Monoidal Categories

Eugene W. Stark

Department of Computer Science
Stony Brook University
Stony Brook, New York 11794 USA

March 17, 2025

Abstract

Building on the formalization of basic category theory set out in the author’s
previous AFP article [6], the present article formalizes some basic aspects of the the-
ory of monoidal categories. Among the notions defined here are monoidal category,
monoidal functor, and equivalence of monoidal categories. The main theorems for-
malized are MacLane’s coherence theorem and the constructions of the free monoidal
category and free strict monoidal category generated by a given category. The co-
herence theorem is proved syntactically, using a structurally recursive approach to
reduction of terms that might have some novel aspects. We also give proofs of some
results given by Etingof et al [2], which may prove useful in a formal setting. In
particular, we show that the left and right unitors need not be taken as given data
in the definition of monoidal category, nor does the definition of monoidal functor
need to take as given a specific isomorphism expressing the preservation of the unit
object. Our definitions of monoidal category and monoidal functor are stated so as
to take advantage of the economy afforded by these facts.

Revisions made subsequent to the first version of this article added material on
cartesian monoidal categories; showing that the underlying category of a cartesian
monoidal category is a cartesian category, and that every cartesian category extends
to a cartesian monoidal category.

Contents

1
2
2.1
2.2
2.3
24
2.5
2.6
2.7
3
3.1
4
4.1
4.2
4.3
5

5.1
5.2
5.3
5.4
9.5

Introduction

Monoidal Category

Monoidal Category L
Elementary Monoidal Category
Strict Monoidal Category
Opposite Monoidal Category
Dual Monoidal Category
Monoidal Language
Coherence

Monoidal Functor

Strict Monoidal Functor

The Free Monoidal Category

Syntactic Construction Lo Lo
Proof of Freeness
Strict Subcategory oL

Cartesian Monoidal Category

Symmetric Monoidal Category
Cartesian Monoidal Category,
Elementary Cartesian Monoidal Category
Cartesian Monoidal Category from Cartesian Category
Cartesian Monoidal Category from Elementary Cartesian Category

29
36
36
37
40
67

93
103

108
108
143
154

175
175
179
186
191
194

Chapter 1

Introduction

A monoidal category is a category C equipped with a binary “tensor product” functor & :
C x C — C, which is associative up to a given natural isomorphism, and an object Z that
behaves up to isomorphism like a unit for ®. The associativity and unit isomorphisms are
assumed to satisfy certain axioms known as coherence conditions. Monoidal categories
were introduced by Bénabou [1] and MacLane [4]. MacLane showed that the axioms for a
monoidal category imply that all diagrams in a large class are commutative. This result,
known as MacLane’s Coherence Theorem, is the first important result in the theory of
monoidal categories.

Monoidal categories are important partly because of their ubiquity. The category of
sets and functions is monoidal; more generally any category with binary products and a
terminal object becomes a monoidal category if we take the categorical product as ® and
the terminal object as Z. The category of vector spaces over a field, with linear maps as
morphisms, not only admits monoidal structure with respect to the categorical product,
but also with respect to the usual tensor product of vector spaces. Monoidal categories
serve as the starting point for enriched category theory in that they provide a setting in
which ordinary categories, having “homs in the category of sets,” can be generalized to
“categories having homs in a monoidal category V”. In addition, the theory of monoidal
categories can be regarded as a stepping stone to the theory of bicategories, as monoidal
categories are the same thing as one-object bicategories.

Building on the formalization of basic category theory set out in the author’s previous
AFP article [6], the present article formalizes some basic aspects of the theory of monoidal
categories. In Chapter 2, we give a definition of the notion of monoidal category and
develop consequences of the axioms. We then give a proof of MacLane’s coherence
theorem. The proof is syntactic: we define a language of terms built from arrows of a
given category C using constructors that correspond to formal composition and tensor
product as well as to the associativity and unit isomorphisms and their formal inverses,
we then define a mapping that interprets terms of the language in an arbitrary monoidal
category D via a valuation functor V : C — D, and finally we syntactically characterize
a class of equations between terms that hold in any such interpretation. Among these
equations are all those that relate formally parallel “canonical” terms, where a term is

canonical if the only arrows of C that are used in its construction are identities. Thus, all
formally parallel canonical terms have identical interpretations in any monoidal category,
which is the content of MacLane’s coherence theorem.

In Chapter 3, we define the notion of a monoidal functor between monoidal categories.
A monoidal functor from a monoidal category C to a monoidal category D is a functor
F : C — D, equipped with additional data that express that the monoidal structure is
preserved by F' up to natural isomorphism. A monoidal functor is strict if it preserves the
monoidal structure “on the nose” (i.e. the natural isomorphism is an identity). We also
define the notion of an equivalence of monoidal categories, which is a monoidal functor
F : C — D that is part of an ordinary equivalence of categories between C and D.

In Chapter 4, we use the language of terms defined in Chapter 2 to give a syntac-
tic construction of the free monoidal category FC' generated by a category C. The
arrows FC are defined to be certain equivalence classes of terms, where composition
and tensor product, as well as the associativity and unit isomorphisms, are determined
by the syntactic operations. After proving that the construction does in fact yield a
monoidal category, we establish its freeness: every functor from C to a monoidal cate-
gory D extends uniquely to a strict monoidal functor from FC' to D. We then consider
the subcategory FsC of FC whose arrows are equivalence classes of terms that we call
“diagonal” Diagonal terms amount to lists of arrows of C', composition in FgC' is given
by elementwise composition of compatible lists of arrows, and tensor product in FgC' is
given by concatenation of lists. We show that the subcategory FgC' is monoidally equiv-
alent to the category FC and in addition that FgC' is the free strict monoidal category
generated by C.

The formalizations of the notions of monoidal category and monoidal functor that
we give here are not quite the traditional ones. The traditional definition of monoidal
category assumes as given not only an “associator” natural isomorphism, which expresses
the associativity of the tensor product, but also left and right “unitor” isomorphisms,
which correspond to unit laws. However, as pointed out in [2], it is not necessary to take
the unitors as given, because they are uniquely determined by the other structure and
the condition that left and right tensoring with the unit object are endo-equivalences.
This leads to a definition of monoidal category that requires fewer data to be given and
fewer conditions to be verified in applications. As this is likely to be especially important
in a formal setting, we adopt this more economical definition and go to the trouble to
obtain the unitors as defined notions. A similar situation occurs with the definition of
monoidal functor. The traditional definition requires two natural isomorphisms to be
given: one that expresses the preservation of tensor product and another that expresses
the preservation of the unit object. Once again, as indicated in [2], it is logically unnec-
essary to take the latter isomorphism as given, since there is a canonical definition of it
in terms of the other structure. We adopt the more economical definition of monoidal
functor and prove that the traditionally assumed structure can be derived from it.

Finally, the proof of the coherence theorem given here potentially has some novel
aspects. A typical syntactic proof of this theorem, such as that described in [5], involves
the identification, for each term constructed as a formal tensor product of the unit object
7 and “primitive objects” (i.e. the elements of a given set of generators), of a “reduction”

isomorphism obtained by composing “basic reductions” in which occurrences of Z are
eliminated using components of the left and right unitors and “parentheses are moved
to one end” using components of the associator. The construction of these reductions
is performed, as in [5], using an approach that can be thought of as the application
of an iterative strategy for normalizing a term. My thoughts were initially along these
lines, and I did succeed in producing a formal proof of the coherence theorem in this
way. However, proving the termination of the reduction strategy was complicated by
the necessity of using of a “rank function” on terms, and the lemmas required for the
remainder of the proof had to be proved by induction on rank, which was messy. At
some point, I realized that it ought to be possible to define reductions in a structurally
recursive way, which would permit the lemmas in the rest of the proof to be proved
by structural induction, rather than induction on rank. It took some time to find the
right definitions, but in the end this approach worked out more simply, and is what is
presented here.

Revision Notes

The original version of this document dates from May, 2017. The current version of
this document incorporates revisions made in mid-2020 after the release of Isabelle2020.
Aside from various minor improvements, the main change was the addition of a new the-
ory, concerning cartesian monoidal categories, which coordinates with material on carte-
sian categories that was simultaneously added to [6]. The new theory defines “cartesian
monoidal category” as an extension of “monoidal category” obtained by adding addi-
tional functors, natural transformations, and coherence conditions. The main results
proved are that the underlying category of a cartesian monoidal category is a cartesian
category, and that every cartesian category extends to a cartesian monoidal category.

Chapter 2
Monoidal Category

2

In this theory, we define the notion “monoidal category,” and develop consequences of
the definition. The main result is a proof of MacLane’s coherence theorem.

theory MonoidalCategory
imports Category3.EquivalenceOfCategories
begin

2.1 Monoidal Category

A typical textbook presentation defines a monoidal category to be a category C equipped
with (among other things) a binary “tensor product” functor ®: C x C — C and an
“associativity” natural isomorphism «, whose components are isomorphisms « (a, b, ¢):
(a®b)®c— a® (b® c) for objects a, b, and ¢ of C. This way of saying things avoids
an explicit definition of the functors that are the domain and codomain of « and, in
particular, what category serves as the domain of these functors. The domain category
is in fact the product category C' x C x C and the domain and codomain of « are
the functors T o (T x C): C x C x C — Cand To (C x T): C x C x C — C.
In a formal development, though, we can’t gloss over the fact that C' x C' x C has to
mean either C' x (C x C) or (C x C) x C, which are not formally identical, and that
associativities are somehow involved in the definitions of the functors 7 o (T x (') and
T o (C x T). Here we use the binary-endofunctor locale to codify our choices about
what C x C x C, To (T x C),and T o (C x T) actually mean. In particular, we
choose C x C x Ctobe C x (C x C) and define the functors T o (T x C), and T o
(C x T) accordingly.

Our primary definition for “monoidal category” follows the somewhat non-traditional
development in [2]. There a monoidal category is defined to be a category C' equipped
with a binary tensor product functor T: C x C — C, an associativity isomorphism,
which is a natural isomorphism a: T o (T x C) — T o (C x T), a unit object T of C,
and an isomorphism ¢: T (Z,) — Z, subject to two axioms: the pentagon axiom, which
expresses the commutativity of certain pentagonal diagrams involving components of «,
and the left and right unit azioms, which state that the endofunctors T (Z, —) and T (—,

7) are equivalences of categories. This definition is formalized in the monoidal-category
locale.

In more traditional developments, the definition of monoidal category involves addi-
tional left and right unitor isomorphisms A and p and associated axioms involving their
components. However, as is shown in [2] and formalized here, the unitors are uniquely
determined by « and their values A(Z) and o(Z) at Z, which coincide. Treating A and
o as defined notions results in a more economical basic definition of monoidal category
that requires less data to be given, and has a similar effect on the definition of “monoidal
functor.” Moreover, in the context of the formalization of categories that we use here, the
unit object Z also need not be given separately, as it can be obtained as the codomain
of the isomorphism .

locale monoidal-category =
category C' +
CC: product-category C C +
CCC': product-category C CC.comp +
T: binary-endofunctor C T +
a: natural-isomorphism CCC.comp C T.ToTC T.ToCT o +
L: equivalence-functor C C \f. T (cod ¢, f) +
R: equivalence-functor C C' \f. T (f, cod t)
for C :: 'a comp (infixr <> 55)
and T :: 'a * 'a = 'a
and o :: ‘ax 'ax 'a="a
and ¢ :: ‘a +
assumes unit-in-hom-az: «v : T (cod ¢, cod 1) — cod v»
and unit-is-iso: iso ¢
and pentagon: [ide a; ide b; ide ¢; ide d | =
T (a, @ (b, e, d)) - a(a, T (byc),d) T (a(a,b,c)d =
a(a, b, T (¢, d)) - a (T (a, b), ¢, d)
begin

We now define helpful notation and abbreviations to improve readability. We did
not define and use the notation ® for the tensor product in the definition of the locale
because to define ® as a binary operator requires that it be in curried form, whereas for
T to be a binary functor requires that it take a pair as its argument.

abbreviation unity :: ‘a (xI))
where unity = cod ¢

abbreviation L :: 'a = ‘a
where L f = T (Z, f)

abbreviation R :: 'a = 'a
where R f = T (f, 7)

abbreviation tensor (infixr «®» 53)
where f @ g =T (f, g)

abbreviation assoc («a[-, -, -]»)

where afa, b, ¢] = « (a, b, ¢)

In HOL we can just give the definitions of the left and right unitors “up front” without
any preliminary work. Later we will have to show that these definitions have the right
properties. The next two definitions define the values of the unitors when applied to
identities; that is, their components as natural transformations.

definition lunit (<1[-])

where lunit a = THEf. «f : T Q@ a - a» NI Q f = (¢t ® a) - inv a[Z, Z, a]

definition runit («[-]»)
where runit a = THE f. «f :a @ Z - av A f ® T = (a ® ¢) - ala, Z,]

We now embark upon a development of the consequences of the monoidal cate-
gory axioms. Omne of our objectives is to be able to show that an interpretation of
the monoidal-category locale induces an interpretation of a locale corresponding to a
more traditional definition of monoidal category. Another is to obtain the facts we need
to prove the coherence theorem.

lemma unit-in-hom [intro|:
shows «.: Z ® Z — I»
using unit-in-hom-ax by force

lemma ide-unity [simp]:
shows ide 7
using unit-in-hom by auto

lemma tensor-in-hom [simpl:
assumes «f : a — b» and «g : ¢ — d»
shows «f ® g:a ® ¢ = b ® d»
using assms T.preserves-hom CC.arr-char by simp

lemma tensor-in-homl [introl:
assumes «f :a > and «g: c—> drvandz=a® cand y = b ® d
shows «f ® g : z — y»

using assms tensor-in-hom

by force

lemma arr-tensor [simp:
assumes arr f and arr g
shows arr (f @ g)

using assms by simp

lemma dom-tensor [simpl:
assumes «f : a — b» and «g : ¢ — d»
shows dom (f ® g) = a ® ¢

using assms by fastforce

lemma cod-tensor [simp):
assumes «f : a — b» and «g : ¢ — d»
shows cod (f ® g) = b® d

using assms by fastforce

lemma tensor-preserves-ide [simp):
assumes ide a and ide b
shows ide (a ® b)
using assms T.preserves-ide CC.ide-char by simp

lemma tensor-preserves-iso [simpl:
assumes iso f and iso g
shows iso (f @ ¢)

using assms by simp

lemma inv-tensor [simp:

assumes iso f and iso g

shows inv (f ® g) = inv f ® inv g
using assms T.preserves-inv by auto

lemma interchange:
assumes seq h g and seq h' g
shows (h®@ h') - (9@ ¢g)=h-g@h' g’

using assms T.preserves-comp [of (h, h') (g, g')] by simp

!/

lemma a-simp:

assumes arr f and arr g and arr h

shows «a (f, g, h) = (f ® ¢ ® h) - aldom f, dom g, dom h]
using assms a.naturality! [of (f, g, h)] by simp

lemma assoc-in-hom [intro]:

assumes ide a and ide b and ide ¢

shows «afa, b, c]: (a®@ D) ®c—> a® b c»
using assms CCC.in-homE by auto

lemma arr-assoc [simp]:
assumes ide a and ide b and ide ¢
shows arr ala, b, |

using assms assoc-in-hom by simp

lemma dom-assoc [simp]:

assumes ide a and ide b and ide ¢

shows dom ala, b, ¢] = (a ® b) ® ¢
using assms assoc-in-hom by simp

lemma cod-assoc [simpl:

assumes ide a and ide b and ide ¢

shows cod ala, b, ¢] = a ® b ® ¢
using assms assoc-in-hom by simp

lemma assoc-naturality:
assumes arr f0 and arr f1 and arr f2

shows alcod f0, cod f1, cod f2] - ((f0 @ f1) ® f2) =
(f0 ® f1 ® f2) - a|dom f0, dom f1, dom f2]
using assms a.naturality by auto

lemma iso-assoc [simp):
assumes ide a and ide b and ide ¢
shows iso ala, b,]

using assms a.preserves-iso by simp

The next result uses the fact that the functor L is an equivalence (and hence faithful)
to show the existence of a unique solution to the characteristic equation used in the
definition of a component 1[a] of the left unitor. It follows that 1[a], as given by our
definition using definite description, satisfies this characteristic equation and is therefore
uniquely determined by by ®, «, and ¢.

lemma lunit-char:
assumes ide a
shows «lfa] : Z ® a = a» and T ® 1[a] = (¢ ® @) - inv a[Z, Z, q]
and lf. «f T @®a—>av NI QR f=(® a)-invalZ, Z, a
proof —
obtain F' n € where L: equivalence-of-categories C C F (\.Z ® f) n e
using L.induces-equivalence by auto
interpret L: equivalence-of-categories C C F <\f. T ® frne
using L by auto
let 2P =X\ «f:ZT®a—>a» NIT® f=(® a)-inalZ,Z, a

show 3!f. 2P f
proof —
have 3f. 9P f
proof —
have «(t ® a) - inv alZ,Z,al : I RT® a—I R a»
proof

show «w® a: (T ®I)®a—7T® a»
using assms ide-in-hom by blast
show «inv alZ,Z,a] : ZT®ZI®a— (ZRI) R a»
using assms by auto
qed
moreover have ide (Z ® a) using assms by simp
ultimately show ?Zthesis
using assms L.is-full by blast
qed
moreover have \ff". P f—= P f'— f = f'
by (metis L.is-faithful in-homE)
ultimately show ?thesis by blast
qed
hence 1: 7P 1[a]
unfolding lunit-def using thel’ [of ?P] by auto
show «l[a] : Z ® a — a» using I by fast
show Z ® l[a] = (¢ ® a) - inv a|Z, Z, a] using I by fast
qed

10

lemma lunit-in-hom [introl:
assumes ide a
shows «l[a] : Z ® a — a»

using assms lunit-char(1) by blast

lemma arr-lunit [simp):
assumes ide a
shows arr 1[d]
using assms lunit-in-hom by auto

lemma dom-lunit [simp]:
assumes ide a
shows dom l[a] =Z ® a
using assms lunit-in-hom by auto

lemma cod-lunit [simp]:
assumes ide a
shows cod 1[a] = a
using assms lunit-in-hom by auto

As the right-hand side of the characteristic equation for Z ® 1[a] is an isomorphism,
and the equivalence functor L reflects isomorphisms, it follows that 1[a] is an isomorphism.

lemma iso-lunit [simp]:
assumes ide a
shows iso 1[d]
using assms lunit-char(2) unit-is-iso ide-unity isos-compose iso-assoc is0-inv-iso
unit-in-hom L.reflects-iso arr-lunit arr-tensor ideD(1) ide-is-iso lunit-in-hom
tensor-preserves-iso
by metis

To prove that an arrow f is equal to 1[a] we need only show that it is parallel to 1[a]
and that Z ® f satisfies the same characteristic equation as Z ® 1[a] does.

lemma lunit-eql:
assumes «f : Z ® a = a»and T ® f = (v ® a) - inv a[Z, Z, a
shows f = 1[d]
proof —

have ide a using assms(1) by auto

thus ?thesis

using assms lunit-char thel-equality by blast

qed

The next facts establish the corresponding results for the components of the right
unitor.

lemma runit-char:
assumes ide a
shows «rfal : ¢ ® Z — a» and ra] ® Z = (a ® 1) - a[a, I, Z]
and Af. «f:a @I > a» ANfQRZ=(a®) - ala, Z, T
proof —
obtain F' n € where R: equivalence-of-categories C C F (\f. f @ T) n ¢

11

using R.induces-equivalence by auto

interpret R: equivalence-of-categories C C' F <\f. f @ Ty n €
using R by auto

let 2P =M. «f:a QT > a» NfRT=(a®)-ala, I, I

show 3!f. 2P f
proof —
have 3f. 7P f
proof —

have «(a ®¢) - a[a, Z,Z] : (e ®I) ® T = a ® I»
using assms by fastforce
moreover have ide (a ®) using assms by simp
ultimately show ?Zthesis
using assms R.is-full [of a a @ T (a ® 1) - a[a, Z, Z]] by blast
qed
moreover have \ff". /P f —= ?P f' = f = [’
by (metis R.is-faithful in-homE)
ultimately show ¢thesis by blast
qed
hence 1: 7P r[a] unfolding runit-def using thel’ [of ?P] by fast
show «r[a] : a ® T — a» using 1 by fast
show rla] ® Z = (a ®) - a[a, Z, Z] using I by fast
qged

lemma runit-in-hom [intro):
assumes ide a
shows «r[a] : a ® T — a»

using assms runit-char(1) by blast

lemma arr-runit [simp]:
assumes ide a
shows arr r[d]
using assms runit-in-hom by blast

lemma dom-runit [simp]:
assumes ide a
shows dom rfa] = a ® T
using assms runit-in-hom by blast

lemma cod-runit [simp):
assumes ide a
shows cod r[a] = a
using assms runit-in-hom by blast

lemma runit-eql:
assumes «f :a ®Z s av» and f ® Z = (a ® ¢) - a[a, Z, 7]
shows f = r[d]
proof —
have ide a using assms(1) by auto
thus ?thesis

12

using assms runit-char thel-equality by blast
qged

lemma iso-runit [simp):
assumes ide a
shows iso r[al
using assms unit-is-iso iso-inv-iso isos-compose ide-is-iso R.preserves-reflects-arr
arrl ide-unity iso-assoc runit-char tensor-preserves-iso R.reflects-iso
by metis

We can now show that the components of the left and right unitors have the naturality

properties required of a natural transformation.

lemma lunit-naturality:
assumes arr f
shows l[cod f] - (Z ® f) = f - 1[dom f]
proof —
interpret a’: inverse-transformation CCC.comp C T.ToTC T.ToCT « ..
have par: par (1[cod f] - (Z @ f)) (f - l[dom f])
using assms by simp
moreover have Z ®@ l[cod f] - (Z @ f) =Z ® [- l[dom f]
proof —
have Z®@ lfcod f] - (Z @ f) = ((t® cod f) - (Z®T) ® f)) - inv a[Z, Z, dom f]
using assms interchange [of TZ T @ f l[cod f]] lunit-char(2)
a'.naturality [of (Z, I, f)] comp-assoc

by auto
also have ... = (Z ® f) - (t ® dom f)) - inv al[Z, Z, dom f]

using assms interchange comp-arr-dom comp-cod-arr unit-in-hom by auto
also have ... = (Z ® f) - (Z ® 1[dom f])

using assms lunit-char(2) comp-assoc by auto
also have ... =Z ® f - l[dom f]
using assms interchange L.preserves-comp par by metis
finally show ?thesis by blast
qged
ultimately show 1[cod f] - (Z ® f) = f - l[dom f]
using L.is-faithful by metis
qed

lemma runit-naturality:
assumes arr f
shows rfcod f] - (f ® Z) = f - r[dom f]
proof —
have par: par (r[cod f] - (f ® T)) (f - r[dom f])
using assms by force
moreover haverfcod f] - (f @ Z) @ Z =f - r[dom [l @ T
proof —
have r[cod f] - (f ®Z) @ Z = (cod f ® ¢) - alcod f, Z,T] - (f ®) ® I)
using assms interchange [of T Z T & f r[cod f]] runit-char(2)
comp-assoc
by auto

13

also have ... = (cod f ®) - (f®Z ® I) - aldom f, T, |
using assms a.naturality [of (f, Z, I)] by auto
also have ... = ((cod f ® ¢) - (f ® T ® 1)) - aldom [, I, 7]
using comp-assoc by simp
also have ... = ((f ® Z) - (dom f ®)) - a[dom f, Z, T]
using assms unit-in-hom interchange comp-arr-dom comp-cod-arr by auto
also have ... = (f ® Z) - (r[dom f] ®)

using assms runit-char comp-assoc by auto
also have ... = f - r[dom f] ® T
using assms interchange R.preserves-comp par by metis
finally show ?thesis by blast
qed
ultimately show r[cod f] - (f ® Z) = [- r[dom f]
using R.is-faithful by metis
qed

The next two definitions extend the unitors to all arrows, not just identities. Un-
fortunately, the traditional symbol A for the left unitor is already reserved for a higher
purpose, so we have to make do with a poor substitute.

abbreviation [
where [f = if arr f then f - 1[dom f] else null

abbreviation p
where o f = if arr f then [- t[dom f] else null

lemma [-ide-simp:
assumes ide a
shows [a = 1[a]
using assms lunit-char comp-cod-arr ide-in-hom by (metis in-homE)

lemma p-ide-simp:
assumes ide a
shows ¢ a = r[d]
using assms runit-char [of a] comp-cod-arr by auto

end

context monoidal-category
begin

sublocale I: natural-transformation C C L map |
proof —
interpret [: transformation-by-components C C L map <\a. 1[a])
using lunit-in-hom lunit-naturality unit-in-hom-az L.extensionality
by (unfold-locales, auto)
have [.map = |
using l.naturalityl [.extensionality by auto
thus natural-transformation C C L map |
using l.natural-transformation-axioms by auto

14

qged

sublocale [: natural-isomorphism C C L map |
apply unfold-locales
using iso-lunit [-ide-simp by simp

sublocale p: natural-transformation C C' R map o
proof —
interpret o: transformation-by-components C C R map <\a. r|a)
using runit-naturality unit-in-hom-azx R.extensionality
by (unfold-locales, auto)
have go.map = o
using p.naturalityl o.extensionality by auto
thus natural-transformation C C R map o
using o.natural-transformation-axioms by auto
qged

sublocale p: natural-isomorphism C C' R map o
apply unfold-locales
using o-ide-simp by simp
sublocale l': inverse-transformation C C L map [..
sublocale o”: inverse-transformation C C R map o ..
sublocale o inverse-transformation CCC.comp C T.ToTC T.ToCT « ..

abbreviation o’
where o’ = a’.map

abbreviation assoc’ (a=![-, -, -]»)
where a~![a, b,] = inv ala, b, c]

lemma o’-ide-simp:
assumes ide a and ide b and ide ¢
shows o’ (a, b, ¢) = a=Y[a, b,]
using assms a'.inverts-components inverse-unique by force

lemma o'-simp:

assumes arr f and arr g and arr h

shows o’ (f, g, h) = ((f ® g) ® h) - a=[dom f, dom g, dom h]
using assms T.ToTC-simp o'.naturalityl o’-ide-simp by force

lemma assoc-inv:

assumes ide a and ide b and ide ¢

shows inverse-arrows ala, b, ¢| a=[a, b,]
using assms inv-is-inverse by simp

lemma assoc’-in-hom [intro):

assumes ide a and ide b and ide ¢
shows «a™1[a, b, c]: a @ b® ¢ — (a ® b) ® c»

15

using assms by auto

lemma arr-assoc’ [simp):
assumes ide a and ide b and ide ¢
shows arr a=[a, b,]

using assms by simp

lemma dom-assoc’ [simp]:

assumes ide a and ide b and ide ¢

shows dom a=1[a, b, c] = a® b ® c
using assms by simp

lemma cod-assoc’ [simp]:

assumes ide o and ide b and ide c

shows cod a=1[a, b, ¢] = (a ® b) ® ¢
using assms by simp

lemma comp-assoc-assoc’ [simp):
assumes ide a and ide b and ide ¢
shows ala, b, c] - a=[a, b, ¢] = a @ (b ® c)
and a=a, b,] - ala, b,] = (a ® b) @ ¢
using assms assoc-inv comp-arr-inv comp-inv-arr by auto

lemma assoc’-naturality:

assumes arr f0 and arr f1 and arr f2

shows ((f0 ® f1) ® f2) - a=Y[dom f0, dom f1, dom f2] =
a~Ycod f0, cod f1, cod f2] - (f0 @ f1 ® f2)

using assms o’.naturality by auto

abbreviation I’
where [’ = [".map

abbreviation lunit’ (A=)
where 171[a] = inv 1[d]

lemma [’-ide-simp:
assumes ide a
shows [".map a = 17 ![d]
using assms [".inverts-components [-ide-simp inverse-unique by force

lemma lunit-inv:

assumes ide a

shows inverse-arrows 1[a] 171]a]
using assms inv-is-inverse by simp

lemma lunit’-in-hom [introl:

assumes ide a

shows «171[a] 1 a - T ® a»
using assms by auto

16

lemma comp-lunit-lunit’ [simp]:
assumes ide a
shows 1[a] - 171[a] = a
and 17 !a] - 1[a) =Z ® a
proof —
show 1[a] - 171[a] = a
using assms comp-arr-inv lunit-inv by fastforce
show 171[a] - l[a] =T ® a
using assms comp-arr-inv lunit-inv by fastforce
qged

lemma lunit’-naturality:

assumes arr f

shows (Z @ f) - 17 dom f] = 1" [cod f] - f
using assms l.naturality !'-ide-simp by simp

abbreviation o’
where o' = o' .map

abbreviation runit’ (<7 1[-]»)
where r~![a] = inv 1]a

lemma o’-ide-simp:
assumes ide a
shows o’.map a = 17 [d]
using assms o'.inverts-components o-ide-simp inverse-unique by auto

lemma runit-inv:

assumes ide a

shows inverse-arrows r[a] r=1[a]
using assms inv-is-inverse by simp

lemma runit’-in-hom [introl:

assumes ide a

shows «r71[a] : a — a @ I»
using assms by auto

lemma comp-runit-runit’ [simp):
assumes ide a
shows r[a] - r71[a] = a
and r~!a] - rfa) =a® T
proof —
show r[a] - r71[a] = a
using assms runit-inv by fastforce
show r~![a] - r[a) =a ® T
using assms runit-inv by fastforce
qged

17

lemma runit’-naturality:

assumes arr f

shows (f ® Z) - v~ dom f] = v~ [cod f] - f
using assms o'.naturality o'-ide-simp by simp

lemma [unit-commutes-with-L:
assumes ide a
shows 1[Z ® a] = Z ® 1[d]
using assms lunit-naturality lunit-in-hom iso-lunit iso-is-section
section-is-mono mono-cancel L.preserves-ide arrl cod-lunit
dom-lunit seql
by metis

lemma runit-commutes-with-R:
assumes ide a
shows rfla @ Z] = r[a] ® T
using assms runit-naturality runit-in-hom iso-runit iso-is-section
section-is-mono mono-cancel R.preserves-ide arrl cod-runit
dom-runit seql
by metis

The components of the left and right unitors are related via a “triangle” diagram

that also involves the associator. The proof follows [2], Proposition 2.2.3.

lemma triangle:

assumes ide ¢ and ide b

shows (a ® 1[b]) - ala, Z, b] = r[a] ® b
proof —

We show that the lower left triangle in the following diagram commutes.

(a®I)®I)® b et Aeb (e®I®I)® b
(tla] ®) ® TR b
(a®@I)® b
ala ® 7, Z, b ala, Z, b] ala, T ® I, Y]
eI ®Db
(a®@I)R®I Db a®l1I® b a®R(ZIRI)RDb
m @ ® alZ, T, b]
a®RIR®I®b

have x: (a QZ ® b)) - ala, Z, TR b =r[a] ®T Qb
proof —

18

have 1: (e @ l[Z ® b]) - ala, Z,Z ® b]) - ala ® Z, Z, b]
=(rla] ® T ® b) - ala ® Z, Z, b
proof —
have (¢ ® l[Z ® b]) - ala, Z, T ® b)) -ala ® Z, I, b] =
((a@Z®V]) - (a®alZ,Z,0b]) - ala,ZRZ, 0 - (ala, Z, I] @ b)
using assms pentagon comp-assoc by auto
also have ... = (¢ ® ((Z ® 1[b]) - a[Z, Z, b])) - ala, Z ® Z, b] - (ala, Z, Z] ® b)
using assms interchange lunit-commutes-with-L by simp
also have ... = (e ® (t ® b)) - ala, T ® Z, b]) - (a]a, Z, I] ® b)
using assms lunit-char unit-in-hom comp-arr-dom comp-assoc by auto
also have ... = (a[a, Z, b] - ((a ® ¢) ® b)) - (ala, Z, I] ® b)
using assms unit-in-hom assoc-naturality [of a ¢ b] by fastforce
also have ... = afa, Z, b] - ((r[a] ®) ® b)
using assms unit-in-hom interchange runit-char(2) comp-assoc by auto
also have ... = (rf[a) ® T ® b) - ala ® Z, Z,)
using assms assoc-naturality [of r[a] Z b] by simp
finally show ?thesis by blast
qed
show ?thesis
proof —
have epi ala ® Z, Z, b]
using assms iso-assoc iso-is-retraction retraction-is-epi by simp
thus ?thesis
using 1 assms
epi-cancel [of ala ® Z,Z, b] (a ®] ® b)) - ala, Z, T ® b]]
by fastforce
qed
qed

In [2] it merely states that the preceding result suffices “because any object of C' is
isomorphic to one of the form Z ® b.” However, it seems a little bit more involved than
that to formally transport the equation (*) along the isomorphism 18] from Z ® b to b.

have (a ® 1[b]) - ala, Z, b] = (e @ 1[b]) - (a @ IZ @ b]) - (a @ T @ 171[p])) -
(a®Z®I1b) - ale, T, Z®b] - ((a ®I) @ 171b])
proof —
have afa, Z, b) = (e ® Z ® 1[b]) - a[a, Z, T @ b] - ((a ® T) ® 171[b])
proof —
have (a ® Z @ 1[b]) - ala, Z, Z ® b] - ((a ®) @ 171[b])
— (0@ Z@1) - (0@ T o1 b)) -ala T, Y
using assms assoc-naturality [of a T 171[b]] comp-assoc by simp
also have ... = ala, Z, b]
using assms inv-is-inverse interchange comp-cod-arr by simp
finally show ?thesis by auto
qed
moreover have ¢ ® 1[b] = (a @ 1[b]) - (a R [T @ b]) - (a @ T @ 171[b])
using assms lunit-commutes-with-L comp-arr-dom interchange by auto
ultimately show ?thesis by argo
qed
also have ... = (a @ 1[0]) - (e @ 1Z ® b)) - (a @ Z @ 171[}]) - (a @ T @ 1[b])) -

19

ala, Z, T ® b] - ((a @ T) @ 171[b])
using assms comp-assoc by auto

also have ... = (a @ 1[b]) - (e @ [Z @ b)) - ala, T, Z @ b]) - ((a @ T) ® 171[b])
using assms interchange comp-cod-arr comp-assoc by auto
also have ... =rfa] ® b

using assms * interchange runit-char(1) comp-arr-dom comp-cod-arr by auto
finally show ?thesis by blast
qed

lemma [unit-tensor-gen:

assumes ide a and ide b and ide ¢

shows (a @ 1[b® ¢]) - (a ® a[Z, b, ¢]) = a @[] @ ¢
proof —

We show that the lower right triangle in the following diagram commutes.

ala, Z, b] ® ¢

(e ®7I)® a®ZI®b®c
m /M
® b)
ala ® Z, b,] ala, b, | ala, T ® b,]
Rb®c
W W
(e®I)®b®c a®1b® d RIZI®b®c
aRIRbR c

have ((a @ l[b ® ¢]) - (a ® a[Z, b, ¢])) - (a[a, T ® b,] - (ala, Z, b] ® ¢)) =
((a@1b®c]) ala, Z, b® ¢]) -ala ® Z, b,]
using assms pentagon comp-assoc by simp

also have ... = (r[a] ® (b ® ¢)) - ala ® Z, b, (]
using assms triangle by auto

also have ... = ala, b,] - ((r[a] ® b) ® ¢)
using assms assoc-naturality [0 r[a] b ¢] by auto

also have ... = (a[a, b, c] - ((a ® 1[}]) ® ¢)) - (ala, Z, b] ® ¢)
using assms triangle interchange comp-assoc by auto

also have ... = (¢ ® (1[b)] ® ¢)) - (a[a, T ® b, ¢] - (a]a, Z, b] ® ¢))

using assms assoc-naturality [of a 1[b] ¢] comp-assoc by auto
finally have I: ((a @ l[b ® ¢]) - (a ® a[Z, b, ¢])) - ala, T @ b,] - (ala, Z, b] ® ¢)
=(a® (1[}] ® ¢)) - ala, T ® b,] - (ala, Z, b] ® ¢)
by blast
The result follows by cancelling the isomorphism afa, Z ® b, ¢| - (ala, Z, b] ® ¢

have 2: iso (ala, T ® b, ¢] - (a]a, Z, b] ® ¢))

20

using assms isos-compose by simp
moreover have
seq (4@ 1[b® d]) - (a @ alL, b,) (a[a, T ® b, d] - (ala, T, }] ® ©))
using assms by auto
moreover have seq (a ® (1[b] ® ¢)) (ala, Z ® b,] - (ala, Z, b] ® ¢))
using assms by auto
ultimately show ?thesis
using 1 2 assms iso-is-retraction retraction-is-epi
epi-cancel
[of ala, Z ® b, c] - (ala, Z, b] ® ¢)
(a®@1b®c]) - (a®alZ, b, c]) a® 1] ® (]
by auto
qed

The following result is quoted without proof as Theorem 7 of [3] where it is attributed
to MacLane [4]. It also appears as [5], Exercise 1, page 161. I did not succeed within a
few hours to construct a proof following MacLane’s hint. The proof below is based on
[2], Proposition 2.2.4.

lemma lunit-tensor’:
assumes ide ¢ and ide b
shows l[a ® b] - a[Z, a, b] = 1[a] ® b
proof —
have Z ® (lla ® b] - a[Z, a, b)) = Z ® (1[a] ® b)
using assms interchange [of T I] lunit-tensor-gen by simp
moreover have par (I[a ® b] - a|Z, a, b]) (1[a] ® b)
using assms by simp
ultimately show ?thesis
using assms L.is-faithful [of 1la ® b] - a[Z, a, b] l[a] ® b] by simp
qged

lemma lunit-tensor:
assumes ide a and ide b
shows 1[a ® b] = (I[a] ® b) - a=1[Z, a, b]
using assms lunit-tensor’ invert-side-of-triangle by simp

We next show the corresponding result for the right unitor.

lemma runit-tensor-gen:

assumes ide a and ide b and ide c

shows r[a ®] ® ¢ = ((a ® r[b]) ® ¢) - (a[a, b, I] ® ¢)
proof —

We show that the upper right triangle in the following diagram commutes.

21

((a

ala® b, Z, ¢

(a®b) @I ®c

(a ®b) ®1[¢
ala, b, T ® (]

a® b®lc

aRbRXIT R c

@b RI)®c

rla ® b ® ¢

(a®b) ®c

ala, b,]

a®@bRc

W

a ®r[b]) ® ¢

a ® a[b, Z, c]

have rla ® b)) ® ¢ = ((a ® b) ® l[]) - ala ® b, Z, (]

using assms triangle by simp
also have ... = (a71[a, b,] - (a ®

b® 1) - ala, b, T @ ¢]) -

\w

(a®@b®7I)®c

ala, b ® Z, (]

e®(b®I)ec

ala ® b, Z, (]

using assms assoc-naturality [of a b 1[c]] comp-arr-dom comp-cod-arr

invert-side-of-triangle(1)
by force

also have ... = a=!a, b,] - (a ® b ® 1[(]) -

using comp-assoc by force
also have ... = a=[a, b, ¢] - ((a ®

using comp-assoc by simp

ala, b, T ®] - ala ® b, Z, (]

(xft] @) - (a @ a~1[b, T, d])) -

ala, b, T ® c] - ala ® b, Z, (]

using assms triangle [of b c] interchange invert-side-of-triangle(2) by force

also have ... = (((a ® t[b]) ® ¢) - a~Ya, b @ I, ¢]) -
ala, b, T ®] - ala ® b, Z, |

using assms assoc’-naturality [of a r[b] c] comp-assoc by force

also have ... = ((a @ 1[b]) ® ¢) -a [a, bR Z,] - (a @ a~1[b, T, ¢]) -

ala, b, T ® c] - ala ® b, Z, (]

also have ... = ((a ® r[b]) ® ¢) - (a[a, b, Z] ® ¢)

using assms pentagon invert-side-of-triangle(1)

invert-side-of-triangle(1)

[of ala, b, T ® ¢] - ala ® b, I, c] a ® alb, Z, (]

ala, b ® Z,] - (ala, b, Z] ® ¢)]

by force
finally show ?thesis by blast
qed

lemma runit-tensor:
assumes ide a and ide b

shows r[a ® b] = (a ® r[b]) - ala, b, T

proof —
have ((a ® r[b]) - ala, b, Z]) ® T =

rla ® b @ T

22

(a ®a=lb, Z, c]) -

using assms interchange [of T I| runit-tensor-gen by simp
moreover have par ((a ® r[b]) - ala, b, Z]) rfe ® b]
using assms by simp
ultimately show “thesis
using assms R.is-faithful [of (a ® r[b]) - (a[a, b, Z]) r[a ® b]]
by fastforce
qged

lemma runit-tensor:
assumes ide a and ide b
shows r[a ® b] - a=Y[a, b, I] = a @ r[b]
using assms runit-tensor invert-side-of-triangle by force

Sometimes inverted forms of the triangle and pentagon axioms are useful.

lemma triangle”:
assumes ide ¢ and ide b
shows (a ® 1[b]) = (r[a] @ b) - a=1[a, Z, b]
proof —

have (r[a] ® b) - a=1[a, Z, b] = ((a @ 1[b]) - a[a, Z, b]) - a~[a, Z, b]

using assms triangle by auto
also have ... = (a ® 1[b])
using assms comp-arr-dom comp-assoc by auto

finally show ?thesis by auto

ged

lemma pentagon’”:

assumes ide o and ide b and ide c and ide d

shows ((a=1[a, b, c] ® d) - a=[a, b ® ¢, d]) - (a ® a~1[b, ¢, d])
=alla®b, ¢, d-alla b c®d

proof —

have ((a=t[a, b, c] ® d) - a=ta, b ® ¢, d]) - (a ® a=1[b, ¢, d])
= nv ((CL ® a[ba ¢ d]) ’ (a[av b® c, d} ’ (a[aa b, C] ® d)))
using assms isos-compose inv-comp by simp

also have ... = inv (a[a, b, ¢ ® d] - ala ® b, ¢, d])
using assms pentagon by auto
also have ... = a=!a ® b, ¢, d] - a=[a, b, ¢ ® d]

using assms inv-comp by simp
finally show ?thesis by auto
qed

The following non-obvious fact is Corollary 2.2.5 from [2]. The statement that 1[Z] =
r[Z] is Theorem 6 from [3]. MacLane [5] does not show this, but assumes it as an axiom.

lemma unitor-coincidence:
shows |[Z] = ¢ and r[Z] = ¢
proof —
have I[Z] ® T = (Z ® 1[Z]) - a[Z, Z, 7]
using lunit-tensor’ [of T I] lunit-commutes-with-L [of Z] by simp
moreover have r[7] ® 7 = (Z ® 1[7]) - a[Z, Z, T]
using triangle [of Z I] by simp

23

moreover have 1 ® 7 = (Z ® |[Z]) - a[Z, Z, 7]
using lunit-char comp-arr-dom unit-in-hom comp-assoc by auto
ultimately have [[Z] ® T =1 @ T AT Z]| ® T =1 T
by argo
moreover have par 1[Z] ¢ A par r[Z] ¢
using unit-in-hom by force
ultimately have 1: 1[Z] = . A r[Z] = ¢
using R.is-faithful by metis
show 1[Z] = ¢ using ! by auto
show r[Z] = ¢ using 1 by auto
qged

lemma unit-triangle:
shows 1 ® T = (Z ® 1) - a[Z, Z,]
and 1 ®ZI)-a YI,7,7]=T®
using triangle [of T I] triangle’ [of T I] unitor-coincidence by auto

The only isomorphism that commutes with ¢ is Z.

lemma iso-commuting-with-unit-equals-unity:
assumes «f : Z - Ivandiso fand f- 1= (f ® f)

shows f =7

proof —
have T ® f=7T® 1T
proof —

have f@ f=f® T
by (metis assms(1,3) iso-cancel-left runit-naturality seqE seql’ unit-in-hom-az
unit-is-iso unitor-coincidence(2))
thus ?thesis
by (metis assms(1—2) R.preserves-comp comp-cod-arr comp-inv-arr’ ideD(1) ide-unity
in-homE interchange)
qed
moreover have par f 7
using assms by auto
ultimately show f =7
using L.is-faithful by metis
qged

end

We now show that the unit ¢ of a monoidal category is unique up to a unique iso-
morphism (Proposition 2.2.6 of [2]).

locale monoidal-category-with-alternate-unit =
monoidal-category C' T « v +
Cy: monoidal-category C' T « 1

for C :: 'a comp (infixr <> 55)

and T :: 'a * 'a = 'a

and o :: ‘ax 'ax 'a="a

and ¢ :: a

and ¢; 2 'a

24

begin

no-notation C.tensor (infixr «®) 53)
no-notation Ci.unity («I»)
no-notation Cy.lunit (<1[-)»)
no-notation Cy.runit (<r[-]»)
no-notation Cj.assoc (<a[-, -,)
no-notation Cj.assoc’ («a=1[-, -,)

notation Cj.tensor (infixr «®1> 53)
notation Cj.unity (vZ1»)
notation Cy.lunit (<14]-])
notation Cy.runit («1[-]»)
notation Cj.assoc (a1~ -, -]»)
notation Cj.assoc’ (a1~ [, -,)
definition ¢

where i = 1[Z1] - inv 11[Z]

lemma iso-i:
shows «i : 7 — Z1» and iso 1
proof —
show «7 :7Z — Z1»
using C'.iso-runit inv-in-hom i-def by auto
show iso i
using iso-lunit C4.iso-runit isos-compose i-def by simp
qged

The following is Exercise 2.2.7 of [2].

lemma i-maps-t-to-iq:
shows i -t =17 - (i ® 17)
proof —
have 1: inv r[Z] - ¢« = (r1[Z] ® 1[Z4]) - (inv 11[Z] ® inv 11[Z])
proof —
have ¢ - (11[Z] ® r1[Z]) = r1[Z] - (r1[Z] ® 1[Z1))
proof —

25

(Z®11)®I®Il

I a=l[Z, T, T.] T ®1I
nZ ® I ' ® I
ZIT®I) eI
L r1[Z]
7

have ¢t - (n[Z] @ r1[Z]) = ¢ - (Z @ 11[Z]) - (1[Z] ® T ® I1)
using interchange comp-cod-arr comp-arr-dom by simp

also have ... = ¢ - (I’l[I X I] . a_l[I, I, Il]) . (I‘l[I] RIT X Il)
using Cy.runit-tensor’ by auto

also have ... = (1 - 11[Z ® Z]) - a= YL, Z, Z;] - (r1[Z] ® T @ L)
using comp-assoc by auto

also have ... = (11[Z] - 1 ® 71)) - a YT, Z, 1] - m[Z] ® T ® T;)
using C;.runit-naturality [of] unit-in-hom by fastforce

also have ... = rl[I] . ((L ® Zl) . a_l[I, 7T, Il]) . (I‘l[I] RI® Il)

using comp-assoc by auto
also have ... =11[Z] - (Z ® 1[Z1]) - (11[Z] ® T ® T4)
using lunit-tensor lunit-commutes-with-L unitor-coincidence by simp
also have ... = r1[Z] - (r1[Z] ® 1[Z4])
using interchange comp-arr-dom comp-cod-arr by simp
finally show ?thesis by blast
qed
moreover have seq ¢ (r1[Z] ® r1[Z]) A seq r1[Z] (r1[Z] ® 1[Z1])
using unit-in-hom by fastforce
moreover have iso r1[Z] A iso (r1[Z] ® r1[Z])
using C1.iso-runit tensor-preserves-iso by force
ultimately show ¢thesis
using invert-opposite-sides-of-square inv-tensor by metis
qed
have 2: I[Il] . (I‘l[I] & I[Il]) =l - (1[_’[1} ® I[Z_l])
proof —

26

(Z®I) ® (Z®I)

(Z ® Z1)Q 1[Z4]

1[Z1] ® 1[T4] r1 (7] ® 1[Z4]

Z®I) eI

/ﬂLM®/Il I‘1[Z] ® Iy

AR al[Z, I, T1] A

1Z1 ® I4]

1111

/

7y

have 1[7,] - (r1[Z] ® 1[Z4]) = [Z4] - (n[Z] ® I1) - ((Z @ I1) @ 1[T4])
using interchange comp-arr-dom comp-cod-arr by force
also have ... = I[Il] . ((I X L1) . a[I, Il, Il]) . ((I X Il) ® 1[11])

using C1.runit-tensor C'.unitor-coincidence Cy.runit-commutes-with-R by simp

also have ... = (I[Z1] - T ® 1)) - a|Z, Z1, Z1] - (Z ® Z1) ® 1[Z41])

using comp-assoc by fastforce
also have ... = (Ll : I[Il ® Il]) . a[Z, Il, Il] . ((I ® Il) X I[I]_])

using lunit-naturality [of ¢1] Cy.unit-in-hom lunit-commutes-with-L by fastforce
also have ... = L1 - (1[:[1 X Il] . a[I, Il, Il]) . ((I (24 Il) X I[Il])

using comp-assoc by force
also have ... = 1 - (I[Z1] ® 71) - (Z @ Z;) ® 1[Z4])
using lunit-tensor’ by auto
also have ... = 11 - (1[Z1] ® l[Z1])
using interchange comp-arr-dom comp-cod-arr by simp
finally show ¢thesis by blast
qed
show ?thesis
proof —

1[Z 1[Z ri|Z r1[Z]
Lol —220r e rye eV 2 7 61,
L1 rl[I] ®1[Iﬂ L

T 1] IT®1T; i 7

have i - ¢ = 1[Z4] - inv 11[Z] - ¢

27

using i-def comp-assoc by auto

also have ... = (1[Z1] - (r1[Z] ® 1[Z1])) - (inv r1[Z] ® inv 11[Z])
using 1 comp-assoc by simp

also have ... = 11 - (1[Z1] ® l[Z1]) - (inv 1r1[Z] ® inv r1[Z])
using 2 comp-assoc by fastforce

also have ... = 11 - (i ® i)

using interchange i-def by simp
finally show ?thesis by blast
qed
qged

lemma inv-i-iso-i:
assumes «f : Z > Zvand isofand f -t =11 - (f ® f)
shows «inv i - f : Z — ZI» and iso (inv i - f)
and (invi-f)-t=¢v- (i f@invi-f)
proof —
show 1: «invi-f:7 — I»
using assms iso-i inv-in-hom by blast
show iso (inv i - f)
using assms 1 iso-i inv-in-hom
by (intro isos-compose, auto)
show (invi-f) - v=v-(invi- - f®invi-f)
proof —
have (invi-f)-v=(invi-) (ff)
using assms iso-i comp-assoc by auto
also have ... = (v - (inv i ® inv 7)) - (f ® f)
by (metis unit-in-hom-azx i-maps-t-to-11 invert-opposite-sides-of-square iso-i
inv-tensor tensor-preserves-iso seql’)
also have ... = ¢ (invi - f ® inv i - f)
using assms 1 iso-i interchange comp-assoc by fastforce
finally show ?thesis by blast
qed
qged

lemma unit-unique-upto-unique-iso:
shows If. «f :Z > Iy Nisof ANf-1=11-(f®F)
proof
show «i: Z > Iy Nisoi ANi-t=11 (1 ® 1)
using iso-i i-maps-t-to-1; by auto
show A\f. «f:Z >Zi» Nisof Nf-v=u -(fQf)=f=1i
proof —
fix f
assume f: «f T > Iy ANisof Af-v=u-(f®f)
have invi- - f =17
using [inv-i-iso-1 iso-commuting-with-unit-equals-unity by blast
hence ide (C (inv i) f)
using iso-i by simp
thus f =i
using section-retraction-of-iso(2) [of inv i f] inverse-arrow-unique inv-is-inverse

28

150-1
by blast
qed
qed

end

2.2 Elementary Monoidal Category

Although the economy of data assumed by monoidal-category is useful for general results,
to establish interpretations it is more convenient to work with a traditional definition
of monoidal category. The following locale provides such a definition. It permits a
monoidal category to be specified by giving the tensor product and the components
of the associator and unitors, which are required only to satisfy elementary conditions
that imply functoriality and naturality, without having to worry about extensionality or
formal interpretations for the various functors and natural transformations.

locale elementary-monoidal-category =

category C
for C :: 'a comp (infixr <> 55)
and tensor :: 'a = 'a = 'a (infixr «®» 53)
and unity :: 'a (xI»)
and lunit :: 'a = 'a (1]
and runit = 'a = 'a («x[-]»)
and assoc :: ‘a = 'a = 'a = 'a («a[-, -, p) +

assumes ide-unity [simp]: ide T
and iso-lunit: ide a = iso 1]a]
and iso-runit: ide a = iso r|a]
and iso-assoc: [ide a; ide b; ide ¢ | = iso ala, b,]
and tensor-in-hom [simp]: [«f :a =2 by «g:c—>dy]| =« ®g:a® c—= b d»
and tensor-preserves-ide: [ide a; ide b | = ide (a @ b)
and interchange: [seq g f; seq g' f'] = (9@ ¢") - (f@f)=9g-f@g" - f
and lunit-in-hom [simp]: ide a = «l[a] : T ® a — a»
and lunit-naturality: arr f = [cod f] - (Z @ f) = f - l[dom f]
and runit-in-hom [simp|: ide a = «rfa] : a @ T — a»
and runit-naturality: arr f = r[cod f] - (f ® Z) = f - r[dom f]
and assoc-in-hom [simp):
[ide a; ide b; ide ¢ | = «ala, b, c] : (a ® D) ® ¢c > a ® b ® c»
and assoc-naturality:
[arr f0; arr f1; arr f2] = alcod f0, cod f1, cod f2] - ((f0 ® f1) ® f2)
= (f0 ® (f1 ® f2)) - a[dom f0, dom f1, dom f2]
and triangle: [ide a; ide b | = (a ® 1[b]) - ala, Z, b] = 1[a] ® b
and pentagon: [ide a; ide b; ide ¢; ide d | =
(a @ alb, ¢, d]) - ala, b ® ¢, d] - (ala, b,] ® d)
=ala, b, c® d] - ala ® b, ¢, d]

An interpretation for the monoidal-category locale readily induces an interpretation
for the elementary-monoidal-category locale.

context monoidal-category

29

begin

lemma induces-elementary-monoidal-category:
shows elementary-monoidal-category C tensor T lunit runit assoc
using iso-assoc tensor-preserves-ide assoc-in-hom tensor-in-hom
assoc-naturality lunit-naturality runit-naturality lunit-in-hom runit-in-hom
iso-lunit iso-runit interchange pentagon triangle
by unfold-locales auto

end

context elementary-monoidal-category
begin

interpretation CC: product-category C C ..
interpretation CCC': product-category C CC.comp ..

definition T :: a * 'a = 'a
where T f = if CC.arr f then (fst f ® snd f) else null

lemma T-simp [simp]:

assumes arr f and arr g

shows T (f, 9) = [® g
using assms T-def by simp

lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f ® g)
using assms tensor-in-hom by blast

lemma dom-tensor [simp]:

assumes arr f and arr g

shows dom (f ® g) = dom f ® dom g
using assms tensor-in-hom by blast

lemma cod-tensor [simpl:

assumes arr f and arr g

shows cod (f ® g) = cod f @ cod g
using assms tensor-in-hom by blast

interpretation T: binary-endofunctor C T
using interchange T-def
apply unfold-locales

apply auto[4]
by (elim CC.seqE, auto)

lemma binary-endofunctor-T:
shows binary-endofunctor C T ..

30

interpretation ToTC: functor CCC.comp C T.ToTC
using T.functor-ToTC by auto

interpretation ToCT: functor CCC.comp C T.ToCT
using T.functor-ToCT by auto

definition o
where o f = if CCC.arr f
then (fst f @ (fst (snd f) ® snd (snd f))) -
a[dom (fst f), dom (fst (snd [)), dom (snd (snd f))]

else null

lemma «a-ide-simp [simp]:
assumes ide o and ide b and ide c
shows « (a, b, ¢) = ala, b,
unfolding a-def using assms assoc-in-hom comp-cod-arr
by (metis CC.arrlpec CCC.arrlpc fst-conv ide-char in-homE snd-conv)

lemma arr-assoc [simp]:
assumes ide a and ide b and ide ¢
shows arr ala, b, |

using assms assoc-in-hom by blast

lemma dom-assoc [simp]:

assumes ide a and ide b and ide c

shows dom ala, b, ¢] = (a ® b) ® ¢
using assms assoc-in-hom by blast

lemma cod-assoc [simp]:

assumes ide a and ide b and ide c

shows cod afa, b, c] = a ® b ® ¢
using assms assoc-in-hom by blast

interpretation a: natural-isomorphism CCC.comp C T.ToTC T.ToCT «
proof —
interpret «: transformation-by-components CCC.comp C T.ToTC T.ToCT «
apply unfold-locales
unfolding a-def T.ToTC-def T.ToCT-def T-def
using comp-arr-dom comp-cod-arr assoc-naturality
by simp-all
interpret «: natural-isomorphism CCC.comp C T.ToTC T.ToCT a.map
using iso-assoc a.map-simp-ide assoc-in-hom tensor-preserves-ide c-def
by (unfold-locales, auto)
have a = a.map
using assoc-naturality a-def comp-cod-arr T.ToTC-def T-def a.map-def by auto
thus natural-isomorphism CCC.comp C T.ToTC T.ToCT «
using a.natural-isomorphism-azxioms by simp
qged

31

interpretation a’: inverse-transformation CCC.comp C T.ToTC T.ToCT « ..

interpretation L: functor C C <\f. T (Z, f)»
using T.fizing-ide-gives-functor-1 by auto

interpretation R: functor C C <\f. T (f, I)
using T.fizing-ide-gives-functor-2 by auto

interpretation I: natural-isomorphism C C <\f. T (Z, f)> map
Af. if arr f then f - 1[dom f] else nully
proof —
interpret [: transformation-by-components C C «<\f. T (Z, f)> map <Aa. l[a]
using lunit-naturality by (unfold-locales, auto)
interpret [: natural-isomorphism C C <\f. T (Z, f)» map l.map
using iso-lunit by (unfold-locales, simp)
have [.map = (Af. if arr f then f - 1[dom f] else null)
using [.map-def lunit-naturality by fastforce
thus natural-isomorphism C C (M. T (Z, f)) map (Nf. if arr f then f - 1[dom f] else null)
using l.natural-isomorphism-axioms by force
qed

interpretation o: natural-isomorphism C C <\f. T (f, I)» map
Af.if arr f then f - t[dom f] else nulls
proof —
interpret o: transformation-by-components C C «<\f. T (f, Z)» map <Aa. r[a]
using runit-naturality by (unfold-locales, auto)
interpret o: natural-isomorphism C C <\f. T (f, Z)» map o.map
using iso-runit p.map-simp-ide by (unfold-locales, simp)
have (\f. if arr f then f - r[dom f] else null) = p.map
using o.map-def runit-naturality T-simp by fastforce
thus natural-isomorphism C C (Nf. T (f, 7)) map (Af. if arr f then f - r[dom f] else null)
using g.natural-isomorphism-axioms by force
qged

The endofunctors A\f. T (Z, f) and A\f. T (f, Z) are equivalence functors, due to the
existence of the unitors.

interpretation L: equivalence-functor C C «<\f. T (Z, f)
proof —
interpret endofunctor C <\f. T (Z, f)» ..
show equivalence-functor C C (A\f. T (Z, f))
using isomorphic-to-identity-is-equivalence l.natural-isomorphism-azioms by simp
qed

interpretation R: equivalence-functor C C «\f. T (f, I)»
proof —
interpret endofunctor C <\f. T (f, I)» ..
show equivalence-functor C C (Af. T (f, 1))
using isomorphic-to-identity-is-equivalence g.natural-isomorphism-axioms by simp
qged

32

To complete an interpretation of the monoidal-category locale, we define ¢ = 1[Z]. We
could also have chosen ¢ = g [Z] as the two are equal, though to prove that requires some
work yet.

definition ¢
where = 1[Z]

lemma ¢-in-hom:
shows «t: Z ® T — I»
using lunit-in-hom t-def by simp

lemma induces-monoidal-category:
shows monoidal-category C' T « ¢
proof —
have 1: «t. : T ® T — I»
using lunit-in-hom t-def by simp
interpret L: equivalence-functor C C <\f. T (cod ¢, f)
proof —
have (A\f. T (Z, f)) = (M. T (cod ¢, f)) using I by fastforce
thus equivalence-functor C C (Af. T (cod ¢, f))
using L.equivalence-functor-axioms T-def by simp
qed
interpret R: equivalence-functor C C <\f. T (f, cod i)
proof —
have (\f. T (f,Z)) = (\f. T (f, cod ¢)) using 1 by fastforce
thus equivalence-functor C C (Af. T (f, cod 1))
using R.equivalence-functor-axioms T-def by simp
qged
show ?thesis
proof
show «: T (cod t, cod 1) — cod v» using 1 by fastforce
show iso ¢ using iso-lunit .-def by simp
show Aa b c d. [ide a; ide b; ide ¢; ide d | =
T (a, a (b, ¢, d)) - a(a, T (b, c),d) T («(a, b, ¢), d)
=a(a, b, T (c,d) a(T (a,b), ¢, d)
using pentagon tensor-preserves-ide by simp
qed
qed

interpretation MC: monoidal-category C' T « ¢
using induces-monoidal-category by auto

We now show that the notions defined in the interpretation MC agree with their
counterparts in the present locale. These facts are needed if we define an interpretation
for the elementary-monoidal-category locale, use it to obtain the induced interpretation
for monoidal-category, and then want to transfer facts obtained in the induced interpre-
tation back to the original one.

lemma Z-agreement:
shows MC.unity =T

33

by (metis t-def ide-unity in-homE lunit-in-hom)

lemma L-agreement:
shows MC.L = (\f. T (Z, f))
using ¢-in-hom by auto

lemma R-agreement:
shows MC.R = (\f. T (f, 1))
using c-in-hom by auto

We wish to show that the components of the unitors MC.l and MC'.p defined in the
induced interpretation MC agree with those given by the parameters lunit and runit
to the present locale. To avoid a lengthy development that repeats work already done
in the monoidal-category locale, we establish the agreement in a special case and then
use the properties already shown for MC to prove the general case. In particular, we
first show that 1[Z] = MC.lunit MC.unity and r[Z] = MC.runit MC.unity, from which
it follows by facts already proved for MC that both are equal to ¢. We then show that
for an arbitrary identity a the arrows 1[a] and r[a] satisfy the equations that uniquely
characterize the components MC'.lunit a and MC.runit a, respectively, and are therefore
equal to those components.

lemma unitor-coincidence:
shows 1[Z] = ¢ and r[Z] =«
proof —
have r[Z] = MC.runit MC.unity
by (metis (no-types, lifting) MC.arr-runit MC.runit-eql MC .unitor-coincidence(2)
T-simp L-agreement t-def a-ide-simp ideD(1) ide-unity iso-is-arr iso-runit
runit-in-hom triangle)
moreover have 1[Z] = MC.lunit MC.unity
using MC.unitor-coincidence(1) t-def by force
ultimately have 1:1[Z] = . A r[Z] = ¢
using MC.unitor-coincidence by simp
show 1[Z] = . using 1 by simp
show r[Z] = ¢ using 1 by simp
qged

lemma lunit-char:
assumes ide a
shows Z ® 1[a] = (¢t ® a) - inv a[Z, Z, d]
by (metis MC.iso-assoc a-ide-simp t-in-hom arrl arr-tensor assms ideD(1)
ide-unity invert-side-of-triangle(2) triangle unitor-coincidence(2))

lemma runit-char:

assumes ide a

shows r[a] ® T = (a ® ¢) - ala, Z, 7]
using assms triangle i-def by simp

lemma [-agreement:
shows MC.I = (\f. if arr f then f - 1[dom f] else null)

34

proof
fix f
have = arr f = MC.l f = null by simp
moreover have arr f = MC.l f = f - 1[dom f]
proof —
have Aa. ide a = 1[a] = MC.lunit a
using Z-agreement T-def lunit-char t-in-hom iso-lunit
apply (intro MC.lunit-eqI)
apply auto
by blast
thus ?thesis
by (metis ide-dom ext seqE)
qed
ultimately show MC.l f = (if arr f then f -][dom f] else null) by simp
qed

lemma p-agreement:
shows MC.p = (\f. if arr f then f - r[dom f] else null)
proof
fix f
have — arr f = MC.o f = null by simp
moreover have arr f = MC.o f = [- t[dom f]
proof —
have Aa. ide a = r[a] = MC.runit a
using Z-agreement T-def runit-char v-in-hom iso-runit
apply (intro MC.runit-eql)
apply auto
by blast
thus ?thesis
by (metis ide-dom local.ext seqE)
qed
ultimately show MC.o f = (if arr f then f - r[dom f] else null) by simp
qged

lemma lunit-agreement:
assumes ide a
shows MC.lunit a = 1]d]
using assms comp-cod-arr l-agreement
by (metis (no-types, lifting) MC.l-ide-simp ide-char in-homE lunit-in-hom)

lemma runit-agreement:
assumes ide a
shows MC.runit a = r[a
using assms comp-cod-arr p-agreement
by (metis (no-types, lifting) MC.o-ide-simp ide-char in-homE runit-in-hom)

end

35

2.3 Strict Monoidal Category

A monoidal category is strict if the components of the associator and unitors are all
identities.

locale strict-monoidal-category =
monoidal-category +
assumes strict-assoc: [ide a0; ide al; ide a2 | = ide ala0, al, a2]
and strict-lunit: ide a = 1[a] = a
and strict-runit: ide « = rla] = a
begin

lemma strict-unit:
shows =7
using strict-lunit unitor-coincidence(1) by auto

lemma tensor-assoc [simpl:
assumes arr f0 and arr f1 and arr f2
shows (f0 @ f1) @ f2=f0 ® f1 ® f2
by (metis CC.arrl pc CCC.arrl po o' .preserves-reflects-arr «'-simp assms(1—38)
assoc’-naturality ide-cod ide-dom inv-ide comp-arr-ide comp-ide-arr strict-assoc)

end

2.4 Opposite Monoidal Category

The opposite of a monoidal category has the same underlying category, but the arguments
to the tensor product are reversed and the associator is inverted and its arguments
reversed.

locale opposite-monoidal-category =
C: monoidal-category C T ac

for C :: 'a comp (infixr <> 55)

and T¢c :: 'a x 'a = a

and ac :: ‘a x 'a x 'a = a

and ¢ :: ‘a

begin

abbreviation T
where T f = T¢ (snd f, fst f)

abbreviation «
where o f = C.a’ (snd (snd f), fst (snd f), fst f)

end
sublocale opposite-monoidal-category C monoidal-category C' T o ¢

proof —
interpret T': binary-endofunctor C' T

36

using C.T.extensionality C.CC.seq-char C.interchange by (unfold-locales, auto)
interpret ToTC": functor C.CCC.comp C T.ToTC
using T.functor-ToTC by auto
interpret ToCT: functor C.CCC.comp C T.ToCT
using T.functor-ToCT by auto
interpret o: natural-transformation C.CCC.comp C T.ToTC T.ToCT «
using C.a/.extensionality C.CCC.dom-char C.CCC.cod-char T.ToTC-def T.ToCT-def
C.a'-simp C.a'.naturality
by (unfold-locales) auto
interpret a: natural-isomorphism C.CCC.comp C T.ToTC T.ToCT «
using C.a’.components-are-iso by (unfold-locales, simp)
interpret L: equivalence-functor C C «<\f. T (C.cod ¢, f)
using C.R.equivalence-functor-axioms by simp
interpret R: equivalence-functor C C «<A\f. T (f, C.cod t)»
using C.L.equivalence-functor-axioms by simp
show monoidal-category C T « ¢
using C.unit-is-iso C.pentagon’ C.comp-assoc
by (unfold-locales) auto
qed

context opposite-monoidal-category
begin

lemma lunit-simp:
assumes C.ide a
shows lunit a = C.runit a
using assms lunit-char C.iso-assoc by (intro C.runit-eql, auto)

lemma runit-simp:
assumes C.ide a
shows runit a = C.lunit a
using assms runit-char C.iso-assoc by (intro C.lunit-eql, auto)

end

2.5 Dual Monoidal Category

The dual of a monoidal category is obtained by reversing the arrows of the underlying
category. The tensor product remains the same, but the associators and unitors are
inverted.

locale dual-monoidal-category =
M: monoidal-category
begin

sublocale dual-category C ..

sublocale MM: product-category comp comp ..

interpretation T: binary-functor comp comp comp T
using M. T .extensionality M .interchange MM .comp-char

37

by unfold-locales auto
interpretation T: binary-endofunctor comp ..
interpretation ToTC: functor T.CCC.comp comp T.ToTC
using T.functor-ToTC by blast
interpretation ToCT: functor T.CCC.comp comp T.ToCT
using T.functor-ToCT by blast
interpretation «: natural-transformation T.CCC.comp comp T.ToTC T.ToCT M.a'
using M.«o/.extensionality M .o’ naturalityl M .o’ naturality2
by unfold-locales auto
interpretation a: natural-isomorphism T.CCC.comp comp T.ToTC T.ToCT M.o'
by unfold-locales auto
interpretation L: equivalence-functor comp comp <M .tensor (cod (M.inv 1))
proof —
interpret L: dual-equivalence-functor C' C <M.tensor I ..
show equivalence-functor comp comp (M.tensor (cod (M.inv v)))
using L.equivalence-functor-axioms
by (simp add: M.unit-is-iso)
qged
interpretation R: equivalence-functor comp comp <\f. M.tensor f (cod (M.inv t))»
proof —
interpret R: dual-equivalence-functor C' C <\f. M.tensor f I» ..
show equivalence-functor comp comp (Af. M.tensor f (cod (M.inv t)))
using R.equivalence-functor-axioms
by (simp add: M .unit-is-iso)
qed

sublocale monoidal-category comp T M.’ «M.inv v
using T.extensionality M .unit-in-hom M .inv-in-hom M .unit-is-iso M .pentagon’
equivalence-functor-def category-azioms
by unfold-locales auto

lemma is-monoidal-category:
shows monoidal-category comp T M.’ (M.inv 1)

no-notation comp (infixr ¢» 55)

lemma assoc-char:
assumes ide a and ide b and ide ¢
shows assoc a b ¢ = M.assoc’ a b ¢ and assoc’ a b ¢ = M.assoc a b ¢
using assms M.inv-inv M .iso-inv-iso
apply force
by (metis assms M.a'-ide-simp M.comp-assoc-assoc’(2) M.ideD(1) M.iso-assoc
M .iso-cancel-left M .iso-inv-iso comp-assoc-assoc’(2) ide-char comp-def
tensor-preserves-ide)

/

lemma lunit-char:
assumes ide a
shows lunit a = M.lunit’ a

38

proof —
have M.lunit’ a = lunit a
proof (intro lunit-eql)
show in-hom (M.lunit’ a) (tensor unity a) a
using assms
by (simp add: M .lunit’-in-hom M .unit-is-iso)
show tensor unity (M.lunit’ a) = comp (tensor (M.inv 1) a) (assoc’ unity unity a)
proof —
have M.inv (tensor T (M.lunit a) - M.assoc T T a) = M.inv (tensor ¢ a)
using assms M .triangle M.unitor-coincidence by auto
hence M.assoc’ T T a - tensor T (M.lunit’ a) = tensor (M.inv 1) a
using assms M.inv-comp M .unit-is-iso by fastforce
thus ?thesis
using assms M .unit-is-iso assoc-char
M .invert-side-of-triangle(1)
[of tensor (M.inv 1) a M.assoc’ unity unity a tensor T 17 '[a]]
by auto
qed
qed
thus ?thesis by simp
qged

lemma runit-char:
assumes ide a
shows runit a = M.runit’ a
proof —
have M.runit’ a = runit a
proof (intro runit-eql)
show in-hom (M.runit’ a) (tensor a unity) a
using assms
by (simp add: M.runit’-in-hom M .unit-is-iso)
show tensor (M.runit’ a) unity = comp (tensor a (M.inv 1)) (assoc a unity unity)
proof —
have M.inv (tensor a v -+ M.assoc a T I) = M.inv (tensor (M.runit a) T)
using assms M .triangle [of a] M.unitor-coincidence by auto
hence M.assoc’ a T T - tensor a (M.inv 1) = tensor (M.runit’ a) T
using assms M .inv-comp M.unit-in-hom M .unit-is-iso by auto
thus ?thesis
using assms M .unit-is-iso assoc-char by auto
qed
qed
thus ?thesis by simp
qged

end

39

2.6 Monoidal Language

In this section we assume that a category C is given, and we define a formal syntax of
terms constructed from arrows of C' using function symbols that correspond to unity,
composition, tensor, the associator and its formal inverse, and the left and right unitors
and their formal inverses. We will use this syntax to state and prove the coherence
theorem and then to construct the free monoidal category generated by C.
locale monoidal-language =
C': category C
for C :: 'a comp (infixr <» 55)
begin

datatype (discs-sels) 't term =

Prim 't («{-))
| Unity ()
ensor 't term 't term infixr «®»
Te tt tt infi X 53
| Comp 't term 't term (infixr <» 55)
unit 't term <d{-]»
Lunit ' 1
| Lunit’ 't term (A7)
| Runit 't term («x[-]»)
| Runit’ 't term (D)
| Assoc 't term 't term 't term (ca[-, -, -]»)
| Assoc’ 't term 't term 't term (<a”~l[-, -, -])

lemma not-is- Tensor-Unity:
shows — is-Tensor Unity
by simp

We define formal domain and codomain functions on terms.

primrec Dom :: 'a term = 'a term
where Dom (f) = (C.dom f)
| DomZ =T
| Dom (t ® u) = (Dom t ® Dom u)
| Dom (t- u) = Dom u
| Dom 1[{] = (T ® Dom t)
| Dom 171[{] = Dom t
| Dom r[t] = (Dom t ® I)
| Dom r=1[t] = Dom t
| Dom a[t, u, v] = ((Dom t @ Dom u) @ Dom v)
| Dom a=[t, u, v] = (Dom t ® (Dom u ® Dom v))

primrec Cod :: 'a term = 'a term
where Cod (f) = (C.cod f)

| Cod T =T

| Cod (t ® u) = (Cod t ® Cod u)

| Cod (t-u) = Codt

| Cod1[t] = Cod t

| Cod171[t] = (T ® Cod t)

| Codr[t] = Cod t

40

| Codr=1[t] = (Cod t @ T)
| Cod aft, u, v] = (Cod t ® (Cod u ® Cod v))
| Cod a=1[t, u, v] = ((Cod t ® Cod u) ® Cod v)

A term is a “formal arrow” if it is constructed from arrows of C' in such a way that
composition is applied only to formally composable pairs of terms.

primrec Arr :: ‘a term = bool
where Arr (f) = C.arr f
| Arr Z = True
| Arr (t @ u) = (Arrt A Arr u)
| Arr (¢ - uw) = (Arr ¢t A Arr w A Dom t = Cod u)
| Arr 1[t] = Arr t
| Arr 171[t] = Arr t
| Arrrlt] = Arr t
| Arre=Y[f] = Arr t
| Arralt, u, v] = (Arr t A Arr u A Arr o)
| Arr a=t, u, v] = (Arrt A Arru A Arrov)

abbreviation Par :: ‘a term = 'a term = bool
where Partu = Arr t A Arr w A Dom t = Dom u A Cod t = Cod u

abbreviation Seq :: 'a term = ‘a term = bool
where Seq t uw = Arrt A Arr w A Dom t = Cod u

abbreviation Hom :: 'a term = 'a term = 'a term set
where Hom a b= { t. Arrt N Domt=a A Codt =10}

A term is a “formal identity” if it is constructed from identity arrows of C and Z
using only the ® operator.

primrec Ide :: 'a term = bool
where Ide (f) = C.ide f

| Ide T = True

| Ide (t @ u) = (Ide t A Ide u)

| Ide (t - u) = False

| Ide 1[t] = False

| Ide 171[{] = Fulse

| Ide r[t] = False

| Ide r—1[t] = False

| Ide a[t, u, v] = False

| Ide a=[t, u, v] = False

lemma Ide-implies-Arr [simp]:
shows Ide t = Arrt
by (induct t) auto

lemma Arr-implies-Ide-Dom:

shows Arr t = Ide (Dom t)
by (induct t) auto

41

lemma Arr-implies-Ide-Cod:
shows Arr t = Ide (Cod t)
by (induct t) auto

lemma Ide-in-Hom [simp]:
shows Idet =t € Hom t t
by (induct t) auto

A formal arrow is “canonical” if the only arrows of C' used in its construction are
identities.

primrec Can :: 'a term = bool
where Can (f)y = C.ide f
| Can T = True
| Can (t ® u) = (Can t A Can u)
| Can (t-u) = (Cant A Can w A Dom t = Cod u)
| Can 1[f] = Can t
| Can 171[f] = Can t
| Canr[t] = Can t
| Canr~1[t] = Can t
| Can aft, u, v] = (Can t A Can u A Can v)
| Can a=1[t, u, v] = (Can t A Can u A Can v)

lemma Ide-implies-Can:
shows Ide t = Can t
by (induct t) auto

lemma Can-implies-Arr:
shows Can t = Arrt
by (induct t) auto

We next define the formal inverse of a term. This is only sensible for formal arrows
built using only isomorphisms of C; in particular, for canonical formal arrows.

primrec Inv :: 'a term = 'a term
where Inv (fy = (C.inv f)
| v =T
| Inv (t ® u) = (Inv t @ Inv u)
| Inv (t - u) = (Inv u - Inv t)
| Inv 1[{] = 17 [Inv {]
| Inv 171[t] = 1[Inv {]
| Inv r[t] = v~ [Inv {]
| Inv v~ [f] = r[Inv {]
| Inv aft, u, v] = a=[Inv t, Inv u, Inv v
| Inv a=1[t, u, v] = a[lnv t, Inv u, Inv V]

lemma Inv-preserves-Ide:
shows Ide t = Ide (Inv t)
by (induct t) auto

lemma Inv-preserves-Can:

42

assumes Can ¢
shows Can (Inv t) and Dom (Inv t) = Cod t and Cod (Inv t) = Dom t
proof —
have 0: Can t = Can (Inv t) A Dom (Inv t) = Cod t A Cod (Inv t) = Dom ¢
by (induct t) auto
show Can (Inv t) using assms 0 by blast
show Dom (Inv t) = Cod t using assms 0 by blast
show Cod (Inv t) = Dom t using assms 0 by blast
qed

lemma Inv-in-Hom [simp]:
assumes Can t
shows Inv t € Hom (Cod t) (Dom t)
using assms Inv-preserves-Can Can-implies-Arr by simp

lemma Inv-Ide [simp]:
assumes Ide a
shows Inv a = a
using assms by (induct a) auto

lemma Inv-Inv [simp]:
assumes Can ¢
shows Inv (Inv t) = ¢
using assms by (induct t) auto

We call a term “diagonal” if it is either Z or it is constructed from arrows of C using
only the ® operator associated to the right. Essentially, such terms are lists of arrows of
C, where Z represents the empty list and ® is used as the list constructor. We call them
“diagonal” because terms can regarded as defining “interconnection matrices” of arrows
connecting “inputs” to “outputs”, and from this point of view diagonal terms correspond
to diagonal matrices. The matrix point of view is suggestive for the extension of the
results presented here to the symmetric monoidal and cartesian monoidal cases.

fun Diag :: 'a term = bool

where Diag T = True
| Diag (fy = C.arr f
| Diag ({f) ® u) = (C.arr f A Diag u AN u # T)
| Diag - = False

lemma Diag-TensorE:
assumes Diag (Tensor t u)
shows (un-Prim ty = t and C.arr (un-Prim t) and Diag t and Diag v and u # T
proof —
have 1: t = (un-Prim t) A C.arr (un-Prim t) A Diag t A Diag u A w # T
using assms by (cases t; simp; cases u; simp)
show (un-Prim t) = t using I by simp
show C.arr (un-Prim t) using 1 by simp
show Diag t using 1 by simp
show Diag u using 1 by simp
show u # Z using 1 by simp

43

qged

lemma Diag-implies-Arr:

shows Diag t = Arrt
apply (induct t, simp-all)
by (simp add: Diag-TensorE)

lemma Dom-preserves-Diag:
shows Diag t = Diag (Dom t)
apply (induct t, simp-all)
proof —
fix uv
assume I2: Diag v = Diag (Dom v)
assume uv: Diag (u ® v)
show Diag (Dom u ® Dom v)
proof —
have 1: is-Prim (Dom u) A C.arr (un-Prim (Dom u)) A
Dom u = (C.dom (un-Prim u))
using uv by (cases u; simp; cases v, simp-all)
have 2: Diagv AN v # L A = is-Comp v A = is-Lunit’ v A = is-Runit’ v
using uv by (cases u; simp; cases v, simp-all)
have Diag (Dom v) A Dom v # T
using 2 I2 by (cases v, simp-all)
thus ?thesis using 1 by force
qed
qged

lemma Cod-preserves-Diag:
shows Diag t = Diag (Cod t)
apply (induct t, simp-all)
proof —
fix uwv
assume I2: Diag v = Diag (Cod v)
assume uv: Diag (u ® v)
show Diag (Cod u ® Cod v)
proof —
have 1: is-Prim (Cod u) A C.arr (un-Prim (Cod u)) A Cod u = {(C.cod (un-Prim w))
using uv by (cases u; simp; cases v; simp)
have 2: Diag v AN v # I A = is-Comp v A = is-Lunit’ v A = is-Runit’ v
using uv by (cases u; simp; cases v; simp)
have Diag (Cod v) A Cod v # T
using 12 2 by (cases v, simp-all)
thus ?thesis using 1 by force
qed
qed

lemma Inv-preserves-Diag:

assumes Can t and Diag t
shows Diag (Inv t)

44

proof —
have Can t A Diag t = Diag (Inv t)
apply (induct t, simp-all)
by (metis (no-types, lifting) Can.simps(1) Inv.simps(1) Inv.simps(2) Diag.simps(3)
Inv-Inv Diag-TensorE(1) C.inv-ide)
thus ?thesis using assms by blast
qged

The following function defines the “dimension” of a term, which is the number of
arrows of (-) it contains. For diagonal terms, this is just the length of the term when
regarded as a list of arrows of (-). Alternatively, if a term is regarded as defining an
interconnection matrix, then the dimension is the number of inputs (or outputs).

primrec dim :: 'a term = nat
where dim (fy = 1
| dim T = 0
| dim (t ® u) = (dim t + dim u)
| dim (t- w) = dim t
| dim 1[{] = dim ¢
| dim 171[t] = dim t
| dim r[t] = dim ¢
| dim v=1[f] = dim t
| dim a[t, u, v] = dim ¢t + dim u + dim v
| dim a=[t, u, v] = dim t + dim u + dim v

The following function defines a tensor product for diagonal terms. If terms are
regarded as lists, this is just list concatenation. If terms are regarded as matrices, this
corresponds to constructing a block diagonal matrix.

fun TensorDiag (infixr | ®]» 53)
where T |®] u = u
[t |®] T =t
[N 1®] u={() ®u
[(@ w) [®]v=1[8] (u|®] v)
| t |®] v = undefined

lemma TensorDiag-Prim [simp]:
assumes t # T

shows (f) |®| t=() ® ¢

using assms by (cases t, simp-all)

lemma TensorDiag-term-Unity [simp]:
shows t |Q| T =t

by (cases t = I; cases t, simp-all)
lemma TensorDiag-Diag:
assumes Diag (t ® u)
shows t |Q| u=tQ u

using assms TensorDiag-Prim by (cases t, simp-all)

lemma TensorDiag-preserves-Diag:

45

assumes Diag t and Diag u
shows Diag (t |®] u)
and Dom (t |®] u) = Dom t |®| Dom u
and Cod (t |®] u) = Cod t |®] Cod u
proof —
have 0: Au. [Diag t; Diag u | =
Diag (t |®] u) A Dom (t |®] u) = Dom t |®] Dom u A
Cod (t |®] u) = Cod t |®] Cod u
apply (induct t, simp-all)
proof —
fix f :: '7a and u :: 'a term
assume f: C.arr f
assume u: Diag u
show Diag ({f) |®] u) A Dom ({f) |®] uv) = (C.dom f) |®] Dom u A
Cod ({f) |®] u) = (C.cod fy |®] Cod u
using u f by (cases u, simp-all)
next
fix v vw
assume I1: Au. Diag v = Diag u = Diag (v |®] u) A
Dom (v |®] u) = Dom v |®] Dom u A
Cod (v |®] u) = Cod v |®]| Cod u
assume I12: Au. Diag w = Diag u = Diag (v |®] u) A
Dom (w |®] u) = Dom w |®] Dom u A
Cod (w |®] u) = Cod w |®] Cod u
assume vw: Diag (v ® w)
assume u: Diag u
show Diag ((v ® w) |®] u) A
Dom (v ® w) |®] u) = (Dom v ® Dom w) |Q| Dom u A
Cod (v® w) |®] u) = (Cod v® Cod w) |®] Cod u
proof —
have v: v = (un-Prim v) A Diag v
using vw Diag-implies-Arr Diag-TensorE [of v w] by force
have w: Diag w
using vw by (simp add: Diag-TensorE)
have v = T = ?thesis by (simp add: vw)
moreover have u # T = %thesis
using u v w I1 I2 Dom-preserves-Diag [of u] Cod-preserves-Diag [of u]
by (cases u, simp-all)
ultimately show ?thesis by blast
qed
qed
show Diag (t |®] u) using assms 0 by blast
show Dom (t |®] u) = Dom t |®] Dom u using assms 0 by blast
show Cod (t |®] u) = Cod t |®] Cod u using assms 0 by blast
qed

lemma TensorDiag-in-Hom:

assumes Diag t and Diag u
shows t |®| u € Hom (Dom t |®| Dom u) (Cod t |®] Cod u)

46

using assms TensorDiag-preserves-Diag Diag-implies-Arr by simp

lemma Dom-TensorDiag:
assumes Diag t and Diag u
shows Dom (t |®] u) = Dom t |®| Dom u
using assms TensorDiag-preserves-Diag(2) by simp

lemma Cod-TensorDiag:
assumes Diag t and Diag u
shows Cod (t |®]| u) = Cod t |®] Cod u
using assms TensorDiag-preserves-Diag(8) by simp

lemma not-is-Tensor-TensorDiagFE:
assumes — is-Tensor (¢t |®] u) and Diag t and Diag u
andt#Z and u #Z
shows Fulse
proof —
have [= is-Tensor (t |®] w); Diag t; Diag u; t # Z; u # T | = False
apply (induct t, simp-all)
proof —
fix v w
assume I2: = is-Tensor (w |®]| u) = Diag w = w # T = Fulse
assume 1: - is-Tensor (v ® w) |®] u)
assume vw: Diag (v ® w)
assume u: Diag u
assume 2: u # T
show Fulse
proof —
have v: v = {(un-Prim v)
using vw Diag-TensorE [of v w] by force
have w: Diag w AN w # T
using vw Diag-TensorE [of v w| by simp
have (v Q@ w) |®] u=v® (v |®] u)
proof —
have (v ®) [®] u= v [®)] (w|®])
using u 2 by (cases u, simp-all)
also have ... = v ® (w |®] u)
using u v w I2 TensorDiag-Prim not-is- Tensor-Unity by metis
finally show ?thesis by simp
qed
thus “thesis using 1 by simp
qed
qed
thus ?thesis using assms by blast
qed

lemma TensorDiag-assoc:

assumes Diag t and Diag v and Diag v

shows (¢t [®] u) |®] v=1|®] (v |®] v)

47

proof —
have An t uw v. [dim ¢t = n; Diag t; Diag u; Diag v]| =
(t1®] w) 1®) v =t |®] (u[®] v)
proof —
fix n
show At u v. [dim t = n; Diag t; Diag u; Diag v | =
(t1®] w) 1®) v =t |®] (u] v)
proof (induction n rule: nat-less-induct)
fix n :: nat and ¢t :: ‘a term and u v
assume [: Vm<n.Vtuv. dimt =m — Diag t — Diag v — Diag v —
(t[®]) v [®) v="1]8] (v]|®] v)
assume dim: dimt = n
assume t: Diag t
assume u: Diag u
assume v: Diag v
show (1 [®] v) [®] v=1[®] (v |®] v)
proof —
have t = Z = ?%thesis by simp
moreover have u = Z = ?thesis by simp
moreover have v = Z = ?thesis by simp
moreover have t ZZ AN u#Z N v # I N is-Prim t = ?thesis
using v by (cases t, simp-all, cases u, simp-all; cases v, simp-all)
moreover have t #Z N u# T N v # I A is-Tensor t = ?thesis
proof (cases t; simp)
fix w :: ‘a term and z :: ‘a term
assume [t u#Z Nv#T
assume 2: t = (v ® x)
show ((w® 7) [®] u) [®] v = (w® 7) (] (u]|®))
proof —
have w: w = (un-Prim w)
using t 1 2 Diag-TensorE [of w z] by auto
have z: Diag z
using ¢t w 1 2 by (cases w, simp-all)
have (v ® @) |®) w) [®) v = (w [B) (z 8] v) |®) o
using u v w x 1 2 by (cases u, simp-all)
also have ... = (v ® (z |®] v)) |®] v
using t w u 1 2 TensorDiag-Prim not-is- Tensor-TensorDiagE Diag-TensorE
not-is- Tensor- Unity
by metis
also have ... = v |®] ((z |®] v) |®] v)
using v v w z 1 by (cases u, simp-all; cases v, simp-all)
also have ... = v |®] (z |®] (v [®] v))
proof —
have dim x < dim t
using w 2 by (cases w, simp-all)
thus ?thesis
using u v z dim I by simp
qed
also have ... = (v ® z) |®] (v [®] v)

48

proof —
have 3: is-Tensor (u |®] v)
using u v 1 not-is-Tensor-TensorDiagFE by auto
obtain v’ :: ‘a term and v’ where wv” v |®| v=u' ® v’
using 3 is-Tensor-def by blast
thus ?thesis by simp
qed
finally show ?thesis by simp
qed
qed
moreover have t = Z V is-Prim t V is-Tensor t
using ¢ by (cases t, simp-all)
ultimately show ¢thesis by blast
qed
qed
qed
thus ?thesis using assms by blast
qged

lemma TensorDiag-preserves-Ide:
assumes Ide t and Ide u and Diag t and Diag u
shows Ide (¢t |®] u)
using assms
by (metis (mono-tags, lifting) Arr-implies-Ide-Dom Ide-in-Hom Diag-implies-Arr
TensorDiag-preserves-Diag(1) TensorDiag-preserves-Diag(2) mem-Collect-eq)

lemma TensorDiag-preserves-Can:
assumes Can t and Can v and Diag t and Diag u
shows Can (t |®] u)
proof —
have Au. [Can t A Diag t; Can u A Diag u | = Can (t |®] u)
proof (induct t; simp)
show Az u. C.ide x A C.arr z = Can u A Diag u = Can ({z) |®])
by (metis Ide.simps(1) Ide.simps(2) Ide-implies-Can Diag.simps(2) TensorDiag-Prim
TensorDiag-preserves-Ide Can.simps(3))
show AtI t2 u. (Au. Diag t1 = Can u A Diag u = Can (t1 |®] u)) =
(Au. Diag t2 = Can u A Diag u = Can (12 |®] u)) =
Can t1 A Can t2 A Diag (t1 @ t2) = Can u A Diag u =
Can ((t1 ® t2) |®] u)
by (metis Diag-TensorE(3) Diag-TensorE(4) TensorDiag-Diag TensorDiag-assoc
TensorDiag-preserves-Diag(1))
qged
thus ?thesis using assms by blast
qed

lemma Inv-TensorDiag:

assumes Can t and Can v and Diag t and Diag u
shows Inv (t |®| u) = Invt |®] Inv u

proof —

49

have Au. [Can t A Diag t; Can u A Diag u | = Inv (t |®] u) = Inv t |®] Inv u
proof (induct t, simp-all)
fix fu
assume f: C.ide f N C.arr f
assume u: Can u A Diag u
show Inv ({f} |®] u) = (/) |®] Invu
using f u by (cases u, simp-all)
next
fix tuov
assume I1: Nv. [Diag t; Can v A Diagv] = Inv (t |®] v) = Invt |®] Inv v
assume I2: Av. [Diag u; Can v A Diag v] = Inv (v |[®] v) = Inv v |®] Inv v
assume tu: Can t A Can u A Diag (I ® u)
have t: Can t N Diag t
using tu Diag-TensorE [of t u] by force
have u: Can u A Diag u
using ¢ tu by (cases t, simp-all)
assume v: Can v A Diag v
show Inv (t ® u) |®] v) = (Invt® Invu) |®| Invwv
proof —
have v = Unity = ?thesis by simp
moreover have v # Unity —> ?thesis
proof —
assume 1: v # Unity
have Inv ((t ® u) |®] v) = Inv (t |®] (v [®] v))
using 1 by (cases v, simp-all)
also have ... = Inv t |®] Inv (u |®] v)
using t u v I1 TensorDiag-preserves-Diag TensorDiag-preserves-Can
Inv-preserves-Diag Inv-preserves-Can
by simp
also have ... = Inv t |®] (Inv u |®] Inv v)
using t u v I2 TensorDiag-preserves-Diag TensorDiag-preserves-Can
Inv-preserves-Diag Inv-preserves-Can
by simp
also have ... = (Inv t ® Inv u) |®] Inv v
using v 1 by (cases v, simp-all)
finally show ?thesis by blast
qged
ultimately show ¢thesis by blast
qed
qed
thus ?thesis using assms by blast
qged

The following function defines composition for compatible diagonal terms, by “push-
ing the composition down” to arrows of C.

fun CompDiag :: 'a term = 'a term = 'a term (infixr <|-]> 55)
where Z |-| u = u

LD L) =«(f-9
(@) -] (w®z)=(u|] w® v][] 7)

50

[t T =1t
| t |-] - = undefined - undefined

Note that the last clause above is not relevant to diagonal terms. We have chosen a
provably non-diagonal value in order to validate associativity.

lemma CompDiag-preserves-Diag:
assumes Diag t and Diag v and Dom t = Cod u
shows Diag (¢ || u)
and Dom (t |-] u) = Dom u
and Cod (t |-] u) = Cod t
proof —
have 0: Au. [Diag t; Diag u; Dom t = Cod u | =
Diag (t |-] w) A Dom (t |-]) = Dom u A Cod (t |-]) = Cod t
proof (induct t, simp-all add: Diag-TensorE)
fix fu
assume f: C.arr f
assume u: Diag u
assume 1: (C.dom f) = Cod u
show Diag ({f) |-] u) A Dom ({f) |-] v) = Dom u A Cod ({f) |-] u) = (C.cod f)
using fu I by (cases u, simp-all)
next
fix v vw
assume I2: Au. [Diag u; Dom w = Cod u | =
Diag (w | -] w) A Dom (w |-] u) = Dom u A Cod (w |-] u) = Cod w
assume vw: Diag (v ® w)
have v: Diag v
using vw Diag-TensorE [of v w] by force
have w: Diag w
using vw Diag-TensorE [of v w] by force
assume u: Diag u
assume 1: (Dom v ® Dom w) = Cod u
show Diag ((v ® w) -] u) A Dom ((v® w) -] u) = Dom u A
Cod (v® w) |+] u) = Cod v ® Cod w
using v v w 1
proof (cases u, simp-all)
fixzy
assume 2: u = Tensor z y
have /: is-Prim « A © = (un-Prim z) A C.arr (un-Prim) A Diagy Ny #T
using u 2 by (cases , cases y, simp-all)
have 5: is-Prim v A v = (un-Prim v) A C.arr (un-Prim v) A Diag w A w # T
using v w vw by (cases v, simp-all)
have 6: C.dom (un-Prim v) = C.cod (un-Prim) A Dom w = Cod y
using 1 2 / 5 apply (cases u, simp-all)
by (metis Cod.simps(1) Dom.simps(1) term.simps(1))
have (v ® w) |-] u = {un-Prim v - un-Prim z) @ w |-| y
using 2 / 5 6 CompDiag.simps(2) [of un-Prim v un-Prim z] by simp
moreover have Diag ({un-Prim v - un-Prim) @ w |-] y)
proof —
have Diag (w |-]| y)

o1

using 12 4 5 6 by simp
thus ?thesis
using 4 5 6 Diag.simps(8) [of un-Prim v - un-Prim z (w -] y)]
by (cases w; cases y) auto
qged
ultimately show Diag (v |-] 2 ® w [-] y) A
Dom (v |+]) = Dom x A Dom (w |+] y) = Dom y A
Cod (v |+] z) = Cod v A Cod (w |-] y) = Cod w
using 4 5 6 12
by (metis (full-types) C.cod-comp C.dom-comp Cod.simps(1) CompDiag.simps(2)
Dom.simps(1) C.seql)
qed
qed
show Diag (t | -] u) using assms 0 by blast
show Dom (t |-] u) = Dom u using assms 0 by blast
show Cod (t |-| u) = Cod t using assms 0 by blast
qed

lemma CompDiag-in-Hom:
assumes Diag t and Diag v and Dom t = Cod u
shows t |-| u € Hom (Dom u) (Cod t)
using assms CompDiag-preserves-Diag Diag-implies-Arr by simp

lemma Dom-CompDiag:
assumes Diag t and Diag v and Dom t = Cod u
shows Dom (t |-| u) = Dom u

using assms CompDiag-preserves-Diag(2) by simp

lemma Cod-CompDiag:
assumes Diag t and Diag v and Dom t = Cod u
shows Cod (t |-| u) = Cod t

using assms CompDiag-preserves-Diag(3) by simp

lemma CompDiag-Cod-Diag [simp]:
assumes Diag t
shows Cod t |-] t =t
proof —
have Diagt = Cod t |-] t =t
using C.comp-cod-arr
apply (induct t, auto)
by (auto simp add: Diag-TensorE)
thus ?thesis using assms by blast
qged

lemma CompDiag-Diag-Dom [simp]:
assumes Diag t
shows t |-| Dom t =t
proof —
have Diagt = t |-] Dom t =t

52

using C.comp-arr-dom
apply (induct t, auto)
by (auto simp add: Diag-TensorE)
thus ?thesis using assms by blast
qged

lemma CompDiag-Ide-Diag [simpl:
assumes Diag t and Ide a and Dom a = Cod t
shows a |[-| t = ¢

using assms Ide-in-Hom by simp

lemma CompDiag-Diag-Ide [simp]:
assumes Diag t and Ide a and Dom t = Cod a
shows t |-| a =t

using assms Ide-in-Hom by auto

lemma CompDiag-assoc:
assumes Diag t and Diag v and Diag v
and Dom t = Cod u and Dom u = Cod v
shows (¢ -] w) [-] v="1[-] (v][] v)
proof —
have Au v. [Diag t; Diag u; Diag v; Dom ¢t = Cod u; Dom u = Cod v | =
(1w L) v=t L[] (ul-] o)
proof (induct t, simp-all)
fix fuv
assume f: C.arr f
assume u: Diag u
assume v: Diag v
assume 1: (C.dom f) = Cod u
assume 2: Dom u = Cod v
show ((f) [-] w) [-] v="~) L] (w[-]v)
using C.comp-assoc by (cases u, simp-all; cases v, simp-all)
next
fixuvwz
assume I1: Au v. [Diag w; Diag u; Diag v; Dom w = Cod u; Dom u = Cod v | =
(w -] w) []o=wl[](ul]v)
assume I12: Au v. [Diag x; Diag u; Diag v; Dom z = Cod u; Dom v = Cod v | =
(@[]w [Jov==[](ul]v)
assume wz: Diag (w ® z)
assume u: Diag u
assume v: Diag v
assume 1: (Dom w ® Dom z) = Cod u
assume 2: Dom u = Cod v
show ((w® o) [-]) -] v=(w®) -] ul] v
proof —
have w: Diag w
using wx Diag-TensorE by blast
have z: Diag z
using wz Diag-TensorE by blast

93

have is-Tensor u
using u 1 by (cases u) simp-all
thus ?thesis
using u v apply (cases u, simp-all, cases v, simp-all)
proof —
fix ul u2 vl v2
assume 3: u = (ul ® u2)
assume 4: v = (vI ® v2)
show (w |-| ul) |-] vI = w |[-] ul -] vI A
(z [-] w2) [] v2 =x[]u2l]v2
proof —
have Diag ul N Diag u2
using u 3 Diag-TensorE by blast
moreover have Diag vi N\ Diag v2
using v 4 Diag-TensorFE by blast
ultimately show #thesis using w x 11 12 1 2 8 / by simp
qed
qed
qed
qed
thus ?thesis using assms by blast
qged

lemma CompDiag-preserves-Ide:
assumes [de t and Ide u and Diag t and Diag u and Dom t = Cod u
shows Ide (t -] u)
proof —
have Au. [Ide t; Ide u; Diag t; Diag u; Dom t = Cod v | = Ide (CompDiag t u)
by (induct t; simp)
thus ?thesis using assms by blast
qed

lemma CompDiag-preserves-Can:
assumes Can t and Can v and Diag t and Diag u and Dom t = Cod u
shows Can (¢ |-] u)
proof —
have Au. [Can t A Diag t; Can u A Diag u; Dom t = Cod u] = Can (¢ |-] u)
proof (induct t, simp-all)
fix tuwv
assume I1: Av. [Diag t; Can v A Diag v; Dom t = Cod v] = Can (¢ |-]
assume I2: Av. [Diag u; Can v A Diag v; Dom u = Cod v | = Can (u |-]
assume tu: Can t A Can u A Diag (t ® u)
have ¢: Can t N\ Diag t
using tu Diag-TensorE by blast
have u: Can u A Diag u
using tu Diag-TensorFE by blast
assume v: Can v A Diag v
assume 1: (Dom t ® Dom u) = Cod v
show Can ((t ® u) |-]| v)

v)

)

54

proof —
have 2: (Dom t ® Dom u) = Cod v using 1 by simp
show ?thesis
using v 2
proof (cases v; simp)
fix wx
assume wz: v = (w Q)
have Can w A Diag w using v wz Diag-TensorE [of w z] by auto
moreover have Can z A Diag z using v wx Diag-TensorE [of w x] by auto
moreover have Dom t = Cod w using 2 wzx by simp
moreover have ux: Dom u = Cod x using 2 wzx by simp
ultimately show Can (¢t [-] w) A Can (u |-] z)
using t u I1 I2 by simp
qed
qed
qed
thus ?thesis using assms by blast
qged

lemma Inv-CompDiag:
assumes Can t and Can v and Diag t and Diag v and Dom t = Cod u
shows Inv (t |-] u) = Invu -] Invt
proof —
have Au. [Can t A Diag t; Can u A Diag u; Dom t = Cod u | =
Inv (t -] w) =Invu -] Invt
proof (induct t, simp-all)
show Az u. [C.ide x A C.arr z; Can u A Diag u; {z) = Cod u | =
Invu = Invu |-| Inv (Cod u)
by (metis CompDiag-Diag-Dom Inv-Ide Inv-preserves-Can(2) Inv-preserves-Diag
Ide.simps(1))
show Au. Can u A Diagu —= T = Codu = Invu=Invu |-] T
by (simp add: Inv-preserves-Can(2) Inv-preserves-Diag)
fix tuwv
assume tu: Can t A Can u A Diag (I ® u)
have t: Can t N Diag t
using tu Diag-TensorE by blast
have u: Can u A Diag u
using tu Diag-TensorE by blast
assume I1: Av. [Diag t; Can v A Diag v; Dom t = Cod v | =
Inv (t |-] v) =Invo -] Invt
assume I2: Av. [Diag u; Can v A Diag v; Dom uw = Cod v | =
Inv (u |[-] v) =Invo -] Invu
assume v: Can v A Diag v
assume 1: (Dom t ® Dom u) = Cod v
show Inv ((t ® u) -] v) = Invov -] (Invt @ Inv u)
using v 1
proof (cases v, simp-all)
fix wz
assume wz: v = (v Q)

95

have Can w A Diag w using v wz Diag-TensorE [of w z] by auto
moreover have Can z A Diag z using v wx Diag-TensorE [of w z] by auto
moreover have Dom t = Cod w using wz 1 by simp
moreover have Dom v = Cod x using wx 1 by simp
ultimately show Inv (¢t [-] w) = Inv w |-| Invt A
Inv (u|-]) =Invz |-] Invu
using t u I1 I2 by simp
qed
qed
thus ?thesis using assms by blast
qged

lemma Can-and-Diag-implies-Ide:
assumes Can t and Diag t
shows Ide ¢
proof —
have [Can t; Diag t | = Ide t
apply (induct t, simp-all)
by (simp add: Diag-TensorE)
thus ?thesis using assms by blast
qged

lemma CompDiag-Can-Inv [simp]:
assumes Can t and Diag t
shows t |-| Inv ¢t = Cod t
using assms Can-and-Diag-implies-Ide Ide-in-Hom by simp

lemma CompDiag-Inv-Can [simp]:
assumes Can t and Diag t
shows Inv t |-| t = Dom t
using assms Can-and-Diag-implies-Ide Ide-in-Hom by simp

The next fact is a syntactic version of the interchange law, for diagonal terms.

lemma CompDiag-TensorDiag:
assumes Diag t and Diag v and Diag v and Diag w
and Seq t v and Seq u w
shows (¢ |®)) [-] (v |®] w) = (¢ [] ©) [®] (u]-] w)
proof —
have Au v w. [Diag t; Diag u; Diag v; Diag w; Seq t v; Seq u w | =
(t[®] w) [-] (v][®] w)=(t[]v) [®] (uv]] w)
proof (induct t, simp-all)
fix uvw
assume u: Diag u
assume v: Diag v
assume w: Diag w
assume uw: Seq u w
show Arrv AL = Cod v = u |-] (v |®] w) =0 |®] (v][] w)
using u v w uw by (cases v) simp-all
show Af. [C.arr f; Arr v A (C.dom f) = Cod v | =

o6

(N [®] w) -] (v [®] w) = (N L[] v) [®] (ul]w)
proof —
fix f
assume f: C.arr f
assume 1: Arr v A (C.dom f) = Cod v
show ((f) |®] v) |-] (v [®] w) = (N -] v) [&] (u[-] w)
proof —
have 2: v = (un-Prim v) A C.arr (un-Prim v) using v 1 by (cases v) simp-all
have u = T = ?%thesis
using v w uw 1 2 Cod.simps(3) CompDiag-Cod-Diag Dom.simps(2)
TensorDiag-Prim TensorDiag-term-Unity TensorDiag-preserves-Diag(8)
by (cases w) simp-all
moreover have u # Z = ?thesis
proof —
assume 3: u # L
hence 4: w # T using v w uw by (cases u, simp-all; cases w, simp-all)
have (() 1®] u) |-} (v [®] w) = ((h ® u) |-} (v ® w)
proof —
have () [®] u = () ® u
using u f & TensorDiag-Diag by (cases u) simp-all
moreover have v |®] w=v® w
using w 2 4 TensorDiag-Diag by (cases v, simp-all; cases w, simp-all)
ultimately show ?thesis by simp
qed
also have 5: ... = ({) |-] v) ® (u |-] w) by simp
also have ... = ((/) |-] v) |®] (u -] w)
using fuwuw 1 2345
TensorDiag-Diag TensorDiag-Prim TensorDiag-preserves-Diag(1)
CompDiag-preserves-Diag(1)
by (metis Cod.simps(3) Dom.simps(1) Dom.simps(8) Diag.simps(2))
finally show ?thesis by blast
qed
ultimately show ?thesis by blast
qed
qed
fix t1 t2
assume I2: A\u v w. [Diag t2; Diag u; Diag v; Diag w;
Arrv A Dom t2 = Cod v; Seq u w | =
(12 18]) 1) (v [®] w) = (12 |-] o) (&) (u -] w)
assume t12: Diag (t1 ® t2)
have t1: t1 = (un-Prim t1) A C.arr (un-Prim t1) A Diag t1
using t12 by (cases t1) simp-all
have t2: Diag t2 N t2 #T
using t12 by (cases t1) simp-all
assume 1: Arrt1 N Arrt2 N Arr v A Dom t1 @ Dom t2 = Cod v
show (11 ® 12) |®) u) -] (v (@] w) = (11 ® 12) |-] v) (@] (u [-] w)
proof —
have v = T = %thesis
using w ww TensorDiag-term-Unity CompDiag-Cod-Diag by (cases w) simp-all

o7

moreover have u # I —> %thesis
proof —
assume u”: u # T
hence w": w # T using v w uw by (cases u; simp; cases w; simp)
show ?thesis
using 1 v
proof (cases v, simp-all)
fix v1 v2
assume v12: v = Tensor vl v2
have v1: vl = (un-Prim vi) A C.arr (un-Prim v1) A Diag vl
using v v12 by (cases v1) simp-all
have v2: Diag v2 N v2 # T
using v v12 by (cases v1) simp-all
have 2: v = ({(un-Prim vl) ® v2)
using vl vi2 by simp
show ((t1 ® 12) |®]) |-] (1 ® 02) |®] w)
= (¢ 1) v1) ® (2] 2)) [®) (u |-] w)
proof —
have 3: (11 ® t2) |®] u=t1 |®] (t2 |®] u)
using u u’ by (cases u) simp-all
have /: v |®] w=v! |®] (v2 |®] w)
using v w v1 v2 2 TensorDiag-assoc TensorDiag-Diag by metis
have ((t1 ® 12) |®] u) [-] (v ® v2) |®] w)
= (11 [®] (12 |®] u)) [-] (v1 [®] (v2 [®] w))
using 3 4 vi2 by simp
also have ... = (t1 [-] v1) |®] ((t2 |®] v) [-] (v2 |®] w))
proof —
have is-Tensor (12 |®])
using t2 u u’ not-is- Tensor-TensorDiagE by auto
moreover have is-Tensor (vV2 |®] w)
using v2 v12 w w' not-is-Tensor-TensorDiagE by auto
ultimately show ?thesis
using v v’ v w t1 vl t12 v12 TensorDiag-Prim not-is- Tensor-Unity
by (metis (no-types, lifting) CompDiag.simps(2) CompDiag.simps(3)
is-Tensor-def)
qed
also have ... = (¢t [-] v1) |®] (t2 [-] v2) |®] (u |-] w)
using v w uw t2 v2 1 2 Diag-implies-Arr I2 by fastforce
also have ... = ((¢1 [-] v1) ® (12 [-] v2)) |®] (u [-] w)
proof —
have u -] w # Unity
proof —
have Arr vi A (C.dom (un-Prim t1)) = Cod vl
using t1 vI 1 2 by (cases t1, auto)
thus ?thesis
using t1 t2 vl v2 v w uw u’ CompDiag-preserves-Diag
TensorDiag-preserves-Diag TensorDiag-Prim
by (metis (mono-tags, lifting) Cod.simps(2) Cod.simps(3)
TensorDiag.simps(2) term.distinct(3))

o8

qged
hence (1 [] v1) ® (12 |-] v2)) |®] (u |-] w)
— (1 1] 1) [®] (12 1] 02) 1®] (u -] w))
by (cases u |-] w) simp-all
thus ?thesis by argo
qed
finally show ?¢thesis by blast
qed
qed
qged
ultimately show ¢thesis by blast
qed
qed
thus ?thesis using assms by blast
qed

The following function reduces an arrow to diagonal form. The precise relationship
between a term and its diagonalization is developed below.

fun Diagonalize :: 'a term = 'a term (<|-]»)
where | (/)] = (/)

| |Z]=Z

| t®u] = [t] [®] [u]

| Lt-w] =1t -] [u]

| L] = Lt
Al = L]
| L[] = L]

| e A) =]
| Lalt, u, o] = ([t] [®] [u]) [®] Lv]
| a7t u, o] = 2] [®] (Lu) [®] Lv])

lemma Diag-Diagonalize:
assumes Arrt
shows Diag |t| and Dom [t] = | Dom t| and Cod [t] = | Cod t]
proof —
have 0: Arr t = Diag [t] A Dom |t| = [Dom t| A Cod |t] = | Cod t]
using TensorDiag-preserves-Diag CompDiag-preserves-Diag TensorDiag-assoc
apply (induct t)
apply auto
apply (metis (full-types))
by (metis (full-types))
show Diag | t| using assms 0 by blast
show Dom |t| = | Dom t| using assms 0 by blast
show Cod |t| = | Cod t| using assms 0 by blast
qged

lemma Diagonalize-in-Hom:
assumes Arr ¢
shows |t| € Hom |Dom t| | Cod t]
using assms Diag-Diagonalize Diag-implies-Arr by blast

99

lemma Diagonalize-Dom:
assumes Arr ¢
shows | Dom t| = Dom |t]
using assms Diagonalize-in-Hom by simp

lemma Diagonalize-Cod:
assumes Arr ¢
shows | Cod t| = Cod |t]
using assms Diagonalize-in-Hom by simp

lemma Diagonalize-preserves-Ide:
assumes Ide a
shows Ide | a|
proof —
have Ide a = Ide | a
using Ide-implies-Arr TensorDiag-preserves-lde Diag-Diagonalize
by (induct a) simp-all
thus ?thesis using assms by blast
qed

The diagonalizations of canonical arrows are identities.

lemma Ide-Diagonalize-Can:
assumes Can t
shows Ide |t]
proof —

have Can t = Ide |t]

using Can-implies-Arr TensorDiag-preserves-Ide Diag-Diagonalize CompDiag-preserves-Ide

TensorDiag-preserves-Diag
by (induct t) auto

thus ?thesis using assms by blast

qed

lemma Diagonalize-preserves-Can:
assumes Can t
shows Can |t]
using assms Ide-Diagonalize-Can Ide-implies-Can by auto

lemma Diagonalize-Diag [simp]:
assumes Diag t
shows |t] =t
proof —
have Diag t = |t| =t
apply (induct t, simp-all)
using TensorDiag-Prim Diag-TensorE by metis
thus ?thesis using assms by blast
qged

lemma Diagonalize-Diagonalize [simp):

60

assumes Arr t

shows | [t]] = [¢]

using assms Diag-Diagonalize Diagonalize-Diag by blast

lemma Diagonalize- Tensor:
assumes Arr t and Arr u
shows [t ® u| = ||t ® [v]]

using assms Diagonalize-Diagonalize by simp

lemma Diagonalize- Tensor-Unity-Arr [simp]:
assumes Arr u
shows |Z ® u| = |u]

using assms by simp

lemma Diagonalize- Tensor-Arr-Unity [simp:
assumes Arr ¢
shows [t ® Z| = ||

using assms by simp

lemma Diagonalize- Tensor-Prim-Arr [simp]:
assumes arr f and Arr v and |[u]| # Unity
shows [(f) @ u| = (/) ® [u]

using assms by simp

lemma Diagonalize- Tensor-Tensor:
assumes Arr t and Arr v and Arr v
shows [(1®@ u) ® v] = [|1] ® (lu] ® [v])]

using assms Diag-Diagonalize Diagonalize-Diagonalize by (simp add: TensorDiag-assoc)

lemma Diagonalize-Comp-Cod-Arr:
assumes Arrt
shows | Cod t - t| = |¢]
proof —
have Arrt = | Cod t - t| = |t]
using C'.comp-cod-arr
apply (induct t, simp-all)
using CompDiag-TensorDiag Arr-implies-Ide-Cod Ide-in-Hom Diag-Diagonalize
Diagonalize-in-Hom
apply simp
using CompDiag-preserves-Diag CompDiag-Cod-Diag Diag-Diagonalize
apply metis
using CompDiag-TensorDiag Arr-implies-Ide-Cod Ide-in-Hom TensorDiag-in-Hom
TensorDiag-preserves-Diag Diag-Diagonalize Diagonalize-in-Hom TensorDiag-assoc
by simp-all
thus ?thesis using assms by blast
qed

lemma Diagonalize-Comp-Arr-Dom:
assumes Arr ¢

61

shows |t - Dom t| = ||
proof —
have Arr t = [t - Dom t] = [{]
by (metis CompDiag-Diag-Dom Diag-Diagonalize(1—2) Diagonalize.simps(4))
thus ?thesis using assms by blast
qged

lemma Diagonalize-Inv:
assumes Can t
shows [Inv t| = Inv |t]
proof —
have Can t = [Inv t| = Inv | t]
proof (induct t, simp-all)
fix u v
assume I1: | Inv u] = Inv | u]
assume I2: | Inv v| = Inv |v]
show Can u A Can v = Inv |u]| |®] Inv |v] = Inv (|u] |®] |v])
using Inv-TensorDiag Diag-Diagonalize Can-implies-Arr Diagonalize-preserves-Can
11 12
by simp
show Can u A Can v A Dom u = Cod v = Inv |v] |-] Inv |u] = Inv (Ju] |-] |v])
using Inv-CompDiag Diag-Diagonalize Can-implies-Arr Diagonalize-in-Hom
Diagonalize-preserves-Can I1 12
by simp
fix w
assume I3: | Inv w| = Inv |w]
assume uvw: Can u A Can v A Can w
show Inv [u] [®] (Inv [v] (@] Inv Lw]) = Inv ((Lu] 1®) Lol) (@] Lw))
using wow 11 12 I3
Inv-TensorDiag Diag-Diagonalize Can-implies-Arr Diagonalize-preserves-Can
TensorDiag-preserves-Diag TensorDiag-preserves-Can TensorDiag-assoc
by simp
show (Inv Lu) [®] Inv [v]) [®) Inv [w) = v (Lu) 1] (Lv] 1®] Lu]))
by (simp add: Can-implies-Arr Ide-Diagonalize-Can TensorDiag-assoc
TensorDiag-preserves-Diag(1) TensorDiag-preserves-Ide Diag-Diagonalize(1) uvw)
qed
thus ?thesis using assms by blast
qged

Our next objective is to begin making the connection, to be completed in a subsequent
section, between arrows and their diagonalizations. To summarize, an arrow ¢ and its
diagonalization |t| are opposite sides of a square whose other sides are certain canonical
terms Dom t}. € Hom (Dom t) | Dom t| and Cod t]. € Hom (Cod t) | Cod t], where Dom
t} and Cod t] are defined by the function red below. The coherence theorem amounts
to the statement that every such square commutes when the formal terms involved are
evaluated in the evident way in any monoidal category.

Function red defined below takes an identity term a to a canonical arrow al € Hom
a |a]. The auxiliary function red2 takes a pair (a, b) of diagonal identity terms and
produces a canonical arrow a {4 b € Hom (a ® b) |a ® b]. The canonical arrow al

62

amounts to a “parallel innermost reduction” from a to | a|, where the reduction steps are
canonical arrows that involve the unitors and associator only in their uninverted forms.
In general, a parallel innermost reduction from a will not be unique: at some points
there is a choice available between left and right unitors and at other points there are
choices between unitors and associators. These choices are inessential, and the ordering
of the clauses in the function definitions below resolves them in an arbitrary way. What
is more important is having chosen an innermost reduction, which is what allows us to
write these definitions in structurally recursive form.

The essence of coherence is that the axioms for a monoidal category allow us to
prove that any reduction from a to |a| is equivalent (under evaluation of terms) to a
parallel innermost reduction. The problematic cases are terms of the form ((¢ ® b) ®
¢) ® d, which present a choice between an inner and outer reduction that lead to terms
with different structures. It is of course the pentagon axiom that ensures the confluence
(under evaluation) of the two resulting paths.

Although simple in appearance, the structurally recursive definitions below were dif-
ficult to get right even after I started to understand what I was doing. I wish I could
have just written them down straightaway. If so, then I could have avoided laboriously
constructing and then throwing away thousands of lines of proof text that used a non-
structural, “operational” approach to defining a reduction from a to |a].

fun red? (infixr <{}» 53)
where T || a = 1[q]

| (N4 Z =r[(N]

[NVa={)®a

[(a® D) VT =rlaQ b
(@b Je=(ad [b®c]) - (a® (b4) -ala, b,
| a {4 b = undefined

fun red (x-d» [56] 56)

where Z| =T
L= (B
| (0 ® b)) = (if Diag (a ® b) then a ® b else (La) Y 1)) - (ab ® b))
| al = undefined

lemma red-Diag [simp):
assumes Diag a
shows al = a
using assms by (cases a) simp-all

lemma red2-Diag:
assumes Diag (a ® b)
shows a{ b=a @ b
proof —
have a: a = (un-Prim a)
using assms Diag-TensorE by metis
have b: Diag b A b # T
using assms Diag-TensorE by metis
show ?thesis using a b

63

apply (cases b)
apply simp-all
apply (metis red2.simps(3))
by (metis red2.simps(4))
qged

lemma Can-red?2:
assumes Ide a and Diag a and Ide b and Diag b
shows Can (a { b)
and o b€ Hom (a ® b) |a ® b]
proof —
have 0: Ab. [Ide a A Diag a; Ide b A Diag b | =
Can (a4 b)) ANall be Hom (a ® b) |a ® b
proof (induct a, simp-all)
fix b
show Ide b A Diag b = Can b A Domb=b A Codb=10
using Ide-implies-Can Ide-in-Hom Diagonalize-Diag by auto
fix f
show [C.ide f A C.arr f; Ide b A Diag b] =
Can ((f) 4 b) A Arr ((f) 4 b) A Dom ((f) 4 b) = (H @ b A
Cod ((f 4 b) = () [®] b
using Ide-implies-Can Ide-in-Hom by (cases b; auto)
next
fixabc
assume ab: Ide a A Ide b A Diag (Tensor a b)
assume c: Ide ¢ A Diag c
assume I1: A\c. [Diag a; Ide ¢ A Diag ¢ | =
Can (a ¢) NArr (ad ¢) ADom (a ¢c)=a® ¢ A
Cod (ad ¢) =a|®] ¢
assume I2: Ac. [Diag b; Ide ¢ A Diag ¢ | =
Can (b ¢) AN Arr (b ¢) A Dom (bl ¢)=b® ¢ A
Cod (bl ¢)=0|Q®] ¢
show Can (e ® b) 4 ¢) A Arr (e ® b) Y ¢) A
Dom ((a® b)) ¢)=(a®b) ® c A
Cod ((a ® b) 4) = (La] 18] (b)) [®] ¢
proof —
have a: Diag a A Ide a
using ab Diag-TensorE by blast
have b: Diag b A Ide b
using ab Diag-TensorE by blast
have ¢ = Z = ?thesis
proof —
assume 1: c =T
have 2: (¢ ® b) | ¢ =r[a ® 0]
using 1 by simp
have 3: Can (a { b) AN Arr (a4 b)) A Dom (a b)) =a® bA Cod (a b)) =a® b
using a b ab 1 2 I1 Diagonalize-Diag Diagonalize.simps(3) by metis
hence 4: Seq (a { b) rla ® 0]

using ab

64

by (metis (mono-tags, lifting) Arr.simps(7) Cod.simps(3) Cod.simps(7)
Diag-implies-Arr Ide-in-Hom mem-Collect-eq)
have Can ((a ® b) | ¢)
using 1 2 8 4 ab by (simp add: Ide-implies-Can)
moreover have Dom (e ® b) ¢) = (a ® b)) ® ¢
using 7 2 3 4 a b ab 11 Ide-in-Hom TensorDiag-preserves-Diag by simp
moreover have Cod ((a @ b) J ¢) = [(¢e ® b) ® ¢
using 1 2 3 4 ab using Diagonalize-Diag by fastforce
ultimately show ?thesis using Can-implies-Arr by (simp add: 1 ab)
qged
moreover have ¢ # Z = ?thesis
proof —
assume 1: ¢ #T
have 2: (a @b Jc=(al [b® ¢c])-(a® bl ¢)-ala, b,
using 1 a b ab ¢ by (cases c¢; simp)
have 3: Can (a J [0 ® ¢]) ADom (a bR ¢c])=a® |[b® c]| A
Cod (a |0®¢c])=1a® (b®)]
proof —
have Can (¢ J [0 @ ¢]) ADom (¢ J [0 ®¢c])=a® [b® c] A
Cod (ad [b®c]) =[a® [bQ c]]
using a ¢ ab 1 2 I1 Diag-implies-Arr Diag-Diagonalize(1)
Diagonalize-preserves-Ide TensorDiag-preserves-Ide
TensorDiag-preserves-Diag(1)
by auto
moreover have e Q@ bR ¢|| = e ® (b ® ¢)]
using ab ¢ Diagonalize-Tensor Diagonalize-Diagonalize Diag-implies-Arr
by (metis Arr.simps(83) Diagonalize.simps(3))
ultimately show ¢thesis by metis
qed
have 4: Can (b{ ¢) ADom (b ¢)=0Q@ ¢ A Cod (b ¢) = b ® c]
using b c ab 1 2 I2 by simp
hence Can (e ® (bl ¢)) ADom (a® (bl ¢)) =a® (b® ¢) A
Cod (a® (bl c)=a® [bQ]
using ab Ide-implies-Can Ide-in-Hom by force
moreover have |[a ® [b® ¢|| = |a® b]| |®] |c]
proof —
have [a @ [0 ® c|] = a |®] (b |®] ¢)
using a b ¢ 4
by (metis Arr-implies-Ide-Dom Can-implies-Arr Ide-implies-Arr
Diag-Diagonalize(1) Diagonalize.simps(3) Diagonalize-Diag)
also have ... = (a |®] b) |®] ¢
using a b ab ¢ TensorDiag-assoc by metis
also have ... = [a ® b] |®] |c]
using a b ¢ by (metis Diagonalize.simps(3) Diagonalize-Diag)
finally show ?thesis by blast
qed
moreover have Can afa, b,] A Dom ala, b, c] = (¢ ® b) @ ¢ A
Cod ala, b,] =a® (b ® c)

using ab ¢ Ide-implies-Can Ide-in-Hom by auto

65

ultimately show ?thesis
using ¢ 2 8 4 Diagonalize-Diagonalize Ide-implies-Can
Diagonalize-Diag Arr-implies-Ide-Dom Can-implies-Arr
by (metis Can.simps(4) Cod.simps(4) Dom.simps(4) Diagonalize.simps(3))
qged
ultimately show ¢thesis by blast
qed
qed
show Can (a | b) using assms 0 by blast
show a |l b € Hom (a ® b) |a @ b| using 0 assms by blast
qged

lemma red2-in-Hom:
assumes Ide a and Diag a and Ide b and Diag b
shows a | b € Hom (a ® b) |a ® b]

using assms Can-red2 Can-implies-Arr by simp

lemma Can-red:
assumes Ide a
shows Can (al) and al € Hom a | a
proof —
have 0: Ide a = Can (al) A al € Hom a |a]
proof (induct a, simp-all)
fix b c
assume b: Can (b)) A Arr (b)) A Dom (b)) = b A Cod (b)) = | b]
assume c: Can (c}) A Arr (ed) A Dom (c¢l) = ¢ A Cod (cl) = | ¢]
assume bc: Ide b A Ide ¢
show (Diag (b ® ¢) —
Can b A Canc AN Domb=bANDomc=cA Codb® Codc=1b] |®] Lc]) A
(= Diag (b ® ¢) —
Can ([b] 4 Lc]) A Dom ([b] 4 |c]) = [b] ® [c] A Arr ([B] § Lc]) A
Dom ([b] ¥ Lc]) = [b] @ Lc] A Cod ([b] ¥ [c]) = [b) [®] Lcl)
proof
show Diag (b ® ¢) —
Can b A Can ¢ AN Domb="bADomc=cA Codb® Codc=|b] |®] |LcJ
using bc Diag-TensorE Ide-implies-Can Inv-preserves-Can(2)
CompDiag-Ide-Diag Inv-Ide Diagonalize.simps(3) Diagonalize-Diag
by (metis CompDiag-Inv-Can)
show — Diag (b ® ¢) —
Can (1b) & Lel) A Dom (18] 4 Lel) = L[] ® Lel A Arr ([b] & Le]) A
Dom (|b] § [c]) = [b] ® Lc] A Cod (6] § |c]) = [b] [®] Lc]
using b ¢ bc Ide-in-Hom Ide-implies-Can Can-red2 Diag-Diagonalize
Diagonalize-preserves-Ide TensorDiag-preserves-Diag TensorDiag-preserves-Ide
by force
qed
qed
show Can (al) using assms 0 by blast
show a] € Hom a |a| using assms 0 by blast
qed

66

lemma red-in-Hom:
assumes Ide a
shows al € Hom a |a
using assms Can-red Can-implies-Arr by simp

lemma Diagonalize-red [simpl:
assumes Ide a

shows |al| = |a]

using assms Can-red Ide-Diagonalize-Can Diagonalize-in-Hom Ide-in-Hom by fastforce

lemma Diagonalize-red2 [simp]:
assumes Ide a and Ide b and Diag a and Diag b
shows [a | b| = |a ® b
using assms Can-red2 Ide-Diagonalize-Can Diagonalize-in-Hom [of a { b
red2-in-Hom Ide-in-Hom
by simp

end

2.7 Coherence

If D is a monoidal category, then a functor V: C' — D extends in an evident way to an
evaluation map that interprets each formal arrow of the monoidal language of C as an
arrow of D.

locale evaluation-map =

monoidal-language C +

monoidal-category D T o 1 +

V: functor C DV
for C :: 'c comp (infixr <> 55)
and D :: 'd comp (infixr <> 55)
and T :: 'd x 'd = 'd
and a2 'd x 'd x 'd = 'd

and ¢ :: 'd

and Vi 'e='d

begin
no-notation C.in-hom (k4-: - = -m)
notation unity («I»)
notation runit («[-]»)
notation lunit (d[-]»)
notation assoc’ («a= - -)
notation runit’ (a=)
notation lunit’ (A7)

primrec eval :: ‘c term = 'd (({-]»)

where {()} = V f

67

{Zh =1

[{t ® ul = {t}t @ {u}
[t - uf = {t} - {u}

[{Ih = t{t)

| i) = v]

[e[} = o {t}

| e Y = o {t}

| {Ia[tv U, 1)”} = o (ﬂtl}» {Iu|}7 {JUI})
[H{a™'[t, w, o} = o ({th, {ul, {o})

Identity terms evaluate to identities of D and evaluation preserves domain and
codomain.

lemma ide-eval-Ide [simp]:
shows Ide t = ide {t|
by (induct t, auto)

lemma eval-in-hom:
shows Arr t = «{t} : {Dom t} — {Cod t}»
apply (induct t)
apply auto[4]

apply fastforce
proof —

fix tuw
assume I: Arr t = «{t} : {Dom t} — {Cod t}»
show Arr 17] = «{I7 [} : {Dom 17 [} — {Cod 17 [{]}}»
using I arr-dom-iff-arr [of {t}] by force
show Arrr[f] = «{r[{]} : {Dom r[{]} — {Cod r[{]}»
using I arr-cod-iff-arr [of {t}] by force
show Arr r=1[t] = «{r7 [} : {Dom v~ [{]} — {Cod r~[{]}»
using I arr-dom-iff-arr [of {t}] by force
assume I1: Arr t = «{t} : {Dom t} — {Cod t}»
assume I2: Arr u = «{uf} : {Dom u}} — {Cod ult»
assume I3: Arr v = «{v} : {Dom v} — {Cod v|}»
show Arr a[t, u, v] = «{al[t, u, v]} : {Dom alt, u, v|]} — {Cod a[t, u, v|}»
proof —
assume 1: Arr alt, u, v
have t: «{t} : dom {t} — cod {t}}» using 1 I1 by auto
have u: «{ul} : dom {u}} — cod {ul}» using 1 I2 by auto
have v: «{vf} : dom {u} — cod {u}» using 1 I3 by auto
have {a[t, u, o]} = ({t} @ {u} @ {o}) - aldom {t}, dom {u}, dom {uv}]
using t u v a-simp [of {t} {ul {v}] by auto
moreover have «({t} ® {u} ® {v}) - aldom {t}, dom {u}, dom {v}] :
(dom {t} ® dom {u}}) ® dom {v} — cod {t} ® cod {u}} & cod {v]}»
using t u v by (elim in-homE, auto)
moreover have {Dom t} = dom {t} A {Dom ul} = dom {u}} A {Dom v} = dom {v} A
{Cod t} = cod {t} N {Cod ul} = cod {ul} A {Cod v} = cod {v|
using 1 I1 I2 I3 by auto
ultimately show «{a[t, u, |} : {Dom a[t, u, v]} — {Cod alt, u, v|[}»
by simp

68

qed
show Arra=![t, u, o] = «{a=![t, u,]} : {Dom a='[t, u, v]} — {Cod a='[t, u, v]}»
proof —
assume 1: Arra='[t, u, 1]
have ¢: «{t} : dom {t} — cod {t}» using 1 I1 by auto
have u: «{ul} : dom {u}} — cod {ul}» using 1 I2 by auto
have v: «{vf} : dom {v} — cod {u}» using 1 I3 by auto
have {a™'[t, u, o]} = (({t} @ {ul) ® {v}) - a= [dom {t}, dom {u}, dom {v}}]
using 1 I1 12 I3 o’-simp [of {t} {ul} {v}] by auto
moreover have «(({t} ® {ul}) @ {v}) - a=[dom {t}, dom {u}, dom {v}] :
dom {t} ® dom {ul} @ dom {v} — (cod {t} ® cod {ul}) & cod {v}»
using ¢ u v assoc’-in-hom [of dom {t} dom {u}} dom {v[}]
by (elim in-homE, auto)
moreover have {Dom t} = dom {t} A {Dom u} = dom {u}} A {Dom v} = dom {v} A
{Cod t} = cod {t} N {Cod u} = cod {ul} A {Cod v|} = cod {uv}
using 1 11 I2 I3 by auto
ultimately show «{a=![t, u, o]} : {Dom a=1[t, u, v]} — {Cod a=1[t, u, v]|}»
by simp
qed
qed

lemma arr-eval [simp]:

assumes Arr f

shows arr {f}

using assms eval-in-hom by auto

lemma dom-eval [simp]:

assumes Arr f

shows dom {f} = {Dom f|}
using assms eval-in-hom by auto

lemma cod-eval [simp]:

assumes Arr f

shows cod {f}} = {Cod f|}

using assms eval-in-hom by auto

lemma eval-Prim [simp]:
assumes C.arr f

shows {(fi = V f
by simp

lemma eval-Tensor [simp]:
assumes Arr ¢t and Arr u
shows {t ® u} = {t} @ {u}

using assms eval-in-hom by auto

lemma eval-Comp [simpl:
assumes Arr ¢t and Arr v and Dom t = Cod u
shows {t- u} = {t} - {u}

69

using assms by simp

lemma eval-Lunit [simp):
assumes Arrt
shows {1[]} = 1[{Cod t}] - (Z @ {t})
using assms lunit-naturality [of {t}] by simp

lemma eval-Lunit’ [simp]:
assumes Arr ¢
shows {171[{]} = 17 [{Cod t}] - {t}
using assms lunit’-naturality [of {t}] U.map-simp [of {t}] l-ide-simp
Arr-implies-1de-Cod
by simp

lemma eval-Runit [simp]:
assumes Arrt
shows {r[{]} = r[{Cod t}] - ({t} ® T)
using assms runit-naturality [of {t}] by simp

lemma eval-Runit’ [simp]:
assumes Arr ¢
shows {r~'[{]} =~ '[{Cod t}] - {t}
using assms runit’-naturality [of {t}] o’ .map-simp [of {t}] o-ide-simp
Arr-implies-1de-Cod
by simp

lemma eval-Assoc [simp]:

assumes Arr ¢t and Arr v and Arr v

shows {a[t, u, v|} = alcod {t}, cod {ul}, cod {v}] - ({t} ® {u}) ® {v})
using assms a.naturality? [of ({t}, {ul}, {v})] by auto

lemma eval-Assoc’ [simp]:

assumes Arr ¢ and Arr v and Arr v

shows {a=![t, u, v]} = a=[cod {t}, cod {ul}, cod {v}] - Jt} @ {u} @ {v})
using assms o’-simp [of {t} {ul} {v}] assoc’-naturality [of {t} {ul {v}]
by simp

The following are conveniences for the case of identity arguments to avoid having to
get rid of the extra identities that are introduced by the general formulas above.

lemma eval-Lunit-Ide [simp]:
assumes Ide a
shows {l[a]} = 1[{a}]

using assms comp-cod-arr by simp

lemma eval-Lunit’-Ide [simp]:
assumes Ide a
shows {171[a]} = 17'[{a}]

using assms comp-cod-arr by simp

70

lemma eval-Runit-Ide [simp:
assumes Ide a
shows {r[d]} = r[{a}]

using assms comp-cod-arr by simp

lemma eval-Runit’-Ide [simp]:
assumes Ide a
shows {r~![a]} = r~[{al}]

using assms comp-cod-arr by simp

lemma eval-Assoc-Ide [simp]:
assumes [de a and Ide b and Ide ¢
shows {ala, b, dJ} = a[{al}, {b], {cl}]

using assms by simp

lemma eval-Assoc’-Ide [simp]:
assumes [de a and Ide b and Ide ¢
shows {a~'[a, b,]}t = a'[{a}, {b}, {c}]

using assms a’-ide-simp by simp

Canonical arrows evaluate to isomorphisms in D, and formal inverses evaluate to
inverses in D.

lemma iso-eval-Can:
shows Can t = iso {t]}
using Can-implies-Arr U'.preserves-iso o’.preserves-iso a.preserves-iso a'.preserves-iso
Arr-implies-Ide-Dom
by (induct t) auto

lemma eval-Inv-Can:
shows Can t = {Inv t} = inv {t}
apply (induct t)
using iso-eval-Can inv-comp Can-implies-Arr
apply auto[4]
proof —
fix t
assume I: Can t = {Inv t} = inv {t}
show Can 1[{] = {Inv 1[{]} = inv {1[{]]}
using I U.naturality2 [of inv {t}] iso-eval-Can [-ide-simp iso-is-arr
comp-cod-arr inv-comp
by simp
show Can r[f] = {Invr[{]} = inv {r[{]}
using I o’.naturality? [of inv {t]}] iso-eval-Can o-ide-simp iso-is-arr
comp-cod-arr inv-comp
by simp
show Can 171[t] = {Inv 171[{]} = inv {I7L[]]}
proof —
assume t: Can 171[{]
hence I: iso {t]} using iso-eval-Can by simp
have inv {171} = inv (I’ {t]})

71

using ¢ by simp
also have ... = inv (17 [cod {t}] - {t})
using 1 U.naturality2 [of {t}] V'-ide-simp iso-is-arr by auto
also have ... = {Inv 171[{]}}
using ¢ [1 iso-is-arr inv-comp by auto
finally show ?thesis by simp
qed
show Can r=1[t] = {Invr=[{} = inv {r~1[{}
proof —
assume t: Can r~1[{]
hence I1: iso {t| using iso-eval-Can by simp
have inv {r=[{]} = inv (o’ {t})
using ¢ by simp

also have ... = inv (r1[cod {t}] - {t})
using 1 o’.naturality? [of {t}] o'-ide-simp iso-is-arr by auto
also have ... = {Inv r~![{}

using t I 1 iso-is-arr inv-comp by auto
finally show ?thesis by simp
qed
next
fix tuw
assume I1: Can t = {Inv t} = inv {t}
assume I2: Can v = {Inv u}} = inv {uf}
assume I3: Can v = {Inv v} = inv {v}
show Can a[t, u, v] = {Inv a[t, u, V]}} = inv {a[t, u, v}
proof —
assume tuv: Can aft, u, v|
have t: iso {t} using tuv iso-eval-Can by auto
have u: iso {u} using tuv iso-eval-Can by auto
have v: iso {v|} using tuv iso-eval-Can by auto
have {Inv a[t, u, v|} = o’ (inv {t}, inv {u}, inv {v]})
using tuv I1 12 13 by simp
also have ... = inv (alcod {t}, cod {ul, cod {uv}] - (({t} ® {u]}) @ {v}))
using t u v a’-simp iso-is-arr inv-comp by auto
also have ... = inv (({t} ® {u} ® {v}) - a[dom {t}, dom {ul}, dom {v]}])
using t u v iso-is-arr assoc-naturality by simp
also have ... = inv {a[t, u, 9|}
using t u v iso-is-arr a-simp [of {t} {ul} {v}] by simp
finally show ?thesis by simp
qed
show Can a=1[t, u, v] = {Inva='[t, u, v]} = inv {a='[t, u, 1]}
proof —
assume tuv: Can a=1[t, u, v]
have t: iso {t} using tuv iso-eval-Can by auto
have u: iso {u} using tuv iso-eval-Can by auto
have v: iso {v|} using tuv iso-eval-Can by auto
have {Inva='[t, u, o]} = a (inv {t}, inv {u}, inv {o}})
using tuv I1 12 13 by simp
also have ... = (inv {t} ® inv {u} @ inv {ov}) - a[cod {t}, cod {u], cod {v}]

72

using t u v iso-is-arr a-simp [of inv {t} inv Jul} inv {v}] by simp

also have ... = inv (a~[cod {t}, cod {u}, cod {v}] - ({t} @ {u} @ {v}}))
using t u v iso-is-arr inv-comp by auto

also have ... = inv (({t} @ {ul}) @ {v}) - a=[dom {t}, dom {u}, dom {v}])
using t u v iso-is-arr assoc’-naturality by simp

also have ... = inv {a=1[t, u, o]|}
using t u v iso-is-arr a’-simp by auto

finally show ?thesis by blast

qed
qged

The operation |-| evaluates to composition in D.

lemma eval-CompDiag:
assumes Diag t and Diag v and Seq t u
shows {t |-] u} = {¢} - Ju}
proof —
have Aw. [Diag t; Diag u; Seq t u | = {¢ |-] u} = {t} - {u}
using eval-in-hom comp-cod-arr
proof (induct t, simp-all)
fix u f
assume u: Diag u
assume f: C.arr f
assume 1: Arr u A (C.dom f) = Cod u
show {() [-] u} =V f - {ul
using f u 1 as-nat-trans.preserves-comp-2 by (cases u; simp)
next
fix uvw
assume I1: Au. [Diag v; Diag u; Arr u A Dom v = Cod u | =
{o L] uf = {ol - {ul
assume I12: Au. [Diag w; Diag u; Arr w A Dom w = Cod u | =
Jw -] ub = Ju} - Ju
assume vw: Diag (Tensor v w)
have v: Diag v A v = Prim (un-Prim v)
using vw by (simp add: Diag-TensorE)
have w: Diag w
using vw by (simp add: Diag-TensorE)
assume u: Diag u
assume 1: Arr v A Arr w A Arr u A Dom v ® Dom w = Cod u
show {(v® w) [-] u} = ({v} ® {w}) - {ul
using u 1 eval-in-hom CompDiag-in-Hom
proof (cases u, simp-all)
fix zy
assume 3:u =1 Q ¥y
assume 4: Arr v A Arr w A Dom v = Cod © A Dom w = Cod y
have z: Diag x
using u 1 3 Diag-TensorE [of z y] by simp
have y: Diag y
using u z 1 8 Diag-TensorE [of x y] by simp

show {v [-] 2} @ {w [-] v} = ({v} @ {wl) - (=} © {y})

73

using v w z y 4 11 12 CompDiag-in-Hom eval-in-hom Diag-implies-Arr interchange
by auto
qed
qed
thus ?thesis using assms by blast
qged

For identity terms a and b, the reduction (a ® b)] factors (under evaluation in D)
into the parallel reduction a} ® bl followed by a reduction of its codomain |a| { |b].

lemma eval-red-Tensor:
assumes Ide a and Ide b
shows {(a ® b)L} = {la] ¥ [0]} - ({adlf @ {bl})
proof —
have Diag (a ® b) = ?thesis
using assms Can-red2 Ide-implies-Arr red-Diag
Diagonalize-Diag red2-Diag Can-implies-Arr iso-eval-Can iso-is-arr
apply simp
using Diag-TensorE eval-Tensor Diagonalize-Diag Diag-implies-Arr red-Diag
tensor-preserves-ide ide-eval-Ide dom-eval comp-arr-dom
by metis
moreover have = Diag (a ® b) = ?thesis
using assms Can-red2 by (simp add: Can-red(1) iso-eval-Can)
ultimately show #¢thesis by blast
qged

lemma eval-red2-Diag- Unity:

assumes Ide a and Diag a

shows {a | Z|} = r[{a}]
using assms tensor-preserves-ide p-ide-simp unitor-coincidence unit-in-hom comp-cod-arr
by (cases a, auto)

Define a formal arrow t to be “coherent” if the square formed by ¢, |¢] and the
reductions Dom t| and Cod t| commutes under evaluation in D. We will show that all
formal arrows are coherent. Since the diagonalizations of canonical arrows are identities,
a corollary is that parallel canonical arrows have equal evaluations.

abbreviation coherent

where coherent t = {Cod tl} - {t} = {|¢]} - {Dom tL]}

Diagonal arrows are coherent, since for such arrows ¢ the reductions Dom t] and Cod
t] are identities.

lemma Diag-implies-coherent:
assumes Diag t
shows coherent t
using assms Diag-implies-Arr Arr-implies-Ide-Dom Arr-implies-1de-Cod
Dom-preserves-Diag Cod-preserves-Diag Diagonalize-Diag red-Diag
comp-arr-dom comp-cod-arr
by simp

The evaluation of a coherent arrow ¢ has a canonical factorization in D into the
evaluations of a reduction Dom t|., diagonalization |¢], and inverse reduction Inv (Cod

74

tl). This will later allow us to use the term Inv (Cod t}) - |t] - Dom t] as a normal
form for ¢.

lemma canonical-factorization:
assumes Arrt
shows coherent t «— {t} = inv {Cod tL} - {|t|} - {Dom tL]}
proof
assume 1: coherent t
have inv {Cod tl}} - {|t]} - {Dom tl} = inv {Cod |} - {Cod t|} - {t}
using 1 by simp
also have ... = (inv {Cod t|} - {Cod tl]}) - {t}
using comp-assoc by simp
also have ... = {t}
using assms 1 red-in-Hom inv-in-hom Arr-implies-Ide-Cod Can-red iso-eval-Can
comp-cod-arr Ide-in-Hom inv-is-inverse
by (simp add: comp-inv-arr)
finally show {t} = inv {Cod tl} - {[t]} - {Dom t]} by simp
next
assume 1: {t} = inv {Cod tL} - {[t]} - {Dom tL}
hence {Cod tl} - {t} = {Cod tL} - inv {Cod tL} - {[t]]} - {Dom tl} by simp
also have ... = ({Cod t}}} - inv {Cod tl}) - {[t|]} - {Dom tl}
using comp-assoc by simp
also have ... = {[t|} - {Dom]}
using assms 1 red-in-Hom Arr-implies-Ide-Cod Can-red iso-eval-Can inv-is-inverse
Diagonalize-in-Hom comp-arr-inv comp-cod-arr Arr-implies-Ide-Dom Diagonal-
ize-in-Hom
by auto
finally show coherent t by blast
qed

A canonical arrow is coherent if and only if its formal inverse is.

lemma Can-implies-coherent-iff-coherent-Inv:
assumes Can t
shows coherent t <— coherent (Inv t)
proof
have 1: At. Can t = coherent t = coherent (Inv t)
proof —
fix t
assume Can t
hence t: Can t A Arr ¢t A Ide (Dom t) A Ide (Cod t) A
arr {tf} A iso {t} A inverse-arrows {t} (inv {t}) A
Can |t| N Arr [t] A arr {|E]} A iso {|t]} A |t] € Hom | Dom t] | Cod t] A
inverse-arrows {{|t]} (inv {|t]}) A Inv t € Hom (Cod t) (Dom t)
using assms Can-implies-Arr Arr-implies-Ide-Dom Arr-implies-Ide-Cod iso-eval-Can
inv-is-inverse Diagonalize-in-Hom Diagonalize-preserves-Can Inv-in-Hom
by simp
assume coh: coherent t
have {Cod (Inv t)l} - {Inv t} = (inv {1 L]} - {Lt]}) - {Cod (Inv t)|} - {Inv t}
using t red-in-Hom comp-cod-arr comp-inv-arr
by (simp add: canonical-factorization coh Diagonalize-preserves-Can

75

«Can t» inv-is-inverse)
also have ... = inv {[]} - ({Cod &} - {¢t}) - inv {¢}
using t eval-Inv-Can coh comp-assoc by auto
also have ... = {|Inv t|} - {Dom (Inv t)}}
using t Diagonalize-Inv eval-Inv-Can comp-arr-inv red-in-Hom comp-arr-dom comp-assoc
by auto
finally show coherent (Inv t) by blast
qed
show coherent t => coherent (Inv t) using assms 1 by simp
show coherent (Inv t) = coherent t
proof —
assume coherent (Inv t)
hence coherent (Inv (Inv t))
using assms 1 Inv-preserves-Can by blast
thus ?thesis using assms by simp
qed
qed

Some special cases of coherence are readily dispatched.

lemma coherent-Unity:
shows coherent Z
by simp

lemma coherent-Prim:

assumes Arr (f)

shows coherent (f)
using assms by simp

lemma coherent-Lunit-Ide:
assumes Ide a
shows coherent 1[a]
proof —
have a: Ide a N Arr a A Dom a = a AN Cod a = a A
ide {a} A ide {lall} A {al} € hom {af} {lal]}
using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
thus ?thesis
using a lunit-naturality [of {al]}] comp-cod-arr by auto
qed

lemma coherent-Runit-Ide:
assumes Ide a
shows coherent r[a]
proof —
have a: Ide a A Arr a A\ Dom a = a A Cod a = a A
ide {a} A ide {lal}} A {al} € hom {af} {la]]}
using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom
by auto
have {Cod rla]4} - Jr[a]} = {at} - r{{a}]

using a runit-in-hom comp-cod-arr by simp

76

also have ... = r[{|a]}] - {al}} ® I)

using a eval-Runit runit-naturality [of {red a}] by auto
also have ... = {|r[d] |} - {Dom r[a]l}
proof —
have — Diag (¢ ® T) by (cases a; simp)
thus ?thesis
using a comp-cod-arr red2-in-Hom eval-red2-Diag-Unity Diag-Diagonalize
Diagonalize-preserves-Ide
by auto
qed
finally show ?thesis by blast
qed

lemma coherent-Lunit’-Ide:
assumes Ide a
shows coherent 171[d]
using assms Ide-implies-Can coherent-Lunit-Ide
Can-implies-coherent-iff-coherent-Inv [of Lunit a] by simp

lemma coherent-Runit’-Ide:
assumes Ide a
shows coherent r~—[a]
using assms Ide-implies-Can coherent- Runit-Ide
Can-implies-coherent-iff-coherent-Inv [of Runit a] by simp

To go further, we need the next result, which is in some sense the crux of coherence:
For diagonal identities a, b, and ¢, the reduction ((a [®] b) | ¢) - ((a § b) ® ¢) from (a
® b) ® c that first reduces the subterm a ® b and then reduces the result, is equivalent
under evaluation in D to the reduction that first applies the associator afa, b, ¢] and
then applies the reduction (a 4 b |®] ¢) - (¢ ® b ¢) from a ® b ® c¢. The triangle
and pentagon axioms are used in the proof.

lemma coherence-key-fact:
assumes Ide a A Diag a and Ide b A\ Diag b and Ide ¢ N\ Diag c
shows {(a |®] 0) 4 c} - ({a 4 b} ® {c})
= ({ad (0 [®] O - {alt @ {b 4 c})) - al{al, {ol}, {cf]
proof —
have b = T — ?%thesis
using assms not-is-Tensor-TensorDiagFE eval-red2-Diag- Unity triangle
comp-cod-arr comp-assoc
by simp

The triangle is used!

moreover have ¢ = T = %thesis
using assms TensorDiag-preserves-Diag TensorDiag-preserves-Ide
not-is- Tensor-TensorDiagE eval-red2-Diag- Unity
red2-in-Hom runit-tensor runit-naturality [of {a | b}}] comp-assoc
by simp
moreover have [b # I; ¢ # I | = ?thesis
proof —

77

assume b b #T
hence b: Ide b N Diag b N Arr b AN b # I A
ide {b} A arr {O} A 0] =bA DL =bADomb=>bA Codb=1>
using assms Diagonalize-preserves-Ide Ide-in-Hom by simp
assume c: ¢ £ T
hence c: Ide ¢ A Diag c N Arr ¢ N ¢ # L A
ide {c} N arr {cf Ne] =cANecl=cADomc=cA Codc=c
using assms Diagonalize-preserves-Ide Ide-in-Hom by simp
have Aa. Ide a A Diag a =
{(a [®])0) ¥ c}- ({al b} @ {c})
P {ad (0 [®])} - {alt @ {04 c})) - al{al, {6}, {c]]
proof —
fix a :: 'c term
show Ide a A Diag a =
{(a [®]0) ¥ c} - ({a § b} @ {c})
= ({ad (0 [®] O - {alt @ {b 4 c})) - al{lal, {0}, {cb]
apply (induct a)
using b ¢ TensorDiag-in-Hom apply simp-all
proof —
show {b { cf - ({b} - 1[{b}] ® {c})
- (({o [®] c} - 1{b [®] cb}]) - (Z @ {b§ cf)) - alZ, {bf, {c]]
proof —
have {5 [®] c} - (146 [®] cl] - (T @ {64 c}) - alZ, Job, Je}] =
{6 1®] cl - (o4 c} - 1{o} @ {cl) - alZ, {0}, {cl]
using b ¢ red2-in-Hom lunit-naturality [of {b { cf}] by simp
thus ?thesis
using b ¢ red2-in-Hom lunit-tensor comp-arr-dom comp-cod-arr comp-assoc by simp
qed
show Af. C.ide f N C.arr f =
(N @ b) ¥ clr - {H I b} @ {ch)
P {NH V1] O - (Ve {od c}) - alVf, {b}, {cl}]
proof —
fix f
assume f: C.ide f N C.arr f
show {((/) ® b) 4 cft - ({{/) ¥ b} @ {c})
=({N V&) b - (V@ {bdch)) -alV [, {o, {c]]
proof —
have {({f) ® b) & cf - (1() 4 b} @ {c})
=((Vie{bl®]) - (Vie{blch) - alVf b}, {c}) -
; (Vie{bh) @ {ch)
proof —
have {(f) 4 b}t = V f & {b}
using assms f b ¢ red2-Diag by simp
morefover have {(H L b |[®] ¢} = V@ {b|Q] c}
proof —
have is-Tensor (b |®] ¢)
using assms b ¢ not-is-Tensor-TensorDiagE by blast
thus ?thesis
using assms f b ¢ red2-Diag TensorDiag-preserves-Diag(1)

78

by (cases b |®] ¢; simp)
qged
ultimately show ?thesis
using assms b ¢ by (cases ¢, simp-all)
qed
also have ... = (V£ @ {b [®] c}) - (V.f & {b 4 c}) - alV £, {ob, {cb]
using b ¢ f TensorDiag-in-Hom red2-in-Hom comp-arr-dom comp-cod-arr
by simp
also have ... = ({() 4 (b [®])} - (Vf @ {b 4 cft)) - a[V [, {b], {c]]
using b c¢ f Ide-implies-Arr TensorDiag-preserves-Ide not-is-Tensor-TensorDiagE
by (cases b |®] ¢, simp-all; blast)
finally show ?¢thesis by blast
qed
qed
fix de
assume [I: Diag e = {(e |®] b) I c} - ({e J b} ® {c[})
— (e b b 1®] cb- ek @ 0¥ cb)) - alfeb, 4o}, Ieh
assume de: Ide d A Ide e A Diag (d ® e)
show {((d ® ¢) [®] b) ¥ c - ({(d® €) I b} @ {cf})
= {(d®@e) 4 (0[] o - (({d} @ {e}) @ {o 4 cf)) - al{ld} @ {ef, {b}, {ch]
proof —
let ?f = un-Prim d
have is-Prim d
using de by (cases d, simp-all)
hence d = (?f) A C.ide ?f
using de by (cases d, simp-all)
hence d: Ide d AN Arr d N Dom d = d AN Cod d = d N Diag d N
d = (?fy A C.ide ?f A dde {d} A arr {d}}
using de ide-eval-Ide Ide-implies-Arr Diag-Diagonalize(1) Ide-in-Hom
Diag-TensorE [of d €]
by simp
have Diage N e £ T
using de Diag-TensorE by metis
hence e: Ide e A Arr e A Dom e = e A Cod e = e A Diag e A
e # I A ide {e} A arr {e}
using de Ide-in-Hom by simp
have 1: is-Tensor (e |®] b) A is-Tensor (b |®] ¢) A is-Tensor (e |®] (b |®] ¢))
using b ¢ e de not-is-Tensor-TensorDiagE TensorDiag-preserves-Diag
not-is- Tensor-TensorDiagE [of e b |®] (]
by auto
have {((d ® €) [®] b) 4 c}} - ({(d ® ¢) § b} @ {cf})
= (({d}y @ {(e [®] b) [®] cf}) - ({d} @ {(e [®] b) ¥ c}) -
al{d}, {e [®] bf, {c}]) -
(({dl @ {e [®] o}t) - ({d}} @ {e ¥ b}) - al{d], {elr, {b}] @ {cl})
proof —
have {((d ® ¢) [®] b) 4 cf}
= ({d}r @ {(e [®] b) |®] cf}) - {d} @ {(e [®] b) ¥ }) -
al{df}, {e [®] b}, {cl]

proof —

79

have (4 ® ¢) [®]) b ¢ = (d® (¢ [®] b)) & ¢
using b ¢ d e de 1 TensorDiag-Diag TensorDiag-preserves-Diag TensorDiag-assoc
TensorDiag-Prim not-is- Tensor- Unity
by metis
also have ... = (d 4 (|e [®] b [®] ¢)) - (d® ((e [®] b) ¥ ¢)) -
ald, e |®] b, (]
using ¢ d 1 by (cases ¢) simp-all
also have ... = (4 ® (¢ [®] b) |®] ¢)) - (d® ((¢ [®] b) ¥ ¢)) -
a[d, e |®] b,
by (metis 1 Diagonalize-Diag TensorDiag-assoc TensorDiag-preserves-Diag(1)
b ¢ d e is-Tensor-def red2.simps(4))
finally show ?thesis
using b ¢ d e TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Diag
TensorDiag-preserves-Ide
by simp
qed
moreover have {(d ® e) | b}
= ({d} @ {e [®] b}) - ({d} @ {e ¥ b]}) - al{d}, {elt, {b]]
proof —

have (d® e) y b= (d{ (e [®] b)) - (d® (e b)) - a[d, e, b]
using b ¢ d e de 1 TensorDiag-Prim Diagonalize-Diag
by (cases b) simp-all
also have ... = (d ® (e |[®] b)) - (d® (e b)) - a[d, e, b]
using b d e 1 TensorDiag-preserves-Diag red2-Diag
by (metis Diag.simps(3) de term.disc(12))
finally have (d ® ¢) 4 b= (d® (¢ |®] b)) - (d® (e b)) - a[d, e, b
by simp
thus ?thesis using b d e eval-in-hom TensorDiag-in-Hom red2-in-Hom by simp
qed
ultimately show ?thesis by argo
qed
also have ... = ({d} @ {(¢ |®]) 4 c}) - al{d}, {e |®] b} {c}] -
(({d} @ {e ¥ bl) @ {clt) - (al{d], {ef, {b}] @ {c})
using b ¢ d e red2-in-Hom TensorDiag-preserves-Ide
TensorDiag-preserves-Diag interchange comp-cod-arr comp-assoc
by simp
also have ... = ({d}} @ {(e [®] b) ¥ c}) - ({d} © ({e ¥ b} @ {cf})) -
al{dlt, {e} @ {b}, {clt] - (al{dl}, {efs, {b}] @ {c})
using b ¢ d e TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Ide
TensorDiag-preserves-Diag assoc-naturality [of {d} {e U b} {c]}]
comp-permute [of al{{d}, {e [®] b}, {c}t] ({d} @ {ed b}) @ {cff
{d} @ ({e ¥ b} @ {clt) al{d], {e} @ {olt, {c}]]
by simp

also have ... = ({d} @ {(c [®) b) ¥ c} - ({e 4 b} @ {c}) -
al{dl}, {e} @ {o}, {cl] - (al{dl}, {ef, {b}] ® {c})
using b ¢ d e TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Ide
TensorDiag-preserves-Diag interchange
comp-reduce [of {d} @ {(e |®] b) Y c}
fdb ® (e 4 oF © {eb)

80

{d} @ {(e [®] b) ¥ c} - ({e ¥ b} @ {cf})
. al{d}, {elt @ {o}, {cb] - (al{dl, {el, {0l © {c])]
Yy simp
also have ... = (({d} @ {e 4 (b [®] o)}) - ({d} @ {e} @ {o 4 c})) -

({dl @ a[{el, {olt, {ci])) -
al{dl}, {e} @ {ol}, {clt] - (al{dlt, {ef, {0} @ {c})
using b ¢ d e I TensorDiag-in-Hom red2-in-Hom TensorDiag-preserves-Ide
TensorDiag-preserves-Diag interchange
by simp
also have ... = ({d} @ {e 4 (0 |®] o)) - ({d} @ ({e} @ {o 4 cf}))) -
al{df}, {el, {6} @ {cb] - al{d}t @ {ef, {6}, {c}]
using b ¢ d e comp-assoc red2-in-Hom TensorDiag-in-Hom ide-eval-Ide
TensorDiag-preserves-Diag tensor-preserves-ide TensorDiag-preserves-Ide
pentagon
by simp

The pentagon is used!

also have ... = ({d} ® {e |®] b |®] ¢}) - {d} @ {e Y b |®] c}) -
a[{ld}, {e}, {b [®] cf]) - (({d} @ {e}) @ {b 4 cf})) -
al{d} @ {el, {0}, {c}]
using b ¢ d e red2-in-Hom TensorDiag-preserves-Ide TensorDiag-preserves-Diag
assoc-naturality [of {d} {e} {b 4 c}] comp-cod-arr comp-assoc
by simp
also have ... = ({(d ® ¢) § (b [®] o)} - (({d} @ {e}) @ {b 4 c})) -
] al{d} @ {el, {0}, {cl]
proof —

have {(d® ¢) I (b [®])}
= {d} @ {e [®] (b [®] 9F) - {d}} @ {e ¥ (b [®]) -
al{dly, {el}, {b [®] cl}]
proof —
have (d® ¢e) | (b |®] ¢)
— (4 (e 1®) [b[®) c])) - (d® (e (b 1®)) - ald, ¢, b [®) d
using b ¢ e not-is-Tensor-TensorDiagE
by (cases b |®] ¢) auto
also have ... = (d 4 (e [®] (b [®]) - (d® (e ¥ (b [®] ¢))) -
ald, e, b |®] (]
using b ¢ d e 1 TensorDiag-preserves-Diag Diagonalize-Diag by simp
also have ... = (4 ® (¢ |®] (b [®] 0))) - (d® (¢ 4 (b |®] ¢))) -
ald, e, b |®] (]
using b ¢ d e 1 TensorDiag-preserves-Diag(1) red2-Diag
by (metis Diag.simps(3) de not-is- Tensor-Unity)
finally have (d ® ¢) { (b |[®] ¢)
—([d® (|®) (b 18] 0)) - (d® (¢ I (b [B®] <) -
ald, e, b |®] (]
by blast
thus ?thesis
using b ¢ d e red2-in-Hom TensorDiag-in-Hom TensorDiag-preserves-Diag
TensorDiag-preserves-Ide
by simp

81

qed
thus ?thesis using d e b ¢ by simp
qed
finally show ?thesis by simp
qed
qged
qed
thus %thesis using assms(1) by blast
qed
ultimately show ?thesis by blast
qged

lemma coherent-Assoc-Ide:
assumes Ide a and Ide b and Ide c
shows coherent ala, b,]
proof —
have a: Ide a A Arr a N Dom a = a A Cod a = a A
ide {a} A dide {lall} N «{ad} : {a} — {lal}»
using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
have b: Ide b A Arr b A Dom b= b A Cod b =b A
ide {b} A ide {|b]} A «{bd} : {0} — {Lb]}»
using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
have c: Ide ¢ AN Arr ¢ AN Dom c = ¢ A Cod c = ¢ A
ide {c} N ide {|Lc]} N «{cdl : {c} = {le)}»
using assms Ide-implies-Arr Ide-in-Hom Diagonalize-preserves-Ide red-in-Hom by auto
have {Cod afa, b, .| - {ala, b,]}
= ({la) ¥ (L0] [®] LeD)l - (Lall @ ({Lo] ¥ Lelb)) -
{all @ bl @ {cll)) - al{al, {b], {cf]
using a b ¢ red-in-Hom red2-in-Hom Diagonalize-in-Hom Diag-Diagonalize
Diagonalize-preserves-Ide interchange Ide-in-Hom eval-red-Tensor
comp-cod-arr [of {al]]
by simp
also have ... = (({La] 4 (16] |®] LD} - ({Lalk @ {L6] & Lel}) -
alfLal | ALJF ALl - (Hadl & o) @ el
using a b ¢ red-in-Hom Diag-Diagonalize TensorDiag-preserves-Diag
assoc-naturality [of {all} {0} {cl}] comp-assoc
by simp
also have ... — ({(La] |®] L6]) ¥ Lel} - (ILa) & LbJ} @ {Lelb) -
(JadF @ {64b) @ el

using a b ¢ Diag-Diagonalize Diagonalize-preserves-Ide coherence-key-fact by simp
also have ... = {|a[a, b, c]|} - {Dom ala, b, L}
using a b ¢ red-in-Hom red2-in-Hom TensorDiag-preserves-Diag
Diagonalize-preserves-Ide TensorDiag-preserves-Ide Diag-Diagonalize interchange
eval-red-Tensor TensorDiag-assoc comp-cod-arr [of {cl}]
comp-cod-arr [of {(La) 1®] [b]) ¥ Le]b - ({La] ¥ (6]} - (Jabb ® Jo4}) ® feib)]
comp-assoc
by simp
finally show ?thesis by blast
qed

82

lemma coherent-Assoc’-Ide:
assumes [de a and Ide b and Ide c
shows coherent a='[a, b, (]
proof —
have Can ala, b, c] using assms Ide-implies-Can by simp
moreover have a~1[a, b, ¢] = Inv ala, b, (]
using assms Inv-Ide by simp
ultimately show ?thesis
using assms Ide-implies-Can coherent-Assoc-Ide Inv-Ide
Can-implies-coherent-iff-coherent-Inv
by metis
qed

The next lemma implies coherence for the special case of a term that is the tensor of
two diagonal arrows.

lemma eval-red2-naturality:
assumes Diag t and Diag u
shows {Cod t | Cod u} - ({t} ® {u}) = {t |®] u|} - {Dom t | Dom ul]}
proof —
have x: At u. Diag (t ® u) = arr {t} A arr {ul}
using Diag-implies-Arr by force
have t = T —> %thesis
using assms Diag-implies-Arr lunit-naturality [of {u}]
Arr-implies-1de-Dom Arr-implies-Ide-Cod comp-cod-arr
by simp
moreover have t # Z N v = Z = ?thesis
using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod
Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
eval-red2-Diag- Unity runit-naturality [of {t}]
by simp
moreover have t # Z A u # Z = ?thesis
using assms x Arr-implies-Ide-Dom Arr-implies-1de-Cod
Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
apply (induct t, simp-all)
proof —
fix f
assume f: C.arr f
assume u # T
hence u: u # Z A
Diag v A Diag (Dom u) A Diag (Cod u) A Ide (Dom u) A Ide (Cod u) A
arr {ul} A arr {Dom ulp A arr {Cod ul} A ide {Dom ul} A ide {Cod ul}
using assms(2) Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
Arr-implies-1de-Dom Arr-implies-Ide-Cod
by simp
hence 1: Dom v # I N Cod u # T using u by (cases u, simp-all)
show {(C.cod fy § Cod ul} - (Vf @ {ul}) = (Vf & {u}) - {(C.dom fy Y Dom ul}
using f u 1 Diag-implies-Arr red2-Diag comp-arr-dom comp-cod-arr by simp
next

83

fix v w
assume I12: [w # Unity; Diag w | =
{Cod w{ Cod ul} - Ju} @ {u}) = {w [®] ul} - {Dom w I Dom ul}
assume u # T
hence w: uw # Z A Arr u A Arr (Dom u) A Arr (Cod u) A
Diag u A Diag (Dom u) A Diag (Cod u) A Ide (Dom u) A Ide (Cod u) A
arr {ult A arr {Dom ul} A arr {Cod ul A ide {Dom u} A ide {Cod ul
using assms(2) Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag
Arr-implies-Ide-Dom Arr-implies-Ide-Cod
by simp
assume vw: Diag (v @ w)
let 2f = un-Prim v
have v = (?f)y A C.arr ?f
using vw by (metis Diag-TensorE(1) Diag-TensorE(2))
hence Arr v A v = (un-Prim v) A C.arr ?f A Diag v by (cases v; simp)
hence v: v = (?/) A C.arr 2f A Arr v A Ide (Dom v) A Ide (Cod v) A Diag v A
Diag (Dom v) A arr {u}} A arr {Dom v} A arr {Cod v} A
ide {Dom v|} A ide {Cod v}
by (cases v, simp-all)
have Diag w AN w # T
using vw v by (metis Diag.simps(3))
hence w: w # Z AN Arr w A Arr (Dom w) A Arr (Cod w) A
Diag w A Diag (Dom w) A Diag (Cod w) A
Ide (Dom w) A Ide (Cod w) A
arr Jwl A arr {Dom w| A arr {Cod w} A ide {Dom w} A ide {Cod wi}
using vw * Diag-implies-Arr Dom-preserves-Diag Cod-preserves-Diag Arr-implies-Ide-Dom
Arr-implies-Ide-Cod ide-eval-Ide Ide-implies-Arr Ide-in-Hom
by simp
show {(Cod v ® Cod w) § Cod u} - ({v} ® {w}) ® {ul})
={(v® w) |®] ul}f - {(Dom v ® Dom w) | Dom ul}
proof —
have u”: Dom u # Z A Cod u # T using u by (cases u) simp-all
have w”: Dom w # I A Cod w # Z using w by (cases w) simp-all
have D: Diag (Dom v ® (Dom w |®] Dom u))
proof —
have Dom w |®| Dom u # T
using u v’ w w' not-is-Tensor-TensorDiagE by blast
moreover have Diag (Dom w |®]| Dom u)
using u w TensorDiag-preserves-Diag by simp
moreover have Dom v = (C.dom ?f)
using v by (cases v, simp-all)
ultimately show “thesis
using u v w TensorDiag-preserves-Diag by auto
qed
have C: Diag (Cod v ® (Cod w |®] Cod u))
proof —
have Cod w |®]| Cod u # T
using u v’ w w' not-is-Tensor-TensorDiagE by blast
moreover have Diag (Cod w |®]| Cod u)

84

using u w TensorDiag-preserves-Diag by simp
moreover have Cod v = (C.cod ?f)

using v by (cases v, simp-all)
ultimately show ?thesis

using u v w by (cases Cod w |®] Cod u) simp-all

qged
have {(Cod v ® Cod w) |} Cod ul} - ((Jv} @ {w}) @ {ul})
)b - ({Cod v} @ {Cod w § Cod uly) -

= {Cod v (Cod w |®]| Cod u
al{ Cod v}, {Cod wlt, {Cod ull]) - ({vl} © {w}) ® {u})
proof —
have (Cod v ® Cod w) | Cod u
= (Cod v (Cod w |®] | Cod u])) - (Cod v® Cod wl Cod u)
a[Cod v, Cod w, Cod u]
using u v w by (cases u, simp-all)
hence {(Cod v ® Cod w) { Cod ul}
={Cod v (Cod w |®| Cod w)} - ({Cod v} @ {Cod w{ Cod ul}) -
a[{Cod v}, {Cod w, {Cod u}]
using v v w by simp
thus ?thesis by argo
qed
also have ... = (({Cod v} ® {Cod w |®]| Cod ul}) - ({Cod v} @ {Cod w{ Cod ul}) -
al{ Cod v}, {Cod wl, {Cod ul]) - ({v}} @ {w}) @ {u})
using u v w C red2-Diag by simp
also have ... = (({Cod v} ® {Cod w{ Cod ul}) - a[{ Cod v}, {Cod wf, {Cod ul}]) -
(ol © {wl) © {ult)
proof —

have ({Cod v} ® {Cod w |®] Cod ul}) - ({Cod v} ® {Cod w{ Cod ul})
= {Cod v} ® {Cod w{ Cod ul}
using u v w comp-cod-arr red2-in-Hom by simp
moreover have
seq ({Cod v} ® {Cod w |®] Cod ul}) ({Cod v} @ {Cod w | Cod ul})
using u v w red2-in-Hom TensorDiag-in-Hom Ide-in-Hom by simp
moreover have seq ({Cod v} ® {Cod w{ Cod u}) a[{Cod v}, {Cod w]}, {Cod ul}]
using u v w red2-in-Hom by simp
ultimately show ?thesis
using u v w comp-reduce by presburger
qged
also have
= {v} @ {w |®] u}f - {Dom w{ Dom u}) - a[{Dom v}, {Dom w}, {Dom ul]
using u v w I2 red2-in-Hom TensorDiag-in-Hom interchange comp-reduce
assoc-naturality [of v} {wl} Ju}] comp-cod-arr comp-assoc
by simp
also have ... = ({v} @ {w |®] ul}) - ({Dom v} @ {Dom w Dom ul}) -
a[{Dom vl}, {Dom wf, {Dom ul}]
using u v w red2-in-Hom TensorDiag-in-Hom interchange comp-reduce comp-arr-dom
by simp
also have ... = {v |®] w |®] u} - ({Dom v} ® {Dom w y Dom ul}) -
a[{Dom vl}, {Dom w|, {Dom ul}f]
using u v’ v w not-is-Tensor-TensorDiagE TensorDiag-Prim [of w |®] u ?f]

85

by force
also have ... = {v |®] w |®] u} - {Dom v |®] Dom w |®] Dom ul -
({Dom v} @ {Dom w { Dom ul}) - a[{Dom vf}, {Dom w, {Dom u}]
proof —
have
{v |®] w|®] u}f - {Dom v} @ {Dom wl Dom u}) -
a[{Dom v}, {Dom wl, {Dom u}] =
v |®] w |®] ul}f - {Dom v |®] Dom w |®| Dom ul}) -
({Dom v} & {Dom w | Dom u}) - a[{Dom v}, {Dom w}, {Dom ul}]
using u v w comp-arr-dom TensorDiag-in-Hom TensorDiag-preserves-Diag by simp
also have ... = {v [®] w |®] ul} - {Dom v |®] Dom w |®] Dom ul} -
({Dom v} @ {Dom w |} Dom ul}) - a[{Dom v}, {Dom w}, {Dom ul}]
using comp-assoc by simp
finally show ?thesis by blast
qed
also have ... = {(v |®] w) |®] u} - {(Dom v ® Dom w) | Dom ul
proof —
have
{(Dom v ® Dom w) | Dom ul}
= {Dom v { (Dom w |®| Dom w)} - ({Dom v} @ {Dom w Dom ul}) -
a[{Dom v}, {Dom w|, {Dom ul}]
proof —
have (Dom v ® Dom w) | Dom u
= (Dom v (Dom w || | Dom u])) + (Dom v @ (Dom w{ Dom u)) -
a[Dom v, Dom w, Dom u]
using v v’ v w red2-in-Hom TensorDiag-in-Hom Ide-in-Hom
by (cases u) auto
thus ?thesis
using u v w red2-in-Hom by simp
qed
also have
.. ={Dom v |®] Dom w |®| Dom u} - ({Dom v} @ {Dom wl Dom ul}) -
a[{Dom v}, {Dom w, {Dom ul}]
using D TensorDiag-Diag red2-Diag by simp
finally have
{(Dom v ® Dom w) | Dom ul}
= {Dom v |®| Dom w |®] Dom u}} - ({Dom v} & {Dom w | Dom ul}) -
a[{Dom vl}, {Dom w, {Dom ul]
by blast
thus ?thesis
using assms v w TensorDiag-assoc by auto
qged
finally show ?thesis
using vw TensorDiag-Diag by simp
qed
qed
ultimately show “thesis by blast
qged

86

lemma Tensor-preserves-coherent:
assumes Arr t and Arr v and coherent t and coherent u
shows coherent (1 ® u)
proof —
have ¢: Arr t A Ide (Dom t) A Ide (Cod t) A Ide | Dom t| A Ide | Cod t] A
arr {t} A arr {Dom t} A ide {Dom t} A arr {Cod t} A ide {Cod t}
using assms Arr-implies-1de-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
by auto
have u: Arr u A Ide (Dom u) A Ide (Cod u) A Ide | Dom u| A Ide | Cod u| A
arr Julf A arr {Dom ul} A ide {Dom ul} A arr {Cod ul} A ide {Cod ul}
using assms Arr-implies-1de-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
by auto
have {Cod (t ® u)l} - ({t} @ {ul})
= ({LCod t] 4 [Cod u]} - ({Cod tL} @ {Cod ul})) - ({t} ® {ul})
using ¢t u eval-red-Tensor by simp
also have ... = {{|Cod t] | | Cod u]]} - ({Cod tl} & {Cod wl}) - ({t} @ {u])
using comp-assoc by simp
also have ... = {[Cod t] § | Cod u|[} - (L]} @ {Lul}) - {Dom &} ® {Dom wl]})
using assms t u Diagonalize-in-Hom red-in-Hom interchange by simp
also have ... = ({|Cod t| { | Cod u|]} - ({1t} @ {lwl})) - ({Dom t}} & {Dom wl]})
using comp-assoc by simp
also have ... = ({|t] |®] [u]} - {|Dom t|] 4 | Dom u|}) - ({Dom tL} & {Dom ull})
using assms t u Diag-Diagonalize Diagonalize-in-Hom
eval-red2-naturality [of Diagonalize t Diagonalize u]
by simp
also have ... = {|t] |®] |u]} - {|Dom t| 4 | Dom u|} - ({Dom tl} ® {Dom wl]})
using comp-assoc by simp
also have ... = {[t] |®] [u]} - {(Dom t ® Dom wu)l}
using ¢ u eval-red-Tensor by simp
finally have {Cod (t @ u)d} - ({t} @ {ul}) = {lt] |®] L]} - {(Dom t ® Dom u)l}
by blast
thus ?thesis using t u by simp
qged

lemma Comp-preserves-coherent:
assumes Arr t and Arr v and Dom t = Cod u
and coherent t and coherent u
shows coherent (t - u)
proof —
have t: Arr t A Ide (Dom t) A Ide (Cod t) A Ide | Dom t| A Ide | Cod t] A
arr {t} A arr {Dom t} A ide {Dom t} A arr {Cod t} A ide {Cod t}
using assms Arr-implies-Ide-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
by auto
have u: Arr u A Ide (Dom u) A Ide (Cod u) A Ide | Dom u| A Ide | Cod u| A
arr {u} A arr {Dom ul} A ide {Dom ul} A arr {Cod ul} A ide {Cod ul}
using assms Arr-implies-1de-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
by auto
have {Cod (t - u)d} - {t - u}} = {Cod tL} - {t} - {u}

using ¢t u by simp

87

also have ... = ({Cod tl}} - {t}) - {u}

proof —

have seq {Cod t|} {t}
using assms t red-in-Hom by (intro seql, auto)
moreover have seq {t} {u}
using assms t u by auto
ultimately show ?thesis using comp-assoc by auto
qed
also have ... = {|t- u]} - {Dom (t - u)l}
using ¢ u assms red-in-Hom Diag-Diagonalize comp-assoc
by (simp add: Diag-implies-Arr eval-CompDiag)
finally show coherent (t - u) by blast
qed

The main result: “Every formal arrow is coherent.”

theorem coherence:
assumes Arrt
shows coherent t
proof —
have Arr t = coherent t
proof (induct t)
fix u v
show [Arr w = coherent u; Arr v = coherent v | = Arr (v ® v)
= coherent (u ® v)
using Tensor-preserves-coherent by simp
show [Arr u = coherent u; Arr v => coherent v | = Arr (u - v)
= coherent (u - v)
using Comp-preserves-coherent by simp
next
show coherent Z by simp
fix f
show Arr (fy = coherent (f) by simp
next
fix t
assume [: Arr t => coherent t
show Lunit: Arr1[t] = coherent 1[{]
using I Arr-implies-Ide-Dom coherent-Lunit-Ide Ide-in-Hom Ide-implies-Arr
Comp-preserves-coherent [of t 1[Dom t]] Diagonalize-Comp-Arr-Dom [-ide-simp
by auto
show Runit: Arr r[t] = coherent r[{]
using [Arr-implies-Ide-Dom coherent-Runit-Ide Ide-in-Hom Ide-implies-Arr
Comp-preserves-coherent [of t r[Dom t]] Diagonalize-Comp-Arr-Dom p-ide-simp
by auto
show Arr 171[{] = coherent 17 1[{]
proof —
assume Arr 171[{]
hence t: Arr t by simp
have coherent (171[Cod 1] - t)

88

using ¢ I Arr-implies-Ide-Cod coherent-Lunit’-Ide Ide-in-Hom
Comp-preserves-coherent [of 171[Cod 1] 1|
by fastforce
thus ?thesis
using t Arr-implies-Ide-Cod Ide-implies-Arr Ide-in-Hom Diagonalize-Comp-Cod-Arr
eval-in-hom '.naturality2 [of {t]}]
by force
qed
show Arrr=1[f] = coherent r~'[{]
proof —
assume Arr r=1[{]
hence t: Arrt by simp
have coherent (r=1[Cod 1] - t)
using ¢ I Arr-implies-Ide-Cod coherent-Runit’-Ide Ide-in-Hom
Comp-preserves-coherent [of v=1[Cod 1]]
by fastforce
thus ?thesis
using t Arr-implies-Ide-Cod Ide-implies-Arr Ide-in-Hom Diagonalize-Comp-Cod-Arr
eval-in-hom o'.naturality? [of {t}]
by force
qed
next
fix tuwv
assume [1: Arr t = coherent t
assume [2: Arr u = coherent u
assume [3: Arr v => coherent v
show Arr a[t, u, v] => coherent a[t, u, v]
proof —
assume tuv: Arr aft, u, 9|
have t: Arr ¢t using tuv by simp
have u: Arr u using tuv by simp
have v: Arr v using tuv by simp
have coherent ((t @ v ® v) « a[Dom t, Dom u, Dom v])
proof —
have Arr (t ® u ® v) A coherent (t Q@ u @ v)
proof
have 1: Arr t A coherent t using t I1 by simp
have 2: Arr (u ® v) A coherent (u ® v)
using u v 12 I3 Tensor-preserves-coherent by force
show Arr (t ® v ® v) using 1 2 by simp
show coherent (t ® u ® v)
using 1 2 Tensor-preserves-coherent by blast
qed
moreover have Arr a[Dom t, Dom u, Dom v
using t u v Arr-implies-Ide-Dom by simp
moreover have coherent a[Dom t, Dom u, Dom v]
using t u v Arr-implies-Ide-Dom coherent-Assoc-Ide by blast
moreover have Dom (t @ u ® v) = Cod a[Dom t, Dom u, Dom 1]
using t u v Arr-implies-Ide-Dom Ide-in-Hom by simp

89

ultimately show ?thesis
using t u v Arr-implies-Ide-Dom Ide-implies-Arr
Comp-preserves-coherent [of t @ u @ v a[Dom t, Dom u, Dom]
by blast
qged
moreover have Par a[t, u, v] (t ® u ® v) - a[Dom t, Dom u, Dom v])
using t u v Arr-implies-Ide-Dom Ide-implies-Arr Ide-in-Hom by simp
moreover have |aft, u, v]|] = |[(t ® v ® v) - a[Dom t, Dom u, Dom] |
proof —
have (|1] [®] [u]) [®] [v]
= (11 [®] [u] [®] [v]) L] (LDom t] [®] [Dom u]) |®] [Dom v])

proof —
have 1: Diag [t] A Diag |u] N Diag |v| A
Dom |t] = |[Dom t] A Dom |u| = | Dom u] A Dom |v] = | Dom v]
using t u v Diag-Diagonalize by blast
moreover have Diag (|t] |®] |u])
using ! TensorDiag-preserves-Diag(1) by blast
moreover have A\t. Arrt = [t] [-] [Dom t] = |t]
using t Diagonalize-Comp-Arr-Dom by simp
moreover have Dom |a[t, u, v]| = | Dom al[t, u, v]]
using Diag-Diagonalize tuv by blast
ultimately show %thesis
using ¢ u v tuv 1 TensorDiag-assoc TensorDiag-preserves-Diag(2)
by (metis (no-types) Diagonalize.simps(9))
qed
thus ?thesis
using ¢t u v Diagonalize-Comp-Arr-Dom CompDiag-TensorDiag Diag-Diagonalize
by simp
qed
moreover have {a[t, u, 1|} = {(t ® u ® v) - a[Dom t, Dom u, Dom |}
using t u v Arr-implies-Ide-Dom Ide-implies-Arr a-simp [of {t} {u] {v]}]
by simp
ultimately show coherent a[t, u, v] by argo
qed
show Arra='[t, u, v] => coherent a=1[t, u,]
proof —
assume tuv: Arr a=[t, u, 1]
have t: Arr ¢t using tuv by simp
have u: Arr u using tuv by simp
have v: Arr v using tuv by simp
have coherent (((t @ u) ® v) - a~*[Dom t, Dom u, Dom v])
proof —
have Arr (t ® u) ® v) A coherent ((t ® u) ® v)
proof
have 1: Arr v A coherent v using v I3 by simp
have 2: Arr (t ® u) A coherent (t ® u)
using ¢ u I1 I2 Tensor-preserves-coherent by force
show Arr ((t ® u) ® v) using 1 2 by simp
show coherent ((t ® u) ® v)

90

using 1 2 Tensor-preserves-coherent by blast
qed
moreover have Arr a=![Dom t, Dom u, Dom v
using t u v Arr-implies-Ide-Dom by simp
moreover have coherent a~[Dom t, Dom u, Dom 1]
using ¢ u v Arr-implies-Ide-Dom coherent-Assoc’-Ide by blast
moreover have Dom ((t ® u) ® v) = Cod a~[Dom t, Dom u, Dom 1]
using t u v Arr-implies-Ide-Dom Ide-in-Hom by simp
ultimately show ?thesis
using t u v Arr-implies-Ide-Dom Ide-implies-Arr
Comp-preserves-coherent [of ((t ® u) ® v) a~'[Dom t, Dom u, Dom 1]
by metis
qed
moreover have Par a='[t, u,] ((t ® v) ® v) - a~1[Dom t, Dom u, Dom])
using t u v Arr-implies-Ide-Dom Ide-implies-Arr Ide-in-Hom by simp
moreover have |a='[t, u, v]] = [((t ® u) ® v) - a~*[Dom t, Dom u, Dom v]]
using t u v Diagonalize-Comp-Arr-Dom CompDiag-TensorDiag Diag-Diagonalize
TensorDiag-assoc TensorDiag-preserves-Diag TensorDiag-in-Hom
CompDiag-Diag-Dom [of ([t] |®] [u]) [®] [v]]
by simp
moreover have {a=![t, u, v]} = {((t ® u) ® v) - a=*[Dom t, Dom u, Dom v}
using t u v Arr-implies-Ide-Dom Ide-implies-Arr eval-in-hom comp-cod-arr
o’ naturalityl o’-simp
by simp
ultimately show coherent a=1[t, u, v] by argo
qed
qed
thus ?thesis using assms by blast
qged

MacLane [5] says: “A coherence theorem asserts ‘Every diagram commutes’,” but that
is somewhat misleading. A coherence theorem provides some kind of hopefully useful way
of distinguishing diagrams that definitely commute from diagrams that might not. The
next result expresses coherence for monoidal categories in this way. As the hypotheses
can be verified algorithmically (using the functions Dom, Cod, Arr, and Diagonalize) if we
are given an oracle for equality of arrows in C| the result provides a decision procedure,
relative to C, for the word problem for the free monoidal category generated by C.

corollary eval-eql:

assumes Par t v and [t] = |u]

shows {t} = {ul}

using assms coherence canonical-factorization by simp

Our final corollary expresses coherence in a more “MacLane-like” fashion: parallel
canonical arrows are equivalent under evaluation.

corollary maclane-coherence:

assumes Par t v and Can t and Can u

shows {t} = {u}
proof (intro eval-eql)
show Par t u by fact

91

show [t] = |u]
proof —
have Ide |t| A Ide |u| A Par |t| |u]
using assms eval-eql Ide-Diagonalize-Can Diagonalize-in-Hom by simp
thus ?thesis using Ide-in-Hom by auto
qed
qged

end

end

92

Chapter 3

Monoidal Functor

theory MonoidalFunctor
imports MonoidalCategory
begin

A monoidal functor is a functor F' between monoidal categories C' and D that pre-
serves the monoidal structure up to isomorphism. The traditional definition assumes a
monoidal functor to be equipped with two natural isomorphisms, a natural isomorphism
 that expresses the preservation of tensor product and a natural isomorphism 1 that
expresses the preservation of the unit object. These natural isomorphisms are subject to
coherence conditions; the condition for ¢ involving the associator and the conditions for
¥ involving the unitors. However, as pointed out in [2] (Section 2.4), it is not necessary
to take the natural isomorphism 1) as given, since the mere assumption that F Zo is
isomorphic to Zp is sufficient for there to be a canonical definition of ¢ from which
the coherence conditions can be derived. This leads to a more economical definition of
monoidal functor, which is the one we adopt here.

locale monoidal-functor =
C: monoidal-category C Te ac tc +
D: monoidal-category D Tp ap tp +
functor C D F +
CC" product-category C C' +
DD: product-category D D +
FF: product-functor C C D D F F +
FoT¢: composite-functor C.CC.comp C D Tc F +
TpoFF: composite-functor C.CC.comp D.CC.comp D FF.map Tp +
: natural-isomorphism C.CC.comp D TpoFF.map FoTc.map ¢
for C :: 'c comp (infixr <) 55)
and T¢c s ‘e *x ‘e = ¢
and ac s ‘cx ‘e x 'c = 'c
and 1o :: 'c
and D :: 'd comp (infixr <-p» 55)
and Tp : 'd x 'd = 'd
and ap : 'd* 'd x 'd = 'd
and tp 1 'd

93

and F :: 'c = 'd
and ¢ :: ‘cx 'c = 'd +
assumes preserves-unity: D.isomorphic D.unity (F C.unity)
and assoc-coherence:
[C.ide a; C.ide b; C.ide ¢ | =
F (Oéc (a7 b, C)) ‘D ¥ (TC (a‘v b)’ C) ‘p Tp (4,0 (a’7 b)’ F C)
= (aa Tc (b7 C)) ‘0 Tp (F a, ¢ (b7 C)) ‘D @D (F a, F'b, FC)

begin
notation C.tensor (infixr «®c»> 53)
and C.unity («Ze»)
and C.lunit (de[])
and C.runit (¢re[-]?)
and C.assoc (xac[- -)
and D.tensor (infixr «®p» 53)
and D.unity («Ip»)
and D.lunit (Apl])
and D.runit (<rp[])
and D.assoc (xapl-, -, -]*)

lemma @-in-hom:

assumes C.ide a and C.ide b

shows «p (a, b)) : Fa®p Fb—p F (a Q¢ b)»
using assms by auto

We wish to exhibit a canonical definition of an isomorphism ¢ € D.hom Ip (F Z¢)
that satisfies certain coherence conditions that involve the left and right unitors. In [2],
the isomorphism ¢ is defined by the equation 1p[F Z¢| = F 1¢[Z¢] ‘b ¢ (Zeo, Ze) D
(v ®p F Z¢), which suffices for the definition because the functor — ®p F' Z¢ is fully
faithful. It is then asserted (Proposition 2.4.3) that the coherence condition 1p[F a] =
Flelal -p ¢ (Zo, a) -p (¢ ®p F a) is satisfied for any object a of C, as well as the
corresponding condition for the right unitor. However, the proof is left as an exercise
(Exercise 2.4.4). The organization of the presentation suggests that that one should
derive the general coherence condition from the special case Ip[F Z¢| = F lc[Zc] -p ¢
(Zey Ze) -p (¥ ®p F Z¢) used as the definition of . However, I did not see how to
do it that way, so I used a different approach. The isomorphism tp’ = F 1o -p ¢ (Z¢,
Z¢) serves as an alternative unit for the monoidal category D. There is consequently a
unique isomorphism that maps ¢p to tp’. We define 1) to be this isomorphism and then
use the definition to establish the desired coherence conditions.

abbreviation ¢

where 11 = F 1o 'p ¢ Zc, Ze)

lemma ¢q-in-hom:
shows «i1 : F T ®p FIc —p F Te»
using C.unit-in-hom by (intro D.in-homl, auto)

lemma ¢q-is-is0:
shows D.iso 11

94

using Cl.unit-is-iso C.unit-in-hom @-in-hom D.isos-compose by auto

interpretation D: monoidal-category-with-alternate-unit D Tp ap tp t1
proof —
have 1: 3¢. «yp : F T —p Ip» A D.iso ¢
proof —
obtain ¢’ where " «': Ip —p F Zc» A D.iso ¢’
using preserves-unity by auto
have «D.inv ¢’ : F Zeo —p Ip» A D.iso (D.inv ¢
using ' by simp
thus ?thesis by auto
qed
obtain ¢ where ¢: « : F Zc —p Ip» A D.iso ¢
using 1 by blast
interpret L: equivalence-functor D D «\f. (D.cod t1) ®p f»
proof —
interpret L: functor D D <\f. (F Z¢) ®p >
using D.T.fizing-ide-gives-functor-1 by simp
interpret L: endofunctor D «\f. (F Z¢) ®p [> ..
interpret ¢z: natural-transformation D D <\f. (F ZI¢) ®p f» <\f.Ip ®p [>
M. Y ®p H
using ¢ D.T.fixing-arr-gives-natural-transformation-1 [of] by auto
interpret Yx: natural-isomorphism D D <\\f. (F Z¢) ®p f> <Af.Zp ®p fr M. ¥ Qp
apply unfold-locales using ¢ D.tensor-preserves-iso by simp
interpret [poya: vertical-composite D D «<\f. (F Z¢) ®p f» <\f. Zp ®p f> D.map
M. Y ®p fr D.I..
interpret [poyxz: natural-isomorphism D D <\f. (F I¢) ®p f> D.map lpopz.map
using Yx.natural-isomorphism-azioms D.l.natural-isomorphism-axioms
natural-isomorphisms-compose by blast
interpret L: equivalence-functor D D <\f. (F Z¢) ®p f»
using L.isomorphic-to-identity-is-equivalence Ipoyz.natural-isomorphism-azxioms
by simp
show equivalence-functor D D (Af. (D.cod 11) ®p f)
using L.equivalence-functor-axioms C.unit-in-hom by auto
qed
interpret R: equivalence-functor D D «<\f. Tp (f, D.cod 1)
proof —
interpret R: functor D D <\f. Tp (f, F Z¢o)
using D.T.fixing-ide-gives-functor-2 by simp
interpret R: endofunctor D <\f. Tp (f, F Z¢)» ..
interpret x: natural-transformation D D <\f. f @p (F Za)y <Af. f ®@p Ip»
M. f ®@p
using ¢ D.T.fizing-arr-gives-natural-transformation-2 [of] by auto
interpret zv: natural-isomorphism D D <\f. f ®@p (F Zc)» <Af. f @p Ip» M. f @p ¢
using ¢ D.tensor-preserves-iso by (unfold-locales, simp)
interpret opoxi: vertical-composite D D «<\f. f ®@p (F Z¢o)y <Af. f ®p Ip> D.map
M. f ®p ¥y D.o ..
interpret opoxi: natural-isomorphism D D «<\f. f ®@p (F Z¢)» D.map opoxp.map
using zi.natural-isomorphism-azioms D.g.natural-isomorphism-azxioms

95

natural-isomorphisms-compose by blast
interpret R: equivalence-functor D D <\f. f @p (F Z¢)»
using R.isomorphic-to-identity-is-equivalence pp ox.natural-isomorphism-axioms
by simp
show equivalence-functor D D (A\f. f ®p (D.cod t1))
using R.equivalence-functor-axioms C.unit-in-hom by auto
qed
show monoidal-category-with-alternate-unit D Tp ap tp t1
using D.pentagon C.unit-is-iso C.unit-in-hom preserves-hom t1-is-iso t1-in-hom
by (unfold-locales, auto)
qged
no-notation D.tensor (infixr «®@p> 53)
notation D.Cq.tensor (infixr <®p» 53)
no-notation D.assoc (<apl-, -, -]’)
notation D.Cj.assoc (cap[-, -, -»)
no-notation D.assoc’ («ap~ 1[— ,)
notation D.Cj.assoc’ (<ap~![-, -,)
notation D.Cy.unity («Iy)
notation D.Cq.lunit (<11[-])
notation D.Cy.runit (<ri[-])

lemma Z;-char [simp]:
shows 71 = F I¢
using ¢q-in-hom by auto

definition v
where) = THE ¢. «¢p : Ip —p F Ze» A Diisoy A -pip =11 -p (¥ Qp)

lemma -char:
shows « : Ip —p F Ze» and D.iso ¢ and ¢ -p tp = t1 p (¥ @p ¥)
and 3. «p : Ip —p F Ze» A Diisoyy AN -pitp =11 -p (¢ ®p)
proof —
show 3. «p : Ip —p F Zey A Diisoy AN ptp =11 -p (¢ ®p)
using D.unit-unique-upto-unique-iso t1-in-hom
by (elim D.in-homE, auto)
hence 1: «) : Zp —p F Zc» A D.isoy A -p tp = t1 -p (¢ @p)
unfolding ¥-def
using thel’ [of). « : Ip —p F Ze» A Diisoyy A -pitp =11 -p (¢ ®p V)]
by fast
show «¢ : Ip —p F Zc» using 1 by simp
show D.iso ¢ using 1 by simp
show ¢ -p tp = t1 -p (¥ @p) using 1 by simp
qed

lemma -eql:
assumes «f: Ip —p F Ze» and D.iso fand f -p tp =11 -p (f ®p f)
shows f = ¢

using assms -def -char

96

thel-equality [of Nf. «f: Ip —p F Ze» A Diisof ANf -pip =11 -p (f @p f) f]
by simp

lemma lunit-coherencel:
assumes C.ide a
shows 1;[F a] -p (¢ ®p F a) = 1p[F 4]
proof —
have D.par (1[F a] -p (¢ ®p F a)) 1p[F d]
using assms D.C'.lunit-in-hom D.tensor-in-hom D.lunit-in-hom 1-char(1)
by auto

The upper left triangle in the following diagram commutes.

I® Fa v®Fa FI® Fa

I®11[Fa

1®(FI® Fa) FI®l[Fad]
1

IR®I1[Fal vo(FI®Fa)
a
I®(y®ra)
L®Fa 11®Fa
a[FZ,FZ,Fa
F
(I®I)® Fa wev)ak (FI® FT)® Fa

moreover have (Zp ®p 1[F a]) -p (Zp ®p ¥ ®p Fa) =Zp ®p Ip[F 4]
proof —
have (ID XRp ll[F a]) ‘D (ID ®p Y ®p Fa)
= (ID Xp ll[F a]) ‘D (D.im) Y ®@p F Lo ®p Fa) ‘D (¢ (2995) ¢ Xp FCL)
using assms ¢-char(1—2) D.interchange [of D.inv] D.comp-cod-arr
D.inv-is-inverse D.comp-inv-arr
by (elim D.in-homE, simp)
also have ... = (DZ’N/U w XRp F G,) D (F IC Xp ll[F (],]) ‘D (w Xp ¢ Xp Fa)
proof —
have (ID Xp ll[F a]) ‘D (D.Z"I’L’U Y Qp FIec ®p F CL) =
(D.inv ¢ ®p Fa) -p (FIc ®p 11[F a))
using assms -char(1—2) D.interchange [of Ip] D.interchange [of D.inv 1]
D.comp-arr-dom D.comp-cod-arr
by (elim D.in-homE, auto)
thus ?thesis
using assms -char(1—2) D.inv-in-hom
D.comp-permute [of ITp ®p LW[F a] D.inv ¢ @p F Zc ®@p F a
D.inv Y ®p Fa F Ie @p L1[F d]]

97

by (elim D.in-homE, auto)
qed
also have ... = (D.inv ¥ ®p F a) -p (11 ®p Fa) -p D.inv ap[F Z¢, F Z¢, F a] -p
(¢ ®p ¢ ®@p F a)
using assms ¢-char(1—2) D.C1.lunit-char(2) D.comp-assoc by auto
also have ... = ((D.inv ¥ ®p F a) -p (11 ®p Fa) -p (¢ ®p ¥) ®p Fa)) -p
D.inv ap[Zp, Ip, F d]
using assms -char(1—2) D.assoc’-naturality [of 1 ¢ F a] D.comp-assoc by auto

also have ... = (t1p ®p F a) -p D.inv ap[Zp, Ip, F a

proof —
have (D.im} Y Qp Fa) ‘D (L1 Rp Fa) ‘D ((w Rp ¢) Rp Fa) =1p ®p Fa
proof —

have (D.inv ¢ ®p F a) -p (11 ®p Fa) -p (¥ ®p ¥) p Fa) =
Dinvy -p Y -pip @p Fa
using assms -char(1—3) v1-in-hom D.interchange
by (elim D.in-homE, auto)
also have ... = 1p ®p F a
using assms -char(1—2) D.inv-is-inverse D.comp-inv-arr D.comp-cod-arr
D.comp-reduce D.unit-in-hom
by (elim D.in-homE, auto)
finally show ?thesis by blast

qed
thus ?thesis by simp
qed
also have ... = Zp ®p 1p[F d]

using assms D.lunit-char by simp
finally show ?thesis by blast
qed
ultimately show ?thesis
using D.L.is-faithful [of 11[F a] -p (¥ ®p F a) 1p[F a]] by force
qed

lemma [unit-coherence2:

assumes C.ide a

shows F l¢[a] -p ¢ (Ze, a) = 4[F d
proof —

We show that the lower left triangle in the following diagram commutes.

98

(FI @ FI)® Fa pEDEl F(I®I) Fa

F Fu®F
a[FT,FT,Fa] neta e HIST,a)

FalZ,Z,a)

FI®¢(T,a) F(Z®1[a])

FZI®(Z®a))

FI® F(I®a) e

have (F Zc ®p Flcla]) -p (F Zc ®p ¢ (Zc, a)) = F Ic ®p Li[F a
proof —
have (F Ic ®p F lc[aD ‘D (F Tc ®p ¢ (Ic, a))
= (F Tc ®p F lc[a]) -p D.inv ((p (Ic, Tc Q¢ a)) -p F ac[Ic, Ic, 0,} ‘D
© (Ic ®c Lo, a) ‘D ((p (Ic, Ic) ®p F a) -p D.inv aD[F Lo, F 1o, F CL]
proof —
have D.inv (¢ (Z¢, Zoc ®c a)) 'p F aclZe, Ze, a]l p ¢ (Ze ®c Ze, a) 'p
(¢ (Zc, Zc) @p F a)
= (F Tc ®p ¢ (Ic, a)) ‘D aD[F Ic, F 1o, F a]
using assms @-in-hom assoc-coherence D.invert-side-of-triangle(1) by simp
hence FF Z¢ ®p ¢ (Z¢, a)
= (D.inv (¢ (Ic, Zc ®¢ a)) -p F ac[Ic, Zc, CL] D¢ (Zc ®c Zc, a) ‘D
(¢ (Ze, Ze) ®@p Fa)) -p D.inv ap[F ¢, F Zo, F a)
using assms @-in-hom D.invert-side-of-triangle(2) by simp
thus ?thesis
using D.comp-assoc by simp

qed

also have ... = (F Z¢ ®p F l¢la]) -p D.inv (¢ (Ze, Ze Q¢ a)) b
(D.inv (F (Ze ®c lc[a])) D F (1c ®c a)) ‘D
¢ (Zc ®c Ic, a) p (¢ (Ze, Ie) ®p Fa) -p
D.inv ap[F Z¢, F Z¢, F d]

proof —

have 1: F (Z¢ ®¢ lela]) = F (1¢ ®c a) -p D.inv (F aclZe, Ze, a))
using assms C.lunit-char(1—2) C.unit-in-hom preserves-inv by auto
hence F ac|Z¢, Zc, a] = D.inv (F (Ze ®c¢ lela))) ‘p F (t¢ ®c a)
proof —
have F ac[Z¢, Z¢, a] -p D.inv (F (1o ®c¢ a))
= D.inv (F (1c ®c¢ a) -p D.inv (F ac[Zc, Zo ,a]))

99

using assms 1 preserves-iso C.ide-is-iso C.unit-is-iso C.ide-unity C.iso-assoc
C.iso-lunit C.tensor-preserves-iso D.inv-comp D.inv-inv
D.iso-inv-iso D.iso-is-arr

by metis

thus ?thesis

using assms 1 preserves-iso C.ide-is-iso C.unit-is-iso C.ide-unity C.iso-assoc
C.iso-lunit C.tensor-preserves-iso D.inv-comp D.inv-inv
D.iso-inv-iso D.iso-is-arr D.invert-side-of-triangle(2)

by metis
qged
thus ?thesis by argo
qed
also have ... = (F Z¢ ®p F l¢la)) -p D.inv (¢ (Ze, Lo ®c a)) ‘b

D.inv (F (Z¢c ®c lcla])) b (F (te ®c a) -p ¢ (Tc ®c Ic, a)) b
(¢ (Zey, Ie) ®p Fa) -p D.inv ap|F Ze, F Ze, F a)
using D.comp-assoc by auto
also have ... = (F Ic ®p F lc[a]) -p D.inv ((p (Ic, Ic ®c a)) ‘D
D.imv (F (Zc ®c 1cla])) -p (¢ (Zc, a) -p (F 1o ®p Fa)) -
(¢ (Zo, Ze) ®p Fa) -p D.inv ap|F Z¢, F Ze, F a)
using assms p.naturality [of (vc, a)] C.unit-in-hom by auto
also have ... = (F Z¢ ®p F l¢la]) -p D.inv (¢ (Ze, Ze Q¢ a)) ‘b
D.imv (F (Zc ®c 1cld])) ‘b ¢ (Zc, a) 'p
((Fic ®@p Fa)-p(p(Zc,Ie) ®p Fa)) p
D.inv ap|F Z¢, F Z¢, F]
using D.comp-assoc by auto
also have ... = (F Z¢ ®p F l¢la]) -p D.inv (¢ (Ze, Ze Q¢ a)) ‘b
D.inv (F (Z¢ ®c¢ lela))) ‘p ¢ (Ze, a) p (11 ®p Fa) -p
D.inv aD[F Ic, F Ic, F a]
using assms D.interchange C.unit-in-hom by auto
also have ... = (F Z¢c ®p F l¢la]) -p D.inv (¢ (Ze, Ze ®c¢ a)) b
D.inv (F (IC Ko lc[a])) ‘D P (Ic, a) ‘D
((F Ic ®p 11[F a]) ‘D aD[F Ic, F Ic, Fa]) ‘D
D.inv aD[F Ic, F Ic, F a]
proof —
have (1;, ®p F a) -p ap~'[F Ic, F Zc, Fa] = F Zc ®p L41[F d]
using assms D.Cy.lunit-char [of F a] by auto
thus ?thesis
using assms D.inv-is-inverse t1-in-hom @-in-hom D.invert-side-of-triangle(2)
by simp
qed
also have ... = (F Z¢c ®p F l¢la]) -p
(D.inv (¢ (Zo, Ze ®c a)) -p D.inv (F (Ze ®@c 1ca])) b ¢ (Ze, a)) b
(F Ic ®p ll[F a])
using assms D.comp-arr-dom [of F Tc ®p L41[F a]] D.comp-assoc by auto
also have ... = (F Z¢ ®p F l¢la]) -p D.inv (F Ze ®p F lola]) -p (F Ze ®p 11[F a])
proof —
have D.inv (F Zc ®p F l¢]a])
= D.inv (D.z’nv ((p (Ic, a)) -p F (IC Re lc[a]) ‘D P (Ic, Ic ®c a))
using assms p.naturality [of (Zc, lc[a])] D.invert-side-of-triangle(1) by simp

100

also have ... = D.inv (p (Z¢, Ze ®c a)) -p D.inv (F (Ze ®c lola])) b ¢ Ze, a)
using assms D.inv-comp D.inv-is-inverse D.isos-compose D.comp-assoc
by simp
finally have D.inv (F Z¢ ®p F 1¢[a))
= D.inv (¢ (Zco, Ze ®c a)) -p D.inv (F (Ic ®@c 1cla])) b ¢ (Zc, a)
by blast
thus ?thesis by argo
qed
also have ... = ((F Z¢ ®p F 1¢[a]) -p D.inv (F Zc ®@p Fl¢la])) -p (F Ze ®p L[F a])
using assms D.tensor-preserves-iso D.comp-assoc by simp
also have ... = F Z¢ ®@p L1[F 4]
using assms D.tensor-preserves-iso D.comp-arr-inv D.inv-is-inverse D.comp-cod-arr
D.interchange
by simp
finally show ?thesis by blast
qed
hence F Zc ®p F lela) -p ¢ (Ze, a) = F I ®p L[F d]
using assms @-in-hom D.interchange by simp
moreover have D.par (F lgla] -p ¢ (Z¢, a)) 11[F a
using assms -in-hom by simp
ultimately show ?thesis
using D.C'.L.is-faithful [of F lc[a]l -p ¢ (Ze, a) 11[F a]] by simp
qged

Combining the two previous lemmas yields the coherence result we seek. This is the
condition that is traditionally taken as part of the definition of monoidal functor.

lemma lunit-coherence:
assumes C.ide a
shows 1p[F a] = F l¢[a] ‘p ¢ (Zc, a) -p (¥ ®p F a)
proof —
have Ip[F a] -p D.inv (¢ ®p F a) = }1[F a]
using assms lunit-coherencel 1-char(2)
D.invert-side-of-triangle(2) [of 1p[F a] 1[F a] ¥ ®p F 4]
by auto
also have ... = F lgla] -p ¢ (Z¢, a)
using assms lunit-coherence2 by simp
finally have Ip[F a] -p D.inv (¢ ®p F a) = F lgld) -p ¢ Z¢, a)
by blast
hence 1p[F a] = (F l¢[a] ‘p ¢ (Z¢o, a)) -p (¥ ®p F a)
using assms -char(2) p-in-hom
D.invert-side-of-triangle(2) [of F lcla] -p ¢ (Z¢, @) 1p[F a] D.inv (¢ ®p F a)]
by simp
thus %thesis
using assms -char(1) D.comp-assoc by auto
qged

We now want to obtain the corresponding result for the right unitor. To avoid a
repetition of what would amount to essentially the same tedious diagram chases that
were carried out above, we instead show here that F' becomes a monoidal functor from

101

the opposite of C' to the opposite of D, with \f. ¢ (snd f, fst f) as the structure map.
The fact that in the opposite monoidal categories the left and right unitors are exchanged
then permits us to obtain the result for the right unitor from the result already proved
for the left unitor.

interpretation C’: opposite-monoidal-category C Tec ac to -
interpretation D’ opposite-monoidal-category D Tp ap tp ..
interpretation T p’oFF: composite-functor C.CC.comp D.CC.comp D FF.map D'.T ..
interpretation FoT¢': composite-functor C.CC.comp C D C'.T F ..
interpretation " natural-transformation C.CC.comp D Tp'oFF.map FoTc'.map
Mo (snd f, fst f)

using ¢.naturalityl p.naturality? .extensionality by (unfold-locales, auto)

interpretation ¢’ natural-isomorphism C.CC.comp D Tp'oFF.map FoT¢c'.map

Af. o (snd f, fst f)
by (unfold-locales, simp)
interpretation F'": monoidal-functor C C'.T C'.aw tc D DT D'.av tp F <\f. ¢ (snd f, fst
1
using preserves-unity apply (unfold-locales; simp)
proof —
fix abc
assume a: C.ide a and b: C.ide b and c: C.ide ¢
have (¢ (¢ ®c b, a) -p (¢ (¢, b)) ®p Fa)) -pap [Fec, Fb, Fa|=
F (C.assoc’ ¢ ba) -p ¢ (¢, b®c a) -p (Fe®p e (b, a))
proof —
have D.seq (F acle, b, a]) (¢ (¢ ®c b, a) -p (¢ (¢, b) ®p F a))
using a b ¢ p-in-hom by simp
moreover have D.seq (¢ (¢, b ®c a) -p (F ¢ ®p ¢ (b, a))) ap[F ¢, F'b, F a]
using a b ¢ p-in-hom by simp
moreover have
Facle, b,a]l -p e (c®c b, a)p(p(c,b @p Fa)=
(¢ (¢, b®c a) p (Fe®p ¢ (b, a))) -pap[Fe Fb,F al
using a b ¢ assoc-coherence D.comp-assoc by simp
moreover have D.iso (F' ac|c,b,a))
using a b ¢ by simp
moreover have D.iso ap[F ¢, F' b, F d]
using a b ¢ by simp
moreover have D.inv (F ac[c,b,a]) = F (C.assoc’ ¢ b a)
using a b ¢ preserves-inv by simp
ultimately show ?thesis
using D.invert-opposite-sides-of-square by simp
qged
thus F (C.assoc’ ¢ b a) -p ¢ (¢, b @¢c a) 'p (Fec®p ¢ (b, a)) =
¢ (¢ @c b, a) -p (¢ (¢, b)) ®p Fa) -pap '[Fe, Fb,Fad
using D.comp-assoc by simp
qed

lemma induces-monoidal-functor-between-opposites:
shows monoidal-functor C C'.T C'.a« v.c D DT D' tp F (Mf. ¢ (snd f, fst f))

102

lemma runit-coherence:
assumes C.ide a
shows rp[F al| = F r¢la] -p ¢ (a, Z¢) 'p (Fa ®p)
proof —
have C'.lunit a = r¢|d]
using assms C'.lunit-simp by simp
moreover have D' lunit (F a) = rp[F a)
using assms D’.lunit-simp by simp
moreover have F'1) = 1
proof (intro -eql)
show «F'4 : D' unity —p F C’.unity» using F’.4)-char(1) by simp
show D.iso F'.4) using F'ip-char(2) by simp
show F'.¢) -p tp =11 -p (F'¢b ®p F'4)) using F'.4)-char(3) by simp
qed
moreover have D'lunit (F a) = F (C'lunit a) -p ¢ (a, C'.unity) -p (F a @p F'4)
using assms F'.lunit-coherence by simp
ultimately show ?thesis by simp
qged

end

3.1 Strict Monoidal Functor

A strict monoidal functor preserves the monoidal structure “on the nose”.

locale strict-monoidal-functor =

C: monoidal-category C Tc ac tc +

D: monoidal-category D Tp ap tp +

functor C D F
for C :: 'c comp (infixr <> 55)
and T¢ :: ‘cx 'c = ¢
and a¢c :: ‘c*x ‘e x 'c = ¢
and (¢ : 'c
and D :: 'd comp (infixr <p» 55)
and Tp 1 'd x 'd = 'd
and ap ::'d x 'd x 'd = 'd
and (p 1 'd
and F :: 'c = 'd +
assumes strictly-preserves-t: F' 1o = tp
and strictly-preserves-T: [C.arr f; C.arr g = F (T (f, 9)) = Tp (F f, F g)
and strictly-preserves-a-ide: [C.ide a; C.ide b; C.ide ¢ | =

F (ac (a, b, ¢)) =ap (Fa, Fb, Fc)

begin
notation C'.tensor (infixr «®c)> 53)
and C.unity («Ze»)
and C.lunit (le[]y)
and C.runit (¢crel])
and C.assoc (xacl- -)

103

and D.tensor (infixr «®p» 53)

and D.unity ((ZIp)

and D.lunit (dp[-])

and D.runit («xep[-])
and D.assoc («ap[- -)

lemma strictly-preserves-tensor:
assumes C.arr f and C.arr g
shows F (f ®c g)=Ff®p Fyg
using assms strictly-preserves-T by blast

lemma strictly-preserves-a:
assumes C.arr f and C.arr g and C.arr h
shows F (ac (f, g, h)) =ap (F f, F g, Fh)
proof —
have F (ac (f, g, h) = F ((f ®c g ®c h) ‘¢ ac (C.dom f, C.dom g, C.dom h))
using assms C.a.naturalityl [of (f, g, h)] C.T.ToCT-simp by force

also have ... = (F f ®p Fg®p Fh) -p ap (D.dom (F f), D.dom (F g), D.dom (F h))
using assms strictly-preserves-a-ide strictly-preserves-tensor by simp
also have ... = ap (F f, F' g, F h)

using assms D.a.naturalityl [of (F f, F g, F h)] by simp
finally show ?thesis by blast
qged

lemma strictly-preserves-unity:
shows F 7o = 7Tp
using C.unit-in-hom strictly-preserves-t by auto

lemma strictly-preserves-assoc:

assumes C.arr ¢ and C.arr b and C.arr c

shows F acla, b, ¢] = ap[F a, F b, F (]
using assms strictly-preserves-a by simp

lemma strictly-preserves-lunit:
assumes C.ide a
shows F l¢[a] = 1p[F q
proof —
let 2P = \f. f € C.hom (Zc ®c a) a NZc Q¢ f = (tc ®¢ a) ¢ C.assoc’ Te Io a
let ?Q = \f. f € D.hom (Zp ®p F a) (Fa) A
Ip ®p f = (tp ®p F a) -p D.assoc’ Ip Ip (F a)
have 1: ?P l¢[a] using assms C.lunit-char by simp
hence ?Q (F lc]al)
proof —
have F' l¢[a] € D.hom (Zp ®p F a) (F a)
using assms 1 strictly-preserves-unity strictly-preserves-tensor by auto
moreover have
F ((t¢ ®c a) ¢ C.assoc’ Te I a) = (tp ®p F a) -p D.assoc’ Ip Ip (F a)
using assms 1 strictly-preserves-v strictly-preserves-assoc strictly-preserves-unity
strictly-preserves-tensor preserves-inv C.unit-in-hom

104

by auto
moreover have Zp ®p F lg[a] = F (Z¢ ®c¢ 1o]a])
using assms strictly-preserves-unity strictly-preserves-tensor by simp
ultimately show Zthesis
using assms C.lunit-char(2) by simp
qed
thus ?thesis using assms D.lunit-eql by simp
qed

lemma strictly-preserves-runit:
assumes C.ide a
shows F r¢la]l = rplF al
proof —
let P = \f. f € C.hom (a ®c Z¢) a AN f ®@c Lo = (a ®¢ o) ¢ C.assoc a Lo Lo
let ?Q = Af. f € D.hom (F a ®p Ip) (F a) A
f®pIp=(Fa®ptp)-p D.assoc (Fa)IpIp
have 1: ?P r¢[a] using assms C.runit-char by simp
hence ?Q (F r¢[a))
proof —
have F r¢la] € D.hom (F a ®p Ip) (F a)
using assms 1 strictly-preserves-unity strictly-preserves-tensor by auto
moreover have F ((a ®¢ t¢) ‘¢ C.assoc a To L)
= (Fa®p tp) -p D.assoc (Fa)Ip Ip
using assms 1 strictly-preserves-u strictly-preserves-assoc strictly-preserves-unity
strictly-preserves-tensor preserves-inv C.unit-in-hom
by auto
moreover have F rcfa) ®p Ip = F (r¢fa]l ®c L)
using assms strictly-preserves-unity strictly-preserves-tensor by simp
ultimately show ¢thesis
using assms C.runit-char(2) by simp
qed
thus ?thesis using assms D.runit-eql by simp
qged

The following are used to simplify the expression of the sublocale relationship between
strict-monoidal-functor and monoidal-functor, as the definition of the latter mentions the
structure map . For a strict monoidal functor, this is an identity transformation.

interpretation FF': product-functor C C D D F F ..
interpretation FoT¢: composite-functor C.CC.comp C D T¢ F ..
interpretation T poFF: composite-functor C.CC.comp D.CC.comp D FF.map Tp ..

lemma structure-is-trivial:
shows TpoFF.map = FoTc.map
proof
fix x
have C.CC.arr x = TpoFF.map x = FoTc.map x
proof —
assume z: C.CC.arr z
have TpoFF.map x = F (fst z) @p F (snd z)

105

using z by simp
also have ... = FoTc.map «
using z strictly-preserves-tensor [of fst x snd x| by simp
finally show TpoFF.map x = FoTc.map x by simp
qged
moreover have = C.CC.arr x = TpoFF.map v = FoTc.map x
using T poFF.extensionality FoT ¢.extensionality by simp
ultimately show TpoFF.map © = FoTc.map x by blast
qed

abbreviation ¢ where ¢ = T poFF.map

lemma structure-naturalityisomorphism:
shows natural-isomorphism C.CC.comp D TpoFF.map FoT¢c.map ¢
using T poFF.as-nat-iso.natural-isomorphism-azxioms structure-is-trivial by force

end
A strict monoidal functor is a monoidal functor.

sublocale strict-monoidal-functor C monoidal-functor C Tc ac tec D Tp ap tp F ¢
proof —
interpret FF': product-functor C C D D F F ..
interpret FoTo: composite-functor C.CC.comp C D T¢ F ..
interpret T poFF: composite-functor C.CC.comp D.CC.comp D FF.map Tp ..
interpret o: natural-isomorphism C.CC.comp D TpoFF.map FoTc.map ¢
using structure-naturalityisomorphism by simp
show monoidal-functor C Tc ac tc D Tp ap tp F ¢
proof
show D.isomorphic Ip (F I¢)
proof (unfold D.isomorphic-def)
have «ZIp : ZIp —p F Zc» A D.iso Ip
using strictly-preserves-unity by auto
thus 3f. «f : Zp —p F Zc» N D.iso f by blast
qed
fixabc
assume a: C.ide a
assume b: C.ide b
assume c: C.ide c
show F acla, b, ¢] -p ¢ (a ®¢ b, ¢) -p (¢ (a, b)) ®p F ¢) =
¢ (a, b ®c ¢) p (Fa®p ¢ (b,) paplFa, Fb,Fc|
using a b ¢ strictly-preserves-tensor strictly-preserves-assoc
D.comp-arr-dom D.comp-cod-arr
by simp
qed
qed

lemma strict-monoidal-functors-compose:

assumes strict-monoidal-functor B T ap tg C Te ac tc F
and strict-monotdal-functor C Tc ac ¢ D Tp ap tp G

106

shows strict-monoidal-functor B Tg ag tpg D Tp ap tp (G o F)
proof —
interpret F: strict-monoidal-functor B Tg ag tg C Tc ac tc F
using assms(1) by auto
interpret G: strict-monoidal-functor C T¢c ac ¢ D Tp ap tp G
using assms(2) by auto
interpret GoF: composite-functor B C' D F G ..
show ?thesis
using F.strictly-preserves-T F.strictly-preserves-v F.strictly-preserves-a
G.strictly-preserves-T G.strictly-preserves-t G.strictly-preserves-a
by (unfold-locales, simp-all)
qed

An equivalence of monoidal categories is a monoidal functor whose underlying ordi-
nary functor is also part of an ordinary equivalence of categories.

locale equivalence-of-monoidal-categories =
C: monoidal-category C Te ac 1o +
D: monoidal-category D Tp ap tp +
equivalence-of-categories C D F G n ¢ +
monoidal-functor D Tp ap tp C Tec ac tc F ¢
for C :: 'c comp (infixr <¢> 55)
and T¢ s 'ex ‘e = ¢
and ac s ‘cx ‘cx 'c = 'c
and 1o :: 'c
and D :: 'd comp (infixr <-p» 55)
and Tp :: 'd x 'd = 'd
and ap : 'd x 'd x 'd = 'd
and tp 1 'd
and F :: 'd = ¢
and ¢ :: 'd x 'd = 'c
and ¢ :: c
and G :: 'c = 'd
andn:: 'd = 'd
and ¢ :: 'c = 'c

end

107

Chapter 4

The Free Monoidal Category

theory FreeMonoidalCategory
imports Category3.Subcategory MonoidalFunctor
begin

In this theory, we use the monoidal language of a category C defined in Monoidal-
Category. MonoidalCategory to give a construction of the free monoidal category FC
generated by C. The arrows of F (' are the equivalence classes of formal arrows obtained
by declaring two formal arrows to be equivalent if they are parallel and have the same
diagonalization. Composition, tensor, and the components of the associator and unitors
are all defined in terms of the corresponding syntactic constructs. After defining FC
and showing that it does indeed have the structure of a monoidal category, we prove the
freeness: every functor from C' to a monoidal category D extends uniquely to a strict
monoidal functor from FC to D.

We then consider the full subcategory FgC of FC whose objects are the equivalence
classes of diagonal identity terms (i.e. equivalence classes of lists of identity arrows of
C), and we show that this category is monoidally equivalent to F C. In addition, we show
that FgC is the free strict monoidal category, as any functor from C to a strict monoidal
category D extends uniquely to a strict monoidal functor from FgC' to D.

4.1 Syntactic Construction

locale free-monoidal-category =
monoidal-language C
for C :: 'c comp

begin

no-notation C.in-hom (<«-: - — -»)
notation C.in-hom ((«-: - —¢c -»)

Two terms of the monoidal language of C' are defined to be equivalent if they are
parallel formal arrows with the same diagonalization.

abbreviation equiv

108

where equiv t u = Par t u A |t] = |u]

Arrows of FC will be the equivalence classes of formal arrows determined by the
relation equiv. We define here the property of being an equivalence class of the relation
equiv. Later we show that this property coincides with that of being an arrow of the
category that we will construct.

type-synonym ’a arr = ‘a term set
definition ARR where ARR f=f# {} A (Vt. t € f — f = Collect (equiv t))

lemma not-ARR-empty:
shows —ARR {}
using ARR-def by simp

lemma ARR-eql:
assumes ARR f and ARR g and f N g # {}
shows f = ¢

using assms ARR-def by fastforce

We will need to choose a representative of each equivalence class as a normal form.
The requirements we have of these representatives are: (1) the normal form of an arrow
t is equivalent to ¢; (2) equivalent arrows have identical normal forms; (3) a normal form
is a canonical term if and only if its diagonalization is an identity. It follows from these
properties and coherence that a term and its normal form have the same evaluation in
any monoidal category. We choose here as a normal form for an arrow ¢ the particular
term Inv (Cod t}) - |t] - Dom t. However, the only specific properties of this definition
we actually use are the three we have just stated.

definition norm (<||-||»)
where ||t|| = Inv (Cod t}) - | t] - Dom ¢}

If ¢ is a formal arrow, then ¢ is equivalent to its normal form.

lemma equiv-norm-Arr:
assumes Arr ¢
shows equiv ||t|| ¢
proof —
have Par t (Inv (Cod t]) - |t] + Dom t])
using assms Diagonalize-in-Hom red-in-Hom Inv-in-Hom Arr-implies-Ide-Dom
Arr-implies-1de-Cod Ide-implies-Arr Can-red
by auto
moreover have |(Inv (Cod t}) - [t] - Dom t])| = |¢]
using assms Arr-implies-1de-Dom Arr-implies-Ide-Cod Diagonalize-preserves-Ide
Diagonalize-in-Hom Diagonalize-Inv [of Cod t}| Diag-Diagonalize
CompDiag-Diag-Dom [of | t]] CompDiag-Cod-Diag [of | t]]
by (simp add: Diagonalize-red [of Cod t] Can-red(1))
ultimately show ?thesis using norm-def by simp
qged

Equivalent arrows have identical normal forms.

lemma norm-respects-equiv:

109

assumes equiv t u
shows [[¢]| = ||u]|
using assms norm-def by simp

The normal form of an arrow is canonical if and only if its diagonalization is an
identity term.

lemma Can-norm-iff-Ide-Diagonalize:
assumes Arr ¢
shows Can ||t|| <+— Ide | 1]
using assms norm-def Can-implies-Arr Arr-implies-Ide-Dom Arr-implies-Ide-Cod Can-red
Inv-preserves-Can Diagonalize-preserves-Can red-in-Hom Diagonalize-in-Hom
Ide-Diagonalize-Can
by fastforce

We now establish various additional properties of normal forms that are consequences
of the three already proved. The definition norm-def is not used subsequently.

lemma norm-preserves-Can:
assumes Can t
shows Can ||{|
using assms Can-implies-Arr Can-norm-iff-Ide-Diagonalize Ide-Diagonalize-Can by simp

lemma Par-Arr-norm:
assumes Arrt
shows Par ||¢|| t
using assms equiv-norm-Arr by auto

lemma Diagonalize-norm [simp]:
assumes Arr ¢
shows |[|4|] =]

using assms equiv-norm-Arr by auto

lemma unique-norm:
assumes ARR f
shows 3lt. Vu. v € f — ||ul]| = ¢t
proof
have 1: (SOME t. te f)ef
using assms ARR-def somel-ex [of At. t € f] by auto
show At.Vu.u e f — ||u|| =t =t = ||SOME t. t € {||
using assms ARR-def 1 by auto
show Vu. u € f — ||ul| = ||SOME t. t € f]|
using assms ARR-def 1 norm-respects-equiv by blast
qged

lemma Dom-norm:
assumes Arrt
shows Dom ||| = Dom t

using assms Par-Arr-norm by metis

lemma Cod-norm:

110

assumes Arr ¢
shows Cod ||t|| = Cod t
using assms Par-Arr-norm by metis

lemma norm-in-Hom:
assumes Arrt
shows ||t|| € Hom (Dom t) (Cod t)
using assms Par-Arr-norm [of t] by simp

As all the elements of an equivalence class have the same normal form, we can use
the normal form of an arbitrarily chosen element as a canonical representative.

definition rep where rep f = ||SOME t. t € f||

lemma rep-in-ARR:

assumes ARR f

shows rep f € f
using assms ARR-def somel-ex [of At. t € f] equiv-norm-Arr rep-def ARR-def
by fastforce

lemma Arr-rep-ARR:
assumes ARR f
shows Arr (rep f)
using assms ARR-def rep-in-ARR by auto

We next define a function mkarr that maps formal arrows to their equivalence classes.
For terms that are not formal arrows, the function yields the empty set.

definition mkarr where mkarr t = Collect (equiv t)

lemma mkarr-extensionality:
assumes —Arrt
shows mkarr t = {}

using assms mkarr-def by simp

lemma ARR-mkarr:
assumes Arrt
shows ARR (mkarr t)
using assms ARR-def mkarr-def by auto

lemma mkarr-memb-ARR:
assumes ARR fand t € f
shows mkarr t = f
using assms ARR-def mkarr-def by simp

lemma mkarr-rep-ARR [simp):
assumes ARR f
shows mkarr (rep f) = f
using assms rep-in-ARR mkarr-memb-ARR by auto

lemma Arr-in-mkarr:

111

assumes Arr ¢
shows t € mkarr t
using assms mkarr-def by simp

Two terms are related by equiv iff they are both formal arrows and have identical
normal forms.

lemma equiv-iff-eg-norm:

shows equiv t u +— Arr t A Arr u A ||t]] = |||
proof
show equiv t u = Arr ¢t A Arr u A ||| = ||ul|
using mkarr-def Arr-in-mkarr ARR-mkarr unique-norm by blast
show Arrt A Arru A ||t]] = ||u|| = equiv t u
using Par-Arr-norm Diagonalize-norm by metis
qed

lemma norm-norm [simpl:
assumes Arrt
shows |[[[]1| = |
proof —
have t € mkarr t
using assms Arr-in-mkarr by blast
moreover have ||| € mkarr t
using assms equiv-norm-Arr mkarr-def by simp
ultimately show #¢thesis using assms ARR-mkarr unique-norm by auto
qed

lemma norm-in-ARR:
assumes ARR fand t € f
shows ||| € f
using assms ARR-def equiv-iff-eq-norm norm-norm Par-Arr-norm by fastforce

lemma norm-rep-ARR [simp):
assumes ARR f
shows ||rep fl| = rep f
using assms ARR-def somel-ex [of At. t € f] rep-def norm-norm by fastforce

lemma norm-memb-eq-rep-ARR:
assumes ARR fand t € f
shows norm t = rep f
using assms ARR-def somel-ex [of At. t € f] unique-norm rep-def by metis

lemma rep-mkarr:
assumes Arr f
shows rep (mkarr f) = ||/|]
using assms ARR-mkarr Arr-in-mkarr norm-memb-eq-rep-ARR by fastforce

To prove that two terms determine the same equivalence class, it suffices to show
that they are parallel formal arrows with identical diagonalizations.

lemma mkarr-eql [intro]:

112

assumes Par f g and |f] = |g]
shows mkarr f = mkarr g
using assms by (metis ARR-mkarr equiv-iff-eq-norm rep-mkarr mkarr-rep-ARR)

We use canonical representatives to lift the formal domain and codomain functions
from terms to equivalence classes.

abbreviation DOM where DOM f = Dom (rep f)
abbreviation COD where COD f = Cod (rep f)

lemma DOM-mkarr:
assumes Arr ¢
shows DOM (mkarr t) = Dom t
using assms rep-mkarr by (metis Par-Arr-norm)

lemma COD-mkarr:
assumes Arr ¢
shows COD (mkarr t) = Cod t
using assms rep-mkarr by (metis Par-Arr-norm)

A composition operation can now be defined on equivalence classes using the syntactic
constructor Comp.

definition comp (infixr <> 55)
where comp fg = (if ARRf N ARR g AN DOM f = COD g
then mkarr ((rep f) - (rep g)) else {})

We commence the task of showing that the composition comp so defined determines
a category.

interpretation partial-composition comp
apply unfold-locales
using comp-def not-ARR-empty by metis

notation in-hom (<«-: - — -»)
The empty set serves as the null for the composition.

lemma null-char:

shows null = {}

proof —
let 2P=Xn.Vf.f-n=nAn-f=n
have ?P {} using comp-def not-ARR-empty by simp
moreover have 3!n. ?P n using ez-un-null by metis
ultimately show ?thesis using null-def thel-unique [of P {}]

by (metis null-is-zero(2))
qed

lemma ARR-comp:
assumes ARR f and ARR g and DOM f = COD g
shows ARR (f - g)
using assms comp-def Arr-rep-ARR ARR-mkarr(1) by simp

113

lemma DOM-comp [simp]:
assumes ARR f and ARR g and DOM f = COD g
shows DOM (f - g) = DOM g
using assms comp-def ARR-comp Arr-rep-ARR DOM-mkarr by simp

lemma COD-comp [simp]:
assumes ARR f and ARR g and DOM f = COD g
shows COD (f - g) = COD f
using assms comp-def ARR-comp Arr-rep-ARR COD-mkarr by simp

lemma comp-assoc:
assumes ¢ - f # null and h - g # null
shows h- (g f) = (h-g) -
proof —
have 71: ARRf N ARR g N ARR h N DOM h = COD g AN DOM g = COD f
using assms comp-def not-ARR-empty null-char by metis
hence 2: Arr (rep f) N Arr (rep g) A Arr (rep h) A
Dom (rep h) = Cod (rep g) N Dom (rep g) = Cod (rep f)
using Arr-rep-ARR by simp
have 3: h - g - f = mkarr (rep h - rep (mkarr (rep g - rep f)))
using 1 comp-def ARR-comp COD-comp by simp
also have ... = mkarr (rep h - rep g - rep f)
proof —
have equiv (rep h + rep (mkarr (rep g - rep f))) (rep h - rep g - rep f)
proof —
have Par (rep h - rep (mkarr (rep g - rep f))) (rep h - rep g - rep f)
using 1 2 8 DOM-mkarr ARR-comp COD-comp mkarr-extensionality not-ARR-empty
by (metis Arr.simps(4) Cod.simps(4) Dom.simps(4) snd-map-prod)

moreover have |rep h - rep (mkarr (rep g - rep f))]| = |rep h - rep g - rep f]
using 1 2 Arr-rep-ARR rep-mkarr rep-in-ARR assms(1) ARR-comp mkarr-extensionality
comp-def equiv-iff-eq-norm norm-memb-eq-rep-ARR null-char
by auto
ultimately show ?thesis using equiv-iff-eq-norm by blast
qed
thus ?thesis
using mkarr-def by force
qed
also have ... = mkarr ((rep h - rep g) - rep f)
proof —
have Par (rep h - rep g - rep f) ((rep h - rep g) - rep f)
using 2 by simp
moreover have |rep h - rep g - rep f| = |[(rep h - rep g) - rep f]
using 2 Diag-Diagonalize by (simp add: CompDiag-assoc)
ultimately show ¢thesis
using equiv-iff-eg-norm by (simp add: mkarr-def)
qed
also have ... = mkarr (rep (mkarr (rep h - rep g)) - rep f)
proof —

114

have equiv (rep (mkarr (rep h - rep g)) - rep f) ((rep h - rep g) - rep f)
proof —
have Par (rep (mkarr (rep h - rep g)) - rep) ((rep b« rep g) « rep f)
using 1 2 Arr-rep-ARR DOM-comp ARR-comp COD-comp comp-def by auto
moreover have |rep (mkarr (rep h - rep g)) - rep f| = |(rep h - rep g) - rep f]
using assms(2) 1 2 ARR-comp Arr-rep-ARR mkarr-extensionality rep-mkarr rep-in-ARR
equiv-iff-eq-norm norm-memb-eq-rep-ARR comp-def null-char
by simp
ultimately show ?thesis using equiv-iff-eq-norm by blast
qed
thus ?thesis
using mkarr-def by auto
qed
also have ... = (h - g) - f
using 1 comp-def ARR-comp DOM-comp by simp
finally show ?thesis by blast
qed

lemma Comp-in-comp-ARR:
assumes ARR f and ARR g and DOM f = COD g
and t € fand u € g
shows t-uef-g
proof —
have equiv (t - u) (rep f- rep g)
proof —
have 1: Par (t- u) (rep f- rep g)
using assms ARR-def Arr-rep-ARR COD-mkarr DOM-mkarr mkarr-memb-ARR
mkarr-extensionality
by (metis (no-types, lifting) Arr.simps(4) Cod.simps(4) Dom.simps(4) snd-map-prod)

moreover have |t u] = |rep f- rep g|
using assms 1 rep-in-ARR equiv-iff-eqg-norm norm-memb-eq-rep-ARR
by (metis (no-types, lifting) Arr.simps(4) Diagonalize.simps(4))
ultimately show ¢thesis by simp
qed
thus ?thesis
using assms comp-def mkarr-def by simp
qged

Ultimately, we will show that that the identities of the category are those equivalence

classes, all of whose members diagonalize to formal identity arrows, having the further
property that their canonical representative is a formal endo-arrow.

definition IDFE where IDE f = ARR f A (Vt. t € f — Ide |t]) N DOM f = COD f
lemma IDE-implies-ARR:
assumes [DFE f

shows ARR f
using assms IDE-def ARR-def by auto

115

lemma IDE-mkarr-Ide:
assumes Ide a
shows IDE (mkarr a)
proof —
have DOM (mkarr a) = COD (mkarr a)
using assms mkarr-def equiv-iff-eq-norm Par-Arr-norm COD-mkarr DOM-mkarr Ide-in-Hom
by (metis Ide-implies-Can Inv-Ide Ide-implies-Arr Inv-preserves-Can(2))
moreover have ARR (mkarr a) A (Vt. t € mkarr a — Ide |t])
proof —
have ARR (mkarr a) using assms ARR-mkarr Ide-implies-Arr by simp
moreover have V¢. t € mkarr a — Ide |t]
using assms mkarr-def Diagonalize-preserves-Ide by fastforce
ultimately show ?thesis by blast
qed
ultimately show ?thesis using IDE-def by blast
qged

lemma IDE-implies-ide:
assumes IDFE a
shows ide a
proof (unfold ide-def)
have a - a # null
proof —
have rep a - repa € a - a
using assms IDE-def comp-def Arr-rep-ARR Arr-in-mkarr by simp
thus ?thesis
using null-char by auto
qed
moreover have \f. (f -a#null — f-a=f)AN(a-f#null — a-f=Ff)
proof
fix f:: 'carr
show a - f £ null — a-f=f
proof
assume f: a - f # null
hence ARR f
using comp-def null-char by auto
have repa-repf €a - f
using assms f Comp-in-comp-ARR comp-def rep-in-ARR null-char by metis
moreover have rep a - rep f € f
proof —
have rep f € f
using <ARR f> rep-in-ARR by auto
moreover have equiv (rep a - rep f) (rep f)
proof —
have 1: Par (rep a - rep f) (rep f)
using assms f comp-def mkarr-extensionality Arr-rep-ARR IDE-def null-char
by (metis Cod.simps(4) Dom.simps(4))
moreover have |rep a - rep f| = |rep f]
using assms f 1 comp-def IDE-def CompDiag-Ide-Diag Diag-Diagonalize(1)

116

Diag-Diagonalize(2) Diag-Diagonalize(3) rep-in-ARR
by auto
ultimately show ?thesis by auto
qed
ultimately show ?thesis
using (ARR fy ARR-def by auto
qed
ultimately show a - f = f
using mkarr-memb-ARR comp-def by auto
qed
show f-a £ null — f-a=f
proof
assume f: f - a # null
hence ARR f
using comp-def null-char by auto
have rep f-repa € f - a
using assms f Comp-in-comp-ARR comp-def rep-in-ARR null-char by metis
moreover have rep f- rep a € f
proof —
have rep f € f
using (ARR f» rep-in-ARR by auto
moreover have equiv (rep [+ rep a) (rep f)
proof —
have 1: Par (rep - rep a) (rep f)
using assms f comp-def mkarr-extensionality Arr-rep-ARR IDE-def null-char
by (metis Cod.simps(4) Dom.simps(4))
moreover have |rep f- rep a| = |rep f]
using assms f 1 comp-def IDE-def CompDiag-Diag-Ide
Diag-Diagonalize(1) Diag-Diagonalize(2) Diag-Diagonalize(3)
rep-in-ARR
by force
ultimately show #thesis by auto
qed
ultimately show ?thesis
using (ARR f» ARR-def by auto
qed
ultimately show f - a = f
using mkarr-memb-ARR comp-def by auto
qed
qed
ultimately show a - a # null A
~Vf.(fraZnull —f-a=f)A(a-f#null — a-f=Ff))
by blast
qed

lemma ARR-iff-has-domain:
shows ARR [+— domains f # {}
proof

assume [: domains f # {}

117

show ARR f using f domains-def comp-def null-char by auto
next
assume f: ARR f
have Ide (DOM f)
using f ARR-def by (simp add: Arr-implies-Ide-Dom Arr-rep-ARR)
hence IDE (mkarr (DOM f)) using IDE-mkarr-Ide by metis
hence ide (mkarr (DOM f)) using IDE-implies-ide by simp
moreover have f - mkarr (DOM f) = f
proof —
have 1: rep f- DOM f € f - mkarr (DOM f)
using f Comp-in-comp-ARR
using IDE-implies-ARR Ide-in-Hom rep-in-ARR <IDE (mkarr (DOM f))»
«Ide (DOM f)» Arr-in-mkarr COD-mkarr
by fastforce
moreover have rep f- DOM f € f
proof —
have 2: rep f € f using f rep-in-ARR by simp
moreover have equiv (rep f+ DOM f) (rep f)
by (metis 1 Arr.simps(4) Arr-rep-ARR COD-mkarr Cod.simps(4)
Diagonalize-Comp-Arr-Dom Dom.simps(4) IDE-def Ide-implies-Arr
(IDE (mkarr (DOM f))» <Ide (DOM f)» all-not-in-conv DOM-mkarr comp-def)
ultimately show ?Zthesis
using f ARR-eql 1 <ide (mkarr (DOM f))> null-char ide-def by auto
qed
ultimately show ?thesis
using f ARR-eql <ide (mkarr (DOM f))» null-char ide-def by auto
qed
ultimately show domains f # {}
using f domains-def not-ARR-empty null-char by auto
qed

lemma ARR-iff-has-codomain:
shows ARR [«— codomains | # {}
proof
assume f: codomains f # {}
show ARR f using f codomains-def comp-def null-char by auto
next
assume f: ARR f
have Ide (COD f)
using f ARR-def by (simp add: Arr-rep-ARR Arr-implies-Ide-Cod)
hence IDE (mkarr (COD f)) using IDE-mkarr-Ide by metis
hence ide (mkarr (COD f)) using IDE-implies-ide by simp
moreover have mkarr (COD f) - f = f
proof —
have 1: COD f- rep f € mkarr (COD f) - f
using f Comp-in-comp-ARR
using IDE-implies-ARR Ide-in-Hom rep-in-ARR <IDE (mkarr (COD f)))
«Ide (COD f)» Arr-in-mkarr DOM-mkarr
by fastforce

118

moreover have COD f-rep f € f
using 1 null-char norm-rep-ARR norm-memb-eq-rep-ARR mkarr-memb-ARR
<ide (mkarr (COD f))y emptyE equiv-iff-eq-norm mkarr-extensionality ide-def
by metis
ultimately show ?thesis
using f ARR-eql <ide (mkarr (COD f))s null-char ide-def by auto
qed
ultimately show codomains f # {}
using codomains-def f not-ARR-empty null-char by auto
qged

lemma arr-iff-ARR:
shows arr f «+— ARR f
using arr-def ARR-iff-has-domain ARR-iff-has-codomain by simp

The arrows of the category are the equivalence classes of formal arrows.

lemma arr-char:
shows arr f «— f £ {} A (Vt. t € f — [= mkarr t)
using arr-iff-rARR ARR-def mkarr-def by simp

lemma seq-char:
shows seq g f +— g - [# null
proof
show ¢ - f # null = seq g f
using comp-def null-char Comp-in-comp-ARR rep-in-ARR ARR-mkarr
Arr-rep-ARR arr-iff-ARR
by auto
show seq g f = ¢ - f # null
by auto
qged

lemma seg-char’:
shows seq g f +— ARR f N ARR g AN DOM g = COD f
proof
show ARR f N ARR g AN DOM g= COD f = seq g f
using comp-def null-char Comp-in-comp-ARR rep-in-ARR ARR-mkarr
Arr-rep-ARR arr-iff-ARR
by auto
have - (ARR f N ARR g AN DOM g= COD f) = g - [= null
using comp-def null-char by auto
thus seq g f = ARR f AN ARR g AN DOM g = COD f
using ezt by fastforce
qed

Finally, we can show that the composition comp determines a category.

interpretation category comp
proof
show Af. domains f # {} +— codomains f # {}
using ARR-iff-has-domain ARR-iff-has-codomain by simp

119

show 1: A\fg. g f # null = seq g f
using comp-def ARR-comp null-char arr-iff-ARR by metis
fix fgh
show seq h g = seq (h - g) f = seq g f
using seq-char’ by auto
show seq h (g f) = seqgf = seqh g
using seq-char’ by auto
show seq g f = seq h g = seq (h - g) f
using seq-char’ ARR-comp arr-iff-ARR by auto
show seqgf = seqhg=—= (h-g)-f=h-g-f
using seq-char comp-assoc by auto
qed

lemma mkarr-rep [simp]:

assumes a7 f

shows mkarr (rep f) = f

using assms arr-iff-ARR by simp

lemma arr-mkarr [simpl:

assumes Arr ¢

shows arr (mkarr t)

using assms by (simp add: ARR-mkarr arr-iff-ARR)

lemma mkarr-memb:

assumes t € f and arr f

shows Arr t and mkarr t = f

using assms arr-char mkarr-extensionality by auto

lemma rep-in-arr [simp):

assumes arr f

shows rep f € f

using assms by (simp add: rep-in-ARR arr-iff-ARR)

lemma Arr-rep [simp]:

assumes arr f

shows Arr (rep f)

using assms mkarr-memb rep-in-arr by blast

lemma rep-in-Hom:

assumes arr f

shows rep f € Hom (DOM f) (COD f)
using assms by simp

lemma norm-memb-eq-rep:

assumes arr f and ¢ € f

shows ||t|| = rep f

using assms arr-iff-ARR norm-memb-eq-rep-ARR by auto

lemma norm-rep:

120

assumes arr f
shows ||rep fl| = rep f
using assms norm-memb-eq-rep by simp

Composition, domain, and codomain on arrows reduce to the corresponding syntactic
operations on their representative terms.

lemma comp-mkarr [simp]:
assumes Arr t and Arr v and Dom t = Cod u
shows mkarr t - mkarr v = mkarr (t - u)
using assms
by (metis (no-types, lifting) ARR-mkarr ARR-comp ARR-def Arr-in-mkarr COD-mkarr
Comp-in-comp-ARR DOM-mkarr mkarr-def)

lemma dom-char:
shows dom f = (if arr f then mkarr (DOM f) else null)
proof —
have —arr f = ?thesis
using dom-def by (simp add: arr-def)
moreover have arr f = ?thesis
proof —
assume [: arr f
have dom f = mkarr (DOM f)
proof (intro dom-eql)
have 1: Ide (DOM f)
using f arr-char by (metis Arr-rep Arr-implies-Ide-Dom)
hence 2: IDE (mkarr (DOM f))
using IDE-mkarr-Ide by metis
thus ide (mkarr (DOM f)) using IDE-implies-ide by simp
moreover show seq f (mkarr (DOM f))
proof —
have f - mkarr (DOM f) # null
using f 1 2 ARR-def DOM-mkarr IDE-implies-ARR Ide-in-Hom ARR-comp IDE-def
ARR-iff-has-codomain ARR-iff-has-domain null-char arr-def
by (metis (mono-tags, lifting) mem-Collect-eq)
thus ?thesis using seq-char by simp
qed
qed
thus ?thesis using f by simp
qed
ultimately show ?thesis by blast
qed

lemma dom-simp:

assumes arr f

shows dom f = mkarr (DOM f)
using assms dom-char by simp

lemma cod-char:
shows cod f = (if arr f then mkarr (COD f) else null)

121

proof —
have —arr f = ?thesis
using cod-def by (simp add: arr-def)
moreover have arr f = ?thesis
proof —
assume f: arr f
have cod f = mkarr (COD f)
proof (intro cod-eql)
have 1: Ide (COD f)
using f arr-char by (metis Arr-rep Arr-implies-Ide-Cod)
hence 2: IDE (mkarr (COD f))
using IDE-mkarr-Ide by metis
thus ide (mkarr (COD f)) using IDE-implies-ide by simp
moreover show seq (mkarr (COD f)) f
proof —
have mkarr (COD f) - f # null
using f 1 2 ARR-def DOM-mkarr IDE-implies-ARR Ide-in-Hom ARR-comp IDE-def
ARR-iff-has-codomain ARR-iff-has-domain null-char arr-def
by (metis (mono-tags, lifting) mem-Collect-eq)
thus ?thesis using seq-char by simp
qged
qed
thus ?thesis using f by simp
qed
ultimately show #?thesis by blast
qged

lemma cod-simp:

assumes arr f

shows cod f = mkarr (COD f)
using assms cod-char by simp

lemma Dom-memb:
assumes arr f and t € f
shows Dom t = DOM f
using assms DOM-mkarr mkarr-extensionality arr-char by fastforce

lemma Cod-memb:
assumes arr f and t € f

shows Cod t = COD f
using assms COD-mkarr mkarr-extensionality arr-char by fastforce

lemma dom-mkarr [simp]:
assumes Arr ¢
shows dom (mkarr t) = mkarr (Dom t)
using assms dom-char DOM-mkarr arr-mkarr by auto

lemma cod-mkarr [simp):
assumes Arr ¢

122

shows cod (mkarr t) = mkarr (Cod t)
using assms cod-char COD-mkarr arr-mkarr by auto

lemma mkarr-in-hom:

assumes Arr ¢

shows «mkarr t : mkarr (Dom t) — mkarr (Cod t)»
using assms arr-mkarr dom-mkarr cod-mkarr by auto

lemma DOM-in-dom [introl:
assumes arr f
shows DOM f € dom f
using assms dom-char
by (metis Arr-in-mkarr mkarr-extensionality ideD(1) ide-dom not-arr-null null-char)

lemma COD-in-cod [intro]:
assumes arr f
shows COD f € cod f
using assms cod-char
by (metis Arr-in-mkarr mkarr-eztensionality ideD(1) ide-cod not-arr-null null-char)

lemma DOM-dom:
assumes arr f
shows DOM (dom f) = DOM f
using assms Arr-rep Arr-implies-Ide-Dom Ide-implies-Arr dom-char rep-mkarr Par-Arr-norm
Ide-in-Hom
by simp

lemma DOM-cod:
assumes arr f
shows DOM (cod f) = COD f
using assms Arr-rep Arr-implies-Ide-Cod Ide-implies-Arr cod-char rep-mkarr Par-Arr-norm
Ide-in-Hom
by simp

lemma memb-equiv:
assumes arr fand t € fand u € f
shows Par t w and |t| = |u]
proof —
show Partu
using assms Cod-memb Dom-memb mkarr-memb(1) by metis
show |¢| = |u]
using assms arr-iff-ARR ARR-def by auto
qged

Two arrows can be proved equal by showing that they are parallel and have repre-
sentatives with identical diagonalizations.

lemma arr-eql:
assumes par fgand t € f and u € g and [t] = |u]
shows f = ¢

123

proof —
have Arr t A Arr u using assms mkarr-memb(1) by blast
moreover have Dom t = Dom u A Cod t = Cod u
using assms Dom-memb Cod-memb comp-def arr-char comp-arr-dom comp-cod-arr
by (metis (full-types))
ultimately have Par t u by simp
thus ?thesis
using assms arr-char by (metis rep-mkarr rep-in-arr equiv-iff-eqg-norm,)
qed

lemma comp-char:
shows [- g = (if seq f g then mkarr (rep f- rep g) else null)
using comp-def seq-char arr-char by meson

The mapping that takes identity terms to their equivalence classes is injective.

lemma mkarr-inj-on-Ide:
assumes Ide t and Ide u and mkarr t = mkarr u
shows t = u
using assms
by (metis (mono-tags, lifting) COD-mkarr Ide-in-Hom mem-Collect-eq)

lemma Comp-in-comp [intro]:
assumes arr f and g € hom (dom g) (dom f) and t € f and u € ¢
shows t-uef-g
proof —
have ARR f using assms arr-iff-ARR by simp
moreover have ARR g using assms arr-iff-ARR by auto
moreover have DOM f = COD g
using assms dom-char cod-char mkarr-inj-on-Ide Arr-implies-Ide-Cod Arr-implies-Ide-Dom
by force
ultimately show #%thesis using assms Comp-in-comp-ARR by simp
qed

An arrow is defined to be “canonical” if some (equivalently, all) its representatives
diagonalize to an identity term.

definition can
where can f = arr f A (3t t € f A Ide |t])

lemma can-def-alt:
shows can f «— arr f AN (Vt. t € f — Ide |t])
proof
assume arr f A (Vt. t € f — Ide |t])
thus can f using can-def arr-char by fastforce
next
assume f: can f
show arr f A (V. t € f — Ide |t])
proof —
obtain ¢ where ¢: t € f A Ide |t]| using f can-def by auto
have ARR f using f can-def arr-char ARR-def mkarr-def by simp

124

hence Vu. u € f — ||u|| = ||| using t unique-norm by auto
hence Vu. u € f — [t] = |u]
using ¢ by (metis <ARR [> equiv-iff-eqg-norm arr-iff-ARR mkarr-memb(1))
hence Vu. u € f — Ide |u]
using ¢t by metis
thus ?thesis using f can-def by blast
qed
qed

lemma can-implies-arr:
assumes can f
shows arr f

using assms can-def by auto

The identities of the category are precisely the canonical endo-arrows.

lemma ide-char:
shows ide f +— can f A dom [= cod f
proof
assume f: ide f
show can f A dom f = cod f
using f can-def arr-char dom-char cod-char IDE-def Arr-implies-Ide-Cod can-def-alt
Arr-rep IDE-mkarr-Ide
by (metis ideD(1) ideD(3))
next
assume f: can f A dom f = cod f
show ide f
proof —
have f = dom f
proof (intro arr-eql)
show par f (dom f) using f can-def by simp
show rep f € f using f can-def by simp
show DOM f € dom f using f can-def by auto
show |rep f| = | DOM f]
proof —
have |rep f| € Hom |[DOM f| | COD f|
using f can-def Diagonalize-in-Hom by simp
moreover have Ide |rep f| using f can-def-alt rep-in-arr by simp
ultimately show ?thesis
using f can-def Ide-in-Hom by simp
qged
qed
thus ?thesis using f can-implies-arr ide-dom [of f] by auto
qed
qed

lemma ide-iff-IDE:
shows ide a +— IDFE a
using ide-char IDE-def can-def-alt arr-iff-ARR dom-char cod-char mkarr-inj-on-Ide
Arr-implies-Ide-Cod Arr-implies-Ide-Dom Arr-rep

125

by auto

lemma ide-mkarr-Ide:
assumes Ide a
shows ide (mkarr a)
using assms IDE-mkarr-Ide ide-iff-IDE by simp

lemma rep-dom:
assumes a7 f
shows rep (dom f) = || DOM f||
using assms dom-simp rep-mkarr Arr-rep Arr-implies-Ide-Dom by simp

lemma rep-cod:
assumes arr f
shows rep (cod f) = ||COD f]|
using assms cod-simp rep-mkarr Arr-rep Arr-implies-Ide-Cod by simp

lemma rep-preserves-seq:
assumes seq g f
shows Seq (rep g) (rep f)
using assms Arr-rep dom-char cod-char mkarr-inj-on-Ide Arr-implies-Ide-Dom
Arr-implies-Ide-Cod
by auto

lemma rep-comp:
assumes seq g f
shows rep (g - f) = |[rep g - rep fl|
proof —
have rep (g - f) = rep (mkarr (rep g - rep f))
using assms comp-char by metis
also have ... = ||rep g - rep f||
using assms rep-preserves-seq rep-mkarr by simp
finally show ?thesis by blast
qed

The equivalence classes of canonical terms are canonical arrows.

lemma can-mkarr-Can:

assumes Can t

shows can (mkarr t)

using assms Arr-in-mkarr Can-implies-Arr Ide-Diagonalize-Can arr-mkarr can-def by blast

lemma ide-implies-can:
assumes ide a
shows can a

using assms ide-char by blast

lemma Can-rep-can:

assumes can f
shows Can (rep f)

126

proof —
have Can ||rep f||
using assms can-def-alt Can-norm-iff-Ide-Diagonalize by auto
moreover have rep f = ||rep f||
using assms can-implies-arr norm-rep by simp
ultimately show ?thesis by simp
qged

Parallel canonical arrows are identical.

lemma can-coherence:
assumes par f g and can f and can g

shows f = ¢

proof —
have |rep f| = |rep ¢|
proof —

have |rep f| = | DOM f]|
using assms Ide-Diagonalize-Can Can-rep-can Diagonalize-in-Hom Ide-in-Hom by force
also have ... = | DOM g|
using assms dom-char equiv-iff-eq-norm
by (metis DOM-in-dom mkarr-memb(1) rep-mkarr arr-dom-iff-arr)
also have ... = [rep ¢|
using assms Ide-Diagonalize-Can Can-rep-can Diagonalize-in-Hom Ide-in-Hom by force
finally show ?thesis by blast
qed
hence rep f = rep g
using assms rep-in-arr norm-memb-eq-rep equiv-iff-eq-norm
by (metis (no-types, lifting) arr-eql)
thus ?thesis
using assms arr-eql [of f g] rep-in-arr [of f] rep-in-arr [of g] by metis
qged

Canonical arrows are invertible, and their inverses can be obtained syntactically.

lemma inverse-arrows-can:
assumes can f
shows inverse-arrows f (mkarr (Inv (DOM fl) - |rep f| - COD fl))
proof
let %t = (Inv (DOM f]) - |rep f] - COD f])
have 1: rep f € f A Arr (rep f) A Can (rep f) A Ide |rep f|
using assms can-def-alt rep-in-arr rep-in-arr(1) Can-rep-can by simp
hence 2: |DOM f| = | COD f]
using Diagonalize-in-Hom [of rep f] Ide-in-Hom by auto
have 3: Can 7t
using assms 1 2 Can-red Ide-implies-Can Diagonalize-in-Hom Inv-preserves-Can
Arr-implies-Ide-Cod Arr-implies-Ide-Dom Diag-Diagonalize
by simp
have /: DOM f = Cod %t
using assms can-def Can-red
by (simp add: Arr-implies-Ide-Dom Inv-preserves-Can(8))
have 5: COD f = Dom %t

127

using assms can-def Can-red Arr-rep Arr-implies-Ide-Cod by simp
have 6: antipar f (mkarr 1)
using assms 3 4 5 dom-char cod-char can-def cod-mkarr dom-mkarr Can-implies-Arr
by simp
show ide (f - mkarr 2t)
proof —
have 7: par (f - mkarr ?t) (dom (f - mkarr %t))
using assms 6 by auto
moreover have can (f - mkarr 2t)
proof —
have 8: Comp (rep f) 2t € (f - mkarr 2t)
using assms 1 8 4 6 can-implies-arr Arr-in-mkarr COD-mkarr Comp-in-comp-ARR
Can-implies-Arr arr-iff-ARR seq-char’
by meson
moreover have Can (rep f- ?t)
using 1 3 7 8 mkarr-memb(1) by (metis Arr.simps(4) Can.simps(4))
ultimately show ?thesis
using can-mkarr-Can 7 mkarr-memb(2) by metis
qed
moreover have can (dom (f - mkarr ?t))
using 7 ide-implies-can by force
ultimately have f - mkarr 26 = dom (f - mkarr %t)
using can-coherence by meson
thus ?thesis
using 7 ide-dom by metis
qed
show ide (mkarr 2t - f)
proof —
have 7: par (mkarr ?t - f) (cod (mkarr ¢t - f))
using assms 6 by auto
moreover have can (mkarr 2t - f)
proof —
have 8: Comp ?t (rep f) € mkarr 7t - f
using assms 1 8 6 7 Arr-in-mkarr Comp-in-comp-ARR Can-implies-Arr arr-char
comp-def
by meson
moreover have Can (%t - rep f)
using 1 3 7 8 mkarr-memb(1) by (metis Arr.simps(4) Can.simps(4))
ultimately show ?Zthesis
using can-mkarr-Can 7 mkarr-memb(2) by metis
qed
moreover have can (cod (mkarr 7t - f))
using 7 ide-implies-can by force
ultimately have mkarr 2t - f = cod (mkarr 2t - f)
using can-coherence by meson
thus ?thesis
using 7 can-implies-arr ide-cod by metis
qed
qed

128

lemma inv-mkarr [simpl:
assumes Can t
shows inv (mkarr t) = mkarr (Inv t)
proof —
have t: Can t A Arr t A Can (Inv t) A Arr (Inv t) A Ide (Dom t) A Ide (Cod t)
using assms Can-implies-Arr Arr-implies-Ide-Dom Arr-implies-Ide-Cod
Inv-preserves-Can

by simp
have inverse-arrows (mkarr t) (mkarr (Inv t))
proof

show ide (mkarr t - mkarr (Inv t))

proof —

have mkarr (Cod t) = mkarr (Comp t (Inv t))
using ¢ Inv-in-Hom Ide-in-Hom Diagonalize-Inv Diag-Diagonalize Diagonalize-preserves-Can
by (intro mkarr-eql, auto)
also have ... = mkarr t - mkarr (Inv t)
using t comp-mkarr Inv-in-Hom by simp
finally have mkarr (Cod t) = mkarr t - mkarr (Inv t)

by blast
thus ?thesis using t ide-mkarr-Ide [of Cod t] by simp
qed
show ide (mkarr (Inv t) - mkarr t)
proof —

have mkarr (Dom t) = mkarr (Inv t - t)
using ¢ Inv-in-Hom Ide-in-Hom Diagonalize-Inv Diag-Diagonalize Diagonalize-preserves-Can
by (intro mkarr-eql, auto)
also have ... = mkarr (Inv t) - mkarr ¢
using t comp-mkarr Inv-in-Hom by simp
finally have mkarr (Dom t) = mkarr (Inv t) - mkarr t

by blast
thus ?thesis using t ide-mkarr-Ide [of Dom t] by simp
qed
qed
thus ?thesis using inverse-unique by auto
qed

lemma iso-can:
assumes can f
shows iso f
using assms inverse-arrows-can by auto
The following function produces the unique canonical arrow between two given ob-
jects, if such an arrow exists.

definition mkcan
where mkcan a b = mkarr (Inv (COD bl) - (DOM al))

lemma can-mkcan:
assumes ide a and ide b and | DOM a] = [COD b|

129

shows can (mkcan a b) and «mkcan a b : a — by
proof —
show can (mkcan a b)
using assms mkcan-def Arr-rep Arr-implies-Ide-Dom Arr-implies-Ide-Cod Can-red
Inv-preserves-Can can-mkarr-Can
by simp
show «mkcan a b: a — b»
using assms mkcan-def Arr-rep Arr-implies-1de-Dom Arr-implies-Ide-Cod Can-red Inv-in-Hom
dom-char [of a] cod-char [of b] mkarr-rep mkarr-in-hom can-implies-arr
by auto
qged

lemma dom-mkcan:
assumes ide a and ide b and |DOM a| = | COD b]
shows dom (mkcan a b) = a

using assms can-mkcan by blast

lemma cod-mkcan:
assumes ide ¢ and ide b and |DOM a] = [COD b|
shows cod (mkcan a b) = b

using assms can-mkcan by blast

lemma can-coherence’:
assumes can f
shows mkcan (dom f) (cod f) = f
proof —
have Ide |rep f]
using assms Ide-Diagonalize-Can Can-rep-can by simp
hence Dom |rep f| = Cod |rep f|
using Ide-in-Hom by simp
hence |DOM f| = | COD f|
using assms can-implies-arr Arr-rep Diagonalize-in-Hom by simp
moreover have DOM f = DOM (dom f)
using assms can-implies-arr dom-char rep-mkarr Arr-implies-Ide-Dom Ide-implies-Arr
Par-Arr-norm [of DOM f] Ide-in-Hom
by auto
moreover have COD f = COD (cod f)
using assms can-implies-arr cod-char rep-mkarr Arr-implies-Ide-Cod Ide-implies-Arr
Par-Arr-norm [of COD f] Ide-in-Hom
by auto
ultimately have can (mkcan (dom f) (cod f)) A par f (mkecan (dom f) (cod f))
using assms can-implies-arr can-mkcan dom-mkcan cod-mkcan by simp
thus ?thesis using assms can-coherence by blast
qed

lemma Ide-Diagonalize-rep-ide:
assumes ide a
shows Ide |rep a]
using assms ide-implies-can can-def-alt rep-in-arr by simp

130

lemma Diagonalize-DOM:
assumes arr f
shows | DOM f| = Dom |rep f]
using assms Diag-Diagonalize by simp

lemma Diagonalize-COD:
assumes arr f
shows | COD f| = Cod |rep f]
using assms Diag-Diagonalize by simp

lemma Diagonalize-rep-preserves-seq:
assumes seq g f
shows Seq |rep g| |rep f]
using assms Diagonalize-DOM Diagonalize-COD Diag-implies-Arr Diag-Diagonalize(1)
rep-preserves-seq
by force

lemma Dom-Diagonalize-rep:

assumes a7 f

shows Dom |rep f| = |rep (dom f)]
using assms Diagonalize-rep-preserves-seq [of f dom f] Ide-Diagonalize-rep-ide Ide-in-Hom
by simp

lemma Cod-Diagonalize-rep:

assumes arr f

shows Cod |rep f| = |rep (cod f)]
using assms Diagonalize-rep-preserves-seq [of cod f f] Ide-Diagonalize-rep-ide Ide-in-Hom
by simp

lemma mkarr-Diagonalize-rep:
assumes arr [and Diag (DOM f) and Diag (COD f)
shows mkarr |rep f| = f
proof —
have mkarr (rep f) = mkarr |rep f|
using assms rep-in-Hom Diagonalize-in-Hom Diag-Diagonalize Diagonalize-Diag
by (intro mkarr-eql, simp-all)
thus ?thesis using assms mkarr-rep by auto
qed

We define tensor product of arrows via the constructor (&) on terms.
definition tensorp ¢ (infixr «®» 53)

where [® g = (if arr f A arr g then mkarr (rep f ® rep g) else null)

lemma arr-tensor [simp]:
assumes arr f and arr g
shows arr (f ® g)
using assms tensorp pco-def arr-mkarr by simp

131

lemma rep-tensor:
assumes arr f and arr g

shows rep (f @ g) = |lrep f @ rep 4|
using assms tensor g co-def rep-mkarr by simp

lemma Par-memb-rep:
assumes arr f and t € f
shows Par t (rep f)
using assms mkarr-memb apply simp
using rep-in-Hom Dom-memb Cod-memb by metis

lemma Tensor-in-tensor [intro):
assumes arr f and arrgand t € fand u € g
shows tQ ue f® g
proof —
have equiv (t ® u) (rep f ® rep g)
proof —
have 1: Par (t @ u) (rep f® rep g)
proof —
have Par t (rep f) A Par u (rep g) using assms Par-memb-rep by blast
thus ?thesis by simp
qed
moreover have [t ® u| = |[rep f® rep g
using assms 1 equiv-iff-eq-norm rep-mkarr norm-norm mkarr-memb(2)
by (metis Arr.simps(3) Diagonalize.simps(3))
ultimately show ¢thesis by simp
qed
thus ?thesis
using assms tensor gy c-def mkarr-def by simp
qed

lemma DOM-tensor [simp]:
assumes arr f and arr g
shows DOM (f ® g) = DOM f® DOM g
by (metis (no-types, lifting) DOM-mkarr Dom.simps(83) mkarr-extensionality arr-char
arr-tensor assms(1) assms(2) tensor gy c-def)

lemma COD-tensor [simp]:
assumes arr f and arr g
shows COD (f ® g) = COD f® COD g
by (metis (no-types, lifting) COD-mkarr Cod.simps(8) mkarr-extensionality arr-char
arr-tensor assms(1) assms(2) tensor gy c-def)

lemma tensor-in-hom [simpl:

assumes «f : a = b» and «g : ¢ — d»

shows «f ® g: a ® ¢ = b ® d»

proof —
have f: arr f A dom f = a A cod f = b using assms(1) by auto
have ¢: arr g A dom g = ¢ A cod g = d using assms(2) by auto

132

have dom (f ® g) = dom f ® dom g
using f g arr-tensor dom-char Tensor-in-tensor [of dom f dom g DOM f DOM g]
DOM-in-dom mkarr-memb(2) DOM-tensor arr-dom-iff-arr
by metis
moreover have cod (f ® g) = cod f ® cod g
using f g arr-tensor cod-char Tensor-in-tensor [of cod f cod ¢ COD f COD g|
COD-in-cod mkarr-memb(2) COD-tensor arr-cod-iff-arr
by metis
ultimately show ?thesis using assms arr-tensor by blast
qged

lemma dom-tensor [simpl:

assumes arr [and arr g

shows dom (f ® g) = dom f ® dom ¢
using assms tensor-in-hom [of f] by blast

lemma cod-tensor [simp]:
assumes arr f and arr g
shows cod (f ® g) = cod f ® cod g
using assms tensor-in-hom [of f] by blast

lemma tensor-mkarr [simp:
assumes Arr ¢t and Arr u
shows mkarr t @ mkarr v = mkarr (t ® u)
using assms by (meson Tensor-in-tensor arr-char Arr-in-mkarr arr-mkarr arr-tensor)

lemma tensor-preserves-ide:
assumes ide a and ide b
shows ide (a ® b)
proof —
have can (a ® b)
using assms tensorp s o-def Can-rep-can ide-implies-can can-mkarr-Can by simp
moreover have dom (a ® b) = cod (a ® b)
using assms tensor-in-hom by simp
ultimately show ?thesis using ide-char by metis
qed

lemma tensor-preserves-can:
assumes can f and can g
shows can (f ® g)
using assms can-implies-arr Can-rep-can tensor g yrc-def can-mkarr-Can by simp

lemma comp-preserves-can:
assumes can f and can g and dom f = cod g
shows can (f - g)
proof —
have 1: ARR f N ARR g AN DOM f = COD g
using assms can-implies-arr arr-iff-ARR Arr-implies-Ide-Cod Arr-implies-Ide-Dom
mkarr-inj-on-Ide cod-char dom-char

133

by simp
hence Can (rep f- rep g)
using assms can-implies-arr Can-rep-can by force
thus ?thesis
using assms 1 can-implies-arr comp-char can-mkarr-Can seq-char’ by simp
qged

The remaining structure required of a monoidal category is also defined syntactically.

definition unitypryc i ‘c arr (D)
where 7 = mkarr

definition lunitprc ‘¢ arr = 'c arr (<1[]»)
where 1[a] = mkarr 1[rep d]

definition runitpyc = 'c arr = 'c arr (<r[-]»)
where r[a] = mkarr r[rep d]

definition assocpprc i 'c arr = ‘c arr = 'c arr = ‘carr (1a[-, -,)
where ala, b, ¢] = mkarr a[rep a, rep b, rep (]

lemma can-lunit:

assumes ide a

shows can 1[a]
using assms lunitp prc-def can-mkarr-Can
by (simp add: Can-rep-can ide-implies-can)

lemma lunit-in-hom:
assumes ide a
shows «l[a] : Z ® a — a»
proof —
have dom l[a] =Z ® a
using assms lunitp ro-def unityparco-def Ide-implies-Arr dom-mkarr dom-char ten-
sor-mkarr
Arr-rep
by (metis Arr.simps(2) Arr.simps(5) Arr-implies-Ide-Dom Dom.simps(5)
ideD(1) ideD(2))
moreover have cod l[a] = a
using assms lunitp pc-def rep-in-arr(1) cod-mkarr cod-char ideD(3) by auto
ultimately show ?thesis
using assms arr-cod-iff-arr by (intro in-homl, fastforce)
qged

lemma arr-lunit [simp):
assumes ide a
shows arr 1]d]
using assms can-lunit can-implies-arr by simp

lemma dom-lunit [simp):
assumes ide a

134

shows dom l[a] =T ® a
using assms lunit-in-hom by auto

lemma cod-lunit [simp]:
assumes ide a
shows cod 1[a] = a
using assms lunit-in-hom by auto

lemma can-runit:

assumes ide a

shows can r[a]
using assms runitp s co-def can-mkarr-Can
by (simp add: Can-rep-can ide-implies-can)

lemma runit-in-hom [simpl:
assumes ide a
shows «r[a] : a ® T — a»
proof —
have dom r[a] = a ® T
using assms Arr-rep Arr.simps(2) Arr.simps(7) Arr-implies-Ide-Dom Dom.simps(7)
Ide-implies-Arr dom-mkarr dom-char ideD(1) ideD(2) runitp s c-def tensor-mkarr
unityp pm ¢ -def
by metis
moreover have cod r[a] = a
using assms runitp s o-def rep-in-arr(1) cod-mkarr cod-char ideD(8) by auto
ultimately show %thesis
using assms arr-cod-iff-arr by (intro in-homl, fastforce)
qed

lemma arr-runit [simpl:
assumes ide a
shows arr r[d]
using assms can-runit can-implies-arr by simp

lemma dom-runit [simp:
assumes ide a
shows dom r[a] = a ® T
using assms runit-in-hom by blast

lemma cod-runit [simp):
assumes ide a
shows cod r[a] = a
using assms runit-in-hom by blast

lemma can-assoc:

assumes ide a and ide b and ide ¢

shows can ala, b,]
using assms assocp pyc-def can-mkarr-Can
by (simp add: Can-rep-can ide-implies-can)

135

lemma assoc-in-hom:
assumes ide a and ide b and ide ¢
shows «afa, b, c]: (a®@b) ®c—=> a® b c»
proof —
have dom ala, b, ¢] = (a ® b) ® ¢
proof —
have dom ala, b, ¢| = mkarr (Dom a[rep a, rep b, rep c])
using assms assocp pre-def rep-in-arr(1) by simp
also have ... = mkarr (DOM a ® DOM b) ® DOM c)
by simp
also have ... = (e ® b) ® ¢
by (metis mkarr-extensionality arr-tensor assms dom-char
ideD(1) ideD(2) not-arr-null null-char tensor-mkarr)
finally show ?thesis by blast
qed
moreover have cod afa, b, c] = a® b ® ¢
proof —
have cod ala, b, ¢| = mkarr (Cod a[rep a, rep b, rep c])
using assms assocp prc-def rep-in-arr(1) by simp
also have ... = mkarr (COD a ® COD b ® COD c¢)
by simp
also have ... = a ® b ® ¢
by (metis mkarr-extensionality arr-tensor assms(1) assms(2) assms(3) cod-char
ideD(1) ideD(3) not-arr-null null-char tensor-mkarr)
finally show ?thesis by blast
qed
moreover have arr ala, b, c|
using assms assocp prc-def rep-in-arr(1) arr-mkarr by simp
ultimately show #¢thesis by auto
qed

lemma arr-assoc [simp]:
assumes ide a and ide b and ide ¢
shows arr ala, b, |
using assms can-assoc can-implies-arr by simp

lemma dom-assoc [simp]:

assumes ide a and ide b and ide ¢

shows dom ala, b, ¢] = (a ® b) ® ¢
using assms assoc-in-hom by blast

lemma cod-assoc [simp]:

assumes ide a and ide b and ide ¢

shows cod ala, b, ¢] = a ® b ® ¢
using assms assoc-in-hom by blast

lemma ide-unity [simp]:
shows ide 7

136

using unityp pro-def Arr.simps(2) Dom.simps(2) arr-mkarr dom-mkarr ide-dom
by metis

lemma Unity-in-unity [simp):
shows Z € 7
using unity gy o-def Arr-in-mkarr by simp

lemma rep-unity [simp):
shows rep Z = || Z||
using unityp s o-def rep-mkarr by simp

lemma Lunit-in-lunit [intro]:
assumes arr f and ¢ € f
shows 1[{] € 1[f]
proof —
have Arrt A Arr (rep f) A Dom t = DOM f A Cod t = COD f A [t] = |rep f]
using assms
by (metis mkarr-memb(1) mkarr-memb(2) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm
norm-rep)
thus %thesis
by (simp add: mkarr-def lunitp prc-def)
qged

lemma Runit-in-runit [intro]:
assumes arr f and t € f
shows r[{f] € r[f]
proof —
have Arrt A Arr (rep f) A Dom t = DOM f A Cod t = COD f A [t] = |rep f]
using assms
by (metis mkarr-memb(1) mkarr-memb(2) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm
norm-rep)
thus ?thesis
by (simp add: mkarr-def runit g o-def)
qed

lemma Assoc-in-assoc [introl:
assumes arr f and arr g and arr h
and t € fand u € gand v € h
shows a[t, u, v] € alf, g, h]
proof —
have Arr t A Arr (rep f) A Dom t = DOM f A Cod t = COD f A [t] = |rep f]
using assms
by (metis mkarr-memb(1) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm mkarr-memb(2)
norm-rep)
moreover have Arr u A Arr (rep g) A Dom v = DOM g A Cod u = COD g A
Lu] = Lrep g
using assms
by (metis mkarr-memb(1) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm mkarr-memb(2)
norm-rep)

137

moreover have Arr v A Arr (rep h) A Dom v = DOM h A Cod v = COD h A
o) = Lrep b
using assms
by (metis mkarr-memb(1) rep-mkarr rep-in-arr(1) equiv-iff-eq-norm mkarr-memb(2)
norm-rep)
ultimately show #thesis
using assocpg pro-def mkarr-def by simp
qed

At last, we can show that we’ve constructed a monoidal category.

interpretation EMC: elementary-monoidal-category
comp tensorparc unityparo lunitpy o runitpapro assocE pro
proof
show ide 7 using ide-unity by auto
show Aa. ide a = «l[a] : T ® a — a» by auto
show Aa. ide a = «r[a] : a ® T — a» by auto
show Aa. ide a = iso l[a] using can-lunit iso-can by auto
show Aa. ide a = iso r[a] using can-runit iso-can by auto
show Aa b c. [ide a; ide b; ide ¢ | = «ala, b,] : (a ® b)) ® ¢ > a ® b ® c» by auto
show Aa b c. [ide a; ide b; ide ¢ | = iso ala, b, c] using can-assoc iso-can by auto
show Aa b. [ide a; ide b | = ide (a ® b) using tensor-preserves-ide by auto
fix fabgcd
show [«f:a—>by;«g:c—>dv] =« ®g:a®c— b® d»
using tensor-in-hom by auto
next

Naturality of left unitor.

fix f
assume f: arr f
show 1[cod f] - (Z ® f) = [- l[dom f]
proof (intro arr-eql)
show par (l[cod f] - (Z ® f)) (f - 1[dom f])
using [by simp
show 1[COD f] - (Z ® rep f) € l[cod f] - (Z ® f)
using f by fastforce
show rep f- 1[DOM f] € f - l[dom f]
using f by fastforce
show |1[COD f] - (Z ® rep f)| = |rep f- 1[DOM f]
using [by (simp add: Diag-Diagonalize(1) Diagonalize-DOM Diagonalize-COD)
qed

Naturality of right unitor.

show rfcod f] - (f ® Z) = f - r[dom f]
proof (intro arr-eql)
show par (x[cod f] - (f @ 1)) (f - xldom f])
using [by simp
show r[COD f] + (rep f® I) € r[cod f] - (f ® I)
using f by fastforce
show rep f- r[DOM f] € f - r[dom f]

138

using f by fastforce
show |r[COD f] - (rep fQ I)]| = |rep f+ r[DOM f]]
using [by (simp add: Diag-Diagonalize(1) Diagonalize-DOM Diagonalize-COD)
qed
next

Naturality of associator.

fix f0 :: 'c arr and fI f2
assume f0: arr f0 and f1: arr f1 and f2: arr f2
show a[cod f0, cod f1, cod f2] - ((fO0 ® f1) ® f2)
= (f0 ® f1 ® f2) - a[dom f0, dom f1, dom f2]
proof (intro arr-eql)
show 1: par (a[cod f0, cod f1, cod f2] - ((f0 @ f1) ® f2))
((fo ® f1 @ f2) - aldom f0, dom f1, dom f2])
using f0 f1 f2 by force
show a[rep (cod f0), rep (cod f1), rep (cod f2)] - ((rep f0 @ rep f1) ® rep f2)
€ alcod f0, cod f1, cod f2] - ((fO ® f1) ® f2)
using f0 f1 f2 by fastforce
show (rep f0 @ rep f1 @ rep f2) - a[rep (dom f0), rep (dom f1), rep (dom f2)]
€ (f0 ® f1 ® f2) - a|dom f0, dom f1, dom f2]
using f0 f1 f2 by fastforce
show |a[rep (cod f0), rep (cod f1), rep (cod f2)] - ((rep fO ® rep f1) ® rep f2)]
= |(rep fO ® rep f1 ® rep f2) - a[rep (dom f0), rep (dom f1), rep (dom f2)]|
proof —
have |a[rep (cod f0), rep (cod f1), rep (cod f2)] - ((rep f0 @ rep f1) ® rep f2)]
= Lrep f0] |®] Lrep f1] |®] Lrep f2]
proof —
have b0: |rep (cod f0)] = Cod | rep f0]
using f0 Cod-Diagonalize-rep by simp
have b1: |rep (cod f1)] = Cod |rep f1]
using fI Cod-Diagonalize-rep by simp
have b2: |rep (cod f2)] = Cod |rep f2]
using f2 Cod-Diagonalize-rep by simp
have |a[rep (cod f0), rep (cod f1), rep (cod f2)] - ((rep fO ® rep f1)
= (Lrep (cod 10)] L&) Lrep (cod f1)) |®) Lrep (cod 2)]) |-
(Lrep fo] |®] Lrep f1] |®] Lrep f2])
using f0 f1 f2 using Diag-Diagonalize(1) TensorDiag-assoc by auto
also have ... = |rep (cod f0)] |-]| Lrep 0] |®]
Lrep (cod f1)] -] Lrep f1] |®] Lrep (cod f2)] -] Lrep f2]

® rep f2)]
]

proof —

have Seq |rep (cod f0)| |rep fO| A Seq |rep (cod f1)] |rep f1] A
Seq Lrep (cod f2)] Lrep 2]
using f0 f1 f2 rep-in-Hom Diagonalize-in-Hom Dom-Diagonalize-rep Cod-Diagonalize-rep
by auto
thus ?thesis
using f0 f1 f2 b0 b1 b2 TensorDiag-in-Hom TensorDiag-preserves-Diag
Diag-Diagonalize Arr-implies-1de-Dom Arr-implies-Ide-Cod
CompDiag-TensorDiag
by simp

139

qed
also have ... = |rep f0] |®] |rep f1]| |®] |rep f2]
proof —
have |rep (cod f0)] |-] Lrep f0] = |rep fO)
using f0 b0 CompDiag-Cod-Diag [of | rep f0]] Diag-Diagonalize
by simp
moreover have |rep (cod f1)| |-] |rep f1| = |rep f1]
using f1 b1 CompDiag-Cod-Diag [of |rep f1]] Diag-Diagonalize
by simp
moreover have |rep (cod f2)]| |-| |rep f2] = |rep 2]
using f2 b2 CompDiag-Cod-Diag [of | rep f2|] Diag-Diagonalize
by simp
ultimately show ?thesis by argo
qed
finally show ?thesis by blast
qged
also have ... = |(rep f0 ® rep f1 ® rep f2) -
afrep (dom f0), rep (dom f1), rep (dom f2)]|
proof —
have a0: |rep (dom f0)| = Dom |rep f0]
using f0 Dom-Diagonalize-rep by simp
have al: |rep (dom f1)| = Dom |rep f1]
using f1 Dom-Diagonalize-rep by simp
have a2: |rep (dom f2)| = Dom |rep f2]
using 2 Dom-Diagonalize-rep by simp
have |(rep f0 @ rep f1 ® rep f2) - a[rep (dom f0), rep (dom f1), rep (dom f2)]]
= (Lrep fo) |®) Lrep f1) 1@ Lrep £21) L]
(Lrep (dom f0)] |®] [rep (dom f1)] [®] Lrep (dom f2)])
using f0 f1 f2 using Diag-Diagonalize(1) TensorDiag-assoc by auto
also have ... = |rep f0] -] |rep (dom f0)] |®] |rep f1] |-] Lrep (dom f1)] |®]
Lrep f2] -] Lrep (dom f2)]
proof —

have Seq |rep f0] |rep (dom f0)] A Seq |rep f1] |rep (dom f1)] A
Seq Lrep f2] Lrep (dom 2)]
using f0 f1 f2 rep-in-Hom Diagonalize-in-Hom Dom-Diagonalize-rep Cod-Diagonalize-rep
by auto
thus ?thesis
using f0 f1 f2 a0 al a2 TensorDiag-in-Hom TensorDiag-preserves-Diag
Diag-Diagonalize Arr-implies-1de-Dom Arr-implies-Ide-Cod
CompDiag-TensorDiag
by force
qed
also have ... = |rep f0] |®] |rep f1| |®] |rep f2]
proof —
have [rep f0] |] Lrep (dom f0)] = Lrep 0]
using f0 a0 CompDiag-Diag-Dom [of Diagonalize (rep f0)] Diag-Diagonalize
by simp
moreover have |rep f1| |-] [rep (dom f1)] = |rep f1]
using f1 a1 CompDiag-Diag-Dom [of Diagonalize (rep f1)] Diag-Diagonalize

140

by simp
moreover have |rep f2| |-] [rep (dom f2)] = |rep f2]
using f2 a2 CompDiag-Diag-Dom [of Diagonalize (rep f2)] Diag-Diagonalize
by simp
ultimately show ¢thesis by argo
qed
finally show ?thesis by argo
qed
finally show ?thesis by blast
qed
qed
next

Tensor preserves composition (interchange).

fixfgf'yg
show [seq g fiseqg' f'] = (9@ 4q) - f@f)=g-f@g [
proof —
assume ¢f: seq g f
assume gf": seq g’ f'
show ?thesis
proof (intro arr-eql)
show par (9 ® ¢") - (f@) (9-f® g - f)
using gf gf ' by fastforce
show (rep g ® rep g) - (rep f@ rep f') € (9 ® g') - (f @ f)
using gf gf ' by force
show rep g-rep fQrep g’ ~repf'€g-f®g - f
using gf gf'
by (meson Comp-in-comp-ARR Tensor-in-tensor rep-in-arr seqE seq-char’)
show |(rep g ® rep g) - (rep f@ rep f)] = |rep g - rep f® rep g - rep f']
proof —
have |(rep g ® rep g’) « (rep f® rep f')]
= (Lrep g] [®] Lrep g']) -] (Lrep f] [®] Lrep f'])
by auto
also have ... = |rep g] [-] Lrep f] |®] Lrep '] |-] Lrep f']
using gf gf ' Arr-rep Diagonalize-rep-preserves-seq

CompDiag-TensorDiag [of |rep g| |rep g'| Lrep f] |rep f']]
Diag-Diagonalize Diagonalize-DOM Diagonalize-COD

by force
also have ... = |rep g - rep f® rep g’ - rep f'|
by auto
finally show ?thesis by blast
qed
qed
qed
next

The triangle.

fix a b
assume a: ide a

141

assume b: ide b
show (a ® 1[b]) - a[a, Z, b] = r[a] ® b
proof —
have par ((a ® 1[b]) - ala, Z, b]) (r[a] ® b)
using a b by simp
moreover have can ((a ® 1[b]) - a[a, Z, b])
using a b ide-implies-can comp-preserves-can tensor-preserves-can can-assoc can-lunit
by simp
moreover have can (r[a] ® b)
using a b ide-implies-can can-runit tensor-preserves-can by simp
ultimately show ?thesis using can-coherence by blast
qed
next

The pentagon.
fixabcd

assume a: ide a
assume b: ide b
assume c: ide ¢
assume d: ide d
show (a ® a[b, ¢, d]) - ala, b ® ¢, d] - (ala, b,] ® d)
=ala, b, c ® d] - ala ® b, ¢, d]
proof —
let ?LHS = (a ® a[b, ¢, d]) - ala, b ® ¢, d] - (ala, b, ¢] ® d)
let YRHS = ala, b, ¢ ® d] - ala ® b, ¢, d]
have par LHS ?RHS
using a b ¢ d can-assoc tensor-preserves-ide by auto
moreover have can ?LHS
using a b ¢ d ide-implies-can comp-preserves-can tensor-preserves-can can-assoc
tensor-preserves-ide
by simp
moreover have can ?RHS
using a b ¢ d comp-preserves-can tensor-preserves-can can-assoc tensor-in-hom
tensor-preserves-ide
by simp
ultimately show ?thesis using can-coherence by blast
qed
qed

lemma is-elementary-monoidal-category:

shows elementary-monoidal-category
comp tensorpyrc unityp o lunitpyp o runitep o assocr po

abbreviation Tr);c where Try o = EMC.T
abbreviation ar);c where apyc = EMC.«
abbreviation gy ¢ where tpy o = EMC .

interpretation MC: monoidal-category comp Tryrc Qrpype trymc

142

using FMC'.induces-monoidal-category by auto

lemma induces-monoidal-category:
shows monoidal-category comp Trayrc arype LFMC

end

sublocale free-monoidal-category C
elementary-monoidal-category
comp tensorp o unityppc lunitp ppo runitp o assocp p o
using is-elementary-monoidal-category by auto

sublocale free-monoidal-category C monoidal-category comp Trpye arpype LrpmC
using induces-monoidal-category by auto

4.2 Proof of Freeness

Now we proceed on to establish the freeness of F C': each functor from C' to a monoidal
category D extends uniquely to a strict monoidal functor from FC to D.

context free-monoidal-category

begin

lemma rep-lunit:
assumes ide a

shows rep 1[a] = ||[1[rep d]||
using assms Lunit-in-lunit [of a rep a] rep-in-arr norm-memb-eq-rep [of 1]a]]
by simp

lemma rep-runit:
assumes ide a

shows rep r[a] = ||r[rep d||
using assms Runit-in-runit [of a rep a] rep-in-arr norm-memb-eq-rep [of r[al]
by simp

lemma rep-assoc:
assumes ide ¢ and ide b and ide c
shows rep ala, b, c| = ||a[rep a, rep b, rep ||
using assms Assoc-in-assoc [of a b ¢ rep a rep b rep | rep-in-arr
norm-memb-eq-rep [of ala, b,]|
by simp

lemma mkarr-Unity:
shows mkarr T =T
using unityppro-def by simp

The unitors and associator were given syntactic definitions in terms of corresponding
terms, but these were only for the special case of identity arguments (7.e. the components

143

of the natural transformations). We need to show that mkarr gives the correct result for
all terms.

lemma mkarr-Lunit:
assumes Arr ¢
shows mkarr 1[{] = [(mkarr t)
proof —
have mkarr 1[t] = mkarr (¢ - 1[||Dom t||])
using assms Arr-implies-Ide-Dom Ide-in-Hom Diagonalize-preserves-Ide
Diag-Diagonalize Par-Arr-norm
by (intro mkarr-eql) simp-all

also have ... = mkarr t - mkarr 1[|| Dom t||]

using assms Arr-implies-Ide-Dom Par-Arr-norm Ide-in-Hom by simp
also have ... = mkarr t - 1[dom (mkarr t)]
proof —

have arr [[mkarr (Dom t)]
using assms Arr-implies-Ide-Dom ide-mkarr-Ide by simp
moreover have 1[||Dom ¢||] € [mkarr (Dom t)]
using assms Arr-implies-Ide-Dom Lunit-in-lunit rep-mkarr
rep-in-arr [of mkarr (Dom t)]
by simp
ultimately show ?thesis
using assms mkarr-memb(2) by simp
qed
also have ... = [(mkarr t)
using assms Arr-implies-Ide-Dom ide-mkarr-Ide lunit-agreement by simp
finally show ?thesis by blast
qed

lemma mkarr-Lunit”:
assumes Arrt
shows mkarr 171[t] = U/ (mkarr t)
proof —
have mkarr 171[t] = mkarr (171[||Cod t||] - t)
using assms Arr-implies-Ide-Cod Ide-in-Hom Diagonalize-preserves-Ide
Diag-Diagonalize Par-Arr-norm
by (intro mkarr-eql) simp-all

also have ... = mkarr 171[|| Cod t||] - mkarr t

using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm by simp
also have ... = mkarr (Inv 1[||Cod t||]]) - mkarr ¢
proof —

have mkarr 171[|| Cod t||] = mkarr (Inv 1[||Cod t||])
using assms Arr-implies-1de-Cod Ide-in-Hom Par-Arr-norm Inv-in-Hom
Ide-implies-Can norm-preserves-Can Diagonalize-Inv Diagonalize-preserves-Ide
by (intro mkarr-eql, simp-all)
thus ?thesis by argo
qed
also have ... =l (cod (mkarr t)) - mkarr t
proof —
have mkarr (Inv 1[||Cod t||]) - mkarr t = lunit’ (cod (mkarr t)) - mkarr t

144

using assms Arr-implies-1de-Cod rep-mkarr Par-Arr-norm inv-mkarr
norm-preserves-Can Ide-implies-Can lunit-agreement |'-ide-simp
Can-implies-Arr arr-mkarr cod-mkarr ide-cod lunit gy c-def
by (metis (no-types, lifting) Can.simps(5))
also have ... = ' (cod (mkarr t)) - mkarr ¢
using assms l'-ide-simp arr-mkarr ide-cod by presburger
finally show ¢thesis by blast
qed
also have ... = I (mkarr t)
using assms '.naturality2 [of mkarr t] by simp
finally show ?thesis by blast
qed

lemma mkarr-Runit:
assumes Arrt
shows mkarr r[f] = o (mkarr t)
proof —
have mkarr r[t] = mkarr (¢ - r[||Dom t||])
proof —
have — Diag (Dom t @ I) by (cases Dom t) simp-all
thus ?thesis
using assms Par-Arr-norm Arr-implies-Ide-Dom Ide-in-Hom Diag-Diagonalize
Diagonalize-preserves-Ide
by (intro mkarr-eql) simp-all

qed
also have ... = mkarr t - mkarr r[||Dom t||]
using assms Arr-implies-Ide-Dom Par-Arr-norm Ide-in-Hom by simp
also have ... = mkarr t - r[dom (mkarr t))
proof —

have arr r[mkarr (Dom t)]
using assms Arr-implies-Ide-Dom ide-mkarr-Ide by simp
moreover have r[||Dom t||] € r[mkarr (Dom t)]
using assms Arr-implies-1de-Dom Runit-in-runit rep-mkarr
rep-in-arr [of mkarr (Dom t)]
by simp
moreover have mkarr (Dom t) = mkarr || Dom |
using assms mkarr-rep rep-mkarr arr-mkarr Ide-implies-Arr Arr-implies-Ide-Dom
by metis
ultimately show ¢thesis
using assms mkarr-memb(2) by simp
qed
also have ... = ¢ (mkarr t)
using assms Arr-implies-1de-Dom ide-mkarr-1de runit-agreement by simp
finally show ?thesis by blast
qed

lemma mkarr-Runit”:

assumes Arr ¢
shows mkarr r=1[t] = o’ (mkarr t)

145

proof —
have mkarr r=1[t] = mkarr (r~[||Cod #||] - t)
proof —
have — Diag (Cod t ® T) by (cases Cod t) simp-all
thus ?thesis
using assms Par-Arr-norm Arr-implies-1de-Cod Ide-in-Hom
Diagonalize-preserves-Ide Diag-Diagonalize
by (intro mkarr-eql) simp-all

qed
also have ... = mkarr v=[||Cod t||] - mkarr t
using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm by simp
also have ... = mkarr (Inv r[||Cod t||]) - mkarr t
proof —

have mkarr (Runit’ (norm (Cod t))) = mkarr (Inv (Runit (norm (Cod t))))
using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm Inv-in-Hom
Ide-implies-Can norm-preserves-Can Diagonalize-Inv Diagonalize-preserves-Ide
by (intro mkarr-eql) simp-all
thus ?thesis by argo
qed
also have ... = ¢’ (cod (mkarr t)) - mkarr t
proof —
have mkarr (Inv r[||Cod t||]) - mkarr t = runit’ (cod (mkarr t)) - mkarr ¢
using assms Arr-implies-1de-Cod rep-mkarr inv-mkarr norm-preserves-Can
Ide-implies-Can runit-agreement Can-implies-Arr arr-mkarr cod-mkarr
tde-cod runitg s c-def
by (metis (no-types, lifting) Can.simps(7))
also have ... = ¢’ (cod (mkarr t)) - mkarr t
proof —
have runit’ (cod (mkarr t)) = o' (cod (mkarr t))
using assms p'-ide-simp arr-mkarr ide-cod by blast
thus “thesis by argo

qed

finally show ¢thesis by blast
qed
also have ... = o/ (mkarr t)

using assms o'.naturality2 [of mkarr t] by simp
finally show ?thesis by blast
qged

lemma mkarr-Assoc:
assumes Arr t and Arr v and Arr v
shows mkarr a[t, u, v] = a (mkarr t, mkarr u, mkarr v)
proof —
have mkarr a[t, u, v] = mkarr ((t ® u ® v) - a[||Dom t||, || Dom ul|, || Dom v||])
using assms Arr-implies-1de-Dom Arr-implies-Ide-Cod Ide-in-Hom
Diag-Diagonalize Diagonalize-preserves-Ide TensorDiag-preserves-Ide
TensorDiag-preserves-Diag TensorDiag-assoc Par-Arr-norm
by (intro mkarr-eql, simp-all)
also have ... = a (mkarr t, mkarr u, mkarr v)

146

using assms Arr-implies-1de-Dom rep-mkarr Ide-in-Hom assocp pro-def
Par-Arr-norm [of Dom t| Par-Arr-norm [of Dom u| Par-Arr-norm [of Dom v]
Q-simp
by simp
finally show ?thesis by blast
qged

lemma mkarr-Assoc”:

assumes Arr t and Arr v and Arr v

shows mkarr a=[t, u, v] = o' (mkarr t, mkarr u, mkarr v)

proof —

have mkarr a=[t, u, v] = mkarr (a=[||Cod t||, || Cod ul|, ||Cod v||]] - (t @ u ® v))
using assms Par-Arr-norm Arr-implies-1de-Cod Ide-in-Hom Diag-Diagonalize
TensorDiag-preserves-Diag CompDiag-Cod-Diag [of |t] |®] [u] |®] |v]]

by (intro mkarr-eql, simp-all)

also have ... = mkarr a=![||Cod t||, || Cod ul|, || Cod v||] - mkarr (t ® u ® v)
using assms Arr-implies-1de-Cod Ide-in-Hom Par-Arr-norm by simp

also have ... = mkarr (Inv a[||Cod t||, || Cod ul|, || Cod v||]) - mkarr (t ® u ® v)

proof —

have mkarr a=1[||Cod t||, || Cod ul|, || Cod v||] =
mkarr (Inv a[||Cod t||, || Cod ||, || Cod v||])
using assms Arr-implies-Ide-Cod Ide-in-Hom Par-Arr-norm Inv-in-Hom Ide-implies-Can
norm-preserves-Can Diagonalize-Inv Diagonalize-preserves-Ide
by (intro mkarr-eql, simp-all)
thus ?thesis by argo

qed

also have ... = inv (mkarr a[||Cod t||, || Cod ul|, || Cod v||]) - mkarr (t @ u ® v)
using assms Arr-implies-Ide-Cod Ide-implies-Can norm-preserves-Can by simp

also have ... = a’ (mkarr t, mkarr u, mkarr v)

proof —

have mkarr (a=![Inv ||Cod t||, Inv || Cod u||, Inv || Cod v||] - (Cod t ® Cod u ® Cod v))
= mkarr a=[Inv || Cod t||, Inv || Cod u||, Inv || Cod v||]
using assms Arr-implies-1de-Cod Inv-in-Hom norm-preserves-Can Diagonalize-Inv
Ide-implies-Can Diag-Diagonalize Ide-in-Hom Diagonalize-preserves-Ide
Par-Arr-norm TensorDiag-preserves-Diag
CompDiag-Cod-Diag [of | Cod t] |®] | Cod u] |®] | Cod v]]
by (intro mkarr-eql) simp-all
thus ?thesis
using assms Arr-implies-Ide-Cod rep-mkarr assocpprc-def a’.map-simp by simp
qed
finally show ?thesis by blast
qged

Next, we define the “inclusion of generators” functor from C to FC.

definition inclusion-of-generators
where inclusion-of-generators = \f. if C.arr f then mkarr (f) else null

lemma inclusion-is-functor:
shows functor C' comp inclusion-of-generators

147

unfolding inclusion-of-generators-def
apply unfold-locales

apply autol4]
by (elim C.seqE, simp, intro mkarr-eql, auto)

end

We now show that, given a functor V from C to a a monoidal category D, the
evaluation map that takes formal arrows of the monoidal language of C to arrows of D
induces a strict monoidal functor from FC to D.

locale evaluation-functor =
C: category C +
D: monoidal-category D Tp ap tp +
evaluation-map C D Tp ap vp V +
FC: free-monoidal-category C
for C :: 'c comp (infixr <) 55)
and D :: 'd comp (infixr <p> 55)
and Tp :: 'd x 'd = 'd
and ap :: 'd x 'd x 'd = 'd
and tp 2 'd
and V :: 'c = d
begin

notation eval («{-I)

definition map
where map f = if FC.arr f then {FC.rep f}} else D.null

It follows from the coherence theorem that a formal arrow and its normal form always
have the same evaluation.

lemma eval-norm:

assumes Arrt

shows {[|#l[} = {t}
using assms F C.Par-Arr-norm F C.Diagonalize-norm coherence canonical-factorization
by simp

interpretation functor FC.comp D map
proof
fix f
show = FC.arr f = map f = D.null using map-def by simp
assume f: FC.arr f
show D.arr (map f) using f map-def F C.arr-char by simp
show D.dom (map f) = map (FC.dom f)
using f map-def eval-norm F C.rep-dom Arr-implies-Ide-Dom by auto
show D.cod (map f) = map (FC.cod f)
using f map-def eval-norm F C.rep-cod Arr-implies-Ide-Cod by auto
next

fix fg
assume fg: FC.seq g f

148

show map (FC.comp g f) = D (map g) (map f)
using fg map-def F C.rep-comp F C.rep-preserves-seq eval-norm by auto
qed

lemma is-functor:
shows functor FC.comp D map ..

interpretation FF': product-functor FC.comp FC.comp D D map map ..
interpretation FoT: composite-functor FC.CC.comp FC.comp D FC.Tgpc map ..
interpretation ToFF: composite-functor FC.CC.comp D.CC.comp D FF.map Tp ..

interpretation strict-monoidal-functor
FC.comp FC.Tpye FC.ao FCuu D Tp ap tp map
proof
show map FC.. = 1p
using F C.c-def F C.lunit-agreement map-def F C.rep-lunit F C.Arr-rep [of T]
eval-norm F C.lunit-agreement D.unitor-coincidence D.comp-cod-arr D.unit-in-hom
by auto
show Afg. [FC.arr f; FC.arr g | =
map (FC.tensor f g) = D.tensor (map f) (map g)
using map-def F C.rep-tensor F C.Arr-rep eval-norm by simp
show Aa b c. [FCl.ide a; FC.ide b; FCl.ide ¢ | =
map (FC.assoc a b ¢) = D.assoc (map a) (map b) (map c)
using map-def FC.assocp po-def F C.rep-mkarr eval-norm by auto
qed

lemma is-strict-monoidal-functor:
shows strict-monoidal-functor FC.comp FC.Tpye FC.ao FCu D Tp ap tp map

end

sublocale evaluation-functor C strict-monoidal-functor
fC.comp FC. TFMC .FC.O[F]\/[C .FC.LFMC D TD ap Lp map
using is-strict-monoidal-functor by auto

The final step in proving freeness is to show that the evaluation functor is the unique
strict monoidal extension of the functor V to F C. This is done by induction, exploiting
the syntactic construction of FC.

To ease the statement and proof of the result, we define a locale that expresses that
F is a strict monoidal extension to monoidal category C, of a functor V from Cj to a
monoidal category D, along a functor I from Cjp to C.

locale strict-monoidal-extension =
Co: category Coy +
C: monoidal-category C Te ac o +
D: monoidal-category D Tp ap tp +
I: functor Co C' I +
V: functor Cy DV +

149

strict-monoidal-functor C Te ac tc D Tp ap tp F
for Cy :: 'co comp
and C :: 'c comp (infixr <> 55)
and T¢ :: 'ex 'c = ¢
and ac s ‘cx ‘cx 'c = 'c
and (¢ :: 'c
and D :: 'd comp (infixr <p> 55)
and Tp :: 'd x 'd = 'd
and ap : 'd * 'd x 'd = 'd
and tp 1 'd
and I :: 'co = 'c
and V :: 'cg = 'd
and F :: 'c = 'd +
assumes is-extension: Vf. Co.arr f — F (I f) =V f

sublocale evaluation-functor C
strict-monoidal-extension C FC.comp FC.Tpye FC.ao FC.u D Tp ap tp
F Cl.inclusion-of-generators V map
proof —
interpret inclusion: functor C' F C.comp F C.inclusion-of-generators
using F C.inclusion-is-functor by auto
show strict-monoidal-extension C FC.comp FC.Tpye FC.a FCau D Tp ap itp
F C.inclusion-of-generators V map
apply unfold-locales
using map-def F C.rep-mkarr eval-norm F C.inclusion-of-generators-def by simp
qed

A special case of interest is a strict monoidal extension to F C, of a functor V from a
category C to a monoidal category D, along the inclusion of generators from C to FC.
The evaluation functor induced by V is such an extension.

locale strict-monoidal-extension-to-free-monoidal-category =
C': category C +
monoidal-language C +
FC: free-monoidal-category C' +
strict-monoidal-extension C FC.comp FC.Tpyc FC.a FCau D Tp ap tp
F C.inclusion-of-generators V F
for C :: 'c comp (infixr <) 59)
and D :: 'd comp (infixr <p> 55)
and Tp :: 'd x 'd = 'd
and ap : 'd x 'd x 'd = 'd
and tp 1 'd
and V :: 'c = d
and F :: 'c free-monoidal-category.arr = 'd
begin

lemma strictly-preserves-everything:

shows C.arr f = F (FC.mkarr (f)) = V f

and F (FC.mkarr I) = Ip

and [Arr ¢; Arruw | = F (FC.mkarr (t ® u)) = F (FC.mkarr t) @p F (FC.mkarr u)

150

and [Arr ¢; Arr u; Dom t = Cod u | =
F (FC.mkarr (t- w)) = F (FC.mkarr t) -p F (FC.mkarr u)
and Arr t = F (FC.mkarr 1[{]) = D.U (F (FC.mkarr t))
and Arr t = F (FC.mkarr 171[t]) = D.U'.map (F (FC.mkarr t))
and Arrt = F (FC.mkarrr[t]) = D.o (F (FC.mkarr t))
and Arr t = F (FC.mkarr v=1[t]) = D.o".map (F (FC.mkarr t))
and [Arr t; Arr u; Arr o | =
F (FC.mkarr a[t, u, v]) = ap (F (FC.mkarr t), F (FC.mkarr u), F (FC.mkarr v))
and [Arr t; Arr u; Arr o | =
F (FC.mkarr a=[t, u, v])
= D.a’ (F (FC.mkarr t), F (FC.mkarr u), F (FC.mkarr v))
proof —
show C.arr f = F (FC.mkarr (f)) = V f
using is-extension F C.inclusion-of-generators-def by simp
show F (FC.mkarr T) =Ip
using F C.mkarr-Unity F C.i-def strictly-preserves-unity F C.L-agreement by auto
show tensor-case:
At w.] Arr t; Arru]| =
F (FC.mkarr (t ® u)) = F (FC.mkarr t) ®p F (FC.mkarr u)
proof —
fix tu
assume t: Arr ¢t and u: Arr u
have F' (FC.mkarr (t ® u)) = F (FC.tensor (FC.mkarr t) (FC.mkarr u))
using t u F C.tensor-mkarr F C.arr-mkarr by simp
also have ... = F (FC.mkarr t) @p F (FC.mkarr)
using t u F C.arr-mkarr strictly-preserves-tensor by blast
finally show F (FC.mkarr (t ® u)) = F (FC.mkarr t) @p F (FC.mkarr u)
by fast
qed
show [Arr ¢; Arr u; Dom t = Cod u | =
F (FC.mkarr (t- u)) = F (FC.mkarr t) -p F (FC.mkarr u)
proof —
fix tu
assume t: Arr ¢t and u: Arr v and tu: Dom t = Cod u
show F' (FC.mkarr (t - u)) = F (FC.mkarr t) -p F (FC.mkarr u)
proof —
have F' (FC.mkarr (t- u)) = F (FC.mkarr t - FC.mkarr u)
using t u tu F C.comp-mkarr by simp
also have ... = F (FC.mkarr t) -p F (FC.mkarr)
using t u tu F C.arr-mkarr by fastforce
finally show ?thesis by blast
qed
qed
show Arrt = F (FC.mkarr 1[{]) = D.I (F (FC.mkarr t))
using F C.mkarr-Lunit Arr-implies-Ide-Dom F C.ide-mkarr-Ide strictly-preserves-lunit
by simp
show Arr t = F (FC.mkarr r[f]) = D.o (F (FC.mkarr t))
using F C.mkarr-Runit Arr-implies-Ide-Dom F C.ide-mkarr-Ide strictly-preserves-runit
by simp

151

show [Arr t; Arr u; Arrv] =
F (FC.mkarr a[t, u, v])
= ap (F (FC.mkarr t), F (FC.mkarr u), F (FC.mkarr v))
using F C.mkarr-Assoc strictly-preserves-assoc F C.ide-mkarr-Ide tensor-case
by simp
show Arr t = F (FC.mkarr 17[{]) = D.l'.map (F (FC.mkarr t))
proof —
assume t: Arrt
have F (FC.mkarr 171[{]) = F (FC.lunit’ (F C.mkarr (Cod t))) -p F (FC.mkarr t)
using t F C.mkarr-Lunit’ Arr-implies-Ide-Cod F C.ide-mkarr-Ide F C.l".map-simp
F C.comp-cod-arr
by simp
also have ... = D.lunit’ (D.cod (F (FC.mkarr t))) -p F (FC.mkarr t)
using t Arr-implies-Ide-Cod F C.ide-mkarr-Ide strictly-preserves-lunit
preserves-inuv
by simp
also have ... = D.I".map (F (FC.mkarr t))
using t D.l".map-simp D.comp-cod-arr by simp
finally show ?thesis by blast
qed
show Arr t = F (FC.mkarr v=1[t]) = D.o"map (F (FC.mkarr t))
proof —
assume t: Arrt
have F (FC.mkarr v=1[{]) = F (FC.runit’ (FC.mkarr (Cod t))) -p F (FC.mkarr t)
using ¢ F C.mkarr-Runit’ Arr-implies-Ide-Cod F C.ide-mkarr-Ide F C.o'.map-simp
F C.comp-cod-arr
by simp
also have ... = D.runit’ (D.cod (F' (FC.mkarr t))) -p F (FC.mkarr t)
using t Arr-implies-Ide-Cod F C.ide-mkarr-Ide strictly-preserves-runit
preserves-inv
by simp
also have ... = D.go".map (F (FC.mkarr t))
using t D.o'.map-simp D.comp-cod-arr by simp
finally show ¢thesis by blast
qed
show [Arr t; Arr u; Arrv] =
F (FC.mkarr a='[t, u, v])
= D.a’map (F (FC.mkarr t), F (FC.mkarr u), F (FC.mkarr v))
proof —
assume ¢: Arr ¢t and uw: Arr uw and v: Arr v
have F (FC.mkarr a='[t, u, v]) =
F (FC.assoc’ (FC.mkarr (Cod t)) (FC.mkarr (Cod w)) (FC.mkarr (Cod v))) -p
(F (FC.mkarr t) @p F (FC.mkarr u) @p F (FC.mkarr v))
using t u v FC.mkarr-Assoc’ Arr-implies-Ide-Cod F C.ide-mkarr-Ide F C.a'.map-simp
tensor-case F C.iso-assoc
by simp
also have ... = D.assoc’ (D.cod (F (FC.mkarr t))) (D.cod (F (FC.mkarr u)))
(D.cod (F (FC.mkarr v))) -p
(F (FC.mkarr t) ®p F (FC.mkarr v) ®p F (FC.mkarr v))

152

using t u v F C.ide-mkarr-Ide Arr-implies-Ide-Cod preserves-inv F C.iso-assoc
strictly-preserves-assoc
[of FC.mkarr (Cod t) FC.mkarr (Cod u) FC.mkarr (Cod v)]
by simp
also have ... = D.a’.map (F (FC.mkarr t), F (FC.mkarr u), F (FC.mkarr v))
using t u v D.a’.map-simp by simp
finally show ¢thesis by blast
qed
qed

end

sublocale evaluation-functor C strict-monoidal-extension-to-free-monoidal-category
CDTpaptip Vmap

context free-monoidal-category
begin

The evaluation functor induced by V is the unique strict monoidal extension of V to

FC.

theorem is-free:
assumes strict-monoidal-extension-to-free-monoidal-category C D Tp ap vp V F
shows F' = evaluation-functor.map C D Tp ap tp V
proof —
interpret F: strict-monoidal-extension-to-free-monoidal-category C D Tp ap tp V F
using assms by auto
interpret E: evaluation-functor C D Tp ap tp V ..
have Ide-case: Na. Ide a = F (mkarr a) = E.map (mkarr a)
proof —
fix a
show Ide a = F (mkarr a) = E.map (mkarr a)
using F.strictly-preserves-everything F.strictly-preserves-everything Ide-implies-Arr
by (induct a) auto
qed
show ?thesis
proof
fix f
have —arr f = F f = E.map f
using F.extensionality F.extensionality by simp
moreover have arr f = F f = E.map f
proof —
assume f: arr f
have Arr (rep f) A f = mkarr (rep f) using f mkarr-rep by simp
moreover have At. Arrt = F (mkarr t) = E.map (mkarr t)
proof —
fix t
show Arr t = F (mkarr t) = E.map (mkarr t)
using Ide-case E.strictly-preserves-everything F.strictly-preserves-everything

153

Arr-implies-1de-Dom Arr-implies-Ide-Cod
by (induct t) auto

qed
ultimately show F f = E.map f by metis
qed
ultimately show F f = E.map f by blast
qed
qed
end

4.3 Strict Subcategory

context free-monoidal-category
begin

In this section we show that FC is monoidally equivalent to its full subcategory
FsC whose objects are the equivalence classes of diagonal identity terms, and that this
subcategory is the free strict monoidal category generated by C.

interpretation FgC: full-subcategory comp <Af. ide f N Diag (DOM f)»
by (unfold-locales) auto

The mapping defined on equivalence classes by diagonalizing their representatives is
a functor from the free monoidal category to the subcategory FgC.

definition D
where D = \f. if arr f then mkarr |rep f| else FsC.null

The arrows of FgC are those equivalence classes whose canonical representative term
has diagonal formal domain and codomain.

lemma strict-arr-char:
shows FgC.arr f «— arr f A Diag (DOM f) A Diag (COD f)
proof
show arr f A Diag (DOM f) A Diag (COD f) = FgCl.arr f
using FgsC.arr-charsyc DOM-dom DOM-cod by simp
show FgC.arr f = arr f A Diag (DOM f) A Diag (COD f)
using FsC.arr-charsyc Arr-rep Arr-implies-Ide-Cod Ide-implies-Arr DOM-dom DOM-cod
by force
qed

Alternatively, the arrows of FgC are those equivalence classes that are preserved by
diagonalization of representatives.

lemma strict-arr-char’:
shows FgC.arr f «— arr f ANDf=f
proof

fix f

assume f: FgC.arr f

show arr f AD f=f

proof

154

show arr f using f FgC.arr-charsyc by blast

show D f = f
using f strict-arr-char mkarr-Diagonalize-rep D-def by simp
qed
next

assume f: arr f AD f=f
show FgC.arr f
proof —
have arr f using f by simp
moreover have Diag (DOM f)

proof —
have DOM f = DOM (mkarr |rep f]) using f D-def by auto
also have ... = Dom ||| rep f|||
using f Arr-rep Diagonalize-in-Hom rep-mkarr by simp
also have ... = Dom |rep f|

using f Arr-rep Diagonalize-in-Hom Par-Arr-norm [of |rep f|] by force
finally have DOM f = Dom |rep f| by blast
thus ?thesis using f Arr-rep Diag-Diagonalize Dom-preserves-Diag by metis
qed
moreover have Diag (COD f)

proof —
have COD f = COD (mkarr |rep f|) using f D-def by auto
also have ... = Cod ||| rep f]||
using f Arr-rep Diagonalize-in-Hom rep-mkarr by simp
also have ... = Cod |rep f|

using f Arr-rep Diagonalize-in-Hom Par-Arr-norm [of |rep f|] by force
finally have COD f = Cod |rep f| by blast
thus ?thesis using f Arr-rep Diag-Diagonalize Cod-preserves-Diag by metis
qed
ultimately show ?thesis using strict-arr-char by auto
qed
qged

interpretation D: functor comp FgC.comp D
proof —
have 1: \f. arr f = FsC.arr (D f)
unfolding strict-arr-char D-def
using arr-mkarr Diagonalize-in-Hom Arr-rep rep-mkarr Par-Arr-norm
Arr-implies-1de-Dom Arr-implies-Ide-Cod Diag-Diagonalize
by force
show functor comp FgC.comp D
proof
show A\f. - arr f = D f = FsC.null using D-def by simp
show Af. arr f = FsC.arr (D f) by fact
show Af. arr f = FsC.dom (D f) = D (dom f)
using D-def Diagonalize-in-Hom FgC.dom-charsyc FsC.arr-charsyc
rep-mkarr rep-dom Arr-implies-Ide-Dom Arr-implies-Ide-Cod
Diagonalize-preserves-Ide ide-mkarr-Ide Diag-Diagonalize Dom-norm
by simp

155

show 2: Af. arr f = FsC.cod (D f) = D (cod f)
using D-def Diagonalize-in-Hom FgC.cod-charsyc FsC.arr-charsyc
rep-mkarr rep-cod Arr-implies-Ide-Dom Arr-implies-Ide-Cod
Diagonalize-preserves-Ide ide-mkarr-Ide Diag-Diagonalize Dom-norm
by simp
fix fg
assume fg: seq g f
hence fg”: arr f A arr g A dom g = cod f by blast
show D (g - f) = FsC.comp (D g) (D f)
proof —
have seq: FgC.seq (mkarr |rep g|) (mkarr | rep f])
proof —
have 3: FgC.arr (mkarr |rep g|) N FsC.arr (mkarr |rep f|)
using fg’ 1 arr-char D-def by force
moreover have FgC.dom (mkarr |rep g|) = FsC.cod (mkarr |rep f|)
using fg’' 2 3 FsC.dom-charsyc rep-in-Hom mkarr-in-hom D-def
Dom-Diagonalize-rep Diag-implies-Arr Diag-Diagonalize(1) FgC.arr-chargpc

by force
ultimately show ?thesis using FgC.seql by auto
qed
have mkarr [rep (g -)] = FsC.comp (mkarr |rep g]) (mkarr [rep f])
proof —

have Seq: Seq |rep g| |rep f]
using fg rep-preserves-seq Diagonalize-in-Hom by force

hence 4: |rep g| - |rep f| € Hom |[DOM f| | COD g|
using fg’ Seq Diagonalize-in-Hom by auto

have FgC.comp (mkarr |rep g|) (mkarr |rep f|) = mkarr |rep g| - mkarr | rep f]
using seq FsC.comp-char FgC.seq-chargyc by meson

also have ... = mkarr (|rep g] - |rep f])
using Seq comp-mkarr by fastforce
also have ... = mkarr |rep (g -)]

proof (intro mkarr-eql)
show Par (|rep g] - Lrep) Lrep (g - £)]
using fg 4 rep-in-Hom rep-preserves-seq rep-in-Hom Diagonalize-in-Hom
Par-Arr-norm
apply (elim seqE, auto)
by (simp-all add: rep-comp)
show |[rep g] - Lrep f]] = LLrep (9 - f)]]
using fg rep-preserves-seq norm-in-Hom Diag-Diagonalize Diagonalize-Diag
apply auto
by (simp add: rep-comp)
qed
finally show ?thesis by blast
qed
thus ?thesis using fg D-def by auto
qed
qed
qged

156

lemma diagonalize-is-functor:
shows functor comp FgC.comp D ..

lemma diagonalize-strict-arr:
assumes FgC.arr f
shows D f = f
using assms arr-char D-def strict-arr-char Arr-rep Arr-implies-Ide-Dom Ide-implies-Arr
mkarr-Diagonalize-rep [of f]
by auto

lemma diagonalize-is-idempotent:
shows Do D =D
unfolding D-def
using D.extensionality F g C.null-char Arr-rep Diagonalize-in-Hom mkarr-Diagonalize-rep
strict-arr-char rep-mkarr
by fastforce

lemma diagonalize-tensor:
assumes arr f and arr g
shows D (f® g) =D (D f ® D g)
unfolding D-def
using assms strict-arr-char rep-in-Hom Diagonalize-in-Hom tensor-mkarr rep-tensor
Diagonalize-in-Hom rep-mkarr Diagonalize-norm Diagonalize- Tensor
by force

lemma ide-diagonalize-can:

assumes can f

shows ide (D f)
using assms D-def Can-rep-can Ide-Diagonalize-Can ide-mkarr-Ide can-implies-arr
by simp

We next show that the diagonalization functor and the inclusion of the full sub-

category FgC underlie an equivalence of categories. The arrows mkarr (DOM al),
determined by reductions of canonical representatives, are the components of a natural

isomorphism.

interpretation S: full-inclusion-functor comp <\f. ide f N Diag (DOM f)s ..
interpretation DoS: composite-functor FgC.comp comp FsC.comp FgC.map D

interpretation SoD: composite-functor comp FgC.comp comp D FgC.map ..

interpretation v: transformation-by-components
comp comp map SoD.map <Aa. mkarr (DOM al)»

proof

fix a

assume a: ide a

show «mkarr (DOM al) : map a — SoD.map a»

proof —

have «mkarr (DOM al) : a — mkarr | DOM a|»
using a Arr-implies-Ide-Dom red-in-Hom dom-char [of a] by auto

157

moreover have map a = a
using a map-simp by simp
moreover have SoD.map a = mkarr | DOM a]
using a D.preserves-ide FgC.ideD FgC.map-simp D-def Ide-Diagonalize-rep-ide
Ide-in-Hom Diagonalize-in-Hom
by force
ultimately show ¢thesis by simp
qed
next
fix f
assume f: arr f
show mkarr (DOM (cod f)!) - map f = SoD.map f - mkarr (DOM (dom f){)
proof —
have SoD.map f - mkarr (DOM (dom f)}) = mkarr |rep f| - mkarr (DOM f|.)
using f DOM-dom D.preserves-arr FgC.map-simp D-def by simp
also have ... = mkarr (|rep f| - DOM fl)
using f Diagonalize-in-Hom red-in-Hom comp-mkarr Arr-implies-Ide-Dom
by simp
also have ... = mkarr (COD fl - rep f)
proof (intro mkarr-eql)
show Par (|rep f| - DOM f|) (COD f| - rep f)
using f Diagonalize-in-Hom red-in-Hom Arr-implies-Ide-Dom Arr-implies-1de-Cod
by simp
show ||rep f| - DOM fl| = [COD f| - rep f|
proof —
have [|rep f| - DOM fl] = |rep f] |-] |[DOM f]
using f by simp
also have ... = |rep f]
using [Arr-implies-Ide-Dom Can-red Ide-Diagonalize-Can [of DOM f|]
Diag-Diagonalize CompDiag-Diag-Ide
by force
also have ... = |[COD fl] [-] |rep f]
using [Arr-implies-Ide-Cod Can-red Ide-Diagonalize-Can [of COD fl]
Diag-Diagonalize CompDiag-Diag-Ide

by force
also have ... = | COD f| - rep f]
by simp
finally show ?thesis by blast
qed

qed
also have ... = mkarr (COD fl) - mkarr (rep f)
using f comp-mkarr rep-in-Hom red-in-Hom Arr-implies-Ide-Cod by blast
also have ... = mkarr (DOM (cod f){) - map f
using f DOM-cod by simp
finally show ?thesis by blast
qed
qed

interpretation v: natural-isomorphism comp comp map SoD.map v.map

158

apply unfold-locales
using v.map-simp-ide rep-in-Hom Arr-implies-Ide-Dom Can-red can-mkarr-Can iso-can
by simp

The restriction of the diagonalization functor to the subcategory FgC' is the identity.

lemma DoS-eq-FsC:
shows DoS.map = FgC.map
proof
fix f
have — FgC.arr f = DoS.map f = FsC.map f
using DoS.extensionality FsC.map-def by simp
moreover have FgC.arr f = DoS.map f = FsC.map f
using FgC.map-simp strict-arr-char Diagonalize-Diag D-def mkarr-Diagonalize-rep
by simp
ultimately show DoS.map f = FsC.map f by blast
qed

interpretation u: transformation-by-components
FsC.comp FsC.comp DoS.map FgC.map <Aa. a>
using FsC.ideD FgC.map-simp DoS-eq-F s C FsC.map-simp FgC.comp-cod-arr FgC.comp-arr-dom
apply unfold-locales
by (intro FgC.in-homlI) auto

interpretation u: natural-isomorphism FgC.comp FsC.comp DoS.map FsC.map p.map
apply unfold-locales using p.map-simp-ide F g C.ide-is-iso by simp

interpretation equivalence-of-categories FsC.comp comp D FsC.map v.map p.map ..

We defined the natural isomorphisms p and v by giving their components (i.e. their
values at objects). However, it is helpful in exporting these facts to have simple charac-
terizations of their values for all arrows.

definition u
where p = \f. if FsC.arr f then f else FsC.null

definition v
where v = Af. if arr f then mkarr (COD fl) - f else null

lemma p-char:
shows p.map = p
proof (intro natural-transformation-eql)
show natural-transformation FgC.comp FsC.comp DoS.map FgC.map p.map ..
have natural-transformation FgC.comp FgC.comp FgC.map FsC.map FsC.map
using DoS.as-nat-trans.natural-transformation-axioms DoS-eq-F s C by simp
moreover have FgC.map = p unfolding p-def using F g C.map-def by blast
ultimately show natural-transformation FgC.comp FgC.comp DoS.map FsC.map
using F g C.as-nat-trans.natural-transformation-axioms DoS-eq-F s C by simp
show Aa. FgC.ide a = p.map a = u a
using p.map-simp-ide FgC.ideD p-def by simp
qed

159

lemma v-char:
shows v.map = v
unfolding v.map-def v-def using map-simp DOM-cod by fastforce

lemma is-equivalent-to-strict-subcategory:
shows equivalence-of-categories FgC.comp comp D FsC.map v
proof —
have equivalence-of-categories FsC.comp comp D FgC.map v.map p.map ..
thus equivalence-of-categories FgC.comp comp D FgC.map v
using v-char p-char by simp
qed

The inclusion of generators functor from C to F C corestricts to a functor from C' to
FsC.

interpretation I: functor C comp inclusion-of-generators
using inclusion-is-functor by auto
interpretation Dol: composite-functor C comp FgC.comp inclusion-of-generators D ..

lemma Dol-eq-I:
shows Dol.map = inclusion-of-generators
proof
fix f
have — C.arr f = Dol.map f = inclusion-of-generators f
using Dol.extensionality I.extensionality FsC.null-char by blast
moreover have C.arr f = Dol.map f = inclusion-of-generators f
proof —
assume f: C.arr f
have Dol.map f = D (inclusion-of-generators f) using f by simp
also have ... = inclusion-of-generators f
proof —
have FgC.arr (inclusion-of-generators f)
using f arr-mkarr rep-mkarr Par-Arr-norm [of {f)] strict-arr-char
inclusion-of-generators-def
by simp
thus ?thesis using f strict-arr-char’ by blast
qed
finally show Dol.map f = inclusion-of-generators f by blast
qed
ultimately show Dol.map f = inclusion-of-generators f by blast
qed

end

Next, we show that the subcategory FgC inherits monoidal structure from the am-
bient category F C, and that this monoidal structure is strict.

locale free-strict-monoidal-category =
monoidal-language C +
FC: free-monoidal-category C' +

160

full-subcategory F C.comp \f. FC.ide f N Diag (FC.DOM f)
for C :: 'c comp
begin

interpretation D: functor FC.comp comp FC.D
using F C.diagonalize-is-functor by auto

notation comp (infixr <g> 55)

definition tensorg (infixr «®g> 53)
where [®g g = FC.D (FC.tensor f g)

definition assocg (vag[-, -,)
where assocs a bc=a s b ®g ¢

lemma tensor-char:

assumes arr f and arr g

shows f ®g g = FC.mkarr (|[FC.rep f|] |®] [FC.rep g])
unfolding F C.D-def tensorg-def
using assms arr-chargyc F C.rep-tensor by simp

lemma tensor-in-hom [simpl:
assumes «f : a — b» and «g : ¢ — d»
shows «f ®s g:a ®s ¢ = b Qg d»
unfolding tensorg-def
using assms D.preserves-hom arr-chargyc in-hom-charsyc
by (metis (no-types, lifting) FC.T-simp F C.tensor-in-hom in-homE)

lemma arr-tensor [simp:
assumes arr [and arr g
shows arr (f ®s g)
using assms arr-iff-in-hom [of f] arr-iff-in-hom [of g] tensor-in-hom by blast

lemma dom-tensor [simpl:
assumes arr [and arr g
shows dom (f ®s g) = dom f ®g dom g
using assms arr-iff-in-hom [of f] arr-iff-in-hom [of g] tensor-in-hom by blast

lemma cod-tensor [simp):
assumes arr [and arr g
shows cod (f ®g g) = cod f ®g cod g
using assms arr-iff-in-hom [of f] arr-iff-in-hom [of g] tensor-in-hom by blast

lemma tensor-preserves-ide:

assumes ide a and ide b

shows ide (a ®g b)
using assms tensorg-def D.preserves-ide F C.tensor-preserves-ide ide-charsyc
by fastforce

161

lemma tensor-tensor:
assumes arr f and arr g and arr h
shows (f ®s ¢) ®s h = FC.mkarr (|[FC.rep f] |®] | FC.rep g] |®] |[FC.rep h])
and [Qs g ®s h = FC.mkarr (|[FC.rep f| |®] |[FC.rep g| |®] |[FC.rep h])
proof —
show (f ®s g) ®s h = FC.mkarr (|[FC.rep f] |®] | FC.rep g] |®] |FC.rep h])
proof —
have (f ®g g) ®s h = FC.mkarr (|[FC.rep (f ®s g)] |®] |[FC.rep h))
using assms Diag-Diagonalize TensorDiag-preserves-Diag Diag-implies-Arr
FC.COD-mkarr FC.DOM-mkarr F C.strict-arr-char tensor-char
by simp
also have
.. = FC.mkarr (|FC.rep (FC.mkarr (|[FC.rep f] |®] [FC.rep ¢]))] |®]
|FC.rep h)
using assms arr-chargyc tensor-char by simp
also have ... = FC.mkarr ([|[FC.rep f| |®] |[FC.rep g]] |®] | FC.rep h])
using assms F C.rep-mkarr TensorDiag-in-Hom Diag-Diagonalize
TensorDiag-preserves-Diag arr-chargyc
by force
also have ... = FC.mkarr (|[FC.rep f| |®] |[FC.rep g| |®] [FC.rep h|)
using assms Diag-Diagonalize TensorDiag-preserves-Diag TensorDiag-assoc arr-chargyc
by force
finally show ¢thesis by blast
qed
show f ®s g ®s h = FC.mkarr (|[FC.rep f] |®] |FC.rep g] |®] |[FC.rep h))
proof —
have ... = FC.mkarr (|FC.rep f] |®] [|FC.rep g| |®] | FC.rep h]])
using assms Diag-Diagonalize TensorDiag-preserves-Diag arr-chargsyc by force
also have ... = FC.mkarr (|FC.rep f] |®]
(|FC.rep (FC.mkarr (|[FC.rep g| |®] [FC.rep h)))]))
using assms F C.rep-mkarr TensorDiag-in-Hom Diag-Diagonalize arr-chargyc by force
also have ... = FC.mkarr (|[FC.rep f| |®] |[FC.rep (9 ®s h)])
using assms tensor-char by simp
also have ... = f ®g g Rs h
using assms Diag-Diagonalize TensorDiag-preserves-Diag Diag-implies-Arr
FC.COD-mkarr FC.DOM-mkarr F C.strict-arr-char tensor-char
by simp
finally show ?thesis by blast
qed
qed

lemma tensor-assoc:

assumes arr f and arr g and arr h

shows (f ®s g) ®s h = f ®s g ®s h
using assms tensor-tensor by presburger

lemma arr-unity:

shows arr T
using F C.rep-unity F C.Par-Arr-norm F C.Z-agreement F C.strict-arr-char by force

162

lemma tensor-unity-arr:

assumes arr f

shows T g f = f
using assms arr-unity tensor-char F C.strict-arr-char F C.mkarr-Diagonalize-rep
by simp

lemma tensor-arr-unity:

assumes a7 f

shows f ®s Z = f
using assms arr-unity tensor-char F C.strict-arr-char F C.mkarr-Diagonalize-rep
by simp

lemma assoc-char:

assumes ide o and ide b and ide c

shows agla, b, ¢] = FC.mkarr (|[FC.rep a] |®]| |[FC.rep b] |®]| |[FC.rep c|)
using assms tensor-tensor(2) assocg-def ideD(1) by simp

lemma assoc-in-hom:

assumes ide a and ide b and ide ¢

shows «ag[a, b, ¢] : (a ®s b) ®s ¢ = a ®s b Qg c»
using assms tensor-preserves-ide ideD tensor-assoc assocg-def
by (metis (no-types, lifting) ide-in-hom)

The category FgC' is a monoidal category.

interpretation EMC': elementary-monoidal-category comp tensors I <Aa. a> <\a. a> assocs
proof

show ide T

using ide-chargyc arr-chargyc F C.rep-mkarr F C.Dom-norm F C.Cod-norm F C.Z-agreement
by auto

show Aa. ide a = iso a
using ide-chargyc arr-chargyc iso-chargyc by auto

show Afabgcd. [in-homabd f;in-hom ¢ d g] = in-hom (a ®s ¢) (b ®s d) (f ®s g)
using tensor-in-hom by blast

show Aa b. [ide a; ide b | = ide (a ®g b)
using tensor-preserves-ide by blast

show Aa b c. [ide a; ide b; ide c] = iso agla, b, |
using tensor-preserves-ide ide-is-iso assocs-def by presburger

show Aa b c. [ide a; ide b; ide ¢] = «agla, b,] : (¢ ®s b) ®s ¢ = a ®s b Qg ¢»
using assoc-in-hom by blast

show Aa b. [ide a; ide b] = (a ®g b) -5 agla, Z, b = a ®g b
using ide-def tensor-unity-arr assocg-def ideD(1) tensor-preserves-ide comp-ide-self
by simp

show Af. arr f = cod f s (Z ®s f) =f s dom |
using tensor-unity-arr comp-arr-dom comp-cod-arr by presburger

show Af. arrf = cod f s (f ®s Z) = f -5 dom f
using tensor-arr-unity comp-arr-dom comp-cod-arr by presburger

next

fix a

163

assume a: ide a
show «a : Z ®g a — a»
using a tensor-unity-arr ide-in-hom [of a] by fast
show «a : a ®s Z — a»
using a tensor-arr-unity ide-in-hom [of a] by fast
next
fix fgf'g
assume fg: seq g f
assume fg”: seq g’ f'
show (g ®s 9) s (f®s f)=9-sf®s g s [
proof —
have A: FC.seq g f and B: FC.seq g’ f'
using fg fg' seq-charsyc by auto
have (g ®s ¢') s (f ®s f) =FC.D ((9® g") - (f ® f)
using A B tensorg-def by fastforce
also have ... = FC.D (g-f® g - [
using A B FC.interchange F C.T-simp F C.seqFE by metis
also have ... = FC.D (g - f) ®s FC.D (¢’ - ")
using A B tensorg-def FC.T-simp FC.seqE F C.diagonalize-tensor arr-chargyc
by (metis (no-types, lifting) D.preserves-reflects-arr)
also have ... = FC.D g -s FC.D f s FC.D g’ -3 FC.D '
using A B by simp
alsohave ... = ¢ .5 f ®s ¢’ 5 f'
using fg fg' F C.diagonalize-strict-arr by (elim seqE, simp)
finally show ?¢thesis by blast
qed
next
fix f0 f1 f2
assume f0: arr f0 and f1: arr f1 and f2: arr f2
show ag[cod f0, cod f1, cod f2] -5 ((f0 Qs f1) ®s f2)
= (f0 ®s fl ®s f2) -5 ag[dom f0, dom f1, dom f2]
using f0 f1 f2 assocg-def tensor-assoc dom-tensor cod-tensor arr-tensor
comp-cod-arr [of f0 ®s f1 ®g f2 cod f0 ®g cod f1 ®g cod f2]
comp-arr-dom [of f0 ®g f1 ®g 2 dom f0 ®g dom fl1 &g dom f2]
by presburger
next
fixabcd
assume a: ide ¢ and b: ide b and c: ide c and d: ide d
show (a ®g aglb, ¢, d]) ‘s agla, b ®s ¢, d] -5 (ag[a, b,] ®g d)
= agla, b, ¢ ®s d] -5 asla ®s b, ¢, d]
unfolding assocg-def
using a b ¢ d tensor-assoc tensor-preserves-ide ideD tensor-in-hom
comp-arr-dom [of a ®s b ®s ¢ Rg d]
by simp
qed

lemma is-elementary-monoidal-category:
shows elementary-monoidal-category comp tensors I (Aa. a) (Aa. a) assocg ..

164

abbreviation Trsy ¢ where Trgyc = EMC.T
abbreviation apgy ¢ where apgsy o = EMC .«
abbreviation trg)c Where tpgpyrc = EMC.e

lemma is-monoidal-category:
shows monoidal-category comp Trsyc arpsypce LPSyMC
using FMC'.induces-monoidal-category by auto

end

sublocale free-strict-monoidal-category C
elementary-monoidal-category comp tensors I Aa. a Aa. a assocg
using is-elementary-monoidal-category by auto

sublocale free-strict-monoidal-category C monoidal-category comp Trsyc AFrsSMc LESMC
using is-monoidal-category by auto

sublocale free-strict-monoidal-category C
strict-monoidal-category comp Trsyo AQrsyMe LFSMCO
using tensor-preserves-ide lunit-agreement runit-agreement a-ide-simp assocs-def
by unfold-locales auto

context free-strict-monoidal-category
begin

The inclusion of generators functor from C to FgC' is the composition of the inclusion
of generators from C to F C and the diagonalization functor, which projects FC to FgC.
As the diagonalization functor is the identity map on the image of C, the composite
functor amounts to the corestriction to FgC' of the inclusion of generators of FC.

interpretation D: functor FC.comp comp FC.D
using F C.diagonalize-is-functor by auto

interpretation I: composite-functor C' F C.comp comp F C.inclusion-of-generators F C.D
proof —
interpret functor C FC.comp F C.inclusion-of-generators
using F C.inclusion-is-functor by blast
show composite-functor C FC.comp comp F C.inclusion-of-generators FC.D ..
qed

definition inclusion-of-generators
where inclusion-of-generators = F C.inclusion-of-generators

lemma inclusion-is-functor:

shows functor C comp inclusion-of-generators
using F C.Dol-eq-I I.functor-axioms inclusion-of-generators-def
by auto

The diagonalization functor is strict monoidal.

interpretation D: strict-monoidal-functor FC.comp FC.Tpyeo FC.apye FCupyc

165

comp Trsypc OFSMC LFSMC
FC.D

proof
show FC.D FC. =1
proof —
have FC.D FC.. = FC.mkarr |FC.rep FC..|
unfolding F C.D-def using F C..-in-hom by auto
also have ... = FC.mkarr [1[||Z]|]]
using F C..-def FC.rep-unity F C.rep-lunit F C.Par-Arr-norm F C.Diagonalize-norm
by auto
also have ... =
using F C.unityprrc-def FC.Z-agreement t-def by simp
finally show ¢thesis by blast
qed
show Afg. [FC.arr f; FC.arr g | =
FC.D (FC.tensor f g) = tensor (FC.D f) (FC.D g)
proof —
fix fg
assume f: FC.arr f and ¢g: FC.arr g
have fg: arr (FC.D f) A arr (FC.D g)
using f g D.preserves-arr by blast
have FC.D (FC.tensor f g) = f Qg ¢
using tensorg-def by simp
also have f ®¢ g = FC.D (f ® g)
using f g tensorg-def by simp
also have ... = FC.D f ®s FC.D g
using f g fg tensorg-def FC.T-simp F C.diagonalize-tensor arr-chargyc
by (metis (no-types, lifting))
also have ... = tensor (FC.D f) (FC.D g)
using fg T-simp by simp
finally show FC.D (FC.tensor f g) = tensor (FC.D f) (FC.D g)
by blast
qed
show Aa b c. [FC.ide a; FC.ide b; FC.ide ¢ | =
FC.D (FC.assoc a b ¢) = assoc (FC.D a) (FC.D b) (FC.D ¢)
proof —
fix a bc
assume a: F(C.ide a and b: FC.ide b and c: FC.ide c
have abc: ide (FC.D a) A ide (FC.D b) A ide (FC.D c)
using a b ¢ D.preserves-ide by blast
have abc”s FC.ide (FC.D a) A FC.ide (FC.D b) AN FC.ide (FC.D c)
using a b ¢ D.preserves-ide ide-charsyc by simp
have 1: Afg. FC.arr f = FC.arr g = [®s g = FC.D (f ® g)
using tensorg-def by simp
have 2: A\f. ide f = FC.ide f using ide-chargsyc by blast
have assoc (FC.D a) (FC.Db) (FC.D¢)=FC.Da®s FC.Db®g FC.D ¢
using abc a-ide-simp assocg-def by simp
also have ... = FC.D a 5 FC.D (FC.Db® FC.D ¢)
using abc’ 1 by auto

166

also have ... = FC.D a ®s FC.D (b ® ¢)
using b ¢ FC.diagonalize-tensor by force
also have ... = FC.D (FC.D a ® FC.D (b ® ¢))
using 1 b ¢ abc D.preserves-ide F C.tensor-preserves-ide ide-chargspyc
by simp
also have ... = FC.D (a ® b ® ¢)
using a b ¢ FC.diagonalize-tensor by force
also have ... = FC.D ala, b, (]
proof —
have FC.can ala, b, c] using a b ¢ FC.can-assoc by simp
hence FC.ide (FC.D ala, b, c])
using a b ¢ FC(C.ide-diagonalize-can by simp
moreover have FC.cod (FC.D ala, b, ¢]) = FC.D (a ® b ® ¢)
using a b ¢ FC.assoc-in-hom D.preserves-hom
by (metis (no-types, lifting) cod-charsyc in-homE)
ultimately show ?%thesis by simp
qed
also have ... = FC.D (FC.assoc a b c)
using a b ¢ by simp
finally show FC.D (FC.assoc a b ¢) = assoc (FC.D a) (FC.D b) (FC.D ¢)
by blast
qed
qged

lemma diagonalize-is-strict-monoidal-functor:
shows strict-monoidal-functor FC.comp FC.Tpyc FC.apyc FCaryme

comp Trsymc OFsMc LFSMC
FC.D

interpretation ¢: natural-isomorphism
FC.CC.comp comp D.TpoFF.map D.FoTc.map D.p
using D.structure-naturalityisomorphism by simp

The diagonalization functor is part of a monoidal equivalence between the free monoidal
category and the subcategory FgC.

interpretation E: equivalence-of-categories comp FC.comp FC.D map FC.v FC.u
using F C.is-equivalent-to-strict-subcategory by auto

interpretation D: monoidal-functor FC.comp FC.Tryc FC.apyo FCuppe

comp Trsymce AFsMc LFSMC
FC.D D.p

using D.monoidal-functor-azioms by metis

interpretation equivalence-of-monoidal-categories comp Trpsyc apsme LESMC
]-"C.comp FC. TFMC]:C.OtFMc]:CJIFIMC’
FCDDpT
map FC.wv FC.u

167

The category JF C is monoidally equivalent to its subcategory FgC.

theorem monoidally-equivalent-to-free-monoidal-category:

shows equivalence-of-monoidal-categories comp Trsyc Apsme LESMC
.FC.comp fC.TFMC fC.OzFMC fC.LFMC
FC.D D.p
map FC.wv FC.u

end

We next show that the evaluation functor induced on the free monoidal category
generated by C by a functor V from C to a strict monoidal category D restricts to a
strict monoidal functor on the subcategory FgC.

locale strict-evaluation-functor =
D: strict-monoidal-category D Tp ap tp +
evaluation-map C D Tp ap vp V +
FC: free-monoidal-category C' +
E: evaluation-functor C D Tp ap vp V +
FsC: free-strict-monoidal-category C

for C :: 'c comp (infixr <> 55)

and D :: 'd comp (infixr «p» 55)

and Tp :: 'd x 'd = 'd

and ap : 'd *x 'd x 'd = 'd

and tp 1 'd

and V :: 'c = 'd

begin
notation FC.in-hom (<«-: - — -»)
notation FgC.in-hom ((«-: - —g -»)

definition map
where map = \f. if FsC.arr f then E.map f else D.null

interpretation functor FsC.comp D map
unfolding map-def
apply unfold-locales
apply simp
using FgC.arr-charsyc E.preserves-arr
apply simp
using FgC.arr-charsyc FsC.dom-charsyc E.preserves-dom
apply simp
using FgC.arr-charsyc FsC.cod-chargyc E.preserves-cod
apply simp
using FsC.arr-charsyc FsC.dom-chargyc FsC.cod-charsyc FsC.comp-char E.preserves-comp
by (elim FsC.seqE, auto)

lemma is-functor:

168

shows functor FgC.comp D map ..

Every canonical arrow is an equivalence class of canonical terms. The evaluations in
D of all such terms are identities, due to the strictness of D.

lemma ide-eval-Can:
shows Can t = D.ide {t|}
proof (induct t)
show Az. Can (z) = D.ide {{(z)[} by simp
show Can T = D.ide {Z}} by simp
show At! t2. [Can t1 = D.ide {t1}; Can t2 = D.ide {t2}}; Can (11 ® 12) | =
D.ide {t1 ® 2]}
by simp
show At1 t2. [Can t1 = D.ide {t1]}; Can t2 = D.ide {t2]; Can (t1 - 12) | =
D.ide {t1 - t2]
proof —
fix t1 t2
assume t1: Can t1 = D.ide {t1}
and t2: Can t2 = D.ide {t2]}
and t12: Can (t1 - t2)
show D.ide {t1 - t2}
using t1 t2 t12 Can-implies-Arr eval-in-hom [of t1] eval-in-hom [of t2] D.comp-ide-arr
by fastforce
qed
show At. (Can t = D.ide {t}) = Can 1[t] = D.ide {1[t]}
using D.strict-lunit by simp
show At. (Can t = D.ide {t|}) = Can 17'[{] = D.ide {17}[{]}}
using D.strict-lunit by simp
show At. (Can t = D.ide {t}) = Can r[{] = D.ide {r[{]}
using D.strict-runit by simp
show At. (Can t = D.ide {t}) = Can r~'[f] = D.ide {r~'[{]}
using D.strict-runit by simp
fix t1 t2t3
assume t1: Can t1 = D.ide {t1]}
and t2: Can t2 = D.ide {t2]}
and t3: Can t3 = D.ide {t3]}
show Can a[tl, t2, t5] = D.ide {a[t1, t2, 5]}
proof —
assume Can aft!, t2, t5
hence t123: D.ide {t1} N D.ide {t2} A D.ide {t3]}
using t1 t2 t3 by simp
have {a[t1, t2, t3} = {t1} ®@p {2} @p {3}
using t123 D.strict-assoc D.assoc-in-hom [of {t1]} {t2]} {t3]] apply simp
by (elim D.in-homE, simp)
thus ?thesis using t123 by simp
qed
show Can a='[t1, 12, t5] = D.ide {a~'[t1, 12, t3]|}
proof —
assume Can a=1[t1, t2, t3]
hence t123: Can t1 A Can t2 A Can t3 A D.ide {t1}} A D.ide {t2]} A D.ide {t3}}

169

using t1 t2 t3 by simp
have {a~'[t1, 12, t3]|}
= D.inv ap[D.cod {t1}, D.cod {t2}, D.cod {t3}] -p ({t1} ®@p {t2} @p {t3})
using t123 eval-Assoc’ [of t1 t2 t3] Can-implies-Arr by simp
also have ... = {t1|} ®p {2} ®p {t3}
proof —
have D.dom ap[{t1}, {¢2}, {t3}] = {t1} ®p {2} ®p {t3}
proof —
have D.dom ap[{t1}, {t2]}, {t3}] = D.cod ap[{t1], {t2}, {t3]}]
using t123 D.strict-assoc by simp
also have ... = {t1} ®p {2} @p {t3]}
using t123 by simp
finally show ?thesis by blast
qed
thus ?thesis
using t123 D.strict-assoc D.comp-arr-dom by auto
qed
finally have {a~![t1, t2, t3]} = {t1} ®@p {2} ®p {t3]} by blast
thus ?thesis using t123 by auto
qed
qged

lemma ide-eval-can:
assumes FC.can f
shows D.ide (E.map f)
proof —
have f = FC.mkarr (FC.rep f)
using assms F C.can-implies-arr F C.mkarr-rep by blast
moreover have 1: Can (FC.rep f)
using assms F C.Can-rep-can by simp
moreover have D.ide {FC.rep f}
using assms ide-eval-Can by (simp add: 1)
ultimately show %thesis using assms F C.can-implies-arr E.map-def by force
qed

Diagonalization transports formal arrows naturally along reductions, which are canon-
ical terms and therefore evaluate to identities of D. It follows that the evaluation in D
of a formal arrow is equal to the evaluation of its diagonalization.

lemma map-diagonalize:
assumes f: FC.arr f
shows E.map (FC.D f) = E.map f
proof —
interpret EQ: equivalence-of-categories
FsC.comp FC.comp FC.D FsC.map FC.v FC.u
using F C.is-equivalent-to-strict-subcategory by auto
have 1: FC.seq (FsC.map (FC.D f)) (FC.v (FC.dom f))
proof
show «FC.v (FC.dom f) : FC.dom f — FC.D (FC.dom f)»
using f FsC.map-simp EQ.F .preserves-arr

170

by (intro F C.in-homl, simp-all)
show «FsC.map (FC.D f) : FC.D (FC.dom f) — FC.cod (FC.D f)»
by (metis (no-types, lifting) EQ.F.preserves-dom EQ.F.preserves-reflects-arr
Fs C.arr-iff-in-hom FgC.cod-simp FgC.in-hom-charsyc FsC.map-simp f)
qged
have E.map (FC.w (FC.cod f)) -p E.map f =
E.map (FC.D f) -p E.map (FC.w (FC.dom f))
proof —
have F.map (FC.w (FC.cod f)) -p E.map f = E.map (FC.v (FC.cod f) - f)
using [by simp
also have ... = E.map (FC.D f - FC.w (FC.dom f))
using f EQ.n.naturality FsC.map-simp EQ.F .preserves-arr by simp
also have ... = E.map (FsC.map (FC.D f)) -p E.map (FC.wv (FC.dom f))
using f I E.as-nat-trans.preserves-comp-2 EQ.F .preserves-arr FgC.map-simp
by (metis (no-types, lifting))
also have ... = E.map (FC.D f) -p E.map (FC.v (FC.dom f))
using f EQ.F .preserves-arr F g C.map-simp by simp
finally show ¢thesis by blast
qed
moreover have A\a. FC.ide a = D.ide (E.map (FC.v a))
using FC.v-def FC.Arr-rep Arr-implies-Ide-Cod Can-red F C.can-mkarr-Can
ide-eval-can
by (metis (no-types, lifting) EQ.n.preserves-reflects-arr FC.seqE
F C.comp-preserves-can F C.ideD(1) F C.ide-implies-can)
moreover have D.cod (E.map f) = D.dom (E.map (FC.v (FC.cod f)))
using f E.preserves-hom EQ.n.preserves-hom by simp
moreover have D.dom (E.map (FC.D f)) = D.cod (E.map (FC.v (FC.dom f)))
using f 1 E.preserves-seq EQ.F .preserves-arr FgC.map-simp by auto
ultimately show ?thesis
using f D.comp-arr-dom D.ideD D.arr-dom-iff-arr E.as-nat-trans.naturality2
by (metis E.preserves-cod F C.ide-cod F C.ide-dom)
qged

lemma strictly-preserves-tensor:
assumes FgC.arr f and FgC.arr g
shows map (FgC.tensor f g) = map f @p map g
proof —
have 1: FC.arr (f ® g)
using assms FgC.arr-chargyc F C.tensor-in-hom by auto
have 2: FgC.arr (FgC.tensor f g)
using assms Fg C.tensor-in-hom [of f g] FsC.T-simp by fastforce
have map (FgC.tensor f g) = E.-map (f ® g)
proof —
have map (FgC.tensor f g) = map (f ®s g)
using assms FgC.T-simp by simp
also have ... = map (FC.D (f ® g))
using assms F C.tensorpyc-def FgC.tensorg-def FgC.arr-chargyc by force
also have ... = E.map (f ® g)
proof —

171

interpret Diag: functor FC.comp FgC.comp FC.D
using F C.diagonalize-is-functor by auto
show ?thesis
using assms 1 map-diagonalize [of f ® g] Diag.preserves-arr map-def by simp
qed
finally show ?thesis by blast
qed
thus ?thesis
using assms FsC.arr-chargyc E.strictly-preserves-tensor map-def by simp
qged

lemma is-strict-monoidal-functor:
shows strict-monoidal-functor FgC.comp FsC.Trsyc FsC.aw FsCuu D Tp ap tp map
proof
show A\fg. FsC.arr f = FgC.arr g = map (FsC.tensor f g) = map f ®p map g
using strictly-preserves-tensor by fast
show map FsC.. = i1p
using F g C.arr-unity FgC.c-def map-def E.map-def F C.rep-mkarr E.eval-norm D.strict-unit
by auto
fix a bc
assume a: FgC.ide a and b: FgC.ide b and c: FgC.ide ¢
show map (FsC.assoc a b ¢) = ap[map a, map b, map c|
proof —
have map (FsC.assoc a b ¢) = map a @p map b ®p map ¢
using a b ¢ FsC.a-def FgC.assocg-def FsC.arr-tensor FgC.T-simp FgC.ideD(1)
strictly-preserves-tensor F g C.a-ide-simp
by presburger
also have ... = ap[map a, map b, map c|
using a b ¢ D.strict-assoc D.assoc-in-hom [of map a map b map c] by auto
finally show ?thesis by blast
qed
qged

end

sublocale strict-evaluation-functor C
strict-monoidal-functor FsC.comp FsC.Trsyec FsC.ao FsC.u D Tp ap tp map
using is-strict-monoidal-functor by auto

locale strict-monoidal-extension-to-free-strict-monoidal-category =
C': category C +
monoidal-language C +
FsC: free-strict-monoidal-category C' +
strict-monoidal-extension C FsC.comp FsC.Trsypyeo FsC.a FsC.u D Tp ap tp
F s C.inclusion-of-generators V F
for C :: 'c comp (infixr <> 55)
and D :: 'd comp (infixr <-p» 55)
and Tp :'d x 'd = 'd
and ap : 'd*x 'd x 'd = 'd

172

and (p 1 'd
and V :: 'c = 'd
and F :: 'c free-monoidal-category.arr = 'd

sublocale strict-evaluation-functor C
strict-monoidal-extension C FsC.comp FsC.Trsyo FsC.a FsC.o D Tp ap tp
F s Cl.inclusion-of-generators V map
proof —
interpret V: functor C FsC.comp FgsC.inclusion-of-generators
using Fg C.inclusion-is-functor by auto
show strict-monoidal-extension C FgC.comp FsC.Trpspyc FsC.ao FsCuu D Tp ap tp
F s Cl.inclusion-of-generators V map
proof
show Vf. C.arr f — map (FgC.inclusion-of-generators f) = V f
using V.preserves-arr E.is-extension map-def FgC.inclusion-of-generators-def by simp
qged
qed

context free-strict-monoidal-category
begin

We now have the main result of this section: the evaluation functor on FgC induced
by a functor V from C to a strict monoidal category D is the unique strict monoidal
extension of V to FgC.

theorem is-free:
assumes strict-monoidal-category D Tp ap tp
and strict-monoidal-eztension-to-free-strict-monoidal-category C D Tp ap tp V F
shows F' = strict-evaluation-functor.map C D Tp ap 1p V
proof —
interpret D: strict-monoidal-category D Tp ap tp
using assms(1) by auto

Let F be a given extension of V to a strict monoidal functor defined on FgC.

interpret F: strict-monoidal-extension-to-free-strict-monoidal-category
C D TD ap Lp VF
using assms(2) by auto
Let Eg be the evaluation functor from FgC to D induced by V. Then Eg is also a
strict monoidal extension of V.

interpret Fg: strict-evaluation-functor C D Tp ap tp V ..

Let D be the strict monoidal functor FC.D that projects FC to the subcategory
FsC.

interpret D: functor F C.comp comp FC.D
using F C.diagonalize-is-functor by auto
interpret D: strict-monoidal-functor FC.comp FC.Tpyc FC.ao FCu
comp Trsye at
FC.D
using diagonalize-is-strict-monoidal-functor by blast

173

The composite functor F o D is also an extension of V to a strict monoidal functor
on FC.

interpret FoD: composite-functor FC.comp comp D FC.D F ..
interpret FoD: strict-monoidal-functor
FC.comp FC.Tpye FC.ao FCuu D Tp ap tp <F o FC.D»
using D.strict-monoidal-functor-axioms F.strict-monoidal-functor-axioms
strict-monoidal-functors-compose
by fast
interpret FoD: strict-monoidal-extension-to-free-monoidal-category
CDTpaptp V FoD.map
proof
show Vf. C.arr f — FoD.map (F C.inclusion-of-generators f) = V f
proof —
have A\f. C.arr f = FoD.map (F C.inclusion-of-generators f) = V f
proof —
fix f
assume f: C.arr f
have FoD.map (F C.inclusion-of-generators f)
= F (FC.D (FC.inclusion-of-generators f))
using f by simp

also have ... = F (inclusion-of-generators f)
using [F C.strict-arr-char’ F.I.preserves-arr inclusion-of-generators-def by simp
also have ... = V f

using f F.is-extension by simp
finally show FoD.map (F C.inclusion-of-generators) = V f

by blast
qed
thus ?thesis by blast
qed
qed

By the freeness of FC, we have that F' o D is equal to the evaluation functor
Eg.E.map induced by V on FC. Moreover, Fg.map coincides with Eg.E.map on FgC
and F o D coincides with F' on FgC. Therefore, F' coincides with E on their common
domain FgC, showing F = Eg.map.

have \f. arr f = F f = Eg.map f
using F C.strict-arr-char’ F C.is-free [of D] Es.E.evaluation-functor-axioms

FoD.strict-monoidal-extension-to-free-monoidal-category-axioms Eg.map-def

by simp

moreover have A\f. —arr f = F f = Eg.map f
using F.extenstonality Eg.extensionality arr-chargsyc by auto

ultimately show F' = Eg.map by blast

qged

end

end

174

Chapter 5

Cartesian Monoidal Category

theory CartesianMonoidalCategory
imports MonoidalCategory Category3.CartesianCategory
begin

5.1 Symmetric Monoidal Category

locale symmetric-monoidal-category =

monoidal-category C T « v +

S: symmetry-functor C C' +

ToS: composite-functor CC.comp CC.comp C S.map T +

o: natural-isomorphism CC.comp C T ToS.map o
for C :: 'a comp (infixr <> 55)
and T :: 'a * 'a = 'a
and o ::‘ax 'ax'a="a
and ¢ :: ‘a
and o :: ‘a * 'a = 'a +
assumes sym-inverse: [ide a; ide b | = inverse-arrows (o (a, b)) (o (b, a))
and unitor-coherence: ide a = l[a] - o (a, T) = r[a]
and assoc-coherence: [ide a; ide b; ide ¢ | =

a (b, c,a) o (a,b®c¢)-ala, b, c)
=b®o(a c) a(ac) (cd(a b c)

begin

abbreviation sym («s[-, -]»)
where sym a b = o (a, b)

end

locale elementary-symmetric-monoidal-category =
elementary-monoidal-category C tensor unity lunit runit assoc

for C :: 'a comp (infixr <> 55)
and tensor :: 'a = 'a = 'a (infixr «®» 53)
and unity :: 'a («I»)

and lunit :: 'a = 'a (1[])

175

and runit :: 'a = 'a (<r[-]»)
and assoc :: 'a = 'a = 'a = 'a («a[-, -,)
and sym :: 'a = 'a = 'a («s[-) +
assumes sym-in-hom: [ide a; ide b] = «s[a, b] : a ® b = b ® a»
and sym-naturality: [arr f; arr g | = s[cod f, cod g] - (f ® g) = (g ® f) - s[dom f, dom g]
and sym-inverse: [ide a; ide b | = inverse-arrows s[a, b] s[b, a
and unitor-coherence: ide a = 1[a] - s[a, Z] = r|a]
and assoc-coherence: | ide a; ide b; ide ¢ | =

alb, ¢, a] - sla, b ®] - ala, b,]

= (b ® sla, c]) - a[b, a, c] - (s[a, b] ® ¢)

begin

lemma sym-simps [simp]:
assumes ide ¢ and ide b
shows arr s[a, b
and dom sla, b)) = a® b
and cod s[a, b] = b ® a
using assms sym-in-hom by auto

interpretation CC: product-category C C ..
sublocale MC': monoidal-category C' T « ¢
using induces-monoidal-category by simp

interpretation S: symmetry-functor C C ..
interpretation T0S: composite-functor CC.comp CC.comp C S.map T ..

definition o :: 'a * ‘a = a
where o f = if CC.arr f then s[cod (fst f), cod (snd f)] - (fst f @ snd f) else null

interpretation o: natural-isomorphism CC.comp C T ToS.map o
proof —
interpret o: transformation-by-components CC.comp C' T ToS.map Aa. s[fst a, snd a]
using sym-in-hom sym-naturality
by unfold-locales auto
interpret o: natural-isomorphism CC.comp C T ToS.map o.map
using sym-inverse o.map-simp-ide
by unfold-locales auto
have ¢ = o.map
using o-def o.map-def sym-naturality by fastforce
thus natural-isomorphism CC.comp C T ToS.map o
using o.natural-isomorphism-axioms by presburger
qged

interpretation symmetric-monoidal-category C T o ¢t o
proof
show Aa b. [ide a; ide b | = inverse-arrows (o (a, b)) (o (b, a))
using sym-inverse comp-arr-dom o-def by auto
show Aa. ide a = MC.lunit a - o (a, MC.unity) = MC.runit a
using [unit-agreement Z-agreement sym-in-hom comp-arr-dom

176

unitor-coherence runit-agreement o-def
by simp
show Aa b c. [ide a; ide b; ide ¢ | =
MC.assoc b ¢ a - o (a, MC.tensor b ¢) - MC.assoc a b ¢ =
MC .tensor b (o (a, ¢)) - MC.assoc b a ¢ - MC.tensor (o (a, b)) ¢
using sym-in-hom tensor-preserves-ide o-def assoc-coherence
comp-arr-dom comp-cod-arr
by simp
qed

lemma induces-symmetric-monoidal-categoryc s c:
shows symmetric-monoidal-category C T o v o

end

context symmetric-monoidal-category
begin

interpretation EMC': elementary-monoidal-category C tensor unity lunit runit assoc
using induces-elementary-monoidal-category by auto

lemma induces-elementary-symmetric-monoidal-categoryc pro:
shows elementary-symmetric-monoidal-category
C tensor unity lunit runit assoc (Aa b. o (a, b))
using o.naturality unitor-coherence assoc-coherence sym-inverse
by unfold-locales auto

end

locale dual-symmetric-monoidal-category =
M: symmetric-monoidal-category
begin

sublocale dual-monoidal-category C' T a ¢ ..

interpretation S: symmetry-functor comp comp ..

interpretation To0S: composite-functor MM .comp MM .comp comp S.map T ..

sublocale ¢ inverse-transformation M.CC.comp C T M.ToS.map o ..

interpretation o: natural-transformation MM .comp comp T ToS.map o’.map
using o’.extensionality o’ naturalityl o' naturality2
by unfold-locales auto

interpretation o: natural-isomorphism MM .comp comp T ToS.map o'.map
by unfold-locales auto

sublocale symmetric-monoidal-category comp T M.a' <M.inv v» o’.map
proof
show Aa b. [ide a; ide b] = inverse-arrows (o'.map (a, b)) (o'.map (b, a))
apply auto
by (metis M.inverse-arrowsE M .inverse-unique M.isol M.sym-inverse ide-char

177

iso-char comp-def section-retraction-of-iso(1))
show Aa. ide a = lunit a -°P o'.map (a, unity) = runit a
using M .unitor-coherence M .unit-in-hom M .unit-is-iso lunit-char runit-char
apply auto
by (metis M.inv-comp-left(1) M.iso-lunit M .iso-runit)
show Aa b c.
[ide a; ide b; ide c]
= assoc b ¢ a -°P o'.map (a, tensor b ¢) -°? assoc a b ¢ =
(tensor b (o'.map (a, c))) -°P assoc b a ¢ -°P (tensor (o’.map (a, b)) c)
proof —
fixabec
assume a: ide a and b: ide b and c: ide ¢
show assoc b ¢ a -°P o’.map (a, tensor b ¢) -°P assoc a b ¢ =
(tensor b (o'.map (a, c))) -°F assoc b a ¢ -°P (tensor (o’.map (a, b)) c)
proof —
have assoc b ¢ a -°? o’.map (a, tensor b ¢) -°P assoc a b ¢ =
(a=Y[a, b, ¢] - M.inv s|a, tensor b c|) - a=1[b, ¢, a
using a b ¢ by auto

also have ... = M.inv (s[a, tensor b c] - M.assoc a b ¢) - M.inv (M.assoc b ¢ a)
using a b ¢ M.iso-assoc M.inv-comp by auto
also have ... = M.inv (M.assoc b ¢ a - s|a, tensor b c|] - M.assoc a b c)

using a b ¢ M.iso-assoc
M .inv-comp [of s|a, tensor b c] - M.assoc a b ¢ M.assoc b ¢ a]
by fastforce

also have ... = M.inv (tensor b sa, c| - a[b, a, c| - (tensor s[a, b] ¢))
using a b ¢ M.assoc-coherence by simp
also have ... = M.inv (a[b, a, c] - (tensor s[a, b] ¢)) - M.inv (tensor b s[a, c])

using a b ¢ M.iso-assoc
M .inv-comp [of alb, a, c] - (tensor s[a, b] c)]
by fastforce
also have ... =
(tensor (M.inv s[a, b)) ¢ - M.inv a[b, a, cl]) - tensor b (M.inv sa, c])
using a b ¢ M.iso-assoc M.inv-comp by simp
also have ... =
(tensor b (o'.map (a, c))) -°F assoc b a ¢ -°P (tensor (o’.map (a, b)) c)
using a b ¢ by auto
finally show ?thesis by simp
qed
qed
qed

lemma is-symmetric-monoidal-category:

shows symmetric-monoidal-category comp T M.a' (M.inv) o’ map

end

178

5.2 Cartesian Monoidal Category

Here we define “cartesian monoidal category” by imposing additional properties, but not
additional structure, on top of “monoidal category”. The additional properties are that
the unit is a terminal object and that the tensor is a categorical product, with projections
defined in terms of unitors, terminators, and tensor. It then follows that the associators
are induced by the product structure.

locale cartesian-monoidal-category =
monoidal-category C' T « ¢
for C :: 'a comp (infixr <> 55)
and T :: 'a * 'a = 'a
and o ::‘ax 'ax'a="a
and ¢ :: ‘a +
assumes terminal-unity: terminal Z
and tensor-is-product:
[ide a; ide b; «tq : a = Iy; «tp : b = In] =
has-as-binary-product a b (r[a] - (a ® tp)) (1[8] - (ta ® b))
begin

sublocale category-with-terminal-object
using terminal-unity by unfold-locales blast

lemma is-category-with-terminal-object:
shows category-with-terminal-object C

definition the-trm (<t[-])
where the-trm = A\f. THE t. «t : dom f — I»

lemma trm-in-hom [introl:

assumes ide a

shows «t[a] : a = I»
unfolding the-trm-def
using assms thel [of At. «t : dom a — I»] terminal-unity terminal-arr-unique
by (metis ideD(2) terminalE)

lemma trm-simps [simp]:

assumes ide a

shows arr t[a] and dom tla] = a and cod t[a] =T
using assms trm-in-hom by auto

interpretation elementary-category-with-terminal-object C T the-trm
proof
show ide 7
using ide-unity by blast
fix a
show ide a = «the-trm a : a — I»
using the-trm-def thel [of At. «t : dom a — I»] terminalE terminal-unity by auto

179

thus Af. [ide a; «f : a« = I»] = f = the-trm a
using thel [of At. «t: dom a — I»]
by (metis terminalE terminal-unity)
qed

lemma extends-to-elementary-category-with-terminal-objectc o
shows elementary-category-with-terminal-object C I the-trm

definition pro (<po[-, -]>)
where pro a b = 1[b] - (t[a] ® b)

definition pri (<p1[-,)
where pri a b = rfa] - (a ® t[b])

sublocale ECC': elementary-category-with-binary-products C pry pri
proof
fix fg
assume fg: span f g
have has-as-binary-product (cod f) (cod g) pi[cod f, cod g] polcod f, cod g]
using fg tensor-is-product pro-def pri-def by auto
thus 3. pifecod f, cod g] - 1 = f A polcod f, cod g] - | = g
using fg
by (elim has-as-binary-productE) blast
qed (unfold pro-def pri-def, auto)

lemma induces-elementary-category-with-binary-productsc pro:

shows elementary-category-with-binary-products C prg pry

lemma is-category-with-binary-products:
shows category-with-binary-products C
using FECC.is-category-with-binary-products by blast

sublocale category-with-binary-products C

using is-category-with-binary-products by blast
sublocale ECC': elementary-cartesian-category C pro pri I the-trm ..
lemma extends-to-elementary-cartesian-categoryc s c:

shows elementary-cartesian-category C pro pri I the-trm

lemma is-cartesian-category:
shows cartesian-category C
using FCC.is-cartesian-category by simp

180

sublocale cartesian-category C
using is-cartesian-category by blast

abbreviation dup («d[-]»)
where dup = ECC.dup

abbreviation tuple (<(-, -)»)
where (f, g) = ECC.tuple f g

lemma prod-eq-tensor:
shows ECC.prod = tensor
proof —
have \fg. ECC.prod fg=f® ¢
proof —
fix fg
show ECC.prod fg=f® g
proof (cases arr f A arr g)
show — (arr f A arr g) = ?thesis
by (metis CC.arrE ECC .prod-def ECC .tuple-ext T'.extensionality fst-conv seqE snd-conv)
assume 0: arr f A arr g
have 1: span (f - pi[dom f, dom g]) (g - poldom f, dom g])
using 0 by simp
have pi[cod f, cod g] - ECC.prod f g = p1[cod [, cod g] - (f ® g)
proof —
have p;[cod f, cod g] - ECC.prod f g =

pif[cod f, cod g] - {f - pi[dom f, dom g], g - poldom f, dom g])
unfolding ECC.prod-def by simp

also have ... = f - pi[dom [, dom g]
using 0 1 ECC.pr-tuple(1) by fastforce
also have ... = (f - r[dom f]) - (dom [® t[dom g])

unfolding pri-def
using comp-assoc by simp
also have ... = (r[eod f] - (f ® Z)) - (dom [® t[dom g])
using 0 runit-naturality by auto
also have ... = r[cod f] - (f ® Z) - (dom f ® t[dom g])
using comp-assoc by simp
also have ... = r[cod f] - (cod f ® t[cod g]) - (f ® g)
using 0 interchange comp-arr-dom comp-cod-arr trm-naturality trm-simps(1)

by force

also have ... = (r[cod f] - (cod f ® t[cod g])) - (f ® g)
using comp-assoc by simp

also have ... = py[cod f, cod g] - (f ® g)

unfolding pri-def by simp
finally show ?thesis by blast
qed
moreover have pg[cod f, cod g - ECC.prod f g = polcod f, cod g] - (f ® g)
proof —
have pg[cod f, cod g] - ECC.prod f g =

polcod f, cod g] - (f - pi[dom [, dom g, g - po[dom [, dom g])

181

unfolding ECC .prod-def by simp

also have ... = g - po[dom f, dom ¢]
using 0 1 ECC.pr-tuple by fastforce
also have ... = (g - l[dom g]) - (t[dom f] ® dom g)

unfolding pro-def
using comp-assoc by simp

also have ... = (l[cod g] - (Z ® g)) - (t[dom f] ® dom g)
using 0 lunit-naturality by auto
also have ... = 1[cod g] - (Z ® g) - (t[dom f] ® dom g)

using comp-assoc by simp
also have ... = 1[cod g] - (t[cod f] ® cod g) - (f ® g)
using 0 interchange comp-arr-dom comp-cod-arr trm-naturality trm-simps(1)
by force
also have ... = (1[cod g] - (t[cod f] ® cod g)) - (f ® g)
using comp-assoc by simp
also have ... = pg[cod f, cod g] - (f ® g)
unfolding pry-def by simp
finally show ?thesis by blast
qed
ultimately show ?thesis
by (metis 0 1 ECC.pr-naturality(1—2) ECC .tuple-pr-arr ide-cod)
qed
qed
thus ?thesis by blast
qed

lemma Prod-eq-T"
shows ECC.Prod = T
proof

fix fg
show ECC.Prod fg = T fqg

using prod-eg-tensor
by (cases CC.arr fg) auto
qed

lemma tuple-pr [simp):

assumes ide a and ide b

shows (pi[a, b, pola, b)) = a ® b
using assms prod-eg-tensor by simp

lemma tensor-expansion:

assumes arr f and arr g

shows f ® g = (f - pi[dom f, dom g], g - poldom , dom g))
using assms
by (metis ECC.prod-def prod-eq-tensor)

It is somewhat amazing that once the tensor product has been assumed to be a
categorical product with the indicated projections, then the associators are forced to be
those induced by the categorical product.

182

lemma pr-assoc:
assumes ide a and ide b and ide ¢
shows pia, b @] - aa, b, | = pi[a,] - pi[a @ b, (]

and pl[b> C] : pO[a7 b® C]) a[aa)] Po [] pl[a ® b, C]
and po[b, c] - pola, b ®] - ala, b, ¢] = pola ® b,]
proof —
show pl[aa b® C] ’ a[aa b, C] = pl[aa b] ' pl[a ® b, C]
proof —

have pi[a, b ®] - ala, b, ¢] = (r[a] - (e ® ¢ - (t[b] ® t[c]))) - a[a, b, (]
by (metis ECC.trm-tensor ECC.unit-eq-trm arr-cod-iff-arr assms(2—3) comp-cod-arr
dom-lunit ide-unity pri-def prod-eq-tensor trm-naturality trm-one trm-simps(1)
unitor-coincidence(1))

also have ... = (r[a] - (¢ ®) - (a ® t[b] ® t[c])) - ala, b, (]
using assms interchange unit-in-hom-azx by auto

also have ... = r[a] - (¢ ® ¢) - (a ® t[b] @ t[c]) - a[a, b, (]
using comp-assoc by simp

also have ... =rf[a] - (a ®) - ala, Z, Z] - ((a @ t[b]) ® t[c])
using assms assoc-naturality [of a t[| tc]] by force

also have ... = r[a] - (r[a] ® T) - ((a ® t[b]) ® t[c])
using assms runit-char comp-assoc by simp

also have ... = r[a] - (p1[a, b] ® t[c])

using assms comp-arr-dom comp-cod-arr interchange [of r[a] a ® t[b] T t[c]]
by (metis ECC.pr-simps(4) pri-def trm-simps(1) trm-simps(3))
also have ... = r[a] - (p1[a, b] - (a ® b) ® T - t[c])
using assms comp-arr-dom comp-cod-arr
by (metis (no-types, lifting) ECC.pr-simps(4—25) prod-eg-tensor trm-simps(1,3))
also have ... = r[a] - (p1]a, b] ® Z) - ((a ® b) ® t[c])
using assms interchange [of p1[a, b] a @ b T t[c]]
by (metis (no-types, lifting) ECC.pr-simps(4—5) Prod-eq-T comp-arr-dom comp-cod-arr
fst-conv snd-conv trm-simps(1,3))

also have ... = (r[a] - (p1[a, }] ® T)) - ((a ® b) ® t[c])
using comp-assoc by simp
also have ... = (py[a, b] - rfa ® b]) - ((e¢ ® b) ® t[c])

using assms runit-naturality
by (metis (no-types, lifting) ECC.cod-pr1 ECC .pr-simps(4,5) prod-eq-tensor)
also have ... = py[a, b] - p1[a ® b,]
using pri-def comp-assoc by simp
finally show ?thesis by blast
qed
show pl[ba C] ’ pO[av b® C] ’ a[aa b, C] = pO[aa b] : pl[a ® b, C]
proof —
have p1[b, c] - pola, b ® ¢] - ala, b, ¢] =

r[b] - (b ® tc]) - 1[b ®] - a[Z, b, c] - ((t[a] ® b) ® ¢)
using assms pro-def pri-def assoc-naturality [of tla] b ¢] comp-assoc by auto
also have ... = 1[b] - (b ® t[c]) - 1[b ® ¢]) - a[Z, b,] - ((t[a] ® b) ® ¢)
using comp-assoc by simp
also have ... =r[b] - (I[b ® Z] - (Z ® b ® t[c])) - a|Z, b, ¢] - ((t[a] ® b) ® ¢)
using assms lunit-naturality [of b ® t[c]] by auto
[c]

also have ... =r[b] - b @ Z] - ((Z ® b ® t[c]) - a[Z, b, c]) - ((t[a] ® b) ® ¢)

183

using comp-assoc by simp
also have ... = r[b] - [[b ® Z] - (a[Z, b, Z] - ((Z ® b) ® t[c])) - ((t[a] ® b) ® ¢)
using assms assoc-naturality [of T b t[c]] by auto
also have ... = r[b] - (I[b)] ® Z) - (Z ® b) @ tlc]) - ((t[a] ® b) ® ¢)
using assms lunit-tensor [of b I] comp-assoc
by (metis ide-unity lunit-tensor’)
also have ... = r[b] - (1[b] ® Z) - ((t[e] ® b)) ®) - ((¢ ® b) ® t[c])
using assms comp-arr-dom comp-cod-arr interchange by simp
also have ... = (r[b] - (pola, b] ® Z)) - ((a ® b) ® t[c])
using assms pro-def ECC.pr-simps(1) R.preserves-comp comp-assoc by simp
also have ... = (pola, b] - rla ® b)) - ((a ® b) ® t[c])
using assms pro-def runit-naturality [of pola, b]] comp-assoc by simp
also have ... = pgla, b] - p1[a ® b,]
using pro-def pri-def comp-assoc by simp
finally show ?thesis by blast
qed
show po[b, ¢] - pola, b ®] - ala, b, ¢] = pola @ b, (]
proof —
have pg[b, c] - pola, b ® ¢] - ala, b, ¢] =
1[e] - (t[o] ® ¢) - 1[b ®] - (t[a] ® b ® ¢) - a[a, b, (]
using pro-def comp-assoc by simp
also have ... =1[c] - ((t[b] ® ¢) - 1[b @ ¢]) - a[Z, b,] - ((t[a] ® b) ® ¢)
using assms assoc-naturality [of t[a] b ¢] comp-assoc by simp
also have ... = 1[c] - (I[Z ® ¢] - (Z ® t[b] ® ¢)) - a[Z, b, c] - ((t[a] ® b) ® ¢)
using assms lunit-naturality [of t[b] ® c] by simp
also have ... = l[c] - l[Z ®] - (a[Z, Z, ¢] - (Z ® t[b]) @ ¢)) - ((t[a] @ b) ® ¢)
using assms assoc-naturality [of T t[b] ¢] comp-assoc by simp
also have ... =[] - (I[Z ® ¢] - a[Z, Z, ¢]) - (Z @ t[b]) @ ¢) - ((t[a] ® b) ® ¢)
using comp-assoc by simp
also have ... =1[c] - (t ® ¢) - (Z @ t[b]) @ ¢) - ((t[a] ® b) ® ¢)
using assms lunit-tensor’ unitor-coincidence(1) by simp
also have ... =1[c] - ¢ ® ¢) - ((Z ® t[b]) - (t[a] ® b) ® ¢)
using assms comp-arr-dom comp-cod-arr
by (metis arr-tensor ide-char interchange trm-simps(1—3))
also have ... = 1[¢] - (¢t ® ¢) - ((t[a] ® t[b]) ® ¢)
using assms comp-arr-dom comp-cod-arr interchange by simp
also have ... = 1[c] - (v - (t[a] ® t[b]) ® ¢)
using assms interchange unit-in-hom-ax by auto
also have ... = pgla ® b, (]
using assms pro-def ECC.trm-tensor category.comp-arr-dom category-azioms prod-eq-tensor
trm-one unit-in-hom-az unitor-coincidence(1)
by fastforce
finally show ?thesis by blast
qed
qed

lemma assoc-agreement:

assumes ide ¢ and ide b and ide ¢
shows ECC.assoc a b ¢ = ala, b,]

184

proof —
have pi[a, b ® ¢] - ECC.assoc a b ¢ = p1[a, b ® | - ala, b, |
using assms ECC.pr-assoc(8) pr-assoc(1) prod-eg-tensor by force
moreover have pgla, b ®]| - ECC.assoc a b ¢ = pola, b @ ¢] - ala, b,]
proof —
have p;[b, c] - pola, b ® ¢] - ECC.assoc a b ¢ = p1[b, c] - pola, b ®] - ala, b,]
using assms ECC.pr-assoc(2) pr-assoc(2) prod-eg-tensor by force
moreover have po[b, c| - po[a, b @ ¢] - ECC.assoc a b ¢ =
pold, c] - pola, b ® ¢] - ala, b,]
using assms prod-eg-tensor ECC.pr-assoc(1) pr-assoc(3) by force
ultimately show Zthesis
using assms prod-eq-tensor
ECC .pr-joint-monic
[of b ¢ pola, b ® ¢] - ECC.assoc a b ¢ pola, b @ ¢] - ala, b, c]]
by fastforce
qed
ultimately show ?thesis
using assms prod-eq-tensor
ECC.pr-joint-monic [of a b ® ¢ ECC.assoc a b ¢ ala, b, ¢]]
by fastforce
qged

lemma lunit-eq:
assumes ide a
shows po[Z, a] = 1[a]
by (simp add: assms comp-arr-dom pro-def trm-one)

lemma runit-eq:
assumes ide a
shows pi[a, Z] = r[d]
by (simp add: assms comp-arr-dom pri-def trm-one)

lemma lunit’-as-tuple:
assumes ide a
shows tuple tla] a = lunit’ a
using FCC.inverse-arrows-lunit assms inverse-unique lunit-eq by fastforce

lemma runit’-as-tuple:
assumes ide a
shows tuple a t[a] = runit’ a
using FCC.inverse-arrows-runit assms inverse-unique runit-eq by fastforce

interpretation S: symmetry-functor C C ..
interpretation T0S: composite-functor CC.comp CC.comp C S.map T ..

interpretation o: natural-transformation CC.comp C T ToS.map ECC.c
proof —

have ECC.Prod' = ToS.map

proof

185

fix fg
show ECC.Prod’ fg = ToS.map fg
using prod-eq-tensor
by (metis CC.arr-char ECC.prod-def ECC.tuple-ext S.map-def ToS.extensionality o-apply
seqF)
qed
thus natural-transformation CC.comp C' T ToS.map ECC.o
using Prod-eq-T ECC.o-naturalitytransformation by simp
qed

interpretation o: natural-isomorphism CC.comp C T ToS.map ECC.c
using ECC.sym-inverse-arrows comp-arr-dom
by unfold-locales auto

sublocale SMC': symmetric-monoidal-category C T o v ECC.o
proof
show Aa b. [ide a; ide b] = inverse-arrows (ECC.o (a, b)) (ECC.o (b, a))
using comp-arr-dom by auto
show Aa. ide a = [a] - ECC.0 (a, I) = r[a]
using o.naturality prod-eq-tensor
by (metis (no-types, lifting) CC.arr-char ECC.prj-sym(1) R.preserves-ide
[-ide-simp o-ide-simp o.preserves-reflects-arr comp-arr-ide fst-conv
ideD(1) ideD(8) ide-unity lunit-naturality pro-def pri-def runit-naturality
snd-conv trm-one)
show Aa b c. [ide a; ide b; ide ¢] =
alb, ¢, a] - ECC.o (a, b ® ¢) - a[a, b,] =
(b® ECC.0 (a, c)) - a[b, a, c] - (ECC.o (a, b) ® ¢)
proof —
fixabc
assume a: ide a and b: ide b and c: ide c
show a[b, ¢, a] - ECC.o (a, b ® ¢) - ala, b, ¢] =
(b ® ECC.o (a, c)) - ab, a,] - (ECC.0 (a, b) ® ¢)
using a b ¢ prod-eg-tensor assoc-agreement comp-arr-dom ECC.sym-assoc-coherence [of
ab (]
by simp
qed
qged

end

5.3 Elementary Cartesian Monoidal Category

locale elementary-cartesian-monoidal-category =
elementary-monoidal-category C tensor unity lunit runit assoc

for C :: 'a comp (infixr <> 55)
and tensor :: 'a = 'a = 'a (infixr «®> 53)
and unity :: 'a (xI»)

and lunit :: 'a = 'a (A[-])

and runit :: 'a = 'a (<r[-]»)

186

and assoc :: 'a = 'a = 'a = 'a («a[, -,)

and trm : '‘a = 'a («t[-]»)

and dup :: 'a = 'a («d[-p) +

assumes trm-in-hom: ide a = «t[a] : a — I»

and trm-unity: t[Z] =1

and trm-naturality: arr f = t[cod f] - f = t[dom f]

and dup-in-hom [intro]: ide a = «d[a] : a — a ® a»

and dup-naturality: arr f = dlcod f] - f = (f ® f) - d[dom f]
and prj0-dup: ide a = r[a] - (a ® t[a]) - d[a] = a

and prjl-dup: ide a = 1[a] - (t[a] ® a) - d[a] = a

and tuple-prj: [ide a; ide b | = (r[a] - (@ ® t[b]) ® 1[b] - (t[a] ® b)) - dla ® b] = a ® b

context cartesian-monoidal-category
begin

interpretation elementary-category-with-terminal-object C T the-trm
using extends-to-elementary-category-with-terminal-objectc o by blast

interpretation elementary-monoidal-category C tensor unity lunit runit assoc
using induces-elementary-monoidal-category by simp

interpretation elementary-cartesian-monoidal-category C
tensor unity lunit runit assoc the-trm dup
using ECC.trm-one ECC.trm-naturality ECC .tuple-in-hom' prod-eq-tensor ECC.dup-naturality
in-homlI
ECC.comp-runit-term-dup runit-eq ECC'.comp-lunit-term-dup lunit-eq ECC'.tuple-expansion
comp-cod-arr
apply unfold-locales
apply auto
proof —
fix a b
assume a: ide a and b: ide b
show (r[a] - (¢ ® t[b]) ® 1[b] - (t[a] ® b)) - dl[a®@ b =a® b
using a b ECC .tuple-pr pro-def pri-def prod-eq-tensor
by (metis ECC.pr-simps(5) ECC .span-pr ECC .tuple-expansion)
qed

lemma induces-elementary-cartesian-monoidal-categoryc i c:
shows elementary-cartesian-monoidal-category C tensor I lunit runit assoc the-trm dup
end

context elementary-cartesian-monoidal-category
begin

lemma trm-simps [simp]:

assumes ide a
shows arr t[a] and dom ta] = a and cod t[a] =T

187

using assms trm-in-hom by auto

lemma dup-simps [simpl:

assumes ide a

shows arr d[a] and dom d[a] = a and cod d[a] = a ® a
using assms dup-in-hom by auto

interpretation elementary-category-with-terminal-object C T trm
apply unfold-locales
apply auto
by (metis comp-cod-arr in-homE trm-naturality trm-unity)

lemma is-elementary-category-with-terminal-object:
shows elementary-category-with-terminal-object C I trm

interpretation MC: monoidal-category C T « ¢
using induces-monoidal-category by auto

interpretation ECBP: elementary-category-with-binary-products C
Aa b 1[b] - (t[a] ® b))y <Aa b. r[a] - (a @ t[b])
proof —
let ?prg = Xa b. 1[b] - (t[a] ® b)
let ?pr; = Xa b. ra] - (a ® t[b])
show elementary-category-with-binary-products C ?prg ¢pry
proof
fix a b
assume a: ide ¢ and b: ide b
show 0: cod (?pro a b) = b
by (metis a arr-tensor b cod-comp cod-tensor ide-char in-homE lunit-in-hom
seql trm-simps(1,3))
show 1: cod (?pr1 a b) = a
by (metis a arr-tensor b cod-comp cod-tensor ideD(1,3) in-homE runit-in-hom
seql trm-simps(1,3))
show span (?pry a b) (?pro a b)
by (metis 0 1 a arr-cod-iff-arr b dom-cod dom-comp dom-tensor ideD(1) trm-simps(1—2))
next
fix fg
assume fg: span f g
show 3!I. 2pry (cod f) (cod g) - L =f A ?pro (cod f) (cod g) - 1l =g
proof
show 1: ?pry (cod f) (cod g) - (f ® g) - d[dom f] = f A
pro (cod f) (cod g) - (f @ g) - dldom f] = g
proof
show ?pry (cod f) (cod g) - (f @ g) - d[dom f] = f
proof —
have ?pry (cod f) (cod g) - (f ® g) - d[dom f] =
MC .runit (cod f) - (MC.tensor (cod f) t[cod g] - (f ® g)) - d[dom f]

188

by (simp add: fg comp-assoc runit-agreement)
also have ... = MC.runit (cod f) - (MC.tensor f Z - (dom f & t[dom g])) - d[dom f]

using fg
by (simp add: comp-arr-dom comp-cod-arr interchange trm-naturality)
also have ... = (MC.runit (cod f) - MC.tensor f Z') - (dom f ® t[dom g]) - d[dom f]

using comp-assoc by simp
also have ... = f - %pry (dom f) (dom g) - d[dom f]

using MC'.runit-naturality T-agreement fg comp-assoc runit-agreement by force
also have ... = f

using fg comp-arr-dom comp-assoc prj0-dup runit-agreement by fastforce
finally show ?thesis by blast
qed
show ?pro (cod f) (cod g) - (f ® g) - d[dom f] = g
proof —
have ?pry (cod f) (cod g) - (f ® g) - d[dom f] =
MC . lunit (cod g) - (MC.tensor t[cod f] (cod g) - (f ® g)) - d[dom f]

by (simp add: fg comp-assoc lunit-agreement)

also have ... = MC.lunit (cod g) - (MC.tensor I g - (t[dom f] ® dom g)) - d[dom f]
using fg
by (simp add: comp-arr-dom comp-cod-arr interchange trm-naturality)
also have ... = (MC.lunit (cod g) - MC.tensor T g) - (t[dom f] ® dom g) - d[dom f]
using comp-assoc by simp
also have ... = g - ?prg (dom f) (dom g) - d[dom f]
using MC'.lunit-naturality T-agreement fg comp-assoc lunit-agreement by force
also have ... = ¢

using fg comp-arr-dom comp-assoc prjl-dup lunit-agreement by fastforce
finally show ?thesis by blast
qed
qed
fix [
assume [: ?pry (cod f) (cod g) - L= f N ?prg (cod f) (cod g) -l =g
show [= (f ® g) - d[dom f]
proof —
have 2: «l: dom f — cod f ® cod g»
by (metis 1 arr-iff-in-hom cod-comp cod-tensor dom-comp fq l seqFE)
have [= ((?pr1 (cod f) (cod g) @ ?pro (cod f) (cod g)) - d[cod f ® cod g]) - 1
using fg 2 tuple-prj [of cod f cod g] lunit-agreement runit-agreement comp-cod-arr

by auto

also have ... = (%pry (cod f) (cod g) ® Zpro (cod f) (cod g)) - d[cod f ® cod g] - 1
using comp-assoc by simp

also have ... = ((?pr1 (cod f) (cod g) & ?pro (cod f) (cod g)) - (I ® 1)) - d[dom f]

using 2 dup-naturality [of] comp-assoc by auto

also have ... = (f ® g) - d[dom f]
using fg [interchange [of ?pr1 (cod f) (cod g) | ?pro (cod f) (cod g)] by simp

finally show ?thesis by blast

qed
qed
qed
qed

189

lemma induces-elementary-category-with-binary-productspca c:
shows elementary-category-with-binary-products C
(Aa b. 1b] - (t[a] ® b)) (Aa b. r[a] - (a ® t[D]))

sublocale cartesian-monoidal-category C T « ¢
proof
show terminal MC.unity
by (simp add: T-agreement terminal-one)
show Aa b t, tp. [ide a; ide b; «ty : a — MC.unity»; «tp : b — MC.unity»] =
has-as-binary-product a b
(MC.runit a - MC .tensor a tp) (MC.lunit b - MC.tensor t, b)
by (metis ECBP.has-as-binary-product T-simp T-agreement arrl ideD(1)
lunit-agreement runit-agreement trm-eql)
qged

lemma induces-cartesian-monoidal-categorygpc v c:
shows cartesian-monoidal-category C T o ¢

end

locale diagonal-functor =
C': category C +
CC" product-category C C
for C :: 'a comp
begin

abbreviation map
where map f = if C.arr f then (f, f) else CC.null

lemma is-functor:
shows functor C CC.comp map

using map-def by unfold-locales auto

sublocale functor C CC.comp map
using is-functor by simp

end

context cartesian-monoidal-category
begin

sublocale A: diagonal-functor C ..
interpretation ToA: composite-functor C CC.comp C A.map T ..

sublocale §: natural-transformation C C map <T o A.map> dup

190

proof
show Af. = arr f = d[f] = null
using ECC.tuple-ext by blast
show Af. arr f = arr d[f]
using dup-def by simp
show Af. arr f = ToA.map f - d[dom f] = d[f]
using FECC.tuple-expansion prod-eq-tensor by force
show Af. arr f = d[cod f] - map f = d[f]
by (simp add: comp-cod-arr dup-def)
qged

end

5.4 Cartesian Monoidal Category from Cartesian Category

A cartesian category extends to a cartesian monoidal category by using the product
structure to obtain the various canonical maps.

context elementary-cartesian-category
begin

interpretation CC: product-category C C ..
interpretation CCC': product-category C CC.comp ..
interpretation T binary-functor C C C Prod
using binary-functor-Prod by simp
interpretation T: binary-endofunctor C' Prod ..
interpretation ToTC: functor CCC.comp C T.ToTC
using T.functor-ToTC by auto
interpretation ToCT: functor CCC.comp C T.ToCT
using T.functor-ToCT by auto

interpretation a: natural-isomorphism CCC.comp C T.ToTC T.ToCT «
using a-naturalityisomorphism by blast

interpretation L: functor C' C «<\f. Prod (cod ¢, f)»
using unit-is-terminal-arr T.fixing-ide-gives-functor-1 by simp
interpretation L: endofunctor C «<A\f. Prod (cod ¢, f)» ..
interpretation 1: transformation-by-components C C
(Af. Prod (cod v, f)» map <\a. pr0 (cod t) a»
using unit-is-terminal-arr
by unfold-locales auto
interpretation 1: natural-isomorphism C C «\f. Prod (cod v, f)» map l.map
using l.map-simp-ide inverse-arrows-lunit ide-one
by unfold-locales auto
interpretation L: equivalence-functor C' C «\f. Prod (cod t, f)»
using l.natural-isomorphism-azxioms naturally-isomorphic-def
L.isomorphic-to-identity-is-equivalence
by blast

191

interpretation R: functor C' C «<\f. Prod (f, cod v))
using unit-is-terminal-arr T.fixing-ide-gives-functor-2 by simp
interpretation R: endofunctor C<\f. Prod (f, cod i) .
interpretation o: transformation-by-components C C
(Af. Prod (f, cod t)» map <Xa. p1]a, cod t]»
using unit-is-terminal-arr
by unfold-locales auto
interpretation o: natural-isomorphism C C <\f. Prod (f, cod ¢)> map o.map
using o.map-simp-ide inverse-arrows-runit ide-one
by unfold-locales auto
interpretation R: equivalence-functor C' C «\f. Prod (f, cod v)»
using p.natural-isomorphism-azrioms naturally-isomorphic-def
R.isomorphic-to-identity-is-equivalence
by blast

interpretation MC': monoidal-category C Prod o t
using ide-one t-is-iso pentagon comp-assoc a-simp-ide comp-cod-arr
by unfold-locales auto

lemma induces-monoidal-categorygpcco:
shows monoidal-category C Prod « ¢

lemma unity-agreement:
shows MC.unity = 1
using ide-one by simp

lemma assoc-agreement:
assumes ide a and ide b and ide ¢
shows MC.assoc a b ¢ = a[a, b,]
using assms assoc-def a-simp-ide by auto

lemma assoc’-agreement:
assumes ide a and ide b and ide ¢
shows MC.assoc’ a b ¢ = a=[a, b, (]
using assms inverse-arrows-assoc inverse-unique «-simp-ide by auto

lemma runit-char-egn:

assumes ide a

shows r[a] ® 1 = (a ® ¢) - ala, 1, 1]
using assms ide-one assoc-def comp-assoc prod-tuple comp-cod-arr
by (intro pr-joint-monic [of a 1 r[a] ® 1 (a ® ¢) - ala, 1, 1]]) auto

lemma runit-agreement:

assumes ide a

shows MC.runit a = r[a]
using assms unity-agreement assoc-agreement MC .runit-char(2) runit-char-eqn ide-one
by (metis (no-types, lifting) MC.runit-eql fst-conv runit-in-hom snd-conv)

192

lemma lunit-char-eqn:
assumes ide a
shows 1 ® l[a] = (1t ® a) - a~![1, 1, q]
proof (intro pr-joint-monic [of 1 a 1 ® 1[a] (t ® a) - a~[1, 1, a]])
show ide a by fact
show ide 1
using ide-one by simp
show seq 1[a] (1 ® 1[a])
using assms ide-one by simp
show 1[a] - (1 ® 1[a]) =1[a] - (t ® a) - a71[1, 1, q]
using assms ide-one assoc’-def comp-assoc prod-tuple comp-cod-arr by simp
show p1[1, a] - prod 1 (lunit a) = p1[1, a] - prod ¢ a - assoc’ 1 1 a
using assms ide-one assoc’-def comp-cod-arr prod-tuple pr-naturality
apply simp
by (metis (full-types) cod-pr0 cod-prl elementary-category-with-binary-products.ide-prod
elementary-category-with-binary-products-axioms pr-simps(1—2,4—5) trm-naturality
trm-one)
qged

lemma lunit-agreement:
assumes ide a
shows MC.lunit a = 1[d]
by (metis (no-types, lifting) MC.lunit-eql assms assoc’-agreement fst-conv ide-one
lunit-char-eqn lunit-in-hom snd-conv unity-agreement)

interpretation CMC: cartesian-monoidal-category C Prod o
proof
show terminal MC.unity
by (simp add: terminal-one unity-agreement)
fix abt, tp
assume a: ide a and b: ide b
and t,: «t, : a = MC.unity» and tp: «tp : b — MC.unity»
have 0: pola, b] = MC.lunit b - MC .tensor t[a] b
by (metis (no-types, lifting) a b ide-char cod-pr0 comp-cod-arr lunit-agreement
pr-naturality(1) pr-simps(1) prod.sel(1—2) trm-simps(1—3))
have I: pi[a, b] = MC.runit a - MC.tensor a t[b)
by (metis (no-types, lifting) a b cod-pri comp-cod-arr ide-char pr-naturality(2)
pr-simps(4) prod.sel(1—2) runit-agreement trm-simps(1—3))
have 2: t[a] = t, A t[b] =
using a b t, tp terminal-arr-unique trm-eql unity-agreement by metis
show has-as-binary-product a b (MC.runit a - MC.tensor a tp) (MC.lunit b - MC.tensor
ta b)
using a b 0 1 2 has-as-binary-product by force
qed

lemma extends-to-cartesian-monoidal-categorygco:
shows cartesian-monoidal-category C Prod o ¢

193

lemma trm-agreement:
assumes ide a
shows CMC' .the-trm a = t[a
by (metis assms CMC'.extends-to-elementary-category-with-terminal-objectc o
elementary-category-with-terminal-object.trm-eql trm-in-hom unity-agreement)

lemma pr-agreement:
assumes ide ¢ and ide b
shows CMC.prg a b = pola, b] and CMC.pry a b = pi[a, b]
proof —
show CMC.prg a b = pola, b]
unfolding CMC.pry-def
using assms(1—2) lunit-agreement pr-expansion(1) trm-agreement by auto
show CMC.pri a b = pi|a, b]
unfolding CMC'.pri-def
using assms(1—2) pr-expansion(2) runit-agreement trm-agreement by force
qed

lemma dup-agreement:

assumes ide a

shows CMC.dup a = d[a]

by (metis (no-types, lifting) CMC.ECC .tuple-eql assms ideD(1) pr-agreement(1—2) pr-dup(1—2))

end

5.5 Cartesian Monoidal Category from Elementary Carte-
sian Category

context elementary-cartesian-category
begin

interpretation MC: monoidal-category C' Prod « t
using induces-monoidal-categorypcc by blast

lemma triangle:
assumes ide ¢ and ide b
shows (a ® 1[b]) - ala, 1, b] =r[a] ® b
using assms MC .triangle [of a b] assoc-agreement ide-one lunit-agreement
runit-agreement unity-agreement fst-conv snd-conv
by (metis (no-types, lifting))

lemma induces-elementary-cartesian-monoidal-categorygco:
shows elementary-cartesian-monoidal-category (-) prod 1 lunit runit assoc trm dup
using ide-one inverse-arrows-lunit inverse-arrows-runit inverse-arrows-assoc
interchange lunit-naturality runit-naturality assoc-naturality
triangle pentagon comp-assoc trm-one trm-naturality

194

in-homlI prod-tuple isol arr-dom MC'.tensor-in-homl comp-arr-dom comp-cod-arr
apply unfold-locales
apply simp-all
apply blast
apply blast
by meson

end

context cartesian-category
begin

interpretation ECC: elementary-cartesian-category C
some-pr0 some-prl some-terminal some-terminator
using exrtends-to-elementary-cartesian-category by simp
lemma extends-to-cartesian-monoidal-categorycc:
shows cartesian-monoidal-category C ECC.Prod ECC.ac ECC.¢

using ECC.extends-to-cartesian-monoidal-cateqgorypcc by blast

end

end

195

Bibliography

[1] J. Bénabou. Catégories avec multiplication. C. R. Acad. Sci. Paris, 258:1887 — 1890,
1963.

[2] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor Categories, volume 205 of
Mathematical Surveys and Monographs. American Mathematical Society, 2015.

[3] G. M. Kelly. On MacLane’s conditions for coherence of natural associativities, com-
mutativities, etc. Journal of Algebra, 1:397 — 402, 1964.

[4] S. MacLane. Natural associativity and commutativity. Rice. Univ. Stud., 49:28 — 46,
1963.

[5] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[6] E. W. Stark. Category theory with adjunctions and limits. Archive of Formal Proofs,
June 2016. http://isa-afp.org/entries/Category3.shtml, Formal proof development.

196

http://isa-afp.org/entries/Category3.shtml

	Introduction
	Monoidal Category
	Monoidal Category
	Elementary Monoidal Category
	Strict Monoidal Category
	Opposite Monoidal Category
	Dual Monoidal Category
	Monoidal Language
	Coherence

	Monoidal Functor
	Strict Monoidal Functor

	The Free Monoidal Category
	Syntactic Construction
	Proof of Freeness
	Strict Subcategory

	Cartesian Monoidal Category
	Symmetric Monoidal Category
	Cartesian Monoidal Category
	Elementary Cartesian Monoidal Category
	Cartesian Monoidal Category from Cartesian Category
	Cartesian Monoidal Category from Elementary Cartesian Category

