dom f] = r^{-1}[cod f] \cdot f
 using assms \rho'.naturality \rho'-ide-simp by simp
\mathbf{lemma}\ \mathit{lunit-commutes-with-L}:
assumes ide a
shows l[\mathcal{I} \otimes a] = \mathcal{I} \otimes l[a]
  using assms lunit-naturality lunit-in-hom iso-lunit iso-is-section
        section\hbox{-}is\hbox{-}mono\ mono\hbox{-}cancel\ L.preserves\hbox{-}ide\ arrI\ cod\hbox{-}lunit
        dom-lunit seqI
  by metis
lemma runit-commutes-with-R:
assumes ide a
shows r[a \otimes \mathcal{I}] = r[a] \otimes \mathcal{I}
  using assms runit-naturality runit-in-hom iso-runit iso-is-section
        section-is-mono mono-cancel R.preserves-ide arrI cod-runit
        dom-runit seqI
  by metis
```

The components of the left and right unitors are related via a "triangle" diagram that also involves the associator. The proof follows [2], Proposition 2.2.3.

```
lemma triangle: assumes ide\ a and ide\ b shows (a\otimes l[b])\cdot a[a,\,\mathcal{I},\,b]=r[a]\otimes b proof -
```

We show that the lower left triangle in the following diagram commutes.

$$\begin{array}{l} \mathbf{have} \, *: \, (a \otimes \operatorname{l}[\mathcal{I} \otimes \mathit{b}]) \, \cdot \, \operatorname{a}[\mathit{a}, \, \mathcal{I}, \, \mathcal{I} \otimes \mathit{b}] = \operatorname{r}[\mathit{a}] \otimes \mathcal{I} \otimes \mathit{b} \\ \mathbf{proof} \, - \end{array}$$

```
have 1: ((a \otimes \mathbb{I}[\mathcal{I} \otimes b]) \cdot \mathbb{A}[a, \mathcal{I}, \mathcal{I} \otimes b]) \cdot \mathbb{A}[a \otimes \mathcal{I}, \mathcal{I}, b]
                   = (r[a] \otimes \mathcal{I} \otimes b) \cdot a[a \otimes \mathcal{I}, \mathcal{I}, b]
  proof -
     have ((a \otimes l[\mathcal{I} \otimes b]) \cdot a[a, \mathcal{I}, \mathcal{I} \otimes b]) \cdot a[a \otimes \mathcal{I}, \mathcal{I}, b] =
             ((a \otimes 1 | \mathcal{I} \otimes b)) \cdot (a \otimes a | \mathcal{I}, \mathcal{I}, b)) \cdot a[a, \mathcal{I} \otimes \mathcal{I}, b] \cdot (a[a, \mathcal{I}, \mathcal{I}] \otimes b)
        using assms pentagon comp-assoc by auto
     also have ... = (a \otimes ((\mathcal{I} \otimes l[b]) \cdot a[\mathcal{I}, \mathcal{I}, b])) \cdot a[a, \mathcal{I} \otimes \mathcal{I}, b] \cdot (a[a, \mathcal{I}, \mathcal{I}] \otimes b)
        using assms interchange lunit-commutes-with-L by simp
     also have ... = ((a \otimes (\iota \otimes b)) \cdot a[a, \mathcal{I} \otimes \mathcal{I}, b]) \cdot (a[a, \mathcal{I}, \mathcal{I}] \otimes b)
        using assms lunit-char unit-in-hom comp-arr-dom comp-assoc by auto
     also have ... = (a[a, \mathcal{I}, b] \cdot ((a \otimes \iota) \otimes b)) \cdot (a[a, \mathcal{I}, \mathcal{I}] \otimes b)
        using assms unit-in-hom assoc-naturality [of a \(\epsi\) by fastforce
     also have ... = a[a, \mathcal{I}, b] \cdot ((r[a] \otimes \mathcal{I}) \otimes b)
        using assms unit-in-hom interchange runit-char(2) comp-assoc by auto
     also have ... = (r[a] \otimes \mathcal{I} \otimes b) \cdot a[a \otimes \mathcal{I}, \mathcal{I}, b]
        using assms assoc-naturality [of r[a] \mathcal{I} b] by simp
     finally show ?thesis by blast
  qed
  show ?thesis
  proof -
     have epi \ a[a \otimes \mathcal{I}, \mathcal{I}, b]
        using assms iso-assoc iso-is-retraction retraction-is-epi by simp
     thus ?thesis
        using 1 assms
                 epi-cancel [of a[a \otimes \mathcal{I}, \mathcal{I}, b] (a \otimes 1[\mathcal{I} \otimes b]) \cdot a[a, \mathcal{I}, \mathcal{I} \otimes b]]
        by fastforce
  qed
ged
```

In [2] it merely states that the preceding result suffices "because any object of C is isomorphic to one of the form $\mathcal{I} \otimes b$." However, it seems a little bit more involved than that to formally transport the equation (*) along the isomorphism l[b] from $\mathcal{I} \otimes b$ to b.

```
have (a \otimes l[b]) \cdot a[a, \mathcal{I}, b] = ((a \otimes l[b]) \cdot (a \otimes l[\mathcal{I} \otimes b]) \cdot (a \otimes \mathcal{I} \otimes l^{-1}[b])).
                                            (a \otimes \mathcal{I} \otimes \mathbb{I}[b]) \cdot \mathbb{A}[a, \mathcal{I}, \mathcal{I} \otimes b] \cdot ((a \otimes \mathcal{I}) \otimes \mathbb{I}^{-1}[b])
proof -
  have a[a, \mathcal{I}, b] = (a \otimes \mathcal{I} \otimes l[b]) \cdot a[a, \mathcal{I}, \mathcal{I} \otimes b] \cdot ((a \otimes \mathcal{I}) \otimes l^{-1}[b])
  proof
     have (a \otimes \mathcal{I} \otimes l[b]) \cdot a[a, \mathcal{I}, \mathcal{I} \otimes b] \cdot ((a \otimes \mathcal{I}) \otimes l^{-1}[b])
                 = ((a \otimes \mathcal{I} \otimes \mathbb{I}[b]) \cdot (a \otimes \mathcal{I} \otimes \mathbb{I}^{-1}[b])) \cdot a[a, \mathcal{I}, b]
        using assms assoc-naturality [of a \mathcal{I} l<sup>-1</sup>[b]] comp-assoc by simp
     also have ... = a[a, \mathcal{I}, b]
        using assms inv-is-inverse interchange comp-cod-arr by simp
     finally show ?thesis by auto
   qed
  moreover have a \otimes l[b] = (a \otimes l[b]) \cdot (a \otimes l[\mathcal{I} \otimes b]) \cdot (a \otimes \mathcal{I} \otimes l^{-1}[b])
     using assms lunit-commutes-with-L comp-arr-dom interchange by auto
   ultimately show ?thesis by argo
qed
also have ... = (a \otimes l[b]) \cdot (a \otimes l[\mathcal{I} \otimes b]) \cdot ((a \otimes \mathcal{I} \otimes l^{-1}[b]) \cdot (a \otimes \mathcal{I} \otimes l[b]))
```

```
\mathbf{a}[a,\,\mathcal{I},\,\mathcal{I}\otimes b]\cdot((a\otimes\mathcal{I})\otimes \mathbf{l}^{-1}[b]) using assms comp-assoc by auto also have ... = (a\otimes\mathbf{l}[b])\cdot((a\otimes\mathbf{l}[\mathcal{I}\otimes b])\cdot\mathbf{a}[a,\,\mathcal{I},\,\mathcal{I}\otimes b])\cdot((a\otimes\mathcal{I})\otimes\mathbf{l}^{-1}[b]) using assms interchange comp-cod-arr comp-assoc by auto also have ... = \mathbf{r}[a]\otimes b using assms * interchange runit-char(1) comp-arr-dom comp-cod-arr by auto finally show ?thesis by blast qed lemma lunit-tensor-gen:
```

lemma lunit-tensor-gen: assumes ide a and ide b and ide c shows $(a \otimes \mathbb{I}[b \otimes c]) \cdot (a \otimes \mathbb{A}[\mathcal{I}, b, c]) = a \otimes \mathbb{I}[b] \otimes c$ proof -

We show that the lower right triangle in the following diagram commutes.


```
have ((a \otimes 1[b \otimes c]) \cdot (a \otimes a[\mathcal{I}, b, c])) \cdot (a[a, \mathcal{I} \otimes b, c] \cdot (a[a, \mathcal{I}, b] \otimes c)) = ((a \otimes 1[b \otimes c]) \cdot a[a, \mathcal{I}, b \otimes c]) \cdot a[a \otimes \mathcal{I}, b, c] using assms pentagon comp-assoc by simp also have ... = (\mathbf{r}[a] \otimes (b \otimes c)) \cdot a[a \otimes \mathcal{I}, b, c] using assms triangle by auto also have ... = a[a, b, c] \cdot ((\mathbf{r}[a] \otimes b) \otimes c) using assms assoc-naturality [of \mathbf{r}[a] b c] by auto also have ... = (a[a, b, c] \cdot ((a \otimes 1[b]) \otimes c)) \cdot (a[a, \mathcal{I}, b] \otimes c) using assms triangle interchange comp-assoc by auto also have ... = (a \otimes (1[b] \otimes c)) \cdot (a[a, \mathcal{I} \otimes b, c] \cdot (a[a, \mathcal{I}, b] \otimes c)) using assms assoc-naturality [of a 1[b] c] comp-assoc by auto finally have a[a, a] (a \otimes 1[b] c) \cdot (a \otimes a[a, a] (a \otimes 1[b] c) \cdot (a[a, a] (a \otimes 1[b] c)) \cdot a[a, a] (a \otimes 1[b] c) by blast
```

The result follows by cancelling the isomorphism $\mathbf{a}[a, \mathcal{I} \otimes b, c] \cdot (\mathbf{a}[a, \mathcal{I}, b] \otimes c)$ have $2: iso(\mathbf{a}[a, \mathcal{I} \otimes b, c] \cdot (\mathbf{a}[a, \mathcal{I}, b] \otimes c))$

```
using assms isos-compose by simp moreover have seq \; ((a \otimes \mathbb{I}[b \otimes c]) \cdot (a \otimes \mathbb{a}[\mathcal{I}, b, c])) \; (\mathbb{a}[a, \mathcal{I} \otimes b, c] \cdot (\mathbb{a}[a, \mathcal{I}, b] \otimes c)) using assms by auto moreover have seq \; (a \otimes (\mathbb{I}[b] \otimes c)) \; (\mathbb{a}[a, \mathcal{I} \otimes b, c] \cdot (\mathbb{a}[a, \mathcal{I}, b] \otimes c)) using assms by auto ultimately show ?thesis using 1 2 assms iso-is-retraction retraction-is-epi epi-cancel [of \; \mathbb{a}[a, \mathcal{I} \otimes b, c] \cdot (\mathbb{a}[a, \mathcal{I}, b] \otimes c) \\ (a \otimes \mathbb{I}[b \otimes c]) \cdot (a \otimes \mathbb{a}[\mathcal{I}, b, c]) \; a \otimes \mathbb{I}[b] \otimes c] by auto qed
```

The following result is quoted without proof as Theorem 7 of [3] where it is attributed to MacLane [4]. It also appears as [5], Exercise 1, page 161. I did not succeed within a few hours to construct a proof following MacLane's hint. The proof below is based on [2], Proposition 2.2.4.

```
lemma lunit-tensor':
assumes ide a and ide b
shows l[a \otimes b] \cdot a[\mathcal{I}, a, b] = l[a] \otimes b
proof -
  have \mathcal{I} \otimes (\mathbb{I}[a \otimes b] \cdot \mathbb{A}[\mathcal{I}, a, b]) = \mathcal{I} \otimes (\mathbb{I}[a] \otimes b)
    using assms interchange [of II] lunit-tensor-gen by simp
  moreover have par(l[a \otimes b] \cdot a[\mathcal{I}, a, b]) (l[a] \otimes b)
    using assms by simp
  ultimately show ?thesis
    using assms L.is-faithful [of l[a \otimes b] \cdot a[\mathcal{I}, a, b] \ l[a] \otimes b] by simp
qed
lemma lunit-tensor:
assumes ide \ a and ide \ b
shows l[a \otimes b] = (l[a] \otimes b) \cdot a^{-1}[\mathcal{I}, a, b]
  using assms lunit-tensor' invert-side-of-triangle by simp
We next show the corresponding result for the right unitor.
lemma runit-tensor-gen:
assumes ide \ a and ide \ b and ide \ c
shows r[a \otimes b] \otimes c = ((a \otimes r[b]) \otimes c) \cdot (a[a, b, \mathcal{I}] \otimes c)
proof -
```

We show that the upper right triangle in the following diagram commutes.

```
(a \otimes b) \otimes \mathcal{I} \otimes c
(a \otimes b) \otimes \mathcal{I} \otimes c
(a \otimes b) \otimes \mathcal{I} \otimes c
(a \otimes b) \otimes c
(a \otimes b)
```

```
have r[a \otimes b] \otimes c = ((a \otimes b) \otimes l[c]) \cdot a[a \otimes b, \mathcal{I}, c]
     using assms triangle by simp
  also have ... = (a^{-1}[a, b, c] \cdot (a \otimes b \otimes l[c]) \cdot a[a, b, \mathcal{I} \otimes c]) \cdot a[a \otimes b, \mathcal{I}, c]
     using assms assoc-naturality [of a b l[c]] comp-arr-dom comp-cod-arr
              invert-side-of-triangle(1)
     by force
  also have ... = a^{-1}[a, b, c] \cdot (a \otimes b \otimes l[c]) \cdot a[a, b, \mathcal{I} \otimes c] \cdot a[a \otimes b, \mathcal{I}, c]
     using comp-assoc by force
  also have ... = a^{-1}[a, b, c] \cdot ((a \otimes (r[b] \otimes c)) \cdot (a \otimes a^{-1}[b, \mathcal{I}, c]))
                         a[a, b, \mathcal{I} \otimes c] \cdot a[a \otimes b, \mathcal{I}, c]
     \mathbf{using}\ assms\ triangle\ [of\ b\ c]\ interchange\ invert\text{-}side\text{-}of\text{-}triangle(2)\ \mathbf{by}\ force
  also have ... = (((a \otimes r[b]) \otimes c) \cdot a^{-1}[a, b \otimes \mathcal{I}, c]) \cdot (a \otimes a^{-1}[b, \mathcal{I}, c]).
                         a[a, b, \mathcal{I} \otimes c] \cdot a[a \otimes b, \mathcal{I}, c]
     \mathbf{using}\ \mathit{assms}\ \mathit{assoc'-naturality}\ [\mathit{of}\ \mathit{a}\ \mathit{r}[\mathit{b}]\ \mathit{c}]\ \mathit{comp-assoc}\ \mathbf{by}\ \mathit{force}
  also have ... = ((a \otimes r[b]) \otimes c) \cdot a^{-1}[a, b \otimes \mathcal{I}, c] \cdot (a \otimes a^{-1}[b, \mathcal{I}, c]).
                         \mathbf{a}[a, b, \mathcal{I} \otimes c] \cdot \mathbf{a}[a \otimes b, \mathcal{I}, c]
     using comp-assoc by simp
  also have ... = ((a \otimes r[b]) \otimes c) \cdot (a[a, b, \mathcal{I}] \otimes c)
     using assms pentagon invert-side-of-triangle(1)
             invert-side-of-triangle(1)
                [of a[a, b, \mathcal{I} \otimes c] · a[a \otimes b, \mathcal{I}, c] a \otimes a[b, \mathcal{I}, c]
                     a[a, b \otimes \mathcal{I}, c] \cdot (a[a, b, \mathcal{I}] \otimes c)
     by force
  finally show ?thesis by blast
qed
```

lemma runit-tensor: assumes $ide\ a$ and $ide\ b$ shows $\mathbf{r}[a\otimes b]=(a\otimes \mathbf{r}[b])\cdot \mathbf{a}[a,\ b,\ \mathcal{I}]$ proof - have $((a\otimes \mathbf{r}[b])\cdot \mathbf{a}[a,\ b,\ \mathcal{I}])\otimes \mathcal{I}=\mathbf{r}[a\otimes b]\otimes \mathcal{I}$

```
using assms interchange [of \mathcal{I} \mathcal{I}] runit-tensor-gen by simp
      moreover have par((a \otimes r[b]) \cdot a[a, b, \mathcal{I}]) r[a \otimes b]
         using assms by simp
      ultimately show ?thesis
         using assms R.is-faithful [of (a \otimes r[b]) \cdot (a[a, b, \mathcal{I}]) r[a \otimes b]]
         by fastforce
    qed
    lemma runit-tensor':
    assumes ide \ a and ide \ b
    shows r[a \otimes b] \cdot a^{-1}[a, b, \mathcal{I}] = a \otimes r[b]
      using assms runit-tensor invert-side-of-triangle by force
     Sometimes inverted forms of the triangle and pentagon axioms are useful.
    lemma triangle':
    assumes ide \ a and ide \ b
    shows (a \otimes l[b]) = (r[a] \otimes b) \cdot a^{-1}[a, \mathcal{I}, b]
      have (\mathbf{r}[a] \otimes b) \cdot \mathbf{a}^{-1}[a, \mathcal{I}, b] = ((a \otimes \mathbf{l}[b]) \cdot \mathbf{a}[a, \mathcal{I}, b]) \cdot \mathbf{a}^{-1}[a, \mathcal{I}, b]
           using assms triangle by auto
      also have \dots = (a \otimes 1[b])
         using assms comp-arr-dom comp-assoc by auto
      finally show ?thesis by auto
    qed
    lemma pentagon':
    assumes ide \ a and ide \ b and ide \ c and ide \ d
    shows ((a^{-1}[a, b, c] \otimes d) \cdot a^{-1}[a, b \otimes c, d]) \cdot (a \otimes a^{-1}[b, c, d])
= a^{-1}[a \otimes b, c, d] \cdot a^{-1}[a, b, c \otimes d]
    proof -
      have ((a^{-1}[a, b, c] \otimes d) \cdot a^{-1}[a, b \otimes c, d]) \cdot (a \otimes a^{-1}[b, c, d])
                = inv ((a \otimes a[b, c, d]) \cdot (a[a, b \otimes c, d] \cdot (a[a, b, c] \otimes d)))
         using assms isos-compose inv-comp by simp
      also have ... = inv (a[a, b, c \otimes d] · a[a \otimes b, c, d])
         using assms pentagon by auto
      also have ... = a^{-1}[a \otimes b, c, d] \cdot a^{-1}[a, b, c \otimes d]
         using assms inv-comp by simp
      finally show ?thesis by auto
    qed
     The following non-obvious fact is Corollary 2.2.5 from [2]. The statement that l[\mathcal{I}] =
r[\mathcal{I}] is Theorem 6 from [3]. MacLane [5] does not show this, but assumes it as an axiom.
    lemma unitor-coincidence:
    shows l[\mathcal{I}] = \iota and r[\mathcal{I}] = \iota
    proof -
      have l[\mathcal{I}] \otimes \mathcal{I} = (\mathcal{I} \otimes l[\mathcal{I}]) \cdot a[\mathcal{I}, \mathcal{I}, \mathcal{I}]
         using lunit-tensor' [of \mathcal{I} \mathcal{I}] lunit-commutes-with-L [of \mathcal{I}] by simp
      moreover have r[\mathcal{I}] \otimes \mathcal{I} = (\mathcal{I} \otimes l[\mathcal{I}]) \cdot a[\mathcal{I}, \mathcal{I}, \mathcal{I}]
         using triangle [of \mathcal{I} \mathcal{I}] by simp
```

```
moreover have \iota \otimes \mathcal{I} = (\mathcal{I} \otimes l[\mathcal{I}]) \cdot a[\mathcal{I}, \mathcal{I}, \mathcal{I}]
         using lunit-char comp-arr-dom unit-in-hom comp-assoc by auto
       ultimately have l[\mathcal{I}] \otimes \mathcal{I} = \iota \otimes \mathcal{I} \wedge r[\mathcal{I}] \otimes \mathcal{I} = \iota \otimes \mathcal{I}
         by argo
       moreover have par \ l[\mathcal{I}] \ \iota \wedge par \ r[\mathcal{I}] \ \iota
         using unit-in-hom by force
       ultimately have 1: l[\mathcal{I}] = \iota \wedge r[\mathcal{I}] = \iota
         using R.is-faithful by metis
       show l[\mathcal{I}] = \iota using 1 by auto
       show r[\mathcal{I}] = \iota using 1 by auto
    qed
    lemma unit-triangle:
    shows \iota \otimes \mathcal{I} = (\mathcal{I} \otimes \iota) \cdot a[\mathcal{I}, \mathcal{I}, \mathcal{I}]
    and (\iota \otimes \mathcal{I}) \cdot a^{-1}[\mathcal{I}, \mathcal{I}, \mathcal{I}] = \mathcal{I} \otimes \iota
      using triangle [of \mathcal{I} \mathcal{I}] triangle' [of \mathcal{I} \mathcal{I}] unitor-coincidence by auto
     The only isomorphism that commutes with \iota is \mathcal{I}.
    lemma iso-commuting-with-unit-equals-unity:
    assumes \langle f : \mathcal{I} \to \mathcal{I} \rangle and iso f and f \cdot \iota = \iota \cdot (f \otimes f)
    shows f = \mathcal{I}
    proof -
       have \mathcal{I} \otimes f = \mathcal{I} \otimes \mathcal{I}
       proof -
         have f \otimes f = f \otimes \mathcal{I}
           by (metis assms(1,3) iso-cancel-left runit-naturality seqE seqI' unit-in-hom-ax
                unit-is-iso unitor-coincidence(2))
         thus ?thesis
           by (metis\ assms(1-2)\ R.preserves-comp\ comp-cod-arr\ comp-inv-arr'\ ideD(1)\ ide-unity
                in-homE interchange)
       qed
       moreover have par f \mathcal{I}
         using assms by auto
       ultimately show f = \mathcal{I}
         using L.is-faithful by metis
    qed
  end
     We now show that the unit \iota of a monoidal category is unique up to a unique iso-
morphism (Proposition 2.2.6 of [2]).
  locale monoidal-category-with-alternate-unit =
    monoidal-category C T \alpha \iota +
     C_1: monoidal-category C T \alpha \iota_1
  for C :: 'a comp
                            (infixr \leftrightarrow 55)
  and T :: 'a * 'a \Rightarrow 'a
  and \alpha :: 'a * 'a * 'a \Rightarrow 'a
  and \iota :: 'a
  and \iota_1 :: 'a
```

begin

```
no-notation C_1.tensor (infix r \Leftrightarrow 53)
no-notation C_1.unity (\langle \mathcal{I} \rangle)
no-notation C_1.lunit (\langle l[-] \rangle)
no-notation C_1.runit (\langle r[-] \rangle)
no-notation C_1.assoc (\langle a[-, -, -] \rangle)
no-notation C_1.assoc' (\langle a^{-1}[-, -, -] \rangle)
notation C_1.tensor (infixr \langle \otimes_1 \rangle 53)
notation C_1.unity
                                         (\langle \mathcal{I}_1 \rangle)
notation C_1.lunit
                                        (\langle l_1[-] \rangle)
notation C_1.runit
                                       (\langle \mathbf{r}_1[\text{-}] \rangle)
notation C_1.assoc
                                      (\langle a_1[-, -, -] \rangle)
(\langle a_1^{-1}[-, -, -] \rangle)
notation C_1.assoc'
definition i
where i \equiv l[\mathcal{I}_1] \cdot inv \ r_1[\mathcal{I}]
lemma iso-i:
shows \langle i : \mathcal{I} \rightarrow \mathcal{I}_1 \rangle and iso i
proof -
   \mathbf{show} \,\, \textit{``i:} \, \mathcal{I} \rightarrow \mathcal{I}_1 \textit{``}
      using C_1.iso-runit inv-in-hom i-def by auto
  show iso i
      using iso-lunit C_1.iso-runit isos-compose i-def by simp
The following is Exercise 2.2.7 of [2].
lemma i-maps-\iota-to-\iota_1:
shows i \cdot \iota = \iota_1 \cdot (i \otimes i)
proof -
   \textbf{have 1: } \textit{inv} \ r_1[\mathcal{I}] \ \cdot \ \iota = (r_1[\mathcal{I}] \otimes \ l[\mathcal{I}_1]) \ \cdot \ (\textit{inv} \ r_1[\mathcal{I}] \otimes \ \textit{inv} \ r_1[\mathcal{I}])
     have \iota \cdot (r_1[\mathcal{I}] \otimes r_1[\mathcal{I}]) = r_1[\mathcal{I}] \cdot (r_1[\mathcal{I}] \otimes l[\mathcal{I}_1])
     proof -
```



```
have \iota \cdot (r_1[\mathcal{I}] \otimes r_1[\mathcal{I}]) = \iota \cdot (\mathcal{I} \otimes r_1[\mathcal{I}]) \cdot (r_1[\mathcal{I}] \otimes \mathcal{I} \otimes \mathcal{I})
         using interchange comp-cod-arr comp-arr-dom by simp
      also have ... = \iota \cdot (r_1[\mathcal{I} \otimes \mathcal{I}] \cdot a^{-1}[\mathcal{I}, \mathcal{I}, \mathcal{I}_1]) \cdot (r_1[\mathcal{I}] \otimes \mathcal{I} \otimes \mathcal{I}_1)
        using C_1.runit-tensor' by auto
      also have ... = (\iota \cdot r_1[\mathcal{I} \otimes \mathcal{I}]) \cdot a^{-1}[\mathcal{I}, \mathcal{I}, \mathcal{I}_1] \cdot (r_1[\mathcal{I}] \otimes \mathcal{I} \otimes \mathcal{I}_1)
         \mathbf{using}\ comp\text{-}assoc\ \mathbf{by}\ auto
      also have ... = (r_1[\mathcal{I}] \cdot (\iota \otimes \mathcal{I}_1)) \cdot a^{-1}[\mathcal{I}, \mathcal{I}, \mathcal{I}_1] \cdot (r_1[\mathcal{I}] \otimes \mathcal{I} \otimes \mathcal{I}_1)
         using C_1.runit-naturality [of \iota] unit-in-hom by fastforce
      also have ... = r_1[\mathcal{I}] \cdot ((\iota \otimes \mathcal{I}_1) \cdot a^{-1}[\mathcal{I}, \mathcal{I}, \mathcal{I}_1]) \cdot (r_1[\mathcal{I}] \otimes \mathcal{I} \otimes \mathcal{I}_1)
         using comp-assoc by auto
      also have ... = r_1[\mathcal{I}] \cdot (\mathcal{I} \otimes l[\mathcal{I}_1]) \cdot (r_1[\mathcal{I}] \otimes \mathcal{I} \otimes \mathcal{I}_1)
         using lunit-tensor lunit-commutes-with-L unitor-coincidence by simp
      also have ... = r_1[\mathcal{I}] \cdot (r_1[\mathcal{I}] \otimes l[\mathcal{I}_1])
         using interchange comp-arr-dom comp-cod-arr by simp
      finally show ?thesis by blast
  qed
  moreover have seq \ \iota \ (r_1[\mathcal{I}] \otimes r_1[\mathcal{I}]) \wedge seq \ r_1[\mathcal{I}] \ (r_1[\mathcal{I}] \otimes l[\mathcal{I}_1])
      using unit-in-hom by fastforce
  moreover have iso r_1[\mathcal{I}] \wedge iso (r_1[\mathcal{I}] \otimes r_1[\mathcal{I}])
      using C_1.iso-runit tensor-preserves-iso by force
  ultimately show ?thesis
      using invert-opposite-sides-of-square inv-tensor by metis
have 2: l[\mathcal{I}_1] \cdot (r_1[\mathcal{I}] \otimes l[\mathcal{I}_1]) = \iota_1 \cdot (l[\mathcal{I}_1] \otimes l[\mathcal{I}_1])
proof -
```



```
\mathbf{have}\ l[\mathcal{I}_1]\cdot (r_1[\mathcal{I}]\otimes l[\mathcal{I}_1]) = l[\mathcal{I}_1]\cdot (r_1[\mathcal{I}]\otimes \mathcal{I}_1)\cdot ((\mathcal{I}\otimes \mathcal{I}_1)\otimes l[\mathcal{I}_1])
      using interchange comp-arr-dom comp-cod-arr by force
  also have ... = l[\mathcal{I}_1] \cdot ((\mathcal{I} \otimes \iota_1) \cdot a[\mathcal{I}, \mathcal{I}_1, \mathcal{I}_1]) \cdot ((\mathcal{I} \otimes \mathcal{I}_1) \otimes l[\mathcal{I}_1])
      using C_1.runit-tensor C_1.unitor-coincidence C_1.runit-commutes-with-R by simp
  also have ... = (l[\mathcal{I}_1] \cdot (\mathcal{I} \otimes \iota_1)) \cdot a[\mathcal{I}, \mathcal{I}_1, \mathcal{I}_1] \cdot ((\mathcal{I} \otimes \mathcal{I}_1) \otimes l[\mathcal{I}_1])
      using comp-assoc by fastforce
  also have ... = (\iota_1 \cdot l[\mathcal{I}_1 \otimes \mathcal{I}_1]) \cdot a[\mathcal{I}, \mathcal{I}_1, \mathcal{I}_1] \cdot ((\mathcal{I} \otimes \mathcal{I}_1) \otimes l[\mathcal{I}_1])
      using lunit-naturality [of \iota_1] C_1.unit-in-hom lunit-commutes-with-L by fastforce
  also have ... = \iota_1 \cdot (l[\mathcal{I}_1 \otimes \mathcal{I}_1] \cdot a[\mathcal{I}, \mathcal{I}_1, \mathcal{I}_1]) \cdot ((\mathcal{I} \otimes \mathcal{I}_1) \otimes l[\mathcal{I}_1])
      using comp-assoc by force
  also have ... = \iota_1 \cdot (l[\mathcal{I}_1] \otimes \mathcal{I}_1) \cdot ((\mathcal{I} \otimes \mathcal{I}_1) \otimes l[\mathcal{I}_1])
      using lunit-tensor' by auto
  also have ... = \iota_1 \cdot (l[\mathcal{I}_1] \otimes l[\mathcal{I}_1])
      using interchange comp-arr-dom comp-cod-arr by simp
  finally show ?thesis by blast
qed
show ?thesis
proof -
```


have $i \cdot \iota = l[\mathcal{I}_1] \cdot inv \; r_1[\mathcal{I}] \cdot \iota$

```
using i-def comp-assoc by auto
    also have ... = (l[\mathcal{I}_1] \cdot (r_1[\mathcal{I}] \otimes l[\mathcal{I}_1])) \cdot (inv \ r_1[\mathcal{I}] \otimes inv \ r_1[\mathcal{I}])
       using 1 comp-assoc by simp
     also have ... = \iota_1 \cdot (l[\mathcal{I}_1] \otimes l[\mathcal{I}_1]) \cdot (inv \ r_1[\mathcal{I}] \otimes inv \ r_1[\mathcal{I}])
       using 2 comp-assoc by fastforce
    also have ... = \iota_1 \cdot (i \otimes i)
       using interchange i-def by simp
     finally show ?thesis by blast
  qed
qed
lemma inv-i-iso-ι:
assumes \langle f : \mathcal{I} \to \mathcal{I}_1 \rangle and iso f and f \cdot \iota = \iota_1 \cdot (f \otimes f)
shows \langle inv \ i \cdot f : \mathcal{I} \rightarrow \mathcal{I} \rangle and iso \ (inv \ i \cdot f)
and (inv \ i \cdot f) \cdot \iota = \iota \cdot (inv \ i \cdot f \otimes inv \ i \cdot f)
proof -
  show 1: «inv i \cdot f : \mathcal{I} \to \mathcal{I}»
     using assms iso-i inv-in-hom by blast
  show iso (inv \ i \cdot f)
     using assms 1 iso-i inv-in-hom
    by (intro isos-compose, auto)
  show (inv \ i \cdot f) \cdot \iota = \iota \cdot (inv \ i \cdot f \otimes inv \ i \cdot f)
  proof -
    have (inv \ i \cdot f) \cdot \iota = (inv \ i \cdot \iota_1) \cdot (f \otimes f)
       using assms iso-i comp-assoc by auto
    also have ... = (\iota \cdot (inv \ i \otimes inv \ i)) \cdot (f \otimes f)
       by (metis unit-in-hom-ax i-maps-\iota-to-\iota_1 invert-opposite-sides-of-square iso-i
            inv-tensor tensor-preserves-iso seqI')
    also have ... = \iota \cdot (inv \ i \cdot f \otimes inv \ i \cdot f)
       using assms 1 iso-i interchange comp-assoc by fastforce
    finally show ?thesis by blast
  qed
qed
\mathbf{lemma}\ unit\text{-}unique\text{-}upto\text{-}unique\text{-}iso:
shows \exists !f. \ \langle f : \mathcal{I} \rightarrow \mathcal{I}_1 \rangle \land iso \ f \land f \cdot \iota = \iota_1 \cdot (f \otimes f)
proof
  show \langle i : \mathcal{I} \to \mathcal{I}_1 \rangle \wedge iso i \wedge i \cdot \iota = \iota_1 \cdot (i \otimes i)
     using iso-i i-maps-\iota-to-\iota_1 by auto
  show \bigwedge f. \langle f : \mathcal{I} \to \mathcal{I}_1 \rangle \wedge iso f \wedge f \cdot \iota = \iota_1 \cdot (f \otimes f) \Longrightarrow f = i
  proof -
    \mathbf{fix} f
    assume f: \langle f: \mathcal{I} \to \mathcal{I}_1 \rangle \wedge iso \ f \wedge f \cdot \iota = \iota_1 \cdot (f \otimes f)
    have inv \ i \cdot f = \mathcal{I}
       using f inv-i-iso-\iota iso-commuting-with-unit-equals-unity by blast
     hence ide(C(inv i) f)
       using iso-i by simp
     thus f = i
       using section-retraction-of-iso(2) [of inv i f] inverse-arrow-unique inv-is-inverse
```

```
\begin{array}{c} \text{ is } o\text{-}i\\ \text{ by } blast\\ \text{ qed}\\ \text{ qed} \end{array}
```

2.2 Elementary Monoidal Category

Although the economy of data assumed by *monoidal-category* is useful for general results, to establish interpretations it is more convenient to work with a traditional definition of monoidal category. The following locale provides such a definition. It permits a monoidal category to be specified by giving the tensor product and the components of the associator and unitors, which are required only to satisfy elementary conditions that imply functoriality and naturality, without having to worry about extensionality or formal interpretations for the various functors and natural transformations.

```
locale elementary-monoidal-category =
   category C
for C :: 'a \ comp
                                                  (infixr \leftrightarrow 55)
and tensor:: 'a \Rightarrow 'a \Rightarrow 'a
                                                     (infixr \langle \otimes \rangle 53)
and unity :: 'a
                                                    (\langle \mathcal{I} \rangle)
and lunit :: 'a \Rightarrow 'a
                                                  (\langle 1[-] \rangle)
and runit :: 'a \Rightarrow 'a
                                                  (\langle \mathbf{r}[-] \rangle)
and assoc :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \ (\langle a[-, -, -] \rangle) +
assumes ide\text{-}unity [simp]: ide \mathcal{I}
and iso-lunit: ide a \Longrightarrow iso 1[a]
and iso-runit: ide a \Longrightarrow iso r[a]
and iso-assoc: \llbracket ide\ a;\ ide\ b;\ ide\ c\ \rrbracket \Longrightarrow iso\ a[a,\ b,\ c]
and tensor-in-hom [simp]: \llbracket \langle f: a \rightarrow b \rangle; \langle q: c \rightarrow d \rangle \rrbracket \Longrightarrow \langle f \otimes g: a \otimes c \rightarrow b \otimes d \rangle
and tensor-preserves-ide: \llbracket ide\ a; ide\ b \rrbracket \implies ide\ (a\otimes b)
and interchange: \llbracket seq \ g \ f; seq \ g' \ f' \rrbracket \Longrightarrow (g \otimes g') \cdot (f \otimes f') = g \cdot f \otimes g' \cdot f'
and lunit-in-hom [simp]: ide a \Longrightarrow \langle |a| : \mathcal{I} \otimes a \to a \rangle
and lunit-naturality: arr f \Longrightarrow 1[cod f] \cdot (\mathcal{I} \otimes f) = f \cdot 1[dom f]
and runit-in-hom [simp]: ide a \Longrightarrow \langle r[a] : a \otimes \mathcal{I} \to a \rangle
and runit-naturality: arr f \Longrightarrow r[cod f] \cdot (f \otimes \mathcal{I}) = f \cdot r[dom f]
and assoc-in-hom [simp]:
     and assoc-naturality:
     \llbracket arr f0; arr f1; arr f2 \rrbracket \implies a[cod f0, cod f1, cod f2] \cdot ((f0 \otimes f1) \otimes f2)
                                                 = (f0 \otimes (f1 \otimes f2)) \cdot a[dom f0, dom f1, dom f2]
and triangle: \llbracket ide\ a;\ ide\ b\ \rrbracket \Longrightarrow (a\otimes l[b])\cdot a[a,\mathcal{I},\ b]=r[a]\otimes b
and pentagon: \llbracket ide\ a;\ ide\ b;\ ide\ c;\ ide\ d\ \rrbracket \Longrightarrow
                      (a \otimes a[b, c, d]) \cdot a[a, b \otimes c, d] \cdot (a[a, b, c] \otimes d)
                         = a[a, b, c \otimes d] \cdot a[a \otimes b, c, d]
```

An interpretation for the *monoidal-category* locale readily induces an interpretation for the *elementary-monoidal-category* locale.

```
context monoidal-category
```

begin

```
{\bf lemma}\ induces-elementary-monoidal\text{-}category:
   shows elementary-monoidal-category C tensor \mathcal{I} lunit runit assoc
    using iso-assoc tensor-preserves-ide assoc-in-hom tensor-in-hom
          assoc-naturality\ lunit-naturality\ runit-naturality\ lunit-in-hom\ runit-in-hom
          iso-lunit iso-runit interchange pentagon triangle
    by unfold-locales auto
end
context elementary-monoidal-category
begin
 interpretation CC: product-category C C ...
 interpretation CCC: product-category C CC.comp ..
 definition T:: 'a * 'a \Rightarrow 'a
 where T f \equiv if \ CC.arr f \ then \ (fst \ f \otimes snd \ f) \ else \ null
 lemma T-simp [simp]:
 assumes arr f and arr g
 shows T(f, g) = f \otimes g
   using assms T-def by simp
 lemma arr-tensor [simp]:
 assumes arr f and arr g
 shows arr (f \otimes g)
   using assms tensor-in-hom by blast
 lemma dom-tensor [simp]:
 assumes arr f and arr g
 shows dom (f \otimes g) = dom f \otimes dom g
   using assms tensor-in-hom by blast
 lemma cod-tensor [simp]:
 assumes arr f and arr g
 shows cod (f \otimes g) = cod f \otimes cod g
   using assms tensor-in-hom by blast
 interpretation T: binary-endofunctor C T
   using interchange T-def
   apply unfold-locales
      apply auto[4]
   by (elim CC.seqE, auto)
 lemma binary-endofunctor-T:
 shows binary-endofunctor C\ T ..
```

```
interpretation ToTC: functor CCC.comp C T.ToTC
 using T.functor-ToTC by auto
interpretation ToCT: functor CCC.comp C T.ToCT
 using T.functor-ToCT by auto
definition \alpha
where \alpha f \equiv if \ CCC.arr f
            then (fst f \otimes (fst (snd f) \otimes snd (snd f))).
                  a[dom\ (fst\ f),\ dom\ (fst\ (snd\ f)),\ dom\ (snd\ (snd\ f))]
            else null
lemma \alpha-ide-simp [simp]:
assumes ide \ a and ide \ b and ide \ c
shows \alpha (a, b, c) = a[a, b, c]
 unfolding \alpha-def using assms assoc-in-hom comp-cod-arr
 by (metis\ CC.arrI_{PC}\ CCC.arrI_{PC}\ fst\text{-}conv\ ide\text{-}char\ in\text{-}homE\ snd\text{-}conv)
lemma arr-assoc [simp]:
assumes ide a and ide b and ide c
shows arr \ a[a, b, c]
 using assms assoc-in-hom by blast
lemma dom-assoc [simp]:
assumes ide a and ide b and ide c
shows dom a[a, b, c] = (a \otimes b) \otimes c
 using assms assoc-in-hom by blast
lemma cod-assoc [simp]:
assumes ide a and ide b and ide c
shows cod \ a[a, b, c] = a \otimes b \otimes c
 using assms assoc-in-hom by blast
interpretation \alpha: natural-isomorphism CCC.comp C T.ToTC T.ToCT \alpha
proof -
 interpret \alpha: transformation-by-components CCC.comp C T.ToTC T.ToCT \alpha
   apply unfold-locales
   unfolding \alpha-def T. ToTC-def T. ToCT-def T-def
   using comp-arr-dom comp-cod-arr assoc-naturality
   by simp-all
 interpret \alpha: natural-isomorphism CCC.comp C T.ToTC T.ToCT \alpha.map
   using iso-assoc \alpha.map-simp-ide assoc-in-hom tensor-preserves-ide \alpha-def
   by (unfold-locales, auto)
 have \alpha = \alpha.map
   using assoc-naturality \alpha-def comp-cod-arr T.ToTC-def T-def \alpha.map-def by auto
 thus natural-isomorphism CCC.comp C T.ToTC T.ToCT \alpha
   using \alpha.natural-isomorphism-axioms by simp
\mathbf{qed}
```

```
interpretation \alpha': inverse-transformation CCC.comp C T.ToTC T.ToCT \alpha ...
    interpretation L: functor C C \langle \lambda f, T (\mathcal{I}, f) \rangle
      using T.fixing-ide-gives-functor-1 by auto
    interpretation R: functor C C \langle \lambda f. T (f, \mathcal{I}) \rangle
      using T.fixing-ide-gives-functor-2 by auto
    interpretation \mathfrak{l}: natural-isomorphism C C \langle \lambda f . T (\mathcal{I}, f) \rangle map
                           \langle \lambda f. \ if \ arr \ f \ then \ f \cdot 1 [dom \ f] \ else \ null \rangle
    proof -
      interpret \mathfrak{l}: transformation-by-components <math>C \subset \langle \lambda f, T (\mathcal{I}, f) \rangle map \langle \lambda a, \mathbb{I}[a] \rangle
        using lunit-naturality by (unfold-locales, auto)
      \textbf{interpret I: } natural \textit{-} isomorphism \ C \ C \ \langle \lambda f. \ T \ (\mathcal{I}, \, f) \rangle \ map \ \textbf{I}.map
         \mathbf{using}\ iso\text{-}lunit\ \mathbf{by}\ (unfold\text{-}locales,\ simp)
      have l.map = (\lambda f. \ if \ arr \ f \ then \ f \cdot l[dom \ f] \ else \ null)
         using 1.map-def lunit-naturality by fastforce
      thus natural-isomorphism C C (\lambda f. T (\mathcal{I}, f)) map (\lambda f. if arr f then <math>f \cdot 1[dom f] else null)
         using l.natural-isomorphism-axioms by force
    qed
    interpretation \varrho: natural-isomorphism C C \langle \lambda f. T (f, \mathcal{I}) \rangle map
                           \langle \lambda f. \ if \ arr \ f \ then \ f \cdot r[dom \ f] \ else \ null \rangle
    proof -
      interpret \rho: transformation-by-components C C \langle \lambda f. T (f, \mathcal{I}) \rangle map \langle \lambda a. r[a] \rangle
         using runit-naturality by (unfold-locales, auto)
      interpret \rho: natural-isomorphism C C \langle \lambda f | T (f, \mathcal{I}) \rangle map \rho.map
         using iso-runit o.map-simp-ide by (unfold-locales, simp)
      have (\lambda f. if arr f then f \cdot r[dom f] else null) = \rho.map
        using \varrho.map-def runit-naturality T-simp by fastforce
      thus natural-isomorphism C C (\lambda f. T (f, \mathcal{I})) map (\lambda f. if arr f then <math>f \cdot r[dom f] else null)
         using \rho. natural-isomorphism-axioms by force
    qed
     The endofunctors \lambda f. T(\mathcal{I}, f) and \lambda f. T(f, \mathcal{I}) are equivalence functors, due to the
existence of the unitors.
    interpretation L: equivalence-functor C C \langle \lambda f . T (\mathcal{I}, f) \rangle
    proof -
      interpret endofunctor C \langle \lambda f, T(\mathcal{I}, f) \rangle...
      show equivalence-functor C C (\lambda f. T (\mathcal{I}, f))
         using isomorphic-to-identity-is-equivalence 1.natural-isomorphism-axioms by simp
    qed
    interpretation R: equivalence-functor C C \langle \lambda f. T (f, \mathcal{I}) \rangle
    proof -
      interpret endofunctor C \langle \lambda f, T(f, \mathcal{I}) \rangle...
      show equivalence-functor C C (\lambda f. T (f, \mathcal{I}))
         \textbf{using} \ \textit{isomorphic-to-identity-is-equivalence} \ \textit{\varrho.natural-isomorphism-axioms} \ \textbf{by} \ \textit{simp}
    qed
```

To complete an interpretation of the *monoidal-category* locale, we define $\iota \equiv l[\mathcal{I}]$. We could also have chosen $\iota \equiv \varrho$ [\mathcal{I}] as the two are equal, though to prove that requires some work yet.

```
definition \iota
where \iota \equiv l[\mathcal{I}]
lemma \iota-in-hom:
shows \langle \iota : \mathcal{I} \otimes \mathcal{I} \rightarrow \mathcal{I} \rangle
  using lunit-in-hom \iota-def by simp
lemma induces-monoidal-category:
shows monoidal-category C T \alpha \iota
proof -
  have 1: \langle \iota : \mathcal{I} \otimes \mathcal{I} \rightarrow \mathcal{I} \rangle
    using lunit-in-hom \iota-def by simp
  interpret L: equivalence-functor C C \langle \lambda f . T (cod \iota, f) \rangle
  proof -
    have (\lambda f. \ T \ (\mathcal{I}, f)) = (\lambda f. \ T \ (cod \ \iota, f)) using 1 by fastforce
    thus equivalence-functor C C (\lambda f. T (cod \iota, f))
      using L. equivalence-functor-axioms T-def by simp
  qed
  interpret R: equivalence-functor C C \langle \lambda f. T (f, cod \iota) \rangle
  proof -
    have (\lambda f. \ T \ (f, \mathcal{I})) = (\lambda f. \ T \ (f, cod \ \iota)) using 1 by fastforce
    thus equivalence-functor C C (\lambda f. T (f, cod \iota))
       using R. equivalence-functor-axioms T-def by simp
  qed
  show ?thesis
  proof
    show \langle \iota : T \ (cod \ \iota, \ cod \ \iota) \rightarrow cod \ \iota \rangle using 1 by fastforce
    show iso \iota using iso-lunit \iota-def by simp
    show \bigwedge a \ b \ c \ d. \llbracket \ ide \ a; \ ide \ b; \ ide \ c; \ ide \ d \ \rrbracket \Longrightarrow
                       T(a, \alpha(b, c, d)) \cdot \alpha(a, T(b, c), d) \cdot T(\alpha(a, b, c), d)
                         = \alpha (a, b, T(c, d)) \cdot \alpha (T(a, b), c, d)
      using pentagon tensor-preserves-ide by simp
  qed
qed
interpretation MC: monoidal-category C T \alpha \iota
  using induces-monoidal-category by auto
```

We now show that the notions defined in the interpretation MC agree with their counterparts in the present locale. These facts are needed if we define an interpretation for the elementary-monoidal-category locale, use it to obtain the induced interpretation for monoidal-category, and then want to transfer facts obtained in the induced interpretation back to the original one.

```
lemma \mathcal{I}-agreement:
shows MC.unity = \mathcal{I}
```

```
by (metis \iota-def ide-unity in-homE lunit-in-hom)
lemma L-agreement:
shows MC.L = (\lambda f. \ T \ (\mathcal{I}, f))
using \iota-in-hom by auto
lemma R-agreement:
shows MC.R = (\lambda f. \ T \ (f, \mathcal{I}))
using \iota-in-hom by auto
```

We wish to show that the components of the unitors $MC.\mathfrak{l}$ and $MC.\varrho$ defined in the induced interpretation MC agree with those given by the parameters lunit and runit to the present locale. To avoid a lengthy development that repeats work already done in the monoidal-category locale, we establish the agreement in a special case and then use the properties already shown for MC to prove the general case. In particular, we first show that $\mathfrak{l}[\mathcal{I}] = MC.lunit\ MC.unity$ and $\mathfrak{r}[\mathcal{I}] = MC.runit\ MC.unity$, from which it follows by facts already proved for MC that both are equal to ι . We then show that for an arbitrary identity a the arrows $\mathfrak{l}[a]$ and $\mathfrak{r}[a]$ satisfy the equations that uniquely characterize the components $MC.lunit\ a$ and $MC.runit\ a$, respectively, and are therefore equal to those components.

```
lemma unitor-coincidence:
shows l[\mathcal{I}] = \iota and r[\mathcal{I}] = \iota
proof -
  have r[\mathcal{I}] = MC.runit\ MC.unity
    by (metis (no-types, lifting) MC.arr-runit MC.runit-eqI MC.unitor-coincidence(2)
        T-simp \mathcal{I}-agreement \iota-def \alpha-ide-simp ideD(1) ide-unity iso-is-arr iso-runit
        runit-in-hom triangle)
  moreover have l[\mathcal{I}] = MC.lunit\ MC.unity
    using MC.unitor-coincidence(1) \iota-def by force
  ultimately have 1: l[\mathcal{I}] = \iota \wedge r[\mathcal{I}] = \iota
    using MC.unitor-coincidence by simp
  show l[\mathcal{I}] = \iota using 1 by simp
  show r[\mathcal{I}] = \iota using 1 by simp
qed
lemma lunit-char:
assumes ide a
shows \mathcal{I} \otimes l[a] = (\iota \otimes a) \cdot inv \ a[\mathcal{I}, \mathcal{I}, a]
  by (metis MC.iso-assoc \alpha-ide-simp \iota-in-hom arr arr-tensor assms ideD(1)
      ide-unity\ invert-side-of-triangle(2)\ triangle\ unitor-coincidence(2))
lemma runit-char:
assumes ide a
shows r[a] \otimes \mathcal{I} = (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}]
  using assms triangle \iota-def by simp
lemma l-agreement:
shows MC.\mathfrak{l} = (\lambda f. \text{ if } arr f \text{ then } f \cdot \mathfrak{l}[dom f] \text{ else } null)
```

```
proof
  \mathbf{fix} f
  have \neg arr f \Longrightarrow MC.\mathfrak{l} f = null by simp
  moreover have arr f \Longrightarrow MC.\mathfrak{l} f = f \cdot \mathfrak{l}[dom f]
  proof -
   have \bigwedge a. ide a \Longrightarrow l[a] = MC.lunit a
     using \mathcal{I}-agreement T-def lunit-char \iota-in-hom iso-lunit
     apply (intro\ MC.lunit-eqI)
      apply auto
     by blast
   thus ?thesis
     by (metis\ ide-dom\ ext\ seqE)
 ultimately show MC.\mathfrak{l} f = (if \ arr \ f \ then \ f \cdot 1 [dom \ f] \ else \ null) by simp
qed
lemma \rho-agreement:
shows MC.\varrho = (\lambda f. \ if \ arr \ f \ then \ f \cdot r[dom \ f] \ else \ null)
proof
  \mathbf{fix} f
  have \neg arr f \Longrightarrow MC.\varrho f = null by simp
  moreover have arr f \Longrightarrow MC.\varrho f = f \cdot r[dom f]
   have \bigwedge a. ide a \Longrightarrow r[a] = MC.runit a
     using \mathcal{I}-agreement T-def runit-char \iota-in-hom iso-runit
     apply (intro MC.runit-eqI)
      apply auto
     by blast
   thus ?thesis
     by (metis\ ide-dom\ local.ext\ seqE)
  ultimately show MC.\varrho f = (if \ arr \ f \ then \ f \cdot r[dom \ f] \ else \ null) by simp
qed
lemma lunit-agreement:
assumes ide a
shows MC.lunit\ a = l[a]
  using assms comp-cod-arr \(\mathbf{l}\)-agreement
 by (metis (no-types, lifting) MC.1-ide-simp ide-char in-homE lunit-in-hom)
lemma runit-agreement:
assumes ide a
shows MC.runit\ a = r[a]
  using assms comp-cod-arr φ-agreement
  by (metis (no-types, lifting) MC.o-ide-simp ide-char in-homE runit-in-hom)
```

end

2.3 Strict Monoidal Category

A monoidal category is *strict* if the components of the associator and unitors are all identities.

```
locale strict-monoidal-category = monoidal-category + assumes strict-assoc: [\![ide\ a0]\!]; ide\ a1; ide\ a2 [\![]\ \Longrightarrow\ ide\ a[a0]\!], a1, a2] and strict-lunit: ide\ a\implies r[a]=a begin lemma strict-unit: ide\ a\implies r[a]=a begin lemma strict-unit: shows\ \iota=\mathcal{I} using strict-lunit unitor-coincidence(1) by auto lemma tensor-assoc [simp]: assumes arr\ f0 and arr\ f1 and arr\ f2 shows\ (f0\ \otimes f1)\ \otimes f2=f0\ \otimes f1\ \otimes f2 by (metis\ CC.arrI_{PC}\ CCC.arrI_{PC}\ \alpha'.preserves-reflects-arr\ \alpha'-simp\ assms(1-3) assoc'-naturality ide-cod ide-dom inv-ide comp-arr-ide comp-ide-arr strict-assoc) end
```

2.4 Opposite Monoidal Category

The *opposite* of a monoidal category has the same underlying category, but the arguments to the tensor product are reversed and the associator is inverted and its arguments reversed.

```
locale opposite-monoidal-category = C\colon monoidal\text{-}category\ C\ T_C\ \alpha_C\ \iota for C\colon 'a\ comp\quad (\text{infixr}\ \leftrightarrow\ 55) and T_C\colon 'a\ast 'a\Rightarrow 'a and \alpha_C\colon 'a\ast 'a\ast 'a\ast 'a\Rightarrow 'a and \iota\colon 'a begin abbreviation T where T\ f\equiv T_C\ (snd\ f,\ fst\ f) abbreviation \alpha where \alpha\ f\equiv C.\alpha'\ (snd\ (snd\ f),\ fst\ (snd\ f),\ fst\ f) end sublocale opposite-monoidal-category \subseteq\ monoidal\text{-}category\ C\ T\ \alpha\ \iota proof - interpret T\colon binary\text{-}endofunctor\ C\ T
```

```
using C.T. extensionality C.CC. seq-char C. interchange by (unfold-locales, auto)
 interpret ToTC: functor C.CCC.comp C T.ToTC
   using T.functor-ToTC by auto
 interpret ToCT: functor C.CCC.comp C T.ToCT
   using T.functor-ToCT by auto
 interpret \alpha: natural-transformation C.CCC.comp C T.ToTC T.ToCT \alpha
   using C.\alpha'.extensionality C.CCC.dom-char C.CCC.cod-char T.ToTC-def T.ToCT-def
        C.\alpha'-simp C.\alpha'.naturality
   by (unfold-locales) auto
 interpret \alpha: natural-isomorphism C.CCC.comp C T.ToTC T.ToCT \alpha
   using C.\alpha'.components-are-iso by (unfold-locales, simp)
 interpret L: equivalence-functor C C \langle \lambda f . T (C.cod \iota, f) \rangle
   using C.R. equivalence-functor-axioms by simp
 interpret R: equivalence-functor C C \langle \lambda f. T (f, C.cod \iota) \rangle
   using C.L. equivalence-functor-axioms by simp
 show monoidal-category C T \alpha \iota
   using C.unit-is-iso C.pentagon' C.comp-assoc
   by (unfold-locales) auto
context opposite-monoidal-category
begin
 lemma lunit-simp:
 assumes C.ide a
 shows lunit a = C.runit a
   using assms lunit-char C.iso-assoc by (intro C.runit-eqI, auto)
 lemma runit-simp:
 assumes C.ide a
 shows runit \ a = C.lunit \ a
   using assms runit-char C.iso-assoc by (intro C.lunit-eqI, auto)
end
```

2.5 Dual Monoidal Category

The *dual* of a monoidal category is obtained by reversing the arrows of the underlying category. The tensor product remains the same, but the associators and unitors are inverted.

```
locale dual-monoidal-category =
    M: monoidal-category
begin

sublocale dual-category C ..
sublocale MM: product-category comp comp ..
interpretation T: binary-functor comp comp T
    using M.T.extensionality M.interchange MM.comp-char
```

```
by unfold-locales auto
interpretation T: binary-endofunctor comp ...
interpretation ToTC: functor T.CCC.comp comp T.ToTC
 using T.functor-ToTC by blast
interpretation ToCT: functor T.CCC.comp comp T.ToCT
 using T.functor-ToCT by blast
interpretation \alpha: natural-transformation T.CCC.comp comp T.ToTC T.ToCT M.\alpha'
 using M.\alpha' extensionality M.\alpha' naturality 1 M.\alpha' naturality 2 M.\alpha'
 by unfold-locales auto
interpretation \alpha: natural-isomorphism T.CCC.comp comp T.ToTC T.ToCT M.\alpha'
 by unfold-locales auto
interpretation L: equivalence-functor comp comp \langle M.tensor\ (cod\ (M.inv\ \iota)) \rangle
proof -
 interpret L: dual-equivalence-functor C C \langle M.tensor \mathcal{I} \rangle ...
 show equivalence-functor comp comp (M.tensor (cod (M.inv \iota)))
   using L.equivalence-functor-axioms
   by (simp add: M.unit-is-iso)
qed
interpretation R: equivalence-functor comp comp \langle \lambda f. M. tensor f (cod (M.inv \iota)) \rangle
proof -
 interpret R: dual-equivalence-functor C C \langle \lambda f. M.tensor f \mathcal{I} \rangle ...
 show equivalence-functor comp comp (\lambda f. M.tensor f (cod (M.inv \iota)))
   using R. equivalence-functor-axioms
   by (simp add: M.unit-is-iso)
qed
sublocale monoidal-category comp T M.\alpha' \langle M.inv \iota \rangle
 using T. extensionality M. unit-in-hom M. inv-in-hom M. unit-is-iso M. pentagon'
       equivalence \hbox{-} functor \hbox{-} def \ category \hbox{-} axioms
 by unfold-locales auto
lemma is-monoidal-category:
shows monoidal-category comp T M.\alpha' (M.inv \iota)
no-notation comp (infixr \leftrightarrow 55)
lemma assoc-char:
assumes ide a and ide b and ide c
shows assoc a b c = M.assoc' a b c and assoc' a b c = M.assoc a b c
 using assms M.inv-inv M.iso-inv-iso
 apply force
 by (metis assms M.\alpha'-ide-simp M.comp-assoc-assoc'(2) M.ideD(1) M.iso-assoc
     M.iso-cancel-left\ M.iso-inv-iso\ comp-assoc-assoc'(2)\ ide-char\ comp-def
     tensor	ext{-}preserves	ext{-}ide)
lemma lunit-char:
assumes ide a
shows lunit \ a = M.lunit' \ a
```

```
proof -
 have M.lunit' a = lunit a
 proof (intro lunit-eqI)
   show in-hom (M.lunit' a) (tensor unity a) a
     using assms
     by (simp add: M.lunit'-in-hom M.unit-is-iso)
   show tensor unity (M.lunit' \ a) = comp \ (tensor \ (M.inv \ \iota) \ a) \ (assoc' \ unity \ unity \ a)
     have M.inv (tensor \mathcal{I} (M.lunit a) \cdot M.assoc \mathcal{I} \mathcal{I} a) = M.inv (tensor \iota a)
       using assms M.triangle M.unitor-coincidence by auto
     hence M.assoc' \mathcal{I} \mathcal{I} \ a \cdot tensor \mathcal{I} \ (M.lunit' \ a) = tensor \ (M.inv \ \iota) \ a
       using assms M.inv-comp M.unit-is-iso by fastforce
     thus ?thesis
       using assms M.unit-is-iso assoc-char
             M.invert-side-of-triangle(1)
              [of tensor (M.inv \iota) a M.assoc' unity unity a tensor \mathcal{I} l<sup>-1</sup>[a]]
       by auto
   qed
 qed
 thus ?thesis by simp
qed
lemma runit-char:
assumes ide a
shows runit \ a = M.runit' \ a
proof -
 have M.runit' a = runit a
 proof (intro runit-eqI)
   show in-hom (M.runit' a) (tensor a unity) a
     using assms
     by (simp add: M.runit'-in-hom M.unit-is-iso)
   show tensor (M.runit' \ a) unity = comp (tensor a \ (M.inv \ \iota)) (assoc a \ unity \ unity)
   proof -
     have M.inv (tensor a \ \iota \cdot M.assoc \ a \ \mathcal{I} \ \mathcal{I}) = M.inv (tensor (M.runit a) \ \mathcal{I})
       using assms M.triangle [of a \mathcal{I}] M.unitor-coincidence by auto
     hence M.assoc' a \mathcal{I} \mathcal{I} \cdot tensor a (M.inv \iota) = tensor (M.runit' a) \mathcal{I}
       using assms M.inv-comp M.unit-in-hom M.unit-is-iso by auto
     thus ?thesis
       using assms M.unit-is-iso assoc-char by auto
   qed
 qed
 thus ?thesis by simp
qed
```

end

2.6 Monoidal Language

In this section we assume that a category C is given, and we define a formal syntax of terms constructed from arrows of C using function symbols that correspond to unity, composition, tensor, the associator and its formal inverse, and the left and right unitors and their formal inverses. We will use this syntax to state and prove the coherence theorem and then to construct the free monoidal category generated by C.

```
{f locale}\ monoidal	ext{-}language =
  C: category C
  for C :: 'a \ comp
                                                       (infixr \leftrightarrow 55)
begin
  datatype (discs-sels) 't term =
     Prim't
                                                      (\langle\langle - \rangle\rangle)
     Unity
                                                      (\langle \mathcal{I} \rangle)
     Tensor 't term 't term
                                                     (infixr \langle \otimes \rangle 53)
     Comp 't term 't term
                                                      (infixr \langle \cdot \cdot \rangle 55)
    Lunit 't term
                                                     (\langle \mathbf{l}[-] \rangle)
    Lunit' 't term
                                                     (\langle \mathbf{l}^{-1}[-] \rangle)
    Runit 't term
                                                     (\langle \mathbf{r}[-] \rangle)
    Runit' 't term
                                                     (\langle \mathbf{r}^{-1}[-] \rangle)
    Assoc~'t~term~'t~term~'t~term~(\langle \mathbf{a}[\text{-},\text{-},\text{-}]\rangle)
   Assoc' 't term 't term 't term (\langle \mathbf{a}^{-1}[-, -, -] \rangle)
  lemma not-is-Tensor-Unity:
  shows \neg is\text{-}Tensor\ Unity
     by simp
   We define formal domain and codomain functions on terms.
  primrec Dom :: 'a term \Rightarrow 'a term
  where Dom \langle f \rangle = \langle C.dom f \rangle
         Dom \ \mathcal{I} = \mathcal{I}
         Dom (t \otimes u) = (Dom \ t \otimes Dom \ u)
         Dom (t \cdot u) = Dom u
         Dom \ \mathbf{l}[t] = (\mathcal{I} \otimes Dom \ t)
         Dom \ \mathbf{l}^{-1}[t] = Dom \ t
         Dom \ \mathbf{r}[t] = (Dom \ t \otimes \mathcal{I})
         Dom \mathbf{r}^{-1}[t] = Dom t
         Dom \mathbf{a}[t, u, v] = ((Dom \ t \otimes Dom \ u) \otimes Dom \ v)
       | Dom \mathbf{a}^{-1}[t, u, v] = (Dom \ t \otimes (Dom \ u \otimes Dom \ v))
  primrec Cod :: 'a \ term \Rightarrow 'a \ term
  where Cod \langle f \rangle = \langle C.cod f \rangle
         Cod \mathcal{I} = \mathcal{I}
         Cod\ (t \otimes u) = (Cod\ t \otimes Cod\ u)
         Cod (t \cdot u) = Cod t
         Cod \mathbf{1}[t] = Cod t
          Cod \mathbf{l}^{-1}[t] = (\mathcal{I} \otimes Cod t)
         Cod \mathbf{r}[t] = Cod t
```

```
| Cod \mathbf{r}^{-1}[t] = (Cod \ t \otimes \mathcal{I})
| Cod \mathbf{a}[t, u, v] = (Cod \ t \otimes (Cod \ u \otimes Cod \ v))
| Cod \mathbf{a}^{-1}[t, u, v] = ((Cod \ t \otimes Cod \ u) \otimes Cod \ v)
```

A term is a "formal arrow" if it is constructed from arrows of C in such a way that composition is applied only to formally composable pairs of terms.

```
\mathbf{primrec}\ \mathit{Arr} :: \ 'a\ \mathit{term} \Rightarrow \mathit{bool}
where Arr \langle f \rangle = C.arr f
     Arr \mathcal{I} = True
      Arr (t \otimes u) = (Arr \ t \wedge Arr \ u)
      Arr(t \cdot u) = (Arr t \wedge Arr u \wedge Dom t = Cod u)
      Arr \mathbf{1}[t] = Arr t
      Arr \mathbf{l}^{-1}[t] = Arr t
      Arr \mathbf{r}[t] = Arr t
      Arr \mathbf{r}^{-1}[t] = Arr t
      Arr \mathbf{a}[t, u, v] = (Arr t \wedge Arr u \wedge Arr v)
    |Arr \mathbf{a}^{-1}[t, u, v]| = (Arr t \wedge Arr u \wedge Arr v)
abbreviation Par :: 'a \ term \Rightarrow 'a \ term \Rightarrow bool
where Par\ t\ u \equiv Arr\ t\ \wedge\ Arr\ u\ \wedge\ Dom\ t = Dom\ u\ \wedge\ Cod\ t = Cod\ u
abbreviation Seq :: 'a \ term \Rightarrow 'a \ term \Rightarrow bool
where Seq\ t\ u \equiv Arr\ t \wedge Arr\ u \wedge Dom\ t = Cod\ u
abbreviation Hom :: 'a \ term \Rightarrow 'a \ term \Rightarrow 'a \ term \ set
where Hom\ a\ b \equiv \{\ t.\ Arr\ t \land Dom\ t = a \land Cod\ t = b\ \}
```

A term is a "formal identity" if it is constructed from identity arrows of C and \mathcal{I} using only the \otimes operator.

```
primrec Ide :: 'a \ term \Rightarrow bool
where Ide \langle f \rangle = C.ide f
      Ide \mathcal{I} = True
      Ide\ (t \otimes u) = (Ide\ t \wedge Ide\ u)
      Ide(t \cdot u) = False
      Ide \mathbf{l}[t] = False
      Ide \ \mathbf{l}^{-1}[t] = False
      Ide \mathbf{r}[t] = False
      Ide \mathbf{r}^{-1}[t] = False
      Ide \mathbf{a}[t, u, v] = False
    | Ide \mathbf{a}^{-1}[t, u, v] = False
lemma Ide-implies-Arr [simp]:
shows Ide\ t \Longrightarrow Arr\ t
  by (induct t) auto
lemma Arr-implies-Ide-Dom:
shows Arr\ t \Longrightarrow Ide\ (Dom\ t)
  by (induct t) auto
```

```
lemma Arr-implies-Ide-Cod:

shows Arr t \Longrightarrow Ide \ (Cod \ t)

by (induct \ t) auto

lemma Ide-in-Hom [simp]:

shows Ide \ t \Longrightarrow t \in Hom \ t \ t

by (induct \ t) auto
```

A formal arrow is "canonical" if the only arrows of C used in its construction are identities.

```
primrec Can :: 'a term \Rightarrow bool
where Can \langle f \rangle = C.ide f
      Can \mathcal{I} = True
      Can (t \otimes u) = (Can t \wedge Can u)
      Can (t \cdot u) = (Can t \wedge Can u \wedge Dom t = Cod u)
      Can \mathbf{1}[t] = Can t
      Can \mathbf{l}^{-1}[t] = Can t
      Can \mathbf{r}[t] = Can t
      Can \mathbf{r}^{-1}[t] = Can t
      Can \mathbf{a}[t, u, v] = (Can \ t \land Can \ u \land Can \ v)
    Can \mathbf{a}^{-1}[t, u, v] = (Can t \wedge Can u \wedge Can v)
lemma Ide-implies-Can:
shows Ide\ t \Longrightarrow Can\ t
  by (induct t) auto
lemma Can-implies-Arr:
shows Can \ t \Longrightarrow Arr \ t
  by (induct t) auto
```

We next define the formal inverse of a term. This is only sensible for formal arrows built using only isomorphisms of C; in particular, for canonical formal arrows.

```
primrec Inv : 'a \ term \Rightarrow 'a \ term
where Inv \langle f \rangle = \langle C.inv f \rangle
| Inv \mathcal{I} = \mathcal{I}
| Inv (t \otimes u) = (Inv \ t \otimes Inv \ u)
| Inv (t \cdot u) = (Inv \ u \cdot Inv \ t)
| Inv \ 1[t] = \mathbf{1}^{-1}[Inv \ t]
| Inv \ 1^{-1}[t] = \mathbf{1}[Inv \ t]
| Inv \ \mathbf{r}[t] = \mathbf{r}^{-1}[Inv \ t]
| Inv \ \mathbf{r}[t] = \mathbf{r}[Inv \ t]
| Inv \ \mathbf{a}[t, \ u, \ v] = \mathbf{a}^{-1}[Inv \ t, \ Inv \ u, \ Inv \ v]
| Inv \ \mathbf{a}^{-1}[t, \ u, \ v] = \mathbf{a}[Inv \ t, \ Inv \ u, \ Inv \ v]
lemma Inv-preserves-Ide:
shows Ide \ t \Longrightarrow Ide \ (Inv \ t)
by (induct \ t) \ auto
```

lemma Inv-preserves-Can:

```
assumes Can t
shows Can (Inv t) and Dom (Inv t) = Cod t and Cod (Inv t) = Dom t
proof -
 have \theta: Can\ t \Longrightarrow Can\ (Inv\ t) \land Dom\ (Inv\ t) = Cod\ t \land Cod\ (Inv\ t) = Dom\ t
   by (induct t) auto
 show Can (Inv t) using assms 0 by blast
 show Dom (Inv t) = Cod t using assms 0 by blast
 show Cod (Inv t) = Dom t using assms 0 by blast
qed
lemma Inv-in-Hom [simp]:
assumes Can t
shows Inv \ t \in Hom \ (Cod \ t) \ (Dom \ t)
 using assms Inv-preserves-Can Can-implies-Arr by simp
lemma Inv-Ide [simp]:
assumes Ide a
shows Inv \ a = a
 using assms by (induct a) auto
lemma Inv-Inv [simp]:
assumes Can t
shows Inv(Inv t) = t
 using assms by (induct t) auto
```

We call a term "diagonal" if it is either \mathcal{I} or it is constructed from arrows of C using only the \otimes operator associated to the right. Essentially, such terms are lists of arrows of C, where \mathcal{I} represents the empty list and \otimes is used as the list constructor. We call them "diagonal" because terms can regarded as defining "interconnection matrices" of arrows connecting "inputs" to "outputs", and from this point of view diagonal terms correspond to diagonal matrices. The matrix point of view is suggestive for the extension of the results presented here to the symmetric monoidal and cartesian monoidal cases.

```
fun Diag :: 'a term \Rightarrow bool
where Diag \mathcal{I} = True
      Diag \langle f \rangle = C.arr f
      Diag (\langle f \rangle \otimes u) = (C.arr f \wedge Diag u \wedge u \neq \mathcal{I})
    | Diag - = False
lemma Diag-TensorE:
assumes Diag (Tensor t u)
shows \langle un\text{-}Prim\ t \rangle = t and C.arr\ (un\text{-}Prim\ t) and Diag\ t and Diag\ u and u \neq \mathcal{I}
proof -
  have 1: t = \langle un\text{-}Prim\ t \rangle \land C.arr\ (un\text{-}Prim\ t) \land Diaq\ t \land Diaq\ u \land u \neq \mathcal{I}
    using assms by (cases t; simp; cases u; simp)
  show \langle un\text{-}Prim\ t\rangle = t\ \text{using } 1\ \text{by } simp
  show C.arr (un-Prim t) using 1 by simp
  show Diag t using 1 by simp
  show Diag u using 1 by simp
  show u \neq \mathcal{I} using 1 by simp
```

```
qed
```

```
lemma \ Diag-implies-Arr:
shows Diag \ t \Longrightarrow Arr \ t
       apply (induct t, simp-all)
      by (simp add: Diag-TensorE)
lemma Dom-preserves-Diag:
shows Diag\ t \Longrightarrow Diag\ (Dom\ t)
apply (induct\ t,\ simp-all)
proof -
       \mathbf{fix} \ u \ v
        assume I2: Diag\ v \Longrightarrow Diag\ (Dom\ v)
       assume uv: Diag (u \otimes v)
       show Diag (Dom\ u \otimes Dom\ v)
        proof -
               have 1: is-Prim (Dom\ u) \land C.arr\ (un-Prim\ (Dom\ u)) \land
                                                       Dom \ u = \langle C.dom \ (un-Prim \ u) \rangle
                         using uv by (cases u; simp; cases v, simp-all)
               have 2: Diag v \wedge v \neq \mathcal{I} \wedge \neg is-Comp v \wedge \neg is-Lunit' v \wedge \neg is-Runit' v \wedge \neg
                         using uv by (cases u; simp; cases v, simp-all)
               have Diag\ (Dom\ v) \land Dom\ v \neq \mathcal{I}
                         using 2 I2 by (cases v, simp-all)
                thus ?thesis using 1 by force
        qed
qed
lemma Cod-preserves-Diag:
shows Diag\ t \Longrightarrow Diag\ (Cod\ t)
apply (induct\ t,\ simp-all)
proof -
        \mathbf{fix} \ u \ v
       assume I2: Diag\ v \Longrightarrow Diag\ (Cod\ v)
       assume uv: Diag (u \otimes v)
        show Diag (Cod \ u \otimes Cod \ v)
        proof -
               have 1: is-Prim (Cod u) \wedge C.arr (un-Prim (Cod u)) \wedge Cod u = \langle C.cod (un-Prim u) \rangle
                         using uv by (cases u; simp; cases v; simp)
                have 2: Diag v \wedge v \neq \mathcal{I} \wedge \neg is-Comp v \wedge \neg is-Lunit' v \wedge \neg is-Runit' v \wedge 
                         using uv by (cases u; simp; cases v; simp)
               have Diag\ (Cod\ v) \land Cod\ v \neq \mathcal{I}
                         using I2 2 by (cases v, simp-all)
               thus ?thesis using 1 by force
       qed
qed
lemma Inv-preserves-Diag:
assumes Can t and Diag t
shows Diag (Inv t)
```

```
\begin{array}{l} \mathbf{proof} - \\ \mathbf{have} \ Can \ t \wedge Diag \ t \Longrightarrow Diag \ (Inv \ t) \\ \mathbf{apply} \ (induct \ t, \ simp-all) \\ \mathbf{by} \ (metis \ (no-types, \ lifting) \ Can.simps(1) \ Inv.simps(1) \ Inv.simps(2) \ Diag.simps(3) \\ Inv-Inv \ Diag-TensorE(1) \ C.inv-ide) \\ \mathbf{thus} \ ?thesis \ \mathbf{using} \ assms \ \mathbf{by} \ blast \\ \mathbf{qed} \end{array}
```

The following function defines the "dimension" of a term, which is the number of arrows of (\cdot) it contains. For diagonal terms, this is just the length of the term when regarded as a list of arrows of (\cdot) . Alternatively, if a term is regarded as defining an interconnection matrix, then the dimension is the number of inputs (or outputs).

```
primrec dim :: 'a \ term \Rightarrow nat
where dim \langle f \rangle = 1
| \ dim \ \mathcal{I} = 0
| \ dim \ (t \otimes u) = (dim \ t + dim \ u)
| \ dim \ (t \cdot u) = dim \ t
| \ dim \ \mathbf{l}[t] = dim \ t
| \ dim \ \mathbf{r}[t] = dim \ t
| \ dim \ \mathbf{r}^{-1}[t] = dim \ t
| \ dim \ \mathbf{a}[t, u, v] = dim \ t + dim \ u + dim \ v
| \ dim \ \mathbf{a}^{-1}[t, u, v] = dim \ t + dim \ u + dim \ v
```

The following function defines a tensor product for diagonal terms. If terms are regarded as lists, this is just list concatenation. If terms are regarded as matrices, this corresponds to constructing a block diagonal matrix.

```
(infixr \langle | \otimes | \rangle 53)
fun TensorDiag
where \mathcal{I} \mid \otimes \mid u = u
      t \mid \otimes \mid \mathcal{I} = t
      \langle f \rangle \mid \otimes \mid u = \langle f \rangle \otimes u
      (t \otimes u) [\otimes] v = t [\otimes] (u [\otimes] v)
     \mid t \mid \otimes \mid u = undefined
lemma TensorDiag-Prim [simp]:
assumes t \neq \mathcal{I}
shows \langle f \rangle \mid \otimes \mid t = \langle f \rangle \otimes t
  using assms by (cases t, simp-all)
lemma TensorDiag-term-Unity [simp]:
shows t \mid \otimes \mid \mathcal{I} = t
  by (cases t = \mathcal{I}; cases t, simp-all)
lemma TensorDiag-Diag:
assumes Diag (t \otimes u)
shows t \mid \otimes \mid u = t \otimes u
  using assms TensorDiag-Prim by (cases t, simp-all)
```

lemma TensorDiag-preserves-Diag:

```
assumes Diag\ t and Diag\ u
shows Diag\ (t \mid \otimes \rfloor \ u)
and Dom (t \lfloor \otimes \rfloor u) = Dom t \mid \otimes \mid Dom u
and Cod (t | \otimes | u) = Cod t | \otimes | Cod u
proof -
     have \theta: \bigwedge u. \llbracket Diag\ t; Diag\ u \rrbracket \Longrightarrow
                                                    Diag(t \mid \otimes \mid u) \land Dom(t \mid \otimes \mid u) = Dom(t \mid \otimes \mid Dom(u \land u))
                                                                                                           Cod (t \mid \otimes \mid u) = Cod t \mid \otimes \mid Cod u
      apply (induct t, simp-all)
      proof -
           fix f :: 'a and u :: 'a term
           assume f: C. arr f
           assume u: Diag u
           show Diag(\langle f \rangle | \otimes | u) \wedge Dom(\langle f \rangle | \otimes | u) = \langle C.dom f \rangle | \otimes | Dom u \wedge | A \otimes 
                                                                                        Cod (\langle f \rangle | \otimes | u) = \langle C.cod f \rangle | \otimes | Cod u
                  using u f by (cases u, simp-all)
            next
           \mathbf{fix} \ u \ v \ w
           assume I1: \bigwedge u. Diag v \Longrightarrow Diag \ u \Longrightarrow Diag \ (v \mid \otimes \mid u) \land u
                                                                                                                                Dom (v \mid \otimes \mid u) = Dom v \mid \otimes \mid Dom u \wedge
                                                                                                                                Cod (v \mid \otimes \mid u) = Cod v \mid \otimes \mid Cod u
           assume I2: \Lambda u. \ Diag \ w \Longrightarrow \ Diag \ u \Longrightarrow Diag \ (w \mid \otimes \mid u) \land 
                                                                                                                                  Dom(w \mid \otimes \mid u) = Dom(w \mid \otimes \mid Dom(u \land u))
                                                                                                                                   Cod (w \mid \otimes \mid u) = Cod w \mid \otimes \mid Cod u
           assume vw: Diag (v \otimes w)
           assume u: Diag u
            show Diag ((v \otimes w) | \otimes | u) \wedge
                               Dom\ ((v\otimes w)\ \lfloor \otimes\rfloor\ u) = (Dom\ v\otimes Dom\ w)\ |\otimes|\ Dom\ u\ \wedge
                               Cod\ ((v \otimes w) \mid \otimes \mid u) = (Cod\ v \otimes Cod\ w) \mid \otimes \mid Cod\ u
            proof -
                  have v: v = \langle un\text{-}Prim \ v \rangle \wedge Diag \ v
                        using vw Diag-implies-Arr Diag-TensorE [of v w] by force
                  have w: Diag w
                        using vw by (simp add: Diag-TensorE)
                  have u = \mathcal{I} \Longrightarrow ?thesis by (simp \ add: vw)
                  moreover have u \neq \mathcal{I} \Longrightarrow ?thesis
                        using u v w I1 I2 Dom-preserves-Diag [of u] Cod-preserves-Diag [of u]
                        by (cases\ u,\ simp-all)
                  ultimately show ?thesis by blast
            qed
      qed
      show Diag (t | \otimes | u) using assms \ \theta by blast
      show Dom (t \mid \otimes \mid u) = Dom t \mid \otimes \mid Dom u using assms \ \theta by blast
      show Cod\ (t \mid \otimes \mid u) = Cod\ t \mid \otimes \mid Cod\ u using assms\ \theta by blast
qed
lemma TensorDiag-in-Hom:
assumes Diag t and Diag u
shows t \mid \otimes \mid u \in Hom \ (Dom \ t \mid \otimes \mid Dom \ u) \ (Cod \ t \mid \otimes \mid Cod \ u)
```

```
using assms TensorDiag-preserves-Diag Diag-implies-Arr by simp
```

```
lemma Dom-TensorDiag:
assumes Diag t and Diag u
shows Dom (t | \otimes | u) = Dom t | \otimes | Dom u
  using assms TensorDiag-preserves-Diag(2) by simp
lemma Cod-TensorDiag:
assumes Diag t and Diag u
shows Cod\ (t \mid \otimes \mid u) = Cod\ t \mid \otimes \mid Cod\ u
  \mathbf{using} \ assms \ Tensor Diag-preserves\text{-}Diag(\mathcal{I}) \ \mathbf{by} \ simp
\mathbf{lemma}\ \textit{not-is-Tensor-TensorDiagE}\colon
assumes \neg is-Tensor (t \mid \otimes \mid u) and Diag t and Diag u
and t \neq \mathcal{I} and u \neq \mathcal{I}
shows False
proof -
  have \llbracket \neg \text{ is-Tensor } (t \mid \otimes \mid u); \text{ Diag } t; \text{ Diag } u; t \neq \mathcal{I}; u \neq \mathcal{I} \rrbracket \Longrightarrow \text{False}
  apply (induct\ t,\ simp-all)
  proof -
    \mathbf{fix} \ v \ w
    assume I2: \neg is-Tensor (w \mid \otimes \rfloor u) \Longrightarrow Diag w \Longrightarrow w \neq \mathcal{I} \Longrightarrow False
    assume 1: \neg is-Tensor ((v \otimes w) | \otimes | u)
    assume vw: Diag (v \otimes w)
    assume u: Diag u
    assume 2: u \neq \mathcal{I}
    show False
    proof -
      have v: v = \langle un\text{-}Prim \ v \rangle
        using vw Diag-TensorE [of v w] by force
      have w: Diag \ w \land w \neq \mathcal{I}
        using vw Diag-TensorE [of v w] by simp
      have (v \otimes w) [\otimes] u = v \otimes (w [\otimes] u)
      proof -
        have (v \otimes w) \mid \otimes \mid u = v \mid \otimes \mid (w \mid \otimes \mid u)
          using u \ 2 by (cases u, simp-all)
        also have ... = v \otimes (w \mid \otimes \mid u)
          using u v w I2 TensorDiag-Prim not-is-Tensor-Unity by metis
        finally show ?thesis by simp
      qed
      thus ?thesis using 1 by simp
    qed
  qed
  thus ?thesis using assms by blast
qed
lemma TensorDiag-assoc:
assumes Diag t and Diag u and Diag v
shows (t \boxtimes u) \boxtimes v = t \boxtimes (u \boxtimes v)
```

```
proof -
  have \bigwedge n \ t \ u \ v. \llbracket \ dim \ t = n; \ Diag \ t; \ Diag \ u; \ Diag \ v \ \rrbracket \Longrightarrow
                       (t \mid \otimes \mid u) \mid \otimes \mid v = t \mid \otimes \mid (u \mid \otimes \mid v)
  proof -
    \mathbf{fix} \ n
    show \bigwedge t \ u \ v. \ \llbracket \ dim \ t = n; \ Diag \ t; \ Diag \ u; \ Diag \ v \ \rrbracket \Longrightarrow
                        (t \mid \otimes \mid u) \mid \otimes \mid v = t \mid \otimes \mid (u \mid \otimes \mid v)
    proof (induction n rule: nat-less-induct)
       fix n :: nat and t :: 'a term and u v
       assume I: \forall m < n. \ \forall t \ u \ v. \ dim \ t = m \longrightarrow Diag \ t \longrightarrow Diag \ u \longrightarrow Diag \ v \longrightarrow
                                     (t \boxtimes u) \boxtimes v = t \boxtimes (u \boxtimes v)
       assume dim: dim t = n
       assume t: Diag t
       assume u: Diag u
       assume v: Diag v
       show (t \mid \otimes \mid u) \mid \otimes \mid v = t \mid \otimes \mid (u \mid \otimes \mid v)
       proof -
         have t = \mathcal{I} \Longrightarrow ?thesis by simp
         moreover have u = \mathcal{I} \Longrightarrow ?thesis by simp
         moreover have v = \mathcal{I} \Longrightarrow ?thesis by simp
         moreover have t \neq \mathcal{I} \land u \neq \mathcal{I} \land v \neq \mathcal{I} \land is-Prim t \Longrightarrow ?thesis
            using v by (cases t, simp-all, cases u, simp-all; cases v, simp-all)
          moreover have t \neq \mathcal{I} \land u \neq \mathcal{I} \land v \neq \mathcal{I} \land is-Tensor t \Longrightarrow ?thesis
          proof (cases\ t;\ simp)
           fix w :: 'a \ term \ and \ x :: 'a \ term
           assume 1: u \neq \mathcal{I} \land v \neq \mathcal{I}
           assume 2: t = (w \otimes x)
           show ((w \otimes x) | \otimes | u) | \otimes | v = (w \otimes x) | \otimes | (u | \otimes | v)
           proof -
              have w: w = \langle un\text{-}Prim \ w \rangle
                using t 1 2 Diag-TensorE [of w x] by auto
              have x: Diag x
                using t \ w \ 1 \ 2 \ by (cases \ w, simp-all)
              have ((w \otimes x) [\otimes] u) [\otimes] v = (w [\otimes] (x [\otimes] u)) [\otimes] v
                using u v w x 1 2 by (cases u, simp-all)
              also have ... = (w \otimes (x | \otimes | u)) | \otimes | v
                using t \ w \ u \ 1 \ 2 \ Tensor Diag-Prim \ not-is-Tensor-Tensor Diag E \ Diag-Tensor E
                        not-is-Tensor-Unity
                by metis
              also have ... = w [\otimes] ((x [\otimes] u) [\otimes] v)
                using u v w x 1 by (cases u, simp-all; cases v, simp-all)
              also have \dots = w \lfloor \otimes \rfloor (x \lfloor \otimes \rfloor (u \lfloor \otimes \rfloor v))
              proof -
                have dim \ x < dim \ t
                   using w \ 2 by (cases \ w, simp-all)
                thus ?thesis
                   using u \ v \ x \ dim \ I \ \mathbf{bv} \ simp
              qed
              also have ... = (w \otimes x) | \otimes | (u | \otimes | v)
```

```
proof -
              have \beta: is-Tensor (u \mid \otimes \mid v)
                using u v 1 not-is-Tensor-TensorDiagE by auto
              obtain u' :: 'a \text{ term and } v' \text{ where } uv' : u \mid \otimes \mid v = u' \otimes v'
                using 3 is-Tensor-def by blast
              thus ?thesis by simp
            qed
            finally show ?thesis by simp
          qed
        qed
        moreover have t = \mathcal{I} \vee is\text{-}Prim\ t \vee is\text{-}Tensor\ t
          using t by (cases t, simp-all)
        ultimately show ?thesis by blast
      qed
    qed
  qed
  thus ?thesis using assms by blast
qed
lemma TensorDiag-preserves-Ide:
assumes Ide t and Ide u and Diag t and Diag u
shows Ide(t | \otimes | u)
  using assms
  by (metis (mono-tags, lifting) Arr-implies-Ide-Dom Ide-in-Hom Diag-implies-Arr
      Tensor Diag-preserves-Diag(1) Tensor Diag-preserves-Diag(2) mem-Collect-eq)
lemma TensorDiag-preserves-Can:
assumes Can t and Can u and Diag t and Diag u
shows Can (t | \otimes | u)
proof -
  have \bigwedge u. \llbracket Can \ t \land Diag \ t; Can \ u \land Diag \ u \ \rrbracket \Longrightarrow Can \ (t \ | \otimes | \ u)
  proof (induct\ t;\ simp)
   show \bigwedge x \ u. \ C.ide \ x \land C.arr \ x \Longrightarrow Can \ u \land Diag \ u \Longrightarrow Can \ (\langle x \rangle \ \lfloor \otimes \rfloor \ u)
      by (metis Ide.simps(1) Ide.simps(2) Ide-implies-Can Diag.simps(2) TensorDiag-Prim
                Tensor Diag-preserves-Ide\ Can.simps(3))
   show \bigwedge t1 \ t2 \ u. \ (\bigwedge u. \ Diag \ t1 \Longrightarrow Can \ u \wedge Diag \ u \Longrightarrow Can \ (t1 \ |\otimes| \ u)) \Longrightarrow
                     (\bigwedge u. \ Diag \ t2 \Longrightarrow Can \ u \land Diag \ u \Longrightarrow Can \ (t2 \mid \otimes \mid u)) \Longrightarrow
                     Can \ t1 \land Can \ t2 \land Diag \ (t1 \otimes t2) \Longrightarrow Can \ u \land Diag \ u \Longrightarrow
                     Can ((t1 \otimes t2) | \otimes | u)
      by (metis\ Diag-TensorE(3)\ Diag-TensorE(4)\ TensorDiag-Diag\ TensorDiag-assoc
                Tensor Diag-preserves-Diag(1)
  qed
  thus ?thesis using assms by blast
qed
\mathbf{lemma}\ \mathit{Inv-TensorDiag} :
assumes Can t and Can u and Diag t and Diag u
shows Inv (t | \otimes | u) = Inv t | \otimes | Inv u
proof -
```

```
have \bigwedge u. \llbracket Can \ t \land Diag \ t; \ Can \ u \land Diag \ u \ \rrbracket \Longrightarrow Inv \ (t \ \lfloor \otimes \rfloor \ u) = Inv \ t \ \lfloor \otimes \rfloor \ Inv \ u
      proof (induct\ t,\ simp-all)
        \mathbf{fix} f u
        assume f: C.ide f \land C.arr f
        assume u: Can u \wedge Diag u
        show Inv (\langle f \rangle | \otimes | u) = \langle f \rangle | \otimes | Inv u
           using f u by (cases u, simp-all)
        next
        \mathbf{fix} \ t \ u \ v
        assume I1: \land v. \llbracket Diag t; Can v \land Diag v \rrbracket \Longrightarrow Inv (t \bowtie )v) = Inv t \bowtie ]Inv v
        assume I2: \land v. \llbracket Diag \ u; Can \ v \land Diag \ v \ \rrbracket \Longrightarrow Inv \ (u \ \lfloor \otimes \rfloor \ v) = Inv \ u \ \lfloor \otimes \rfloor \ Inv \ v
        assume tu: Can \ t \land Can \ u \land Diag \ (t \otimes u)
        have t: Can t \wedge Diag t
           using tu Diag-TensorE [of t u] by force
        have u: Can \ u \wedge Diag \ u
           using t tu by (cases t, simp-all)
        assume v: Can \ v \land Diag \ v
        show Inv ((t \otimes u) | \otimes | v) = (Inv t \otimes Inv u) | \otimes | Inv v
        proof -
           have v = Unity \Longrightarrow ?thesis by simp
           moreover have v \neq Unity \Longrightarrow ?thesis
           proof -
             assume 1: v \neq Unity
             have Inv ((t \otimes u) | \otimes | v) = Inv (t | \otimes | (u | \otimes | v))
               using 1 by (cases v, simp-all)
             also have ... = Inv \ t \mid \otimes \mid Inv \ (u \mid \otimes \mid v)
               using t u v I1 TensorDiag-preserves-Diag TensorDiag-preserves-Can
                      Inv-preserves-Diag Inv-preserves-Can
               by simp
             also have ... = Inv \ t \mid \otimes \mid (Inv \ u \mid \otimes \mid Inv \ v)
               using t u v I2 TensorDiag-preserves-Diag TensorDiag-preserves-Can
                      Inv-preserves-Diag Inv-preserves-Can
               by simp
             also have ... = (Inv \ t \otimes Inv \ u) \ | \otimes | \ Inv \ v
               using v \ 1 by (cases \ v, simp-all)
             finally show ?thesis by blast
           qed
           ultimately show ?thesis by blast
         qed
      qed
      thus ?thesis using assms by blast
    qed
     The following function defines composition for compatible diagonal terms, by "push-
ing the composition down" to arrows of C.
                                                                           (infixr \langle | \cdot | \rangle 55)
    fun CompDiag :: 'a term \Rightarrow 'a term \Rightarrow 'a term
    where \mathcal{I} |\cdot| u = u
          \langle f \rangle \ \lfloor \cdot \rfloor \ \langle g \rangle = \langle f \cdot g \rangle
        |(u \otimes v)| \cdot |(w \otimes x) = (u |\cdot| w \otimes v |\cdot| x)
```

```
\mid t \mid \cdot \mid \mathcal{I} = t
\mid t \mid \cdot \mid \cdot = undefined \cdot undefined
```

Note that the last clause above is not relevant to diagonal terms. We have chosen a provably non-diagonal value in order to validate associativity.

```
lemma CompDiag-preserves-Diag:
assumes Diag t and Diag u and Dom t = Cod u
shows Diag(t | \cdot | u)
and Dom (t | \cdot | u) = Dom u
\mathbf{and}\ \mathit{Cod}\ (t\ \lfloor \cdot \rfloor\ \mathit{u}) = \mathit{Cod}\ \mathit{t}
proof -
  have \theta: \bigwedge u. \llbracket Diag\ t; Diag\ u; Dom\ t = Cod\ u\ \rrbracket \Longrightarrow
                  Diag(t \mid \cdot \mid u) \land Dom(t \mid \cdot \mid u) = Dom(u \land Cod(t \mid \cdot \mid u)) = Cod(t \mid \cdot \mid u)
  proof (induct t, simp-all add: Diag-TensorE)
    \mathbf{fix} f u
    assume f: C.arr <math>f
    assume u: Diag u
    assume 1: \langle C.dom f \rangle = Cod u
    show Diag(\langle f \rangle [\cdot] u) \wedge Dom(\langle f \rangle [\cdot] u) = Dom u \wedge Cod(\langle f \rangle [\cdot] u) = \langle C.cod f \rangle
      using f \ u \ 1 by (cases u, simp-all)
    next
    \mathbf{fix} \ u \ v \ w
    assume 12: \bigwedge u. \llbracket Diag \ u; Dom \ w = Cod \ u \ \rrbracket \Longrightarrow
                       Diag(w \mid \cdot \mid u) \wedge Dom(w \mid \cdot \mid u) = Dom u \wedge Cod(w \mid \cdot \mid u) = Cod w
    assume vw: Diag (v \otimes w)
    have v: Diag v
      using vw Diag-TensorE [of v w] by force
    have w: Diag w
      using vw Diag-TensorE [of v w] by force
    assume u: Diag u
    assume 1: (Dom\ v\otimes Dom\ w)=Cod\ u
    Cod\ ((v \otimes w) \mid \cdot \mid u) = Cod\ v \otimes Cod\ w
      using u v w 1
    proof (cases u, simp-all)
      \mathbf{fix} \ x \ y
      assume 2: u = Tensor x y
      have 4: is-Prim x \wedge x = \langle un\text{-Prim } x \rangle \wedge C.arr (un\text{-Prim } x) \wedge Diag y \wedge y \neq \mathcal{I}
        using u \ 2 by (cases \ x, cases \ y, simp-all)
      have 5: is-Prim v \wedge v = \langle un\text{-Prim } v \rangle \wedge C.arr (un\text{-Prim } v) \wedge Diag w \wedge w \neq \mathcal{I}
        using v \ w \ vw \ by \ (cases \ v, \ simp-all)
      have 6: C.dom (un-Prim v) = C.cod (un-Prim x) \land Dom w = Cod y
        using 1 2 4 5 apply (cases u, simp-all)
        by (metis\ Cod.simps(1)\ Dom.simps(1)\ term.simps(1))
      have (v \otimes w) [\cdot] u = \langle un\text{-}Prim \ v \cdot un\text{-}Prim \ x \rangle \otimes w |\cdot| y
        using 2 4 5 6 CompDiag.simps(2) [of un-Prim v un-Prim x] by simp
      moreover have Diag(\langle un\text{-}Prim\ v\cdot un\text{-}Prim\ x\rangle\otimes w\ |\cdot|\ y)
      proof -
        have Diag(w | \cdot | y)
```

```
using I2 4 5 6 by simp
       thus ?thesis
        using 4 5 6 Diag.simps(3) [of un-Prim v \cdot un-Prim x \cdot (w \mid \cdot \mid y)]
        by (cases w; cases y) auto
     qed
     ultimately show Diag(v \mid \cdot \mid x \otimes w \mid \cdot \mid y) \land
                    Dom (v \mid \cdot \mid x) = Dom x \land Dom (w \mid \cdot \mid y) = Dom y \land
                    Cod (v | \cdot | x) = Cod v \wedge Cod (w | \cdot | y) = Cod w
       using 4 5 6 12
      by (metis\ (full-types)\ C.cod-comp\ C.dom-comp\ Cod.simps(1)\ CompDiag.simps(2)
          Dom.simps(1) \ C.seqI)
   qed
 qed
 show Diag (t | \cdot | u) using assms \ \theta by blast
 show Dom(t | \cdot | u) = Dom u using assms 0 by blast
 show Cod(t \cdot | u) = Cod t using assms 0 by blast
qed
lemma CompDiag-in-Hom:
assumes Diag t and Diag u and Dom t = Cod u
shows t [\cdot] u \in Hom (Dom u) (Cod t)
 using assms CompDiag-preserves-Diag Diag-implies-Arr by simp
lemma Dom-CompDiag:
assumes Diag\ t and Diag\ u and Dom\ t = Cod\ u
shows Dom (t | \cdot | u) = Dom u
 using assms CompDiag-preserves-Diag(2) by simp
\mathbf{lemma} \ \textit{Cod-CompDiag} :
assumes Diag\ t and Diag\ u and Dom\ t = Cod\ u
shows Cod(t \cdot | u) = Codt
 using assms CompDiag-preserves-Diag(3) by simp
lemma CompDiag-Cod-Diag [simp]:
assumes Diag t
shows Cod\ t \lfloor \cdot \rfloor \ t = t
proof -
 have Diag t \Longrightarrow Cod t |\cdot| t = t
   using C.comp\text{-}cod\text{-}arr
   apply (induct t, auto)
   by (auto simp add: Diag-TensorE)
 thus ?thesis using assms by blast
qed
lemma CompDiag-Diag-Dom [simp]:
assumes Diag t
shows t |\cdot| Dom t = t
proof -
 have Diag t \Longrightarrow t |\cdot| Dom t = t
```

```
using C.comp-arr-dom
    apply (induct\ t,\ auto)
    by (auto simp add: Diag-TensorE)
  thus ?thesis using assms by blast
qed
lemma CompDiag-Ide-Diag [simp]:
assumes Diag\ t and Ide\ a and Dom\ a = Cod\ t
shows a \lfloor \cdot \rfloor t = t
  using assms Ide-in-Hom by simp
lemma CompDiag-Diag-Ide [simp]:
assumes Diag\ t and Ide\ a and Dom\ t = Cod\ a
shows t |\cdot| a = t
  using assms Ide-in-Hom by auto
lemma CompDiag-assoc:
assumes Diag t and Diag u and Diag v
and Dom \ t = Cod \ u and Dom \ u = Cod \ v
shows (t \, \lfloor \cdot \rfloor \, u) \, \lfloor \cdot \rfloor \, v = t \, \lfloor \cdot \rfloor \, (u \, \lfloor \cdot \rfloor \, v)
proof -
  have \bigwedge u \ v. \llbracket \ Diag \ t; \ Diag \ u; \ Diag \ v; \ Dom \ t = Cod \ u; \ Dom \ u = Cod \ v \ \rrbracket \Longrightarrow
                 (t \mid \cdot \mid u) \mid \cdot \mid v = t \mid \cdot \mid (u \mid \cdot \mid v)
  proof (induct\ t,\ simp-all)
    \mathbf{fix} \ f \ u \ v
    assume f: C.arr f
    assume u: Diag u
    assume v: Diag v
    assume 1: \langle C.dom f \rangle = Cod u
    assume 2: Dom u = Cod v
    \mathbf{show} \ (\langle f \rangle \ \lfloor \cdot \rfloor \ u) \ \lfloor \cdot \rfloor \ v = \langle f \rangle \ \lfloor \cdot \rfloor \ (u \ \lfloor \cdot \rfloor \ v)
      using C.comp-assoc by (cases u, simp-all; cases v, simp-all)
    next
    \mathbf{fix}\ u\ v\ w\ x
    assume I1: \land u v. \llbracket Diag w; Diag v; Dom w = Cod \ u; Dom u = Cod \ v \ \rrbracket \Longrightarrow
                          (w \mid \cdot \mid u) \mid \cdot \mid v = w \mid \cdot \mid (u \mid \cdot \mid v)
    assume I2: \bigwedge u \ v. \llbracket \ Diag \ x; \ Diag \ u; \ Diag \ v; \ Dom \ x = Cod \ u; \ Dom \ u = Cod \ v \ \rrbracket \Longrightarrow
                          (x \mid \cdot \mid u) \mid \cdot \mid v = x \mid \cdot \mid (u \mid \cdot \mid v)
    assume wx: Diag (w \otimes x)
    assume u: Diag u
    assume v: Diag v
    assume 1: (Dom\ w\otimes Dom\ x) = Cod\ u
    assume 2: Dom u = Cod v
    show ((w \otimes x) [\cdot] u) [\cdot] v = (w \otimes x) [\cdot] u [\cdot] v
    proof -
      have w: Diag w
         using wx Diag-TensorE by blast
      have x: Diag x
        using wx Diag-TensorE by blast
```

```
have is-Tensor u
        using u 1 by (cases \ u) simp-all
      \mathbf{thus}~? the sis
        using u v apply (cases u, simp-all, cases v, simp-all)
      proof -
        fix u1 u2 v1 v2
        assume 3: u = (u1 \otimes u2)
        assume 4: v = (v1 \otimes v2)
        \mathbf{show} \ (w \ \lfloor \cdot \rfloor \ u1) \ \lfloor \cdot \rfloor \ v1 = w \ \lfloor \cdot \rfloor \ u1 \ \lfloor \cdot \rfloor \ v1 \ \land
               (x \lfloor \cdot \rfloor u2) \lfloor \cdot \rfloor v2 = x \lfloor \cdot \rfloor u2 \lfloor \cdot \rfloor v2
        proof -
          have Diag\ u1 \land Diag\ u2
            using u 3 Diag-TensorE by blast
          moreover have Diag v1 \wedge Diag v2
            using v 4 Diag-TensorE by blast
          ultimately show ?thesis using w x I1 I2 1 2 3 4 by simp
        qed
      qed
    qed
  qed
  thus ?thesis using assms by blast
qed
{\bf lemma}\ {\it Comp Diag-preserves-Ide}:
assumes Ide\ t and Ide\ u and Diag\ t and Diag\ u and Dom\ t = Cod\ u
shows Ide(t | \cdot | u)
proof -
  have \bigwedge u. \llbracket Ide\ t;\ Ide\ u;\ Diag\ t;\ Diag\ u;\ Dom\ t=Cod\ u\ \rrbracket \Longrightarrow Ide\ (CompDiag\ t\ u)
    by (induct\ t;\ simp)
  thus ?thesis using assms by blast
qed
{\bf lemma}\ {\it CompDiag-preserves-Can}:
assumes Can \ t and Can \ u and Diag \ t and Diag \ u and Dom \ t = Cod \ u
shows Can (t | \cdot | u)
proof -
  have \bigwedge u. \llbracket Can \ t \land Diag \ t; Can \ u \land Diag \ u; Dom \ t = Cod \ u \ \rrbracket \Longrightarrow Can \ (t \ | \cdot | \ u)
  proof (induct\ t,\ simp-all)
    \mathbf{fix} t u v
    assume I1: \bigwedge v. \llbracket Diag t; Can v \land Diag v; Dom t = Cod v \rrbracket \implies Can (t | \cdot | v)
    assume I2: \bigwedge v. \llbracket Diag u; Can v \wedge Diag v; Dom u = Cod \ v \ \rrbracket \Longrightarrow Can \ (u \ \lfloor \cdot \rfloor \ v)
    assume tu: Can \ t \land Can \ u \land Diag \ (t \otimes u)
    have t: Can \ t \land Diag \ t
      using tu Diag-TensorE by blast
    have u: Can u \wedge Diag u
      using tu Diag-TensorE by blast
    assume v: Can v \wedge Diag v
    assume 1: (Dom\ t\otimes Dom\ u) = Cod\ v
    show Can ((t \otimes u) [\cdot] v)
```

```
proof -
      have 2: (Dom \ t \otimes Dom \ u) = Cod \ v  using 1 by simp
      show ?thesis
        using v 2
      proof (cases v; simp)
        \mathbf{fix} \ w \ x
        assume wx: v = (w \otimes x)
        have Can \ w \land Diag \ w \ using \ v \ wx \ Diag-TensorE \ [of \ w \ x] \ by \ auto
        moreover have Can x \wedge Diag x using v wx Diag-TensorE [of w x] by auto
        moreover have Dom\ t = Cod\ w using 2\ wx by simp
        moreover have ux: Dom u = Cod x using 2 wx by simp
        ultimately show Can(t | \cdot | w) \wedge Can(u | \cdot | x)
          using t u I1 I2 by simp
      qed
    qed
  qed
  thus ?thesis using assms by blast
qed
lemma Inv-CompDiag:
assumes Can t and Can u and Diag t and Diag u and Dom t = Cod u
shows Inv (t [\cdot] u) = Inv u [\cdot] Inv t
proof -
  have \bigwedge u. \llbracket Can \ t \land Diag \ t; Can \ u \land Diag \ u; Dom \ t = Cod \ u \ \rrbracket \Longrightarrow
          Inv (t | \cdot | u) = Inv u | \cdot | Inv t
  proof (induct\ t,\ simp-all)
    show \bigwedge x \ u . \ [ C.ide \ x \land C.arr \ x; \ Can \ u \land Diag \ u; \ \langle x \rangle = Cod \ u \ ] \Longrightarrow
                  Inv \ u = Inv \ u \ | \cdot | \ Inv \ (Cod \ u)
      by (metis CompDiag-Diag-Dom Inv-Ide Inv-preserves-Can(2) Inv-preserves-Diag
                Ide.simps(1)
    show \bigwedge u. Can u \wedge Diag u \Longrightarrow \mathcal{I} = Cod u \Longrightarrow Inv u = Inv u | \cdot | \mathcal{I}
      by (simp\ add:\ Inv-preserves-Can(2)\ Inv-preserves-Diag)
    \mathbf{fix} t u v
   assume tu: Can t \wedge Can u \wedge Diag (t \otimes u)
   have t: Can \ t \land Diag \ t
      using tu Diag-TensorE by blast
   \mathbf{have}\ u \colon \mathit{Can}\ u \, \wedge \, \mathit{Diag}\ u
      using tu Diag-TensorE by blast
    assume I1: \bigwedge v. \llbracket Diag t; Can v \wedge Diag v; Dom t = Cod v \rrbracket \Longrightarrow
                      Inv (t | \cdot | v) = Inv v | \cdot | Inv t
   assume I2: \bigwedge v. \llbracket Diag u; Can v \wedge Diag v; Dom u = Cod v \rrbracket \Longrightarrow
                      Inv (u | \cdot | v) = Inv v | \cdot | Inv u
   assume v: Can \ v \wedge Diag \ v
   assume 1: (Dom\ t\otimes Dom\ u) = Cod\ v
   show Inv ((t \otimes u) [\cdot] v) = Inv v [\cdot] (Inv t \otimes Inv u)
      using v 1
    proof (cases v, simp-all)
      \mathbf{fix} \ w \ x
      assume wx: v = (w \otimes x)
```

```
have Can \ w \land Diag \ w \ using \ v \ wx \ Diag-TensorE \ [of \ w \ x] \ by \ auto
      moreover have Can \ x \land Diag \ x \ using \ v \ wx \ Diag-TensorE \ [of \ w \ x] by auto
      moreover have Dom\ t = Cod\ w using wx\ 1 by simp
      moreover have Dom u = Cod x using wx 1 by simp
      ultimately show Inv(t | \cdot | w) = Inv w | \cdot | Inv t \wedge
                       Inv (u | \cdot | x) = Inv x | \cdot | Inv u
        using t u I1 I2 by simp
    qed
  qed
  thus ?thesis using assms by blast
lemma Can-and-Diag-implies-Ide:
assumes Can t and Diag t
shows Ide t
proof -
 have \llbracket Can \ t; Diag \ t \rrbracket \Longrightarrow Ide \ t
   apply (induct\ t,\ simp-all)
   by (simp add: Diag-TensorE)
  thus ?thesis using assms by blast
qed
lemma CompDiag-Can-Inv [simp]:
assumes Can t and Diag t
shows t | \cdot | Inv t = Cod t
  using assms Can-and-Diag-implies-Ide Ide-in-Hom by simp
lemma CompDiag-Inv-Can [simp]:
assumes Can t and Diag t
shows Inv \ t \ |\cdot| \ t = Dom \ t
  using assms Can-and-Diag-implies-Ide Ide-in-Hom by simp
The next fact is a syntactic version of the interchange law, for diagonal terms.
\mathbf{lemma}\ \textit{CompDiag-TensorDiag} :
assumes Diag t and Diag u and Diag v and Diag w
and Seq t v and Seq u w
shows (t \mid \otimes \mid u) \mid \cdot \mid (v \mid \otimes \mid w) = (t \mid \cdot \mid v) \mid \otimes \mid (u \mid \cdot \mid w)
proof -
  have \bigwedge u \ v \ w. \llbracket \ Diag \ t; \ Diag \ u; \ Diag \ v; \ Diag \ w; \ Seq \ t \ v; \ Seq \ u \ w \ \rrbracket \Longrightarrow
                  (t \boxtimes u) \sqcup (v \boxtimes w) = (t \sqcup v) \boxtimes (u \sqcup w)
  proof (induct t, simp-all)
   \mathbf{fix} \ u \ v \ w
   assume u: Diag u
   assume v: Diag v
   assume w: Diag w
   assume uw: Seq u w
   show Arr\ v \wedge \mathcal{I} = Cod\ v \Longrightarrow u \mid \cdot \mid (v \mid \otimes \mid w) = v \mid \otimes \mid (u \mid \cdot \mid w)
      using u \ v \ w \ uw by (cases \ v) \ simp-all
   show \bigwedge f. \llbracket C.arr f; Arr v \land \langle C.dom f \rangle = Cod v \rrbracket \Longrightarrow
```

```
(\langle f \rangle \ \lfloor \otimes \rfloor \ u) \ \lfloor \cdot \rfloor \ (v \ \lfloor \otimes \rfloor \ w) = (\langle f \rangle \ \lfloor \cdot \rfloor \ v) \ \lfloor \otimes \rfloor \ (u \ \lfloor \cdot \rfloor \ w)
proof -
  \mathbf{fix} f
  assume f: C.arr f
  assume 1: Arr \ v \land \langle C.dom \ f \rangle = Cod \ v
  show (\langle f \rangle \mid \otimes \mid u) \mid \cdot \mid (v \mid \otimes \mid w) = (\langle f \rangle \mid \cdot \mid v) \mid \otimes \mid (u \mid \cdot \mid w)
  proof -
     have 2: v = \langle un\text{-}Prim \ v \rangle \wedge C.arr \ (un\text{-}Prim \ v) \ \text{using} \ v \ 1 \ \text{by} \ (cases \ v) \ simp-all
     have u = \mathcal{I} \Longrightarrow ?thesis
       using v w uw 1 2 Cod.simps(3) CompDiag-Cod-Diag Dom.simps(2)
                Tensor Diag-Prim\ Tensor Diag-term-Unity\ Tensor Diag-preserves-Diag(3)
       by (cases \ w) \ simp-all
     moreover have u \neq \mathcal{I} \Longrightarrow ?thesis
     proof -
       assume 3: u \neq \mathcal{I}
       hence 4: w \neq \mathcal{I} using u \ w \ uw by (cases u, simp-all; cases w, simp-all)
       have (\langle f \rangle \ \lfloor \otimes \rfloor \ u) \ \lfloor \cdot \rfloor \ (v \ \lfloor \otimes \rfloor \ w) = (\langle f \rangle \otimes u) \ \lfloor \cdot \rfloor \ (v \otimes w)
       proof -
          have \langle f \rangle \mid \otimes \mid u = \langle f \rangle \otimes u
            using u f 3 TensorDiag-Diag by (cases u) simp-all
          moreover have v \mid \otimes \mid w = v \otimes w
            using w 2 4 TensorDiag-Diag by (cases v, simp-all; cases w, simp-all)
          ultimately show ?thesis by simp
       qed
       also have 5: ... = (\langle f \rangle \ \lfloor \cdot \rfloor \ v) \otimes (u \ \lfloor \cdot \rfloor \ w) by simp
       also have ... = (\langle f \rangle | \cdot | v) | \otimes | (u | \cdot | w)
          using f u w uw 1 2 3 4 5
                  TensorDiag-Diag TensorDiag-Prim TensorDiag-preserves-Diag(1)
                  CompDiag-preserves-Diag(1)
          by (metis\ Cod.simps(3)\ Dom.simps(1)\ Dom.simps(3)\ Diag.simps(2))
       finally show ?thesis by blast
     ultimately show ?thesis by blast
  qed
qed
fix t1 t2
assume I2: \land u \ v \ w. \llbracket \ Diag \ t2; \ Diag \ u; \ Diag \ v; \ Diag \ w;
                            Arr\ v \wedge Dom\ t2 = Cod\ v;\ Seg\ u\ w\ \rrbracket \Longrightarrow
                            (t2 \lfloor \otimes \rfloor \ u) \ \lfloor \cdot \rfloor \ (v \lfloor \otimes \rfloor \ w) = (t2 \lfloor \cdot \rfloor \ v) \ \lfloor \otimes \rfloor \ (u \lfloor \cdot \rfloor \ w)
assume t12: Diag (t1 \otimes t2)
have t1: t1 = \langle un\text{-}Prim\ t1 \rangle \land C.arr\ (un\text{-}Prim\ t1) \land Diag\ t1
  using t12 by (cases t1) simp-all
have t2: Diag t2 \wedge t2 \neq \mathcal{I}
  using t12 by (cases t1) simp-all
assume 1: Arr t1 \land Arr t2 \land Arr v \land Dom t1 \otimes Dom t2 = Cod v
\mathbf{show} \ ((t1 \otimes t2) \mid \otimes \mid u) \mid \cdot \mid (v \mid \otimes \mid w) = ((t1 \otimes t2) \mid \cdot \mid v) \mid \otimes \mid (u \mid \cdot \mid w)
proof -
  have u = \mathcal{I} \Longrightarrow ?thesis
     using w ww TensorDiag-term-Unity CompDiag-Cod-Diag by (cases w) simp-all
```

```
moreover have u \neq \mathcal{I} \Longrightarrow ?thesis
proof -
  assume u': u \neq \mathcal{I}
  hence w': w \neq \mathcal{I} using u w uw by (cases u; simp; cases w; simp)
  show ?thesis
    using 1 v
  proof (cases v, simp-all)
    fix v1 v2
    assume v12: v = Tensor v1 v2
    have v1: v1 = \langle un\text{-}Prim\ v1 \rangle \land C.arr\ (un\text{-}Prim\ v1) \land Diag\ v1
      using v v12 by (cases v1) simp-all
    have v2: Diag v2 \wedge v2 \neq \mathcal{I}
      using v v12 by (cases v1) simp-all
    have 2: v = (\langle un\text{-}Prim \ v1 \rangle \otimes v2)
      using v1 v12 by simp
    show ((t1 \otimes t2) | \otimes | u) | \cdot | ((v1 \otimes v2) | \otimes | w)
             = ((t1 \, \lfloor \cdot \rfloor \, v1) \otimes (t2 \, \lfloor \cdot \rfloor \, v2)) \, \lfloor \otimes \rfloor \, (u \, \lfloor \cdot \rfloor \, w)
    proof -
      have 3: (t1 \otimes t2) | \otimes | u = t1 | \otimes | (t2 | \otimes | u)
        using u u' by (cases u) simp-all
      have 4: v \mid \otimes \mid w = v1 \mid \otimes \mid (v2 \mid \otimes \mid w)
        using v w v1 v2 2 TensorDiag-assoc TensorDiag-Diag by metis
      have ((t1 \otimes t2) | \otimes | u) | \cdot | ((v1 \otimes v2) | \otimes | w)
               = (t1 \lfloor \otimes \rfloor (t2 \lfloor \otimes \rfloor u)) \lfloor \cdot \rfloor (v1 \lfloor \otimes \rfloor (v2 \lfloor \otimes \rfloor w))
        using 3 4 v12 by simp
      also have ... = (t1 \mid \cdot \mid v1) \mid \otimes \mid ((t2 \mid \otimes \mid u) \mid \cdot \mid (v2 \mid \otimes \mid w))
      proof -
        have is-Tensor (t2 \mid \otimes \mid u)
           using t2 u u' not-is-Tensor-TensorDiagE by auto
        moreover have is-Tensor (v2 \mid \otimes \mid w)
           using v2 v12 w w' not-is-Tensor-TensorDiagE by auto
        ultimately show ?thesis
           using u u' v w t1 v1 t12 v12 TensorDiag-Prim not-is-Tensor-Unity
           by (metis\ (no-types,\ lifting)\ CompDiag.simps(2)\ CompDiag.simps(3)
               is-Tensor-def)
      qed
      also have ... = (t1 \mid \cdot \mid v1) \mid \otimes \mid (t2 \mid \cdot \mid v2) \mid \otimes \mid (u \mid \cdot \mid w)
        using u w uw t2 v2 1 2 Diag-implies-Arr I2 by fastforce
      also have ... = ((t1 \mid \cdot \mid v1) \otimes (t2 \mid \cdot \mid v2)) \mid \otimes \mid (u \mid \cdot \mid w)
      proof -
        have u \mid \cdot \mid w \neq Unity
        proof -
           have Arr v1 \wedge \langle C.dom (un-Prim t1) \rangle = Cod v1
             using t1 v1 1 2 by (cases t1, auto)
           thus ?thesis
             using t1 t2 v1 v2 u w uw u' CompDiag-preserves-Diag
                    TensorDiag-preserves-Diag TensorDiag-Prim
             by (metis\ (mono-tags,\ lifting)\ Cod.simps(2)\ Cod.simps(3)
                 TensorDiag.simps(2) term.distinct(3))
```

```
qed
hence ((t1 \lfloor \cdot \rfloor v1) \otimes (t2 \lfloor \cdot \rfloor v2)) \lfloor \otimes \rfloor (u \lfloor \cdot \rfloor w)
= (t1 \lfloor \cdot \rfloor v1) \lfloor \otimes \rfloor ((t2 \lfloor \cdot \rfloor v2) \lfloor \otimes \rfloor (u \lfloor \cdot \rfloor w))
by (cases \ u \lfloor \cdot \rfloor \ w) \ simp-all
thus ?thesis by argo
qed
finally show ?thesis by blast
qed
qed
qed
ultimately show ?thesis by blast
qed
qed
thus ?thesis using assms by blast
```

The following function reduces an arrow to diagonal form. The precise relationship between a term and its diagonalization is developed below.

```
fun Diagonalize :: 'a term \Rightarrow 'a term (\langle | - | \rangle)
where \lfloor \langle f \rangle \rfloor = \langle f \rangle
     \mid \lfloor \mathcal{I} \rfloor = \mathcal{I}
      | [t \otimes u] = [t] [\otimes] [u]
     | \lfloor t \cdot u \rfloor = \lfloor t \rfloor \lfloor \cdot \rfloor \lfloor u \rfloor
       \lfloor \mathbf{l}[t] \rfloor = \lfloor t \rfloor
      \begin{bmatrix} \mathbf{l}^{-1}[t] \end{bmatrix} = \begin{bmatrix} t \end{bmatrix}
\begin{bmatrix} \mathbf{r}[t] \end{bmatrix} = \begin{bmatrix} t \end{bmatrix}
       \lfloor \mathbf{r}^{-1}[t] \rfloor = \lfloor t \rfloor
     \mathbf{lemma}\ \textit{Diag-Diagonalize} :
assumes Arr\ t
shows Diag \mid t \mid and Dom \mid t \mid = \mid Dom \mid t \mid and Cod \mid t \mid = \mid Cod \mid t \mid
  have \theta: Arr t \Longrightarrow Diag \mid t \mid \land Dom \mid t \mid = \mid Dom \mid t \mid \land Cod \mid t \mid = \mid Cod \mid t \mid
     using TensorDiag-preserves-Diag CompDiag-preserves-Diag TensorDiag-assoc
     apply (induct\ t)
                apply auto
      apply (metis (full-types))
     by (metis (full-types))
  show Diag [t] using assms \ \theta by blast
  show Dom \lfloor t \rfloor = \lfloor Dom \ t \rfloor using assms \ \theta by blast
  show Cod |t| = |Cod t| using assms \ \theta by blast
qed
lemma Diagonalize-in-Hom:
assumes Arr t
shows |t| \in Hom \mid Dom \mid t \mid Cod \mid t \mid
  using assms Diag-Diagonalize Diag-implies-Arr by blast
```

```
lemma Diagonalize-Dom:
assumes Arr\ t
shows |Dom\ t| = Dom\ |t|
 using assms Diagonalize-in-Hom by simp
\mathbf{lemma}\ \textit{Diagonalize-Cod}:
assumes Arr t
shows |Cod t| = Cod |t|
 using assms Diagonalize-in-Hom by simp
lemma Diagonalize-preserves-Ide:
assumes Ide \ a
shows Ide \mid a \mid
proof -
 have Ide \ a \Longrightarrow Ide \ |a|
   using Ide-implies-Arr TensorDiag-preserves-Ide Diag-Diagonalize
   by (induct a) simp-all
 thus ?thesis using assms by blast
qed
The diagonalizations of canonical arrows are identities.
\mathbf{lemma}\ \mathit{Ide-Diagonalize-Can} :
assumes Can t
shows Ide \mid t \mid
proof -
 have Can \ t \Longrightarrow Ide \ |t|
 using Can-implies-Arr TensorDiag-preserves-Ide Diag-Diagonalize CompDiag-preserves-Ide
         TensorDiag-preserves-Diag
   by (induct t) auto
 thus ?thesis using assms by blast
\mathbf{lemma}\ \mathit{Diagonalize-preserves-Can} :
assumes Can t
shows Can \lfloor t \rfloor
 using assms Ide-Diagonalize-Can Ide-implies-Can by auto
lemma Diagonalize-Diag [simp]:
assumes Diag t
shows \lfloor t \rfloor = t
proof -
 have Diag\ t \Longrightarrow \lfloor t \rfloor = t
   apply (induct\ t,\ simp-all)
   using TensorDiag-Prim Diag-TensorE by metis
 thus ?thesis using assms by blast
qed
lemma Diagonalize-Diagonalize [simp]:
```

```
assumes Arr t
shows \lfloor \lfloor t \rfloor \rfloor = \lfloor t \rfloor
 using assms Diag-Diagonalize Diagonalize-Diag by blast
lemma Diagonalize-Tensor:
assumes Arr\ t and Arr\ u
shows |t \otimes u| = ||t| \otimes |u||
 using assms Diagonalize-Diagonalize by simp
lemma Diagonalize-Tensor-Unity-Arr [simp]:
assumes Arr u
shows |\mathcal{I} \otimes u| = |u|
 using assms by simp
lemma Diagonalize-Tensor-Arr-Unity [simp]:
assumes Arr t
shows |t \otimes \mathcal{I}| = |t|
 using assms by simp
lemma Diagonalize-Tensor-Prim-Arr [simp]:
assumes arr f and Arr u and |u| \neq Unity
shows \lfloor \langle f \rangle \otimes u \rfloor = \langle f \rangle \otimes \lfloor u \rfloor
 using assms by simp
lemma Diagonalize-Tensor-Tensor:
assumes Arr\ t and Arr\ u and Arr\ v
shows |(t \otimes u) \otimes v| = ||t| \otimes (|u| \otimes |v|)|
 using assms Diag-Diagonalize Diagonalize-Diagonalize by (simp add: TensorDiag-assoc)
lemma Diagonalize-Comp-Cod-Arr:
assumes Arr t
shows |Cod t \cdot t| = |t|
proof -
 have Arr\ t \Longrightarrow \lfloor Cod\ t \cdot t \rfloor = \lfloor t \rfloor
   using C.comp\text{-}cod\text{-}arr
   apply (induct t, simp-all)
   using CompDiag-TensorDiag Arr-implies-Ide-Cod Ide-in-Hom Diag-Diagonalize
         Diagonalize-in-Hom
      apply simp
   using CompDiag-preserves-Diag CompDiag-Cod-Diag Diag-Diagonalize
     apply metis
   using CompDiag-TensorDiag Arr-implies-Ide-Cod Ide-in-Hom TensorDiag-in-Hom
         TensorDiag-preserves-Diag Diag-Diagonalize Diagonalize-in-Hom TensorDiag-assoc
   by simp-all
 thus ?thesis using assms by blast
qed
lemma Diagonalize-Comp-Arr-Dom:
assumes Arr t
```

```
shows |t \cdot Dom t| = |t|
proof -
  have Arr\ t \Longrightarrow |t \cdot Dom\ t| = |t|
    by (metis\ Comp Diag-Diag-Diag-Diag-Diagonalize(1-2)\ Diagonalize.simps(4))
  thus ?thesis using assms by blast
qed
lemma Diagonalize-Inv:
assumes Can t
shows |Inv t| = Inv |t|
proof -
  have Can \ t \Longrightarrow |Inv \ t| = Inv \ |t|
  proof (induct t, simp-all)
    \mathbf{fix} \ u \ v
    assume I1: |Inv u| = Inv |u|
    assume I2: |Inv v| = Inv |v|
    \mathbf{show} \ \mathit{Can} \ u \wedge \mathit{Can} \ v \Longrightarrow \mathit{Inv} \ \lfloor u \rfloor \ \lfloor \otimes \rfloor \ \mathit{Inv} \ \lfloor v \rfloor = \mathit{Inv} \ (\lfloor u \rfloor \ \lfloor \otimes \rfloor \ \lfloor v \rfloor)
      using Inv-TensorDiag Diag-Diagonalize Can-implies-Arr Diagonalize-preserves-Can
      by simp
    show Can \ u \land Can \ v \land Dom \ u = Cod \ v \Longrightarrow Inv \ |v| \ |\cdot| \ Inv \ |u| = Inv \ (|u| \ |\cdot| \ |v|)
      using Inv-CompDiag Diag-Diagonalize Can-implies-Arr Diagonalize-in-Hom
             Diagonalize-preserves-Can I1 I2
      by simp
    \mathbf{fix} \ w
    assume I3: |Inv w| = Inv |w|
    assume uvw: Can\ u \wedge Can\ v \wedge Can\ w
    show Inv \mid u \mid | \otimes | (Inv \mid v \mid | \otimes | Inv \mid w |) = Inv ((|u| \mid \otimes | |v|) \mid \otimes | |w|)
      using uvw I1 I2 I3
             Inv-TensorDiag Diag-Diagonalize Can-implies-Arr Diagonalize-preserves-Can
             Tensor Diag-preserves-Diag\ Tensor Diag-preserves-Can\ Tensor Diag-assoc
    \mathbf{show} \ (Inv \ \lfloor u \rfloor \ \lfloor \otimes \rfloor \ Inv \ \lfloor v \rfloor) \ \lfloor \otimes \rfloor \ Inv \ \lfloor w \rfloor = Inv \ (\lfloor u \rfloor \ \lfloor \otimes \rfloor \ (\lfloor v \rfloor \ \lfloor \otimes \rfloor \ \lfloor w \rfloor))
      by (simp add: Can-implies-Arr Ide-Diagonalize-Can TensorDiag-assoc
           Tensor Diag-preserves-Diag(1) Tensor Diag-preserves-Ide Diag-Diagonalize(1) uvw)
  qed
  thus ?thesis using assms by blast
```

Our next objective is to begin making the connection, to be completed in a subsequent section, between arrows and their diagonalizations. To summarize, an arrow t and its diagonalization $\lfloor t \rfloor$ are opposite sides of a square whose other sides are certain canonical terms $Dom\ t \downarrow \in Hom\ (Dom\ t)\ \lfloor Dom\ t \rfloor$ and $Cod\ t \downarrow \in Hom\ (Cod\ t)\ \lfloor Cod\ t \rfloor$, where $Dom\ t \downarrow$ and $Cod\ t \downarrow$ are defined by the function red below. The coherence theorem amounts to the statement that every such square commutes when the formal terms involved are evaluated in the evident way in any monoidal category.

Function red defined below takes an identity term a to a canonical arrow $a \downarrow \in Hom$ $a \lfloor a \rfloor$. The auxiliary function $red\mathcal{Z}$ takes a pair (a, b) of diagonal identity terms and produces a canonical arrow $a \downarrow b \in Hom$ $(a \otimes b) \lfloor a \otimes b \rfloor$. The canonical arrow $a \downarrow$

amounts to a "parallel innermost reduction" from a to $\lfloor a \rfloor$, where the reduction steps are canonical arrows that involve the unitors and associator only in their uninverted forms. In general, a parallel innermost reduction from a will not be unique: at some points there is a choice available between left and right unitors and at other points there are choices between unitors and associators. These choices are inessential, and the ordering of the clauses in the function definitions below resolves them in an arbitrary way. What is more important is having chosen an innermost reduction, which is what allows us to write these definitions in structurally recursive form.

The essence of coherence is that the axioms for a monoidal category allow us to prove that any reduction from a to $\lfloor a \rfloor$ is equivalent (under evaluation of terms) to a parallel innermost reduction. The problematic cases are terms of the form $((a \otimes b) \otimes c) \otimes d$, which present a choice between an inner and outer reduction that lead to terms with different structures. It is of course the pentagon axiom that ensures the confluence (under evaluation) of the two resulting paths.

Although simple in appearance, the structurally recursive definitions below were difficult to get right even after I started to understand what I was doing. I wish I could have just written them down straightaway. If so, then I could have avoided laboriously constructing and then throwing away thousands of lines of proof text that used a non-structural, "operational" approach to defining a reduction from a to |a|.

```
fun red2
                                                (infixr \langle \downarrow \rangle 53)
where \mathcal{I} \Downarrow a = \mathbf{l}[a]
        \langle f \rangle \Downarrow \mathcal{I} = \mathbf{r}[\langle f \rangle]
        \langle f \rangle \Downarrow a = \langle f \rangle \otimes a
       (a \otimes b) \Downarrow \mathcal{I} = \mathbf{r}[a \otimes b]
        (a \otimes b) \Downarrow c = (a \Downarrow |b \otimes c|) \cdot (a \otimes (b \Downarrow c)) \cdot \mathbf{a}[a, b, c]
      \mid a \Downarrow b = undefined
                                                (\leftarrow \downarrow \rightarrow [56] 56)
fun red
where \mathcal{I} \downarrow = \mathcal{I}
        \langle f \rangle \downarrow = \langle f \rangle
        (a \otimes b) \downarrow = (if \ Diag \ (a \otimes b) \ then \ a \otimes b \ else \ (|a| \Downarrow |b|) \cdot (a \downarrow \otimes b \downarrow))
      | a \downarrow = undefined
lemma red-Diag [simp]:
assumes Diag \ a
shows a \downarrow = a
   using assms by (cases a) simp-all
lemma red2-Diag:
assumes Diag (a \otimes b)
shows a \Downarrow b = a \otimes b
proof -
   have a: a = \langle un\text{-}Prim \ a \rangle
     using assms Diag-TensorE by metis
   have b: Diag b \wedge b \neq \mathcal{I}
     using assms Diag-TensorE by metis
   show ?thesis using a b
```

```
apply (cases \ b)
       apply simp-all
      apply (metis\ red2.simps(3))
    by (metis\ red2.simps(4))
qed
lemma Can-red2:
assumes Ide a and Diag a and Ide b and Diag b
shows Can (a \Downarrow b)
and a \Downarrow b \in Hom \ (a \otimes b) \mid a \otimes b \mid
proof
  have \theta: \bigwedge b. \llbracket Ide \ a \land Diag \ a; Ide \ b \land Diag \ b \rrbracket \Longrightarrow
                     Can (a \Downarrow b) \land a \Downarrow b \in Hom (a \otimes b) [a \otimes b]
  proof (induct a, simp-all)
    \mathbf{fix} \ b
    show Ide b \wedge Diag b \Longrightarrow Can b \wedge Dom b = b \wedge Cod b = b
       using Ide-implies-Can Ide-in-Hom Diagonalize-Diag by auto
    \mathbf{fix} f
    show \llbracket C.ide f \land C.arr f; Ide b \land Diag b \rrbracket \Longrightarrow
               Can (\langle f \rangle \Downarrow b) \land Arr (\langle f \rangle \Downarrow b) \land Dom (\langle f \rangle \Downarrow b) = \langle f \rangle \otimes b \land b
                                                      Cod (\langle f \rangle \Downarrow b) = \langle f \rangle [\boxtimes] b
       using Ide-implies-Can Ide-in-Hom by (cases b; auto)
    next
    \mathbf{fix} \ a \ b \ c
    assume ab: Ide a \wedge Ide \ b \wedge Diag \ (Tensor \ a \ b)
    assume c: Ide\ c \land Diag\ c
    assume I1: \land c. \llbracket Diag \ a; Ide \ c \land Diag \ c \rrbracket \Longrightarrow
                           Can (a \Downarrow c) \land Arr (a \Downarrow c) \land Dom (a \Downarrow c) = a \otimes c \land
                                                               Cod(a \Downarrow c) = a | \otimes | c
    assume I2: \land c. \parallel Diag \ b; \ Ide \ c \land Diag \ c \parallel \Longrightarrow
                           Can (b \Downarrow c) \land Arr (b \Downarrow c) \land Dom (b \Downarrow c) = b \otimes c \land
                                                               Cod (b \Downarrow c) = b | \otimes | c
    show Can ((a \otimes b) \Downarrow c) \wedge Arr ((a \otimes b) \Downarrow c) \wedge
            Dom\ ((a\otimes b)\Downarrow c)=(a\otimes b)\otimes c\wedge
            Cod\ ((a \otimes b) \Downarrow c) = (\lfloor a \rfloor \lfloor \otimes \rfloor \lfloor b \rfloor) \lfloor \otimes \rfloor c
    proof -
       have a: Diag \ a \land Ide \ a
          using ab Diag-TensorE by blast
       have b: Diag b \wedge Ide b
          using ab Diag-TensorE by blast
       have c = \mathcal{I} \Longrightarrow ?thesis
       proof -
         assume 1: c = \mathcal{I}
         have 2: (a \otimes b) \Downarrow c = \mathbf{r}[a \otimes b]
            using 1 by simp
         have 3: Can(a \Downarrow b) \land Arr(a \Downarrow b) \land Dom(a \Downarrow b) = a \otimes b \land Cod(a \Downarrow b) = a \otimes b
            using a b ab 1 2 I1 Diagonalize-Diag Diagonalize.simps(3) by metis
         hence 4: Seq (a \Downarrow b) \mathbf{r}[a \otimes b]
            using ab
```

```
by (metis (mono-tags, lifting) Arr.simps(7) Cod.simps(3) Cod.simps(7)
        Diag-implies-Arr Ide-in-Hom mem-Collect-eq)
  have Can((a \otimes b) \Downarrow c)
   using 1 2 3 4 ab by (simp add: Ide-implies-Can)
  moreover have Dom((a \otimes b) \downarrow c) = (a \otimes b) \otimes c
   using 1 2 3 4 a b ab I1 Ide-in-Hom TensorDiag-preserves-Diag by simp
  moreover have Cod ((a \otimes b) \downarrow c) = |(a \otimes b) \otimes c|
  using 1 2 3 4 ab using Diagonalize-Diag by fastforce
  ultimately show ?thesis using Can-implies-Arr by (simp add: 1 ab)
qed
moreover have c \neq \mathcal{I} \Longrightarrow ?thesis
proof -
 assume 1: c \neq \mathcal{I}
 have 2: (a \otimes b) \Downarrow c = (a \Downarrow |b \otimes c|) \cdot (a \otimes b \Downarrow c) \cdot \mathbf{a}[a, b, c]
   using 1 a b ab c by (cases c; simp)
 Cod (a \Downarrow |b \otimes c|) = |a \otimes (b \otimes c)|
  proof -
   have Can(a \Downarrow |b \otimes c|) \land Dom(a \Downarrow |b \otimes c|) = a \otimes |b \otimes c| \land
                              Cod (a \Downarrow |b \otimes c|) = |a \otimes |b \otimes c||
     using a c ab 1 2 I1 Diag-implies-Arr Diag-Diagonalize(1)
           Diagonalize \hbox{-} preserves \hbox{-} Ide \ Tensor Diag \hbox{-} preserves \hbox{-} Ide
           Tensor Diag-preserves-Diag(1)
     by auto
   moreover have |a \otimes |b \otimes c|| = |a \otimes (b \otimes c)|
     using ab c Diagonalize-Tensor Diagonalize-Diagonalize Diag-implies-Arr
     by (metis\ Arr.simps(3)\ Diagonalize.simps(3))
   ultimately show ?thesis by metis
  qed
  have 4: Can(b \Downarrow c) \land Dom(b \Downarrow c) = b \otimes c \land Cod(b \Downarrow c) = |b \otimes c|
   using b c ab 1 2 I2 by simp
 hence Can (a \otimes (b \downarrow c)) \wedge Dom (a \otimes (b \downarrow c)) = a \otimes (b \otimes c) \wedge a \otimes b
                             Cod\ (a\otimes (b\Downarrow c))=a\otimes |b\otimes c|
   using ab Ide-implies-Can Ide-in-Hom by force
  moreover have [a \otimes [b \otimes c]] = [a \otimes b] [\otimes] [c]
  proof -
   have |a \otimes |b \otimes c| = a |\otimes |(b |\otimes |c)
     using a \ b \ c \ 4
     by (metis Arr-implies-Ide-Dom Can-implies-Arr Ide-implies-Arr
          Diag-Diagonalize(1) Diagonalize.simps(3) Diagonalize-Diag(1)
   also have ... = (a \mid \otimes \mid b) \mid \otimes \mid c
     using a b ab c TensorDiag-assoc by metis
   also have ... = |a \otimes b| |\otimes |c|
     using a b c by (metis Diagonalize.simps(3) Diagonalize-Diag)
   finally show ?thesis by blast
  moreover have Can \mathbf{a}[a, b, c] \wedge Dom \mathbf{a}[a, b, c] = (a \otimes b) \otimes c \wedge a
                                 Cod \mathbf{a}[a, b, c] = a \otimes (b \otimes c)
   using ab c Ide-implies-Can Ide-in-Hom by auto
```

```
ultimately show ?thesis
                   using c 2 3 4 Diagonalize-Diagonalize Ide-implies-Can
                               Diagonalize\hbox{-}Diag\ Arr-implies\hbox{-}Ide\hbox{-}Dom\ Can-implies\hbox{-}Arr
                   by (metis Can.simps(4) Cod.simps(4) Dom.simps(4) Diagonalize.simps(3))
            ultimately show ?thesis by blast
       qed
    qed
    show Can (a \downarrow b) using assms \ \theta by blast
    show a \Downarrow b \in Hom \ (a \otimes b) \ | \ a \otimes b | \ \mathbf{using} \ \theta \ assms \ \mathbf{by} \ blast
qed
lemma red2-in-Hom:
assumes Ide a and Diag a and Ide b and Diag b
shows a \Downarrow b \in Hom \ (a \otimes b) \mid a \otimes b \mid
    using assms Can-red2 Can-implies-Arr by simp
lemma Can-red:
assumes Ide a
shows Can (a\downarrow) and a\downarrow \in Hom \ a \mid a\mid
proof -
    have \theta: Ide\ a \Longrightarrow Can\ (a\downarrow) \land a\downarrow \in Hom\ a\mid a\mid
    proof (induct a, simp-all)
       fix b c
       assume b: Can(b\downarrow) \land Arr(b\downarrow) \land Dom(b\downarrow) = b \land Cod(b\downarrow) = |b|
       assume c: Can(c\downarrow) \land Arr(c\downarrow) \land Dom(c\downarrow) = c \land Cod(c\downarrow) = |c|
       assume bc: Ide\ b \land Ide\ c
       show (Diag (b \otimes c) \longrightarrow
                          Can \ b \land Can \ c \land Dom \ b = b \land Dom \ c = c \land Cod \ b \otimes Cod \ c = |b| \ |\otimes| \ |c|) \land
                   (\neg Diag (b \otimes c) \longrightarrow
                          Can(|b| \Downarrow |c|) \land Dom(|b| \Downarrow |c|) = |b| \otimes |c| \land Arr(|b| \Downarrow |c|) \land
                          Dom([b] \Downarrow [c]) = [b] \otimes [c] \wedge Cod([b] \Downarrow [c]) = [b] [\otimes] [c])
       proof
            show Diag\ (b \otimes c) \longrightarrow
                            Can \ b \land Can \ c \land Dom \ b = b \land Dom \ c = c \land Cod \ b \otimes Cod \ c = |b| \ |\otimes| \ |c|
                using bc Diag-TensorE Ide-implies-Can Inv-preserves-Can(2)
                            CompDiag-Ide-Diag\ Inv-Ide\ Diagonalize.simps(3)\ Diagonalize-Diag
               by (metis CompDiag-Inv-Can)
            show \neg Diag (b \otimes c) \longrightarrow
                            Can (\lfloor b \rfloor \Downarrow \lfloor c \rfloor) \land Dom (\lfloor b \rfloor \Downarrow \lfloor c \rfloor) = \lfloor b \rfloor \otimes \lfloor c \rfloor \land Arr (\lfloor b \rfloor \Downarrow \lfloor c \rfloor) \land
                                                              Dom ( \lfloor b \rfloor \Downarrow \lfloor c \rfloor ) = \lfloor b \rfloor \otimes \lfloor c \rfloor \wedge Cod ( \lfloor b \rfloor \Downarrow \lfloor c \rfloor ) = \lfloor b \rfloor \lfloor \otimes \rfloor \lfloor c \rfloor
                using b c bc Ide-in-Hom Ide-implies-Can Can-red2 Diag-Diagonalize
                            Diagonalize-preserves-Ide\ Tensor Diag-preserves-Diag\ Tensor Diag-preserves-Ide\ Diagonalize-preserves-Ide\ Diagonalize-
                by force
       qed
    qed
    show Can (a\downarrow) using assms \ \theta by blast
    show a \downarrow \in Hom \ a \mid a \mid using \ assms \ 0 \ by \ blast
qed
```

```
lemma red-in-Hom: assumes Ide\ a shows a \downarrow \in Hom\ a\ \lfloor a \rfloor using assms\ Can-red\ Can-implies-Arr\ by\ simp lemma Diagonalize-red\ [simp]: assumes Ide\ a shows \lfloor a \downarrow \rfloor = \lfloor a \rfloor using assms\ Can-red\ Ide-Diagonalize-Can\ Diagonalize-in-Hom\ Ide-in-Hom\ by\ fastforce lemma Diagonalize-red2\ [simp]: assumes Ide\ a and Ide\ b and Diag\ a and Diag\ b shows \lfloor a\ \downarrow b \rfloor = \lfloor a \otimes b \rfloor using assms\ Can-red2\ Ide-Diagonalize-Can\ Diagonalize-in-Hom\ [of\ a\ \downarrow b] red2-in-Hom\ Ide-in-Hom by simp
```

2.7 Coherence

end

If D is a monoidal category, then a functor $V: C \to D$ extends in an evident way to an evaluation map that interprets each formal arrow of the monoidal language of C as an arrow of D.

```
locale evaluation-map =
  monoidal-language C +
  monoidal-category D T \alpha \iota +
   V: functor C D V
for C :: 'c \ comp
                                                    (infixr \langle \cdot_C \rangle 55)
and D :: 'd comp
                                                     (infixr \leftrightarrow 55)
and T :: 'd * 'd \Rightarrow 'd
and \alpha :: 'd * 'd * 'd \Rightarrow 'd
and \iota :: 'd
and V :: 'c \Rightarrow 'd
begin
                                                              (\langle \langle -: - \rightarrow - \rangle \rangle)
  no-notation C.in-hom
  notation unity
                                                         (\langle \mathcal{I} \rangle)
                                                         (\langle \mathbf{r}[-] \rangle)
  notation runit
  notation lunit
                                                        (\langle 1[-] \rangle)
                                                         \begin{array}{c} (\langle \mathbf{a}^{-1}[-, -, -] \rangle) \\ (\langle \mathbf{r}^{-1}[-] \rangle) \\ (\langle \mathbf{l}^{-1}[-] \rangle) \end{array} 
  notation assoc'
  notation runit'
  notation lunit'
  primrec eval :: 'c term \Rightarrow 'd
                                                         (⟨{|-|}⟩)
  where \{\langle f \rangle\} = V f
```

```
 \begin{aligned} & \| \mathcal{I} \| = \mathcal{I} \\ & \| \{t \otimes u\} = \{t\} \otimes \{u\} \\ & \| \{t \cdot u\} = \{t\} \cdot \{u\} \\ & \| \{\mathbf{l}[t]\} = \mathbb{I} \{t\} \\ & \| \{\mathbf{l}^{-1}[t]\} = \mathbb{I}' \{t\} \\ & \| \{\mathbf{r}[t]\} = \varrho \ \{t\} \\ & \| \{\mathbf{r}^{-1}[t]\} = \varrho' \ \{t\} \\ & \| \{\mathbf{a}[t, u, v]\} = \alpha \ (\{t\}, \{u\}, \{v\}) \\ & \| \{\mathbf{a}^{-1}[t, u, v]\} = \alpha' \ (\{t\}, \{u\}, \{v\}) \end{aligned}
```

Identity terms evaluate to identities of D and evaluation preserves domain and codomain.

```
lemma ide-eval-Ide [simp]:
shows Ide\ t \Longrightarrow ide\ \{t\}
             by (induct\ t,\ auto)
lemma eval-in-hom:
shows Arr\ t \Longrightarrow \langle \{t\} : \{Dom\ t\} \to \{Cod\ t\} \rangle
               apply (induct\ t)
                                                                                 apply auto[4]
                                            apply fastforce
proof
               \mathbf{fix} \ t \ u \ v
               assume I: Arr \ t \Longrightarrow (\{t\}): \{Dom \ t\} \to \{Cod \ t\})
               show Arr l^{-1}[t] \implies (\{l^{-1}[t]\}) : \{low l^{-1}[t]\} \rightarrow \{low l^
                           using I arr-dom-iff-arr [of \{t\}] by force
               show Arr \mathbf{r}[t] \Longrightarrow (\{\mathbf{r}[t]\} : \{Dom \mathbf{r}[t]\}) \to \{Cod \mathbf{r}[t]\})
                             using I arr-cod-iff-arr [of \{t\}] by force
               show Arr \mathbf{r}^{-1}[t] \Longrightarrow (\{\mathbf{r}^{-1}[t]\}) : \{Dom \mathbf{r}^{-1}[t]\} \to \{Cod \mathbf{r}^{-1}[t]\} >
                             using I arr-dom-iff-arr [of \{t\}] by force
               assume I1: Arr\ t \Longrightarrow \langle \{t\}\} : \{Dom\ t\} \to \{Cod\ t\} \rangle
               assume I2: Arr\ u \Longrightarrow \langle \{u\} : \{Dom\ u\} \to \{Cod\ u\} \rangle
               assume I3: Arr \ v \Longrightarrow \langle \{v\} : \{Dom \ v\} \to \{Cod \ v\} \rangle
               show Arr \mathbf{a}[t, u, v] \Longrightarrow \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle (\mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle \rangle \langle \langle \mathbf{a}[t, u, v] \rangle 
               proof -
                             assume 1: Arr \mathbf{a}[t, u, v]
                           have t: (\{t\}): dom \{\{t\}\} \rightarrow cod \{\{t\}\}) using 1 I1 by auto
                           have u: \langle \{u\} : dom \ \{u\} \rightarrow cod \ \{u\} \rangle  using 1 I2 by auto
                             have v: \langle \{v\} : dom \{v\} \rightarrow cod \{v\} \rangle \text{ using } 1 \text{ } 13 \text{ by } auto
                             have \{a[t, u, v]\} = (\{t\} \otimes \{u\} \otimes \{v\}) \cdot a[dom \{t\}, dom \{u\}, dom \{v\}]\}
                                            using t u v \alpha-simp [of \{t\} \{u\} \{v\}] by auto
                             moreover have \langle \{t\} \otimes \{u\} \otimes \{v\} \rangle \cdot a[dom \{t\}, dom \{u\}, dom \{v\}] :
                                                                                                                                                         (dom \{t\} \otimes dom \{u\}) \otimes dom \{v\} \rightarrow cod \{t\} \otimes cod \{u\} \otimes cod \{v\} \Rightarrow
                                            using t \ u \ v  by (elim \ in-homE, \ auto)
                           moreover have \{Dom\ t\} = dom\ \{t\} \land \{Dom\ u\} = dom\ \{u\} \land \{Dom\ v\} = dom\ \{v\} \land \{u\} \land 
                                                                                                                                             \{Cod\ t\} = cod\ \{t\} \land \{Cod\ u\} = cod\ \{u\} \land \{Cod\ v\} = cod\ \{v\}
                                            using 1 I1 I2 I3 by auto
                              ultimately show \langle \{\mathbf{a}[t, u, v]\} : \{Dom \ \mathbf{a}[t, u, v]\} \rightarrow \{Cod \ \mathbf{a}[t, u, v]\} \rangle
                                            by simp
```

```
\mathbf{show} \ Arr \ \mathbf{a}^{-1}[t, \ u, \ v] \implies \ \ \\ (\{\mathbf{a}^{-1}[t, \ u, \ v]\} : \{\{Dom \ \mathbf{a}^{-1}[t, \ u, \ v]\}\} \rightarrow \{\{Cod \ \mathbf{a}^{-1}[t, \ u, \ v]\}\} ) )
   proof -
    assume 1: Arr a^{-1}[t, u, v]
    have t: \langle \{t\} : dom \ \{t\} \rightarrow cod \ \{t\} \rangle using 1 I1 by auto
    have u: \langle \{u\} : dom \{u\} \rightarrow cod \{u\} \rangle using 1 12 by auto
    have v: \langle \{v\} : dom \ \{v\} \rightarrow cod \ \{v\} \rangle \text{ using } 1 \text{ } 13 \text{ by } auto
    have \{a^{-1}[t, u, v]\} = ((\{t\} \otimes \{u\}) \otimes \{v\}) \cdot a^{-1}[dom \{t\}, dom \{u\}, dom \{v\}]
      using 1 I1 I2 I3 \alpha'-simp [of \{t\} \{u\} \{v\}] by auto
    moreover have \langle (\{t\} \otimes \{u\}) \otimes \{v\}) \cdot a^{-1}[dom \{t\}, dom \{u\}, dom \{v\}] :
                       dom \ \{t\} \otimes dom \ \{u\} \otimes dom \ \{v\} \rightarrow (cod \ \{t\} \otimes cod \ \{u\}) \otimes cod \ \{v\} \Rightarrow
      using t \ u \ v \ assoc'-in-hom \ [of \ dom \ \{t\} \ dom \ \{u\} \ dom \ \{v\}\]
      by (elim in-homE, auto)
    moreover have ||Dom t|| = dom ||t|| \wedge ||Dom u|| = dom ||u|| \wedge ||Dom v|| = dom ||v|| \wedge
                    \{Cod\ t\} = cod\ \{t\} \land \{Cod\ u\} = cod\ \{u\} \land \{Cod\ v\} = cod\ \{v\}
      using 1 I1 I2 I3 by auto
    \textbf{ultimately show} \quad {\it ``{\{a^{-1}[t,\,u,\,v]\}}: \{Dom\ \mathbf{a}^{-1}[t,\,u,\,v]\}} \rightarrow {\it \{Cod\ \mathbf{a}^{-1}[t,\,u,\,v]\}} \\ \ {\it ``}
      by simp
  qed
qed
lemma arr-eval [simp]:
assumes Arr f
shows arr \{f\}
  using assms eval-in-hom by auto
lemma dom-eval [simp]:
assumes Arr f
shows dom \{f\} = \{Dom f\}
  using assms eval-in-hom by auto
lemma cod-eval [simp]:
assumes Arr f
shows cod \{f\} = \{Cod f\}
  using assms eval-in-hom by auto
lemma eval-Prim [simp]:
assumes C.arr f
shows \{\langle f \rangle\} = V f
  by simp
lemma eval-Tensor [simp]:
assumes Arr t and Arr u
shows \{t \otimes u\} = \{t\} \otimes \{u\}
  using assms eval-in-hom by auto
lemma eval-Comp [simp]:
assumes Arr t and Arr u and Dom t = Cod u
shows \{t \cdot u\} = \{t\} \cdot \{u\}
```

```
using assms by simp
   lemma eval-Lunit [simp]:
   assumes Arr t
   shows \{|I[t]|\} = 1[\{|Cod\ t|\}] \cdot (\mathcal{I} \otimes \{|t|\})
     using assms lunit-naturality [of \{t\}] by simp
   lemma eval-Lunit' [simp]:
   assumes Arr t
   shows \{l^{-1}[t]\} = l^{-1}[\{Cod\ t\}] \cdot \{t\}
     using assms lunit'-naturality [of \{t\}] I'.map-simp [of \{t\}] I-ide-simp
           Arr-implies-Ide-Cod
     by simp
   lemma eval-Runit [simp]:
   assumes Arr t
   shows \{\mathbf{r}[t]\} = \mathbf{r}[\{Cod\ t\}] \cdot (\{t\} \otimes \mathcal{I})
     using assms runit-naturality [of \{t\}] by simp
   lemma eval-Runit' [simp]:
   assumes Arr t
   shows \{\mathbf{r}^{-1}[t]\} = \mathbf{r}^{-1}[\{Cod\ t\}] \cdot \{t\}
     using assms runit'-naturality [of \{t\}] \varrho'.map-simp [of \{t\}] \varrho-ide-simp
           Arr-implies-Ide-Cod
     by simp
   lemma eval-Assoc [simp]:
   assumes Arr\ t and Arr\ u and Arr\ v
   shows \{a[t, u, v]\} = a[cod \{t\}, cod \{u\}, cod \{v\}] \cdot ((\{t\} \otimes \{u\}) \otimes \{v\})
     using assms \alpha.naturality2 [of (\{t\}, \{u\}, \{v\})] by auto
   lemma eval-Assoc' [simp]:
   assumes \mathit{Arr}\ t and \mathit{Arr}\ u and \mathit{Arr}\ v
   shows \{a^{-1}[t, u, v]\} = a^{-1}[cod \{t\}, cod \{u\}, cod \{v\}] \cdot (\{t\} \otimes \{u\} \otimes \{v\})
     using assms \alpha'-simp [of \{t\} \{u\} \{v\}] assoc'-naturality [of \{t\} \{u\} \{v\}]
     by simp
    The following are conveniences for the case of identity arguments to avoid having to
get rid of the extra identities that are introduced by the general formulas above.
   lemma eval-Lunit-Ide [simp]:
   assumes Ide \ a
   shows \{||a||\} = ||a||
     using assms comp-cod-arr by simp
   lemma eval-Lunit'-Ide [simp]:
   assumes Ide a
   shows \{l^{-1}[a]\} = l^{-1}[\{a\}]
     using assms comp-cod-arr by simp
```

```
lemma eval-Runit-Ide [simp]:
    assumes Ide \ a
    shows \{|\mathbf{r}[a]|\} = |\mathbf{r}[\{a\}]|
      using assms comp-cod-arr by simp
    lemma eval-Runit'-Ide [simp]:
    assumes Ide a
    shows \{|\mathbf{r}^{-1}[a]|\} = \mathbf{r}^{-1}[\{|a|\}]
      using assms comp-cod-arr by simp
    lemma eval-Assoc-Ide [simp]:
    assumes Ide a and Ide b and Ide c
    shows \{a[a, b, c]\} = a[\{a\}, \{b\}, \{c\}]
      using assms by simp
    lemma eval-Assoc'-Ide [simp]:
    assumes Ide \ a and Ide \ b and Ide \ c
    shows \{a^{-1}[a, b, c]\} = a^{-1}[\{a\}, \{b\}, \{c\}]
      using assms \alpha'-ide-simp by simp
     Canonical arrows evaluate to isomorphisms in D, and formal inverses evaluate to
inverses in D.
    lemma iso-eval-Can:
    shows Can \ t \Longrightarrow iso \ \{t\}
      using Can-implies-Arr l'.preserves-iso \varrho'.preserves-iso \alpha.preserves-iso \alpha'.preserves-iso
             Arr-implies-Ide-Dom
      by (induct\ t) auto
    \mathbf{lemma}\ \mathit{eval}\text{-}\mathit{Inv-Can}\text{:}
    shows Can \ t \Longrightarrow \{Inv \ t\} = inv \ \{t\}
      apply (induct\ t)
      \mathbf{using}\ iso\text{-}eval\text{-}Can\ inv\text{-}comp\ Can\text{-}implies\text{-}Arr
               apply auto[4]
    proof -
      \mathbf{fix} \ t
      assume I: Can \ t \Longrightarrow \{Inv \ t\} = inv \ \{t\}
      show Can \mathbf{l}[t] \Longrightarrow \{Inv \mathbf{l}[t]\} = inv \{\{\mathbf{l}[t]\}\}
        using I l'.naturality2 [of inv \{t\}] iso-eval-Can l-ide-simp iso-is-arr
              comp\text{-}cod\text{-}arr\ inv\text{-}comp
        by simp
      show Can \mathbf{r}[t] \Longrightarrow \{Inv \mathbf{r}[t]\} = inv \{\mathbf{r}[t]\}
        using I \varrho'.naturality2 [of inv \{t\}] iso-eval-Can \varrho-ide-simp iso-is-arr
               comp\text{-}cod\text{-}arr\ inv\text{-}comp
        by simp
      show Can \mathbf{l}^{-1}[t] \Longrightarrow \{Inv \mathbf{l}^{-1}[t]\} = inv \{\mathbf{l}^{-1}[t]\}
      proof -
        assume t: Can \mathbf{l}^{-1}[t]
        hence 1: iso \{t\} using iso-eval-Can by simp
        have inv \{ [1^{-1}[t]] \} = inv ([1][t]] \}
```

```
using t by simp
 also have ... = inv (l^{-1}[cod \{t\}] \cdot \{t\})
    using 1 l'.naturality2 [of \{l\}] l'-ide-simp iso-is-arr by auto
 also have ... = \{Inv \ l^{-1}[t]\}
    using t I 1 iso-is-arr inv-comp by auto
 finally show ?thesis by simp
show Can \mathbf{r}^{-1}[t] \Longrightarrow \{Inv \mathbf{r}^{-1}[t]\} = inv \{\mathbf{r}^{-1}[t]\}
proof -
 assume t: Can \mathbf{r}^{-1}[t]
 hence 1: iso \{t\} using iso-eval-Can by simp
 have inv \{ | \mathbf{r}^{-1}[t] \} = inv (\varrho' \{ | t \} )
    using t by simp
 also have ... = inv (r^{-1}[cod \{t\}] \cdot \{t\})
    using 1 \varrho'.naturality2 [of \{t\}] \varrho'-ide-simp iso-is-arr by auto
 also have ... = \{Inv \ \mathbf{r}^{-1}[t]\}
    using t I 1 iso-is-arr inv-comp by auto
 finally show ?thesis by simp
qed
next
\mathbf{fix} t u v
assume I1: Can t \Longrightarrow \{Inv \ t\} = inv \ \{t\}
assume I2: Can \ u \Longrightarrow \{Inv \ u\} = inv \ \{u\}
assume I3: Can \ v \Longrightarrow \{Inv \ v\} = inv \ \{v\}
show Can \mathbf{a}[t, u, v] \Longrightarrow \{Inv \mathbf{a}[t, u, v]\} = inv \{\{\mathbf{a}[t, u, v]\}\}
proof -
 assume tuv: Can \mathbf{a}[t, u, v]
 have t: iso \{t\} using tuv iso-eval-Can by auto
 have u: iso \{u\} using tuv iso-eval-Can by auto
 have v: iso \{v\} using tuv iso-eval-Can by auto
 have \{Inv \ \mathbf{a}[t, u, v]\} = \alpha' (inv \ \{t\}, inv \ \{u\}, inv \ \{v\})
    using tuv I1 I2 I3 by simp
 also have ... = inv (a[cod \{t\}, cod \{u\}, cod \{v\}] \cdot ((\{t\} \otimes \{u\}) \otimes \{v\}))
    using t \ u \ v \ \alpha'-simp iso-is-arr inv-comp by auto
 also have ... = inv ((\{t\} \otimes \{u\} \otimes \{v\}) \cdot a[dom \{t\}, dom \{u\}, dom \{v\}])
    using t u v iso-is-arr assoc-naturality by simp
 also have \dots = inv \{ \mathbf{a}[t, u, v] \}
    using t u v iso-is-arr \alpha-simp [of \{ t \} \{ u \} \{ v \} ] by simp
  finally show ?thesis by simp
qed
show Can \mathbf{a}^{-1}[t, u, v] \Longrightarrow \{Inv \ \mathbf{a}^{-1}[t, u, v]\} = inv \ \{\mathbf{a}^{-1}[t, u, v]\}
proof -
 assume tuv: Can \mathbf{a}^{-1}[t, u, v]
 have t: iso \{t\} using tuv iso-eval-Can by auto
 have u: iso \{u\} using tuv iso-eval-Can by auto
 have v: iso \{v\} using tuv iso-eval-Can by auto
 have \{Inv \ \mathbf{a}^{-1}[t, u, v]\} = \alpha \ (inv \ \{t\}, inv \ \{u\}, inv \ \{v\})
    using tuv I1 I2 I3 by simp
 also have ... = (inv \{t\} \otimes inv \{u\} \otimes inv \{v\}) \cdot a[cod \{t\}, cod \{u\}, cod \{v\}]
```

```
using t u v iso-is-arr \alpha-simp [of inv <math>\{t\} inv \{u\} inv \{v\} ] by simp
    also have ... = inv \ (a^{-1}[cod \ \{t\}, cod \ \{u\}, cod \ \{v\}] \cdot (\{t\} \otimes \{u\} \otimes \{v\}))
      using t \ u \ v \ iso-is-arr \ inv-comp by auto
    also have ... = inv (((\{t\} \otimes \{u\}) \otimes \{v\}) \cdot a^{-1}[dom \{t\}, dom \{u\}, dom \{v\}])
      using t u v iso-is-arr assoc'-naturality by simp
    also have ... = inv \{ a^{-1}[t, u, v] \}
      using t u v iso-is-arr \alpha'-simp by auto
    finally show ?thesis by blast
  qed
qed
The operation |\cdot| evaluates to composition in D.
lemma eval-CompDiag:
assumes Diag t and Diag u and Seg t u
shows \{t \mid \cdot \mid u\} = \{t\} \cdot \{u\}
proof -
  have \bigwedge u. \llbracket Diag\ t;\ Diag\ u;\ Seq\ t\ u\ \rrbracket \Longrightarrow \{\!\!\{t\ |\cdot|\ u\}\!\!\} = \{\!\!\{t\}\!\!\} \cdot \{\!\!\{u\}\!\!\}
    using eval-in-hom comp-cod-arr
  proof (induct t, simp-all)
    \mathbf{fix} \ u \ f
    assume u: Diag u
    assume f: C.arr f
    assume 1: Arr u \wedge \langle C.dom f \rangle = Cod u
    show \{\langle f \rangle \mid \cdot \mid u \} = V f \cdot \{u\}
      using f u 1 as-nat-trans.preserves-comp-2 by (cases u; simp)
    next
    \mathbf{fix} \ u \ v \ w
    assume I1: \bigwedge u. \llbracket Diag \ v; Diag \ u; Arr \ u \wedge Dom \ v = Cod \ u \ \rrbracket \Longrightarrow
                      \{v \mid \cdot \mid u\} = \{v\} \cdot \{u\}
    assume I2: \bigwedge u. \llbracket Diag \ w; Diag \ u; Arr \ u \wedge Dom \ w = Cod \ u \ \rrbracket \Longrightarrow
                      \{w \mid \cdot \mid u\} = \{w\} \cdot \{u\}
    assume vw: Diag (Tensor v w)
    have v: Diag v \wedge v = Prim (un-Prim v)
      using vw by (simp add: Diag-TensorE)
    have w: Diag w
      using vw by (simp add: Diag-TensorE)
    assume u: Diag u
    assume 1: Arr \ v \land Arr \ w \land Arr \ u \land Dom \ v \otimes Dom \ w = Cod \ u
    \mathbf{show} \ \{(v \otimes w) \ \lfloor \cdot \rfloor \ u\} = (\{v\} \otimes \{w\}) \cdot \{u\}
      using u 1 eval-in-hom CompDiag-in-Hom
    proof (cases u, simp-all)
      \mathbf{fix} \ x \ y
      assume 3: u = x \otimes y
      assume 4: Arr \ v \land Arr \ w \land Dom \ v = Cod \ x \land Dom \ w = Cod \ y
      have x: Diag x
        using u 1 3 Diag-TensorE [of x y] by simp
      have y: Diag y
        using u \times 1 \ 3 \ Diag-TensorE \ [of \times y] by simp
      \mathbf{show} \ \{v \ \lfloor \cdot \rfloor \ x\} \otimes \{w \ \lfloor \cdot \rfloor \ y\} = (\{v\} \otimes \{w\}) \cdot (\{x\} \otimes \{y\})
```

```
using v w x y 4 I1 I2 CompDiag-in-Hom eval-in-hom Diag-implies-Arr interchange
by auto
qed
qed
thus ?thesis using assms by blast
qed
```

For identity terms a and b, the reduction $(a \otimes b) \downarrow$ factors (under evaluation in D) into the parallel reduction $a \downarrow \otimes b \downarrow$, followed by a reduction of its codomain $|a| \downarrow |b|$.

```
lemma eval-red-Tensor:
assumes Ide \ a and Ide \ b
\mathbf{shows} \ \{(a \otimes b) \downarrow \} = \{ \lfloor a \rfloor \ \downarrow \ \lfloor b \rfloor \} \cdot (\{a \downarrow \} \otimes \{b \downarrow \})
proof
  have Diag\ (a \otimes b) \Longrightarrow ?thesis
    using assms Can-red2 Ide-implies-Arr red-Diag
          Diagonalize-Diag red2-Diag Can-implies-Arr iso-eval-Can iso-is-arr
   apply simp
    using Diag-TensorE eval-Tensor Diagonalize-Diag Diag-implies-Arr red-Diag
          tensor	ext{-}preserves	ext{-}ide\ ide	ext{-}eval	ext{-}Ide\ dom	ext{-}eval\ comp	ext{-}arr	ext{-}dom
    by metis
  moreover have \neg Diag (a \otimes b) \Longrightarrow ?thesis
    using assms Can-red2 by (simp add: Can-red(1) iso-eval-Can)
  ultimately show ?thesis by blast
qed
lemma eval-red2-Diag-Unity:
assumes Ide a and Diag a
shows \{a \downarrow \mathcal{I}\} = r[\{a\}]
  using assms tensor-preserves-ide \rho-ide-simp unitor-coincidence unit-in-hom comp-cod-arr
  by (cases a, auto)
```

Define a formal arrow t to be "coherent" if the square formed by t, $\lfloor t \rfloor$ and the reductions $Dom\ t \downarrow$ and $Cod\ t \downarrow$ commutes under evaluation in D. We will show that all formal arrows are coherent. Since the diagonalizations of canonical arrows are identities, a corollary is that parallel canonical arrows have equal evaluations.

```
abbreviation coherent where coherent t \equiv \{Cod\ t\downarrow\} \cdot \{t\} = \{\lfloor t\rfloor\} \cdot \{Dom\ t\downarrow\}
```

Diagonal arrows are coherent, since for such arrows t the reductions $Dom\ t\downarrow$ and $Cod\ t\downarrow$ are identities.

```
lemma Diag-implies-coherent:
assumes Diag t
shows coherent t
using assms Diag-implies-Arr Arr-implies-Ide-Dom Arr-implies-Ide-Cod
Dom-preserves-Diag Cod-preserves-Diag Diagonalize-Diag red-Diag
comp-arr-dom comp-cod-arr
by simp
```

The evaluation of a coherent arrow t has a canonical factorization in D into the evaluations of a reduction $Dom\ t\downarrow$, diagonalization |t|, and inverse reduction $Inv\ (Cod$

 $t\downarrow$). This will later allow us to use the term $Inv\ (Cod\ t\downarrow)\cdot \lfloor t\rfloor \cdot Dom\ t\downarrow$ as a normal form for t.

```
lemma canonical-factorization:
             assumes Arr t
             shows coherent t \longleftrightarrow \{t\} = inv \{ Cod t \downarrow \} \cdot \{ |t| \} \cdot \{ Dom t \downarrow \}
             proof
                    assume 1: coherent t
                    have inv \{ Cod t \downarrow \} \cdot \{ |t| \} \cdot \{ Dom t \downarrow \} = inv \{ Cod t \downarrow \} \cdot \{ Cod t \downarrow \} \cdot \{ t \}
                          using 1 by simp
                    also have ... = (inv \{ Cod t \downarrow \} \cdot \{ Cod t \downarrow \}) \cdot \{ t \}
                            using comp-assoc by simp
                    also have \dots = \{t\}
                           using assms 1 red-in-Hom inv-in-hom Arr-implies-Ide-Cod Can-red iso-eval-Can
                                                 comp-cod-arr Ide-in-Hom inv-is-inverse
                           by (simp add: comp-inv-arr)
                    finally show \{t\} = inv \{Cod t\downarrow\} \cdot \{\lfloor t \rfloor\} \cdot \{Dom t\downarrow\}  by simp
                    assume 1: \{t\} = inv \{Cod t\downarrow\} \cdot \{|t|\} \cdot \{Dom t\downarrow\}
                    \mathbf{hence} \; \{ \textit{Cod} \; t \downarrow \} \; \cdot \; \{ t \} \; = \; \{ \textit{Cod} \; t \downarrow \} \; \cdot \; \{ \textit{Cod} \; t \downarrow \} \; \cdot \; \{ \lfloor t \rfloor \} \; \cdot \; \{ \textit{Dom} \; t \downarrow \} \; \mathbf{by} \; \textit{simp} \; \}
                    also have ... = (\{Cod\ t\downarrow\}\} \cdot inv\ \{Cod\ t\downarrow\}\} \cdot \{|t|\} \cdot \{Dom\ t\downarrow\}
                           using comp-assoc by simp
                    also have \dots = \{ |t| \} \cdot \{ Dom t \downarrow \}
                           using assms 1 red-in-Hom Arr-implies-Ide-Cod Can-red iso-eval-Can inv-is-inverse
                                                                 Diagonalize-in-Hom comp-arr-inv comp-cod-arr Arr-implies-Ide-Dom Diagonal-
ize-in-Hom
                           by auto
                    finally show coherent t by blast
                A canonical arrow is coherent if and only if its formal inverse is.
             lemma Can-implies-coherent-iff-coherent-Inv:
             assumes Can t
             shows coherent t \longleftrightarrow coherent (Inv t)
                    have 1: \bigwedge t. Can t \Longrightarrow coherent \ t \Longrightarrow coherent \ (Inv \ t)
                    proof -
                          \mathbf{fix} \ t
                           assume Can t
                           hence t: Can \ t \land Arr \ t \land Ide \ (Dom \ t) \land Ide \ (Cod \ t) \land
                                                               arr \{t\} \land iso \{t\} \land inverse-arrows \{t\} (inv \{t\}) \land arrows \{t\} \land inverse-arrows \{t\} \land invers
                                                                Can \mid t \mid \land Arr \mid t \mid \land arr \mid \{\mid t \mid \} \land iso \mid \{\mid t \mid \} \land \mid t \mid \in Hom \mid Dom \mid t \mid Cod \mid t \mid \land t \mid Arr \mid t \mid \land arr \mid \{\mid t \mid \} \land iso \mid \{\mid t \mid \} \land \mid t \mid \in Hom \mid Dom \mid t \mid Arr \mid t \mid \land t \mid Arr \mid t \mid \land arr \mid \{\mid t \mid \} \land iso \mid \{\mid t \mid \} \land \mid t \mid \in Hom \mid Dom \mid t \mid Arr \mid t \mid \land arr \mid \{\mid t \mid \} \land iso \mid \{\mid t \mid \} \land \mid t \mid \in Hom \mid Dom \mid t \mid Arr \mid Arr \mid t \mid \land arr \mid \{\mid t \mid \} \land iso \mid \{\mid t \mid \} \land \mid t \mid \in Hom \mid Arr 
                                                                inverse-arrows \{ | t | \} (inv \{ | t | \}) \land Inv t \in Hom (Cod t) (Dom t) \}
                                  using assms Can-implies-Arr Arr-implies-Ide-Dom Arr-implies-Ide-Cod iso-eval-Can
                                                        inv-is-inverse Diagonalize-in-Hom Diagonalize-preserves-Can Inv-in-Hom
                                  by simp
                           assume coh: coherent t
                           have \{Cod\ (Inv\ t)\downarrow\} \cdot \{Inv\ t\} = (inv\ \{\lfloor t\rfloor\}\} \cdot \{\lfloor t\rfloor\}\} \cdot \{Cod\ (Inv\ t)\downarrow\} \cdot \{Inv\ t\}
                                  using t red-in-Hom comp-cod-arr comp-inv-arr
                                  by (simp add: canonical-factorization coh Diagonalize-preserves-Can
```

```
\langle Can \ t \rangle \ inv-is-inverse)
   also have ... = inv \{ \lfloor t \rfloor \} \cdot (\{ Cod t \downarrow \} \cdot \{t\}) \cdot inv \{t\} 
     using t eval-Inv-Can coh comp-assoc by auto
   also have ... = \{|Inv t|\} \cdot \{|Dom(Inv t)\downarrow\}
    using t Diagonalize-Inv eval-Inv-Can comp-arr-inv red-in-Hom comp-arr-dom comp-assoc
     by auto
   finally show coherent (Inv t) by blast
  show coherent t \Longrightarrow coherent (Inv \ t) using assms 1 by simp
  show coherent (Inv\ t) \Longrightarrow coherent\ t
  proof -
   assume coherent (Inv t)
   hence coherent (Inv (Inv t))
     using assms 1 Inv-preserves-Can by blast
   thus ?thesis using assms by simp
  qed
qed
Some special cases of coherence are readily dispatched.
lemma coherent-Unity:
shows coherent \mathcal{I}
 by simp
lemma coherent-Prim:
assumes Arr \langle f \rangle
shows coherent \langle f \rangle
 using assms by simp
\mathbf{lemma}\ coherent\text{-}Lunit\text{-}Ide:
assumes Ide a
shows coherent l[a]
proof -
 have a: Ide a \land Arr \ a \land Dom \ a = a \land Cod \ a = a \land
          ide \{a\} \land ide \{|a|\} \land \{a\downarrow\} \in hom \{a\} \{|a|\}
   using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
  thus ?thesis
    using a lunit-naturality [of \{a\downarrow\}\}] comp-cod-arr by auto
qed
lemma coherent-Runit-Ide:
assumes Ide a
shows coherent \mathbf{r}[a]
proof -
  have a: Ide\ a \land Arr\ a \land Dom\ a = a \land Cod\ a = a \land
          ide \{a\} \land ide \{|a|\} \land \{a\downarrow\} \in hom \{|a\} \{|a|\}
   using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom
   by auto
  have \{Cod \mathbf{r}[a]\downarrow\} \cdot \{\mathbf{r}[a]\} = \{a\downarrow\} \cdot \mathbf{r}[\{a\}]
   using a runit-in-hom comp-cod-arr by simp
```

```
also have ... = r[\{\lfloor a \rfloor\}] \cdot (\{\lfloor a \downarrow\}\} \otimes \mathcal{I})
   using a eval-Runit runit-naturality [of {red a}] by auto
  also have ... = \{\lfloor \mathbf{r}[a] \rfloor\} \cdot \{Dom \ \mathbf{r}[a] \downarrow \}
  proof -
   have \neg Diag (a \otimes \mathcal{I}) by (cases a; simp)
   thus ?thesis
     using a comp-cod-arr red2-in-Hom eval-red2-Diag-Unity Diag-Diagonalize
           Diagonalize-preserves-Ide
     by auto
  qed
  finally show ?thesis by blast
lemma coherent-Lunit'-Ide:
assumes Ide a
shows coherent l^{-1}[a]
  using assms Ide-implies-Can coherent-Lunit-Ide
        Can-implies-coherent-iff-coherent-Inv [of Lunit a] by simp
lemma coherent-Runit'-Ide:
assumes Ide a
shows coherent \mathbf{r}^{-1}[a]
  using assms Ide-implies-Can coherent-Runit-Ide
        Can-implies-coherent-iff-coherent-Inv [of Runit a] by simp
```

To go further, we need the next result, which is in some sense the crux of coherence: For diagonal identities a, b, and c, the reduction $((a \lfloor \otimes \rfloor b) \Downarrow c) \cdot ((a \Downarrow b) \otimes c)$ from $(a \otimes b) \otimes c$ that first reduces the subterm $a \otimes b$ and then reduces the result, is equivalent under evaluation in D to the reduction that first applies the associator $\mathbf{a}[a, b, c]$ and then applies the reduction $(a \Downarrow b \lfloor \otimes \rfloor c) \cdot (a \otimes b \Downarrow c)$ from $a \otimes b \otimes c$. The triangle and pentagon axioms are used in the proof.

```
lemma coherence-key-fact:
assumes Ide\ a \land Diag\ a and Ide\ b \land Diag\ b and Ide\ c \land Diag\ c
shows \{(a \mid \otimes \mid b) \Downarrow c\} \cdot (\{a \Downarrow b\} \otimes \{c\})
         = (\{a \downarrow (b \boxtimes c)\} \cdot (\{a\} \otimes \{b \downarrow c\})) \cdot a[\{a\}, \{b\}, \{c\}]
proof -
  have b = \mathcal{I} \Longrightarrow ?thesis
    using assms not-is-Tensor-TensorDiagE eval-red2-Diag-Unity triangle
          comp-cod-arr comp-assoc
   by simp
The triangle is used!
  moreover have c = \mathcal{I} \Longrightarrow ?thesis
    using assms TensorDiag-preserves-Diag TensorDiag-preserves-Ide
          not-is-Tensor-TensorDiagE eval-red2-Diag-Unity
          red2-in-Hom runit-tensor runit-naturality [of \{a \downarrow b\}] comp-assoc
  moreover have [\![b \neq \mathcal{I}; c \neq \mathcal{I}]\!] \Longrightarrow ?thesis
  proof -
```

```
assume b': b \neq \mathcal{I}
hence b: Ide b \wedge Diag \ b \wedge Arr \ b \wedge b \neq \mathcal{I} \wedge
              ide \{b\} \land arr \{b\} \land |b| = b \land b \downarrow = b \land Dom \ b = b \land Cod \ b = b
   using assms Diagonalize-preserves-Ide Ide-in-Hom by simp
assume c': c \neq \mathcal{I}
hence c: Ide\ c \land Diag\ c \land Arr\ c \land c \neq \mathcal{I} \land
              ide \{ c \} \land arr \{ c \} \land |c| = c \land c \downarrow = c \land Dom \ c = c \land Cod \ c = c \}
   using assms Diagonalize-preserves-Ide Ide-in-Hom by simp
have \bigwedge a. Ide a \wedge Diag \ a \Longrightarrow
               \{(a \mid \otimes \mid b) \Downarrow c\} \cdot (\{a \Downarrow b\} \otimes \{c\})
                   = (\{a \downarrow (b \downarrow \otimes \rfloor c)\} \cdot (\{a\} \otimes \{b \downarrow c\})) \cdot a[\{a\}, \{b\}, \{c\}]
proof -
   fix a :: 'c term
   show Ide \ a \land Diag \ a \Longrightarrow
           \{(a \mid \otimes \mid b) \Downarrow c\} \cdot (\{a \Downarrow b\} \otimes \{c\})
               = (\{a \downarrow b \mid b \mid c\} \cdot (\{a\} \otimes \{b \downarrow c\})) \cdot a[\{a\}, \{b\}, \{c\}]
     apply (induct a)
     using b c TensorDiag-in-Hom apply simp-all
   proof -
      \mathbf{show} \ \{b \downarrow b c\} \cdot (\{b\} \cdot 1[\{b\}] \otimes \{c\})
                = ((\{b \mid \bigotimes \rfloor c\} \cdot 1[\{b \mid \bigotimes \rfloor c\}]) \cdot (\mathcal{I} \otimes \{b \mid \downarrow c\})) \cdot a[\mathcal{I}, \{b\}, \{c\}]
     proof -
        have \{b \mid \otimes \mid c\} \cdot (l[\{b \mid \otimes \mid c\}] \cdot (\mathcal{I} \otimes \{b \downarrow c\})) \cdot a[\mathcal{I}, \{b\}, \{c\}] =
                 \{b \mid \bigotimes \mid c\} \cdot (\{b \mid \downarrow c\} \cdot 1[\{b\} \otimes \{c\}]) \cdot a[\mathcal{I}, \{b\}, \{c\}]
           using b c red2-in-Hom lunit-naturality [of \{b \downarrow c\}] by simp
        thus ?thesis
        using b c red2-in-Hom lunit-tensor comp-arr-dom comp-cod-arr comp-assoc by simp
      ged
      show \bigwedge f. C.ide\ f \land C.arr\ f \Longrightarrow
                    \{(\langle f \rangle \otimes b) \Downarrow c\} \cdot (\{\langle f \rangle \Downarrow b\} \otimes \{c\})
                        = (\{\langle f \rangle \Downarrow (b \lfloor \otimes \rfloor c)\} \cdot (V f \otimes \{b \Downarrow c\})) \cdot a[V f, \{b\}, \{c\}]
      proof -
        \mathbf{fix} f
        assume f: C.ide f \land C.arr f
        show \{(\langle f \rangle \otimes b) \downarrow c \} \cdot (\{\langle f \rangle \downarrow b \} \otimes \{c \})
                   = (\{\langle f \rangle \downarrow \downarrow (b \mid \otimes \mid c)\} \cdot (Vf \otimes \{b \downarrow c\})) \cdot a[Vf, \{b\}, \{c\}]
        proof -
           have \{(\langle f \rangle \otimes b) \downarrow c \} \cdot (\{\langle f \rangle \downarrow b\} \otimes \{c\})
                      = ((Vf \otimes \{b \mid \otimes \mid c\}) \cdot (Vf \otimes \{b \downarrow c\}) \cdot a[Vf, \{b\}, \{c\}]) \cdot
                         ((Vf \otimes \{b\}) \otimes \{c\})
           proof
             have \{\langle f \rangle \downarrow b\} = V f \otimes \{b\}
                using assms f b c red2-Diag by simp
              moreover have \{\langle f \rangle \Downarrow b \mid \otimes \mid c \} = Vf \otimes \{b \mid \otimes \mid c \}
              proof -
                have is-Tensor (b \mid \otimes \mid c)
                   using assms b c not-is-Tensor-TensorDiagE by blast
                thus ?thesis
                   using assms f b c red2-Diag TensorDiag-preserves-Diag(1)
```

```
by (cases b \mid \otimes \mid c; simp)
       qed
        ultimately show ?thesis
          using assms b c by (cases c, simp-all)
     ged
     also have ... = ((Vf \otimes \{b \mid \otimes | c\}) \cdot (Vf \otimes \{b \downarrow c\})) \cdot a[Vf, \{b\}, \{c\}]
        using b c f TensorDiag-in-Hom red2-in-Hom comp-arr-dom comp-cod-arr
     \textbf{also have} \ ... = (\{\!\!\{\langle f \rangle \Downarrow (b \mid \boxtimes \rfloor \ c)\}\!\!\} \cdot (Vf \otimes \{\!\!\{b \mid \!\!\!\downarrow \ c\}\!\!\})) \cdot \mathbf{a}[Vf, \{\!\!\{b\}\!\!\}, \{\!\!\{c\}\!\!\}]
        \textbf{using} \ b \ c \ f \ Ide-implies-Arr \ Tensor Diag-preserves-Ide \ not-is-Tensor-Tensor DiagE
          by (cases b \mid \otimes \rfloor c, simp-all; blast)
     finally show ?thesis by blast
  qed
qed
\mathbf{fix} \ d \ e
assume I: Diag\ e \Longrightarrow \{(e \mid \otimes \mid b) \downarrow c\} \cdot (\{e \downarrow b\} \otimes \{c\})
                                = (\{e \downarrow b \mid \bigotimes \mid c\} \cdot (\{e\} \otimes \{b \downarrow c\})) \cdot a[\{e\}, \{b\}, \{c\}]
assume de: Ide d \wedge Ide \ e \wedge Diag \ (d \otimes e)
show \{((d \otimes e) | \otimes | b) \downarrow c\} \cdot (\{(d \otimes e) \downarrow b\} \otimes \{c\})
         = (\{(d \otimes e) \downarrow (b \mid \otimes \mid c)\} \cdot ((\{d\} \otimes \{e\}) \otimes \{b \downarrow c\})) \cdot a[\{d\} \otimes \{e\}, \{b\}, \{c\}\}]
proof -
  \mathbf{let} \ ?f = \mathit{un-Prim} \ d
  have is-Prim d
     using de by (cases d, simp-all)
  hence d = \langle ?f \rangle \wedge C.ide ?f
     using de by (cases d, simp-all)
  hence d: Ide\ d \land Arr\ d \land Dom\ d = d \land Cod\ d = d \land Diag\ d \land
                d = \langle ?f \rangle \wedge C.ide ?f \wedge ide \{d\} \wedge arr \{d\}
     using de ide-eval-Ide Ide-implies-Arr Diag-Diagonalize(1) Ide-in-Hom
             Diag-TensorE [of d e]
     by simp
  have Diag\ e \land e \neq \mathcal{I}
     using de Diag-TensorE by metis
  hence e: Ide\ e \land Arr\ e \land Dom\ e = e \land Cod\ e = e \land Diag\ e \land
                e \neq \mathcal{I} \wedge ide \{e\} \wedge arr \{e\}
     using de Ide-in-Hom by simp
  have 1: is-Tensor (e \mid \otimes \mid b) \land is-Tensor (b \mid \otimes \mid c) \land is-Tensor (e \mid \otimes \mid (b \mid \otimes \mid c))
     using b c e de not-is-Tensor-TensorDiagE TensorDiag-preserves-Diag
             not-is-Tensor-TensorDiagE [of e b | \otimes | c]
  have \{((d \otimes e) \mid \otimes \mid b) \downarrow c\} \cdot (\{(d \otimes e) \downarrow b\} \otimes \{c\})
             = ((\{\{d\}\} \otimes \{\{(e \mid \otimes \mid b) \mid \otimes \mid c\}\}) \cdot (\{\{d\}\} \otimes \{\{(e \mid \otimes \mid b) \downarrow c\}\}) \cdot
                 a[\{d\}, \{e \ [\otimes] \ b\}, \{c\}]).
                ((\{d\} \otimes \{e \mid \boxtimes \rfloor b\}) \cdot (\{d\} \otimes \{e \downarrow b\}) \cdot a[\{d\}, \{e\}, \{b\}] \otimes \{c\})
  proof -
     have \{((d \otimes e) \mid \otimes \mid b) \downarrow c\}
                 = (\{\!\!\{d\}\!\!\} \otimes \{\!\!\{(e \mathbin{\lfloor} \otimes \rfloor\!\!\rfloor b) \mathbin{\rfloor} \boxtimes \}\!\!\} \cdot (\{\!\!\{d\}\!\!\} \otimes \{\!\!\{(e \mathbin{\rfloor} \otimes \rfloor\!\!\rfloor b) \Downarrow c\}\!\!\}) \cdot
                   a[\{d\}, \{e \mid \otimes \mid b\}, \{c\}]
     proof -
```

```
have ((d \otimes e) | \otimes | b) \downarrow c = (d \otimes (e | \otimes | b)) \downarrow c
    using b c d e de 1 TensorDiag-Diag TensorDiag-preserves-Diag TensorDiag-assoc
               Tensor Diag-Prim\ not\mbox{-}is\mbox{-}Tensor\mbox{-}Unity
       by metis
     also have ... = (d \Downarrow (|e| \otimes |b| |\otimes |c)) \cdot (d \otimes ((e| \otimes |b) \Downarrow c)) \cdot
                         \mathbf{a}[d, e \mid \otimes \mid b, c]
       using c \ d \ 1 by (cases \ c) \ simp-all
     also have ... = (d \otimes ((e \otimes |b) \otimes |c)) \cdot (d \otimes ((e \otimes |b) \otimes c)) \cdot (d \otimes ((e \otimes |b) \otimes c))
                         \mathbf{a}[d, e \mid \otimes \mid b, c]
       by (metis 1 Diagonalize-Diag TensorDiag-assoc TensorDiag-preserves-Diag(1)
                   b \ c \ d \ e \ is-Tensor-def red2.simps(4))
    finally show ?thesis
       using b c d e TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Diag
               TensorDiag-preserves-Ide
       by simp
  qed
  moreover have \{(d \otimes e) \downarrow b\}
                       = (\{d\} \otimes \{e \mid \otimes \mid b\}) \cdot (\{d\} \otimes \{e \downarrow b\}) \cdot a[\{d\}, \{e\}, \{b\}]
  proof -
     have (d \otimes e) \downarrow b = (d \downarrow (e \mid \otimes \mid b)) \cdot (d \otimes (e \downarrow b)) \cdot \mathbf{a}[d, e, b]
         using b c d e de 1 TensorDiag-Prim Diagonalize-Diag
         by (cases \ b) \ simp-all
     also have ... = (d \otimes (e \mid \otimes \mid b)) \cdot (d \otimes (e \downarrow b)) \cdot \mathbf{a}[d, e, b]
       using b d e 1 TensorDiag-preserves-Diag red2-Diag
       by (metis\ Diag.simps(3)\ de\ term.disc(12))
     finally have (d \otimes e) \downarrow b = (d \otimes (e \otimes b)) \cdot (d \otimes (e \otimes b)) \cdot \mathbf{a}[d, e, b]
       by simp
     thus ?thesis using b d e eval-in-hom TensorDiag-in-Hom red2-in-Hom by simp
  qed
  ultimately show ?thesis by argo
also have ... = (\{d\} \otimes \{(e \boxtimes b) \downarrow c\}) \cdot a[\{d\}, \{e \boxtimes b\}, \{c\}] \cdot a[\{d\}, \{e \boxtimes b\}, \{c\}]
                    ((\lbrace d \rbrace \otimes \lbrace e \downarrow b \rbrace) \otimes \lbrace c \rbrace) \cdot (a[\lbrace d \rbrace, \lbrace e \rbrace, \lbrace b \rbrace] \otimes \lbrace c \rbrace)
  using b c d e red2-in-Hom TensorDiag-preserves-Ide
          TensorDiag-preserves-Diag interchange comp-cod-arr comp-assoc
  by simp
also have ... = (\{d\} \otimes \{(e \mid \otimes \mid b) \downarrow c\}) \cdot (\{d\} \otimes (\{e \downarrow b\} \otimes \{c\})) \cdot
                    a[\{d\}, \{e\} \otimes \{b\}, \{c\}] \cdot (a[\{d\}, \{e\}, \{b\}] \otimes \{c\})
  using b c d e TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Ide
          TensorDiag-preserves-Diag assoc-naturality [of \{d\} \{e \downarrow b\} \{c\}]
          comp-permute [of a[\{d\}, \{e \mid \boxtimes \rfloor b\}, \{c\}] (\{d\} \otimes \{e \downarrow b\}) \otimes \{c\}
                              \{d\} \otimes (\{e \downarrow b\} \otimes \{c\}) \text{ a}[\{d\}, \{e\} \otimes \{b\}, \{c\}]]
  by simp
also have ... = (\{d\} \otimes \{(e \mid \boxtimes \rfloor b) \downarrow c\} \cdot (\{e \downarrow b\} \otimes \{c\})).
                    a[\{d\}, \{e\} \otimes \{b\}, \{c\}] \cdot (a[\{d\}, \{e\}, \{b\}] \otimes \{c\})
  using b c d e TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Ide
          TensorDiag-preserves-Diag interchange
          comp\text{-}reduce [of \{d\} \otimes \{(e \mid \otimes \mid b) \downarrow c\}]
                             \{d\} \otimes (\{e \downarrow b\} \otimes \{c\})
```

```
\{d\} \otimes \{(e \mid \otimes \mid b) \downarrow c\} \cdot (\{e \downarrow b\} \otimes \{c\})
                                          a[\{d\}, \{e\} \otimes \{b\}, \{c\}] \cdot (a[\{d\}, \{e\}, \{b\}] \otimes \{c\})]
               by simp
           also have ... = (((\{d\} \otimes \{e \downarrow (b \mid \otimes \mid c)\}) \cdot (\{d\} \otimes \{e\} \otimes \{b \downarrow c\})) \cdot
                                  (\{d\} \otimes a[\{e\}, \{b\}, \{c\}]))
                                 a[\{d\}, \{e\} \otimes \{b\}, \{c\}] \cdot (a[\{d\}, \{e\}, \{b\}] \otimes \{c\})
              using b c d e I TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Ide
                      TensorDiag-preserves-Diag interchange
              by simp
           also have ... = ((\{d\} \otimes \{e \downarrow (b \mid \otimes \mid c)\}) \cdot (\{d\} \otimes (\{e\} \otimes \{b \downarrow c\})))
                                    a[\{d\}, \{e\}, \{b\} \otimes \{c\}] \cdot a[\{d\} \otimes \{e\}, \{b\}, \{c\}]
              using b c d e comp-assoc red2-in-Hom TensorDiag-in-Hom ide-eval-Ide
                      TensorDiag-preserves-Diag tensor-preserves-ide TensorDiag-preserves-Ide
                      pentagon
              by simp
The pentagon is used!
           also have ... = (((\{d\} \otimes \{e \mid \boxtimes \rfloor b \mid \boxtimes \rfloor c\}) \cdot (\{d\} \otimes \{e \downarrow b \mid \boxtimes \rfloor c\})
                                    a[\{d\}, \{e\}, \{b \mid \otimes \rfloor c\}]) \cdot ((\{d\} \otimes \{e\}) \otimes \{b \mid c\})) \cdot ((\{d\} \otimes \{e\}) \otimes \{b \mid c\}))
                                 a[\{d\} \otimes \{e\}, \{b\}, \{c\}]
              using b c d e red2-in-Hom TensorDiag-preserves-Ide TensorDiag-preserves-Diag
                      assoc\text{-}naturality\ [of\ \{\{d\}\}\ \{\{e\}\}\ \{\{b\ \Downarrow\ c\}\}\ ]\ comp\text{-}cod\text{-}arr\ comp\text{-}assoc
           also have ... = (\{(d \otimes e) \downarrow (b \mid \otimes \mid c)\} \cdot ((\{d\} \otimes \{e\}) \otimes \{b \downarrow c\})).
                                 a[\{d\} \otimes \{e\}, \{b\}, \{c\}]
           proof -
              have \{(d \otimes e) \downarrow (b \mid \otimes \mid c)\}
                            = (\{d\} \otimes \{e \mid \otimes \mid (b \mid \otimes \mid c)\}) \cdot (\{d\} \otimes \{e \downarrow (b \mid \otimes \mid c)\}) \cdot
                                a[\{d\}, \{e\}, \{b \mid \otimes \rfloor c\}]
              proof -
                 have (d \otimes e) \Downarrow (b \lfloor \otimes \rfloor c)
                           = (d \Downarrow (e [\boxtimes] [b [\boxtimes] c])) \cdot (d \boxtimes (e \Downarrow (b [\boxtimes] c))) \cdot \mathbf{a}[d, e, b [\boxtimes] c]
                   using b c e not-is-Tensor-TensorDiagE
                   by (cases b \mid \otimes \mid c) auto
                also have ... = (d \downarrow (e \mid \otimes \mid (b \mid \otimes \mid c))) \cdot (d \otimes (e \downarrow (b \mid \otimes \mid c))) \cdot
                                      \mathbf{a}[d, e, b \mid \otimes \mid c]
                   using b c d e 1 TensorDiag-preserves-Diag Diagonalize-Diag by simp
                 also have ... = (d \otimes (e [\otimes] (b [\otimes] c))) \cdot (d \otimes (e  (b [\otimes] c))) \cdot
                                      \mathbf{a}[d, e, b \mid \otimes \mid c]
                   using b c d e 1 TensorDiag-preserves-Diag(1) red2-Diag
                   by (metis Diag.simps(3) de not-is-Tensor-Unity)
                 finally have (d \otimes e) \Downarrow (b \lfloor \otimes \rfloor c)
                                     = (d \otimes (e \lfloor \otimes \rfloor (b \lfloor \otimes \rfloor c))) \cdot (d \otimes (e \Downarrow (b \lfloor \otimes \rfloor c))) \cdot
                                       \mathbf{a}[d, e, b \mid \otimes \mid c]
                   by blast
                 thus ?thesis
                   using b c d e red2-in-Hom TensorDiag-in-Hom TensorDiag-preserves-Diag
                           Tensor Diag-preserves-Ide
                   by simp
```

```
qed
              thus ?thesis using d e b c by simp
           finally show ?thesis by simp
         qed
       qed
    qed
    thus ?thesis using assms(1) by blast
  ultimately show ?thesis by blast
qed
\mathbf{lemma}\ coherent\text{-}Assoc\text{-}Ide:
assumes Ide \ a and Ide \ b and Ide \ c
shows coherent \mathbf{a}[a, b, c]
proof -
  have a: Ide\ a \land Arr\ a \land Dom\ a = a \land Cod\ a = a \land
             ide \{a\} \land ide \{|a|\} \land \langle\langle\{a\downarrow\}\} : \{|a|\} \rightarrow \{|a|\}\rangle
    using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
  have b: Ide\ b \land Arr\ b \land Dom\ b = b \land Cod\ b = b \land
             ide \{b\} \land ide \{|b|\} \land \langle\langle b\downarrow \rangle\} : \{b\} \rightarrow \{|b|\} \rangle
    using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
  have c: Ide\ c \land Arr\ c \land Dom\ c = c \land Cod\ c = c \land
             ide \{c\} \land ide \{\lfloor c \rfloor\} \land \langle \{c \downarrow\}\} : \{c\} \rightarrow \{\lfloor c \rfloor\} \rangle
    using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
  have \{Cod \ \mathbf{a}[a, b, c]\downarrow\} \cdot \{\{\mathbf{a}[a, b, c]\}\}
           = (\{|a| \Downarrow (|b| |\otimes| |c|)\} \cdot (\{|a|\} \otimes (\{|b| \Downarrow |c|\})) \cdot
               (\{a\downarrow\} \otimes \{b\downarrow\} \otimes \{c\downarrow\})) \cdot a[\{a\}, \{b\}, \{c\}]
    using a b c red-in-Hom red2-in-Hom Diagonalize-in-Hom Diag-Diagonalize
            Diagonalize-preserves-Ide interchange Ide-in-Hom eval-red-Tensor
            comp\text{-}cod\text{-}arr [of \{|a\downarrow\}\}]
    by simp
  also have ... = ((\{[a] \Downarrow ([b] [\otimes] [c])\} \cdot (\{[a]\} \otimes \{[b] \Downarrow [c]\}))
                       \mathbf{a}[\{\lfloor a\rfloor\}, \{\lfloor b\rfloor\}, \{\lfloor c\rfloor\}]) \cdot ((\{a\downarrow\} \otimes \{b\downarrow\}) \otimes \{c\downarrow\})
    using a b c red-in-Hom Diag-Diagonalize TensorDiag-preserves-Diag
             assoc-naturality [of \{a\downarrow\}\ \{b\downarrow\}\ \{c\downarrow\}\] comp-assoc
     by simp
  also have ... = (\{(|a| | \otimes | |b|) \downarrow |c|\} \cdot (\{|a| \downarrow |b|\} \otimes \{|c|\})).
                      ((\{a\downarrow\}\}\otimes\{b\downarrow\})\otimes\{c\downarrow\})
    using a b c Diag-Diagonalize Diagonalize-preserves-Ide coherence-key-fact by simp
  also have ... = {\|\mathbf{a}[a, b, c]\|} \cdot {|Dom \mathbf{a}[a, b, c] \downarrow}
    using a b c red-in-Hom red2-in-Hom TensorDiag-preserves-Diag
            Diagonalize-preserves-Ide TensorDiag-preserves-Ide Diag-Diagonalize interchange
            eval-red-Tensor TensorDiag-assoc comp-cod-arr [of \{c\downarrow\}\}]
            comp\text{-}cod\text{-}arr \ [of \ \{(\lfloor a \rfloor \ \lfloor b \rfloor) \ \downarrow \ \lfloor c \rfloor\} \ \cdot (\{\lfloor a \rfloor \ \downarrow \ \lfloor b \rfloor\} \ \cdot (\{\lfloor a \downarrow \} \ \otimes \ \{b \downarrow \}) \ \otimes \ \{c \downarrow \})]
            comp-assoc
    by simp
  finally show ?thesis by blast
qed
```

```
lemma coherent-Assoc'-Ide: assumes Ide\ a and Ide\ b and Ide\ c shows coherent \mathbf{a}^{-1}[a,\ b,\ c] proof - have Can\ \mathbf{a}[a,\ b,\ c] using assms\ Ide\text{-}implies\text{-}Can by simp moreover have \mathbf{a}^{-1}[a,\ b,\ c] = Inv\ \mathbf{a}[a,\ b,\ c] using assms\ Inv\text{-}Ide by simp ultimately show ?thesis using assms\ Ide\text{-}implies\text{-}Can\ coherent\text{-}Assoc\text{-}Ide\ Inv\text{-}Ide\ Can\text{-}implies\text{-}coherent\text{-}iff\text{-}coherent\text{-}Inv} by metis qed
```

The next lemma implies coherence for the special case of a term that is the tensor of two diagonal arrows.

```
lemma eval-red2-naturality:
assumes Diag t and Diag u
shows \{Cod\ t \downarrow Cod\ u\} \cdot (\{t\} \otimes \{u\}) = \{t\ | \otimes |\ u\} \cdot \{Dom\ t \downarrow Dom\ u\}
proof -
     have *: \bigwedge t \ u. Diag \ (t \otimes u) \Longrightarrow arr \ \{t\} \land arr \ \{u\}
          using Diag-implies-Arr by force
     have t = \mathcal{I} \Longrightarrow ?thesis
          using assms Diag-implies-Arr lunit-naturality [of \{u\}]
                          Arr-implies-Ide-Dom Arr-implies-Ide-Cod comp-cod-arr
         by simp
     moreover have t \neq \mathcal{I} \land u = \mathcal{I} \Longrightarrow ?thesis
          using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod
                         Diag\text{-}implies\text{-}Arr\ Dom\text{-}preserves\text{-}Diag\ Cod\text{-}preserves\text{-}Diag}
                         eval-red2-Diag-Unity runit-naturality [of \{t\}]
         by simp
     moreover have t \neq \mathcal{I} \land u \neq \mathcal{I} \Longrightarrow ?thesis
          using assms * Arr-implies-Ide-Dom Arr-implies-Ide-Cod
                         Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
          apply (induct t, simp-all)
     proof -
         \mathbf{fix} f
         assume f: C.arr <math>f
         assume u \neq \mathcal{I}
         hence u: u \neq \mathcal{I} \wedge
                                    Diag\ u \land Diag\ (Dom\ u) \land Diag\ (Cod\ u) \land Ide\ (Dom\ u) \land Ide\ (Cod\ u) \land 
                                    arr \{u\} \land arr \{Dom u\} \land arr \{Cod u\} \land ide \{Dom u\} \land ide \{Cod u\}\}
               using assms(2) Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
                               Arr-implies-Ide-Dom Arr-implies-Ide-Cod
               by simp
          hence 1: Dom u \neq \mathcal{I} \land Cod \ u \neq \mathcal{I}  using u by (cases u, simp-all)
         show \{\langle C.cod f \rangle \Downarrow Cod u\} \cdot (V f \otimes \{u\}) = (V f \otimes \{u\}) \cdot \{\langle C.dom f \rangle \Downarrow Dom u\}
               using f u 1 Diag-implies-Arr red2-Diag comp-arr-dom comp-cod-arr by simp
          next
```

```
\mathbf{fix} \ v \ w
 assume I2: [w \neq Unity; Diag w] \Longrightarrow
                                 \{ Cod \ w \Downarrow Cod \ u \} \cdot (\{w\} \otimes \{u\}) = \{ w \ | \otimes | \ u \} \cdot \{ Dom \ w \Downarrow Dom \ u \}
 assume u \neq \mathcal{I}
hence u: u \neq \mathcal{I} \wedge Arr u \wedge Arr (Dom u) \wedge Arr (Cod u) \wedge
                        Diag\ u \wedge Diag\ (Dom\ u) \wedge Diag\ (Cod\ u) \wedge Ide\ (Dom\ u) \wedge Ide\ (Cod\ u) \wedge
                        arr \{u\} \land arr \{Dom u\} \land arr \{Cod u\} \land ide \{Dom u\} \land ide \{Cod u\}\}
      using assms(2) Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
                    Arr-implies-Ide-Dom Arr-implies-Ide-Cod
      by simp
 assume vw: Diag (v \otimes w)
let ?f = un\text{-}Prim\ v
 have v = \langle ?f \rangle \wedge C.arr ?f
      using vw by (metis\ Diag-TensorE(1)\ Diag-TensorE(2))
 hence Arr \ v \wedge v = \langle un\text{-}Prim \ v \rangle \wedge C.arr \ ?f \wedge Diag \ v \ by \ (cases \ v; \ simp)
 hence v: v = \langle ?f \rangle \land C.arr ?f \land Arr v \land Ide (Dom v) \land Ide (Cod v) \land Diag v \land
                        Diag\ (Dom\ v) \land arr\ \{v\} \land arr\ \{Dom\ v\} \land arr\ \{Cod\ v\} \land arr\ \{v\} \land arr\
                        ide \{ |Dom v| \} \land ide \{ |Cod v| \}
      by (cases v, simp-all)
have Diag\ w \wedge w \neq \mathcal{I}
      using vw \ v by (metis \ Diag.simps(3))
 hence w: w \neq \mathcal{I} \land Arr \ w \land Arr \ (Dom \ w) \land Arr \ (Cod \ w) \land
                        Diag \ w \land Diag \ (Dom \ w) \land Diag \ (Cod \ w) \land
                        Ide\ (Dom\ w)\ \land\ Ide\ (Cod\ w)\ \land
                        arr \{w\} \land arr \{Dom w\} \land arr \{Cod w\} \land ide \{Dom w\} \land ide \{Cod w\}\}
{f using}\ vw*Diag-implies-Arr\ Dom-preserves-Diag\ Cod-preserves-Diag\ Arr-implies-Ide-Dom
                   Arr-implies-Ide-Cod ide-eval-Ide Ide-implies-Arr Ide-in-Hom
      by simp
show \{(Cod\ v\otimes Cod\ w) \downarrow Cod\ u\} \cdot ((\{v\} \otimes \{w\}) \otimes \{u\})
                   = \{(v \otimes w) \mid \boxtimes \rfloor u\} \cdot \{(Dom \ v \otimes Dom \ w) \downarrow Dom \ u\}
 proof -
      have u': Dom \ u \neq \mathcal{I} \land Cod \ u \neq \mathcal{I}  using u by (cases \ u) simp-all
      have w': Dom w \neq \mathcal{I} \land Cod \ w \neq \mathcal{I}  using w by (cases \ w) simp-all
      have D: Diag (Dom \ v \otimes (Dom \ w \mid \otimes \mid Dom \ u))
      proof -
          have Dom\ w\mid \otimes\mid\ Dom\ u\neq\mathcal{I}
               using u \ u' \ w \ w' \ not\text{-}is\text{-}Tensor\text{-}TensorDiagE by blast
          moreover have Diag (Dom \ w \mid \otimes \mid Dom \ u)
               using u w TensorDiag-preserves-Diag by simp
          moreover have Dom\ v = \langle C.dom\ ?f \rangle
               using v by (cases \ v, simp-all)
           ultimately show ?thesis
               using u v w TensorDiag-preserves-Diag by auto
      qed
      have C: Diag (Cod \ v \otimes (Cod \ w \mid \otimes \mid Cod \ u))
      proof -
          have Cod \ w \mid \otimes \mid Cod \ u \neq \mathcal{I}
               using u \ u' \ w \ w' \ not\text{-}is\text{-}Tensor\text{-}TensorDiagE by blast
          moreover have Diag (Cod \ w \mid \otimes \mid Cod \ u)
```

```
using u \ w \ Tensor Diag-preserves-Diag by simp
          moreover have Cod\ v = \langle C.cod\ ?f \rangle
                  using v by (cases v, simp-all)
          ultimately show ?thesis
                  using u \ v \ w by (cases Cod \ w \mid \otimes \mid Cod \ u) simp-all
have \{(Cod\ v\otimes Cod\ w) \downarrow Cod\ u\} \cdot ((\{v\} \otimes \{w\}) \otimes \{u\})
                                     = (\{ Cod \ v \Downarrow (Cod \ w \mid \otimes \mid Cod \ u) \} \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \Downarrow Cod \ u \}) \cdot
                                              a[\{Cod\ v\}, \{Cod\ w\}, \{Cod\ u\}]) \cdot ((\{v\} \otimes \{w\}) \otimes \{u\})
proof -
        have (Cod\ v\otimes\ Cod\ w) \Downarrow\ Cod\ u
                                              = (Cod \ v \Downarrow (Cod \ w \mid \otimes \mid \mid Cod \ u \mid)) \cdot (Cod \ v \otimes Cod \ w \Downarrow Cod \ u) \cdot
                                                      \mathbf{a}[Cod\ v,\ Cod\ w,\ Cod\ u]
                 using u \ v \ w by (cases \ u, simp-all)
         hence \{(Cod\ v\otimes\ Cod\ w)\ \downarrow\ Cod\ u\}
                                                   = \{ |Cod \ v \downarrow (Cod \ w \mid \otimes | \ Cod \ u) \} \cdot (\{ |Cod \ v \} \otimes \{ |Cod \ w \downarrow | \ Cod \ u \}) \cdot (|Cod \ v \downarrow | \ Cod \ u \}) \cdot (|Cod \ v \downarrow | \ Cod \ u \downarrow |Cod \ u \}) \cdot (|Cod \ v \downarrow | \ Cod \ u \downarrow |Cod \ u \downarrow
                                                           a[\{Cod\ v\}, \{Cod\ w\}, \{Cod\ u\}]
                 using u \ v \ w by simp
         thus ?thesis by argo
qed
\textbf{also have } ... = (( \{ Cod \ v \} \otimes \{ Cod \ w \ | \ \otimes | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \} \otimes \{ Cod \ w \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot (\{ Cod \ v \ | \ Cod \ u \}) \cdot 
                                                                                  a[\{Cod\ v\}, \{Cod\ w\}, \{Cod\ u\}]) \cdot ((\{v\} \otimes \{w\}) \otimes \{u\})
         using u v w C red2-Diag by simp
also have ... = ((\{Cod\ v\} \otimes \{Cod\ w \downarrow Cod\ u\}) \cdot a[\{Cod\ v\}, \{Cod\ w\}, \{Cod\ u\}]) \cdot a[\{Cod\ v\}, \{Cod\ w\}, \{Cod\ u\}])
                                                                             ((\{v\} \otimes \{w\}) \otimes \{u\})
proof -
        have (\{Cod\ v\} \otimes \{Cod\ w\ | \otimes |\ Cod\ u\}) \cdot (\{Cod\ v\} \otimes \{Cod\ w \downarrow Cod\ u\})
                                                   = \{ Cod \ v \} \otimes \{ Cod \ w \downarrow Cod \ u \}
                 using u v w comp-cod-arr red2-in-Hom by simp
          moreover have
                            seq (\{Cod v\} \otimes \{Cod w \mid \otimes \mid Cod u\}) (\{Cod v\} \otimes \{Cod w \downarrow Cod u\})
                  using u v w red2-in-Hom TensorDiag-in-Hom Ide-in-Hom by simp
         moreover have seq (\{Cod\ v\} \otimes \{Cod\ w \downarrow Cod\ u\}) a[\{Cod\ v\}, \{Cod\ w\}, \{Cod\ u\}]
                  using u v w red2-in-Hom by simp
          ultimately show ?thesis
                  using u v w comp-reduce by presburger
qed
also have
         \dots = (\{v\} \otimes \{w \mid \otimes \mid u\} \cdot \{Dom \ w \downarrow Dom \ u\}) \cdot a[\{Dom \ v\}, \{Dom \ w\}, \{Dom \ u\}]
         using u v w I2 red2-in-Hom TensorDiag-in-Hom interchange comp-reduce
                                     assoc-naturality [of \{v\} \{w\} \{u\}] comp-cod-arr comp-assoc
        by simp
also have ... = (\{v\} \otimes \{w \mid \otimes \mid u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\})
                                                                            a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
        using u v w red2-in-Hom TensorDiag-in-Hom interchange comp-reduce comp-arr-dom
        by simp
also have ... = \{v \mid \otimes \mid w \mid \otimes \mid u\} \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \downarrow Dom \ u\}) \cdot (\{Dom \ w \downarrow Do
                                                                             a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
         using u \ u' \ v \ w \ not\text{-}is\text{-}Tensor\text{-}Tensor\text{-}DiagE \ Tensor\text{-}Diag\text{-}Prim \ [of \ w \ | \otimes | \ u \ ?f]
```

```
by force
                       also have ... = \{v \mid \otimes \mid w \mid \otimes \mid u\} \cdot \{Dom \mid v \mid \otimes \mid Dom \mid w \mid \otimes \mid Dom \mid u\}
                                                                                                                    (\{Dom\ v\} \otimes \{Dom\ w \downarrow Dom\ u\}) \cdot a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
                       proof -
                                  have
                                               \{v \mid \otimes \mid w \mid \otimes \mid u\} \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ v\} \otimes \{Dom \ w \Downarrow Dom \ u\}) \cdot (\{Dom \ w \parallel Dom \ u\}) \cdot (\{Dom 
                                                               a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}] =
                                                    (\{v \mid \bigotimes \rfloor w \mid \bigotimes \rfloor u\} \cdot \{Dom \ v \mid \bigotimes \rfloor \ Dom \ w \mid \bigotimes \mid Dom \ u\}) \cdot
                                                    (\{Dom\ v\} \otimes \{Dom\ w \Downarrow Dom\ u\}) \cdot a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
                                             using u v w comp-arr-dom TensorDiag-in-Hom TensorDiag-preserves-Diag by simp
                                  also have ... = \{v \ [\otimes] \ w \ [\otimes] \ u\} \cdot \{Dom \ v \ [\otimes] \ Dom \ w \ [\otimes] \ Dom \ u\} \cdot
                                                                                                                               (\{Dom\ v\} \otimes \{Dom\ w \downarrow Dom\ u\}) \cdot a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
                                             using comp-assoc by simp
                                  finally show ?thesis by blast
                       also have ... = \{(v \mid \otimes \mid w) \mid \otimes \mid u\} \cdot \{(Dom \ v \otimes Dom \ w) \downarrow Dom \ u\}
                       proof -
                                  have
                                               \{(Dom\ v\otimes Dom\ w)\ \downarrow\ Dom\ u\}
                                                                                        = \{ Dom \ v \downarrow (Dom \ w \mid \otimes \mid Dom \ u) \} \cdot (\{ Dom \ v \} \otimes \{ Dom \ w \downarrow Dom \ u \} ) \cdot 
                                                                                                 a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
                                   proof -
                                             have (Dom\ v\otimes Dom\ w) \Downarrow Dom\ u
                                                                                                    = (Dom \ v \Downarrow (Dom \ w \mid \otimes \mid \mid Dom \ u \mid)) \cdot (Dom \ v \otimes (Dom \ w \Downarrow Dom \ u)) \cdot
                                                                                                              \mathbf{a}[Dom\ v,\ Dom\ w,\ Dom\ u]
                                                          using u u' v w red2-in-Hom TensorDiag-in-Hom Ide-in-Hom
                                                         by (cases u) auto
                                             thus ?thesis
                                                          using u v w red2-in-Hom by simp
                                   \mathbf{qed}
                                    also have
                                             \dots = \{ Dom \ v \mid \otimes \mid Dom \ w \mid \otimes \mid Dom \ u \} \cdot (\{ Dom \ v \} \otimes \{ Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ u \}) 
                                                                                                                                     a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
                                             using D TensorDiag-Diag red2-Diag by simp
                                  finally have
                                               \{(Dom\ v\otimes Dom\ w)\ \downarrow \ Dom\ u\}
                                                                           = \{ Dom \ v \mid \otimes \mid Dom \ w \mid \otimes \mid Dom \ u \} \cdot (\{ Dom \ v \} \otimes \{ Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid \otimes \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot (\{ Dom \ v \mid B \mid Dom \ w \downarrow Dom \ u \}) \cdot 
                                                                                      a[\{Dom\ v\}, \{Dom\ w\}, \{Dom\ u\}]
                                             by blast
                                   thus ?thesis
                                              using assms v w TensorDiag-assoc by auto
                       qed
                       finally show ?thesis
                                    using vw TensorDiag-Diag by simp
         qed
qed
ultimately show ?thesis by blast
```

qed

```
lemma Tensor-preserves-coherent:
assumes Arr t and Arr u and coherent t and coherent u
shows coherent (t \otimes u)
proof -
  have t: Arr \ t \land Ide \ (Dom \ t) \land Ide \ (Cod \ t) \land Ide \ |Dom \ t| \land Ide \ |Cod \ t| \land
             arr \{t\} \land arr \{Dom t\} \land ide \{Dom t\} \land arr \{Cod t\} \land ide \{Cod t\}\}
    using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
  \mathbf{have}\ u\colon Arr\ u\ \wedge\ Ide\ (Dom\ u)\ \wedge\ Ide\ (Cod\ u)\ \wedge\ Ide\ \lfloor\ Dom\ u\ \rfloor\ \wedge\ Ide\ \lfloor\ Cod\ u\ \rfloor\ \wedge
             arr \{u\} \land arr \{Dom u\} \land ide \{Dom u\} \land arr \{Cod u\} \land ide \{Cod u\}\}
    using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
    by auto
  have \{Cod\ (t\otimes u)\downarrow\}\cdot(\{t\}\otimes\{u\})
            = (\{\mid Cod\ t\mid \downarrow \mid \mid Cod\ u\mid \} \cdot (\{\mid Cod\ t\downarrow \mid \} \otimes \{\mid Cod\ u\downarrow \mid \})) \cdot (\{\mid t\mid \} \otimes \{\mid u\})
    using t u eval-red-Tensor by simp
  also have ... = \{|Cod t| \downarrow | Cod u|\} \cdot (\{Cod t\downarrow\}) \otimes \{Cod u\downarrow\}\} \cdot (\{t\}) \otimes \{u\}
    using comp-assoc by simp
  also have \dots = \{ \lfloor Cod \ t \rfloor \Downarrow \lfloor Cod \ u \rfloor \} \cdot (\{ \lfloor t \rfloor \} \otimes \{ \lfloor u \rfloor \}) \cdot (\{ Dom \ t \downarrow \} \otimes \{ Dom \ u \downarrow \}) 
    using assms t u Diagonalize-in-Hom red-in-Hom interchange by simp
  \textbf{also have } ... = (\{ \lfloor \textit{Cod } t \rfloor \Downarrow \lfloor \textit{Cod } u \rfloor \} \cdot (\{ \lfloor t \rfloor \} \otimes \{ \lfloor u \rfloor \})) \cdot (\{ \textit{Dom } t \downarrow \} \otimes \{ \textit{Dom } u \downarrow \})
     using comp-assoc by simp
  \textbf{also have } ... = (\{\lfloor t \rfloor \lfloor \otimes \rfloor \lfloor u \rfloor\} \cdot \{\lfloor Dom \ t \rfloor \Downarrow \lfloor Dom \ u \rfloor\}) \cdot (\{Dom \ t \downarrow\} \otimes \{Dom \ u \downarrow\})
     using assms t u Diag-Diagonalize Diagonalize-in-Hom
            eval-red2-naturality [of Diagonalize t Diagonalize u]
    by simp
  \textbf{also have} \ ... = \{ \lfloor t \rfloor \ \lfloor \otimes \rfloor \ \lfloor u \rfloor \} \ \cdot \ \{ \lfloor \textit{Dom } t \rfloor \ \Downarrow \ \lfloor \textit{Dom } u | \ \} \ \cdot \ ( \{ \textit{Dom } t \downarrow \} \ \otimes \ \{ \textit{Dom } u \downarrow \} )
    using comp-assoc by simp
  also have ... = \{|t| |\otimes| |u|\} \cdot \{(Dom \ t \otimes Dom \ u)\downarrow\}
    using t u eval-red-Tensor by simp
  finally have \{Cod\ (t \otimes u)\downarrow\} \cdot \{\{t\}\}\otimes \{u\}\} = \{\lfloor t\rfloor \lfloor u\rfloor\} \cdot \{(Dom\ t \otimes Dom\ u)\downarrow\}
    by blast
  thus ?thesis using t u by simp
qed
lemma Comp-preserves-coherent:
assumes Arr\ t and Arr\ u and Dom\ t = Cod\ u
and coherent \ t and coherent \ u
shows coherent (t \cdot u)
proof -
  have t: Arr \ t \land Ide \ (Dom \ t) \land Ide \ (Cod \ t) \land Ide \ |Dom \ t| \land Ide \ |Cod \ t| \land
             arr \{t\} \land arr \{Dom t\} \land ide \{Dom t\} \land arr \{Cod t\} \land ide \{Cod t\}\}
    using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
    by auto
  have u: Arr\ u \wedge Ide\ (Dom\ u) \wedge Ide\ (Cod\ u) \wedge Ide\ [Dom\ u] \wedge Ide\ [Cod\ u] \wedge
             arr \{u\} \land arr \{Dom u\} \land ide \{Dom u\} \land arr \{Cod u\} \land ide \{Cod u\}\}
    using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
  have \{Cod\ (t \cdot u)\downarrow\} \cdot \{t \cdot u\} = \{Cod\ t\downarrow\} \cdot \{t\} \cdot \{u\}
    using t \ u \ \text{by} \ simp
```

```
also have ... = (\{Cod\ t\downarrow\} \cdot \{t\}) \cdot \{u\}
  proof -
    have seq \{ Cod t \downarrow \} \{ t \}
      using assms t red-in-Hom by (intro seqI, auto)
    moreover have seq \{t\} \{u\}
      using assms t u by auto
    ultimately show ?thesis using comp-assoc by auto
  qed
  also have ... = \{\lfloor t \cdot u \rfloor\} \cdot \{Dom (t \cdot u)\downarrow\}
    using t u assms red-in-Hom Diag-Diagonalize comp-assoc
    by (simp add: Diag-implies-Arr eval-CompDiag)
  finally show coherent (t \cdot u) by blast
qed
The main result: "Every formal arrow is coherent."
theorem coherence:
assumes Arr t
shows coherent t
proof -
  have Arr\ t \Longrightarrow coherent\ t
  proof (induct t)
    \mathbf{fix} \ u \ v
    show \llbracket Arr \ u \Longrightarrow coherent \ u; Arr \ v \Longrightarrow coherent \ v \ \rrbracket \Longrightarrow Arr \ (u \otimes v)
               \implies coherent (u \otimes v)
      using Tensor-preserves-coherent by simp
    \mathbf{show} \ \llbracket \ \mathit{Arr} \ u \Longrightarrow \mathit{coherent} \ u; \ \mathit{Arr} \ v \Longrightarrow \mathit{coherent} \ v \ \rrbracket \Longrightarrow \mathit{Arr} \ (u \cdot v)
               \implies coherent (u \cdot v)
      using Comp-preserves-coherent by simp
    next
    show coherent \mathcal{I} by simp
    \mathbf{fix} f
    show Arr \langle f \rangle \implies coherent \langle f \rangle by simp
    next
    \mathbf{fix} \ t
    assume I: Arr t \Longrightarrow coherent t
    show Lunit: Arr \mathbf{1}[t] \implies coherent \mathbf{1}[t]
      using I Arr-implies-Ide-Dom coherent-Lunit-Ide Ide-in-Hom Ide-implies-Arr
             Comp-preserves-coherent [of t l[Dom t]] Diagonalize-Comp-Arr-Dom \(\mathbf{l}\)-ide-simp
      by auto
    show Runit: Arr \mathbf{r}[t] \Longrightarrow coherent \mathbf{r}[t]
      using I Arr-implies-Ide-Dom coherent-Runit-Ide Ide-in-Hom Ide-implies-Arr
             Comp-preserves-coherent [of t \mathbf{r}[Dom\ t]] Diagonalize-Comp-Arr-Dom \varrho-ide-simp
      by auto
    show Arr \mathbf{l}^{-1}[t] \Longrightarrow coherent \mathbf{l}^{-1}[t]
    proof -
      assume Arr l^{-1}[t]
      hence t: Arr t by simp
      have coherent (\mathbf{l}^{-1}[Cod\ t] \cdot t)
```

```
using t I Arr-implies-Ide-Cod coherent-Lunit'-Ide Ide-in-Hom
          Comp-preserves-coherent [of l^{-1}[Cod t] t]
   by fastforce
  thus ?thesis
    using t Arr-implies-Ide-Cod Ide-implies-Arr Ide-in-Hom Diagonalize-Comp-Cod-Arr
         eval-in-hom l'.naturality2 [of \{t\}]
   by force
qed
show Arr \mathbf{r}^{-1}[t] \Longrightarrow coherent \mathbf{r}^{-1}[t]
proof -
  assume Arr \mathbf{r}^{-1}[t]
  hence t: Arr t by simp
  have coherent (\mathbf{r}^{-1}[Cod\ t] \cdot t)
    using t I Arr-implies-Ide-Cod coherent-Runit'-Ide Ide-in-Hom
          Comp-preserves-coherent [of \mathbf{r}^{-1}[Cod t] t]
   by fastforce
  thus ?thesis
    using t Arr-implies-Ide-Cod Ide-implies-Arr Ide-in-Hom Diagonalize-Comp-Cod-Arr
         eval-in-hom \varrho'.naturality2 [of \{t\}]
    by force
qed
next
\mathbf{fix} t u v
assume I1: Arr t \Longrightarrow coherent t
assume I2: Arr u \Longrightarrow coherent u
assume I3: Arr v \Longrightarrow coherent v
show Arr \mathbf{a}[t, u, v] \Longrightarrow coherent \mathbf{a}[t, u, v]
proof -
  assume tuv: Arr \mathbf{a}[t, u, v]
  have t: Arr t using tuv by simp
  have u: Arr u using tuv by simp
  have v: Arr v using tuv by simp
  have coherent ((t \otimes u \otimes v) \cdot \mathbf{a}[Dom\ t,\ Dom\ u,\ Dom\ v])
  proof -
   have Arr (t \otimes u \otimes v) \wedge coherent (t \otimes u \otimes v)
   proof
     have 1: Arr t \wedge coherent \ t \ using \ t \ I1 \ by \ simp
     have 2: Arr(u \otimes v) \wedge coherent(u \otimes v)
       using u v I2 I3 Tensor-preserves-coherent by force
     show Arr (t \otimes u \otimes v) using 1 2 by simp
     show coherent (t \otimes u \otimes v)
       using 1 2 Tensor-preserves-coherent by blast
    moreover have Arr \mathbf{a}[Dom \ t, \ Dom \ u, \ Dom \ v]
     using t u v Arr-implies-Ide-Dom by simp
    moreover have coherent \mathbf{a}[Dom\ t,\ Dom\ u,\ Dom\ v]
     using t u v Arr-implies-Ide-Dom coherent-Assoc-Ide by blast
    moreover have Dom (t \otimes u \otimes v) = Cod \mathbf{a}[Dom \ t, Dom \ u, Dom \ v]
     using t u v Arr-implies-Ide-Dom Ide-in-Hom by simp
```

```
ultimately show ?thesis
      using t u v Arr-implies-Ide-Dom Ide-implies-Arr
             Comp-preserves-coherent [of t \otimes u \otimes v a[Dom t, Dom u, Dom v]]
      by blast
  ged
  moreover have Par \mathbf{a}[t, u, v] ((t \otimes u \otimes v) \cdot \mathbf{a}[Dom \ t, Dom \ u, Dom \ v])
    using t u v Arr-implies-Ide-Dom Ide-implies-Arr Ide-in-Hom by simp
  moreover have |\mathbf{a}[t, u, v]| = |(t \otimes u \otimes v) \cdot \mathbf{a}[Dom\ t, Dom\ u, Dom\ v]|
  proof -
    have (\lfloor t \rfloor \lfloor \otimes \rfloor \lfloor u \rfloor) \lfloor \otimes \rfloor \lfloor v \rfloor
              = (\lfloor t \rfloor \ \lfloor \otimes \rfloor \ \lfloor u \rfloor \ \lfloor \otimes \rfloor \ \lfloor v \rfloor) \ \lfloor \cdot \rfloor \ ((\lfloor Dom \ t \rfloor \ \lfloor \otimes \rfloor \ \lfloor Dom \ u \rfloor) \ \lfloor \otimes \rfloor \ \lfloor Dom \ v \vert)
    proof -
      have 1: Diag [t] \land Diag [u] \land Diag [v] \land
                Dom \mid t \mid = \mid Dom \mid t \mid \land Dom \mid u \mid = \mid Dom \mid u \mid \land Dom \mid v \mid = \mid Dom \mid v \mid
         using t u v Diag-Diagonalize by blast
      moreover have Diag(|t| | \otimes | |u|)
         using 1 TensorDiag-preserves-Diag(1) by blast
      moreover have \bigwedge t. Arr t \Longrightarrow \lfloor t \rfloor \lfloor \cdot \rfloor \lfloor Dom t \rfloor = \lfloor t \rfloor
         using t Diagonalize-Comp-Arr-Dom by simp
      moreover have Dom |\mathbf{a}[t, u, v]| = |Dom \mathbf{a}[t, u, v]|
         using Diag-Diagonalize tuv by blast
      ultimately show ?thesis
         using t u v tuv 1 TensorDiag-assoc TensorDiag-preserves-Diag(2)
         by (metis\ (no-types)\ Diagonalize.simps(9))
    qed
    thus ?thesis
      using tuv Diagonalize-Comp-Arr-Dom CompDiag-TensorDiag Diag-Diagonalize
  qed
  moreover have \{\mathbf{a}[t, u, v]\} = \{(t \otimes u \otimes v) \cdot \mathbf{a}[Dom \ t, Dom \ u, Dom \ v]\}
    using t \ u \ v \ Arr-implies-Ide-Dom \ Ide-implies-Arr \ \alpha-simp \ [of \{t\}, \{u\}, \{v\}\}]
  ultimately show coherent \mathbf{a}[t, u, v] by argo
show Arr \mathbf{a}^{-1}[t, u, v] \Longrightarrow coherent \mathbf{a}^{-1}[t, u, v]
  assume tuv: Arr \mathbf{a}^{-1}[t, u, v]
  have t: Arr t using tuv by simp
  have u: Arr u using tuv by simp
  have v: Arr v using tuv by simp
  have coherent (((t \otimes u) \otimes v) \cdot \mathbf{a}^{-1}[Dom\ t,\ Dom\ u,\ Dom\ v])
  proof -
    have Arr ((t \otimes u) \otimes v) \wedge coherent ((t \otimes u) \otimes v)
    proof
      have 1: Arr v \wedge coherent v using v I3 by simp
      have 2: Arr(t \otimes u) \wedge coherent(t \otimes u)
         using t u I1 I2 Tensor-preserves-coherent by force
      show Arr((t \otimes u) \otimes v) using 1 2 by simp
      show coherent ((t \otimes u) \otimes v)
```

```
using 1 2 Tensor-preserves-coherent by blast
       qed
       moreover have Arr \mathbf{a}^{-1}[Dom \ t, Dom \ u, Dom \ v]
         using t u v Arr-implies-Ide-Dom by simp
       moreover have coherent \mathbf{a}^{-1}[Dom\ t,\ Dom\ u,\ Dom\ v]
         using t u v Arr-implies-Ide-Dom coherent-Assoc'-Ide by blast
       moreover have Dom ((t \otimes u) \otimes v) = Cod \mathbf{a}^{-1}[Dom \ t, \ Dom \ u, \ Dom \ v]
         using t u v Arr-implies-Ide-Dom Ide-in-Hom by simp
       ultimately show ?thesis
         using t u v Arr-implies-Ide-Dom Ide-implies-Arr
               Comp-preserves-coherent [of ((t \otimes u) \otimes v) \mathbf{a}^{-1}[Dom\ t,\ Dom\ u,\ Dom\ v]]
         by metis
     qed
     moreover have Par \mathbf{a}^{-1}[t, u, v] (((t \otimes u) \otimes v) \cdot \mathbf{a}^{-1}[Dom t, Dom u, Dom v])
       using t u v Arr-implies-Ide-Dom Ide-implies-Arr Ide-in-Hom by simp
     moreover have [\mathbf{a}^{-1}[t, u, v]] = [((t \otimes u) \otimes v) \cdot \mathbf{a}^{-1}[Dom \ t, Dom \ u, Dom \ v]]
       using t u v Diagonalize-Comp-Arr-Dom CompDiag-TensorDiag Diag-Diagonalize
             Tensor Diag-assoc \ Tensor Diag-preserves-Diag \ Tensor Diag-in-Hom
             CompDiag-Diag-Dom [of (|t| | \otimes | |u|) | \otimes | |v|]
     moreover have \{\mathbf{a}^{-1}[t, u, v]\} = \{((t \otimes u) \otimes v) \cdot \mathbf{a}^{-1}[Dom \ t, Dom \ u, Dom \ v]\}
       using t u v Arr-implies-Ide-Dom Ide-implies-Arr eval-in-hom comp-cod-arr
             \alpha'.naturality1 \alpha'-simp
       by simp
     ultimately show coherent \mathbf{a}^{-1}[t, u, v] by argo
   qed
 qed
 thus ?thesis using assms by blast
qed
```

MacLane [5] says: "A coherence theorem asserts 'Every diagram commutes'," but that is somewhat misleading. A coherence theorem provides some kind of hopefully useful way of distinguishing diagrams that definitely commute from diagrams that might not. The next result expresses coherence for monoidal categories in this way. As the hypotheses can be verified algorithmically (using the functions Dom, Cod, Arr, and Diagonalize) if we are given an oracle for equality of arrows in C, the result provides a decision procedure, relative to C, for the word problem for the free monoidal category generated by C.

```
corollary eval\text{-}eqI:
assumes Par\ t\ u and \lfloor t \rfloor = \lfloor u \rfloor
shows \{\!\!\{t\}\!\!\} = \{\!\!\{u\}\!\!\}
using assms\ coherence\ canonical\text{-}factorization\ by\ simp
```

Our final corollary expresses coherence in a more "MacLane-like" fashion: parallel canonical arrows are equivalent under evaluation.

```
corollary maclane-coherence:

assumes Par\ t\ u and Can\ t and Can\ u

shows \{t\} = \{u\}

proof (intro\ eval\text{-}eqI)

show Par\ t\ u by fact
```

```
\begin{array}{c} \textbf{show} \ \lfloor t \rfloor = \lfloor u \rfloor \\ \textbf{proof} \ - \\ \textbf{have} \ \textit{Ide} \ \lfloor t \rfloor \land \textit{Ide} \ \lfloor u \rfloor \land \textit{Par} \ \lfloor t \rfloor \ \lfloor u \rfloor \\ \textbf{using} \ \textit{assms} \ \textit{eval-eqI} \ \textit{Ide-Diagonalize-Can Diagonalize-in-Hom by simp} \\ \textbf{thus} \ \textit{?thesis} \ \textbf{using} \ \textit{Ide-in-Hom by auto} \\ \textbf{qed} \\ \textbf{qed} \\ \textbf{end} \\ \\ \textbf{end} \end{array}
```

Chapter 3

Monoidal Functor

```
theory MonoidalFunctor
imports MonoidalCategory
begin
```

A monoidal functor is a functor F between monoidal categories C and D that preserves the monoidal structure up to isomorphism. The traditional definition assumes a monoidal functor to be equipped with two natural isomorphisms, a natural isomorphism φ that expresses the preservation of tensor product and a natural isomorphism ψ that expresses the preservation of the unit object. These natural isomorphisms are subject to coherence conditions; the condition for φ involving the associator and the conditions for ψ involving the unitors. However, as pointed out in [2] (Section 2.4), it is not necessary to take the natural isomorphism ψ as given, since the mere assumption that F \mathcal{I}_C is isomorphic to \mathcal{I}_D is sufficient for there to be a canonical definition of ψ from which the coherence conditions can be derived. This leads to a more economical definition of monoidal functor, which is the one we adopt here.

```
locale monoidal-functor =
  C: monoidal\text{-}category \ C \ T_C \ \alpha_C \ \iota_C \ +
  D: monoidal-category D T_D \alpha_D \iota_D +
  functor\ C\ D\ F\ +
  CC: product-category C C +
  DD: product-category DD +
  FF: product-functor C \ C \ D \ D \ F \ F \ +
  FoT_C: composite-functor C.CC.comp C D T_C F +
  T_D oFF: composite-functor C.CC.comp D.CC.comp D FF.map T_D +
  \varphi: natural-isomorphism C.CC.comp D T_D oFF.map FoT_C.map \varphi
for C :: 'c \ comp
                                        (infixr \langle \cdot_C \rangle 55)
and T_C :: 'c * 'c \Rightarrow 'c
and \alpha_C :: 'c * 'c * 'c \Rightarrow 'c
and \iota_C :: {}'c
and D :: 'd comp
                                         (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
```

```
and F :: 'c \Rightarrow 'd
and \varphi :: 'c * 'c \Rightarrow 'd +
assumes preserves-unity: D.isomorphic D.unity (F C.unity)
and assoc-coherence:
     \llbracket C.ide \ a; \ C.ide \ b; \ C.ide \ c \ \rrbracket \Longrightarrow
          F\left(\alpha_{C}\left(a,\,b,\,c\right)\right)\cdot_{D}\varphi\left(T_{C}\left(a,\,b\right),\,c\right)\cdot_{D}T_{D}\left(\varphi\left(a,\,b\right),\,F\,c\right)
            = \varphi (a, T_C (b, c)) \cdot_D T_D (F a, \varphi (b, c)) \cdot_D \alpha_D (F a, F b, F c)
begin
                                                                (infixr \langle \otimes_C \rangle 53)
  notation C.tensor
  and C.unity
                                                             (\langle \mathcal{I}_C \rangle)
  and C.lunit
                                                            (\langle l_C[-] \rangle)
  and C.runit
                                                             (\langle \mathbf{r}_C[-] \rangle)
  and C.assoc
                                                             (\langle \mathbf{a}_C[-, -, -] \rangle)
  and D.tensor
                                                             (infixr \langle \otimes_D \rangle 53)
  and D.unity
                                                             (\langle \mathcal{I}_D \rangle)
  and D.lunit
                                                            (\langle l_D[-] \rangle)
  and D.runit
                                                            (\langle \mathbf{r}_D[-] \rangle)
  and D.assoc
                                                             (\langle \mathbf{a}_D[-, -, -] \rangle)
  lemma \varphi-in-hom:
  assumes C.ide a and C.ide b
  shows \langle \varphi (a, b) : F \ a \otimes_D F \ b \rightarrow_D F \ (a \otimes_C b) \rangle
     using assms by auto
```

We wish to exhibit a canonical definition of an isomorphism $\psi \in D.hom \mathcal{I}_D$ ($F \mathcal{I}_C$) that satisfies certain coherence conditions that involve the left and right unitors. In [2], the isomorphism ψ is defined by the equation $l_D[F \mathcal{I}_C] = F l_C[\mathcal{I}_C] \cdot_D \varphi (\mathcal{I}_C, \mathcal{I}_C) \cdot_D (\psi \otimes_D F \mathcal{I}_C)$, which suffices for the definition because the functor $-\otimes_D F \mathcal{I}_C$ is fully faithful. It is then asserted (Proposition 2.4.3) that the coherence condition $l_D[F a] = F l_C[a] \cdot_D \varphi (\mathcal{I}_C, a) \cdot_D (\psi \otimes_D F a)$ is satisfied for any object a of C, as well as the corresponding condition for the right unitor. However, the proof is left as an exercise (Exercise 2.4.4). The organization of the presentation suggests that that one should derive the general coherence condition from the special case $l_D[F \mathcal{I}_C] = F l_C[\mathcal{I}_C] \cdot_D \varphi (\mathcal{I}_C, \mathcal{I}_C) \cdot_D (\psi \otimes_D F \mathcal{I}_C)$ used as the definition of ψ . However, I did not see how to do it that way, so I used a different approach. The isomorphism $\iota_D' \equiv F \iota_C \cdot_D \varphi (\mathcal{I}_C, \mathcal{I}_C)$ serves as an alternative unit for the monoidal category D. There is consequently a unique isomorphism that maps ι_D to ι_D' . We define ψ to be this isomorphism and then use the definition to establish the desired coherence conditions.

```
abbreviation \iota_1

where \iota_1 \equiv F \ \iota_C \cdot_D \varphi \ (\mathcal{I}_C, \mathcal{I}_C)

lemma \iota_1-in-hom:

shows \langle \iota_1 : F \ \mathcal{I}_C \otimes_D F \ \mathcal{I}_C \to_D F \ \mathcal{I}_C \rangle

using C.unit-in-hom by (intro D.in-homI, auto)

lemma \iota_1-is-iso:

shows D.iso \ \iota_1
```

using C.unit-is-iso C.unit-in-hom φ -in-hom D.isos-compose by auto

```
interpretation D: monoidal-category-with-alternate-unit D T_D \alpha_D \iota_D \iota_1
proof -
  have 1: \exists \psi. \ \langle\!\langle \psi : F \mathcal{I}_C \rightarrow_D \mathcal{I}_D \rangle\!\rangle \land D.iso \ \psi
  proof -
     obtain \psi' where \psi': \langle \psi' : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D.iso \psi'
        using preserves-unity by auto
     have \langle D.inv \ \psi' : F \ \mathcal{I}_C \rightarrow_D \mathcal{I}_D \rangle \wedge D.iso \ (D.inv \ \psi')
        using \psi' by simp
     thus ?thesis by auto
  obtain \psi where \psi: \langle\!\langle \psi \rangle\!\rangle: F \mathcal{I}_C \to_D \mathcal{I}_D \rangle\!\rangle \wedge D.iso \psi
     using 1 by blast
  interpret L: equivalence-functor D D \langle \lambda f. (D.cod \iota_1) \otimes_D f \rangle
  proof -
     interpret L: functor D D \langle \lambda f. (F \mathcal{I}_C) \otimes_D f \rangle
        using D.T.fixing-ide-gives-functor-1 by simp
     interpret L: endofunctor D \langle \lambda f. (F \mathcal{I}_C) \otimes_D f \rangle ...
     interpret \psi x: natural-transformation D D \leftrightarrow \lambda f. (F \mathcal{I}_C) \otimes_D f \leftrightarrow \lambda f. \mathcal{I}_D \otimes_D f \leftrightarrow \lambda f.
                          \langle \lambda f. \ \psi \otimes_D f \rangle
        using \psi D.T.fixing-arr-gives-natural-transformation-1 [of \psi] by auto
    interpret \psi x: natural-isomorphism D D \leftrightarrow \lambda f. (F \mathcal{I}_C) \otimes_D f \leftrightarrow \lambda f. \mathcal{I}_D \otimes_D f \leftrightarrow \lambda f. \psi \otimes_D f \leftrightarrow \lambda f.
        apply unfold-locales using \psi D.tensor-preserves-iso by simp
     \textbf{interpret} \ \mathfrak{l}_D \ o \psi x \colon \textit{vertical-composite} \ D \ \forall \lambda f. \ (F \ \mathcal{I}_C) \ \otimes_D \ f \land \ \forall \lambda f. \ \mathcal{I}_D \ \otimes_D \ f \land \ D. \textit{map}
                                                    \langle \lambda f. \ \psi \otimes_D f \rangle \ D. \mathfrak{l} ...
     interpret I_D o \psi x: natural-isomorphism D \cap Af. (F \mid \mathcal{I}_C) \otimes_D f \cap D.map I_D o \psi x.map
        using \psi x.natural-isomorphism-axioms D.l.natural-isomorphism-axioms
                natural-isomorphisms-compose by blast
     interpret L: equivalence-functor D D \langle \lambda f. (F \mathcal{I}_C) \otimes_D f \rangle
        using L.isomorphic-to-identity-is-equivalence \mathfrak{l}_D o \psi x. natural-isomorphism-axioms
     show equivalence-functor D D (\lambda f. (D.cod \iota_1) \otimes_D f)
        using L. equivalence-functor-axioms C. unit-in-hom by auto
  qed
  interpret R: equivalence-functor D D \langle \lambda f. T_D (f, D.cod \iota_1) \rangle
  proof -
     interpret R: functor D D \langle \lambda f. T_D (f, F \mathcal{I}_C) \rangle
        using D.T.fixing-ide-gives-functor-2 by simp
     interpret R: endofunctor D \langle \lambda f . T_D (f, F \mathcal{I}_C) \rangle ...
     interpret x\psi: natural-transformation D D \langle \lambda f. f \otimes_D (F \mathcal{I}_C) \rangle \langle \lambda f. f \otimes_D \mathcal{I}_D \rangle
                           \langle \lambda f. \ f \otimes_D \psi \rangle
        using \psi D.T.fixing-arr-gives-natural-transformation-2 [of \psi] by auto
     interpret x\psi: natural-isomorphism D D \land \lambda f. f \otimes_D (F \mathcal{I}_C) \land \langle \lambda f. f \otimes_D \mathcal{I}_D \land \langle \lambda f. f \otimes_D \psi \rangle
        using \psi D.tensor-preserves-iso by (unfold-locales, simp)
     interpret \varrho_D ox\psi: vertical-composite D D \land \lambda f. f \otimes_D (F \mathcal{I}_C) \land \langle \lambda f. f \otimes_D \mathcal{I}_D \rangle D.map
                                                          \langle \lambda f. \ f \otimes_D \psi \rangle \ D.\rho \dots
     interpret \varrho_D ox \psi: natural-isomorphism D D \langle \lambda f. f \otimes_D (F \mathcal{I}_C) \rangle D.map \varrho_D ox \psi.map
        using x\psi.natural-isomorphism-axioms D.\varrho.natural-isomorphism-axioms
```

```
natural-isomorphisms-compose by blast
     interpret R: equivalence-functor D D \langle \lambda f. f \otimes_D (F \mathcal{I}_C) \rangle
        using R. isomorphic-to-identity-is-equivalence \varrho_D ox \psi. natural-isomorphism-axioms
     show equivalence-functor D D (\lambda f. f \otimes_D (D.cod \iota_1))
        using R. equivalence-functor-axioms C. unit-in-hom by auto
  qed
  show monoidal-category-with-alternate-unit D T_D \alpha_D \iota_D \iota_1
     using D.pentagon C.unit-is-iso C.unit-in-hom preserves-hom \iota_1-is-iso \iota_1-in-hom
     by (unfold-locales, auto)
qed
no-notation D.tensor
                                       (infixr \langle \otimes_D \rangle 53)
notation D.C_1.tensor
                                        (infixr \langle \otimes_D \rangle 53)
no-notation D.assoc
                                        (\langle \mathbf{a}_D[-, -, -] \rangle)
                                       (\langle a_D[-, -, -] \rangle)

(\langle a_D^{-1}[-, -, -] \rangle)

(\langle a_D^{-1}[-, -, -] \rangle)
notation D.C_1.assoc
no-notation D.assoc'
notation D.C_1.assoc'
notation D.C_1.unity
                                       (\langle \mathcal{I}_1 \rangle)
notation D.C_1.lunit
                                       (\langle l_1[-] \rangle)
notation D.C_1.runit
                                       (\langle \mathbf{r}_1[-] \rangle)
lemma \mathcal{I}_1-char [simp]:
shows \mathcal{I}_1 = F \mathcal{I}_C
  using \iota_1-in-hom by auto
definition \psi
where \psi \equiv THE \ \psi. \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D.iso \ \psi \wedge \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi)
lemma \psi-char:
shows \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle and D.iso \ \psi and \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi)
and \exists ! \psi. \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D. iso \psi \wedge \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi)
proof -
  show \exists ! \psi. \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D. iso \psi \wedge \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi)
     using D.unit-unique-upto-unique-iso \iota_1-in-hom
     by (elim \ D.in-homE, \ auto)
  hence 1: \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D.iso \psi \wedge \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi)
     unfolding \psi-def
     using the I' [of \lambda \psi. \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D. iso \psi \wedge \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi)]
  show \langle \psi : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle using 1 by simp
  show D.iso \ \psi using 1 by simp
  show \psi \cdot_D \iota_D = \iota_1 \cdot_D (\psi \otimes_D \psi) using 1 by simp
qed
lemma \psi-eqI:
assumes \langle f: \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle and D.iso\ f and f \cdot_D \iota_D = \iota_1 \cdot_D (f \otimes_D f)
shows f = \psi
  using assms \psi-def \psi-char
```

```
the 1-equality [of \lambda f. \langle f: \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D. iso f \wedge f \cdot_D \iota_D = \iota_1 \cdot_D (f \otimes_D f) f] by simp
```

```
lemma lunit-coherence1: assumes C.ide\ a shows l_1[F\ a] \cdot_D (\psi \otimes_D F\ a) = l_D[F\ a] proof - have D.par\ (l_1[F\ a] \cdot_D (\psi \otimes_D F\ a))\ l_D[F\ a] using assms D.C_1.lunit-in-hom\ D.tensor-in-hom\ D.lunit-in-hom\ \psi-char(1) by auto
```

The upper left triangle in the following diagram commutes.


```
moreover have (\mathcal{I}_D \otimes_D l_1[F a]) \cdot_D (\mathcal{I}_D \otimes_D \psi \otimes_D F a) = \mathcal{I}_D \otimes_D l_D[F a]
proof -
  have (\mathcal{I}_D \otimes_D l_1[F a]) \cdot_D (\mathcal{I}_D \otimes_D \psi \otimes_D F a)
              = (\mathcal{I}_D \otimes_D l_1[F \ a]) \cdot_D (D.inv \ \psi \otimes_D F \mathcal{I}_C \otimes_D F \ a) \cdot_D (\psi \otimes_D \psi \otimes_D F \ a)
     using assms \psi-char(1-2) D.interchange [of D.inv \psi] D.comp-cod-arr
             D.inv\hbox{-}is\hbox{-}inverse\ D.comp\hbox{-}inv\hbox{-}arr
     by (elim \ D.in-homE, \ simp)
  also have ... = (D.inv \ \psi \otimes_D F \ a) \cdot_D (F \ \mathcal{I}_C \otimes_D \ l_1[F \ a]) \cdot_D (\psi \otimes_D \psi \otimes_D F \ a)
  proof -
     have (\mathcal{I}_D \otimes_D l_1[F a]) \cdot_D (D.inv \psi \otimes_D F \mathcal{I}_C \otimes_D F a) =
             (\textit{D.inv}\ \psi \otimes_{\textit{D}} \textit{F}\textit{a}) \cdot_{\textit{D}} (\textit{F}\ \mathcal{I}_{\textit{C}} \otimes_{\textit{D}} l_{1}[\textit{F}\textit{a}])
        using assms \psi-char(1-2) D.interchange [of \mathcal{I}_D] D.interchange [of D.inv \psi]
                D.comp-arr-dom\ D.comp-cod-arr
        by (elim \ D.in-homE, \ auto)
     \mathbf{thus}~? the sis
        using assms \psi-char(1-2) D.inv-in-hom
                D.comp-permute [of \mathcal{I}_D \otimes_D l_1[F \ a] \ D.inv \ \psi \otimes_D F \mathcal{I}_C \otimes_D F \ a
                                          D.inv \ \psi \otimes_D F \ a \ F \ \mathcal{I}_C \otimes_D \ l_1[F \ a]]
```

```
by (elim \ D.in-homE, \ auto)
    qed
    also have ... = (D.inv \ \psi \otimes_D F \ a) \cdot_D (\iota_1 \otimes_D F \ a) \cdot_D D.inv \ a_D[F \ \mathcal{I}_C, F \ \mathcal{I}_C, F \ a] \cdot_D
                       (\psi \otimes_D \psi \otimes_D F a)
      using assms \psi-char(1-2) D.C<sub>1</sub>.lunit-char(2) D.comp-assoc by auto
    also have ... = ((D.inv \ \psi \otimes_D F \ a) \cdot_D (\iota_1 \otimes_D F \ a) \cdot_D ((\psi \otimes_D \psi) \otimes_D F \ a)) \cdot_D
                       D.inv \ a_D[\mathcal{I}_D, \mathcal{I}_D, F \ a]
      using assms \psi-char(1-2) D.assoc'-naturality [of \psi \psi F a] D.comp-assoc by auto
    also have ... = (\iota_D \otimes_D F a) \cdot_D D.inv a_D[\mathcal{I}_D, \mathcal{I}_D, F a]
    proof -
      have (D.inv \ \psi \otimes_D F \ a) \cdot_D (\iota_1 \otimes_D F \ a) \cdot_D ((\psi \otimes_D \psi) \otimes_D F \ a) = \iota_D \otimes_D F \ a
      proof -
         have (D.inv \ \psi \otimes_D F \ a) \cdot_D (\iota_1 \otimes_D F \ a) \cdot_D ((\psi \otimes_D \psi) \otimes_D F \ a) =
               D.inv \ \psi \ \cdot_D \ \psi \ \cdot_D \ \iota_D \ \otimes_D \ F \ a
          using assms \psi-char(1-3) \iota_1-in-hom D.interchange
          by (elim \ D.in-homE, \ auto)
         also have ... = \iota_D \otimes_D F a
          using assms \psi-char(1-2) D.inv-is-inverse D.comp-inv-arr D.comp-cod-arr
                 D.comp\mbox{-}reduce\ D.unit\mbox{-}in\mbox{-}hom
          by (elim \ D.in-homE, \ auto)
         finally show ?thesis by blast
      qed
      thus ?thesis by simp
    qed
    also have ... = \mathcal{I}_D \otimes_D l_D[F \ a]
      using assms D.lunit-char by simp
    finally show ?thesis by blast
  qed
  ultimately show ?thesis
    using D.L.is-faithful [of l_1[F\ a] \cdot_D (\psi \otimes_D F\ a)\ l_D[F\ a]] by force
qed
lemma lunit-coherence2:
assumes C.ide a
shows F l_C[a] \cdot_D \varphi (\mathcal{I}_C, a) = l_1[F a]
proof -
```

We show that the lower left triangle in the following diagram commutes.

```
(F\mathcal{I}\otimes F\mathcal{I})\otimes Fa
                                                                                                                                                        F(\mathcal{I} \otimes \mathcal{I}) \otimes Fa
                                                     \iota_1 \otimes Fa
                                                                                                                    F\iota\otimes Fa
a[F\mathcal{I},F\mathcal{I},Fa]
                                                                                                                                                                             \phi(\mathcal{I}\otimes\mathcal{I},a)
                                                                       F\mathcal{I}\otimes Fa \xrightarrow{\phi(\mathcal{I},a)} F(\mathcal{I}\otimes a)
   F\mathcal{I}\otimes\phi(\mathcal{I},a)
                                                                                                                                                                             Fa[\mathcal{I},\mathcal{I},a]
                                                     F\mathcal{I}\otimes Fl[a]
                                                                                                                              F(\mathcal{I} \otimes l[a])
                                                                                                                                                           F(\mathcal{I} \otimes (\mathcal{I} \otimes a))
       F\mathcal{I}\otimes F(\mathcal{I}\otimes a)
                                                                                         \phi(\mathcal{I}, \mathcal{I} \otimes a)
      have (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D (F \mathcal{I}_C \otimes_D \varphi (\mathcal{I}_C, a)) = F \mathcal{I}_C \otimes_D l_1[F a]
      proof -
        have (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D (F \mathcal{I}_C \otimes_D \varphi (\mathcal{I}_C, a))
                       = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D F a_C[\mathcal{I}_C, \mathcal{I}_C, a] \cdot_D
                          \varphi (\mathcal{I}_C \otimes_C \mathcal{I}_C, a) \cdot_D (\varphi (\mathcal{I}_C, \mathcal{I}_C) \otimes_D F a) \cdot_D D.inv a_D[F \mathcal{I}_C, F \mathcal{I}_C, F a]
         proof
            have D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D F a_C[\mathcal{I}_C, \mathcal{I}_C, a] \cdot_D \varphi (\mathcal{I}_C \otimes_C \mathcal{I}_C, a) \cdot_D
                                  (\varphi (\mathcal{I}_C, \mathcal{I}_C) \otimes_D F a)
                            = (F \mathcal{I}_C \otimes_D \varphi (\mathcal{I}_C, a)) \cdot_D a_D [F \mathcal{I}_C, F \mathcal{I}_C, F a]
                using assms \varphi-in-hom assoc-coherence D.invert-side-of-triangle(1) by simp
            hence F \mathcal{I}_C \otimes_D \varphi (\mathcal{I}_C, a)
                             = (D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D F a_C[\mathcal{I}_C, \mathcal{I}_C, a] \cdot_D \varphi (\mathcal{I}_C \otimes_C \mathcal{I}_C, a) \cdot_D
                                 (\varphi (\mathcal{I}_C, \mathcal{I}_C) \otimes_D F a)) \cdot_D D.inv a_D[F \mathcal{I}_C, F \mathcal{I}_C, F a]
                using assms \varphi-in-hom D.invert-side-of-triangle(2) by simp
            thus ?thesis
                using D.comp-assoc by simp
        also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D
                                      (D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D F (\iota_C \otimes_C a)) \cdot_D
                                      \varphi \left( \mathcal{I}_{C} \otimes_{C} \mathcal{I}_{C}, a \right) \cdot_{D} \left( \varphi \left( \mathcal{I}_{C}, \mathcal{I}_{C} \right) \otimes_{D} F a \right) \cdot_{D}
D.inv \ a_{D}[F \ \mathcal{I}_{C}, F \ \mathcal{I}_{C}, F a]
        proof -
            have 1: F(\mathcal{I}_C \otimes_C l_C[a]) = F(\iota_C \otimes_C a) \cdot_D D.inv(F a_C[\mathcal{I}_C, \mathcal{I}_C, a])
                using assms C.lunit-char(1-2) C.unit-in-hom\ preserves-inv by auto
            hence F 	ext{ a}_C[\mathcal{I}_C, \mathcal{I}_C, a] = D.inv \left( F \left( \mathcal{I}_C \otimes_C l_C[a] \right) \right) \cdot_D F \left( \iota_C \otimes_C a \right)
            proof -
               have F \ a_C[\mathcal{I}_C, \mathcal{I}_C, a] \cdot_D D.inv (F (\iota_C \otimes_C a))
                             = D.inv (F (\iota_C \otimes_C a) \cdot_D D.inv (F a_C[\mathcal{I}_C, \mathcal{I}_C, a]))
```

 $\phi(\mathcal{I},\mathcal{I})\otimes Fa$

```
using assms 1 preserves-iso C.ide-is-iso C.unit-is-iso C.ide-unity C.iso-assoc
                 C.iso-lunit C.tensor-preserves-iso D.inv-comp D.inv-inv
                 D.iso-inv-iso\ D.iso-is-arr
        by metis
      thus ?thesis
        using assms 1 preserves-iso C.ide-is-iso C.unit-is-iso C.ide-unity C.iso-assoc
                 C.iso-lunit C.tensor-preserves-iso D.inv-comp D.inv-inv
                 D.iso-inv-iso\ D.iso-is-arr\ D.invert-side-of-triangle(2)
        by metis
  qed
 thus ?thesis by argo
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D
                        D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D (F (\iota_C \otimes_C a) \cdot_D \varphi (\mathcal{I}_C \otimes_C \mathcal{I}_C, a)) \cdot_D
                        (\varphi (\mathcal{I}_C, \mathcal{I}_C) \otimes_D F a) \cdot_D D.inv a_D[F \mathcal{I}_C, F \mathcal{I}_C, F a]
  using D.comp-assoc by auto
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D
                        \textit{D.inv} \; (\textit{F} \; (\mathcal{I}_{\textit{C}} \; \otimes_{\textit{C}} \; l_{\textit{C}}[\textit{a}])) \; \cdot_{\textit{D}} \; (\varphi \; (\mathcal{I}_{\textit{C}}, \; \textit{a}) \; \cdot_{\textit{D}} \; (\textit{F} \; \iota_{\textit{C}} \; \otimes_{\textit{D}} \; \textit{F} \; \textit{a})) \; \cdot_{\textit{D}}
                        (\varphi (\mathcal{I}_C, \mathcal{I}_C) \otimes_D F a) \cdot_D D.inv a_D[F \mathcal{I}_C, F \mathcal{I}_C, F a]
  using assms \varphi.naturality [of (\iota_C, a)] C.unit-in-hom by auto
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D
                        D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D \varphi (\mathcal{I}_C, a) \cdot_D
                        ((F \iota_C \otimes_D F a) \cdot_D (\varphi (\mathcal{I}_C, \mathcal{I}_C) \otimes_D F a)) \cdot_D
                        D.inv \ a_D[F \ \mathcal{I}_C, F \ \mathcal{I}_C, F \ a]
  using D.comp-assoc by auto
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D
                        \textit{D.inv} \; (\textit{F} \; (\mathcal{I}_{\textit{C}} \otimes_{\textit{C}} l_{\textit{C}}[\textit{a}])) \; \cdot_{\textit{D}} \; \varphi \; (\mathcal{I}_{\textit{C}}, \; \textit{a}) \; \cdot_{\textit{D}} \; (\iota_{1} \otimes_{\textit{D}} \textit{F} \; \textit{a}) \; \cdot_{\textit{D}}
                        D.inv \ a_D[F \ \mathcal{I}_C, F \ \mathcal{I}_C, F \ a]
  using assms D.interchange C.unit-in-hom by auto
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D
                        D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D \varphi (\mathcal{I}_C, a) \cdot_D
                        ((F \mathcal{I}_C \otimes_D l_1[F a]) \cdot_D a_D[F \mathcal{I}_C, F \mathcal{I}_C, F a]) \cdot_D
                        D.inv \ a_D[F \ \mathcal{I}_C, F \ \mathcal{I}_C, F \ a]
proof -
  have (\iota_1 \otimes_D F a) \cdot_D a_D^{-1}[F \mathcal{I}_C, F \mathcal{I}_C, F a] = F \mathcal{I}_C \otimes_D l_1[F a]
     using assms D.C_1.lunit-char [of F a] by auto
  thus ?thesis
      using assms D.inv-is-inverse \iota_1-in-hom \varphi-in-hom D.invert-side-of-triangle(2)
     by simp
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D
                        (D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D \varphi (\mathcal{I}_C, a)) \cdot_D
                        (F \mathcal{I}_C \otimes_D l_1[F a])
  using assms D.comp-arr-dom [of F \mathcal{I}_C \otimes_D l_1[F a]] D.comp-assoc by auto
also have ... = (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D (F \mathcal{I}_C \otimes_D l_1[F a])
proof -
  have D.inv (F \mathcal{I}_C \otimes_D F l_C[a])
                = D.inv (D.inv (\varphi (\mathcal{I}_C, a)) \cdot_D F (\mathcal{I}_C \otimes_C l_C[a]) \cdot_D \varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a))
     using assms \varphi naturality [of (\mathcal{I}_C, l_C[a])] D.invert-side-of-triangle(1) by simp
```

```
also have ... = D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D \varphi (\mathcal{I}_C, a)
       {\bf using} \ assms \ D. inv-comp \ D. inv-is-inverse \ D. isos-compose \ D. comp-assoc
      by simp
    finally have D.inv (F \mathcal{I}_C \otimes_D F 1_C[a])
                       = D.inv (\varphi (\mathcal{I}_C, \mathcal{I}_C \otimes_C a)) \cdot_D D.inv (F (\mathcal{I}_C \otimes_C l_C[a])) \cdot_D \varphi (\mathcal{I}_C, a)
      by blast
    thus ?thesis by argo
 also have ... = ((F \mathcal{I}_C \otimes_D F l_C[a]) \cdot_D D.inv (F \mathcal{I}_C \otimes_D F l_C[a])) \cdot_D (F \mathcal{I}_C \otimes_D l_1[F a])
    using assms D.tensor-preserves-iso D.comp-assoc by simp
  also have ... = F \mathcal{I}_C \otimes_D l_1[F a]
    using assms D.tensor-preserves-iso D.comp-arr-inv D.inv-is-inverse D.comp-cod-arr
           D.interchange
    \mathbf{by} \ simp
 finally show ?thesis by blast
hence F \mathcal{I}_C \otimes_D F l_C[a] \cdot_D \varphi (\mathcal{I}_C, a) = F \mathcal{I}_C \otimes_D l_1[F a]
  using assms \varphi-in-hom D.interchange by simp
moreover have D.par (F \mid_C [a] \cdot_D \varphi (\mathcal{I}_C, a)) \mid_1 [F \mid a]
  using assms \varphi-in-hom by simp
ultimately show ?thesis
  using D.C<sub>1</sub>.L.is-faithful [of F l_C[a] \cdot_D \varphi (\mathcal{I}_C, a) l_1[F a]] by simp
```

Combining the two previous lemmas yields the coherence result we seek. This is the condition that is traditionally taken as part of the definition of monoidal functor.

```
lemma lunit-coherence: assumes C.ide\ a shows 1_D[F\ a] = F\ 1_C[a] \cdot_D \varphi\ (\mathcal{I}_C,\ a) \cdot_D (\psi \otimes_D F\ a) proof — have 1_D[F\ a] \cdot_D D.inv\ (\psi \otimes_D F\ a) = 1_1[F\ a] using assms lunit-coherence1 \psi-char(2) D.invert-side-of-triangle(2) [of 1_D[F\ a]\ 1_1[F\ a]\ \psi \otimes_D F\ a] by auto also have ... = F\ 1_C[a] \cdot_D \varphi\ (\mathcal{I}_C,\ a) using assms lunit-coherence2 by simp finally have 1_D[F\ a] \cdot_D D.inv\ (\psi \otimes_D F\ a) = F\ 1_C[a] \cdot_D \varphi\ (\mathcal{I}_C,\ a) by blast hence 1_D[F\ a] = (F\ 1_C[a] \cdot_D \varphi\ (\mathcal{I}_C,\ a)) \cdot_D (\psi \otimes_D F\ a) using assms \psi-char(2) \varphi-in-hom D.invert-side-of-triangle(2) [of F\ 1_C[a] \cdot_D \varphi\ (\mathcal{I}_C,\ a)\ 1_D[F\ a]\ D.inv\ (\psi \otimes_D F\ a)] by simp thus ?thesis using assms \psi-char(1) D.comp-assoc by auto ged
```

We now want to obtain the corresponding result for the right unitor. To avoid a repetition of what would amount to essentially the same tedious diagram chases that were carried out above, we instead show here that F becomes a monoidal functor from

the opposite of C to the opposite of D, with λf . φ (snd f, fst f) as the structure map. The fact that in the opposite monoidal categories the left and right unitors are exchanged then permits us to obtain the result for the right unitor from the result already proved for the left unitor.

```
interpretation C': opposite-monoidal-category C T_C \alpha_C \iota_C ..
    interpretation D': opposite-monoidal-category D T_D \alpha_D \iota_D ..
    interpretation T_D'oFF: composite-functor C.CC.comp D.CC.comp D FF.map D'.T..
    interpretation FoT_C': composite-functor C.CC.comp C D C'.T F ...
    interpretation \varphi': natural-transformation C.CC.comp D T_D'oFF.map FoT_C'.map
                                              \langle \lambda f. \varphi \ (snd \ f, \ fst \ f) \rangle
      using \varphi.naturality1 \varphi.naturality2 \varphi.extensionality by (unfold-locales, auto)
    interpretation \varphi': natural-isomorphism C.CC.comp D T_D'oFF.map FoT_C'.map
                                           \langle \lambda f. \varphi \ (snd \ f, \ fst \ f) \rangle
      by (unfold-locales, simp)
    interpretation F': monoidal-functor C C'.T C'.\alpha \iota_C D D'.T D'.\alpha \iota_D F \langle \lambda f, \varphi \rangle (snd f, fst
f)
      using preserves-unity apply (unfold-locales; simp)
    proof -
      \mathbf{fix} \ a \ b \ c
      assume a: C.ide a and b: C.ide b and c: C.ide c
      have (\varphi (c \otimes_C b, a) \cdot_D (\varphi (c, b) \otimes_D F a)) \cdot_D a_D^{-1} [F c, F b, F a] =
            F\ (C.assoc'\ c\ b\ a)\ \cdot_D\ \varphi\ (c,\ b\otimes_C\ a)\ \cdot_D\ (F\ c\otimes_D\ \varphi\ (b,\ a))
      proof -
        have D.seq (F \ a_C[c, b, a]) \ (\varphi \ (c \otimes_C b, a) \cdot_D \ (\varphi \ (c, b) \otimes_D F a))
          using a b c \varphi-in-hom by simp
        moreover have D.seq\ (\varphi\ (c,\ b\otimes_C\ a)\cdot_D\ (F\ c\otimes_D\ \varphi\ (b,\ a)))\ a_D[F\ c,\ F\ b,\ F\ a]
          using a b c \varphi-in-hom by simp
        moreover have
             F \ a_C[c, b, a] \cdot_D \varphi (c \otimes_C b, a) \cdot_D (\varphi (c, b) \otimes_D F a) =
              (\varphi(c, b \otimes_C a) \cdot_D (F c \otimes_D \varphi(b, a))) \cdot_D a_D[F c, F b, F a]
          using a b c assoc-coherence D.comp-assoc by simp
        moreover have D.iso\ (F\ a_C[c,b,a])
          using a b c by simp
        moreover have D.iso \ a_D[F \ c, F \ b, F \ a]
          using a b c by simp
        moreover have D.inv (F \ a_C[c,b,a]) = F (C.assoc' c \ b \ a)
          using a b c preserves-inv by simp
        ultimately show ?thesis
          using D.invert-opposite-sides-of-square by simp
      \mathbf{qed}
      thus F(C.assoc' c b a) \cdot_D \varphi(c, b \otimes_C a) \cdot_D (F c \otimes_D \varphi(b, a)) =
            \varphi (c \otimes_C b, a) \cdot_D (\varphi (c, b) \otimes_D F a) \cdot_D a_D^{-1} [F c, F b, F a]
        using D.comp-assoc by simp
    qed
    lemma induces-monoidal-functor-between-opposites:
    shows monoidal-functor C C'.T C'.\alpha \iota_C D D'.T D'.\alpha \iota_D F (\lambda f. \varphi (snd f, fst f))
```

```
lemma runit-coherence:
 assumes C.ide a
 shows r_D[F \ a] = F \ r_C[a] \cdot_D \varphi \ (a, \mathcal{I}_C) \cdot_D (F \ a \otimes_D \psi)
   have C'.lunit\ a = r_C[a]
     using assms C'.lunit-simp by simp
   moreover have D'.lunit (F a) = r_D[F a]
     using assms D'.lunit-simp by simp
   moreover have F' \cdot \psi = \psi
   proof (intro \psi-eqI)
     show «F'.\psi: D'.unity \rightarrow_D F C'.unity» using F'.\psi-char(1) by simp
     show D.iso F'.\psi using F'.\psi-char(2) by simp
     show F'.\psi \cdot_D \iota_D = \iota_1 \cdot_D (F'.\psi \otimes_D F'.\psi) using F'.\psi-char(3) by simp
   qed
   moreover have D'.lunit (F a) = F (C'.lunit a) \cdot_D \varphi (a, C'.unity) \cdot_D (F a \otimes_D F'.\psi)
     using assms F'.lunit-coherence by simp
   ultimately show ?thesis by simp
 qed
end
```

3.1 Strict Monoidal Functor

A strict monoidal functor preserves the monoidal structure "on the nose".

```
{f locale} \ strict{-monoidal{-}functor} =
   C: monoidal\text{-}category \ C \ T_C \ \alpha_C \ \iota_C +
  D: monoidal-category D T_D \alpha_D \iota_D +
  functor C D F
for C :: 'c \ comp
                                                (infixr \langle \cdot_C \rangle 55)
and T_C :: 'c * 'c \Rightarrow 'c
and \alpha_C :: 'c * 'c * 'c \Rightarrow 'c
and \iota_C :: {}'c
and D :: 'd comp
                                                 (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
and F :: 'c \Rightarrow 'd +
assumes strictly-preserves-\iota: F \iota_C = \iota_D
and strictly-preserves-T: [\![ C.arr f; C.arr g ]\!] \Longrightarrow F(T_C(f,g)) = T_D(Ff, Fg)
and strictly-preserves-\alpha-ide: [C.ide\ a;\ C.ide\ b;\ C.ide\ c]
                                       F(\alpha_C(a, b, c)) = \alpha_D(F a, F b, F c)
begin
  notation C.tensor
                                                   (infixr \langle \otimes_C \rangle 53)
  and C.unity
                                                 (\langle \mathcal{I}_C \rangle)
  and C.lunit
                                                 (\langle l_C[-] \rangle)
  and C.runit
                                                 (\langle \mathbf{r}_C[-] \rangle)
                                                 \big(\langle \mathbf{a}_C[\text{-},\text{ -},\text{ -}]\rangle\big)
  and C.assoc
```

```
and D.tensor
                                         (infixr \langle \otimes_D \rangle 53)
and D.unity
                                        (\langle \mathcal{I}_D \rangle)
                                        (\langle l_D[-] \rangle)
and D.lunit
                                        (\langle \mathbf{r}_D[-] \rangle)
and D.runit
and D.assoc
                                        (\langle \mathbf{a}_D[-, -, -] \rangle)
lemma strictly-preserves-tensor:
assumes C.arr f and C.arr g
shows F(f \otimes_C g) = Ff \otimes_D Fg
  using assms strictly-preserves-T by blast
lemma strictly-preserves-\alpha:
assumes C.arr f and C.arr g and C.arr h
shows F(\alpha_C(f, g, h)) = \alpha_D(Ff, Fg, Fh)
proof -
  have F(\alpha_C(f, g, h)) = F((f \otimes_C g \otimes_C h) \cdot_C \alpha_C(C.dom f, C.dom g, C.dom h))
    using assms C.\alpha.naturality1 [of (f, g, h)] C.T.ToCT-simp by force
  also have ... = (F f \otimes_D F g \otimes_D F h) \cdot_D \alpha_D (D.dom (F f), D.dom (F g), D.dom (F h))
    using assms strictly-preserves-\alpha-ide strictly-preserves-tensor by simp
  also have ... = \alpha_D (F f, F g, F h)
    using assms D.\alpha.naturality1 [of (F f, F g, F h)] by simp
  finally show ?thesis by blast
qed
{\bf lemma}\ strictly\text{-}preserves\text{-}unity\text{:}
shows F \mathcal{I}_C = \mathcal{I}_D
  using C.unit-in-hom strictly-preserves-\iota by auto
lemma strictly-preserves-assoc:
assumes C.arr a and C.arr b and C.arr c
shows F \ \mathbf{a}_C[a, b, c] = \mathbf{a}_D[F \ a, F \ b, F \ c]
  using assms strictly-preserves-\alpha by simp
lemma strictly-preserves-lunit:
assumes C.ide a
shows F l_C[a] = l_D[F a]
proof
  let P = \lambda f. \ f \in C.hom \ (\mathcal{I}_C \otimes_C a) \ a \wedge \mathcal{I}_C \otimes_C f = (\iota_C \otimes_C a) \cdot_C C.assoc' \mathcal{I}_C \mathcal{I}_C a
 let ?Q = \lambda f. f \in D.hom (\mathcal{I}_D \otimes_D F a) (F a) \wedge
                \mathcal{I}_D \otimes_D f = (\iota_D \otimes_D F a) \cdot_D D.assoc' \mathcal{I}_D \mathcal{I}_D (F a)
  have 1: ?P \mid_C[a] using assms C.lunit-char by simp
  hence ?Q(F l_C[a])
  proof -
   have F \mid_C [a] \in D.hom (\mathcal{I}_D \otimes_D F a) (F a)
      using assms 1 strictly-preserves-unity strictly-preserves-tensor by auto
    moreover have
        F((\iota_C \otimes_C a) \cdot_C C.assoc' \mathcal{I}_C \mathcal{I}_C a) = (\iota_D \otimes_D F a) \cdot_D D.assoc' \mathcal{I}_D \mathcal{I}_D (F a)
      using assms 1 strictly-preserves-u strictly-preserves-assoc strictly-preserves-unity
            strictly-preserves-tensor preserves-inv C.unit-in-hom
```

```
by auto
    moreover have \mathcal{I}_D \otimes_D F l_C[a] = F (\mathcal{I}_C \otimes_C l_C[a])
      using assms strictly-preserves-unity strictly-preserves-tensor by simp
    ultimately show ?thesis
      using assms C.lunit-char(2) by simp
  qed
  thus ?thesis using assms D.lunit-eqI by simp
qed
{\bf lemma}\ strictly\text{-}preserves\text{-}runit:
assumes C.ide a
shows F r_C[a] = r_D[F a]
proof
  let P = \lambda f. f \in C.hom (a \otimes_C \mathcal{I}_C) a \wedge f \otimes_C \mathcal{I}_C = (a \otimes_C \iota_C) \cdot_C C.assoc a \mathcal{I}_C \mathcal{I}_C
 let ?Q = \lambda f. \ f \in D.hom \ (F \ a \otimes_D \mathcal{I}_D) \ (F \ a) \ \land
                f \otimes_D \mathcal{I}_D = (F \ a \otimes_D \iota_D) \cdot_D D.assoc \ (F \ a) \mathcal{I}_D \mathcal{I}_D
  have 1: ?P r_C[a] using assms C.runit-char by simp
  hence ?Q(F r_C[a])
  proof -
   have F r_C[a] \in D.hom (F a \otimes_D \mathcal{I}_D) (F a)
      using assms 1 strictly-preserves-unity strictly-preserves-tensor by auto
    moreover have F((a \otimes_C \iota_C) \cdot_C C.assoc \ a \ \mathcal{I}_C \ \mathcal{I}_C)
                     = (F \ a \otimes_D \iota_D) \cdot_D D.assoc (F \ a) \mathcal{I}_D \mathcal{I}_D
      using assms 1 strictly-preserves-1 strictly-preserves-assoc strictly-preserves-unity
            strictly-preserves-tensor preserves-inv C.unit-in-hom
      by auto
    moreover have F r_C[a] \otimes_D \mathcal{I}_D = F (r_C[a] \otimes_C \mathcal{I}_C)
      using assms strictly-preserves-unity strictly-preserves-tensor by simp
    ultimately show ?thesis
      using assms\ C.runit-char(2) by simp
  thus ?thesis using assms D.runit-eqI by simp
qed
```

The following are used to simplify the expression of the sublocale relationship between strict-monoidal-functor and monoidal-functor, as the definition of the latter mentions the structure map φ . For a strict monoidal functor, this is an identity transformation.

```
interpretation FF: product-functor C C D D F F ...
interpretation FoT_C: composite-functor C.CC.comp C D T_C F ..
interpretation T_DoFF: composite-functor C.CC.comp D.CC.comp D FF.map T_D ..

lemma structure-is-trivial:
shows T_DoFF.map = FoT_C.map
proof
fix x
have C.CC.arr x \Longrightarrow T_DoFF.map x = FoT_C.map x
proof -
assume x: C.CC.arr x
have T_DoFF.map x = F (fst x) \otimes_D F (snd x)
```

```
using x by simp
     also have ... = FoT_C.map x
       using x strictly-preserves-tensor [of fst x snd x] by simp
     finally show T_D \circ FF.map \ x = F \circ T_C.map \ x by simp
   ged
   moreover have \neg C.CC.arr x \Longrightarrow T_DoFF.map x = FoT_C.map x
     using T_D oFF. extensionality FoT<sub>C</sub>. extensionality by simp
   ultimately show T_D \circ FF. map \ x = F \circ T_C. map \ x by blast
 qed
 abbreviation \varphi where \varphi \equiv T_D oFF.map
 lemma structure-naturalityisomorphism:
 shows natural-isomorphism C.CC.comp\ D\ T_DoFF.map\ FoT_C.map\ \varphi
   using T_D oFF as-nat-iso natural-isomorphism-axioms structure-is-trivial by force
end
  A strict monoidal functor is a monoidal functor.
sublocale strict-monoidal-functor \subseteq monoidal-functor C T_C \alpha_C \iota_C D T_D \alpha_D \iota_D F \varphi
 interpret FF: product-functor C C D F F ..
 interpret FoT_C: composite-functor C.CC.comp \ C \ D \ T_C \ F ..
 interpret T_D \circ FF: composite-functor C.CC.comp D.CC.comp D FF.map T_D...
 interpret \varphi: natural-isomorphism C.CC.comp D T_D oFF.map FoT_C.map \varphi
   using structure-naturality isomorphism by simp
 show monoidal-functor C T_C \alpha_C \iota_C D T_D \alpha_D \iota_D F \varphi
 proof
   show D.isomorphic \mathcal{I}_D (F \mathcal{I}_C)
   proof (unfold D.isomorphic-def)
     have \langle \mathcal{I}_D : \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \wedge D. iso \mathcal{I}_D
       using strictly-preserves-unity by auto
     thus \exists f. \ \langle f: \mathcal{I}_D \rightarrow_D F \mathcal{I}_C \rangle \land D.iso f \ by \ blast
   qed
   \mathbf{fix} \ a \ b \ c
   assume a: C.ide a
   assume b: C.ide b
   assume c: C.ide\ c
   show F \ \mathbf{a}_C[a, b, c] \cdot_D \varphi (a \otimes_C b, c) \cdot_D (\varphi (a, b) \otimes_D F c) =
         \varphi(a, b \otimes_C c) \cdot_D (F a \otimes_D \varphi(b, c)) \cdot_D a_D[F a, F b, F c]
     using a b c strictly-preserves-tensor strictly-preserves-assoc
           D.comp-arr-dom D.comp-cod-arr
     by simp
 qed
qed
{f lemma}\ strict-monoidal-functors-compose:
assumes strict-monoidal-functor B T_B \alpha_B \iota_B C T_C \alpha_C \iota_C F
and strict-monoidal-functor C T_C \alpha_C \iota_C D T_D \alpha_D \iota_D G
```

An equivalence of monoidal categories is a monoidal functor whose underlying ordinary functor is also part of an ordinary equivalence of categories.

```
locale equivalence-of-monoidal-categories =
   C: monoidal\text{-}category \ C \ T_C \ \alpha_C \ \iota_C +
  D: monoidal-category D T_D \alpha_D \iota_D +
  equivalence-of-categories C\ D\ F\ G\ \eta\ \varepsilon\ +
  monoidal-functor D T_D \alpha_D \iota_D C T_C \alpha_C \iota_C F \varphi
for C :: 'c \ comp
                                                (infixr \langle \cdot_C \rangle 55)
and T_C :: 'c * 'c \Rightarrow 'c
and \alpha_C :: 'c * 'c * 'c \Rightarrow 'c
and \iota_C :: {}'c
and D :: 'd comp
                                                 (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
and F :: 'd \Rightarrow 'c
and \varphi :: 'd * 'd \Rightarrow 'c
and \iota :: 'c
and G :: 'c \Rightarrow 'd
and \eta :: 'd \Rightarrow 'd
and \varepsilon :: 'c \Rightarrow 'c
```

end

Chapter 4

The Free Monoidal Category

```
theory FreeMonoidalCategory
imports Category3.Subcategory MonoidalFunctor
begin
```

In this theory, we use the monoidal language of a category C defined in Monoidal-Category.MonoidalCategory to give a construction of the free monoidal category $\mathcal{F}C$ generated by C. The arrows of $\mathcal{F}C$ are the equivalence classes of formal arrows obtained by declaring two formal arrows to be equivalent if they are parallel and have the same diagonalization. Composition, tensor, and the components of the associator and unitors are all defined in terms of the corresponding syntactic constructs. After defining $\mathcal{F}C$ and showing that it does indeed have the structure of a monoidal category, we prove the freeness: every functor from C to a monoidal category D extends uniquely to a strict monoidal functor from $\mathcal{F}C$ to D.

We then consider the full subcategory $\mathcal{F}_S C$ of $\mathcal{F} C$ whose objects are the equivalence classes of diagonal identity terms (*i.e.* equivalence classes of lists of identity arrows of C), and we show that this category is monoidally equivalent to $\mathcal{F} C$. In addition, we show that $\mathcal{F}_S C$ is the free strict monoidal category, as any functor from C to a strict monoidal category D extends uniquely to a strict monoidal functor from $\mathcal{F}_S C$ to D.

4.1 Syntactic Construction

```
 \begin{aligned} & \textbf{locale} \ \textit{free-monoidal-category} = \\ & \textit{monoidal-language} \ C \\ & \textbf{for} \ C :: 'c \ \textit{comp} \\ & \textbf{begin} \\ & \textbf{no-notation} \ C.\textit{in-hom} \ ( \mathbin{<\!\!<\!\!\!<\!\!\!<\!\!\!\cdot\;} : - \rightarrow - \mathbin{>\!\!\!>} \mathbin{>\!\!\!>} ) \\ & \textbf{notation} \ C.\textit{in-hom} \ ( \mathbin{<\!\!\!<\!\!\!<\!\!\!<\!\!\!\cdot\;} : - \rightarrow_C \ - \mathbin{>\!\!\!>} \mathbin{>\!\!\!>} ) ) \end{aligned}
```

Two terms of the monoidal language of C are defined to be equivalent if they are parallel formal arrows with the same diagonalization.

abbreviation equiv

```
where equiv t u \equiv Par t u \wedge |t| = |u|
```

Arrows of $\mathcal{F}C$ will be the equivalence classes of formal arrows determined by the relation equiv. We define here the property of being an equivalence class of the relation equiv. Later we show that this property coincides with that of being an arrow of the category that we will construct.

```
type-synonym 'a arr = 'a term set definition ARR where ARR f \equiv f \neq \{\} \land (\forall t. \ t \in f \longrightarrow f = Collect \ (equiv \ t)) lemma not\text{-}ARR\text{-}empty: shows \neg ARR \{\} using ARR\text{-}def by simp lemma ARR\text{-}eqI: assumes ARR f and ARR g and f \cap g \neq \{\} shows f = g using assms ARR\text{-}def by fastforce
```

We will need to choose a representative of each equivalence class as a normal form. The requirements we have of these representatives are: (1) the normal form of an arrow t is equivalent to t; (2) equivalent arrows have identical normal forms; (3) a normal form is a canonical term if and only if its diagonalization is an identity. It follows from these properties and coherence that a term and its normal form have the same evaluation in any monoidal category. We choose here as a normal form for an arrow t the particular term $Inv (Cod t\downarrow) \cdot \lfloor t \rfloor \cdot Dom t\downarrow$. However, the only specific properties of this definition we actually use are the three we have just stated.

```
definition norm (\langle ||-|| \rangle)
where ||t|| = Inv (Cod t\downarrow) \cdot |t| \cdot Dom t\downarrow
If t is a formal arrow, then t is equivalent to its normal form.
lemma equiv-norm-Arr:
assumes Arr t
shows equiv ||t|| t
proof -
 have Par\ t\ (Inv\ (Cod\ t\downarrow)\cdot |t|\cdot Dom\ t\downarrow)
   using assms Diagonalize-in-Hom red-in-Hom Inv-in-Hom Arr-implies-Ide-Dom
          Arr-implies-Ide-Cod Ide-implies-Arr Can-red
   bv auto
 moreover have |(Inv (Cod t\downarrow) \cdot |t| \cdot Dom t\downarrow)| = |t|
   using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
        Diagonalize-in-Hom Diagonalize-Inv [of Cod t↓] Diag-Diagonalize
         CompDiag-Diag-Dom [of | t |] CompDiag-Cod-Diag [of | t |]
   by (simp add: Diagonalize-red [of Cod t] Can-red(1))
 ultimately show ?thesis using norm-def by simp
qed
Equivalent arrows have identical normal forms.
```

lemma norm-respects-equiv:

```
assumes equiv t u shows ||t|| = ||u|| using assms norm-def by simp
```

The normal form of an arrow is canonical if and only if its diagonalization is an identity term.

```
lemma Can-norm-iff-Ide-Diagonalize: assumes Arr\ t shows Can\ \|t\|\longleftrightarrow Ide\ \lfloor t\rfloor using assms\ norm\text{-}def\ Can\text{-}implies\text{-}Arr\ Arr\text{-}implies\text{-}Ide\text{-}Dom\ Arr\text{-}implies\text{-}Ide\text{-}Cod\ Can\text{-}red} Inv\text{-}preserves\text{-}Can\ Diagonalize\text{-}preserves\text{-}Can\ red\text{-}in\text{-}Hom\ Diagonalize\text{-}in\text{-}Hom\ }Ide\text{-}Diagonalize\text{-}Can by fastforce
```

We now establish various additional properties of normal forms that are consequences of the three already proved. The definition norm-def is not used subsequently.

```
\mathbf{lemma}\ norm\text{-}preserves\text{-}Can:
assumes Can t
shows Can ||t||
 using assms Can-implies-Arr Can-norm-iff-Ide-Diagonalize Ide-Diagonalize-Can by simp
lemma Par-Arr-norm:
assumes Arr t
shows Par ||t|| t
 using assms equiv-norm-Arr by auto
lemma Diagonalize-norm [simp]:
assumes Arr\ t
shows |||t||| = |t|
 using assms equiv-norm-Arr by auto
lemma unique-norm:
assumes ARR f
shows \exists !t. \ \forall u. \ u \in f \longrightarrow ||u|| = t
proof
 have 1: (SOME\ t.\ t \in f) \in f
   using assms ARR-def some I-ex [of \lambda t. t \in f] by auto
 show \bigwedge t. \ \forall u. \ u \in f \longrightarrow \|u\| = t \Longrightarrow t = \|SOME \ t. \ t \in f\|
   using assms\ ARR-def 1 by auto
 show \forall u.\ u \in f \longrightarrow ||u|| = ||SOME\ t.\ t \in f||
   using assms ARR-def 1 norm-respects-equiv by blast
qed
lemma Dom-norm:
assumes Arr t
shows Dom ||t|| = Dom t
 using assms Par-Arr-norm by metis
lemma Cod-norm:
```

```
assumes Arr\ t

shows Cod\ \|t\| = Cod\ t

using assms\ Par-Arr-norm\ by metis

lemma norm\text{-}in\text{-}Hom:

assumes Arr\ t

shows \|t\| \in Hom\ (Dom\ t)\ (Cod\ t)

using assms\ Par-Arr-norm\ [of\ t]\ by simp
```

As all the elements of an equivalence class have the same normal form, we can use the normal form of an arbitrarily chosen element as a canonical representative.

```
definition rep where rep f \equiv \|SOME\ t.\ t \in f\|
lemma rep-in-ARR:
assumes ARR f
shows rep f \in f
using assms ARR-def someI-ex [of \lambda t.\ t \in f] equiv-norm-Arr rep-def ARR-def
by fastforce
lemma Arr-rep-ARR:
assumes ARR f
shows Arr (rep f)
using assms ARR-def rep-in-ARR by auto
```

We next define a function mkarr that maps formal arrows to their equivalence classes. For terms that are not formal arrows, the function yields the empty set.

```
definition mkarr where mkarr t = Collect (equiv t)
lemma mkarr-extensionality:
assumes \neg Arr t
shows mkarr\ t = \{\}
 using assms mkarr-def by simp
lemma ARR-mkarr:
assumes Arr t
shows ARR (mkarr t)
 using assms ARR-def mkarr-def by auto
lemma mkarr-memb-ARR:
assumes ARR f and t \in f
shows mkarr t = f
 using assms ARR-def mkarr-def by simp
lemma mkarr-rep-ARR [simp]:
assumes ARR f
shows mkarr (rep f) = f
 using assms rep-in-ARR mkarr-memb-ARR by auto
lemma Arr-in-mkarr:
```

```
shows t \in mkarr t
    using assms mkarr-def by simp
   Two terms are related by equiv iff they are both formal arrows and have identical
normal forms.
   lemma equiv-iff-eq-norm:
   shows equiv t \ u \longleftrightarrow Arr \ t \land Arr \ u \land ||t|| = ||u||
   proof
    show equiv t \ u \Longrightarrow Arr \ t \land Arr \ u \land ||t|| = ||u||
      using mkarr-def Arr-in-mkarr ARR-mkarr unique-norm by blast
    show Arr t \wedge Arr u \wedge ||t|| = ||u|| \Longrightarrow equiv t u
      using Par-Arr-norm Diagonalize-norm by metis
   qed
   lemma norm-norm [simp]:
   assumes Arr t
   shows |||t||| = ||t||
   proof -
    have t \in mkarr t
      using assms Arr-in-mkarr by blast
    moreover have ||t|| \in mkarr t
      using assms equiv-norm-Arr mkarr-def by simp
    ultimately show ?thesis using assms ARR-mkarr unique-norm by auto
   qed
   lemma norm-in-ARR:
   assumes ARR f and t \in f
   shows ||t|| \in f
    using assms ARR-def equiv-iff-eq-norm norm-norm Par-Arr-norm by fastforce
   lemma norm-rep-ARR [simp]:
   assumes ARR f
   shows ||rep f|| = rep f
    using assms ARR-def some I-ex [of \lambda t. t \in f] rep-def norm-norm by fastforce
   lemma norm-memb-eq-rep-ARR:
   assumes ARR f and t \in f
   shows norm t = rep f
    using assms ARR-def some I-ex [of \lambda t. t \in f] unique-norm rep-def by metis
   lemma rep-mkarr:
   assumes Arr f
   shows rep (mkarr f) = ||f||
    using assms ARR-mkarr Arr-in-mkarr norm-memb-eq-rep-ARR by fastforce
```

To prove that two terms determine the same equivalence class, it suffices to show that they are parallel formal arrows with identical diagonalizations.

lemma mkarr-eqI [intro]:

assumes Arr t

```
assumes Par f g and \lfloor f \rfloor = \lfloor g \rfloor
shows mkarr f = mkarr g
using assms by (metis ARR-mkarr equiv-iff-eq-norm rep-mkarr mkarr-rep-ARR)
```

We use canonical representatives to lift the formal domain and codomain functions from terms to equivalence classes.

```
abbreviation DOM where DOM f \equiv Dom (rep \ f) abbreviation COD where COD f \equiv Cod (rep \ f) lemma DOM-mkarr: assumes Arr t shows DOM (mkarr\ t) = Dom\ t using assms\ rep-mkarr by (metis\ Par-Arr-norm) lemma COD-mkarr: assumes Arr\ t shows COD (mkarr\ t) = Cod\ t using assms\ rep-mkarr by (metis\ Par-Arr-norm)
```

A composition operation can now be defined on equivalence classes using the syntactic constructor Comp.

```
definition comp (infix: \longleftrightarrow 55)

where comp \ f \ g \equiv (if \ ARR \ f \land ARR \ g \land DOM \ f = COD \ g

then mkarr \ ((rep \ f) \cdot (rep \ g)) \ else \ \{\})
```

We commence the task of showing that the composition comp so defined determines a category.

```
interpretation partial-composition comp
 apply unfold-locales
 using comp-def not-ARR-empty by metis
notation in\text{-}hom (\langle \langle -: - \rightarrow - \rangle \rangle)
The empty set serves as the null for the composition.
lemma null-char:
shows null = \{\}
proof -
 let ?P = \lambda n. \ \forall f. \ f \cdot n = n \land n \cdot f = n
 have ?P {} using comp-def not-ARR-empty by simp
 moreover have \exists !n. ?P n \text{ using } ex\text{-}un\text{-}null \text{ by } met is
 ultimately show ?thesis using null-def the I-unique [of ?P {}]
   by (metis\ null-is-zero(2))
qed
lemma ARR-comp:
assumes ARR f and ARR g and DOM f = COD g
shows ARR (f \cdot q)
 using assms comp-def Arr-rep-ARR ARR-mkarr(1) by simp
```

```
lemma DOM-comp [simp]:
assumes ARR f and ARR g and DOM f = COD g
shows DOM (f \cdot g) = DOM g
 using assms comp-def ARR-comp Arr-rep-ARR DOM-mkarr by simp
lemma COD-comp [simp]:
assumes ARR f and ARR g and DOM f = COD g
shows COD(f \cdot g) = CODf
 using assms comp-def ARR-comp Arr-rep-ARR COD-mkarr by simp
lemma comp-assoc:
assumes g \cdot f \neq null and h \cdot g \neq null
shows h \cdot (g \cdot f) = (h \cdot g) \cdot f
proof -
 have 1: ARR f \wedge ARR q \wedge ARR h \wedge DOM h = COD q \wedge DOM q = COD f
   using assms comp-def not-ARR-empty null-char by metis
 hence 2: Arr(rep f) \wedge Arr(rep g) \wedge Arr(rep h) \wedge
          Dom\ (rep\ h) = Cod\ (rep\ g) \land Dom\ (rep\ g) = Cod\ (rep\ f)
   using Arr-rep-ARR by simp
 have 3: h \cdot g \cdot f = mkarr (rep \ h \cdot rep (mkarr (rep \ g \cdot rep \ f)))
   using 1 comp-def ARR-comp COD-comp by simp
 also have ... = mkarr (rep \ h \cdot rep \ g \cdot rep \ f)
 proof -
   have equiv (rep\ h \cdot rep\ (mkarr\ (rep\ g \cdot rep\ f)))\ (rep\ h \cdot rep\ g \cdot rep\ f)
   proof -
     have Par (rep\ h \cdot rep\ (mkarr\ (rep\ g \cdot rep\ f)))\ (rep\ h \cdot rep\ g \cdot rep\ f)
      using 1 2 3 DOM-mkarr ARR-comp COD-comp mkarr-extensionality not-ARR-empty
       by (metis Arr.simps(4) Cod.simps(4) Dom.simps(4) snd-map-prod)
     moreover have |rep\ h \cdot rep\ (mkarr\ (rep\ g \cdot rep\ f))| = |rep\ h \cdot rep\ g \cdot rep\ f|
    using 1 2 Arr-rep-ARR rep-mkarr rep-in-ARR assms(1) ARR-comp mkarr-extensionality
            comp\text{-}def equiv\text{-}iff\text{-}eq\text{-}norm norm\text{-}memb\text{-}eq\text{-}rep\text{-}ARR null\text{-}char
       by auto
     ultimately show ?thesis using equiv-iff-eq-norm by blast
   qed
   thus ?thesis
     using mkarr-def by force
 qed
 also have ... = mkarr ((rep \ h \cdot rep \ g) \cdot rep \ f)
 proof -
   have Par(rep\ h \cdot rep\ g \cdot rep\ f)\ ((rep\ h \cdot rep\ g) \cdot rep\ f)
     using 2 by simp
   moreover have |rep\ h \cdot rep\ g \cdot rep\ f| = |(rep\ h \cdot rep\ g) \cdot rep\ f|
     using 2 Diag-Diagonalize by (simp add: CompDiag-assoc)
   ultimately show ?thesis
     using equiv-iff-eq-norm by (simp add: mkarr-def)
 also have ... = mkarr (rep (mkarr (rep h \cdot rep g)) \cdot rep f)
 proof -
```

```
have equiv (rep \ (mkarr \ (rep \ h \cdot rep \ g)) \cdot rep \ f) \ ((rep \ h \cdot rep \ g) \cdot rep \ f)
   proof -
     have Par (rep \ (mkarr \ (rep \ h \cdot rep \ g)) \cdot rep \ f) \ ((rep \ h \cdot rep \ g) \cdot rep \ f)
       using 1 2 Arr-rep-ARR DOM-comp ARR-comp COD-comp comp-def by auto
     moreover have |rep|(mkarr|(rep|h \cdot rep|q)) \cdot rep|f| = |(rep|h \cdot rep|q) \cdot rep|f|
    using assms(2) 1 2 ARR-comp Arr-rep-ARR mkarr-extensionality rep-mkarr rep-in-ARR
            equiv-iff-eq-norm norm-memb-eq-rep-ARR comp-def null-char
     ultimately show ?thesis using equiv-iff-eq-norm by blast
   qed
   \mathbf{thus}~? the sis
     using mkarr-def by auto
 qed
 also have ... = (h \cdot g) \cdot f
   using 1 comp-def ARR-comp DOM-comp by simp
 finally show ?thesis by blast
qed
lemma Comp-in-comp-ARR:
assumes ARR f and ARR g and DOM f = COD g
and t \in f and u \in g
shows t \cdot u \in f \cdot g
proof -
 have equiv (t \cdot u) (rep \ f \cdot rep \ g)
 proof -
   have 1: Par(t \cdot u) (rep f \cdot rep g)
     using assms ARR-def Arr-rep-ARR COD-mkarr DOM-mkarr mkarr-memb-ARR
          mkarr-extensionality
     by (metis (no-types, lifting) Arr.simps(4) Cod.simps(4) Dom.simps(4) snd-map-prod)
   moreover have |t \cdot u| = |rep \ f \cdot rep \ g|
     using assms 1 rep-in-ARR equiv-iff-eq-norm norm-memb-eq-rep-ARR
     \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{Arr.simps}(4)\ \mathit{Diagonalize.simps}(4))
   ultimately show ?thesis by simp
 qed
 thus ?thesis
   using assms comp-def mkarr-def by simp
Ultimately, we will show that that the identities of the category are those equivalence
```

Ultimately, we will show that that the identities of the category are those equivalence classes, all of whose members diagonalize to formal identity arrows, having the further property that their canonical representative is a formal endo-arrow.

```
definition IDE where IDE f \equiv ARR f \land (\forall t. \ t \in f \longrightarrow Ide \ [t]) \land DOM f = COD f lemma IDE-implies-ARR: assumes IDE f shows ARR f using assms IDE-def ARR-def by auto
```

```
lemma IDE-mkarr-Ide:
assumes Ide a
shows IDE (mkarr a)
proof -
 have DOM (mkarr a) = COD (mkarr a)
 using assms mkarr-def equiv-iff-eq-norm Par-Arr-norm COD-mkarr DOM-mkarr Ide-in-Hom
   by (metis Ide-implies-Can Inv-Ide Ide-implies-Arr Inv-preserves-Can(2))
 moreover have ARR (mkarr\ a) \land (\forall\ t.\ t \in mkarr\ a \longrightarrow Ide\ |\ t|)
 proof -
   have ARR (mkarr a) using assms ARR-mkarr Ide-implies-Arr by simp
   moreover have \forall t. t \in mkarr \ a \longrightarrow Ide \ |t|
     using assms mkarr-def Diagonalize-preserves-Ide by fastforce
   ultimately show ?thesis by blast
 qed
 ultimately show ?thesis using IDE-def by blast
qed
lemma IDE-implies-ide:
assumes IDE a
shows ide a
proof (unfold ide-def)
 have a \cdot a \neq null
 proof -
   have rep \ a \cdot rep \ a \in a \cdot a
     using assms IDE-def comp-def Arr-rep-ARR Arr-in-mkarr by simp
   thus ?thesis
     using null-char by auto
 ged
 moreover have \bigwedge f. (f \cdot a \neq null \longrightarrow f \cdot a = f) \land (a \cdot f \neq null \longrightarrow a \cdot f = f)
 proof
   \mathbf{fix}\ f :: \ 'c\ arr
   show a \cdot f \neq null \longrightarrow a \cdot f = f
   proof
     assume f: a \cdot f \neq null
     hence ARR f
       using comp-def null-char by auto
     have rep \ a \cdot rep \ f \in a \cdot f
       using assms f Comp-in-comp-ARR comp-def rep-in-ARR null-char by metis
     moreover have rep \ a \cdot rep \ f \in f
     proof -
      have rep f \in f
         using \langle ARR f \rangle rep-in-ARR by auto
       moreover have equiv (rep \ a \cdot rep \ f) \ (rep \ f)
       proof -
        have 1: Par(rep \ a \cdot rep \ f)(rep \ f)
          {f using} \ assms \ f \ comp	edf \ mkarr-extensionality \ Arr-rep	ed ARR \ IDE	edf \ null-char
          by (metis\ Cod.simps(4)\ Dom.simps(4))
        moreover have |rep \ a \cdot rep \ f| = |rep \ f|
          using assms f 1 comp-def IDE-def CompDiag-Ide-Diag Diag-Diagonalize(1)
```

```
Diag-Diagonalize(2) Diag-Diagonalize(3) rep-in-ARR
          by auto
        ultimately show ?thesis by auto
       ultimately show ?thesis
        using \langle ARR f \rangle ARR-def by auto
     qed
     ultimately show a \cdot f = f
       using mkarr-memb-ARR comp-def by auto
   qed
   \mathbf{show}\ f\cdot a\neq null\longrightarrow f\cdot a=f
   proof
     assume f: f \cdot a \neq null
     hence ARR f
       using comp-def null-char by auto
     have rep \ f \cdot rep \ a \in f \cdot a
       using assms f Comp-in-comp-ARR comp-def rep-in-ARR null-char by metis
     moreover have rep \ f \cdot rep \ a \in f
     proof -
       have rep f \in f
        using \langle ARR f \rangle rep-in-ARR by auto
       moreover have equiv (rep \ f \cdot rep \ a) \ (rep \ f)
       proof -
        have 1: Par (rep f \cdot rep a) (rep f)
          using assms f comp-def mkarr-extensionality Arr-rep-ARR IDE-def null-char
          by (metis\ Cod.simps(4)\ Dom.simps(4))
        moreover have |rep f \cdot rep a| = |rep f|
          using assms f 1 comp-def IDE-def CompDiag-Diag-Ide
                Diag-Diagonalize(1) Diag-Diagonalize(2) Diag-Diagonalize(3)
                rep-in-ARR
          by force
        ultimately show ?thesis by auto
       qed
       ultimately show ?thesis
        using \langle ARR f \rangle ARR-def by auto
     ultimately show f \cdot a = f
       using mkarr-memb-ARR comp-def by auto
   qed
 qed
 ultimately show a \cdot a \neq null \wedge
                (\forall f. \ (f \cdot a \neq null \longrightarrow f \cdot a = f) \land (a \cdot f \neq null \longrightarrow a \cdot f = f))
   by blast
qed
lemma ARR-iff-has-domain:
shows ARR f \longleftrightarrow domains f \neq \{\}
proof
 assume f: domains f \neq \{\}
```

```
show ARR f using f domains-def comp-def null-char by auto
 next
 assume f: ARR f
 have Ide\ (DOM\ f)
   using f ARR-def by (simp add: Arr-implies-Ide-Dom Arr-rep-ARR)
 hence IDE (mkarr (DOM f)) using IDE-mkarr-Ide by metis
 hence ide\ (mkarr\ (DOM\ f)) using IDE-implies-ide\ by simp\ 
 moreover have f \cdot mkarr (DOM f) = f
 proof -
   have 1: rep f \cdot DOM f \in f \cdot mkarr (DOM f)
     using f Comp-in-comp-ARR
     using IDE-implies-ARR Ide-in-Hom rep-in-ARR \langle IDE (mkarr (DOM f)) \rangle
          \langle Ide\ (DOM\ f) \rangle\ Arr-in-mkarr\ COD-mkarr
     by fastforce
   moreover have rep f \cdot DOM f \in f
   proof -
     have 2: rep f \in f using f rep-in-ARR by simp
     moreover have equiv (rep \ f \cdot DOM \ f) \ (rep \ f)
      by (metis 1 Arr.simps(4) Arr-rep-ARR COD-mkarr Cod.simps(4)
          Diagonalize-Comp-Arr-Dom Dom.simps(4) IDE-def Ide-implies-Arr
          \langle IDE\ (mkarr\ (DOM\ f))\rangle\ \langle Ide\ (DOM\ f)\rangle\ all-not-in-conv\ DOM-mkarr\ comp-def)
     ultimately show ?thesis
      using f ARR-eqI 1 \langle ide\ (mkarr\ (DOM\ f)) \rangle null-char ide-def by auto
   ultimately show ?thesis
     using f ARR-eqI \langle ide\ (mkarr\ (DOM\ f)) \rangle null-char ide-def\ by auto
 ultimately show domains f \neq \{\}
   using f domains-def not-ARR-empty null-char by auto
qed
lemma ARR-iff-has-codomain:
shows ARR f \longleftrightarrow codomains f \neq \{\}
proof
 assume f: codomains f \neq \{\}
 show ARR f using f codomains-def comp-def null-char by auto
 next
 assume f: ARR f
 have Ide\ (COD\ f)
   using f ARR-def by (simp add: Arr-rep-ARR Arr-implies-Ide-Cod)
 hence IDE (mkarr (COD f)) using IDE-mkarr-Ide by metis
 hence ide (mkarr (COD f)) using IDE-implies-ide by simp
 moreover have mkarr(COD f) \cdot f = f
 proof -
   have 1: COD f \cdot rep f \in mkarr (COD f) \cdot f
     using f Comp-in-comp-ARR
     using IDE-implies-ARR Ide-in-Hom rep-in-ARR (IDE (mkarr (COD f)))
          \langle Ide\ (COD\ f)\rangle\ Arr-in-mkarr\ DOM-mkarr
     by fastforce
```

```
moreover have COD f \cdot rep f \in f
      \mathbf{using}\ 1\ null\text{-}char\ norm\text{-}rep\text{-}ARR\ norm\text{-}memb\text{-}eq\text{-}rep\text{-}ARR\ mkarr\text{-}memb\text{-}ARR
            \langle ide\ (mkarr\ (COD\ f)) \rangle\ emptyE\ equiv-iff-eq-norm\ mkarr-extensionality\ ide-def
      by metis
    ultimately show ?thesis
      using f ARR-eqI \land ide (mkarr (COD f)) \land null-char ide-def by auto
  qed
  ultimately show codomains f \neq \{\}
    using codomains-def f not-ARR-empty null-char by auto
\mathbf{qed}
lemma arr-iff-ARR:
shows arr f \longleftrightarrow ARR f
 using arr-def ARR-iff-has-domain ARR-iff-has-codomain by simp
The arrows of the category are the equivalence classes of formal arrows.
lemma arr-char:
shows arr f \longleftrightarrow f \neq \{\} \land (\forall t. \ t \in f \longrightarrow f = mkarr \ t)
  using arr-iff-ARR ARR-def mkarr-def by simp
\mathbf{lemma}\ \mathit{seq-char}\colon
shows seq \ g \ f \longleftrightarrow g \cdot f \neq null
proof
  show g \cdot f \neq null \Longrightarrow seq g f
    using comp-def null-char Comp-in-comp-ARR rep-in-ARR ARR-mkarr
          Arr-rep-ARR arr-iff-ARR
   by auto
  \mathbf{show} \ \mathit{seq} \ \mathit{g} \ f \Longrightarrow \mathit{g} \cdot \mathit{f} \neq \mathit{null}
    by auto
qed
lemma seq-char':
shows seq\ g\ f \longleftrightarrow ARR\ f \land ARR\ g \land DOM\ g = COD\ f
  \mathbf{show}\ \mathit{ARR}\ \mathit{f}\ \land\ \mathit{ARR}\ \mathit{g}\ \land\ \mathit{DOM}\ \mathit{g}\ =\ \mathit{COD}\ \mathit{f}\ \Longrightarrow\ \mathit{seq}\ \mathit{g}\ \mathit{f}
    using comp-def null-char Comp-in-comp-ARR rep-in-ARR ARR-mkarr
          Arr-rep-ARR arr-iff-ARR
   by auto
  \mathbf{have} \neg (ARR \ f \land ARR \ g \land DOM \ g = COD \ f) \Longrightarrow g \cdot f = null
    using comp-def null-char by auto
  thus seq g f \Longrightarrow ARR f \land ARR g \land DOM g = COD f
    using ext by fastforce
qed
Finally, we can show that the composition comp determines a category.
interpretation category comp
proof
  show \bigwedge f. domains f \neq \{\} \longleftrightarrow codomains f \neq \{\}
    using ARR-iff-has-domain ARR-iff-has-codomain by simp
```

```
show 1: \bigwedge f g. g \cdot f \neq null \Longrightarrow seq g f
   using comp-def ARR-comp null-char arr-iff-ARR by metis
 \mathbf{fix} f g h
 show seq h g \Longrightarrow seq (h \cdot g) f \Longrightarrow seq g f
   using seq-char' by auto
 show seq\ h\ (g\cdot f)\Longrightarrow seq\ g\ f\Longrightarrow seq\ h\ g
   using seq-char' by auto
 show seq \ g \ f \Longrightarrow seq \ h \ g \Longrightarrow seq \ (h \cdot g) \ f
   using seq-char' ARR-comp arr-iff-ARR by auto
 show seq \ g \ f \Longrightarrow seq \ h \ g \Longrightarrow (h \cdot g) \cdot f = h \cdot g \cdot f
   using seq-char comp-assoc by auto
qed
lemma mkarr-rep [simp]:
assumes arr f
shows mkarr(rep f) = f
 using assms arr-iff-ARR by simp
lemma arr-mkarr [simp]:
assumes Arr t
shows arr (mkarr t)
 using assms by (simp add: ARR-mkarr arr-iff-ARR)
lemma mkarr-memb:
assumes t \in f and arr f
shows Arr\ t and mkarr\ t = f
 using assms arr-char mkarr-extensionality by auto
lemma rep-in-arr [simp]:
assumes arr f
shows rep f \in f
 using assms by (simp add: rep-in-ARR arr-iff-ARR)
lemma Arr-rep [simp]:
assumes arr f
shows Arr\ (rep\ f)
 using assms mkarr-memb rep-in-arr by blast
lemma rep-in-Hom:
assumes arr f
shows rep f \in Hom (DOM f) (COD f)
 using assms by simp
lemma norm-memb-eq-rep:
assumes arr f and t \in f
shows ||t|| = rep f
 using assms arr-iff-ARR norm-memb-eq-rep-ARR by auto
lemma norm-rep:
```

```
assumes arr f
   shows ||rep f|| = rep f
    using assms norm-memb-eq-rep by simp
   Composition, domain, and codomain on arrows reduce to the corresponding syntactic
operations on their representative terms.
   lemma comp-mkarr [simp]:
   assumes Arr\ t and Arr\ u and Dom\ t = Cod\ u
   shows mkarr \ t \cdot mkarr \ u = mkarr \ (t \cdot u)
    using assms
    by (metis (no-types, lifting) ARR-mkarr ARR-comp ARR-def Arr-in-mkarr COD-mkarr
        Comp-in-comp-ARR DOM-mkarr mkarr-def)
   lemma dom-char:
   shows dom f = (if arr f then mkarr (DOM f) else null)
   proof -
    have \neg arr f \Longrightarrow ?thesis
      using dom-def by (simp add: arr-def)
    moreover have arr f \implies ?thesis
    proof -
     assume f: arr f
     have dom f = mkarr (DOM f)
     proof (intro dom-eqI)
       have 1: Ide (DOM f)
         using f arr-char by (metis Arr-rep Arr-implies-Ide-Dom)
       hence 2: IDE (mkarr (DOM f))
         using IDE-mkarr-Ide by metis
       thus ide (mkarr (DOM f)) using IDE-implies-ide by simp
       moreover show seq f (mkarr (DOM f))
       proof -
         have f \cdot mkarr (DOM f) \neq null
         using f 1 2 ARR-def DOM-mkarr IDE-implies-ARR Ide-in-Hom ARR-comp IDE-def
               ARR-iff-has-codomain ARR-iff-has-domain null-char arr-def
          by (metis (mono-tags, lifting) mem-Collect-eq)
         thus ?thesis using seq-char by simp
       qed
      qed
     thus ?thesis using f by simp
    ultimately show ?thesis by blast
   qed
   lemma dom-simp:
   assumes arr f
   shows dom f = mkarr (DOM f)
    using assms dom-char by simp
   lemma cod-char:
   shows cod f = (if arr f then mkarr (COD f) else null)
```

```
proof -
 have \neg arr f \Longrightarrow ?thesis
  using cod-def by (simp add: arr-def)
 moreover have arr f \implies ?thesis
 proof -
  assume f: arr f
  have cod f = mkarr (COD f)
  proof (intro cod-eqI)
    have 1: Ide(CODf)
      using f arr-char by (metis Arr-rep Arr-implies-Ide-Cod)
    hence 2: IDE (mkarr (COD f))
      using IDE-mkarr-Ide by metis
    thus ide\ (mkarr\ (COD\ f)) using IDE-implies-ide by simp
    moreover show seq (mkarr (COD f)) f
    proof -
      have mkarr (COD f) \cdot f \neq null
      using f 1 2 ARR-def DOM-mkarr IDE-implies-ARR Ide-in-Hom ARR-comp IDE-def
            ARR-iff-has-codomain ARR-iff-has-domain null-char arr-def
       by (metis (mono-tags, lifting) mem-Collect-eq)
      thus ?thesis using seq-char by simp
    qed
   qed
   thus ?thesis using f by simp
 ultimately show ?thesis by blast
qed
lemma cod-simp:
assumes arr f
shows cod f = mkarr (COD f)
 using assms cod-char by simp
lemma Dom\text{-}memb:
assumes arr f and t \in f
shows Dom\ t = DOM\ f
 using assms DOM-mkarr mkarr-extensionality arr-char by fastforce
lemma Cod-memb:
assumes arr f and t \in f
shows Cod t = COD f
 using assms COD-mkarr mkarr-extensionality arr-char by fastforce
lemma dom-mkarr [simp]:
assumes Arr t
shows dom (mkarr t) = mkarr (Dom t)
 using assms dom-char DOM-mkarr arr-mkarr by auto
lemma cod-mkarr [simp]:
assumes Arr t
```

```
shows cod (mkarr t) = mkarr (Cod t)
    using assms cod-char COD-mkarr arr-mkarr by auto
   lemma mkarr-in-hom:
   assumes Arr t
   shows \ll mkarr\ t: mkarr\ (Dom\ t) \to mkarr\ (Cod\ t) \gg
    using assms arr-mkarr dom-mkarr cod-mkarr by auto
   lemma DOM-in-dom [intro]:
   assumes arr f
   shows DOM f \in dom f
    using assms dom-char
    by (metis Arr-in-mkarr mkarr-extensionality ideD(1) ide-dom not-arr-null null-char)
   lemma COD-in-cod [intro]:
   assumes arr f
   shows COD f \in cod f
    using assms cod-char
    by (metis Arr-in-mkarr mkarr-extensionality ideD(1) ide-cod not-arr-null null-char)
   lemma DOM-dom:
   assumes arr f
   shows DOM (dom f) = DOM f
   using assms Arr-rep Arr-implies-Ide-Dom Ide-implies-Arr dom-char rep-mkarr Par-Arr-norm
         Ide-in-Hom
    by simp
   lemma DOM-cod:
   assumes arr f
   shows DOM (cod f) = COD f
    using assms Arr-rep Arr-implies-Ide-Cod Ide-implies-Arr cod-char rep-mkarr Par-Arr-norm
         Ide	ext{-}in	ext{-}Hom
    by simp
   lemma memb-equiv:
   assumes arr f and t \in f and u \in f
   shows Par t u and |t| = |u|
   proof -
    \mathbf{show}\ Par\ t\ u
      using assms Cod-memb Dom-memb mkarr-memb(1) by metis
    show |t| = |u|
      using assms arr-iff-ARR ARR-def by auto
   Two arrows can be proved equal by showing that they are parallel and have repre-
sentatives with identical diagonalizations.
```

assumes par f g and $t \in f$ and $u \in g$ and |t| = |u|

lemma *arr-eqI*:

shows f = g

```
proof -
     have Arr\ t \wedge Arr\ u using assms mkarr-memb(1) by blast
     moreover have Dom \ t = Dom \ u \wedge Cod \ t = Cod \ u
      using assms Dom-memb Cod-memb comp-def arr-char comp-arr-dom comp-cod-arr
      by (metis (full-types))
     ultimately have Par t u by simp
     thus ?thesis
       using assms arr-char by (metis rep-mkarr rep-in-arr equiv-iff-eq-norm)
   qed
   lemma comp-char:
   shows f \cdot g = (if \ seq \ f \ g \ then \ mkarr \ (rep \ f \cdot rep \ g) \ else \ null)
     using comp-def seq-char arr-char by meson
    The mapping that takes identity terms to their equivalence classes is injective.
   lemma mkarr-inj-on-Ide:
   assumes Ide\ t and Ide\ u and mkarr\ t=mkarr\ u
   shows t = u
     using assms
     by (metis (mono-tags, lifting) COD-mkarr Ide-in-Hom mem-Collect-eq)
   lemma Comp-in-comp [intro]:
   assumes arr f and g \in hom (dom g) (dom f) and t \in f and u \in g
   shows t \cdot u \in f \cdot g
   proof -
     have ARR f using assms arr-iff-ARR by simp
     moreover have ARR g using assms arr-iff-ARR by auto
     moreover have DOM f = COD g
     using assms dom-char cod-char mkarr-inj-on-Ide Arr-implies-Ide-Cod Arr-implies-Ide-Dom
      by force
     ultimately show ?thesis using assms Comp-in-comp-ARR by simp
    An arrow is defined to be "canonical" if some (equivalently, all) its representatives
diagonalize to an identity term.
   definition can
   where can f \equiv arr f \land (\exists t. \ t \in f \land Ide \ \lfloor t \rfloor)
   lemma can-def-alt:
   shows can f \longleftrightarrow arr f \land (\forall t. \ t \in f \longrightarrow Ide \mid t \mid)
     assume arr f \land (\forall t. \ t \in f \longrightarrow Ide \mid t \mid)
     thus can f using can-def arr-char by fastforce
     next
     assume f: can f
     show arr f \land (\forall t. \ t \in f \longrightarrow Ide \mid t \mid)
     proof -
      obtain t where t: t \in f \land Ide \mid t \mid using f can-def by auto
      have ARR f using f can-def arr-char ARR-def mkarr-def by simp
```

```
hence \forall u.\ u \in f \longrightarrow ||u|| = ||t|| using t \ unique-norm \ by \ auto
   hence \forall u. \ u \in f \longrightarrow \lfloor t \rfloor = \lfloor u \rfloor
     using t by (metis \langle ARR f \rangle equiv-iff-eq-norm arr-iff-ARR mkarr-memb(1))
   hence \forall u.\ u \in f \longrightarrow Ide \mid u \mid
     using t by metis
   thus ?thesis using f can-def by blast
 qed
qed
lemma can-implies-arr:
assumes can f
shows arr f
 using assms can-def by auto
The identities of the category are precisely the canonical endo-arrows.
lemma ide-char:
shows ide\ f \longleftrightarrow can\ f \land dom\ f = cod\ f
proof
 assume f: ide f
 show can f \wedge dom f = cod f
   using f can-def arr-char dom-char cod-char IDE-def Arr-implies-Ide-Cod can-def-alt
         Arr-rep IDE-mkarr-Ide
   by (metis\ ideD(1)\ ideD(3))
 \mathbf{next}
 assume f: can f \wedge dom f = cod f
 show ide f
 proof -
   \mathbf{have}\; f = \, dom\, f
   proof (intro arr-eqI)
     show par f (dom f) using f can-def by simp
     show rep f \in f using f can-def by simp
     show DOM f \in dom f using f can-def by auto
     show |rep f| = |DOM f|
     proof -
       have |rep f| \in Hom |DOM f| |COD f|
        using f can-def Diagonalize-in-Hom by simp
       moreover have Ide [rep f] using f can-def-alt rep-in-arr by simp
       ultimately show ?thesis
        using f can-def Ide-in-Hom by simp
     qed
   qed
   thus ?thesis using f can-implies-arr ide-dom [of f] by auto
 qed
qed
lemma ide-iff-IDE:
shows ide \ a \longleftrightarrow IDE \ a
 using ide-char IDE-def can-def-alt arr-iff-ARR dom-char cod-char mkarr-inj-on-Ide
       Arr-implies-Ide-Cod Arr-implies-Ide-Dom Arr-rep
```

```
by auto
lemma ide-mkarr-Ide:
assumes Ide \ a
shows ide (mkarr a)
 \mathbf{using} \ assms \ IDE\text{-}mkarr\text{-}Ide \ ide\text{-}iff\text{-}IDE \ \mathbf{by} \ simp
lemma rep-dom:
assumes arr f
shows rep (dom f) = ||DOM f||
 using assms dom-simp rep-mkarr Arr-rep Arr-implies-Ide-Dom by simp
lemma rep-cod:
assumes arr f
shows rep (cod f) = ||COD f||
 using assms cod-simp rep-mkarr Arr-rep Arr-implies-Ide-Cod by simp
lemma rep-preserves-seq:
assumes seq g f
shows Seq (rep g) (rep f)
 using assms Arr-rep dom-char cod-char mkarr-inj-on-Ide Arr-implies-Ide-Dom
      Arr	ext{-}implies	ext{-}Ide	ext{-}Cod
 by auto
lemma rep-comp:
assumes seq g f
shows rep (g \cdot f) = ||rep g \cdot rep f||
proof -
 have rep (g \cdot f) = rep (mkarr (rep g \cdot rep f))
   using assms comp-char by metis
 also have ... = ||rep\ g \cdot rep\ f||
   using assms rep-preserves-seq rep-mkarr by simp
 finally show ?thesis by blast
The equivalence classes of canonical terms are canonical arrows.
lemma can-mkarr-Can:
assumes Can t
shows can (mkarr t)
using assms Arr-in-mkarr Can-implies-Arr Ide-Diagonalize-Can arr-mkarr can-def by blast
lemma ide-implies-can:
assumes ide a
shows can a
 using assms ide-char by blast
lemma Can-rep-can:
assumes can f
shows Can (rep f)
```

```
proof -
 have Can \| rep f \|
   using assms can-def-alt Can-norm-iff-Ide-Diagonalize by auto
 moreover have rep f = ||rep f||
   using assms can-implies-arr norm-rep by simp
 ultimately show ?thesis by simp
qed
Parallel canonical arrows are identical.
lemma can-coherence:
assumes par f g and can f and can g
shows f = g
proof -
 have |rep f| = |rep g|
 proof -
   have |rep f| = |DOM f|
    using assms Ide-Diagonalize-Can Can-rep-can Diagonalize-in-Hom Ide-in-Hom by force
   also have ... = |DOM q|
     using assms dom-char equiv-iff-eq-norm
     by (metis\ DOM-in-dom\ mkarr-memb(1)\ rep-mkarr\ arr-dom-iff-arr)
   also have \dots = |rep g|
    using assms Ide-Diagonalize-Can Can-rep-can Diagonalize-in-Hom Ide-in-Hom by force
   finally show ?thesis by blast
 qed
 hence rep f = rep g
   using assms rep-in-arr norm-memb-eq-rep equiv-iff-eq-norm
   by (metis (no-types, lifting) arr-eqI)
 thus ?thesis
   using assms arr-eqI [of f g] rep-in-arr [of f] rep-in-arr [of g] by metis
qed
Canonical arrows are invertible, and their inverses can be obtained syntactically.
lemma inverse-arrows-can:
assumes can f
shows inverse-arrows f (mkarr (Inv (DOM f\downarrow) \cdot | rep f| \cdot COD f\downarrow))
proof
 let ?t = (Inv (DOM f\downarrow) \cdot |rep f| \cdot COD f\downarrow)
 have 1: rep \ f \in f \land Arr \ (rep \ f) \land Can \ (rep \ f) \land Ide \ | rep \ f|
   using assms can-def-alt rep-in-arr rep-in-arr(1) Can-rep-can by simp
 hence 2: \lfloor DOM f \rfloor = \lfloor COD f \rfloor
   using Diagonalize-in-Hom [of rep f] Ide-in-Hom by auto
 have 3: Can ?t
   using assms 1 2 Can-red Ide-implies-Can Diagonalize-in-Hom Inv-preserves-Can
        Arr-implies-Ide-Cod Arr-implies-Ide-Dom Diag-Diagonalize
   by simp
 have 4: DOM f = Cod ?t
   using assms can-def Can-red
   by (simp add: Arr-implies-Ide-Dom Inv-preserves-Can(3))
 have 5: COD f = Dom ?t
```

```
using assms can-def Can-red Arr-rep Arr-implies-Ide-Cod by simp
 have 6: antipar f (mkarr ?t)
   using assms 3 4 5 dom-char cod-char can-def cod-mkarr dom-mkarr Can-implies-Arr
   by simp
 show ide (f \cdot mkarr ?t)
 proof -
   have 7: par(f \cdot mkarr?t)(dom(f \cdot mkarr?t))
     using assms 6 by auto
   moreover have can (f \cdot mkarr ?t)
   proof -
    have 8: Comp (rep f) ?t \in (f \cdot mkarr ?t)
      using assms 1 3 4 6 can-implies-arr Arr-in-mkarr COD-mkarr Comp-in-comp-ARR
           Can-implies-Arr arr-iff-ARR seq-char'
      by meson
    moreover have Can (rep f \cdot ?t)
      using 1 3 7 8 mkarr-memb(1) by (metis\ Arr.simps(4)\ Can.simps(4))
     ultimately show ?thesis
      using can-mkarr-Can 7 mkarr-memb(2) by metis
   moreover have can (dom (f \cdot mkarr ?t))
    using 7 ide-implies-can by force
   ultimately have f \cdot mkarr ?t = dom (f \cdot mkarr ?t)
     using can-coherence by meson
   thus ?thesis
    using 7 ide-dom by metis
 qed
 show ide (mkarr ?t \cdot f)
 proof -
   have 7: par (mkarr ?t \cdot f) (cod (mkarr ?t \cdot f))
    using assms 6 by auto
   moreover have can (mkarr ?t \cdot f)
   proof -
    have 8: Comp ?t (rep f) \in mkarr ?t \cdot f
      using assms 1 3 6 7 Arr-in-mkarr Comp-in-comp-ARR Can-implies-Arr arr-char
           comp-def
      by meson
    moreover have Can (?t \cdot rep f)
      using 1 3 7 8 mkarr-memb(1) by (metis\ Arr.simps(4)\ Can.simps(4))
    ultimately show ?thesis
      using can-mkarr-Can 7 mkarr-memb(2) by metis
   qed
   moreover have can (cod (mkarr ?t \cdot f))
    using 7 ide-implies-can by force
   ultimately have mkarr ?t \cdot f = cod (mkarr ?t \cdot f)
    using can-coherence by meson
   thus ?thesis
    using 7 can-implies-arr ide-cod by metis
 \mathbf{qed}
qed
```

```
lemma inv-mkarr [simp]:
   assumes Can t
   shows inv (mkarr t) = mkarr (Inv t)
   proof -
     have t: Can \ t \land Arr \ t \land Can \ (Inv \ t) \land Arr \ (Inv \ t) \land Ide \ (Dom \ t) \land Ide \ (Cod \ t)
      using assms Can-implies-Arr Arr-implies-Ide-Dom Arr-implies-Ide-Cod
            Inv-preserves-Can
      by simp
     have inverse-arrows (mkarr\ t)\ (mkarr\ (Inv\ t))
      show ide (mkarr t \cdot mkarr (Inv t))
      proof -
        have mkarr (Cod t) = mkarr (Comp t (Inv t))
       \textbf{using} \ t \ \textit{Inv-in-Hom Ide-in-Hom Diagonalize-Inv Diag-Diagonalize-Diagonalize-preserves-Can}
          by (intro mkarr-eqI, auto)
        also have ... = mkarr \ t \cdot mkarr \ (Inv \ t)
          using t comp-mkarr Inv-in-Hom by simp
        finally have mkarr (Cod \ t) = mkarr \ t \cdot mkarr (Inv \ t)
          by blast
        thus ?thesis using t ide-mkarr-Ide [of Cod t] by simp
      qed
      show ide (mkarr (Inv t) \cdot mkarr t)
      proof -
        have mkarr (Dom\ t) = mkarr\ (Inv\ t \cdot t)
       \textbf{using} \ t \ Inv-in-Hom \ Ide-in-Hom \ Diagonalize-Inv \ Diag-Diagonalize \ Diagonalize-preserves-Can
          by (intro mkarr-eqI, auto)
        also have ... = mkarr (Inv t) \cdot mkarr t
          using t comp-mkarr Inv-in-Hom by simp
        finally have mkarr (Dom \ t) = mkarr (Inv \ t) \cdot mkarr \ t
          by blast
        thus ?thesis using t ide-mkarr-Ide [of Dom t] by simp
      qed
     qed
     thus ?thesis using inverse-unique by auto
   qed
   lemma iso-can:
   assumes can f
   shows iso f
     using assms inverse-arrows-can by auto
   The following function produces the unique canonical arrow between two given ob-
jects, if such an arrow exists.
   definition mkcan
   where mkcan\ a\ b = mkarr\ (Inv\ (COD\ b\downarrow)\cdot (DOM\ a\downarrow))
   lemma can-mkcan:
   assumes ide a and ide b and |DOM a| = |COD b|
```

```
shows can (mkcan a b) and «mkcan a b : a \rightarrow b»
proof -
 show can (mkcan \ a \ b)
   using assms mkcan-def Arr-rep Arr-implies-Ide-Dom Arr-implies-Ide-Cod Can-red
        Inv-preserves-Can can-mkarr-Can
   bv simp
 show \langle mkcan \ a \ b : a \rightarrow b \rangle
 using assms mkcan-def Arr-rep Arr-implies-Ide-Dom Arr-implies-Ide-Cod Can-red Inv-in-Hom
        dom-char [of a] cod-char [of b] mkarr-rep mkarr-in-hom can-implies-arr
   by auto
qed
lemma dom-mkcan:
assumes ide a and ide b and |DOM a| = |COD b|
shows dom (mkcan \ a \ b) = a
 using assms can-mkcan by blast
lemma cod-mkcan:
assumes ide a and ide b and |DOM a| = |COD b|
shows cod (mkcan \ a \ b) = b
 using assms can-mkcan by blast
lemma can-coherence':
assumes can f
shows mkcan (dom f) (cod f) = f
proof -
 have Ide \mid rep \mid f \mid
   using assms Ide-Diagonalize-Can Can-rep-can by simp
 hence Dom \mid rep f \mid = Cod \mid rep f \mid
   using Ide-in-Hom by simp
 hence |DOM f| = |COD f|
   using assms can-implies-arr Arr-rep Diagonalize-in-Hom by simp
 moreover have DOM f = DOM (dom f)
   using assms can-implies-arr dom-char rep-mkarr Arr-implies-Ide-Dom Ide-implies-Arr
        Par-Arr-norm [of DOM f] Ide-in-Hom
   by auto
 moreover have COD f = COD (cod f)
   using assms can-implies-arr cod-char rep-mkarr Arr-implies-Ide-Cod Ide-implies-Arr
        Par-Arr-norm [of COD f] Ide-in-Hom
   by auto
 ultimately have can (mkcan (dom f) (cod f)) \wedge par f (mkcan (dom f) (cod f))
   using assms can-implies-arr can-mkcan dom-mkcan cod-mkcan by simp
 thus ?thesis using assms can-coherence by blast
qed
\mathbf{lemma}\ \mathit{Ide-Diagonalize-rep-ide} :
assumes ide a
shows Ide | rep a |
 using assms ide-implies-can can-def-alt rep-in-arr by simp
```

```
lemma Diagonalize-DOM:
assumes arr f
shows |DOM f| = Dom |rep f|
 using assms Diag-Diagonalize by simp
lemma Diagonalize-COD:
assumes arr f
shows |COD f| = Cod |rep f|
 using assms Diag-Diagonalize by simp
lemma Diagonalize-rep-preserves-seq:
assumes seq g f
shows Seq \mid rep \mid g \mid rep \mid f \mid
 using assms Diagonalize-DOM Diagonalize-COD Diag-implies-Arr Diag-Diagonalize(1)
      rep-preserves-seq
 by force
lemma Dom-Diagonalize-rep:
assumes arr f
shows Dom | rep f | = | rep (dom f) |
 using assms Diagonalize-rep-preserves-seq [of f dom f] Ide-Diagonalize-rep-ide Ide-in-Hom
 by simp
lemma Cod-Diagonalize-rep:
assumes arr f
shows Cod | rep f | = | rep (cod f) |
 using assms Diagonalize-rep-preserves-seq [of cod f f] Ide-Diagonalize-rep-ide Ide-in-Hom
 by simp
lemma mkarr-Diagonalize-rep:
assumes arr f and Diag (DOM f) and Diag (COD f)
shows mkarr \lfloor rep f \rfloor = f
proof -
 have mkarr (rep f) = mkarr | rep f |
   using assms rep-in-Hom Diagonalize-in-Hom Diag-Diagonalize Diagonalize-Diag
   by (intro mkarr-eqI, simp-all)
 thus ?thesis using assms mkarr-rep by auto
qed
We define tensor product of arrows via the constructor (\otimes) on terms.
definition tensor_{FMC} (infixr \langle \otimes \rangle 53)
 where f \otimes g \equiv (if \ arr \ f \land arr \ g \ then \ mkarr \ (rep \ f \otimes rep \ g) \ else \ null)
lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f \otimes g)
 using assms tensor_{FMC}-def arr-mkarr by simp
```

```
lemma rep-tensor:
assumes arr f and arr g
shows rep (f \otimes g) = ||rep f \otimes rep g||
 using assms tensor_{FMC}-def rep-mkarr by simp
lemma Par-memb-rep:
assumes arr f and t \in f
shows Par\ t\ (rep\ f)
 using assms mkarr-memb apply simp
 using rep-in-Hom Dom-memb Cod-memb by metis
lemma Tensor-in-tensor [intro]:
assumes arr f and arr g and t \in f and u \in g
shows t \otimes u \in f \otimes g
proof -
 have equiv (t \otimes u) (rep \ f \otimes rep \ q)
 proof -
   have 1: Par (t \otimes u) (rep f \otimes rep g)
   proof -
     have Par\ t\ (rep\ f) \land Par\ u\ (rep\ g) using assms Par-memb-rep by blast
     thus ?thesis by simp
   qed
   moreover have |t \otimes u| = |rep f \otimes rep g|
     using assms 1 equiv-iff-eq-norm rep-mkarr norm-norm mkarr-memb(2)
     by (metis\ Arr.simps(3)\ Diagonalize.simps(3))
   ultimately show ?thesis by simp
 qed
 thus ?thesis
   using assms tensor_{FMC}-def mkarr-def by simp
lemma DOM-tensor [simp]:
assumes arr f and arr g
shows DOM (f \otimes g) = DOM f \otimes DOM g
 by (metis (no-types, lifting) DOM-mkarr Dom.simps(3) mkarr-extensionality arr-char
     arr-tensor assms(1) assms(2) tensor_{FMC}-def)
lemma COD-tensor [simp]:
assumes arr f and arr g
\mathbf{shows}\ \mathit{COD}\ (f\otimes g) = \mathit{COD}\ f\otimes\ \mathit{COD}\ g
 by (metis (no-types, lifting) COD-mkarr Cod.simps(3) mkarr-extensionality arr-char
     arr-tensor assms(1) assms(2) tensor_{FMC}-def)
lemma tensor-in-hom [simp]:
assumes \langle f: a \rightarrow b \rangle and \langle g: c \rightarrow d \rangle
shows \langle f \otimes g : a \otimes c \rightarrow b \otimes d \rangle
proof -
 have f: arr f \wedge dom f = a \wedge cod f = b using assms(1) by auto
 have g: arr \ g \land dom \ g = c \land cod \ g = d \ using \ assms(2) by auto
```

```
have dom (f \otimes g) = dom f \otimes dom g
   using f g arr-tensor dom-char Tensor-in-tensor [of dom f dom g DOM f DOM g]
        DOM-in-dom mkarr-memb(2) DOM-tensor arr-dom-iff-arr
   by metis
 moreover have cod (f \otimes g) = cod f \otimes cod g
   using f g arr-tensor cod-char Tensor-in-tensor [of cod f cod g COD f COD g]
        COD\text{-}in\text{-}cod\ mkarr\text{-}memb(2)\ COD\text{-}tensor\ arr\text{-}cod\text{-}iff\text{-}arr
 ultimately show ?thesis using assms arr-tensor by blast
qed
lemma dom-tensor [simp]:
assumes arr f and arr g
shows dom (f \otimes g) = dom f \otimes dom g
 using assms tensor-in-hom [of f] by blast
lemma cod-tensor [simp]:
assumes arr f and arr g
shows cod (f \otimes g) = cod f \otimes cod g
 using assms tensor-in-hom [of f] by blast
lemma tensor-mkarr [simp]:
assumes Arr t and Arr u
shows mkarr \ t \otimes mkarr \ u = mkarr \ (t \otimes u)
 using assms by (meson Tensor-in-tensor arr-char Arr-in-mkarr arr-mkarr arr-tensor)
lemma tensor-preserves-ide:
assumes ide \ a and ide \ b
shows ide (a \otimes b)
proof -
 have can (a \otimes b)
   using assms tensor_{FMC}-def Can-rep-can ide-implies-can can-mkarr-Can by simp
 moreover have dom(a \otimes b) = cod(a \otimes b)
   using assms tensor-in-hom by simp
 ultimately show ?thesis using ide-char by metis
qed
lemma tensor-preserves-can:
assumes can f and can g
shows can (f \otimes g)
 using assms can-implies-arr Can-rep-can tensor _{FMC}-def can-mkarr-Can by simp
lemma comp-preserves-can:
assumes can f and can g and dom f = cod g
shows can (f \cdot g)
proof -
 have 1: ARR f \wedge ARR g \wedge DOM f = COD g
   using assms can-implies-arr arr-iff-ARR Arr-implies-Ide-Cod Arr-implies-Ide-Dom
        mkarr-inj-on-Ide cod-char dom-char
```

```
by simp
                  hence Can (rep f \cdot rep g)
                       using assms can-implies-arr Can-rep-can by force
                       using assms 1 can-implies-arr comp-char can-mkarr-Can seq-char' by simp
           \mathbf{qed}
             The remaining structure required of a monoidal category is also defined syntactically.
           definition unity_{FMC} :: 'c \ arr
                                                                                                                                                                                                                               (\langle \mathcal{I} \rangle)
                  where \mathcal{I} = mkarr \, \mathcal{I}
           definition lunit_{FMC} :: 'c arr \Rightarrow 'c arr
                                                                                                                                                                                                                                      (\langle 1[-] \rangle)
           where l[a] = mkarr \ l[rep \ a]
           definition runit_{FMC} :: 'c arr \Rightarrow 'c arr
                                                                                                                                                                                                                                       (\langle \mathbf{r}[-] \rangle)
           where r[a] = mkarr r[rep \ a]
           definition assoc_{FMC} :: 'c arr \Rightarrow 'c
                                                                                                                                                                                                                                                 (\langle a[-, -, -] \rangle)
           where a[a, b, c] = mkarr \mathbf{a}[rep \ a, rep \ b, rep \ c]
           lemma can-lunit:
           assumes ide a
           shows can \ l[a]
                  using assms\ lunit_{FMC}-def can-mkarr-Can
                 by (simp add: Can-rep-can ide-implies-can)
           lemma lunit-in-hom:
           assumes ide \ a
           shows \langle a|[a]: \mathcal{I}\otimes a\to a\rangle
           proof -
                  have dom \ l[a] = \mathcal{I} \otimes a
                                 using assms lunit_{FMC}-def unity_{FMC}-def Ide-implies-Arr dom-mkarr dom-char ten-
sor-mkarr
                       by (metis Arr.simps(2) Arr.simps(5) Arr-implies-Ide-Dom Dom.simps(5)
                                                      ideD(1) \ ideD(2)
                  moreover have cod \ l[a] = a
                        using assms lunit_{FMC}-def rep-in-arr(1) cod-mkarr cod-char ideD(3) by auto
                  ultimately show ?thesis
                        using assms arr-cod-iff-arr by (intro in-homI, fastforce)
           qed
           lemma arr-lunit [simp]:
           assumes ide \ a
           shows arr 1[a]
                  using assms can-lunit can-implies-arr by simp
           lemma dom-lunit [simp]:
           assumes ide a
```

```
shows dom \ l[a] = \mathcal{I} \otimes a
 using assms lunit-in-hom by auto
lemma cod-lunit [simp]:
assumes ide a
shows cod \ l[a] = a
 using assms lunit-in-hom by auto
lemma can-runit:
assumes ide a
shows can r[a]
 \mathbf{using}\ assms\ runit_{FMC}\text{-}def\ can\text{-}mkarr\text{-}Can
 by (simp add: Can-rep-can ide-implies-can)
lemma runit-in-hom [simp]:
assumes ide a
shows \langle r[a] : a \otimes \mathcal{I} \rightarrow a \rangle
proof -
 have dom \ r[a] = a \otimes \mathcal{I}
   using assms Arr-rep Arr.simps(2) Arr.simps(7) Arr-implies-Ide-Dom Dom.simps(7)
         Ide\text{-}implies\text{-}Arr\ dom\text{-}mkarr\ dom\text{-}char\ ideD(1)\ ideD(2)\ runit_{FMC}\text{-}def\ tensor\text{-}mkarr
         unity_{FMC}-def
   by metis
 moreover have cod r[a] = a
   using assms runit_{FMC}-def rep-in-arr(1) cod-mkarr cod-char ideD(3) by auto
 ultimately show ?thesis
   using assms arr-cod-iff-arr by (intro in-homI, fastforce)
qed
lemma arr-runit [simp]:
assumes ide a
shows arr r[a]
 using assms can-runit can-implies-arr by simp
lemma dom-runit [simp]:
assumes ide a
shows dom \ r[a] = a \otimes \mathcal{I}
 using assms runit-in-hom by blast
lemma cod-runit [simp]:
assumes ide a
shows cod \ r[a] = a
 using assms runit-in-hom by blast
lemma can-assoc:
assumes ide \ a and ide \ b and ide \ c
shows can \ a[a, b, c]
 using assms assoc_{FMC}-def can-mkarr-Can
 by (simp add: Can-rep-can ide-implies-can)
```

```
lemma assoc-in-hom:
assumes ide \ a and ide \ b and ide \ c
shows \langle a[a, b, c] : (a \otimes b) \otimes c \rightarrow a \otimes b \otimes c \rangle
proof -
 have dom \ a[a, b, c] = (a \otimes b) \otimes c
 proof -
   have dom \ a[a, b, c] = mkarr (Dom \ a[rep \ a, rep \ b, rep \ c])
     using assms\ assoc_{FMC}-def rep-in-arr(1) by simp
   also have ... = mkarr ((DOM \ a \otimes DOM \ b) \otimes DOM \ c)
     by simp
   also have ... = (a \otimes b) \otimes c
     by (metis mkarr-extensionality arr-tensor assms dom-char
         ideD(1) ideD(2) not-arr-null null-char tensor-mkarr)
   finally show ?thesis by blast
 qed
 moreover have cod \ a[a, b, c] = a \otimes b \otimes c
 proof -
   have cod \ \mathbf{a}[a, b, c] = mkarr \ (Cod \ \mathbf{a}[rep \ a, rep \ b, rep \ c])
     using assms assoc_{FMC}-def rep-in-arr(1) by simp
   also have ... = mkarr (COD \ a \otimes COD \ b \otimes COD \ c)
     by simp
   also have \dots = a \otimes b \otimes c
     by (metis mkarr-extensionality arr-tensor assms(1) assms(2) assms(3) cod-char
         ideD(1) ideD(3) not-arr-null null-char tensor-mkarr)
   finally show ?thesis by blast
 qed
 moreover have arr \ a[a, b, c]
   using assms\ assoc_{FMC}-def rep-in-arr(1) arr-mkarr by simp
 ultimately show ?thesis by auto
qed
lemma arr-assoc [simp]:
assumes ide a and ide b and ide c
shows arr \ a[a, b, c]
 using assms can-assoc can-implies-arr by simp
lemma dom-assoc [simp]:
assumes ide a and ide b and ide c
shows dom a[a, b, c] = (a \otimes b) \otimes c
 using assms assoc-in-hom by blast
lemma cod-assoc [simp]:
assumes ide a and ide b and ide c
shows cod \ a[a, b, c] = a \otimes b \otimes c
 using assms assoc-in-hom by blast
lemma ide-unity [simp]:
shows ide \mathcal{I}
```

```
using unity_{FMC}-def Arr.simps(2) Dom.simps(2) arr-mkarr dom-mkarr ide-dom
 by metis
lemma Unity-in-unity [simp]:
shows \mathcal{I} \in \mathcal{I}
 using unity_{FMC}-def Arr-in-mkarr by simp
lemma rep-unity [simp]:
shows rep \mathcal{I} = \|\mathcal{I}\|
 using unity_{FMC}-def rep-mkarr by simp
lemma Lunit-in-lunit [intro]:
assumes arr f and t \in f
shows \mathbf{l}[t] \in \mathbf{l}[f]
proof -
 have Arr\ t \land Arr\ (rep\ f) \land Dom\ t = DOM\ f \land Cod\ t = COD\ f \land |t| = |rep\ f|
   using assms
   by (metis mkarr-memb(1) mkarr-memb(2) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm
            norm-rep)
 thus ?thesis
   by (simp add: mkarr-def\ lunit_{FMC}-def)
qed
lemma Runit-in-runit [intro]:
assumes arr f and t \in f
shows \mathbf{r}[t] \in \mathbf{r}[f]
proof -
 have Arr\ t \wedge Arr\ (rep\ f) \wedge Dom\ t = DOM\ f \wedge Cod\ t = COD\ f \wedge |t| = |rep\ f|
   using assms
   by (metis mkarr-memb(1) mkarr-memb(2) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm
            norm-rep)
 thus ?thesis
   by (simp add: mkarr-def\ runit_{FMC}-def)
qed
lemma Assoc-in-assoc [intro]:
assumes arr f and arr g and arr h
and t \in f and u \in g and v \in h
shows \mathbf{a}[t, u, v] \in \mathbf{a}[f, g, h]
proof -
 have Arr\ (rep\ f) \land Dom\ t = DOM\ f \land Cod\ t = COD\ f \land |t| = |rep\ f|
   using assms
   by (metis\ mkarr-memb(1)\ rep-mkarr\ rep-in-arr(1)\ equiv-iff-eq-norm\ mkarr-memb(2)
            norm-rep)
 moreover have Arr u \wedge Arr (rep g) \wedge Dom u = DOM g \wedge Cod u = COD g \wedge
               |u| = |rep g|
   using assms
   by (metis mkarr-memb(1) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm mkarr-memb(2)
            norm-rep)
```

```
moreover have Arr \ v \wedge Arr \ (rep \ h) \wedge Dom \ v = DOM \ h \wedge Cod \ v = COD \ h \wedge
                    |v| = |rep h|
    using assms
    by (metis mkarr-memb(1) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm mkarr-memb(2)
                 norm-rep)
  ultimately show ?thesis
     using assoc_{FMC}-def mkarr-def by simp
At last, we can show that we've constructed a monoidal category.
interpretation EMC: elementary-monoidal-category
                          comp \ tensor_{FMC} \ unity_{FMC} \ lunit_{FMC} \ runit_{FMC} \ assoc_{FMC}
proof
  show ide \mathcal{I} using ide-unity by auto
  show \bigwedge a. ide a \Longrightarrow \langle a | [a] : \mathcal{I} \otimes a \to a \rangle by auto
  show \bigwedge a. ide a \Longrightarrow \langle r[a] : a \otimes \mathcal{I} \to a \rangle by auto
  show \bigwedge a ide a \Longrightarrow iso \ l[a] using can-lunit iso-can by auto
  show \bigwedge a ide a \implies iso r[a] using can-runit iso-can by auto
  show \land a \ b \ c. \llbracket \ ide \ a; \ ide \ b; \ ide \ c \ \rrbracket \Longrightarrow \ \mbox{$ (a,b,c]: (a\otimes b)\otimes c \to a\otimes b\otimes c$ } \ \mbox{by } \ \ auto
  show \bigwedge a\ b\ c. \llbracket ide\ a;\ ide\ b;\ ide\ c\ \rrbracket \implies iso\ a[a,\ b,\ c]\ using\ can-assoc\ iso-can\ by\ auto
  show \bigwedge a \ b. \llbracket ide \ a; ide \ b \ \rrbracket \Longrightarrow ide \ (a \otimes b) using tensor-preserves-ide by auto
  \mathbf{fix} \ f \ a \ b \ g \ c \ d
  \mathbf{show} \ \llbracket \ \textit{``f} : \textit{a} \rightarrow \textit{b} \textit{``}; \ \textit{``g} : \textit{c} \rightarrow \textit{d} \textit{``} \ \rrbracket \Longrightarrow \textit{``f} \otimes \textit{g} : \textit{a} \otimes \textit{c} \rightarrow \textit{b} \otimes \textit{d} \textit{``}
    using tensor-in-hom by auto
 Naturality of left unitor.
  \mathbf{fix} f
  assume f: arr f
  show 1[cod f] \cdot (\mathcal{I} \otimes f) = f \cdot 1[dom f]
  proof (intro arr-eqI)
    show par (1[cod f] \cdot (\mathcal{I} \otimes f)) (f \cdot 1[dom f])
       using f by simp
    show l[COD f] \cdot (\mathcal{I} \otimes rep f) \in l[cod f] \cdot (\mathcal{I} \otimes f)
       using f by fastforce
    show rep f \cdot l[DOM f] \in f \cdot l[dom f]
       using f by fastforce
    show |\mathbf{1}[COD f] \cdot (\mathcal{I} \otimes rep f)| = |rep f \cdot \mathbf{1}[DOM f]|
       using f by (simp\ add:\ Diag-Diagonalize(1)\ Diagonalize-DOM\ Diagonalize-COD)
  qed
 Naturality of right unitor.
  show r[cod f] \cdot (f \otimes \mathcal{I}) = f \cdot r[dom f]
  proof (intro arr-eqI)
    show par (r[cod f] \cdot (f \otimes \mathcal{I})) (f \cdot r[dom f])
       using f by simp
    show \mathbf{r}[COD f] \cdot (rep f \otimes \mathcal{I}) \in \mathbf{r}[cod f] \cdot (f \otimes \mathcal{I})
       using f by fastforce
    show rep f \cdot \mathbf{r}[DOM f] \in f \cdot \mathbf{r}[dom f]
```

```
using f by fastforce
   show |\mathbf{r}[COD f] \cdot (rep f \otimes \mathcal{I})| = |rep f \cdot \mathbf{r}[DOM f]|
     using f by (simp\ add:\ Diag-Diagonalize(1)\ Diagonalize-DOM\ Diagonalize-COD)
 qed
 next
Naturality of associator.
 fix f0 :: 'c arr and f1 f2
 assume f0: arr f0 and f1: arr f1 and f2: arr f2
 show a [cod f0, cod f1, cod f2] \cdot ((f0 \otimes f1) \otimes f2)
           = (f0 \otimes f1 \otimes f2) \cdot a[dom f0, dom f1, dom f2]
 proof (intro arr-eqI)
   show 1: par (a[cod f0, cod f1, cod f2] \cdot ((f0 \otimes f1) \otimes f2))
                 ((f0 \otimes f1 \otimes f2) \cdot a[dom\ f0,\ dom\ f1,\ dom\ f2])
     using f0 f1 f2 by force
   show a[rep (cod f0), rep (cod f1), rep (cod f2)] \cdot ((rep f0 \otimes rep f1) \otimes rep f2)
            \in a[cod f0, cod f1, cod f2] \cdot ((f0 \otimes f1) \otimes f2)
     using f0 f1 f2 by fastforce
   show (rep\ f0\otimes rep\ f1\otimes rep\ f2)\cdot \mathbf{a}[rep\ (dom\ f0),\ rep\ (dom\ f1),\ rep\ (dom\ f2)]
            \in (f0 \otimes f1 \otimes f2) \cdot a[dom f0, dom f1, dom f2]
     using f0 f1 f2 by fastforce
   show |\mathbf{a}| [rep\ (cod\ f0),\ rep\ (cod\ f1),\ rep\ (cod\ f2)] \cdot ((rep\ f0\otimes rep\ f1)\otimes rep\ f2)|
            = |(rep\ f0 \otimes rep\ f1 \otimes rep\ f2) \cdot \mathbf{a}[rep\ (dom\ f0),\ rep\ (dom\ f1),\ rep\ (dom\ f2)]|
   proof -
     have |\mathbf{a}[rep\ (cod\ f0),\ rep\ (cod\ f1),\ rep\ (cod\ f2)]\cdot ((rep\ f0\otimes rep\ f1)\otimes rep\ f2)|
              = \lfloor rep \ f0 \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ f1 \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ f2 \rfloor
     proof -
       have b\theta: |rep\ (cod\ f\theta)| = Cod\ |rep\ f\theta|
         using f0 Cod-Diagonalize-rep by simp
       have b1: |rep (cod f1)| = Cod |rep f1|
         using f1 Cod-Diagonalize-rep by simp
       have b2: |rep (cod f2)| = Cod |rep f2|
         using f2 Cod-Diagonalize-rep by simp
       have |\mathbf{a}[rep\ (cod\ f0),\ rep\ (cod\ f1),\ rep\ (cod\ f2)] \cdot ((rep\ f0\otimes rep\ f1)\otimes rep\ f2)|
                  = (|rep\ (cod\ f0)|\ |\otimes|\ |rep\ (cod\ f1)|\ |\otimes|\ |rep\ (cod\ f2)|)\ |\cdot|
                    (|rep\ f0|\ |\otimes|\ |rep\ f1|\ |\otimes|\ |rep\ f2|)
         using f0 f1 f2 using Diag-Diagonalize(1) TensorDiag-assoc by auto
        also have ... = \lfloor rep \pmod{f0} \rfloor \lfloor \cdot \rfloor \lfloor rep \pmod{f0} \rfloor
                           \lfloor rep \ (cod \ f1) \rfloor \ \lfloor \cdot \rfloor \ \lfloor rep \ f1 \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ (cod \ f2) \rfloor \ \lfloor \cdot \rfloor \ | \ rep \ f2 | 
       proof -
         have Seq | rep (cod f0) | | rep f0 | \land Seq | rep (cod f1) | | rep f1 | \land
                Seq \mid rep \pmod{f2} \mid |rep f2|
       using f0 f1 f2 rep-in-Hom Diagonalize-in-Hom Dom-Diagonalize-rep Cod-Diagonalize-rep
           by auto
         thus ?thesis
            using f0 f1 f2 b0 b1 b2 TensorDiag-in-Hom TensorDiag-preserves-Diag
                  Diag-Diagonalize Arr-implies-Ide-Dom Arr-implies-Ide-Cod
                  CompDiag-TensorDiag
              by simp
```

```
qed
  also have ... = \lfloor rep \ f0 \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ f1 \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ f2 \rfloor
  proof -
    have |rep (cod f\theta)| | \cdot | |rep f\theta| = |rep f\theta|
      using f0 b0 CompDiag-Cod-Diag [of | rep f0|] Diag-Diagonalize
    moreover have |rep (cod f1)| | \cdot | |rep f1| = |rep f1|
      using f1 b1 CompDiag-Cod-Diag [of | rep f1 |] Diag-Diagonalize
      by simp
    moreover have \lfloor rep \pmod{f2} \rfloor \lfloor \cdot \rfloor \lfloor rep + f2 \rfloor = \lfloor rep + f2 \rfloor
      \mathbf{using}\ \mathit{f2}\ \mathit{b2}\ \mathit{CompDiag}\text{-}\mathit{Cod}\text{-}\mathit{Diag}\ [\mathit{of}\ \lfloor\mathit{rep}\ \mathit{f2}\rfloor]\ \mathit{Diag}\text{-}\mathit{Diagonalize}
      by simp
    ultimately show ?thesis by argo
  qed
  finally show ?thesis by blast
also have ... = |(rep \ f0 \otimes rep \ f1 \otimes rep \ f2)|.
                  \mathbf{a}[rep\ (dom\ f0),\ rep\ (dom\ f1),\ rep\ (dom\ f2)]
proof -
  have a\theta: |rep(dom f\theta)| = Dom |rep f\theta|
    using f0 Dom-Diagonalize-rep by simp
  have a1: |rep(dom f1)| = Dom|rep f1|
    using f1 Dom-Diagonalize-rep by simp
  have a2: |rep (dom f2)| = Dom |rep f2|
    using f2 Dom-Diagonalize-rep by simp
  have |(rep\ f\theta\otimes rep\ f1\otimes rep\ f2)\cdot \mathbf{a}[rep\ (dom\ f\theta),\ rep\ (dom\ f1),\ rep\ (dom\ f2)]|
           = (|rep f0| |\otimes| |rep f1| |\otimes| |rep f2|) |\cdot|
             (|rep\ (dom\ f0)|\ |\otimes|\ |rep\ (dom\ f1)|\ |\otimes|\ |rep\ (dom\ f2)|)
     using f0 f1 f2 using Diag-Diagonalize(1) TensorDiag-assoc by auto
  also have \dots = \lfloor rep \ f0 \rfloor \ \lfloor \cdot \rfloor \ \lfloor rep \ (dom \ f0) \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ f1 \rfloor \ \lfloor \cdot \rfloor \ \lfloor rep \ (dom \ f1) \rfloor \ \lfloor \otimes \rfloor
                     |rep f2| |\cdot| |rep (dom f2)|
  proof -
    have Seq \lfloor rep \ f0 \rfloor \lfloor rep \ (dom \ f0) \rfloor \land Seq \lfloor rep \ f1 \rfloor \lfloor rep \ (dom \ f1) \rfloor \land
           Seq \lfloor rep \ f2 \rfloor \lfloor rep \ (dom \ f2) \rfloor
 using f0 f1 f2 rep-in-Hom Diagonalize-in-Hom Dom-Diagonalize-rep Cod-Diagonalize-rep
      by auto
    thus ?thesis
      using f0 f1 f2 a0 a1 a2 TensorDiag-in-Hom TensorDiag-preserves-Diag
             Diag-Diagonalize Arr-implies-Ide-Dom Arr-implies-Ide-Cod
             CompDiag-TensorDiag
      by force
  qed
  also have ... = |rep f\theta| |\otimes| |rep f1| |\otimes| |rep f2|
    have |rep\ f\theta|\ |\cdot|\ |rep\ (dom\ f\theta)| = |rep\ f\theta|
      using f0 a0 CompDiag-Diag-Dom [of Diagonalize (rep f0)] Diag-Diagonalize
    moreover have |rep f1| |\cdot| |rep (dom f1)| = |rep f1|
      using f1 a1 CompDiag-Diag-Dom [of Diagonalize (rep f1)] Diag-Diagonalize
```

```
by simp
           moreover have \lfloor rep \ f2 \rfloor \ \lfloor \cdot \rfloor \ \lfloor rep \ (dom \ f2) \rfloor = \lfloor rep \ f2 \rfloor
              using f2 a2 CompDiag-Diag-Dom [of Diagonalize (rep f2)] Diag-Diagonalize
           ultimately show ?thesis by argo
         qed
         finally show ?thesis by argo
      finally show ?thesis by blast
   qed
 qed
 next
Tensor preserves composition (interchange).
 fix f q f' q'
 show \llbracket seq \ g'f; seq \ g'f' \rrbracket \Longrightarrow (g \otimes g') \cdot (f \otimes f') = g \cdot f \otimes g' \cdot f'
 proof -
   assume gf: seq g f
   assume gf': seq g'f'
   show ?thesis
   proof (intro arr-eqI)
      show par ((g \otimes g') \cdot (f \otimes f')) (g \cdot f \otimes g' \cdot f')
         using gf gf' by fastforce
      show (rep \ g \otimes rep \ g') \cdot (rep \ f \otimes rep \ f') \in (g \otimes g') \cdot (f \otimes f')
         using qf qf' by force
      show rep g \cdot rep f \otimes rep g' \cdot rep f' \in g \cdot f \otimes g' \cdot f'
       using qf qf'
       \mathbf{by}\ (\mathit{meson}\ \mathit{Comp-in\text{-}comp\text{-}}\mathit{ARR}\ \mathit{Tensor\text{-}in\text{-}tensor}\ \mathit{rep\text{-}in\text{-}arr}\ \mathit{seqE}\ \mathit{seq\text{-}char'})
      show |(rep \ g \otimes rep \ g') \cdot (rep \ f \otimes rep \ f')| = |rep \ g \cdot rep \ f \otimes rep \ g' \cdot rep \ f'|
      proof -
         have \lfloor (rep \ g \otimes rep \ g') \cdot (rep \ f \otimes rep \ f') \rfloor
                   = (\lfloor rep \ g \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ g' \rfloor) \ \lfloor \cdot \rfloor \ (\lfloor rep \ f \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ f' \rfloor)
           by auto
         also have ... = \lfloor rep \ g \rfloor \ \lfloor \cdot \rfloor \ \lfloor rep \ f \rfloor \ \lfloor \otimes \rfloor \ \lfloor rep \ g' \rfloor \ \lfloor \cdot \rfloor \ \lfloor rep \ f' \rfloor
           using gf gf' Arr-rep Diagonalize-rep-preserves-seq
                   CompDiag-TensorDiag [of | rep g | | rep g' | | rep f | | rep f' | ]
                   Diag-Diagonalize Diagonalize-DOM Diagonalize-COD
         also have ... = \lfloor rep \ g \cdot rep \ f \otimes rep \ g' \cdot rep \ f' \rfloor
           by auto
         finally show ?thesis by blast
      qed
   qed
 qed
 next
The triangle.
 \mathbf{fix} \ a \ b
 assume a: ide a
```

```
assume b: ide b
 show (a \otimes l[b]) \cdot a[a, \mathcal{I}, b] = r[a] \otimes b
 proof -
   have par ((a \otimes l[b]) \cdot a[a, \mathcal{I}, b]) (r[a] \otimes b)
     using a b by simp
   moreover have can((a \otimes l[b]) \cdot a[a, \mathcal{I}, b])
     using a b ide-implies-can comp-preserves-can tensor-preserves-can can-assoc can-lunit
   moreover have can (r[a] \otimes b)
     using a b ide-implies-can can-runit tensor-preserves-can by simp
   ultimately show ?thesis using can-coherence by blast
 qed
 next
The pentagon.
 \mathbf{fix} \ a \ b \ c \ d
 assume a: ide a
 assume b: ide b
 assume c: ide c
 assume d: ide d
 show (a \otimes a[b, c, d]) \cdot a[a, b \otimes c, d] \cdot (a[a, b, c] \otimes d)
         = \mathbf{a}[a, b, c \otimes d] \cdot \mathbf{a}[a \otimes b, c, d]
 proof -
   let ?LHS = (a \otimes a[b, c, d]) \cdot a[a, b \otimes c, d] \cdot (a[a, b, c] \otimes d)
   let ?RHS = a[a, b, c \otimes d] \cdot a[a \otimes b, c, d]
   have par ?LHS ?RHS
     using a b c d can-assoc tensor-preserves-ide by auto
   moreover have can ?LHS
     using a b c d ide-implies-can comp-preserves-can tensor-preserves-can can-assoc
           tensor	ext{-}preserves	ext{-}ide
     \mathbf{by} \ simp
   moreover have can ?RHS
     using a b c d comp-preserves-can tensor-preserves-can can-assoc tensor-in-hom
           tensor\text{-}preserves\text{-}ide
     by simp
   ultimately show ?thesis using can-coherence by blast
 qed
qed
lemma is-elementary-monoidal-category:
shows elementary-monoidal-category
        comp \ tensor_{FMC} \ unity_{FMC} \ lunit_{FMC} \ runit_{FMC} \ assoc_{FMC}
abbreviation T_{FMC} where T_{FMC} \equiv EMC.T
abbreviation \alpha_{FMC} where \alpha_{FMC} \equiv EMC.\alpha
abbreviation \iota_{FMC} where \iota_{FMC} \equiv EMC.\iota
interpretation MC: monoidal-category comp T_{FMC} \alpha_{FMC} \iota_{FMC}
```

4.2 Proof of Freeness

Now we proceed on to establish the freeness of $\mathcal{F}C$: each functor from C to a monoidal category D extends uniquely to a strict monoidal functor from $\mathcal{F}C$ to D.

```
context free-monoidal-category
begin
 lemma rep-lunit:
 assumes ide a
 shows rep \ l[a] = ||l[rep \ a]||
   using assms Lunit-in-lunit [of a rep a] rep-in-arr norm-memb-eq-rep [of l[a]]
   by simp
 lemma rep-runit:
 assumes ide a
 shows rep \ r[a] = ||\mathbf{r}[rep \ a]||
   using assms Runit-in-runit [of a rep a] rep-in-arr norm-memb-eq-rep [of r[a]]
   \mathbf{by} \ simp
 lemma rep-assoc:
 assumes ide a and ide b and ide c
 shows rep \ a[a, b, c] = \|\mathbf{a}[rep \ a, rep \ b, rep \ c]\|
   using assms Assoc-in-assoc [of a b c rep a rep b rep c] rep-in-arr
        norm-memb-eq-rep [of a[a, b, c]]
   by simp
 lemma mkarr-Unity:
 shows mkarr \mathcal{I} = \mathcal{I}
   using unity_{FMC}-def by simp
```

The unitors and associator were given syntactic definitions in terms of corresponding terms, but these were only for the special case of identity arguments (i.e. the components

of the natural transformations). We need to show that mkarr gives the correct result for all terms.

```
lemma mkarr-Lunit:
assumes Arr t
shows mkarr \mathbf{1}[t] = \mathfrak{l} (mkarr t)
proof -
 have mkarr \mathbf{l}[t] = mkarr (t \cdot \mathbf{l}[||Dom t||])
   using assms Arr-implies-Ide-Dom Ide-in-Hom Diagonalize-preserves-Ide
        Diag-Diagonalize Par-Arr-norm
   by (intro mkarr-eqI) simp-all
 also have ... = mkarr \ t \cdot mkarr \ l[||Dom \ t||]
   using assms Arr-implies-Ide-Dom Par-Arr-norm Ide-in-Hom by simp
 also have ... = mkarr \ t \cdot 1[dom \ (mkarr \ t)]
 proof -
   have arr \ l[mkarr \ (Dom \ t)]
     using assms Arr-implies-Ide-Dom ide-mkarr-Ide by simp
   moreover have l[||Dom\ t||] \in l[mkarr\ (Dom\ t)]
     using assms Arr-implies-Ide-Dom Lunit-in-lunit rep-mkarr
          rep-in-arr [of mkarr (Dom t)]
     by simp
   ultimately show ?thesis
     using assms mkarr-memb(2) by simp
 qed
 also have ... = \mathfrak{l} (mkarr t)
   using assms Arr-implies-Ide-Dom ide-mkarr-Ide lunit-agreement by simp
 finally show ?thesis by blast
qed
lemma mkarr-Lunit':
assumes Arr t
shows mkarr \mathbf{l}^{-1}[t] = \mathfrak{l}'(mkarr t)
proof -
 have mkarr \mathbf{l}^{-1}[t] = mkarr (\mathbf{l}^{-1}[||Cod t||] \cdot t)
   using assms Arr-implies-Ide-Cod Ide-in-Hom Diagonalize-preserves-Ide
        Diag-Diagonalize Par-Arr-norm
   by (intro\ mkarr-eqI)\ simp-all
 also have ... = mkarr l^{-1}[\|Cod t\|] \cdot mkarr t
   using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm by simp
 also have ... = mkarr (Inv l[||Cod t||]) \cdot mkarr t
 proof -
   have mkarr l^{-1}[||Cod t||] = mkarr (Inv l[||Cod t||])
     using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm Inv-in-Hom
          Ide-implies-Can norm-preserves-Can Diagonalize-Inv Diagonalize-preserves-Ide
     by (intro mkarr-eqI, simp-all)
   thus ?thesis by argo
 \mathbf{qed}
 also have ... = l'(cod(mkarr\ t)) \cdot mkarr\ t
   have mkarr (Inv l[||Cod t||]) \cdot mkarr t = lunit' (cod (mkarr t)) \cdot mkarr t
```

```
using assms Arr-implies-Ide-Cod rep-mkarr Par-Arr-norm inv-mkarr
          norm-preserves-Can Ide-implies-Can lunit-agreement \mathfrak{l}'-ide-simp
          Can-implies-Arr\ arr-mkarr\ cod-mkarr\ ide-cod\ lunit_{FMC}-def
     by (metis\ (no-types,\ lifting)\ Can.simps(5))
   also have ... = l'(cod(mkarr\ t)) \cdot mkarr\ t
     using assms \mathfrak{l}'-ide-simp arr-mkarr ide-cod by presburger
   finally show ?thesis by blast
 qed
 also have ... = l'(mkarr\ t)
   using assms I'.naturality2 [of mkarr t] by simp
 finally show ?thesis by blast
qed
lemma mkarr-Runit:
assumes Arr t
shows mkarr \mathbf{r}[t] = \rho (mkarr t)
proof -
 have mkarr \mathbf{r}[t] = mkarr (t \cdot \mathbf{r}[||Dom t||])
 proof -
   have \neg Diag (Dom t \otimes \mathcal{I}) by (cases Dom t) simp-all
   thus ?thesis
     using assms Par-Arr-norm Arr-implies-Ide-Dom Ide-in-Hom Diag-Diagonalize
          Diagonalize-preserves-Ide
     by (intro\ mkarr-eqI)\ simp-all
 qed
 also have ... = mkarr \ t \cdot mkarr \ \mathbf{r}[\|Dom \ t\|]
   using assms Arr-implies-Ide-Dom Par-Arr-norm Ide-in-Hom by simp
 also have ... = mkarr \ t \cdot r[dom \ (mkarr \ t)]
 proof -
   have arr r[mkarr (Dom t)]
     using assms Arr-implies-Ide-Dom ide-mkarr-Ide by simp
   moreover have \mathbf{r}[\|Dom\ t\|] \in \mathbf{r}[mkarr\ (Dom\ t)]
     using assms Arr-implies-Ide-Dom Runit-in-runit rep-mkarr
          rep-in-arr\ [of\ mkarr\ (Dom\ t)]
     by simp
   moreover have mkarr (Dom t) = mkarr ||Dom t||
     using assms mkarr-rep rep-mkarr arr-mkarr Ide-implies-Arr Arr-implies-Ide-Dom
     by metis
   ultimately show ?thesis
     using assms mkarr-memb(2) by simp
 qed
 also have ... = \varrho (mkarr t)
   using assms Arr-implies-Ide-Dom ide-mkarr-Ide runit-agreement by simp
 finally show ?thesis by blast
qed
lemma mkarr-Runit':
assumes Arr t
shows mkarr \mathbf{r}^{-1}[t] = \varrho' (mkarr t)
```

```
proof -
 have mkarr \mathbf{r}^{-1}[t] = mkarr (\mathbf{r}^{-1}[||Cod t||] \cdot t)
 proof -
   have \neg Diag (Cod \ t \otimes \mathcal{I}) by (cases Cod t) simp-all
   thus ?thesis
     using assms Par-Arr-norm Arr-implies-Ide-Cod Ide-in-Hom
           Diagonalize-preserves-Ide Diag-Diagonalize
     by (intro\ mkarr-eqI)\ simp-all
 qed
 also have ... = mkarr \mathbf{r}^{-1}[\|Cod t\|] \cdot mkarr t
   using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm by simp
 also have ... = mkarr (Inv \mathbf{r}[||Cod t||]) \cdot mkarr t
 proof -
   have mkarr (Runit' (norm (Cod t))) = mkarr (Inv (Runit (norm (Cod t))))
     using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm Inv-in-Hom
           Ide-implies-Can norm-preserves-Can Diagonalize-Inv Diagonalize-preserves-Ide
     by (intro mkarr-eqI) simp-all
   thus ?thesis by argo
 also have ... = \rho' (cod (mkarr t)) · mkarr t
 proof -
   have mkarr (Inv \mathbf{r}[||Cod t||]) \cdot mkarr t = runit' (cod (mkarr t)) \cdot mkarr t
     using assms Arr-implies-Ide-Cod rep-mkarr inv-mkarr norm-preserves-Can
           Ide\text{-}implies\text{-}Can\ runit\text{-}agreement\ Can\text{-}implies\text{-}Arr\ arr\text{-}mkarr\ cod\text{-}mkarr\ }
           ide\text{-}cod\ runit_{FMC}\text{-}def
     by (metis (no-types, lifting) Can.simps(7))
   also have ... = \rho' (cod (mkarr t)) · mkarr t
   proof -
     have runit' (cod (mkarr t)) = \rho' (cod (mkarr t))
       using assms \varrho'-ide-simp arr-mkarr ide-cod by blast
     thus ?thesis by argo
   qed
   finally show ?thesis by blast
 also have ... = \varrho' (mkarr t)
   using assms \rho'.naturality2 [of mkarr t] by simp
 finally show ?thesis by blast
qed
lemma mkarr-Assoc:
assumes Arr\ t and Arr\ u and Arr\ v
shows mkarr \mathbf{a}[t, u, v] = \alpha \ (mkarr \ t, \ mkarr \ u, \ mkarr \ v)
proof
 have mkarr \mathbf{a}[t, u, v] = mkarr ((t \otimes u \otimes v) \cdot \mathbf{a}[\|Dom t\|, \|Dom u\|, \|Dom v\|])
   using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Ide-in-Hom
         Diag	ext{-}Diagonalize	ext{-}Diagonalize	ext{-}preserves	ext{-}Ide \ Tensor Diag	ext{-}preserves	ext{-}Ide
         TensorDiag-preserves-Diag TensorDiag-assoc Par-Arr-norm
   by (intro mkarr-eqI, simp-all)
 also have ... = \alpha (mkarr t, mkarr u, mkarr v)
```

```
using assms Arr-implies-Ide-Dom rep-mkarr Ide-in-Hom assoc<sub>FMC</sub>-def
         Par-Arr-norm [of Dom t] Par-Arr-norm [of Dom u] Par-Arr-norm [of Dom v]
        \alpha-simp
   by simp
 finally show ?thesis by blast
qed
lemma mkarr-Assoc':
assumes Arr t and Arr u and Arr v
shows mkarr \mathbf{a}^{-1}[t, u, v] = \alpha' (mkarr t, mkarr u, mkarr v)
proof -
 have mkarr \ \mathbf{a}^{-1}[t, u, v] = mkarr \ (\mathbf{a}^{-1}[\|Cod\ t\|, \|Cod\ u\|, \|Cod\ v\|] \cdot (t \otimes u \otimes v))
   using assms Par-Arr-norm Arr-implies-Ide-Cod Ide-in-Hom Diag-Diagonalize
         Tensor Diag-preserves-Diag\ Comp Diag-Cod-Diag\ [of |t| |\otimes | |u| |\otimes | |v|]
   by (intro mkarr-eqI, simp-all)
 also have ... = mkarr \mathbf{a}^{-1}[\|Cod\ t\|, \|Cod\ u\|, \|Cod\ v\|] \cdot mkarr (t \otimes u \otimes v)
   using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm by simp
 also have ... = mkarr (Inv \mathbf{a}[\|Cod t\|, \|Cod u\|, \|Cod v\|]) \cdot mkarr (t \otimes u \otimes v)
 proof -
   have mkarr \mathbf{a}^{-1}[\|Cod\ t\|, \|Cod\ u\|, \|Cod\ v\|] =
         mkarr (Inv \mathbf{a}[||Cod t||, ||Cod u||, ||Cod v||])
    using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm Inv-in-Hom Ide-implies-Can
           norm-preserves-Can Diagonalize-Inv Diagonalize-preserves-Ide
     by (intro mkarr-eqI, simp-all)
   thus ?thesis by argo
 qed
 also have ... = inv (mkarr \mathbf{a}[\|Cod\ t\|, \|Cod\ u\|, \|Cod\ v\|]) \cdot mkarr (t \otimes u \otimes v)
   using assms Arr-implies-Ide-Cod Ide-implies-Can norm-preserves-Can by simp
 also have ... = \alpha' (mkarr t, mkarr u, mkarr v)
 proof -
   have mkarr (\mathbf{a}^{-1}[Inv \parallel Cod t \parallel, Inv \parallel Cod u \parallel, Inv \parallel Cod v \parallel] \cdot (Cod t \otimes Cod u \otimes Cod v))
          = mkarr \mathbf{a}^{-1}[Inv \parallel Cod t \parallel, Inv \parallel Cod u \parallel, Inv \parallel Cod v \parallel]
     using assms Arr-implies-Ide-Cod Inv-in-Hom norm-preserves-Can Diagonalize-Inv
           Ide-implies-Can Diag-Diagonalize Ide-in-Hom Diagonalize-preserves-Ide
           Par-Arr-norm TensorDiag-preserves-Diag
           by (intro mkarr-eqI) simp-all
   thus ?thesis
     using assms Arr-implies-Ide-Cod rep-mkarr assoc_{FMC}-def \alpha'.map-simp by simp
 finally show ?thesis by blast
Next, we define the "inclusion of generators" functor from C to \mathcal{F}C.
definition inclusion-of-generators
where inclusion-of-generators \equiv \lambda f. if C.arr f then mkarr \langle f \rangle else null
lemma inclusion-is-functor:
shows functor C comp inclusion-of-generators
```

```
unfolding inclusion-of-generators-def
apply unfold-locales
apply auto[4]
by (elim C.seqE, simp, intro mkarr-eqI, auto)
```

end

We now show that, given a functor V from C to a a monoidal category D, the evaluation map that takes formal arrows of the monoidal language of C to arrows of D induces a strict monoidal functor from $\mathcal{F}C$ to D.

```
\mathbf{locale}\ evaluation\text{-}functor =
  C: category C +
  D: monoidal-category D T_D \alpha_D \iota_D +
  evaluation-map C D T_D \alpha_D \iota_D V +
  \mathcal{F}C: free-monoidal-category C
for C :: 'c \ comp
                            (infixr \langle \cdot_C \rangle 55)
and D :: 'd comp
                              (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
and V :: 'c \Rightarrow 'd
begin
                               (⟨{|-|}⟩)
  notation eval
  definition map
  where map f \equiv if \ \mathcal{F}C.arr \ f \ then \ \{\mathcal{F}C.rep \ f\} \ else \ D.null
```

It follows from the coherence theorem that a formal arrow and its normal form always have the same evaluation.

```
lemma eval-norm:
assumes Arr t
shows \{||t||\} = \{|t|\}
 using assms FC.Par-Arr-norm FC.Diagonalize-norm coherence canonical-factorization
interpretation functor FC.comp\ D\ map
proof
 \mathbf{fix} f
 show \neg \mathcal{F}C.arr f \Longrightarrow map f = D.null using map-def by simp
 assume f: \mathcal{F}C.arr f
 show D.arr (map f) using f map-def \mathcal{F}C.arr-char by simp
 show D.dom (map f) = map (\mathcal{F}C.dom f)
   using f map-def eval-norm FC.rep-dom Arr-implies-Ide-Dom by auto
 show D.cod\ (map\ f) = map\ (\mathcal{F}C.cod\ f)
   using f map-def eval-norm \mathcal{F}C.rep-cod\ Arr-implies-Ide-Cod\ by\ auto
 next
 \mathbf{fix} f g
 assume fg: \mathcal{F}C.seq\ g\ f
```

```
show map (\mathcal{F}C.comp \ g \ f) = D (map \ g) (map \ f)
       using fg map-def \mathcal{F}C.rep-comp \mathcal{F}C.rep-preserves-seq eval-norm by auto
  qed
  lemma is-functor:
  shows functor \mathcal{F}C.comp\ D\ map..
  interpretation FF: product-functor \mathcal{F}C.comp\ \mathcal{F}C.comp\ D\ D\ map\ map ..
  interpretation FoT: composite-functor \mathcal{F}C.CC.comp\ \mathcal{F}C.comp\ D\ \mathcal{F}C.T_{FMC}\ map..
  interpretation ToFF: composite-functor \mathcal{F}C.CC.comp\ D.CC.comp\ D\ FF.map\ T_D ..
  interpretation strict-monoidal-functor
                     \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.lpha\ \mathcal{F}C.\iota\ D\ T_D\ lpha_D\ \iota_D\ map
  proof
    show map \mathcal{F}C.\iota = \iota_D
      using \mathcal{F}C.\iota-def \mathcal{F}C.lunit-agreement map-def \mathcal{F}C.rep-lunit \mathcal{F}C.Arr-rep [of \mathcal{I}]
             eval-norm \ \mathcal{F}C.lunit-agreement \ D.unitor-coincidence \ D.comp-cod-arr \ D.unit-in-hom
      by auto
    show \bigwedge f g. \llbracket \mathcal{F}C.arr f; \mathcal{F}C.arr g \rrbracket \Longrightarrow
                  map (\mathcal{F}C.tensor f g) = D.tensor (map f) (map g)
       using map-def \mathcal{F}C.rep-tensor \mathcal{F}C.Arr-rep eval-norm by simp
    show \land a \ b \ c. \llbracket \mathcal{F}C.ide \ a; \mathcal{F}C.ide \ b; \mathcal{F}C.ide \ c \rrbracket \Longrightarrow
                      map \ (\mathcal{F}C.assoc \ a \ b \ c) = D.assoc \ (map \ a) \ (map \ b) \ (map \ c)
       using map-def \mathcal{F}C.assoc_{FMC}-def \mathcal{F}C.rep-mkarr eval-norm by auto
  qed
  lemma is-strict-monoidal-functor:
  shows strict-monoidal-functor \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha\ \mathcal{F}C.\iota\ D\ T_D\ \alpha_D\ \iota_D\ map
end
\mathbf{sublocale} evaluation-functor \subseteq strict-monoidal-functor
                                     \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha_{FMC}\ \mathcal{F}C.\iota_{FMC}\ D\ T_D\ \alpha_D\ \iota_D\ map
  using is-strict-monoidal-functor by auto
```

The final step in proving freeness is to show that the evaluation functor is the *unique* strict monoidal extension of the functor V to $\mathcal{F}C$. This is done by induction, exploiting the syntactic construction of $\mathcal{F}C$.

To ease the statement and proof of the result, we define a locale that expresses that F is a strict monoidal extension to monoidal category C, of a functor V from C_0 to a monoidal category D, along a functor I from C_0 to C.

```
 \begin{array}{l} \textbf{locale} \ strict\text{-}monoidal\text{-}extension = \\ C_0 : \ category \ C_0 \ + \\ C : \ monoidal\text{-}category \ C \ T_C \ \alpha_C \ \iota_C \ + \\ D : \ monoidal\text{-}category \ D \ T_D \ \alpha_D \ \iota_D \ + \\ I : \ functor \ C_0 \ C \ I \ + \\ V : \ functor \ C_0 \ D \ V \ + \\ \end{array}
```

```
strict-monoidal-functor C T_C \alpha_C \iota_C D T_D \alpha_D \iota_D F
for C_0 :: {}'c_0 \ comp
\mathbf{and}\ C::\ {}'c\ comp
                             (infixr \langle \cdot_C \rangle 55)
and T_C :: 'c * 'c \Rightarrow 'c
and \alpha_C :: 'c * 'c * 'c \Rightarrow 'c
and \iota_C :: {}'c
and D :: 'd comp
                             (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
and I :: 'c_0 \Rightarrow 'c
and V :: 'c_0 \Rightarrow 'd
and F :: 'c \Rightarrow 'd +
assumes is-extension: \forall f. \ C_0.arr f \longrightarrow F \ (If) = Vf
sublocale evaluation-functor \subseteq
             strict-monoidal-extension C FC.comp FC.T_{FMC} FC.\alpha FC.\iota D T_D \alpha_D \iota_D
                                         \mathcal{F}C.inclusion-of-generators V map
proof -
  interpret inclusion: functor C \mathcal{F}C.comp \mathcal{F}C.inclusion-of-generators
    using FC.inclusion-is-functor by auto
  show strict-monoidal-extension C \mathcal{F}C.comp \mathcal{F}C.T_{FMC} \mathcal{F}C.\alpha \mathcal{F}C.\iota D T_D \alpha_D \iota_D
                                     \mathcal{F}C.inclusion-of-generators V map
    apply unfold-locales
    using map-def \mathcal{F}C.rep-mkarr eval-norm \mathcal{F}C.inclusion-of-generators-def by simp
qed
```

A special case of interest is a strict monoidal extension to $\mathcal{F}C$, of a functor V from a category C to a monoidal category D, along the inclusion of generators from C to $\mathcal{F}C$. The evaluation functor induced by V is such an extension.

```
locale strict-monoidal-extension-to-free-monoidal-category =
  C: category C +
  monoidal-language C +
  FC: free-monoidal-category C +
  strict-monoidal-extension C \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha\ \mathcal{F}C.\iota\ D\ T_D\ \alpha_D\ \iota_D
                                \mathcal{F}C.inclusion-of-generators VF
for C :: 'c \ comp
                              (infixr \langle \cdot_C \rangle 55)
and D :: 'd comp
                               (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
and V :: 'c \Rightarrow 'd
and F :: 'c free-monoidal-category.arr \Rightarrow 'd
begin
  lemma strictly-preserves-everything:
  shows C.arr f \Longrightarrow F (\mathcal{F} C.mkarr \langle f \rangle) = V f
  and F(\mathcal{F}C.mkarr\,\mathcal{I}) = \mathcal{I}_D
  and \llbracket Arr\ t; Arr\ u \rrbracket \Longrightarrow F\ (\mathcal{F}C.mkarr\ (t \otimes u)) = F\ (\mathcal{F}C.mkarr\ t) \otimes_D F\ (\mathcal{F}C.mkarr\ u)
```

```
and \llbracket Arr\ t; Arr\ u; Dom\ t = Cod\ u\ \rrbracket \Longrightarrow
         F\left(\mathcal{F}C.mkarr\left(t\cdot u\right)\right) = F\left(\mathcal{F}C.mkarr\ t\right)\cdot_{D}\ F\left(\mathcal{F}C.mkarr\ u\right)
and Arr \ t \Longrightarrow F \ (\mathcal{F}C.mkarr \ \mathbf{l}[t]) = D.\mathfrak{l} \ (F \ (\mathcal{F}C.mkarr \ t))
and Arr\ t \Longrightarrow F\ (\mathcal{F}C.mkarr\ \mathbf{l}^{-1}[t]) = D.\mathfrak{l}'.map\ (F\ (\mathcal{F}C.mkarr\ t))
and Arr\ t \Longrightarrow F\ (\mathcal{F}C.mkarr\ \mathbf{r}[t]) = D.\rho\ (F\ (\mathcal{F}C.mkarr\ t))
and Arr\ t \Longrightarrow F\ (\mathcal{F}C.mkarr\ \mathbf{r}^{-1}[t]) = D.\varrho'.map\ (F\ (\mathcal{F}C.mkarr\ t))
and \llbracket Arr \ t; Arr \ u; Arr \ v \rrbracket \Longrightarrow
         F\left(\mathcal{F}C.mkarr\;\mathbf{a}[t,\;u,\;v]\right) = \alpha_D\left(F\left(\mathcal{F}C.mkarr\;t\right),\;F\left(\mathcal{F}C.mkarr\;u\right),\;F\left(\mathcal{F}C.mkarr\;v\right)\right)
and \llbracket Arr \ t; Arr \ u; Arr \ v \rrbracket \Longrightarrow
         F\left(\mathcal{F}C.mkarr\ \mathbf{a}^{-1}[t,\ u,\ v]\right)
           = D.\alpha' (F (\mathcal{F}C.mkarr t), F (\mathcal{F}C.mkarr u), F (\mathcal{F}C.mkarr v))
proof
  show C.arr f \Longrightarrow F (\mathcal{F}C.mkarr \langle f \rangle) = V f
     using is-extension \mathcal{F}C.inclusion-of-generators-def by simp
  show F(\mathcal{F}C.mkarr \mathcal{I}) = \mathcal{I}_D
     using \mathcal{F}C.mkarr-Unity \mathcal{F}C.\iota-def strictly-preserves-unity \mathcal{F}C.\mathcal{I}-agreement by auto
  show tensor-case:
         \bigwedge t \ u. \llbracket \ Arr \ t; \ Arr \ u \ \rrbracket \Longrightarrow
                   F\left(\mathcal{F}C.mkarr\left(t\otimes u\right)\right) = F\left(\mathcal{F}C.mkarr\left(t\otimes u\right)\right)
  proof -
       \mathbf{fix} \ t \ u
       assume t: Arr t and u: Arr u
       have F(\mathcal{F}C.mkarr(t \otimes u)) = F(\mathcal{F}C.tensor(\mathcal{F}C.mkarr(t)))
          using t u \mathcal{F}C.tensor-mkarr \mathcal{F}C.arr-mkarr by simp
       also have ... = F(\mathcal{F}C.mkarr\ t) \otimes_D F(\mathcal{F}C.mkarr\ u)
          using t u \mathcal{F}C.arr-mkarr strictly-preserves-tensor by blast
       finally show F(\mathcal{F}C.mkarr(t \otimes u)) = F(\mathcal{F}C.mkarr(t) \otimes_D F(\mathcal{F}C.mkarr(u)))
          by fast
  qed
  show \llbracket Arr \ t; Arr \ u; Dom \ t = Cod \ u \ \rrbracket \Longrightarrow
             F\left(\mathcal{F}C.mkarr\left(t\cdot u\right)\right) = F\left(\mathcal{F}C.mkarr\left(t\right)\right) \cdot_{D} F\left(\mathcal{F}C.mkarr\left(t\right)\right)
  proof -
    \mathbf{fix} \ t \ u
    assume t: Arr t and u: Arr u and tu: Dom t = Cod u
    show F(\mathcal{F}C.mkarr(t \cdot u)) = F(\mathcal{F}C.mkarr(t)) \cdot_D F(\mathcal{F}C.mkarr(u))
       have F(\mathcal{F}C.mkarr(t \cdot u)) = F(\mathcal{F}C.mkarr(t \cdot \mathcal{F}C.mkarr(u)))
          using t u tu \mathcal{F}C.comp\text{-}mkarr by simp
       also have ... = F(\mathcal{F}C.mkarr\ t) \cdot_D F(\mathcal{F}C.mkarr\ u)
          using t u tu \mathcal{F}C.arr-mkarr by fastforce
       finally show ?thesis by blast
     qed
  qed
  show Arr t \Longrightarrow F(\mathcal{F}C.mkarr \mathbf{l}[t]) = D.\mathfrak{l}(F(\mathcal{F}C.mkarr t))
     using \mathcal{F}C.mkarr-Lunit Arr-implies-Ide-Dom \mathcal{F}C.ide-mkarr-Ide strictly-preserves-lunit
    by simp
  show Arr t \Longrightarrow F(\mathcal{F}C.mkarr \mathbf{r}[t]) = D.\rho(F(\mathcal{F}C.mkarr t))
     using \mathcal{F}C.mkarr-Runit Arr-implies-Ide-Dom \mathcal{F}C.ide-mkarr-Ide strictly-preserves-runit
     by simp
```

```
show \llbracket Arr \ t; Arr \ u; Arr \ v \rrbracket \Longrightarrow
         F (\mathcal{F}C.mkarr \mathbf{a}[t, u, v])
           = \alpha_D (F (\mathcal{F}C.mkarr t), F (\mathcal{F}C.mkarr u), F (\mathcal{F}C.mkarr v))
  using \mathcal{F}C.mkarr-Assoc strictly-preserves-assoc \mathcal{F}C.ide-mkarr-Ide tensor-case
show Arr t \Longrightarrow F(\mathcal{F}C.mkarr \mathbf{l}^{-1}[t]) = D.\mathfrak{l}'.map(F(\mathcal{F}C.mkarr t))
proof -
  assume t: Arr t
  have F\left(\mathcal{F}C.mkarr\ \mathbf{l}^{-1}[t]\right) = F\left(\mathcal{F}C.lunit'\left(\mathcal{F}C.mkarr\ (Cod\ t)\right)\right) \cdot_D F\left(\mathcal{F}C.mkarr\ t\right)
    using t \mathcal{F}C.mkarr-Lunit' Arr-implies-Ide-Cod \mathcal{F}C.ide-mkarr-Ide \mathcal{F}C.\mathfrak{l}'.map-simp
           \mathcal{F}C.comp\text{-}cod\text{-}arr
  also have ... = D.lunit' (D.cod (F (FC.mkarr t))) \cdot_D F (FC.mkarr t)
    using t Arr-implies-Ide-Cod \mathcal{F}C.ide-mkarr-Ide strictly-preserves-lunit
           preserves-inv
    by simp
  also have ... = D.l'.map (F (FC.mkarr t))
    using t \ D.l'.map-simp \ D.comp-cod-arr \ by \ simp
  finally show ?thesis by blast
qed
show Arr\ t \Longrightarrow F\ (\mathcal{F}C.mkarr\ \mathbf{r}^{-1}[t]) = D.\varrho'.map\ (F\ (\mathcal{F}C.mkarr\ t))
proof -
  assume t: Arr t
  have F(\mathcal{F}C.mkarr \mathbf{r}^{-1}[t]) = F(\mathcal{F}C.runit'(\mathcal{F}C.mkarr(Cod\ t))) \cdot_D F(\mathcal{F}C.mkarr\ t)
    using t \mathcal{F}C.mkarr-Runit' Arr-implies-Ide-Cod \mathcal{F}C.ide-mkarr-Ide \mathcal{F}C.\rho'.map-simp
           \mathcal{F}C.comp\text{-}cod\text{-}arr
  also have ... = D.runit' (D.cod (F (FC.mkarr t))) \cdot_D F (FC.mkarr t)
    using t Arr-implies-Ide-Cod \mathcal{F}C.ide-mkarr-Ide strictly-preserves-runit
           preserves-inv
    by simp
  also have ... = D.\varrho'.map (F(\mathcal{F}C.mkarr\ t))
    using t D.\varrho'.map-simp D.comp-cod-arr by simp
  finally show ?thesis by blast
qed
show \llbracket Arr \ t; Arr \ u; Arr \ v \rrbracket \Longrightarrow
         F\left(\mathcal{F}C.mkarr\ \mathbf{a}^{-1}[t,\ u,\ v]\right)
           = D.\alpha'.map (F (\mathcal{F}C.mkarr t), F (\mathcal{F}C.mkarr u), F (\mathcal{F}C.mkarr v))
proof -
  assume t: Arr t and u: Arr u and v: Arr v
 have F\left(\mathcal{F}C.mkarr\ \mathbf{a}^{-1}[t,\ u,\ v]\right) =
           F (\mathcal{F}C.assoc' (\mathcal{F}C.mkarr (Cod t)) (\mathcal{F}C.mkarr (Cod u)) (\mathcal{F}C.mkarr (Cod v))) \cdot_{D}
             (F(\mathcal{F}C.mkarr\ t)\otimes_D F(\mathcal{F}C.mkarr\ u)\otimes_D F(\mathcal{F}C.mkarr\ v))
    using t\ u\ v\ \mathcal{F}C.mkarr-Assoc'\ Arr-implies-Ide-Cod\ \mathcal{F}C.ide-mkarr-Ide\ \mathcal{F}C.\alpha'.map-simp
           tensor\text{-}case\ \mathcal{F}C.iso\text{-}assoc
    by simp
  also have ... = D.assoc' (D.cod (F (FC.mkarr t))) (D.cod (F (FC.mkarr u)))
                               (D.cod\ (F\ (\mathcal{F}C.mkarr\ v)))\cdot_D
                               (F (\mathcal{F}C.mkarr \ t) \otimes_D F (\mathcal{F}C.mkarr \ u) \otimes_D F (\mathcal{F}C.mkarr \ v))
```

```
using t u v \mathcal{F}C.ide-mkarr-Ide Arr-implies-Ide-Cod preserves-inv \mathcal{F}C.iso-assoc
                  strictly\mbox{-}preserves\mbox{-}assoc
                    [of \mathcal{F}C.mkarr (Cod t) \mathcal{F}C.mkarr (Cod u) \mathcal{F}C.mkarr (Cod v)]
            by simp
        also have ... = D.\alpha'.map (F (FC.mkarr t), F (FC.mkarr u), F (FC.mkarr v))
          using t \ u \ v \ D.\alpha'.map-simp by simp
        finally show ?thesis by blast
      qed
    qed
  end
 sublocale evaluation-functor \subseteq strict-monoidal-extension-to-free-monoidal-category
                                    C D T_D \alpha_D \iota_D V map
  context free-monoidal-category
  begin
    The evaluation functor induced by V is the unique strict monoidal extension of V to
\mathcal{F}C.
    theorem is-free:
    assumes strict-monoidal-extension-to-free-monoidal-category C D T_D \alpha_D \iota_D V F
    shows F = evaluation\text{-}functor.map C D T_D \alpha_D \iota_D V
    proof -
      \textbf{interpret} \ \ \textit{F: strict-monoidal-extension-to-free-monoidal-category} \ \ \textit{C} \ \ \textit{D} \ \ \textit{T}_{D} \ \ \alpha_{D} \ \ \iota_{D} \ \ \textit{V} \ \textit{F}
        using assms by auto
      interpret E: evaluation-functor C D T_D \alpha_D \iota_D V ...
      have Ide-case: \bigwedge a. Ide a \Longrightarrow F (mkarr a) = E.map (mkarr a)
      proof -
        \mathbf{fix} \ a
        show Ide\ a \Longrightarrow F\ (mkarr\ a) = E.map\ (mkarr\ a)
          \mathbf{using}\ E. strictly-preserves-everything\ F. strictly-preserves-everything\ Ide-implies-Arr
          by (induct a) auto
      qed
      show ?thesis
      proof
        \mathbf{fix} f
        have \neg arr f \Longrightarrow F f = E.map f
          using E.extensionality F.extensionality by simp
        moreover have arr f \Longrightarrow F f = E.map f
        proof -
          assume f: arr f
          \mathbf{have}\ \mathit{Arr}\ (\mathit{rep}\ f)\ \land f = \mathit{mkarr}\ (\mathit{rep}\ f)\ \mathbf{using}\ \mathit{f}\ \mathit{mkarr\text{-}rep}\ \mathbf{by}\ \mathit{simp}
          moreover have \bigwedge t. Arr t \Longrightarrow F(mkarr t) = E.map(mkarr t)
          proof -
            \mathbf{fix} \ t
            show Arr \ t \Longrightarrow F \ (mkarr \ t) = E.map \ (mkarr \ t)
              {f using}\ Ide-case\ E. strictly-preserves-everything\ F. strictly-preserves-everything
```

```
Arr\text{-}implies\text{-}Ide\text{-}Dom\ Arr\text{-}implies\text{-}Ide\text{-}Cod by (induct\ t)\ auto qed ultimately show F\ f=E.map\ f by metis qed ultimately show F\ f=E.map\ f by blast qed qed
```

4.3 Strict Subcategory

```
context free-monoidal-category
begin
```

In this section we show that $\mathcal{F}C$ is monoidally equivalent to its full subcategory \mathcal{F}_SC whose objects are the equivalence classes of diagonal identity terms, and that this subcategory is the free strict monoidal category generated by C.

```
interpretation \mathcal{F}_SC: full-subcategory comp \langle \lambda f. \ ide \ f \land Diag \ (DOM \ f) \rangle by (unfold-locales) auto
```

The mapping defined on equivalence classes by diagonalizing their representatives is a functor from the free monoidal category to the subcategory $\mathcal{F}_S C$.

```
definition D where D \equiv \lambda f. if arr f then mkarr \lfloor rep f \rfloor else \mathcal{F}_S C.null
```

The arrows of $\mathcal{F}_S C$ are those equivalence classes whose canonical representative term has diagonal formal domain and codomain.

```
lemma strict-arr-char: shows \mathcal{F}_SC.arr\ f \longleftrightarrow arr\ f \land Diag\ (DOM\ f) \land Diag\ (COD\ f) proof show arr\ f \land Diag\ (DOM\ f) \land Diag\ (COD\ f) \Longrightarrow \mathcal{F}_SC.arr\ f using \mathcal{F}_SC.arr-char_{SbC}\ DOM-dom\ DOM-cod\ by simp show \mathcal{F}_SC.arr\ f \Longrightarrow arr\ f \land Diag\ (DOM\ f) \land Diag\ (COD\ f) using \mathcal{F}_SC.arr-char_{SbC}\ Arr-rep\ Arr-implies-Ide-Cod\ Ide-implies-Arr\ DOM-dom\ DOM-cod\ by force qed
```

Alternatively, the arrows of \mathcal{F}_SC are those equivalence classes that are preserved by diagonalization of representatives.

```
lemma strict-arr-char': shows <math>\mathcal{F}_S C.arr f \longleftrightarrow arr f \land D f = f proof fix f assume f: \mathcal{F}_S C.arr f show <math>arr f \land D f = f proof
```

```
show arr f using f \mathcal{F}_S C.arr-char_{SbC} by blast
   show D f = f
     using f strict-arr-char mkarr-Diagonalize-rep D-def by simp
 qed
 next
 assume f: arr f \wedge D f = f
 show \mathcal{F}_S C.arr f
 proof -
   have arr f using f by simp
   moreover have Diag (DOM f)
   proof -
     have DOM f = DOM (mkarr | rep f|) using f D-def by auto
     also have \dots = Dom \| \lfloor rep f \rfloor \|
       using f Arr-rep Diagonalize-in-Hom rep-mkarr by simp
     also have \dots = Dom \mid rep \mid f \mid
       using f Arr-rep Diagonalize-in-Hom Par-Arr-norm [of | rep f|] by force
     finally have DOM f = Dom | rep f | by blast
     thus ?thesis using f Arr-rep Diag-Diagonalize Dom-preserves-Diag by metis
   moreover have Diag(COD f)
   proof -
     have COD f = COD (mkarr \lfloor rep f \rfloor) using f D-def by auto
     also have ... = Cod \parallel |rep f| \parallel
       using f Arr-rep Diagonalize-in-Hom rep-mkarr by simp
     also have \dots = Cod \lfloor rep f \rfloor
       using f Arr-rep Diagonalize-in-Hom Par-Arr-norm [of | rep f|] by force
     finally have COD f = Cod | rep f | by blast
     thus ?thesis using f Arr-rep Diag-Diagonalize Cod-preserves-Diag by metis
   qed
   ultimately show ?thesis using strict-arr-char by auto
 qed
qed
interpretation D: functor comp \mathcal{F}_S C.comp D
proof -
 have 1: \bigwedge f. arr f \Longrightarrow \mathcal{F}_S C.arr (D f)
   unfolding strict-arr-char D-def
   using arr-mkarr Diagonalize-in-Hom Arr-rep rep-mkarr Par-Arr-norm
         Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diag-Diagonalize
   by force
 show functor comp \mathcal{F}_S C.comp D
 proof
   show \bigwedge f. \neg arr f \Longrightarrow D f = \mathcal{F}_S C.null using D-def by simp
   show \bigwedge f. arr f \Longrightarrow \mathcal{F}_S C.arr (D f) by fact
   show \bigwedge f. arr f \Longrightarrow \mathcal{F}_S C.dom (D f) = D (dom f)
     using D-def Diagonalize-in-Hom \mathcal{F}_S C.dom-char<sub>SbC</sub> \mathcal{F}_S C.arr-char<sub>SbC</sub>
           rep-mkarr rep-dom Arr-implies-Ide-Dom Arr-implies-Ide-Cod
           Diagonalize-preserves-Ide ide-mkarr-Ide Diag-Diagonalize Dom-norm
     \mathbf{by} \ simp
```

```
show 2: \bigwedge f. arr f \Longrightarrow \mathcal{F}_S C.cod(D f) = D(cod f)
      using D-def Diagonalize-in-Hom \mathcal{F}_S C.cod-char<sub>SbC</sub> \mathcal{F}_S C.arr-char<sub>SbC</sub>
            rep	ext{-}mkarr \ rep	ext{-}cod \ Arr	ext{-}implies	ext{-}Ide	ext{-}Dom \ Arr	ext{-}implies	ext{-}Ide	ext{-}Cod
            Diagonalize-preserves-Ide ide-mkarr-Ide Diag-Diagonalize Dom-norm
      by simp
    \mathbf{fix} f g
    assume fg: seq g f
    hence fg': arr f \wedge arr g \wedge dom g = cod f by blast
   show D(g \cdot f) = \mathcal{F}_S C.comp(D g)(D f)
    proof -
      have seq: \mathcal{F}_S C.seq (mkarr \lfloor rep g \rfloor) (mkarr \lfloor rep f \rfloor)
      proof -
        have 3: \mathcal{F}_S C.arr (mkarr \lfloor rep \ g \rfloor) \wedge \mathcal{F}_S C.arr (mkarr \lfloor rep \ f \rfloor)
          using fg' 1 arr-char D-def by force
        moreover have \mathcal{F}_S C.dom \ (mkarr \mid rep \ g \mid) = \mathcal{F}_S C.cod \ (mkarr \mid rep \ f \mid)
          using fq' 2 3 \mathcal{F}_S C.dom\text{-}char_{SbC} rep-in-Hom mkarr-in-hom D-def
                Dom-Diagonalize-rep Diag-implies-Arr Diag-Diagonalize(1) \mathcal{F}_S C.arr-char<sub>SbC</sub>
          by force
        ultimately show ?thesis using \mathcal{F}_S C.seqI by auto
      have mkarr \mid rep (g \cdot f) \rfloor = \mathcal{F}_S C.comp (mkarr \lfloor rep g \rfloor) (mkarr \lfloor rep f \rfloor)
      proof -
        have Seq: Seq | rep g | | rep f |
          using fg rep-preserves-seq Diagonalize-in-Hom by force
        hence 4: |rep \ g| \cdot |rep \ f| \in Hom |DOM \ f| |COD \ g|
          using fg' Seq Diagonalize-in-Hom by auto
        have \mathcal{F}_S C.comp \ (mkarr \mid rep \ q \mid) \ (mkarr \mid rep \ f \mid) = mkarr \mid rep \ q \mid \cdot mkarr \mid rep \ f \mid
          using seq \mathcal{F}_S C.comp\text{-}char \mathcal{F}_S C.seq\text{-}char_{SbC} by meson
        also have ... = mkarr (|rep g| \cdot |rep f|)
          using Seq comp-mkarr by fastforce
        also have ... = mkarr \mid rep (g \cdot f) \mid
        proof (intro mkarr-eqI)
          show Par([rep g] \cdot [rep f]) [rep (g \cdot f)]
            using fg 4 rep-in-Hom rep-preserves-seq rep-in-Hom Diagonalize-in-Hom
                  Par-Arr-norm
            apply (elim\ seqE,\ auto)
            by (simp-all add: rep-comp)
          show ||rep g| \cdot |rep f|| = ||rep (g \cdot f)||
            using fq rep-preserves-seq norm-in-Hom Diag-Diagonalize Diagonalize-Diag
            apply auto
            by (simp add: rep-comp)
        finally show ?thesis by blast
      thus ?thesis using fg D-def by auto
    qed
  ged
qed
```

```
lemma diagonalize-is-functor:
   shows functor comp \mathcal{F}_S C.comp D..
   lemma diagonalize-strict-arr:
   assumes \mathcal{F}_S C.arr f
   shows D f = f
     using assms arr-char D-def strict-arr-char Arr-rep Arr-implies-Ide-Dom Ide-implies-Arr
          mkarr-Diagonalize-rep [of f]
     by auto
   lemma diagonalize-is-idempotent:
   shows D \circ D = D
     unfolding D-def
     using D. extensionality \mathcal{F}_SC null-char Arr-rep Diagonalize-in-Hom mkarr-Diagonalize-rep
          strict-arr-char rep-mkarr
     by fastforce
   lemma diagonalize-tensor:
   assumes arr f and arr g
   shows D(f \otimes g) = D(D f \otimes D g)
     unfolding D-def
     using assms strict-arr-char rep-in-Hom Diagonalize-in-Hom tensor-mkarr rep-tensor
          Diagonalize-in-Hom rep-mkarr Diagonalize-norm Diagonalize-Tensor
     by force
   lemma ide-diagonalize-can:
   assumes can f
   shows ide(D f)
     using assms D-def Can-rep-can Ide-Diagonalize-Can ide-mkarr-Ide can-implies-arr
    We next show that the diagonalization functor and the inclusion of the full sub-
category \mathcal{F}_S C underlie an equivalence of categories. The arrows mkarr (DOM a\downarrow),
determined by reductions of canonical representatives, are the components of a natural
isomorphism.
   interpretation S: full-inclusion-functor comp \langle \lambda f. ide f \wedge Diag (DOM f) \rangle ...
   interpretation DoS: composite-functor \mathcal{F}_S C.comp \ comp \ \mathcal{F}_S C.comp \ \mathcal{F}_S C.map \ D
   interpretation SoD: composite-functor comp \mathcal{F}_S C.comp comp D \mathcal{F}_S C.map ..
   interpretation \nu: transformation-by-components
                     comp\ comp\ map\ SoD.map\ \langle \lambda a.\ mkarr\ (DOM\ a\downarrow) \rangle
   proof
     \mathbf{fix} \ a
     assume a: ide a
     show \langle mkarr (DOM a \downarrow) : map a \rightarrow SoD.map a \rangle
     proof -
      have \langle mkarr (DOM a \downarrow) : a \rightarrow mkarr | DOM a | \rangle
        using a Arr-implies-Ide-Dom red-in-Hom dom-char [of a] by auto
```

```
moreover have map \ a = a
     using a map-simp by simp
   moreover have SoD.map \ a = mkarr \mid DOM \ a \mid
     using a D. preserves-ide \mathcal{F}_S C. ideD \mathcal{F}_S C. map-simp D-def Ide-Diagonalize-rep-ide
          Ide-in-Hom Diagonalize-in-Hom
     by force
   ultimately show ?thesis by simp
 qed
 next
 \mathbf{fix} f
 assume f: arr f
 show mkarr (DOM (cod f)\downarrow) \cdot map f = SoD.map f \cdot mkarr (DOM (dom f)\downarrow)
 proof
   have SoD.map \ f \cdot mkarr \ (DOM \ (dom \ f) \downarrow) = mkarr \ | rep \ f | \cdot mkarr \ (DOM \ f \downarrow)
     using f DOM-dom D.preserves-arr \mathcal{F}_S C.map-simp D-def by simp
   also have ... = mkarr (|rep f| \cdot DOM f\downarrow)
     using f Diagonalize-in-Hom red-in-Hom comp-mkarr Arr-implies-Ide-Dom
     by simp
   also have ... = mkarr (COD f \downarrow \cdot rep f)
   proof (intro\ mkarr-eqI)
     show Par(|rep f| \cdot DOM f\downarrow) (COD f\downarrow \cdot rep f)
       using f Diagonalize-in-Hom red-in-Hom Arr-implies-Ide-Dom Arr-implies-Ide-Cod
       by simp
     show ||rep f| \cdot DOM f \downarrow | = |COD f \downarrow \cdot rep f|
     proof -
       have ||rep f| \cdot DOM f \downarrow| = |rep f| |\cdot| |DOM f \downarrow|
         using f by simp
       also have \dots = |rep f|
         using f Arr-implies-Ide-Dom Can-red Ide-Diagonalize-Can [of DOM f↓]
              Diag-Diag-Diag-Diag-Ide
        by force
       also have ... = |COD f\downarrow| |\cdot| |rep f|
        using f Arr-implies-Ide-Cod Can-red Ide-Diagonalize-Can [of COD f \downarrow]
              Diag-Diag-Diag-Diag-Ide
        by force
       also have ... = |COD f \downarrow \cdot rep f|
        by simp
       finally show ?thesis by blast
     qed
   qed
   also have ... = mkarr (COD f\downarrow) \cdot mkarr (rep f)
     using f comp-mkarr rep-in-Hom red-in-Hom Arr-implies-Ide-Cod by blast
   also have ... = mkarr (DOM (cod f) \downarrow) \cdot map f
     using f DOM-cod by simp
   finally show ?thesis by blast
 qed
qed
```

interpretation ν : natural-isomorphism comp comp map $SoD.map \ \nu.map$

```
apply unfold-locales
             using \nu.map-simp-ide rep-in-Hom Arr-implies-Ide-Dom Can-red can-mkarr-Can iso-can
             by simp
          The restriction of the diagonalization functor to the subcategory \mathcal{F}_S C is the identity.
        lemma DoS-eq-\mathcal{F}_SC:
        shows DoS.map = \mathcal{F}_S C.map
        proof
             \mathbf{fix} f
             have \neg \mathcal{F}_S C.arr f \Longrightarrow DoS.map f = \mathcal{F}_S C.map f
                 using DoS.extensionality \mathcal{F}_S C.map\text{-}def by simp
             moreover have \mathcal{F}_S C.arr f \Longrightarrow DoS.map f = \mathcal{F}_S C.map f
                 \mathbf{using}~\mathcal{F}_S\,C. map\text{-}simp~strict\text{-}arr\text{-}char~Diagonalize\text{-}Diag~D\text{-}def~mkarr\text{-}Diagonalize\text{-}rep
             ultimately show DoS.map f = \mathcal{F}_S C.map f by blast
        qed
        interpretation \mu: transformation-by-components
                                                    \mathcal{F}_S C.comp \ \mathcal{F}_S C.comp \ DoS.map \ \mathcal{F}_S C.map \ \langle \lambda a. \ a \rangle
         \textbf{using } \mathcal{F}_S\textit{C.ideD } \mathcal{F}_S\textit{C.map-simp DoS-eq-}\mathcal{F}_S\textit{C} \mathcal{F}_S\textit{C.map-simp } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-arr-dom } \mathcal{F}_S\textit{C.ideD } \mathcal{F}_S\textit{C.map-simp DoS-eq-}\mathcal{F}_S\textit{C.map-simp } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-arr-dom } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-arr-dom } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-cod-arr } \mathcal{F}_S\textit{C.comp-cod-arr-dom } \mathcal{F}_S\textit{C.comp-cod-ar
             apply unfold-locales
            by (intro \mathcal{F}_S C.in-hom I) auto
        interpretation \mu: natural-isomorphism \mathcal{F}_S C.comp \ \mathcal{F}_S C.comp \ DoS.map \ \mathcal{F}_S C.map \ \mu.map
             apply unfold-locales using \mu.map-simp-ide \mathcal{F}_S C.ide-is-iso by simp
        interpretation equivalence-of-categories \mathcal{F}_S C.comp comp D \mathcal{F}_S C.map \nu.map \mu.map ..
          We defined the natural isomorphisms \mu and \nu by giving their components (i.e. their
values at objects). However, it is helpful in exporting these facts to have simple charac-
terizations of their values for all arrows.
        definition \mu
        where \mu \equiv \lambda f. if \mathcal{F}_S C.arr f then f else \mathcal{F}_S C.null
        definition \nu
        where \nu \equiv \lambda f. if arr f then mkarr (COD f\downarrow) · f else null
        lemma \mu-char:
        shows \mu.map = \mu
        proof (intro natural-transformation-eqI)
             show natural-transformation \mathcal{F}_S C.comp \mathcal{F}_S C.comp DoS.map \mathcal{F}_S C.map \mu.map ...
             have natural-transformation \mathcal{F}_S C.comp \ \mathcal{F}_S C.comp \ \mathcal{F}_S C.map \ \mathcal{F}_S C.map \ \mathcal{F}_S C.map
                 using DoS.as-nat-trans.natural-transformation-axioms\ DoS-eq-\mathcal{F}_S\ C by simp
             moreover have \mathcal{F}_S C.map = \mu unfolding \mu-def using \mathcal{F}_S C.map-def by blast
             ultimately show natural-transformation \mathcal{F}_S C.comp \ \mathcal{F}_S C.comp \ DoS.map \ \mathcal{F}_S C.map \ \mu
                 using \mathcal{F}_S C. as-nat-trans.natural-transformation-axioms DoS-eq-\mathcal{F}_S C by simp
             show \bigwedge a. \mathcal{F}_S C. ide a \Longrightarrow \mu. map a = \mu \ a
                 using \mu.map-simp-ide \mathcal{F}_S C.ideD \mu-def by simp
```

qed

```
lemma \nu-char:
   shows \nu.map = \nu
     unfolding \nu.map-def \nu-def using map-simp DOM-cod by fastforce
   lemma is-equivalent-to-strict-subcategory:
   shows equivalence-of-categories \mathcal{F}_S C.comp comp D \mathcal{F}_S C.map \nu \mu
   proof -
     have equivalence-of-categories \mathcal{F}_S C.comp comp D \mathcal{F}_S C.map \ \nu.map \ \mu.map ..
     thus equivalence-of-categories \mathcal{F}_S C.comp comp D \mathcal{F}_S C.map \nu \mu
       using \nu-char \mu-char by simp
    The inclusion of generators functor from C to \mathcal{F}C corestricts to a functor from C to
\mathcal{F}_S C.
   interpretation I: functor C comp inclusion-of-generators
     using inclusion-is-functor by auto
   interpretation DoI: composite-functor C comp \mathcal{F}_S C.comp inclusion-of-generators D..
   lemma DoI-eq-I:
   shows DoI.map = inclusion-of-generators
   proof
     \mathbf{fix} f
     have \neg C.arr f \Longrightarrow DoI.map f = inclusion-of-generators f
       using DoI.extensionality I.extensionality \mathcal{F}_S C.null-char by blast
     moreover have C.arr f \Longrightarrow DoI.map f = inclusion-of-generators f
     proof -
      assume f: C. arr f
      have DoI.map f = D (inclusion-of-generators f) using f by simp
      also have \dots = inclusion-of-generators f
      proof -
        have \mathcal{F}_S C.arr (inclusion-of-generators f)
          using f arr-mkarr rep-mkarr Par-Arr-norm [of \langle f \rangle] strict-arr-char
                inclusion-of-generators-def
          by simp
        thus ?thesis using f strict-arr-char' by blast
      finally show DoI.map f = inclusion-of-generators f by blast
     ultimately show DoI.map f = inclusion-of-generators f by blast
   qed
 end
    Next, we show that the subcategory \mathcal{F}_S C inherits monoidal structure from the am-
bient category \mathcal{F}C, and that this monoidal structure is strict.
 locale free-strict-monoidal-category =
   monoidal-language C +
```

 $\mathcal{F}C$: free-monoidal-category C +

```
full-subcategory \mathcal{F}C.comp\ \lambda f.\ \mathcal{F}C.ide\ f\ \wedge\ Diag\ (\mathcal{F}C.DOM\ f)
 for C :: 'c \ comp
begin
 interpretation D: functor \mathcal{F}C.comp\ comp\ \mathcal{F}C.D
   using FC. diagonalize-is-functor by auto
                                (infixr \langle \cdot_S \rangle 55)
 notation comp
                               (infixr \langle \otimes_S \rangle 53)
 definition tensor_S
 where f \otimes_S g \equiv \mathcal{F}C.D \ (\mathcal{F}C.tensor f g)
 definition assoc_S
                              (\langle \mathbf{a}_S[-, -, -] \rangle)
 where assoc_S \ a \ b \ c \equiv a \otimes_S b \otimes_S c
 lemma tensor-char:
 assumes arr f and arr g
 shows f \otimes_S g = \mathcal{F}C.mkarr([\mathcal{F}C.rep f] [\otimes] [\mathcal{F}C.rep g])
   unfolding \mathcal{F}C.D-def tensor<sub>S</sub>-def
   using assms arr-char<sub>SbC</sub> \mathcal{F}C.rep-tensor by simp
 lemma tensor-in-hom [simp]:
 assumes \langle f: a \rightarrow b \rangle and \langle g: c \rightarrow d \rangle
 shows \langle f \otimes_S g : a \otimes_S c \rightarrow b \otimes_S d \rangle
   unfolding tensor_S-def
   using assms D.preserves-hom arr-char_{SbC} in-hom-char_{SbC}
   by (metis (no-types, lifting) \mathcal{F}C. T-simp \mathcal{F}C. t-ensor-in-hom in-homE)
 lemma arr-tensor [simp]:
 assumes arr f and arr g
 shows arr (f \otimes_S g)
   using assms arr-iff-in-hom [of f] arr-iff-in-hom [of g] tensor-in-hom by blast
 lemma dom-tensor [simp]:
 assumes arr f and arr g
 shows dom (f \otimes_S g) = dom f \otimes_S dom g
   using assms arr-iff-in-hom [of f] arr-iff-in-hom [of g] tensor-in-hom by blast
 lemma cod-tensor [simp]:
 assumes arr f and arr g
 shows cod (f \otimes_S g) = cod f \otimes_S cod g
   using assms arr-iff-in-hom [of f] arr-iff-in-hom [of g] tensor-in-hom by blast
 lemma tensor-preserves-ide:
 assumes ide \ a and ide \ b
 shows ide (a \otimes_S b)
   using assms tensor<sub>S</sub>-def D.preserves-ide \mathcal{F}C.tensor-preserves-ide ide-char<sub>SbC</sub>
   by fastforce
```

```
lemma tensor-tensor:
assumes arr f and arr g and arr h
shows (f \otimes_S g) \otimes_S h = \mathcal{F}C.mkarr (|\mathcal{F}C.rep f| |\otimes| |\mathcal{F}C.rep g| |\otimes| |\mathcal{F}C.rep h|)
and f \otimes_S g \otimes_S h = \mathcal{F}C.mkarr (|\mathcal{F}C.rep f| |\otimes| |\mathcal{F}C.rep g| |\otimes| |\mathcal{F}C.rep h|)
proof -
  show (f \otimes_S g) \otimes_S h = \mathcal{F}C.mkarr (|\mathcal{F}C.rep f| |\otimes| |\mathcal{F}C.rep g| |\otimes| |\mathcal{F}C.rep h|)
  proof -
    have (f \otimes_S g) \otimes_S h = \mathcal{F}C.mkarr(|\mathcal{F}C.rep(f \otimes_S g)| |\otimes| |\mathcal{F}C.reph|)
      using assms Diag-Diagonalize TensorDiag-preserves-Diag Diag-implies-Arr
             \mathcal{F}C.COD-mkarr \mathcal{F}C.DOM-mkarr \mathcal{F}C.strict-arr-char tensor-char
      by simp
    also have
      ... = \mathcal{F}C.mkarr (|\mathcal{F}C.rep\ (\mathcal{F}C.mkarr\ (|\mathcal{F}C.rep\ f|\ |\otimes|\ |\mathcal{F}C.rep\ g|))|\ |\otimes|
                        |\mathcal{F}C.rep\ h|)
      using assms arr-char_{SbC} tensor-char by simp
    also have ... = \mathcal{F}C.mkarr (||\mathcal{F}C.rep f|| \otimes ||\mathcal{F}C.rep g|| \otimes ||\mathcal{F}C.rep h|)
      using assms FC.rep-mkarr TensorDiag-in-Hom Diag-Diagonalize
             Tensor Diag-preserves-Diag arr-char_{SbC}
      by force
    also have ... = \mathcal{F}C.mkarr (|\mathcal{F}C.rep\ f| |\otimes| |\mathcal{F}C.rep\ g| |\otimes| |\mathcal{F}C.rep\ h|)
    using assms Diag-Diagonalize Tensor Diag-preserves-Diag Tensor Diag-assoc arr-char_{SbC}
      by force
    finally show ?thesis by blast
  qed
  show f \otimes_S g \otimes_S h = \mathcal{F}C.mkarr (|\mathcal{F}C.rep f| |\otimes| |\mathcal{F}C.rep g| |\otimes| |\mathcal{F}C.rep h|)
  proof -
    have ... = \mathcal{F}C.mkarr (|\mathcal{F}C.rep\ f| |\otimes| ||\mathcal{F}C.rep\ g| |\otimes| |\mathcal{F}C.rep\ h|)
      using assms Diag-Diagonalize TensorDiag-preserves-Diag arr-char<sub>SbC</sub> by force
    also have ... = \mathcal{F}C.mkarr (|\mathcal{F}C.rep\ f| |\otimes|
                                 (|\mathcal{F}C.rep|(\mathcal{F}C.mkarr|(|\mathcal{F}C.rep|g||\otimes ||\mathcal{F}C.rep|h|))|))
     using assms \mathcal{F}C.rep-mkarr TensorDiag-in-Hom Diag-Diagonalize arr-char<sub>SbC</sub> by force
    also have ... = \mathcal{F}C.mkarr ([\mathcal{F}C.rep\ f] [\otimes] [\mathcal{F}C.rep\ (g\otimes_S\ h)])
       using assms tensor-char by simp
    also have \dots = f \otimes_S g \otimes_S h
      using assms Diag-Diagonalize TensorDiag-preserves-Diag Diag-implies-Arr
             \mathcal{F}C.COD-mkarr \mathcal{F}C.DOM-mkarr \mathcal{F}C.strict-arr-char tensor-char
      by simp
    finally show ?thesis by blast
  qed
qed
lemma tensor-assoc:
assumes arr f and arr g and arr h
shows (f \otimes_S g) \otimes_S h = f \otimes_S g \otimes_S h
  using assms tensor-tensor by presburger
lemma arr-unity:
shows arr \mathcal{I}
  using \mathcal{F}C.rep-unity \mathcal{F}C.Par-Arr-norm \mathcal{F}C.\mathcal{I}-agreement \mathcal{F}C.strict-arr-char by force
```

```
lemma tensor-unity-arr:
assumes arr f
shows \mathcal{I} \otimes_S f = f
  using assms arr-unity tensor-char FC.strict-arr-char FC.mkarr-Diagonalize-rep
  bv simp
lemma tensor-arr-unity:
assumes arr f
shows f \otimes_S \mathcal{I} = f
  using assms arr-unity tensor-char \mathcal{F}C.strict-arr-char \mathcal{F}C.mkarr-Diagonalize-rep
  by simp
lemma assoc-char:
assumes ide a and ide b and ide c
shows a_S[a, b, c] = \mathcal{F}C.mkarr(|\mathcal{F}C.rep \ a| \ |\otimes| \ |\mathcal{F}C.rep \ b| \ |\otimes| \ |\mathcal{F}C.rep \ c|)
  using assms tensor-tensor(2) assoc<sub>S</sub>-def ideD(1) by simp
lemma assoc-in-hom:
assumes ide a and ide b and ide c
shows \langle a_S[a, b, c] : (a \otimes_S b) \otimes_S c \rightarrow a \otimes_S b \otimes_S c \rangle
  using assms tensor-preserves-ide ideD tensor-assoc assoc<sub>S</sub>-def
  by (metis (no-types, lifting) ide-in-hom)
The category \mathcal{F}_S C is a monoidal category.
interpretation EMC: elementary-monoidal-category comp tensor<sub>S</sub> \mathcal{I} \langle \lambda a. \ a \rangle \langle \lambda a. \ a \rangle assoc<sub>S</sub>
proof
  show ide \mathcal{I}
  using ide\text{-}char_{SbC} arr\text{-}char_{SbC} \mathcal{F}C.rep\text{-}mkarr \mathcal{F}C.Dom\text{-}norm \mathcal{F}C.Cod\text{-}norm \mathcal{F}C.\mathcal{I}-agreement
    by auto
  show \bigwedge a. ide a \Longrightarrow iso a
    using ide\text{-}char_{SbC} arr\text{-}char_{SbC} iso\text{-}char_{SbC} by auto
  show \bigwedge f \ a \ b \ g \ c \ d. \llbracket \ in\text{-}hom \ a \ b \ f; \ in\text{-}hom \ c \ d \ g \ \rrbracket \Longrightarrow in\text{-}hom \ (a \otimes_S c) \ (b \otimes_S d) \ (f \otimes_S g)
    using tensor-in-hom by blast
  show \bigwedge a \ b. \llbracket \ ide \ a; \ ide \ b \ \rrbracket \Longrightarrow ide \ (a \otimes_S b)
     using tensor-preserves-ide by blast
  show \bigwedge a \ b \ c. \llbracket \ ide \ a; \ ide \ b; \ ide \ c \rrbracket \implies iso \ a_S[a, b, c]
     using tensor-preserves-ide ide-is-iso assoc<sub>S</sub>-def by presburger
  \mathbf{show} \  \, \bigwedge a\  \, b\  \, c.\  \, \llbracket \  \, ide\  \, a;\  \, ide\  \, b;\  \, ide\  \, c\rrbracket \Longrightarrow \, \left( \mathbf{a}_S\left[ a,\  \, b,\  \, c\right] : (a\otimes_Sb)\otimes_Sc \to a\otimes_Sb\otimes_Sc \right)
    using assoc-in-hom by blast
  show \bigwedge a \ b. \llbracket ide \ a; ide \ b \rrbracket \Longrightarrow (a \otimes_S b) \cdot_S a_S[a, \mathcal{I}, b] = a \otimes_S b
    using ide-def tensor-unity-arr assoc_S-def ideD(1) tensor-preserves-ide comp-ide-self
    by simp
  show \bigwedge f. arr f \Longrightarrow cod f \cdot_S (\mathcal{I} \otimes_S f) = f \cdot_S dom f
    using tensor-unity-arr comp-arr-dom comp-cod-arr by presburger
  show \bigwedge f. arr f \Longrightarrow cod f \cdot_S (f \otimes_S \mathcal{I}) = f \cdot_S dom f
    using tensor-arr-unity comp-arr-dom comp-cod-arr by presburger
  next
  \mathbf{fix} \ a
```

```
assume a: ide a
  \mathbf{show} \, \, \langle a : \mathcal{I} \otimes_S \, a \to a \rangle \,
    using a tensor-unity-arr ide-in-hom [of a] by fast
  show «a:a\otimes_S\mathcal{I}\to a»
    using a tensor-arr-unity ide-in-hom [of a] by fast
  next
  fix f g f' g'
  assume fq: seq q f
  assume fg': seq g' f'
  show (g \otimes_S g') \cdot_S (f \otimes_S f') = g \cdot_S f \otimes_S g' \cdot_S f'
  proof -
    have A: \mathcal{F}C.seq\ g\ f and B: \mathcal{F}C.seq\ g'\ f'
      using fg fg' seq\text{-}char_{SbC} by auto
    have (g \otimes_S g') \cdot_S (f \otimes_S f') = \mathcal{F}C.D ((g \otimes g') \cdot (f \otimes f'))
      using A B tensor_S-def by fastforce
    also have ... = \mathcal{F}C.D (q \cdot f \otimes q' \cdot f')
      using A B \mathcal{F}C.interchange \mathcal{F}C.T-simp \mathcal{F}C.seqE by metis
    also have ... = \mathcal{F}C.D (g \cdot f) \otimes_S \mathcal{F}C.D (g' \cdot f')
      using A B tensor<sub>S</sub>-def \mathcal{F}C.T-simp \mathcal{F}C.seqE \mathcal{F}C.diagonalize-tensor arr-char<sub>SbC</sub>
      by (metis (no-types, lifting) D.preserves-reflects-arr)
    also have ... = \mathcal{F}C.D \ g \cdot_S \mathcal{F}C.D \ f \otimes_S \mathcal{F}C.D \ g' \cdot_S \mathcal{F}C.D \ f'
      using A B by simp
    also have ... = g \cdot_S f \otimes_S g' \cdot_S f'
        using fg fg' \mathcal{F}C.diagonalize\text{-}strict\text{-}arr by (elim \ seqE, \ simp)
    finally show ?thesis by blast
  qed
  next
  fix f0 f1 f2
  assume f0: arr f0 and f1: arr f1 and f2: arr f2
  show a_S[cod f0, cod f1, cod f2] \cdot_S ((f0 \otimes_S f1) \otimes_S f2)
           = (f0 \otimes_S f1 \otimes_S f2) \cdot_S a_S[dom f0, dom f1, dom f2]
    using f0 f1 f2 assoc_S-def tensor-assoc dom-tensor cod-tensor arr-tensor
           comp\text{-}cod\text{-}arr \ [of f0 \otimes_S f1 \otimes_S f2 \ cod f0 \otimes_S \ cod f1 \otimes_S \ cod f2]
           comp-arr-dom [of f0 \otimes_S f1 \otimes_S f2 dom f0 \otimes_S dom f1 \otimes_S dom f2]
    by presburger
  next
  \mathbf{fix} \ a \ b \ c \ d
  assume a: ide a and b: ide b and c: ide c and d: ide d
  show (a \otimes_S a_S[b, c, d]) \cdot_S a_S[a, b \otimes_S c, d] \cdot_S (a_S[a, b, c] \otimes_S d)
            = a_S[a, b, c \otimes_S d] \cdot_S a_S[a \otimes_S b, c, d]
    unfolding assoc_S-def
    \mathbf{using}\ a\ b\ c\ d\ tensor\text{-}assoc\ tensor\text{-}preserves\text{-}ide\ ideD\ tensor\text{-}in\text{-}hom
           comp-arr-dom [of a \otimes_S b \otimes_S c \otimes_S d]
    by simp
qed
lemma is-elementary-monoidal-category:
shows elementary-monoidal-category comp tensor<sub>S</sub> \mathcal{I} (\lambda a. a) (\lambda a. a) assoc<sub>S</sub> ...
```

```
abbreviation T_{FSMC} where T_{FSMC} \equiv EMC.T
   abbreviation \alpha_{FSMC} where \alpha_{FSMC} \equiv EMC.\alpha
   abbreviation \iota_{FSMC} where \iota_{FSMC} \equiv EMC.\iota
   lemma is-monoidal-category:
   shows monoidal-category comp T_{FSMC} \alpha_{FSMC} \iota_{FSMC}
     using EMC.induces-monoidal-category by auto
 end
 sublocale free-strict-monoidal-category \subseteq
             elementary-monoidal-category comp tensor<sub>S</sub> \mathcal{I} \lambda a. a \lambda a. a assoc<sub>S</sub>
   using is-elementary-monoidal-category by auto
 sublocale free-strict-monoidal-category \subseteq monoidal-category comp T_{FSMC} \alpha_{FSMC} \iota_{FSMC}
   using is-monoidal-category by auto
 sublocale free-strict-monoidal-category \subseteq
             strict-monoidal-category comp T_{FSMC} \alpha_{FSMC} \iota_{FSMC}
   using tensor-preserves-ide lunit-agreement runit-agreement \alpha-ide-simp assoc<sub>S</sub>-def
   by unfold-locales auto
  context free-strict-monoidal-category
 begin
    The inclusion of generators functor from C to \mathcal{F}_S C is the composition of the inclusion
of generators from C to \mathcal{F}C and the diagonalization functor, which projects \mathcal{F}C to \mathcal{F}_SC.
As the diagonalization functor is the identity map on the image of C, the composite
functor amounts to the corestriction to \mathcal{F}_S C of the inclusion of generators of \mathcal{F} C.
   interpretation D: functor \mathcal{F}C.comp\ comp\ \mathcal{F}C.D
     using FC. diagonalize-is-functor by auto
   interpretation I: composite-functor C \mathcal{F}C.comp comp \mathcal{F}C.inclusion-of-generators \mathcal{F}C.D
   proof -
     interpret functor C \mathcal{F}C.comp \mathcal{F}C.inclusion-of-generators
       using FC.inclusion-is-functor by blast
     show composite-functor C \mathcal{F}C.comp comp \mathcal{F}C.inclusion-of-generators \mathcal{F}C.D ..
   qed
   definition inclusion-of-generators
   where inclusion-of-generators \equiv \mathcal{F}C.inclusion-of-generators
   lemma inclusion-is-functor:
   shows functor C comp inclusion-of-generators
     using \mathcal{F}C.DoI-eq-I I.functor-axioms inclusion-of-generators-def
     by auto
    The diagonalization functor is strict monoidal.
   interpretation D: strict-monoidal-functor \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha_{FMC}\ \mathcal{F}C.\iota_{FMC}
```

```
comp T_{FSMC} \alpha_{FSMC} \iota_{FSMC} \mathcal{F}C.D
```

```
proof
  show \mathcal{F}C.D \ \mathcal{F}C.\iota = \iota
  proof -
    have \mathcal{F}C.D \ \mathcal{F}C.\iota = \mathcal{F}C.mkarr \ | \mathcal{F}C.rep \ \mathcal{F}C.\iota |
       unfolding \mathcal{F}C.D-def using \mathcal{F}C.\iota-in-hom by auto
     also have ... = \mathcal{F}C.mkarr |\mathbf{1}[||\mathcal{I}||]|
       using \mathcal{F}C.\iota-def \mathcal{F}C.rep-unity \mathcal{F}C.rep-lunit \mathcal{F}C.Par-Arr-norm \mathcal{F}C.Diagonalize-norm
       by auto
     also have ... = \iota
       using \mathcal{F}C.unity_{FMC}-def \mathcal{F}C.\mathcal{I}-agreement \iota-def by simp
    finally show ?thesis by blast
  show \bigwedge f g. \llbracket \mathcal{F}C.arr f; \mathcal{F}C.arr g \rrbracket \Longrightarrow
                    \mathcal{F}C.D \ (\mathcal{F}C.tensor \ f \ g) = tensor \ (\mathcal{F}C.D \ f) \ (\mathcal{F}C.D \ g)
  proof -
    \mathbf{fix} f g
    assume f: \mathcal{F}C.arr f and g: \mathcal{F}C.arr g
    have fg: arr (\mathcal{F}C.D f) \wedge arr (\mathcal{F}C.D g)
       using f g D.preserves-arr by blast
     have \mathcal{F}C.D (\mathcal{F}C.tensor\ f\ g) = f \otimes_S g
        using tensor_S-def by simp
     also have f \otimes_S g = \mathcal{F}C.D \ (f \otimes g)
        using f g tensor_S-def by simp
     also have ... = \mathcal{F}C.D f \otimes_S \mathcal{F}C.D g
       using f g fg tensor_S-def \mathcal{F}C.T-simp \mathcal{F}C.diagonalize-tensor arr-char_{SbC}
       by (metis (no-types, lifting))
     also have ... = tensor (\mathcal{F}C.D f) (\mathcal{F}C.D g)
       using fg T-simp by simp
     finally show \mathcal{F}C.D (\mathcal{F}C.tensor\ f\ g) = tensor\ (\mathcal{F}C.D\ f) (\mathcal{F}C.D\ g)
       by blast
  qed
  show \bigwedge a \ b \ c. \ \llbracket \ \mathcal{F}C.ide \ a; \ \mathcal{F}C.ide \ b; \ \mathcal{F}C.ide \ c \ \rrbracket \Longrightarrow
                       \mathcal{F}C.D \ (\mathcal{F}C.assoc \ a \ b \ c) = assoc \ (\mathcal{F}C.D \ a) \ (\mathcal{F}C.D \ b) \ (\mathcal{F}C.D \ c)
  proof -
    \mathbf{fix}\ a\ b\ c
     assume a: \mathcal{F}C.ide\ a and b: \mathcal{F}C.ide\ b and c: \mathcal{F}C.ide\ c
     have abc: ide (\mathcal{F}C.D\ a) \wedge ide\ (\mathcal{F}C.D\ b) \wedge ide\ (\mathcal{F}C.D\ c)
        using a b c D.preserves-ide by blast
    have abc': \mathcal{F}C.ide\ (\mathcal{F}C.D\ a) \land \mathcal{F}C.ide\ (\mathcal{F}C.D\ b) \land \mathcal{F}C.ide\ (\mathcal{F}C.D\ c)
          using a b c D.preserves-ide ide-char<sub>SbC</sub> by simp
     have 1: \bigwedge f g. \mathcal{F}C. arr f \Longrightarrow \mathcal{F}C. arr g \Longrightarrow f \otimes_S g = \mathcal{F}C. D(f \otimes g)
       using tensor_S-def by simp
     have 2: \bigwedge f. ide\ f \Longrightarrow \mathcal{F}C.ide\ f using ide\text{-}char_{SbC} by blast
     have assoc (\mathcal{F}C.D\ a)\ (\mathcal{F}C.D\ b)\ (\mathcal{F}C.D\ c) = \mathcal{F}C.D\ a\otimes_S \mathcal{F}C.D\ b\otimes_S \mathcal{F}C.D\ c
        using abc \ \alpha-ide-simp assoc_S-def by simp
     also have ... = \mathcal{F}C.D \ a \otimes_S \mathcal{F}C.D \ (\mathcal{F}C.D \ b \otimes \mathcal{F}C.D \ c)
       using abc' 1 by auto
```

```
also have ... = \mathcal{F}C.D a \otimes_S \mathcal{F}C.D (b \otimes c)
          using b c \mathcal{F}C.diagonalize-tensor by force
        also have ... = \mathcal{F}C.D (\mathcal{F}C.D a \otimes \mathcal{F}C.D (b \otimes c))
          using 1 b c abc D.preserves-ide \mathcal{F}C.tensor-preserves-ide ide-char<sub>SbC</sub>
          by simp
        also have ... = \mathcal{F}C.D (a \otimes b \otimes c)
          using a b c \mathcal{F}C.diagonalize-tensor by force
        also have ... = \mathcal{F}C.D a[a, b, c]
        proof -
          have \mathcal{F}C.can \ a[a, b, c] using a \ b \ c \ \mathcal{F}C.can-assoc by simp
          hence \mathcal{F}C.ide\ (\mathcal{F}C.D\ a[a,\ b,\ c])
             using a b c \mathcal{F}C.ide-diagonalize-can by simp
          moreover have \mathcal{F}C.cod\ (\mathcal{F}C.D\ a[a,\ b,\ c]) = \mathcal{F}C.D\ (a\otimes b\otimes c)
             using a b c FC.assoc-in-hom D.preserves-hom
             by (metis (no-types, lifting) cod\text{-}char_{SbC} in-homE)
          ultimately show ?thesis by simp
        \mathbf{qed}
        also have ... = \mathcal{F}C.D (\mathcal{F}C.assoc\ a\ b\ c)
          using a b c by simp
        finally show \mathcal{F}C.D (\mathcal{F}C.assoc\ a\ b\ c) = assoc\ (\mathcal{F}C.D\ a) (\mathcal{F}C.D\ b) (\mathcal{F}C.D\ c)
          by blast
      \mathbf{qed}
    qed
    lemma diagonalize-is-strict-monoidal-functor:
    shows strict-monoidal-functor \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha_{FMC}\ \mathcal{F}C.\iota_{FMC}
                                      comp T_{FSMC} \alpha_{FSMC} \iota_{FSMC}
    interpretation \varphi: natural-isomorphism
                          \mathcal{F}C.CC.comp\ comp\ D.T_DoFF.map\ D.FoT_C.map\ D.\varphi
      using D.structure-naturalityisomorphism by simp
     The diagonalization functor is part of a monoidal equivalence between the free monoidal
category and the subcategory \mathcal{F}_S C.
    interpretation E: equivalence-of-categories comp \mathcal{F}C.comp\ \mathcal{F}C.D\ map\ \mathcal{F}C.\nu\ \mathcal{F}C.\mu
      using \mathcal{F}C.is-equivalent-to-strict-subcategory by auto
    interpretation D: monoidal-functor \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha_{FMC}\ \mathcal{F}C.\iota_{FMC}
                                          comp \ T_{FSMC} \ \alpha_{FSMC} \ \iota_{FSMC}
                                          \mathcal{F}C.D\ D.\varphi
      using D.monoidal-functor-axioms by metis
    interpretation equivalence-of-monoidal-categories comp T_{FSMC} \alpha_{FSMC} \iota_{FSMC}
                                                                \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha_{FMC}\ \mathcal{F}C.\iota_{FMC}
                                                                \mathcal{F}C.D\ D.\varphi\ \mathcal{I}
                                                                map \mathcal{F}C.\nu \mathcal{F}C.\mu
```

```
The category \mathcal{F}C is monoidally equivalent to its subcategory \mathcal{F}_SC.
```

```
 \begin{array}{c} \textbf{theorem} \ \textit{monoidally-equivalent-to-free-monoidal-category:} \\ \textbf{shows} \ \textit{equivalence-of-monoidal-categories} \ \textit{comp} \ \textit{T}_{FSMC} \ \alpha_{FSMC} \ \iota_{FSMC} \\ \mathcal{F}\textit{C.comp} \ \mathcal{F}\textit{C.T}_{FMC} \ \mathcal{F}\textit{C.}\alpha_{FMC} \ \mathcal{F}\textit{C.}\iota_{FMC} \\ \mathcal{F}\textit{C.D} \ \textit{D.}\varphi \\ map \ \mathcal{F}\textit{C.}\nu \ \mathcal{F}\textit{C.}\mu \end{array}
```

end

We next show that the evaluation functor induced on the free monoidal category generated by C by a functor V from C to a strict monoidal category D restricts to a strict monoidal functor on the subcategory $\mathcal{F}_S C$.

```
\mathbf{locale}\ strict\text{-}evaluation\text{-}functor =
  D: strict-monoidal-category D T_D \alpha_D \iota_D +
  evaluation-map C D T_D \alpha_D \iota_D V +
  FC: free-monoidal-category C +
  E: \ evaluation\text{-}functor \ C \ D \ T_D \ \alpha_D \ \iota_D \ V \ +
  \mathcal{F}_SC: free-strict-monoidal-category C
for C :: 'c \ comp
                             (infixr \langle \cdot_C \rangle 55)
and D :: 'd comp
                               (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
and \iota_D :: 'd
and V :: 'c \Rightarrow 'd
begin
  notation \mathcal{F}C.in-hom \quad (\langle \langle -: - \rightarrow - \rangle \rangle)
  notation \mathcal{F}_S C.in-hom \ (\langle \langle -: - \rightarrow_S - \rangle \rangle)
  definition map
  where map \equiv \lambda f. if \mathcal{F}_S C.arr f then E.map f else D.null
  interpretation functor \mathcal{F}_S C.comp \ D \ map
    unfolding map-def
    apply unfold-locales
        apply simp
    using \mathcal{F}_S C.arr-char_{SbC} E.preserves-arr
       apply simp
    using \mathcal{F}_S C.arr-char_{SbC} \mathcal{F}_S C.dom-char_{SbC} E.preserves-dom
      apply simp
    using \mathcal{F}_S C.arr-char_{SbC} \mathcal{F}_S C.cod-char_{SbC} E.preserves-cod
  using \mathcal{F}_S C. arr-char_{SbC} \mathcal{F}_S C. dom-char_{SbC} \mathcal{F}_S C. cod-char_{SbC} \mathcal{F}_S C. comp-char E. preserves-comp
    by (elim \mathcal{F}_S C.seqE, auto)
```

lemma is-functor:

shows functor $\mathcal{F}_S C.comp \ D \ map ...$

Every canonical arrow is an equivalence class of canonical terms. The evaluations in D of all such terms are identities, due to the strictness of D.

```
lemma ide-eval-Can:
shows Can \ t \Longrightarrow D.ide \ \{t\}
proof (induct t)
  show \bigwedge x. Can \langle x \rangle \Longrightarrow D.ide \{\langle x \rangle\} by simp
  show Can \mathcal{I} \Longrightarrow D.ide \{ \mathcal{I} \}  by simp
  \mathbf{show} \  \, \bigwedge t1 \ t2. \  \, \llbracket \  \, Can \ t1 \Longrightarrow D.ide \  \, \{\!\{t1\}\!\}; \  \, Can \ t2 \Longrightarrow D.ide \  \, \{\!\{t2\}\!\}; \  \, Can \ (t1 \otimes t2) \  \, \rrbracket \Longrightarrow \\
                     D.ide \{t1 \otimes t2\}
    by simp
  show \land t1 \ t2. \llbracket \ Can \ t1 \Longrightarrow D.ide \ \{ t1 \} ; \ Can \ t2 \Longrightarrow D.ide \ \{ t2 \} ; \ Can \ (t1 \cdot t2) \ \rrbracket \Longrightarrow
                     D.ide \{t1 \cdot t2\}
  proof -
    fix t1 t2
    assume t1: Can t1 \Longrightarrow D.ide \{t1\}
    and t2: Can t2 \Longrightarrow D.ide \{ t2 \}
    and t12: Can (t1 \cdot t2)
    show D.ide \{t1 \cdot t2\}
       using t1 t2 t12 Can-implies-Arr eval-in-hom [of t1] eval-in-hom [of t2] D.comp-ide-arr
       by fastforce
  qed
  show \bigwedge t. (Can \ t \Longrightarrow D.ide \ \{t\}) \Longrightarrow Can \ \mathbf{l}[t] \Longrightarrow D.ide \ \{\mathbf{l}[t]\}
    using D.strict-lunit by simp
  show \bigwedge t. (Can t \Longrightarrow D.ide \{\{t\}\}\}) \Longrightarrow Can l^{-1}[t] \Longrightarrow D.ide \{\{l^{-1}[t]\}\}
    using D.strict-lunit by simp
  show \bigwedge t. (Can t \Longrightarrow D.ide \{t\}) \Longrightarrow Can \mathbf{r}[t] \Longrightarrow D.ide \{\mathbf{r}[t]\}
    using D.strict-runit by simp
  show \bigwedge t. (Can t \Longrightarrow D.ide \{t\}) \Longrightarrow Can \mathbf{r}^{-1}[t] \Longrightarrow D.ide \{\mathbf{r}^{-1}[t]\}
     using D.strict-runit by simp
  fix t1 t2 t3
  assume t1: Can \ t1 \Longrightarrow D.ide \ \{t1\}
  and t2: Can \ t2 \Longrightarrow D.ide \ \{t2\}
  and t3: Can t3 \Longrightarrow D.ide \{t3\}
  show Can \mathbf{a}[t1, t2, t3] \Longrightarrow D.ide \{ \mathbf{a}[t1, t2, t3] \}
  proof -
    assume Can \mathbf{a}[t1, t2, t3]
    hence t123: D.ide \{ t1 \} \land D.ide \{ t2 \} \land D.ide \{ t3 \}
       using t1 t2 t3 by simp
    have \{a[t1, t2, t3]\} = \{t1\} \otimes_D \{t2\} \otimes_D \{t3\}
       using t123 D.strict-assoc D.assoc-in-hom [of \{t1\} \{t2\} \{t3\}] apply simp
       by (elim \ D.in-homE, \ simp)
    thus ?thesis using t123 by simp
  show Can \ \mathbf{a}^{-1}[t1, t2, t3] \Longrightarrow D.ide \ \{ \mathbf{a}^{-1}[t1, t2, t3] \}
  proof -
    assume Can a^{-1}[t1, t2, t3]
    hence t123: Can\ t1 \land Can\ t2 \land Can\ t3 \land D.ide\ \{t1\} \land D.ide\ \{t2\} \land D.ide\ \{t3\}
```

```
using t1 t2 t3 by simp
   have \{a^{-1}[t1, t2, t3]\}
            = D.inv \ a_D[D.cod \{t1\}, D.cod \{t2\}, D.cod \{t3\}] \cdot_D (\{t1\} \otimes_D \{t2\} \otimes_D \{t3\})
     using t123 eval-Assoc' [of t1 t2 t3] Can-implies-Arr by simp
   also have ... = \{t1\} \otimes_D \{t2\} \otimes_D \{t3\}
   proof -
     have D.dom \ \mathbf{a}_D[\{t1\}, \{t2\}, \{t3\}] = \{t1\} \otimes_D \{t2\} \otimes_D \{t3\}
     proof -
       have D.dom \ a_D[\{t1\}, \{t2\}, \{t3\}] = D.cod \ a_D[\{t1\}, \{t2\}, \{t3\}]
         using t123 D.strict-assoc by simp
       also have ... = \{t1\} \otimes_D \{t2\} \otimes_D \{t3\}
         using t123 by simp
       finally show ?thesis by blast
     qed
     thus ?thesis
       using t123 D.strict-assoc D.comp-arr-dom by auto
   finally have \{a^{-1}[t1, t2, t3]\} = \{t1\} \otimes_D \{t2\} \otimes_D \{t3\}  by blast
   thus ?thesis using t123 by auto
 qed
qed
lemma ide-eval-can:
assumes FC.can f
shows D.ide(E.map f)
proof -
 have f = \mathcal{F}C.mkarr (\mathcal{F}C.rep f)
   using assms \mathcal{F}C.can-implies-arr \mathcal{F}C.mkarr-rep by blast
 moreover have 1: Can (\mathcal{F}C.rep f)
   using assms FC.Can-rep-can by simp
 moreover have D.ide \{ \mathcal{F}C.rep f \}
   using assms ide-eval-Can by (simp add: 1)
 ultimately show ?thesis using assms FC.can-implies-arr E.map-def by force
```

Diagonalization transports formal arrows naturally along reductions, which are canonical terms and therefore evaluate to identities of D. It follows that the evaluation in D of a formal arrow is equal to the evaluation of its diagonalization.

```
lemma map-diagonalize: assumes f \colon \mathcal{F}C.arr\ f shows E.map\ (\mathcal{F}C.D\ f) = E.map\ f proof — interpret EQ: equivalence-of-categories \mathcal{F}_SC.comp\ \mathcal{F}C.D\ \mathcal{F}_SC.map\ \mathcal{F}C.\nu\ \mathcal{F}C.\mu using \mathcal{F}C.is-equivalent-to-strict-subcategory by auto have 1: \mathcal{F}C.seq\ (\mathcal{F}_SC.map\ (\mathcal{F}C.D\ f))\ (\mathcal{F}C.\nu\ (\mathcal{F}C.dom\ f)) proof show \mathscr{F}C.\nu\ (\mathcal{F}C.dom\ f): \mathcal{F}C.dom\ f \to \mathcal{F}C.D\ (\mathcal{F}C.dom\ f)» using f\ \mathcal{F}_SC.map-simp EQ.F.preserves-arr
```

```
by (intro \mathcal{F}C.in-homI, simp-all)
    show \mathscr{F}_SC.map\ (\mathcal{F}C.D\ f): \mathcal{F}C.D\ (\mathcal{F}C.dom\ f) \to \mathcal{F}C.cod\ (\mathcal{F}C.D\ f)
      by (metis (no-types, lifting) EQ.F.preserves-dom EQ.F.preserves-reflects-arr
          \mathcal{F}_S C.arr-iff-in-hom \mathcal{F}_S C.cod-simp \mathcal{F}_S C.in-hom-char<sub>SbC</sub> \mathcal{F}_S C.map-simp f)
  ged
  have E.map (\mathcal{F}C.\nu (\mathcal{F}C.cod f)) \cdot_D E.map f =
        E.map (\mathcal{F}C.D f) \cdot_D E.map (\mathcal{F}C.\nu (\mathcal{F}C.dom f))
    have E.map (\mathcal{F}C.\nu (\mathcal{F}C.cod f)) \cdot_D E.map f = E.map (\mathcal{F}C.\nu (\mathcal{F}C.cod f) \cdot f)
      using f by simp
    also have ... = E.map (\mathcal{F}C.D f \cdot \mathcal{F}C.\nu (\mathcal{F}C.dom f))
      using f EQ.\eta.naturality \mathcal{F}_S C.map-simp EQ.F.preserves-arr by simp
    also have ... = E.map (\mathcal{F}_S C.map (\mathcal{F} C.D f)) \cdot_D E.map (\mathcal{F} C.\nu (\mathcal{F} C.dom f))
      using f 1 E.as-nat-trans.preserves-comp-2 EQ.F.preserves-arr \mathcal{F}_S C.map-simp
      by (metis (no-types, lifting))
    also have ... = E.map (\mathcal{F}C.D f) \cdot_D E.map (\mathcal{F}C.\nu (\mathcal{F}C.dom f))
      using f EQ.F.preserves-arr \mathcal{F}_S C.map-simp by simp
    finally show ?thesis by blast
  moreover have \bigwedge a. \mathcal{F}C.ide\ a \Longrightarrow D.ide\ (E.map\ (\mathcal{F}C.\nu\ a))
    using \mathcal{F}C.\nu-def \mathcal{F}C.Arr-rep Arr-implies-Ide-Cod Can-red \mathcal{F}C.can-mkarr-Can
          ide-eval-can
    by (metis (no-types, lifting) EQ.\eta.preserves-reflects-arr\ \mathcal{F}C.seqE
        \mathcal{F}C.comp-preserves-can \mathcal{F}C.ideD(1) \mathcal{F}C.ide-implies-can)
  moreover have D.cod (E.map f) = D.dom (E.map (\mathcal{F}C.\nu (\mathcal{F}C.cod f)))
    using f E.preserves-hom EQ.\eta.preserves-hom by simp
  moreover have D.dom (E.map (\mathcal{F}C.D f)) = D.cod (E.map (\mathcal{F}C.\nu (\mathcal{F}C.dom f)))
      using f 1 E.preserves-seq EQ.F.preserves-arr \mathcal{F}_SC.map-simp by auto
  {\bf ultimately \ show} \ ? the sis
    using f D.comp-arr-dom D.ideD D.arr-dom-iff-arr E.as-nat-trans.naturality2
    by (metis E.preserves-cod \mathcal{F}C.ide-cod \mathcal{F}C.ide-dom)
qed
{\bf lemma}\ strictly\text{-}preserves\text{-}tensor:
assumes \mathcal{F}_S C.arr f and \mathcal{F}_S C.arr g
shows map (\mathcal{F}_S C.tensor f g) = map f \otimes_D map g
proof -
  have 1: \mathcal{F}C.arr\ (f\otimes q)
    using assms \mathcal{F}_S C.arr-char_{SbC} \mathcal{F} C.tensor-in-hom by auto
  have 2: \mathcal{F}_S C.arr (\mathcal{F}_S C.tensor f g)
    using assms \mathcal{F}_S C.tensor-in-hom [of f g] \mathcal{F}_S C.T-simp by fastforce
  have map (\mathcal{F}_S C.tensor f g) = E.map (f \otimes g)
  proof -
    have map (\mathcal{F}_S C.tensor f g) = map (f \otimes_S g)
      using assms \mathcal{F}_S C.T-simp by simp
    also have ... = map (\mathcal{F}C.D (f \otimes g))
      using assms \mathcal{F}C.tensor_{FMC}-def \mathcal{F}_SC.tensor_S-def \mathcal{F}_SC.arr-char<sub>SbC</sub> by force
    also have \dots = E.map (f \otimes g)
    proof -
```

```
interpret Diag: functor \mathcal{F}C.comp\ \mathcal{F}_SC.comp\ \mathcal{F}C.D
           using FC.diagonalize-is-functor by auto
        show ?thesis
           using assms 1 map-diagonalize [of f \otimes g] Diag.preserves-arr map-def by simp
      finally show ?thesis by blast
    qed
    thus ?thesis
      using assms \mathcal{F}_S C.arr-char_{SbC} E.strictly-preserves-tensor map-def by simp
  qed
  lemma is-strict-monoidal-functor:
  shows strict-monoidal-functor \mathcal{F}_S C.comp \ \mathcal{F}_S C.T_{FSMC} \ \mathcal{F}_S C.\alpha \ \mathcal{F}_S C.\iota \ D \ T_D \ \alpha_D \ \iota_D \ map
  proof
    show \bigwedge f g. \mathcal{F}_S C.arr f \Longrightarrow \mathcal{F}_S C.arr g \Longrightarrow map (\mathcal{F}_S C.tensor f g) = map f \otimes_D map g
      using strictly-preserves-tensor by fast
    show map \mathcal{F}_S C.\iota = \iota_D
   using \mathcal{F}_S C. arr-unity \mathcal{F}_S C. \iota-def map-def E. map-def \mathcal{F} C. rep-mkarr E. eval-norm D. strict-unit
      by auto
    \mathbf{fix} \ a \ b \ c
    assume a: \mathcal{F}_SC.ide a and b: \mathcal{F}_SC.ide b and c: \mathcal{F}_SC.ide c
    show map (\mathcal{F}_S C.assoc\ a\ b\ c) = a_D[map\ a,\ map\ b,\ map\ c]
      have map \ (\mathcal{F}_S C.assoc \ a \ b \ c) = map \ a \otimes_D map \ b \otimes_D map \ c
        using a b c \mathcal{F}_S C.\alpha-def \mathcal{F}_S C.assoc_S-def \mathcal{F}_S C.arr-tensor \mathcal{F}_S C.T-simp \mathcal{F}_S C.ideD(1)
               strictly-preserves-tensor \mathcal{F}_S C.\alpha-ide-simp
        by presburger
      also have ... = a_D[map \ a, map \ b, map \ c]
        using a b c D.strict-assoc D.assoc-in-hom [of map a map b map c] by auto
      finally show ?thesis by blast
    qed
  qed
end
sublocale strict-evaluation-functor \subseteq
             strict-monoidal-functor \mathcal{F}_SC.comp\ \mathcal{F}_SC.T_{FSMC}\ \mathcal{F}_SC.lpha\ \mathcal{F}_SC.\iota\ D\ T_D\ lpha_D\ \iota_D map
  using is-strict-monoidal-functor by auto
locale strict-monoidal-extension-to-free-strict-monoidal-category =
  C: category C +
  monoidal-language C +
  \mathcal{F}_SC: free-strict-monoidal-category C +
  strict-monoidal-extension C \mathcal{F}_S C.comp \mathcal{F}_S C.T_{FSMC} \mathcal{F}_S C.\alpha \mathcal{F}_S C.\iota D T_D \alpha_D \iota_D
                                \mathcal{F}_S C.inclusion-of-generators V F
for C :: 'c \ comp
                            (infixr \langle \cdot_C \rangle 55)
and D :: 'd comp
                             (infixr \langle \cdot_D \rangle 55)
and T_D :: 'd * 'd \Rightarrow 'd
and \alpha_D :: 'd * 'd * 'd \Rightarrow 'd
```

```
and \iota_D :: 'd
  and V :: 'c \Rightarrow 'd
  and F :: 'c free-monoidal-category.arr \Rightarrow 'd
  sublocale strict-evaluation-functor \subseteq
             strict-monoidal-extension C \mathcal{F}_S C.comp \mathcal{F}_S C.T_{FSMC} \mathcal{F}_S C.\alpha \mathcal{F}_S C.\iota D T_D \alpha_D \iota D
                                        \mathcal{F}_S C.inclusion-of-generators V map
  proof -
   interpret V: functor C \mathcal{F}_S C.comp \mathcal{F}_S C.inclusion-of-generators
     using \mathcal{F}_S C.inclusion-is-functor by auto
   show strict-monoidal-extension C \mathcal{F}_S C.comp \mathcal{F}_S C.T_{FSMC} \mathcal{F}_S C.\alpha \mathcal{F}_S C.\iota D T_D \alpha_D \iota_D
                                   \mathcal{F}_S C.inclusion-of-generators V map
   proof
     show \forall f. \ C.arr \ f \longrightarrow map \ (\mathcal{F}_S \ C.inclusion \text{-of-generators} \ f) = V f
       using V. preserves-arr E. is-extension map-def \mathcal{F}_S C. inclusion-of-generators-def by simp
   qed
  qed
  context free-strict-monoidal-category
  begin
    We now have the main result of this section: the evaluation functor on \mathcal{F}_S C induced
by a functor V from C to a strict monoidal category D is the unique strict monoidal
extension of V to \mathcal{F}_S C.
   theorem is-free:
   assumes strict-monoidal-category D T_D \alpha_D \iota_D
   and strict-monoidal-extension-to-free-strict-monoidal-category C D T_D \alpha_D \iota_D V F
   shows F = strict-evaluation-functor.map C D T_D \alpha_D \iota_D V
   proof -
     interpret D: strict-monoidal-category D T_D \alpha_D \iota_D
       using assms(1) by auto
    Let F be a given extension of V to a strict monoidal functor defined on \mathcal{F}_S C.
     interpret F: strict-monoidal-extension-to-free-strict-monoidal-category
                    C D T_D \alpha_D \iota_D V F
       using assms(2) by auto
    Let E_S be the evaluation functor from \mathcal{F}_S C to D induced by V. Then E_S is also a
strict monoidal extension of V.
     interpret E_S: strict-evaluation-functor C D T_D \alpha_D \iota_D V ...
    Let D be the strict monoidal functor \mathcal{F}C.D that projects \mathcal{F}C to the subcategory
\mathcal{F}_S C.
     interpret D: functor \mathcal{F}C.comp comp \mathcal{F}C.D
       using FC. diagonalize-is-functor by auto
     interpret D: strict-monoidal-functor \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.\alpha\ \mathcal{F}C.\iota
                                         comp T_{FSMC} \alpha \iota
                                         \mathcal{F}C.D
       using diagonalize-is-strict-monoidal-functor by blast
```

The composite functor $F \circ D$ is also an extension of V to a strict monoidal functor on $\mathcal{F}C$.

```
interpret FoD: composite-functor \mathcal{F}C.comp comp D \mathcal{F}C.D F ..
      {\bf interpret}\ \textit{FoD: strict-monoidal-functor}
                       \mathcal{F}C.comp\ \mathcal{F}C.T_{FMC}\ \mathcal{F}C.lpha\ \mathcal{F}C.\iota\ D\ T_D\ lpha_D\ \iota_D\ \langle F\ o\ \mathcal{F}C.D
angle
        {\bf using} \ D. strict{-}monoidal{-}functor{-}axioms \ F. strict{-}monoidal{-}functor{-}axioms
              strict	ext{-}monoidal	ext{-}functors	ext{-}compose
       by fast
      interpret FoD: strict-monoidal-extension-to-free-monoidal-category
                       C D T_D \alpha_D \iota_D V FoD.map
      proof
       show \forall f. \ C.arr \ f \longrightarrow FoD.map \ (\mathcal{F}C.inclusion\text{-}of\text{-}generators \ f) = V \ f
          have \bigwedge f. C.arr f \Longrightarrow FoD.map (\mathcal{F}C.inclusion-of-generators f) = V f
          proof -
           \mathbf{fix} f
            assume f: C.arr <math>f
            have FoD.map (\mathcal{F}C.inclusion\text{-}of\text{-}generators f)
                    = F \left( \mathcal{F}C.D \left( \mathcal{F}C.inclusion\text{-}of\text{-}generators f \right) \right)
              using f by simp
            also have \dots = F (inclusion-of-generators f)
              using f \mathcal{F}C.strict-arr-char' F.I.preserves-arr inclusion-of-generators-def by simp
            also have \dots = V f
              using f F. is-extension by simp
            finally show FoD.map (\mathcal{F}C.inclusion\text{-}of\text{-}generators f) = V f
              by blast
          qed
          thus ?thesis by blast
        ged
      qed
    By the freeness of \mathcal{F}C, we have that F \circ D is equal to the evaluation functor
E_S.E.map induced by V on \mathcal{F}C. Moreover, E_S.map coincides with E_S.E.map on \mathcal{F}_SC
and F o D coincides with F on \mathcal{F}_SC. Therefore, F coincides with E on their common
domain \mathcal{F}_S C, showing F = E_S.map.
      have \bigwedge f. arr f \Longrightarrow F f = E_S.map f
        using \mathcal{F}C.strict-arr-char' \mathcal{F}C.is-free [of D] E_S.E.evaluation-functor-axioms
              FoD.strict-monoidal-extension-to-free-monoidal-category-axioms E_S.map-def
       by simp
      moreover have \bigwedge f. \neg arr f \Longrightarrow F f = E_S.map f
        using F. extensionality E_S. extensionality arr-char_{SbC} by auto
      ultimately show F = E_S.map by blast
    qed
  end
end
```

Chapter 5

Cartesian Monoidal Category

```
{\bf theory} \ Cartesian Monoidal Category \\ {\bf imports} \ Monoidal Category \ Category 3. Cartesian Category \\ {\bf begin} \\
```

5.1 Symmetric Monoidal Category

```
locale symmetric-monoidal-category =
  monoidal-category C T \alpha \iota +
  S: symmetry-functor \ C \ C \ +
  ToS: composite-functor \ CC.comp \ CC.comp \ C \ S.map \ T \ +
  \sigma: natural-isomorphism CC.comp C T ToS.map \sigma
for C :: 'a \ comp
                                                        (infixr \leftrightarrow 55)
and T :: 'a * 'a \Rightarrow 'a
and \alpha :: 'a * 'a * 'a \Rightarrow 'a
and \iota :: 'a
and \sigma :: 'a * 'a \Rightarrow 'a +
assumes sym-inverse: \llbracket ide\ a;\ ide\ b\ \rrbracket \Longrightarrow inverse-arrows\ (\sigma\ (a,\ b))\ (\sigma\ (b,\ a))
and unitor-coherence: ide a \Longrightarrow l[a] \cdot \sigma(a, \mathcal{I}) = r[a]
and assoc-coherence: \llbracket ide\ a; ide\ b; ide\ c\ \rrbracket \Longrightarrow
                           \alpha (b, c, a) \cdot \sigma (a, b \otimes c) \cdot \alpha (a, b, c)
                               = (b \otimes \sigma (a, c)) \cdot \alpha (b, a, c) \cdot (\sigma (a, b) \otimes c)
begin
                                                  (\langle s[-, -] \rangle)
  abbreviation sym
  where sym\ a\ b \equiv \sigma\ (a,\ b)
end
locale\ elementary-symmetric-monoidal-category =
  elementary-monoidal-category C tensor unity lunit runit assoc
for C :: 'a \ comp
                                            (infixr \leftrightarrow 55)
and tensor :: 'a \Rightarrow 'a \Rightarrow 'a
                                               (infixr \langle \otimes \rangle 53)
and unity :: 'a
                                              (\langle \mathcal{I} \rangle)
and lunit :: 'a \Rightarrow 'a
                                             (\langle l[-] \rangle)
```

```
and runit :: 'a \Rightarrow 'a
                                        (\langle \mathbf{r}[-] \rangle)
and assoc :: 'a \Rightarrow 'a \Rightarrow 'a \quad (\langle a[-, -, -] \rangle)
and sym :: 'a \Rightarrow 'a \Rightarrow 'a
                                         (\langle s[-, -] \rangle) +
assumes sym-in-hom: \llbracket ide\ a;\ ide\ b\ \rrbracket \Longrightarrow \langle s[a,\ b]:a\otimes b\to b\otimes a\rangle
and sym-naturality: \llbracket arr f; arr g \rrbracket \implies s[cod f, cod g] \cdot (f \otimes g) = (g \otimes f) \cdot s[dom f, dom g]
and sym-inverse: \llbracket ide\ a;\ ide\ b\ \rrbracket \implies inverse-arrows\ s[a,\ b]\ s[b,\ a]
and unitor-coherence: ide a \Longrightarrow l[a] \cdot s[a, \mathcal{I}] = r[a]
and assoc-coherence: \llbracket ide \ a; ide \ b; ide \ c \rrbracket \Longrightarrow
                        a[b, c, a] \cdot s[a, b \otimes c] \cdot a[a, b, c]
                            = (b \otimes s[a, c]) \cdot a[b, a, c] \cdot (s[a, b] \otimes c)
begin
 lemma sym-simps [simp]:
 assumes ide \ a and ide \ b
 shows arr s[a, b]
 and dom \ s[a, b] = a \otimes b
 and cod \ s[a, b] = b \otimes a
   using assms sym-in-hom by auto
 interpretation CC: product-category C C ..
 sublocale MC: monoidal-category C T \alpha \iota
    using induces-monoidal-category by simp
 interpretation S: symmetry-functor C C ...
 interpretation ToS: composite-functor CC.comp CC.comp C S.map T ..
 definition \sigma :: 'a * 'a \Rightarrow 'a
 where \sigma f \equiv if \ CC.arr \ f \ then \ s[cod \ (fst \ f), \ cod \ (snd \ f)] \cdot (fst \ f \otimes snd \ f) \ else \ null
 interpretation \sigma: natural-isomorphism CC.comp C T ToS.map \sigma
 proof -
   interpret \sigma: transformation-by-components CC.comp C T ToS.map \lambda a. s[fst a, snd a]
      using sym-in-hom sym-naturality
      by unfold-locales auto
    interpret \sigma: natural-isomorphism CC.comp\ C\ T\ ToS.map\ \sigma.map
      using sym-inverse \sigma.map-simp-ide
     by unfold-locales auto
    have \sigma = \sigma.map
      using \sigma-def \sigma.map-def sym-naturality by fastforce
    thus natural-isomorphism CC.comp \ C \ T \ ToS.map \ \sigma
      using \sigma.natural-isomorphism-axioms by presburger
 qed
 interpretation symmetric-monoidal-category C T \alpha \iota \sigma
    show \bigwedge a b. \llbracket ide a; ide b \rrbracket \Longrightarrow inverse\text{-arrows} (\sigma(a, b)) (\sigma(b, a))
      using sym-inverse comp-arr-dom \sigma-def by auto
    show \bigwedge a. ide a \Longrightarrow MC.lunit\ a \cdot \sigma\ (a,\ MC.unity) = MC.runit\ a
      using lunit-agreement I-agreement sym-in-hom comp-arr-dom
```

```
unitor-coherence runit-agreement \sigma-def
      by simp
   show \bigwedge a \ b \ c. \llbracket \ ide \ a; \ ide \ b; \ ide \ c \ \rrbracket \Longrightarrow
                  MC.assoc\ b\ c\ a\cdot\sigma\ (a,\ MC.tensor\ b\ c)\cdot MC.assoc\ a\ b\ c=
                  MC.tensor\ b\ (\sigma\ (a,\ c))\cdot MC.assoc\ b\ a\ c\cdot MC.tensor\ (\sigma\ (a,\ b))\ c
     using sym-in-hom tensor-preserves-ide \sigma-def assoc-coherence
           comp-arr-dom\ comp-cod-arr
     by simp
 \mathbf{qed}
 lemma induces-symmetric-monoidal-category_{CMC}:
 shows symmetric-monoidal-category C T \alpha \iota \sigma
end
context symmetric-monoidal-category
begin
 interpretation EMC: elementary-monoidal-category C tensor unity lunit runit assoc
   using induces-elementary-monoidal-category by auto
 lemma induces-elementary-symmetric-monoidal-category_{CMC}:
 shows elementary-symmetric-monoidal-category
          C tensor unity lunit runit assoc (\lambda a \ b. \ \sigma \ (a, \ b))
   using \sigma.naturality unitor-coherence assoc-coherence sym-inverse
   by unfold-locales auto
end
locale dual-symmetric-monoidal-category =
 M: symmetric-monoidal-category
begin
 sublocale dual-monoidal-category C T \alpha \iota ..
 interpretation S: symmetry-functor comp comp ...
 interpretation ToS: composite-functor MM.comp MM.comp comp S.map T..
 sublocale \sigma': inverse-transformation M.CC.comp C T M.ToS.map \sigma..
 interpretation \sigma: natural-transformation MM.comp comp T ToS.map \sigma'.map
   using \sigma'.extensionality \sigma'.naturality1 \sigma'.naturality2
   by unfold-locales auto
 \textbf{interpretation} \ \sigma : \ natural \textit{-isomorphism} \ MM.comp \ comp \ T \ ToS.map \ \sigma'.map
   by unfold-locales auto
 sublocale symmetric-monoidal-category comp T M.\alpha' \langle M.inv \iota \rangle \sigma'.map
 proof
   show \land a b. \llbracket ide\ a;\ ide\ b \rrbracket \implies inverse\text{-arrows}\ (\sigma'.map\ (a,\ b))\ (\sigma'.map\ (b,\ a))
     apply auto
     by (metis M.inverse-arrowsE M.inverse-unique M.isoI M.sym-inverse ide-char
```

```
iso-char\ comp-def\ section-retraction-of-iso(1))
    show \bigwedge a. ide a \Longrightarrow lunit\ a \cdot {}^{op}\ \sigma'.map\ (a,\ unity) = runit\ a
     \mathbf{using}\ M.unitor\text{-}coherence\ M.unit\text{-}in\text{-}hom\ M.unit\text{-}is\text{-}iso\ lunit\text{-}char\ runit\text{-}char
     apply auto
     by (metis M.inv-comp-left(1) M.iso-lunit M.iso-runit)
    show \bigwedge a \ b \ c.
            \llbracket ide \ a; \ ide \ b; \ ide \ c \rrbracket
               \implies assoc b c a \cdot^{op} \sigma'.map (a, tensor b c) \cdot^{op} assoc a b c =
                   (tensor\ b\ (\sigma'.map\ (a,\ c)))\ \cdot^{op}\ assoc\ b\ a\ c\ \cdot^{op}\ (tensor\ (\sigma'.map\ (a,\ b))\ c)
    proof -
     \mathbf{fix} \ a \ b \ c
     assume a: ide a and b: ide b and c: ide c
     show assoc b c a \cdot^{op} \sigma'.map (a, tensor b c) \cdot^{op} assoc a b c =
            (tensor\ b\ (\sigma'.map\ (a,\ c)))\ \cdot^{op}\ assoc\ b\ a\ c\ \cdot^{op}\ (tensor\ (\sigma'.map\ (a,\ b))\ c)
     proof -
        have assoc b c a \cdot^{op} \sigma'.map (a, tensor b c) \cdot^{op} assoc a b c =
              (a^{-1}[a, b, c] \cdot M.inv s[a, tensor b c]) \cdot a^{-1}[b, c, a]
          using a b c by auto
        also have ... = M.inv (s[a, tensor b c] · M.assoc a b c) · M.inv (M.assoc b c a)
          using a b c M.iso-assoc M.inv-comp by auto
        also have ... = M.inv (M.assoc\ b\ c\ a\cdot s[a,\ tensor\ b\ c]\cdot M.assoc\ a\ b\ c)
          using a b c M.iso-assoc
                M.inv-comp [of s[a, tensor b c] · M.assoc a b c M.assoc b c a]
          by fastforce
        also have ... = M.inv (tensor b \ s[a, c] \cdot a[b, a, c] \cdot (tensor \ s[a, b] \ c))
          using a b c M.assoc-coherence by simp
        also have ... = M.inv (a[b, a, c] · (tensor s[a, b] c)) · M.inv (tensor b s[a, c])
          using a b c M.iso-assoc
                M.inv-comp [of a[b, a, c] \cdot (tensor s[a, b] c)]
         by fastforce
        also have \dots =
                   (tensor\ (M.inv\ s[a,\ b])\ c\cdot M.inv\ a[b,\ a,\ c])\cdot tensor\ b\ (M.inv\ s[a,\ c])
          using a b c M.iso-assoc M.inv-comp by simp
        also have ... =
                   (tensor\ b\ (\sigma'.map\ (a,\ c)))\ \cdot^{op}\ assoc\ b\ a\ c\ \cdot^{op}\ (tensor\ (\sigma'.map\ (a,\ b))\ c)
          using a b c by auto
       finally show ?thesis by simp
     qed
    qed
 qed
 lemma is-symmetric-monoidal-category:
 shows symmetric-monoidal-category comp T M.\alpha' (M.inv \iota) \sigma'.map
end
```

5.2 Cartesian Monoidal Category

Here we define "cartesian monoidal category" by imposing additional properties, but not additional structure, on top of "monoidal category". The additional properties are that the unit is a terminal object and that the tensor is a categorical product, with projections defined in terms of unitors, terminators, and tensor. It then follows that the associators are induced by the product structure.

```
locale cartesian-monoidal-category =
  monoidal-category C T \alpha \iota
for C :: 'a \ comp
                                                   (infixr \leftrightarrow 55)
and T :: 'a * 'a \Rightarrow 'a
and \alpha :: 'a * 'a * 'a \Rightarrow 'a
and \iota :: 'a +
assumes terminal-unity: terminal \mathcal{I}
and tensor-is-product:
      \llbracket ide \ a; \ ide \ b; \ \langle t_a : a \to \mathcal{I} \rangle; \ \langle t_b : b \to \mathcal{I} \rangle \rrbracket \Longrightarrow
          has-as-binary-product a b (r[a] \cdot (a \otimes t_b)) (l[b] \cdot (t_a \otimes b))
begin
  sublocale category-with-terminal-object
    using terminal-unity by unfold-locales blast
  lemma is-category-with-terminal-object:
  shows category-with-terminal-object C
  definition the-trm (\langle t[-] \rangle)
  where the-trm \equiv \lambda f. THE t. \langle t : dom f \rightarrow \mathcal{I} \rangle
  lemma trm-in-hom [intro]:
  assumes ide a
  shows \langle t[a] : a \to \mathcal{I} \rangle
    unfolding the-trm-def
    using assms the I [of \lambda t. \langle t : dom \ a \rightarrow \mathcal{I} \rangle] terminal-unity terminal-arr-unique
    by (metis\ ideD(2)\ terminalE)
  lemma trm-simps [simp]:
  assumes ide a
  shows arr t[a] and dom t[a] = a and cod t[a] = \mathcal{I}
    using assms trm-in-hom by auto
  interpretation elementary-category-with-terminal-object C \mathcal{I} the-trm
  proof
    show ide \mathcal{I}
      using ide-unity by blast
    show ide\ a \Longrightarrow \langle the\text{-}trm\ a: a \to \mathcal{I} \rangle
      using the-trm-def the I [of \lambda t. «t: dom a \to \mathcal{I}»] terminal E terminal-unity by auto
```

```
thus \bigwedge f. [ide\ a; \langle f: a \to \mathcal{I} \rangle] \Longrightarrow f = the\text{-}trm\ a
   using the I [of \lambda t. \langle t : dom \ a \to \mathcal{I} \rangle]
   by (metis terminalE terminal-unity)
qed
lemma extends-to-elementary-category-with-terminal-object_{CMC}:
shows elementary-category-with-terminal-object C \mathcal{I} the-trm
definition pr_0 (\langle \mathfrak{p}_0[-, -] \rangle)
where pr_0 \ a \ b \equiv l[b] \cdot (t[a] \otimes b)
definition pr_1 (\langle \mathfrak{p}_1[-, -] \rangle)
where pr_1 \ a \ b \equiv r[a] \cdot (a \otimes t[b])
sublocale ECC: elementary-category-with-binary-products C pr_0 pr_1
proof
  \mathbf{fix} f g
  assume fq: span f g
  have has-as-binary-product (cod \ f) \ (cod \ g) \ \mathfrak{p}_1[cod \ f, \ cod \ g] \ \mathfrak{p}_0[cod \ f, \ cod \ g]
    using fg tensor-is-product pr_0-def pr_1-def by auto
  thus \exists !l. \ \mathfrak{p}_1[cod f, cod g] \cdot l = f \land \mathfrak{p}_0[cod f, cod g] \cdot l = g
    using fg
    by (elim\ has-as-binary-product E)\ blast
qed (unfold pr_0-def pr_1-def, auto)
lemma induces-elementary-category-with-binary-products<sub>CMC</sub>:
shows elementary-category-with-binary-products C pr_0 pr_1
lemma\ is\ -category\ -with\ -binary\ -products:
shows category-with-binary-products C
  \mathbf{using}\ ECC. is\mbox{-}category\mbox{-}with\mbox{-}binary\mbox{-}products\ \mathbf{by}\ blast
sublocale category-with-binary-products C
  using is-category-with-binary-products by blast
sublocale ECC: elementary-cartesian-category C pr_0 pr_1 \mathcal{I} the-trm ...
lemma extends-to-elementary-cartesian-category_{CMC}:
shows elementary-cartesian-category C pr_0 pr_1 \mathcal{I} the-trm
lemma is-cartesian-category:
shows cartesian-category C
  using ECC.is-cartesian-category by simp
```

```
sublocale cartesian-category C
  using is-cartesian-category by blast
abbreviation dup (\langle d[-] \rangle)
where dup \equiv ECC.dup
abbreviation tuple (\langle \langle -, - \rangle \rangle)
where \langle f, g \rangle \equiv ECC.tuple f g
lemma prod-eq-tensor:
shows ECC.prod = tensor
proof -
  have \bigwedge f g. ECC.prod f g = f \otimes g
  proof -
    \mathbf{fix} f g
    show ECC.prod f g = f \otimes g
    proof (cases arr f \land arr g)
      show \neg (arr f \land arr g) \Longrightarrow ?thesis
     by (metis CC.arrE ECC.prod-def ECC.tuple-ext T.extensionality fst-conv seqE snd-conv)
      assume \theta: arr f \wedge arr g
      have 1: span (f \cdot \mathfrak{p}_1[dom f, dom g]) (g \cdot \mathfrak{p}_0[dom f, dom g])
         using \theta by simp
      have \mathfrak{p}_1[cod\ f,\ cod\ g]\cdot ECC.prod\ f\ g=\mathfrak{p}_1[cod\ f,\ cod\ g]\cdot (f\otimes g)
      proof -
         have \mathfrak{p}_1[cod\ f,\ cod\ g]\cdot ECC.prod\ f\ g=
               \mathfrak{p}_1[cod\ f,\ cod\ g]\cdot\langle f\cdot\mathfrak{p}_1[dom\ f,\ dom\ g],\ g\cdot\mathfrak{p}_0[dom\ f,\ dom\ g]\rangle
           unfolding ECC.prod-def by simp
         also have ... = f \cdot \mathfrak{p}_1[dom f, dom g]
           using 0.1 ECC.pr-tuple(1) by fastforce
         also have ... = (f \cdot r[dom f]) \cdot (dom f \otimes t[dom g])
           unfolding pr_1-def
           using comp-assoc by simp
         also have ... = (r[cod f] \cdot (f \otimes I)) \cdot (dom f \otimes t[dom g])
           using 0 runit-naturality by auto
         also have ... = r[cod f] \cdot (f \otimes I) \cdot (dom f \otimes t[dom g])
           using comp-assoc by simp
         also have ... = r[cod f] \cdot (cod f \otimes t[cod g]) \cdot (f \otimes g)
           using 0 interchange comp-arr-dom comp-cod-arr trm-naturality trm-simps(1)
           by force
         also have ... = (r[cod f] \cdot (cod f \otimes t[cod g])) \cdot (f \otimes g)
           using comp-assoc by simp
         also have ... = \mathfrak{p}_1[cod f, cod g] \cdot (f \otimes g)
           unfolding pr_1-def by simp
         finally show ?thesis by blast
      \mathbf{moreover} \ \mathbf{have} \ \mathfrak{p}_0[\mathit{cod}\ f,\ \mathit{cod}\ g] \ \cdot \ \mathit{ECC.prod}\ f\ g = \mathfrak{p}_0[\mathit{cod}\ f,\ \mathit{cod}\ g] \ \cdot \ (f \otimes g)
         have \mathfrak{p}_0[cod\ f,\ cod\ g]\cdot ECC.prod\ f\ g=
               \mathfrak{p}_0[\mathit{cod}\ f,\ \mathit{cod}\ g]\cdot\langle f\cdot\mathfrak{p}_1[\mathit{dom}\ f,\ \mathit{dom}\ g],\ g\cdot\mathfrak{p}_0[\mathit{dom}\ f,\ \mathit{dom}\ g]\rangle
```

```
unfolding ECC.prod-def by simp
        also have ... = g \cdot \mathfrak{p}_0[dom f, dom g]
         using 0 1 ECC.pr-tuple by fastforce
        also have ... = (g \cdot 1 | dom \ g) \cdot (t | dom \ f) \otimes dom \ g)
         unfolding pr_0-def
          \mathbf{using}\ comp\text{-}assoc\ \mathbf{by}\ simp
        also have ... = (l[cod\ g]\cdot (\mathcal{I}\otimes g))\cdot (t[dom\ f]\otimes dom\ g)
          using 0 lunit-naturality by auto
        also have ... = l[cod \ g] \cdot (\mathcal{I} \otimes g) \cdot (t[dom \ f] \otimes dom \ g)
          using comp-assoc by simp
        also have ... = l[cod \ g] \cdot (t[cod \ f] \otimes cod \ g) \cdot (f \otimes g)
         using \theta interchange comp-arr-dom comp-cod-arr trm-naturality trm-simps(1)
         by force
        also have ... = (1[cod\ g] \cdot (t[cod\ f] \otimes cod\ g)) \cdot (f \otimes g)
          using comp-assoc by simp
        also have ... = \mathfrak{p}_0[cod\ f,\ cod\ g]\cdot (f\otimes g)
          unfolding pr_0-def by simp
        finally show ?thesis by blast
      ultimately show ?thesis
        by (metis 0.1 ECC.pr-naturality(1-2) ECC.tuple-pr-arr ide-cod)
    qed
  qed
  thus ?thesis by blast
qed
lemma Prod-eq-T:
shows ECC.Prod = T
proof
  \mathbf{fix} fg
 show ECC.Prod\ fg = T\ fg
   \mathbf{using}\ \mathit{prod-eq-tensor}
    by (cases CC.arr fg) auto
qed
lemma tuple-pr [simp]:
assumes ide \ a and ide \ b
shows \langle \mathfrak{p}_1[a, b], \mathfrak{p}_0[a, b] \rangle = a \otimes b
  using assms prod-eq-tensor by simp
lemma tensor-expansion:
assumes arr f and arr g
shows f \otimes g = \langle f \cdot \mathfrak{p}_1[dom f, dom g], g \cdot \mathfrak{p}_0[dom f, dom g] \rangle
  using assms
  by (metis ECC.prod-def prod-eq-tensor)
```

It is somewhat amazing that once the tensor product has been assumed to be a categorical product with the indicated projections, then the associators are forced to be those induced by the categorical product.

```
lemma pr-assoc:
assumes ide \ a and ide \ b and ide \ c
shows \mathfrak{p}_1[a, b \otimes c] \cdot a[a, b, c] = \mathfrak{p}_1[a, b] \cdot \mathfrak{p}_1[a \otimes b, c]
and \mathfrak{p}_1[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c] = \mathfrak{p}_0[a, b] \cdot \mathfrak{p}_1[a \otimes b, c]
and \mathfrak{p}_0[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c] = \mathfrak{p}_0[a \otimes b, c]
proof -
  show \mathfrak{p}_1[a, b \otimes c] \cdot a[a, b, c] = \mathfrak{p}_1[a, b] \cdot \mathfrak{p}_1[a \otimes b, c]
  proof -
    have \mathfrak{p}_1[a, b \otimes c] \cdot a[a, b, c] = (r[a] \cdot (a \otimes \iota \cdot (t[b] \otimes t[c]))) \cdot a[a, b, c]
       by (metis ECC.trm-tensor ECC.unit-eq-trm arr-cod-iff-arr assms(2-3) comp-cod-arr
            dom-lunit ide-unity pr_1-def prod-eq-tensor trm-naturality trm-one trm-simps(1)
            unitor-coincidence(1))
    also have ... = (r[a] \cdot (a \otimes \iota) \cdot (a \otimes t[b] \otimes t[c])) \cdot a[a, b, c]
       \mathbf{using}\ \mathit{assms}\ \mathit{interchange}\ \mathit{unit-in-hom-ax}\ \mathbf{by}\ \mathit{auto}
    also have ... = r[a] \cdot (a \otimes \iota) \cdot (a \otimes t[b] \otimes t[c]) \cdot a[a, b, c]
       using comp-assoc by simp
    also have ... = r[a] \cdot (a \otimes \iota) \cdot a[a, \mathcal{I}, \mathcal{I}] \cdot ((a \otimes t[b]) \otimes t[c])
       using assms assoc-naturality [of a t[b] t[c]] by force
    also have ... = r[a] \cdot (r[a] \otimes \mathcal{I}) \cdot ((a \otimes t[b]) \otimes t[c])
       using assms runit-char comp-assoc by simp
    also have ... = r[a] \cdot (\mathfrak{p}_1[a, b] \otimes t[c])
       using assms comp-arr-dom comp-cod-arr interchange [of r[a] a \otimes t[b] \mathcal{I} t[c]]
       by (metis\ ECC.pr-simps(4)\ pr_1-def\ trm-simps(1)\ trm-simps(3))
    also have ... = r[a] \cdot (\mathfrak{p}_1[a, b] \cdot (a \otimes b) \otimes \mathcal{I} \cdot t[c])
       using assms comp-arr-dom comp-cod-arr
       by (metis (no-types, lifting) ECC.pr-simps(4-5) prod-eq-tensor trm-simps(1,3))
    also have ... = r[a] \cdot (\mathfrak{p}_1[a, b] \otimes \mathcal{I}) \cdot ((a \otimes b) \otimes t[c])
       using assms interchange [of \mathfrak{p}_1[a, b] a \otimes b \mathcal{I} \mathfrak{t}[c]]
      by (metis (no-types, lifting) ECC.pr-simps(4-5) Prod-eq-T comp-arr-dom comp-cod-arr
            fst-conv \ snd-conv \ trm-simps(1,3))
    also have ... = (r[a] \cdot (\mathfrak{p}_1[a, b] \otimes \mathcal{I})) \cdot ((a \otimes b) \otimes t[c])
       using comp-assoc by simp
    also have ... = (\mathfrak{p}_1[a, b] \cdot r[a \otimes b]) \cdot ((a \otimes b) \otimes t[c])
       using assms runit-naturality
       by (metis (no-types, lifting) ECC.cod-pr1 ECC.pr-simps(4,5) prod-eq-tensor)
    also have ... = \mathfrak{p}_1[a, b] \cdot \mathfrak{p}_1[a \otimes b, c]
       using pr_1-def comp-assoc by simp
    finally show ?thesis by blast
  qed
  show \mathfrak{p}_1[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c] = \mathfrak{p}_0[a, b] \cdot \mathfrak{p}_1[a \otimes b, c]
  proof -
    have \mathfrak{p}_1[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c] =
            r[b] \cdot (b \otimes t[c]) \cdot l[b \otimes c] \cdot a[\mathcal{I}, b, c] \cdot ((t[a] \otimes b) \otimes c)
       using assms pr_0-def pr_1-def assoc-naturality [of t[a] b c] comp-assoc by auto
    also have ... = \mathbf{r}[b] \cdot ((b \otimes \mathbf{t}[c]) \cdot \mathbf{l}[b \otimes c]) \cdot \mathbf{a}[\mathcal{I}, b, c] \cdot ((\mathbf{t}[a] \otimes b) \otimes c)
       using comp-assoc by simp
    also have ... = \mathbf{r}[b] \cdot (\mathbf{l}[b \otimes \mathcal{I}] \cdot (\mathcal{I} \otimes b \otimes \mathbf{t}[c])) \cdot \mathbf{a}[\mathcal{I}, b, c] \cdot ((\mathbf{t}[a] \otimes b) \otimes c)
       using assms lunit-naturality [of b \otimes t[c]] by auto
    also have ... = r[b] \cdot l[b \otimes \mathcal{I}] \cdot ((\mathcal{I} \otimes b \otimes t[c]) \cdot a[\mathcal{I}, b, c]) \cdot ((t[a] \otimes b) \otimes c)
```

```
using comp-assoc by simp
    also have ... = r[b] \cdot l[b \otimes \mathcal{I}] \cdot (a[\mathcal{I}, b, \mathcal{I}] \cdot ((\mathcal{I} \otimes b) \otimes t[c])) \cdot ((t[a] \otimes b) \otimes c)
       using assms assoc-naturality [of \mathcal{I} b t[c]] by auto
    also have ... = r[b] \cdot (l[b] \otimes \mathcal{I}) \cdot ((\mathcal{I} \otimes b) \otimes t[c]) \cdot ((t[a] \otimes b) \otimes c)
       using assms lunit-tensor [of b \mathcal{I}] comp-assoc
       by (metis ide-unity lunit-tensor')
    also have ... = r[b] \cdot (l[b] \otimes \mathcal{I}) \cdot ((t[a] \otimes b) \otimes \mathcal{I}) \cdot ((a \otimes b) \otimes t[c])
       using assms comp-arr-dom comp-cod-arr interchange by simp
    also have ... = (\mathbf{r}[b] \cdot (\mathfrak{p}_0[a, b] \otimes \mathcal{I})) \cdot ((a \otimes b) \otimes \mathbf{t}[c])
       using assms pr_0-def ECC.pr-simps(1) R.preserves-comp comp-assoc by simp
    also have ... = (\mathfrak{p}_0[a, b] \cdot r[a \otimes b]) \cdot ((a \otimes b) \otimes t[c])
       using assms pr_0-def runit-naturality [of \mathfrak{p}_0[a, b]] comp-assoc by simp
    also have ... = \mathfrak{p}_0[a, b] \cdot \mathfrak{p}_1[a \otimes b, c]
       using pr_0-def pr_1-def comp-assoc by simp
    finally show ?thesis by blast
  show \mathfrak{p}_0[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c] = \mathfrak{p}_0[a \otimes b, c]
  proof -
    have \mathfrak{p}_0[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c] =
           1[c] \cdot (t[b] \otimes c) \cdot 1[b \otimes c] \cdot (t[a] \otimes b \otimes c) \cdot a[a, b, c]
       using pr_0-def comp-assoc by simp
    also have ... = l[c] \cdot ((t[b] \otimes c) \cdot l[b \otimes c]) \cdot a[\mathcal{I}, b, c] \cdot ((t[a] \otimes b) \otimes c)
       using assms assoc-naturality [of t[a] b c] comp-assoc by simp
    also have ... = l[c] \cdot (l[\mathcal{I} \otimes c] \cdot (\mathcal{I} \otimes t[b] \otimes c)) \cdot a[\mathcal{I}, b, c] \cdot ((t[a] \otimes b) \otimes c)
       using assms lunit-naturality [of t[b] \otimes c] by simp
    also have ... = l[c] \cdot l[\mathcal{I} \otimes c] \cdot (a[\mathcal{I}, \mathcal{I}, c] \cdot ((\mathcal{I} \otimes t[b]) \otimes c)) \cdot ((t[a] \otimes b) \otimes c)
       using assms assoc-naturality [of \mathcal{I} t[b] c] comp-assoc by simp
    also have ... = l[c] \cdot (l[\mathcal{I} \otimes c] \cdot a[\mathcal{I}, \mathcal{I}, c]) \cdot ((\mathcal{I} \otimes t[b]) \otimes c) \cdot ((t[a] \otimes b) \otimes c)
       using comp-assoc by simp
    also have ... = l[c] \cdot (\iota \otimes c) \cdot ((\mathcal{I} \otimes t[b]) \otimes c) \cdot ((t[a] \otimes b) \otimes c)
       using assms lunit-tensor' unitor-coincidence(1) by simp
    also have ... = l[c] \cdot (\iota \otimes c) \cdot ((\mathcal{I} \otimes t[b]) \cdot (t[a] \otimes b) \otimes c)
       using assms comp-arr-dom comp-cod-arr
       by (metis arr-tensor ide-char interchange trm-simps (1-3))
    also have ... = l[c] \cdot (\iota \otimes c) \cdot ((t[a] \otimes t[b]) \otimes c)
       using assms comp-arr-dom comp-cod-arr interchange by simp
    also have ... = l[c] \cdot (\iota \cdot (t[a] \otimes t[b]) \otimes c)
       using assms interchange unit-in-hom-ax by auto
    also have ... = \mathfrak{p}_0[a \otimes b, c]
   using assms pr_0-def ECC.trm-tensor category.comp-arr-dom category-axioms prod-eq-tensor
              trm-one unit-in-hom-ax unitor-coincidence(1)
       by fastforce
    finally show ?thesis by blast
  qed
qed
lemma assoc-agreement:
assumes ide a and ide b and ide c
shows ECC.assoc\ a\ b\ c = a[a,\ b,\ c]
```

```
proof -
  have \mathfrak{p}_1[a, b \otimes c] \cdot ECC.assoc\ a\ b\ c = \mathfrak{p}_1[a, b \otimes c] \cdot a[a, b, c]
    using assms\ ECC.pr-assoc(3)\ pr-assoc(1)\ prod-eq-tensor\ by\ force
  moreover have \mathfrak{p}_0[a, b \otimes c] \cdot ECC.assoc\ a\ b\ c = \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c]
  proof -
   have \mathfrak{p}_1[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot ECC.assoc\ a\ b\ c = \mathfrak{p}_1[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c]
      using assms\ ECC.pr-assoc(2)\ pr-assoc(2)\ prod-eq-tensor\ by\ force
    moreover have \mathfrak{p}_0[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot ECC.assoc \ a \ b \ c =
                   \mathfrak{p}_0[b, c] \cdot \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c]
      using assms prod-eq-tensor ECC.pr-assoc(1) pr-assoc(3) by force
    ultimately show ?thesis
      using assms prod-eq-tensor
            ECC.pr-joint-monic
              [of b \ c \ \mathfrak{p}_0[a, b \otimes c] \cdot ECC.assoc \ a \ b \ c \ \mathfrak{p}_0[a, b \otimes c] \cdot a[a, b, c]]
      by fastforce
  qed
  ultimately show ?thesis
    using assms prod-eq-tensor
          ECC.pr-joint-monic [of a b \otimes c ECC.assoc a b c a[a, b, c]]
    by fastforce
\mathbf{qed}
lemma lunit-eq:
assumes ide a
shows \mathfrak{p}_0[\mathcal{I}, a] = \mathfrak{l}[a]
  by (simp add: assms comp-arr-dom pr_0-def trm-one)
lemma runit-eq:
assumes ide a
shows \mathfrak{p}_1[a,\mathcal{I}] = r[a]
  by (simp add: assms comp-arr-dom pr_1-def trm-one)
lemma lunit'-as-tuple:
assumes ide \ a
shows tuple t[a] a = lunit' a
 using ECC.inverse-arrows-lunit assms inverse-unique lunit-eq by fastforce
lemma runit'-as-tuple:
assumes ide a
shows tuple a t[a] = runit' a
  using ECC.inverse-arrows-runit assms inverse-unique runit-eq by fastforce
interpretation S: symmetry-functor C C ...
\textbf{interpretation} \ \textit{ToS} : \ \textit{composite-functor} \ \textit{CC.comp} \ \textit{CC.comp} \ \textit{CS.map} \ \textit{T} \ \dots
interpretation \sigma: natural-transformation CC.comp \ C \ T \ ToS.map \ ECC.\sigma
proof -
  have ECC.Prod' = ToS.map
  proof
```

```
\mathbf{fix} fg
       show ECC.Prod' fg = ToS.map fg
          using prod-eq-tensor
       by (metis CC.arr-char ECC.prod-def ECC.tuple-ext S.map-def ToS.extensionality o-apply
segE)
      qed
      thus natural-transformation CC.comp \ C \ T \ ToS.map \ ECC.\sigma
        using Prod-eq-T ECC.\sigma-naturality transformation by simp
    qed
    interpretation \sigma: natural-isomorphism CC.comp C T ToS.map ECC.\sigma
      using ECC.sym-inverse-arrows comp-arr-dom
      by unfold-locales auto
    sublocale SMC: symmetric-monoidal-category C T \alpha \iota ECC.\sigma
    proof
      show \bigwedge a b. \llbracket ide\ a;\ ide\ b \rrbracket \implies inverse-arrows\ (ECC.\sigma\ (a,\ b))\ (ECC.\sigma\ (b,\ a))
        using comp-arr-dom by auto
      show \bigwedge a ide a \Longrightarrow \mathbb{I}[a] \cdot ECC.\sigma (a, \mathcal{I}) = \mathbb{I}[a]
        using \sigma.naturality prod-eq-tensor
       by (metis (no-types, lifting) CC.arr-char ECC.prj-sym(1) R.preserves-ide
            {\mathfrak l}-ide-simp {\mathfrak g}-ide-simp {\mathfrak g}-preserves-reflects-arr comp-arr-ide fst-conv
            ideD(1) ideD(3) ide-unity lunit-naturality pr_0-def pr_1-def runit-naturality
            snd-conv trm-one)
      show \bigwedge a \ b \ c. \llbracket ide \ a; \ ide \ b; \ ide \ c \rrbracket \Longrightarrow
                      a[b, c, a] \cdot ECC.\sigma(a, b \otimes c) \cdot a[a, b, c] =
                      (b \otimes ECC.\sigma(a, c)) \cdot a[b, a, c] \cdot (ECC.\sigma(a, b) \otimes c)
      proof -
       \mathbf{fix} \ a \ b \ c
       assume a: ide a and b: ide b and c: ide c
       show a[b, c, a] \cdot ECC.\sigma(a, b \otimes c) \cdot a[a, b, c] =
              (b \otimes ECC.\sigma(a, c)) \cdot a[b, a, c] \cdot (ECC.\sigma(a, b) \otimes c)
         using a b c prod-eq-tensor assoc-agreement comp-arr-dom ECC.sym-assoc-coherence [of
a b c
         by simp
        qed
      qed
 end
```

5.3 Elementary Cartesian Monoidal Category

```
locale elementary-cartesian-monoidal-category = elementary-monoidal-category C tensor unity lunit runit assoc for C:: 'a comp (infixr \leftrightarrow 55) and tensor:: 'a \Rightarrow 'a \Rightarrow 'a (infixr (\otimes) 53) and unity:: 'a \Rightarrow (a \land (\exists [-])) and runit:: 'a \Rightarrow 'a ((\exists [-]))
```

```
and assoc :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \quad (\langle a[-, -, -] \rangle)
  and trm :: 'a \Rightarrow 'a
                            (⟨t[-]⟩)
  and dup :: 'a \Rightarrow 'a
                                          (\langle d[-] \rangle) +
  assumes trm-in-hom: ide\ a \Longrightarrow \langle t[a]: a \to \mathcal{I} \rangle
  and trm-unity: t[\mathcal{I}] = \mathcal{I}
  and trm-naturality: arr f \implies t[cod f] \cdot f = t[dom f]
  and dup-in-hom [intro]: ide a \Longrightarrow (d[a] : a \to a \otimes a)
  and dup-naturality: arr f \Longrightarrow d[cod f] \cdot f = (f \otimes f) \cdot d[dom f]
  and prj\theta-dup: ide\ a \Longrightarrow r[a] \cdot (a \otimes t[a]) \cdot d[a] = a
  and prj1-dup: ide a \Longrightarrow l[a] \cdot (t[a] \otimes a) \cdot d[a] = a
 and tuple-prj: \llbracket ide\ a;\ ide\ b\ \rrbracket \Longrightarrow (\mathbf{r}[a]\cdot (a\otimes \mathbf{t}[b])\otimes \mathbf{l}[b]\cdot (\mathbf{t}[a]\otimes b))\cdot \mathbf{d}[a\otimes b]=a\otimes b
  context cartesian-monoidal-category
  begin
    interpretation elementary-category-with-terminal-object C \mathcal{I} the-trm
      using extends-to-elementary-category-with-terminal-object<sub>CMC</sub> by blast
    interpretation elementary-monoidal-category C tensor unity lunit runit assoc
      using induces-elementary-monoidal-category by simp
    interpretation elementary-cartesian-monoidal-category C
                     tensor unity lunit runit assoc the-trm dup
    using ECC.trm-one ECC.trm-naturality ECC.tuple-in-hom' prod-eq-tensor ECC.dup-naturality
in\text{-}homI
         ECC.comp-runit-term-dup runit-eq ECC.comp-lunit-term-dup lunit-eq ECC.tuple-expansion
            comp-cod-arr
      apply unfold-locales
             apply auto
    proof -
      \mathbf{fix} \ a \ b
      assume a: ide a and b: ide b
      show (\mathbf{r}[a] \cdot (a \otimes \mathbf{t}[b]) \otimes \mathbf{l}[b] \cdot (\mathbf{t}[a] \otimes b)) \cdot \mathbf{d}[a \otimes b] = a \otimes b
       using a b ECC.tuple-pr pr_0-def pr_1-def prod-eq-tensor
        by (metis ECC.pr-simps(5) ECC.span-pr ECC.tuple-expansion)
    qed
    lemma induces-elementary-cartesian-monoidal-category_{CMC}:
    shows elementary-cartesian-monoidal-category C tensor \mathcal{I} lunit runit assoc the-trm dup
  end
  context elementary-cartesian-monoidal-category
  begin
    lemma trm-simps [simp]:
    assumes ide a
    shows arr t[a] and dom \ t[a] = a and cod \ t[a] = \mathcal{I}
```

```
using assms trm-in-hom by auto
lemma dup-simps [simp]:
assumes ide a
shows arr d[a] and dom d[a] = a and cod d[a] = a \otimes a
  using assms dup-in-hom by auto
interpretation elementary-category-with-terminal-object C \mathcal{I} trm
  apply unfold-locales
   apply auto
  by (metis comp-cod-arr in-homE trm-naturality trm-unity)
lemma is-elementary-category-with-terminal-object:
shows elementary-category-with-terminal-object C \mathcal{I} trm
interpretation MC: monoidal-category C T \alpha \iota
  using induces-monoidal-category by auto
interpretation ECBP: elementary-category-with-binary-products C
                      \langle \lambda a \ b. \ \mathbf{1}[b] \cdot (\mathbf{t}[a] \otimes b) \rangle \langle \lambda a \ b. \ \mathbf{r}[a] \cdot (a \otimes \mathbf{t}[b]) \rangle
proof -
  let ?pr_0 = \lambda a \ b. \ l[b] \cdot (t[a] \otimes b)
  let ?pr_1 = \lambda a \ b. \ r[a] \cdot (a \otimes t[b])
  show elementary-category-with-binary-products C ? pr_0 ? pr_1
  proof
   \mathbf{fix} \ a \ b
   assume a: ide a and b: ide b
   show \theta: cod (?pr_0 \ a \ b) = b
      by (metis a arr-tensor b cod-comp cod-tensor ide-char in-homE lunit-in-hom
         seqI trm-simps(1,3)
   show 1: cod (?pr_1 \ a \ b) = a
      by (metis a arr-tensor b cod-comp cod-tensor ideD(1,3) in-homE runit-in-hom
         seqI trm-simps(1,3))
   show span (?pr_1 \ a \ b) (?pr_0 \ a \ b)
   by (metis 0.1 a arr-cod-iff-arr b dom-cod dom-comp dom-tensor ideD(1) trm-simps(1-2))
   next
   \mathbf{fix} f g
   assume fq: span f q
   show \exists !l. ?pr_1 (cod f) (cod g) \cdot l = f \land ?pr_0 (cod f) (cod g) \cdot l = g
      show 1: ?pr_1 \ (cod \ f) \ (cod \ g) \cdot (f \otimes g) \cdot d[dom \ f] = f \wedge d[dom \ f]
               ?pr_0 \ (cod \ f) \ (cod \ g) \cdot (f \otimes g) \cdot d[dom \ f] = g
      proof
        show ?pr_1 \ (cod \ f) \ (cod \ g) \cdot (f \otimes g) \cdot d[dom \ f] = f
        proof -
         have ?pr_1 \ (cod \ f) \ (cod \ g) \cdot (f \otimes g) \cdot d[dom \ f] =
               MC.runit\ (cod\ f)\cdot (MC.tensor\ (cod\ f)\ t[cod\ g]\cdot (f\otimes g))\cdot d[dom\ f]
```

```
by (simp add: fg comp-assoc runit-agreement)
      also have ... = MC.runit (cod f) \cdot (MC.tensor f \mathcal{I} \cdot (dom f \otimes t[dom g])) \cdot d[dom f]
         using fg
         by (simp add: comp-arr-dom comp-cod-arr interchange trm-naturality)
      also have ... = (MC.runit (cod f) \cdot MC.tensor f \mathcal{I}) \cdot (dom f \otimes t[dom q]) \cdot d[dom f]
         using comp-assoc by simp
       also have ... = f \cdot ?pr_1 (dom f) (dom g) \cdot d[dom f]
         using MC.runit-naturality \mathcal{I}-agreement fq comp-assoc runit-agreement by force
       also have \dots = f
         using fg comp-arr-dom comp-assoc prj0-dup runit-agreement by fastforce
       finally show ?thesis by blast
     show ?pr_0 \ (cod \ f) \ (cod \ g) \cdot (f \otimes g) \cdot d[dom \ f] = g
     proof -
       have ?pr_0 \ (cod \ f) \ (cod \ g) \cdot (f \otimes g) \cdot d[dom \ f] =
             MC.lunit\ (cod\ g)\cdot (MC.tensor\ t[cod\ f]\ (cod\ g)\cdot (f\otimes g))\cdot d[dom\ f]
         by (simp add: fg comp-assoc lunit-agreement)
      also have ... = MC.lunit (cod g) \cdot (MC.tensor \mathcal{I} g \cdot (t[dom f] \otimes dom g)) \cdot d[dom f]
         by (simp add: comp-arr-dom comp-cod-arr interchange trm-naturality)
      also have ... = (MC.lunit (cod g) \cdot MC.tensor \mathcal{I} g) \cdot (t[dom f] \otimes dom g) \cdot d[dom f]
         using comp-assoc by simp
       also have ... = g \cdot ?pr_0 (dom f) (dom g) \cdot d[dom f]
         using MC.lunit-naturality \mathcal{I}-agreement fg comp-assoc lunit-agreement by force
       also have \dots = g
         using fq comp-arr-dom comp-assoc prj1-dup lunit-agreement by fastforce
       finally show ?thesis by blast
     qed
   qed
   \mathbf{fix} l
   assume l: ?pr_1 (cod f) (cod g) \cdot l = f \land ?pr_0 (cod f) (cod g) \cdot l = g
   show l = (f \otimes g) \cdot d[dom f]
   proof -
     have 2: \langle l: dom f \rightarrow cod f \otimes cod g \rangle
       by (metis 1 arr-iff-in-hom cod-comp cod-tensor dom-comp fg l seqE)
     have l = ((?pr_1 \ (cod \ f) \ (cod \ q) \otimes ?pr_0 \ (cod \ f) \ (cod \ q)) \cdot d[cod \ f \otimes cod \ q]) \cdot l
       using fg 2 tuple-prj [of cod f cod g] lunit-agreement runit-agreement comp-cod-arr
       by auto
     also have ... = (?pr_1 (cod f) (cod g) \otimes ?pr_0 (cod f) (cod g)) \cdot d[cod f \otimes cod g] \cdot l
       using comp-assoc by simp
     also have ... = ((?pr_1 (cod f) (cod g) \otimes ?pr_0 (cod f) (cod g)) \cdot (l \otimes l)) \cdot d[dom f]
       using 2 dup-naturality [of l] comp-assoc by auto
     also have ... = (f \otimes g) \cdot d[dom \ f]
       using fg l interchange [of ?pr_1 \pmod{f} \pmod{g} l ?pr_0 \pmod{f} \pmod{g} l] by simp
     finally show ?thesis by blast
   qed
 ged
qed
```

qed

```
lemma induces-elementary-category-with-binary-products_{ECMC}:
 {f shows} elementary-category-with-binary-products C
         (\lambda a \ b. \ 1[b] \cdot (t[a] \otimes b)) \ (\lambda a \ b. \ r[a] \cdot (a \otimes t[b]))
 sublocale cartesian-monoidal-category C T \alpha \iota
 proof
   show terminal MC.unity
     by (simp add: I-agreement terminal-one)
   show \bigwedge a\ b\ t_a\ t_b. [ide\ a;\ ide\ b;\ \langle t_a:a\to MC.unity\rangle;\ \langle t_b:b\to MC.unity\rangle] \Longrightarrow
                      has-as-binary-product a b
                        (MC.runit\ a\cdot MC.tensor\ a\ t_b)\ (MC.lunit\ b\cdot MC.tensor\ t_a\ b)
     by (metis ECBP.has-as-binary-product T-simp \mathcal{I}-agreement arr I ideD(1)
         lunit-agreement runit-agreement trm-eqI)
 qed
 lemma induces-cartesian-monoidal-category_{ECMC}:
 shows cartesian-monoidal-category C T \alpha \iota
end
locale diagonal-functor =
  C: category C +
  CC: product-category C C
for C :: 'a \ comp
begin
 abbreviation map
 where map f \equiv if \ C.arr \ f \ then \ (f, f) \ else \ CC.null
 lemma is-functor:
 shows functor C CC.comp map
   using map-def by unfold-locales auto
 sublocale functor C CC.comp map
   using is-functor by simp
end
context cartesian-monoidal-category
begin
 sublocale \Delta: diagonal-functor C ..
 interpretation To\Delta: composite-functor C CC.comp C \Delta.map T ...
 sublocale \delta: natural-transformation C C map \langle T \ o \ \Delta.map \rangle dup
```

5.4 Cartesian Monoidal Category from Cartesian Category

A cartesian category extends to a cartesian monoidal category by using the product structure to obtain the various canonical maps.

```
context elementary-cartesian-category
begin
 interpretation CC: product-category C C ..
 interpretation CCC: product-category C CC.comp ..
 interpretation T: binary-functor C C C Prod
   using binary-functor-Prod by simp
 interpretation T: binary-endofunctor C Prod..
 interpretation ToTC: functor CCC.comp C T.ToTC
   using T.functor-ToTC by auto
 interpretation ToCT: functor CCC.comp C T.ToCT
   using T.functor-ToCT by auto
 interpretation \alpha: natural-isomorphism CCC.comp C T.ToTC T.ToCT \alpha
   using \alpha-naturalityisomorphism by blast
 interpretation L: functor C C \langle \lambda f. Prod (cod \ \iota, f) \rangle
   \mathbf{using} \ \mathit{unit-is-terminal-arr} \ \mathit{T.fixing-ide-gives-functor-1} \ \mathbf{by} \ \mathit{simp}
 interpretation L: endofunctor C \langle \lambda f. Prod (cod \iota, f) \rangle ...
 interpretation 1: transformation-by-components C C
                    \langle \lambda f. \ Prod \ (cod \ \iota, f) \rangle \ map \ \langle \lambda a. \ pr\theta \ (cod \ \iota) \ a \rangle
   using unit-is-terminal-arr
   by unfold-locales auto
 interpretation l: natural-isomorphism C C \langle \lambda f. Prod (cod \ \iota, f) \rangle map l.map
   using l.map-simp-ide inverse-arrows-lunit ide-one
   by unfold-locales auto
 interpretation L: equivalence-functor C C \langle \lambda f. Prod (cod \iota, f) \rangle
   using 1. natural-isomorphism-axioms naturally-isomorphic-def
         L. isomorphic-to-identity-is-equivalence
   by blast
```

```
interpretation R: functor C C \langle \lambda f. Prod (f, cod \iota) \rangle
 using unit-is-terminal-arr T.fixing-ide-gives-functor-2 by simp
interpretation R: endofunctor C \langle \lambda f . Prod (f, cod \iota) \rangle ...
interpretation \rho: transformation-by-components C
                  \langle \lambda f. \ Prod \ (f, \ cod \ \iota) \rangle \ map \ \langle \lambda a. \ \mathfrak{p}_1[a, \ cod \ \iota] \rangle
 using unit-is-terminal-arr
 by unfold-locales auto
interpretation \rho: natural-isomorphism C C \langle \lambda f. Prod (f, cod \iota) \rangle map \rho.map
 using \rho.map-simp-ide inverse-arrows-runit ide-one
 by unfold-locales auto
interpretation R: equivalence-functor C C \langle \lambda f. Prod (f, cod \iota) \rangle
 using \varrho natural-isomorphism-axioms naturally-isomorphic-def
       R. isomorphic-to-identity-is-equivalence
 \mathbf{by} blast
interpretation MC: monoidal-category C Prod \alpha \iota
 using ide-one \iota-is-iso pentagon comp-assoc \alpha-simp-ide comp-cod-arr
 by unfold-locales auto
lemma induces-monoidal-category_{ECC}:
shows monoidal-category C Prod \alpha \iota
lemma unity-agreement:
shows MC.unity = 1
 using ide-one by simp
lemma assoc-agreement:
assumes ide a and ide b and ide c
shows MC.assoc\ a\ b\ c = a[a,\ b,\ c]
 using assms assoc-def \alpha-simp-ide by auto
lemma assoc'-agreement:
assumes ide a and ide b and ide c
shows MC.assoc' a b c = a^{-1}[a, b, c]
 using assms inverse-arrows-assoc inverse-unique \alpha-simp-ide by auto
lemma runit-char-eqn:
assumes ide a
shows r[a] \otimes 1 = (a \otimes \iota) \cdot a[a, 1, 1]
 {\bf using} \ assms \ ide-one \ assoc-def \ comp-assoc \ prod-tuple \ comp-cod-arr
 by (intro pr-joint-monic [of a 1 r[a] \otimes 1 (a \otimes \iota) · a[a, 1, 1]]) auto
lemma runit-agreement:
assumes ide a
shows MC.runit\ a = r[a]
 using assms unity-agreement assoc-agreement MC.runit-char(2) runit-char-eqn ide-one
 by (metis (no-types, lifting) MC.runit-eqI fst-conv runit-in-hom snd-conv)
```

```
lemma lunit-char-eqn:
   assumes ide a
   shows \mathbf{1} \otimes \mathbf{1}[a] = (\iota \otimes a) \cdot \mathbf{a}^{-1}[\mathbf{1}, \mathbf{1}, a]
   proof (intro pr-joint-monic [of 1 a 1 \otimes l[a] (\iota \otimes a) \cdot a<sup>-1</sup>[1, 1, a]])
     show ide a by fact
     show ide 1
       using ide-one by simp
     show seq l[a] (1 \otimes l[a])
       using assms ide-one by simp
     show l[a] \cdot (\mathbf{1} \otimes l[a]) = l[a] \cdot (\iota \otimes a) \cdot a^{-1}[\mathbf{1}, \mathbf{1}, a]
       using assms ide-one assoc'-def comp-assoc prod-tuple comp-cod-arr by simp
     show \mathfrak{p}_1[1, a] \cdot prod 1 (lunit a) = \mathfrak{p}_1[1, a] \cdot prod \iota a \cdot assoc' 1 1 a
       using assms ide-one assoc'-def comp-cod-arr prod-tuple pr-naturality
       apply simp
       by (metis (full-types) cod-pr0 cod-pr1 elementary-category-with-binary-products.ide-prod
           elementary-category-with-binary-products-axioms pr-simps(1-2,4-5) trm-naturality
           trm-one
   qed
   lemma lunit-agreement:
   assumes ide a
   shows MC.lunit\ a = l[a]
     by (metis (no-types, lifting) MC.lunit-eqI assms assoc'-agreement fst-conv ide-one
         lunit-char-eqn lunit-in-hom snd-conv unity-agreement)
   interpretation CMC: cartesian-monoidal-category C Prod \alpha \iota
   proof
     show terminal MC.unity
       by (simp add: terminal-one unity-agreement)
     fix a b t_a t_b
     assume a: ide a and b: ide b
     and t_a: \langle t_a : a \to MC.unity \rangle and t_b: \langle t_b : b \to MC.unity \rangle
     have \theta: \mathfrak{p}_0[a, b] = MC.lunit\ b \cdot MC.tensor\ t[a]\ b
       by (metis (no-types, lifting) a b ide-char cod-pr0 comp-cod-arr lunit-agreement
           pr-naturality(1) pr-simps(1) prod.sel(1-2) trm-simps(1-3))
     have 1: \mathfrak{p}_1[a, b] = MC.runit\ a \cdot MC.tensor\ a\ t[b]
       by (metis (no-types, lifting) a b cod-pr1 comp-cod-arr ide-char pr-naturality(2)
           pr\text{-}simps(4) \ prod.sel(1-2) \ runit\text{-}agreement \ trm\text{-}simps(1-3))
     have 2: t[a] = t_a \wedge t[b] = t_b
       using a b t<sub>a</sub> t<sub>b</sub> terminal-arr-unique trm-eqI unity-agreement by metis
      show has-as-binary-product a b (MC.runit a \cdot MC.tensor a t_b) (MC.lunit b \cdot MC.tensor
t_a b)
       using a b 0 1 2 has-as-binary-product by force
   qed
   lemma extends-to-cartesian-monoidal-category_{ECC}:
   shows cartesian-monoidal-category C Prod \alpha \iota
```

```
assumes ide a
   shows CMC.the-trm\ a=t[a]
    by (metis assms CMC.extends-to-elementary-category-with-terminal-object_{CMC}
        elementary-category-with-terminal-object.trm-eqI trm-in-hom unity-agreement)
   lemma pr-agreement:
   assumes ide a and ide b
   shows CMC.pr_0 a b = \mathfrak{p}_0[a, b] and CMC.pr_1 a b = \mathfrak{p}_1[a, b]
   proof -
    show CMC.pr_0 a b = \mathfrak{p}_0[a, b]
      unfolding CMC.pr_0-def
      using assms(1-2) lunit-agreement pr-expansion(1) trm-agreement by auto
    show CMC.pr_1 a b = \mathfrak{p}_1[a, b]
      unfolding CMC.pr_1-def
      using assms(1-2) pr-expansion(2) runit-agreement trm-agreement by force
   qed
   lemma dup-agreement:
   assumes ide a
   shows CMC.dup\ a = d[a]
   by (metis (no-types, lifting) CMC.ECC.tuple-eqI assms ideD(1) pr-agreement (1-2) pr-dup(1-2))
 end
        Cartesian Monoidal Category from Elementary Carte-
5.5
        sian Category
 context elementary-cartesian-category
 begin
   interpretation MC: monoidal-category C Prod \alpha \iota
    using induces-monoidal-category_{ECC} by blast
   lemma triangle:
   assumes ide a and ide b
   shows (a \otimes l[b]) \cdot a[a, 1, b] = r[a] \otimes b
    using assms MC.triangle [of a b] assoc-agreement ide-one lunit-agreement
         runit-agreement unity-agreement fst-conv snd-conv
    by (metis (no-types, lifting))
   lemma induces-elementary-cartesian-monoidal-category_{ECC}:
   shows elementary-cartesian-monoidal-category (·) prod 1 lunit runit assoc trm dup
    using ide-one inverse-arrows-lunit inverse-arrows-runit inverse-arrows-assoc
         interchange lunit-naturality runit-naturality assoc-naturality
         triangle pentagon comp-assoc trm-one trm-naturality
```

lemma trm-agreement:

```
in\text{-}homI\ prod\text{-}tuple\ isoI\ arr\text{-}dom\ MC.tensor\text{-}in\text{-}homI\ comp\text{-}arr\text{-}dom\ comp\text{-}cod\text{-}arr
      {\bf apply}\ unfold\text{-}locales
                            apply \ simp-all
           \mathbf{apply}\ \mathit{blast}
          apply blast
         by meson
  end
  {\bf context}\ \ cartesian\text{-}category
  begin
    {\bf interpretation}\ ECC:\ elementary\text{-}cartesian\text{-}category\ C
                             some\mbox{-}pr0\ some\mbox{-}pr1\ some\mbox{-}terminal\ some\mbox{-}terminator
      using extends-to-elementary-cartesian-category by simp
    \mathbf{lemma}\ extends-to-cartesian-monoidal\text{-}category_{CC}\text{:}
    \mathbf{shows}\ cartesian\text{-}monoidal\text{-}category\ C\ ECC.Prod\ ECC.}\alpha\ ECC.\iota
      using ECC.extends-to-cartesian-monoidal-category_{ECC} by blast
  end
end
```

Bibliography

- [1] J. Bénabou. Catégories avec multiplication. C. R. Acad. Sci. Paris, 258:1887 1890, 1963.
- [2] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. *Tensor Categories*, volume 205 of *Mathematical Surveys and Monographs*. American Mathematical Society, 2015.
- [3] G. M. Kelly. On MacLane's conditions for coherence of natural associativities, commutativities, etc. Journal of Algebra, 1:397 402, 1964.
- [4] S. MacLane. Natural associativity and commutativity. *Rice. Univ. Stud.*, 49:28 46, 1963.
- [5] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
- [6] E. W. Stark. Category theory with adjunctions and limits. Archive of Formal Proofs, June 2016. http://isa-afp.org/entries/Category3.shtml, Formal proof development.