An Isabelle/HOL Formalization of the Modular Assembly Kit

for Security Properties

Oliver Bracevac, Richard Gay, Sylvia Grewe,
Heiko Mantel, Henning Sudbrock, Markus Tasch

Abstract

The “Modular Assembly Kit for Security Properties” (MAKS) is a framework for both the
definition and verification of possibilistic information-flow security properties at the specification-
level. MAKS supports the uniform representation of a wide range of possibilistic information-
flow properties and provides support for the verification of such properties via unwinding results
and compositionality results. We provide a formalization of this framework in Isabelle/HOL.

Contents

1

2

Introduction
Basic Definitions

System Specification
3.1 Event Systems
3.2 State-Event Systems L

Security Specification

4.1 Views & Flow Policies e
4.2 Basic Security Predicates Lo
4.3 Information-Flow Properties
4.4 Property Library

Verification

5.1 Basic Definitions Lo

5.2 Taxonomy Results

5.3 Unwinding e
5.3.1 Unwinding Conditions L o
5.3.2 Auxiliary Results
5.3.3 Unwinding Theorems

5.4 Compositionality e
5.4.1 Auxiliary Definitions & Results o000
5.4.2 Generalized Zipping Lemma oo
5.4.3 Compositionality Results o oo

13
13
18

24
24
26
37
37

1 Introduction

This is a formalization of the Modular Assembly Kit for Security Properties (MAKS) [2, 3] in
its version from [3]. We provide a more detailed explanation on how key concepts of MAKS are
formalized in Isabelle/HOL in [1].

2 Basic Definitions

In the following, we define the notion of prefixes and the notion of projection. These definitions are
preliminaries for the remaining parts of the Isabelle/HOL formalization of MAKS.

theory Prefix
imports Main
begin

definition prefiz :: ‘e list = 'e list = bool (infix] «X» 100)
where
(i1 < 12) = (313. 11 @13 = 12)

definition prefizclosed :: (e list) set = bool
where
prefizclosed tr = (V11 € tr.VI2.12 211 — 12 € tr)

lemma empty-prefiz-of-all: [| <1
using prefiz-def [of [| I] by simp

lemma empty-trace-contained: [prefixclosed tr ; tr # {} | =[] € tr
proof —
assume I: prefizclosed tr and
2: tr # {}
then obtain /7 where I1 € tr
by auto
with 7 have V2. 12 <11 — 12 € tr
by (simp add: prefixclosed-def)

thus [] € tr
by (simp add: empty-prefiz-of-all)
qed

lemma transitive-prefiz: [11 <12 ;12 18] =11 <13
by (auto simp add: prefiz-def)

end

theory Projection
imports Main
begin

definition projection:: ‘e list = ‘e set = e list (infixl <> 100)
where
11 E=filter (Azx.z€E)I

lemma projection-on-union:
NMY==I11XUuY)=11X
proof (induct I)
case Nil show ?case by (simp add: projection-def)
next
case (Cons a b) show ?case
proof (cases a € Y)
case True from Consshow a € Y = (a # b) | (XU Y)=(a# b) 1 X
by (simp add: projection-def)
next
case False from Consshow a ¢ ¥ = (a # b) 1 (XU Y)=(a#b)1 X
by (simp add: projection-def)

qed
qed
lemma projection-on-empty-trace: [| 1 X =[] by (simp add: projection-def)
lemma projection-to-emptyset-is-empty-trace: 1 1{} = [| by (simp add: projection-def)

lemma projection-idempotent: | 1 X= (1 1X) 1X by (simp add: projection-def)

lemma projection-empty-implies-absence-of-events: 1 1 X = [= X N (set 1) = {}
by (metis empty-set inter-set-filter projection-def)

lemma disjoint-projection: X N Y ={} = (11 X)1 Y =]
proof —
assume X-Y-disjoint: X N'Y = {}
show (I 1 X) 1 Y =[] unfolding projection-def
proof (induct I)
case Nil show ?case by simp
next
case (Cons z zs) show ?Zcase
proof (cases z € X)
case True
with X-Y-disjoint have = ¢ Y by auto
thus [z+[z+2z # zs .z € X] . z € Y] =[] using Cons.hyps by auto
next

case Fulse show [z [z<2z # xs .z € X] . ¢ € Y] = || using Cons.hyps False by auto

qed
qed
qed

lemma projection-concatenation-commute:
(lrar)y1x=>111X)Q (21 X)
by (unfold projection-def, auto)

lemma projection-subset-eq-from-superset-eq:
(s 1 (XU Y)) = (ys] (XU ¥)) = ((ss] X) = (ys | X))
(is (?L1 = ?L2) = (?L3 = ?L4))
proof —
assume prem: ?L1 = ?L2
have ?L1 1 X = ?L3 AN ?L2 | X = 9L}
proof —
have A a. (c€e X Vae Y)Na€ X) = (a € X)
by auto
thus %thesis
by (simp add: projection-def)
qed
with prem show ?thesis
by auto
qed

lemma list-subset-iff-projection-neutral: (set 1 C X) = ((11 X) = 1)
(is ?A = ?B)
proof —
have A — “B
proof —
assume ?A
hence Az. z € (setl) = z € X
by auto
thus %thesis
by (simp add: projection-def)
qed
moreover
have B — ?4
proof —
assume ¢B
hence (set (11 X)) = set
by (simp add: projection-def)
thus %thesis
by (simp add: projection-def, auto)
qed
ultimately show ?thesis ..
qed

lemma projection-split-last: Suc n = length
Fpra(zeXANT=0Qz]QaAal
proof —

assume Suc-n-is-len-7X: Suc n = length (1 1 X)

e
I
>\/
3

= length (8 @Q o) 1 X))

e

let ?L =71 X
let ?2RL = filter Az . z € X) (rev T)

have Suc n = length YRL
proof —
have rev ?L = ?RL
by (simp add: projection-def, rule rev-filter)
hence rev (rev L) = rev ?RL ..
hence 7L = rev YRL
by auto
with Suc-n-is-len-TX show ?thesis
by auto
qged
with Suc-length-conv[of n RL] obtain z zs
where RL = ¢ # s
by auto
hence z # xs = RL
by auto

from Cons-eq-filterD[OF this] obtain reva revf
where (rev 7) = reva @ z # revf
and reva-no-z: Va € set reva. a ¢ X
and z-in-X: z € X

by auto

hence rev (rev 7) = rev (reva @ z # revf)
by auto

hence 7 = (rev revf) @Q [z] @ (rev reva)
by auto

then obtain S «
where 7-is-fza: T = 5 Q [z] Q
and a-is-revreva: a = (rev reva)
and S-is-revrevB: B = (rev revf)
by auto
hence a-no-z: a1 X =[]
proof —
from a-is-revreva reva-no-z have Va € set a. a ¢ X
by auto
thus %thesis
by (simp add: projection-def)
qed

have n = length (8 Q «) 1 X)
proof —
from a-no-z have aX-zero-len: length (a1 X) = 0
by auto

from z-in-X have xzX-one-len: length ([z] 1 X) = 1
by (simp add: projection-def)

from 7-is-Bza have length ?L = length (81 X) + length ([z] 1 X) + length (a1 X)
by (simp add: projection-def)

with aX-zero-len have length ?L = length (8 1 X) + length ([z] 1 X)
by auto
with zX-one-len Suc-n-is-len-TX have n = length (81 X)
by auto
with aX-zero-len show ?thesis
by (simp add: projection-def)
qed
with z-in-X 7-is-fza a-no-r show ?thesis
by auto
qed

lemma projection-rev-commute:
rev (11 X)=(revl) 1 X
by (induct I, simp add: projection-def, simp add: projection-def)

lemma projection-split-first: [(11 X) =z # azs] =T af. (r=aQz] @ Aa]l X =)
proof —
assume 7X-is-z-xs: (11 X) =z # xs
1

hence 0 # length (7 1 X)
by auto

hence 0 # length (rev (7 1 X))
by auto

hence 0 # length ((rev 7) 1 X)
by (simp add: projection-rev-commute)
then obtain n where Suc n = length ((rev 7) 1 X)
by (auto, metis Suc-pred length-greater-0-conv that)
from projection-split-last|OF this] obtain 38’ z' o’
where z’-in-X: 2’ € X
and revr-is-B'z'a’ rev T = B’ Q [z] @ o’
and o'X-empty: o' 1 X = |]
by auto
from revr-is-3'z'a’ have rev (rev 7) = rev (8’ Q [z] @ o) ..
hence 7-is-reva’-z"-revB’: T = rev o’ @ [z] @ rev B’
by auto
moreover
from o'X-empty have reva’X-empty: rev o' 1 X = ||
by (metis projection-rev-commute rev-is-Nil-conv)
moreover
note z’-in-X
ultimately have (71 X) = z' # ((rev 8') 1 X)
by (simp only: projection-concatenation-commute projection-def, auto)
with 7 X-is-z-zs have z = z’
by auto
with 7-is-reva’-z’-rev’ have 1-is-reva’-z-revB’: T = rev o’ @Q [z] @ rev B’
by auto
with reva’X-empty show ?thesis
by auto
qed

lemma projection-split-first-with-suffix:
[T X)=z#zs]=F ab. (tr=a@Qz]@Aa]l X=[]ABT]X=nuzs)
proof —
assume tau-proj-X: (11 X) = ¢ # xs
show %thesis
proof —
from tau-proj-X have z-in-X: x € X
by (metis IntE inter-set-filter list.set-intros(1) projection-def)
from tau-proj-X have J af.1=a@Qz]Q@FAa] X =]
using projection-split-first by auto
then obtain o § where tau-split: 7 = « Q [z] Q 8
and X-empty-prefiz:a 1 X =[]
by auto
from tau-split tau-proj-X have (o Q [z] @ 8) 1 X =z # wxs
by auto
with X-empty-prefiz have ([z] Q@ 8) 1 X =z # zs
by (simp add: projection-concatenation-commute)
hence (z # 8) | X =z # s
by auto
with z-in-X have 81 X = zs
unfolding projection-def by simp
with tau-split X-empty-prefix show ?thesis
by auto
qed
qed

lemma projection-split-arbitrary-element:
[f1X=(a@[z]@B)] X;z€ X]
= 3Ja'B. . (r=ad’Q@z]@B' A1 X=al XAB'1X=81X)
proof —
assume 7] X = (a@Qz] @B) 1 X
and z € X
{
fix n
have [t 1 X = (¢ @ [z] @) | X; z € X; n = length(a]X)]
= Ja'B. . (r=a’'Qr]@B AN’ X=alXAB'1X=81X)
proof (induct n arbitrary: T o)
case (
hence a]X = ||
unfolding projection-def by simp
with 0.prems(1) 0.prems(2) have 71X = z # 51X
unfolding projection-def by simp

with «a]X = []> show Zcase
using projection-split-first-with-suffix by fastforce
next

case (Suc n)

from Suc.prems(1) have 71 X=alX Q ([z] @ §) 1X
using projection-concatenation-commute by auto

from Suc.prems(3) obtain z’ zs’ where a 1 X= =’ #zs’

and z' € X
by (metis filter-eq-ConsD length-Suc-conv projection-def)
then obtain a1 a2 where a = a1 @ [:1:’] Q as
and a11X = ||
and a2 X = zs’
using projection-split-first-with-suffix by metis
with <z’ € X» Suc.prems(1) have 71 X=z' # (a2 @Q [z] @ 8) 1X
unfolding projection-def by simp
then obtain ¢; t; where 7= t; @ [z/] @ t,
and t11X = ||
and tz]X = (a2 @ [JJ] @ 5) WX
using projection-split-first-with-suffix by metis

from Suc.prems(3) «a 1X=z' # zs"» «a = a1 Q [z'] Q a2» a11X = [(a2l X = zs"
have n=length(a21X)
by auto

(az @ [z] @ B) 1X)

with Suc.hyps(1) Suc.prems(2) «t21X =
Q@ 3

obtain t»’ 3’ where to=ty’ @ [1z]
and 21X = a2 X
and 31X = 81X

using projection-concatenation-commute by blast

let 2a’=t; @Q [z] @ t2’ and ?8'=t;’
from «t= t; Q [z2] @ t2) <to=t2’ Q [z] @ t3" have 7=2a'Q[r]@?5’
by auto
moreover
from (a1 X=z"# 25 X = @’ € X> 21X = a21X> <a2]X = a5’
have 201X = aolX
using projection-concatenation-commute unfolding projection-def by simp
ultimately
show ?case using <t3"1X = 81X
by blast
qed
}
with«t 1 X = (¢ @ [2] @ 8) | X» « z € X)» show ?thesis

by simp
qed
lemma projection-on-intersection: | | X =[] =11 (X NY) =]
(is 2L1 = [| = ?L2 =)
proof —

assume ?L1 =[]
hence set ?L1 = {}
by simp
moreover
have set ?L2 C set ?L1
by (simp add: projection-def, auto)
ultimately have set L2 = {}
by auto
thus %thesis
by auto
qed

lemma projection-on-subset: [Y C X; 11 X =[] =11Y =]
proof —
assume subset: Y C X
assume proj-empty: 11 X =[]
hence [1 (X NY) =]
by (rule projection-on-intersection)
moreover
from subset have X N'Y =Y
by auto
ultimately show ?thesis
by auto
qed

lemma projection-on-subset2: [set I C L; 11 X' =[; XNLC X'] =11 X =
proof —

assume setl-subset-L: set | C L

assume [-no-X" 11 X' = ||

assume X-inter-L-subset-X": X N L C X'

from X-inter-L-subset-X' l-no-X"have [| (X N L) = |]
by (rule projection-on-subset)

moreover

have [1 (X NL)=(1L)1X
by (simp add: Int-commute projection-def)

moreover

note setl-subset-L

ultimately show ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed

lemma non-empty-projection-on-subset: X C Y AL 1Y =0L1Y= L1 X=01X
by (metis projection-subset-eq-from-superset-eq subset-Un-eq)

lemma projection-intersection-neutral: (set Il C X) = (11 (X NY)=11Y)
proof —
assume set | C X
hence (I 1 X) =1
by (simp add: list-subset-iff-projection-neutral)
hence (I1 X)]1Y=11Y
by simp
moreover
have (11 X)1Y=11(XNY)
by (simp add: projection-def)
ultimately show ?thesis
by simp
qed

lemma projection-commute:
1X)1Yy=01y)1X
by (simp add: projection-def conj-commute)

lemma projection-subset-elim: ¥ C X = (11 X)1 Y =11Y
by (simp only: projection-def, metis Diff-subset list-subset-iff-projection-neutral
minus-coset-filter order-trans projection-commute projection-def)

lemma projection-sequence: (zs 1 X) 1Y = (zs1 (X N Y))
by (metis Int-absorb inf-sup-ord(1) list-subset-iff-projection-neutral
projection-intersection-neutral projection-subset-elim)

fun merge :: ‘e set = ‘e set = ‘e list = e list = e list

where
merge A B[] t2 = t2 |
merge A Btl [| = t1 |

merge A B (el # t1') (e2 # t2') = (if el = e2 then
el # (merge A B t1't2’)
else (if el € (AN B) then
e2 # (merge A B (el # t1') t27)
else el # (merge A B t1' (e2 # t2))))

lemma merge-property: [set t1 C A; set t2 C B;t1 | B=1t21 A]
= lett = (merge ABt1t2)in (t1 A=tl ANt] B=12 N sett C ((set t1) U (set t2)))
unfolding Let-def
proof (induct A B t1 t2 rule: merge.induct)
case (I A B t2) thus ?case
by (metis Un-empty-left empty-subsetl list-subset-iff-projection-neutral
merge.simps(1) set-empty subset-iff-psubset-eq)
next
case (2 A B t1) thus ?case
by (metis Un-empty-right empty-subset! list-subset-iff-projection-neutral
merge.simps(2) set-empty subset-refl)
next
case (3 A B el t1' e2t2') thus ?case
proof (cases)
assume el-is-e2: el = e2

note el-is-e2
moreover
from 3(4) have set t1' C A
by auto
moreover
from 3(5) have set t2' C B
by auto
moreover
from el-is-e2 3(4—6) have t1'1 B=12"1 A

10

by (simp add: projection-def)
moreover
note 3(1)
ultimately have indi: merge A Bt1't2'1 A = t1’
and ind2: merge A Bt1't2' |1 B = t2’
and ind3: set (merge A B t1' t2') C (set t1') U (set t2)
by auto

from el-is-e2 have merge-eq:
merge A B (el # t1') (e2 # t2') = el # (merge A B t1' t2)
by auto

from 3(4) indl have goall:
merge A B (el # t1') (e2 # t2) 1 A = el # t1’
by (simp only: merge-eq projection-def, auto)
moreover
from el-is-e2 3(5) ind2 have goal2:
merge A B (el # t1') (e2 # t2) 1 B = e2 # 2’
by (simp only: merge-eq projection-def, auto)
moreover
from ind3 have goal3:
set (merge A B (el # t1') (e2 # t2')) C set (el # t1') U set (e2 # t2)
by (simp only: merge-eq, auto)
ultimately show ?thesis
by auto
next
assume el-isnot-e2: el # e2
show ?thesis
proof (cases)
assume el-in-A-inter-B: el € AN B

from 3(6) el-isnot-e2 el-in-A-inter-B have e2-notin-A: e2 ¢ A
by (simp add: projection-def, auto)

note el-isnot-e2 el-in-A-inter-B 3(4)

moreover

from 3(5) have set t2' C B
by auto

moreover

from 3(6) el-isnot-e2 el-in-A-inter-B have (el # t1')1 B=1t2"1 A
by (simp add: projection-def, auto)

moreover

note 3(2)

ultimately have indi: merge A B (el # t1') t2'1 A = (el # t1')
and ind2: merge A B (el # t1') t2'1 B = t2’
and ind3: set (merge A B (el # t1') t2') C set (el # t1') U set t2'
by auto

from el-isnot-e2 el-in-A-inter-B

have merge-eq:
merge A B (el # t1') (e2 # t2') = e2 # (merge A B (el # t1') t2)
by auto

11

from el-isnot-e2 indl e2-notin-A have goall:
merge A B (el # t1') (e2 # 12") 1 A= el # t1’
by (simp only: merge-eq projection-def, auto)

moreover

from 3(5) ind2 have goal2: merge A B (el # t1') (e2 # t2') 1 B = e2 # 12’
by (simp only: merge-eq projection-def, auto)

moreover

from 3(5) ind3 have goal3:
set (merge A B (el # t1') (e2 # t2')) C set (el # t1') U set (e2 # t2)
by (simp only: merge-eq, auto)

ultimately show ?thesis
by auto

next
assume el-notin-A-inter-B: el ¢ AN B

from 3(4) el-notin-A-inter-B have el-notin-B: el ¢ B
by auto

note el-isnot-e2 el-notin-A-inter-B

moreover

from 3(4) have set t1' C A
by auto

moreover

note 3(5)

moreover

from 3(6) el-notin-B have t1'1 B = (e2 # t2') 1 A
by (simp add: projection-def)

moreover

note 3(3)

ultimately have indi: merge A B t1' (e2 # t2') 1 A = t1’
and ind2: merge A B t1' (e2 # t2) | B = (e2 # t2)
and ind3: set (merge A B t1' (e2 # 12')) C set t1' U set (e2 # 127)
by auto

from el-isnot-e2 el-notin-A-inter-B
have merge-eq: merge A B (el # t1') (e2 # t2') = el # (merge A B t1' (e2 # t2))
by auto

from 3(4) indl have goall: merge A B (el # t1') (e2 # t2) 1 A = el # t1’
by (simp only: merge-eq projection-def, auto)

moreover

from ind2 el-notin-B have goal2:
merge A B (el # t1') (e2 # t2') | B = e2 # t2'
by (simp only: merge-eq projection-def, auto)

moreover

from 3(4) ind3 have goal3:
set (merge A B (el # t17) (e2 # t2')) C set (el # t1') U set (e2 # t27)
by (simp only: merge-eq, auto)

ultimately show ?%thesis
by auto

qed

12

qed
qed

end

3 System Specification

3.1 Event Systems

We define the system model of event systems as well as the parallel composition operator for event
systems provided as part of MAKS in [3].

theory FEventSystems

imports ../Basics/ Prefix ../ Basics/ Projection
begin

record ‘e ES-rec =

E-ES :: e set
I-ES :: e set
O-ES :: e set

Tr-ES :: (‘e list) set

abbreviation ESrecEES :: 'e ES-rec = 'e set
(«E-» [1000] 1000)

where

Epg = (E-ES ES)

abbreviation ESrecIES :: ‘e ES-rec = 'e set
(<I-> [1000] 1000)

where

]ES = (I—ES ES)

abbreviation ESrecOES :: ‘e ES-rec = e set
(<02 [1000] 1000)

where

Opg = (O-ES ES)

abbreviation ESrecTrES :: ‘e ES-rec = (e list) set
(«Tr-» [1000] 1000)

where

Trpg = (Tr-ES ES)

definition es-inputs-are-events :: ‘e ES-rec = bool
where
es-inputs-are-events ES = I pg C Epg

definition es-outputs-are-events :: ‘e ES-rec = bool
where

13

es-outputs-are-events ES = Opg C Egg

definition es-inputs-outputs-disjoint :: ‘e ES-rec = bool
where
es-inputs-outputs-disjoint ES = Ipg N Opg = {}

definition traces-contain-events :: 'e ES-rec = bool
where
traces-contain-events ES = V1 € Trpg. Ve € (setl). e € Egg

definition traces-prefizclosed :: 'e ES-rec = bool
where
traces-prefixclosed ES = prefixclosed Trpg

definition ES-valid :: e ES-rec = bool

where

ES-valid ES =
es-inputs-are-events ES N es-outputs-are-events ES
A es-inputs-outputs-disjoint ES N traces-contain-events ES
A traces-prefizclosed ES

definition total :: ‘e ES-rec = 'e set = bool
where
total ESE=FE C Egg N (V7 € Trgg. Ve € E. 7 Q [e] € Trgg)

lemma totality: [total ES E; t € Trgg; sett' CE] = tQ t' € Trgg
by (induct t' rule: rev-induct, force, simp only: total-def, auto)

definition composeES :: ‘e ES-rec = 'e ES-rec = 'e ES-rec
where
composeES ES1 ES2 =
(
E-ES = EESI U EESQ’
I-ES = (Igs1 — Ogsg) U (Igsz — Ogsi),
O-ES = (Ogs; — Igse) U (Opse — Igsy),
Tr-ES ={r . (11 Egsy) € Trgg; N (71 Eggg) € Trggs
A (set 7 C Eggr U Eggg)}
D

abbreviation composeESAbbrv :: ‘e ES-rec = ‘e ES-rec = 'e ES-rec
(- || -+[1000] 1000)

where

ES1 || ES2 = (composeES ES1 ES2)

definition composable :: ‘e ES-rec = 'e ES-rec = bool

where
composable ES1 ES2 = (Egg; N Egsg) € (Opss N Ipse) U (Ogse N Igsy))

14

lemma composeES-yields-ES:
[ES-valid ES1; ES-valid ES2 | = ES-valid (ES1 || ES2)
unfolding ES-valid-def
proof (auto)
assume ES1-inputs-are-events: es-inputs-are-events ES1
assume FES2-inputs-are-events: es-inputs-are-events ES2
show es-inputs-are-events (ES1 || ES2) unfolding composeES-def es-inputs-are-events-def
proof (simp)
have subgoalll: IESI — OESQ - EESI @] EE52
proof (auto)
fix x
assume = € Ipg;
with ES1-inputs-are-events show = € Epg;
by (auto simp add: es-inputs-are-events-def)
qed
have subgoall2: Ipgo — Opg; € Eggy U Eggo
proof (rule subsetl, rule Unl2, auto)
fix x
assume z € [pgy
with ES2-inputs-are-events show z € Epgy
by (auto simp add: es-inputs-are-events-def)
qed
from subgoalll subgoall?2
show Ipg; — Opse € Epgi U Epse A Ipse — Ops: © Epsi U Eggs -
qed
next
assume FESI1-outputs-are-events: es-outputs-are-events ES1
assume FES2-outputs-are-events: es-outputs-are-events ES2
show es-outputs-are-events (ES1 || ES2)
unfolding composeES-def es-outputs-are-events-def
proof (simp)
have subgoal21: OESI — IES? C EESI @] EESQ
proof (auto)
fix z
assume z € Oggy
with ES1-outputs-are-events show z € Epg;
by (auto simp add: es-outputs-are-events-def)
qed
have subgoal22: Opgs — Ipg; € Eggs U Eggs
proof (rule subsetl, rule Unl2, auto)
fix x
assume z € Oggo
with ES2-outputs-are-events show = € Eggo
by (auto simp add: es-outputs-are-events-def)
qed
from subgoal21 subgoal22
show Opgy — Igse © Epsi U Fgse A Opse — Igs1 © Epsi U EEgp -
qed
next

15

assume FESI-inputs-outputs-disjoint: es-inputs-outputs-disjoint ES1
assume ES2-inputs-outputs-disjoint: es-inputs-outputs-disjoint ES2
show es-inputs-outputs-disjoint (ES1 || ES2)
unfolding composeES-def es-inputs-outputs-disjoint-def
proof (simp)
have subgoal31:
{} € (Ugs1 — Opsz2 Y (Igse — Ogsi1)) N (Ogs; — Igse U (Ogse — 1Es1)
by auto
have subgoal32:
(Igs1 — Opsg U (Igsz — Ops1)) N (Ogsy — Igse U (Ogse — Tgsy)) € {}
proof (rule subsetl, erule IntE)
fix z
assume assl: z € Igg; — Oggo U (Igse — Ogsy)
then have ass1” 7 € Ips; — Opga V z € (Igse — Opsy)
by auto
assume ass2: ¢ € Opgg; — Igge U (Ogge — Igsy)
then have ass2"z € Opg; — Iggs V © € (Opge — Igs;)
by auto
note assl’
moreover {
assume leftl: € Igg; — Opge
note ass2’
moreover {
assume left2: © € Opg; — Ipgs
with left] have z€ (Iggs) N (Ogsy)
by (auto)
with ESI-inputs-outputs-disjoint have ze{}
by (auto simp add: es-inputs-outputs-disjoint-def)
}

moreover {
assume right2: z € (Ogse — I gsy)
with left! have ze (IESI - IESI)
by auto
hence ze{}
by auto
}

ultimately have ze{} ..
}
moreover {
assume rightl: z € Igge — Ofpgy
note ass2’
moreover {
assume left2: ¢ € Ogg; — Ipga
with right! have z€ (Igge — Igg9)
by auto
hence z€{}
by auto
}

moreover {
assume right2: = € (Ogge — Igg1)
with right! have z € (Igge N Opgo)
by auto

16

with ES2-inputs-outputs-disjoint have ze{}
by (auto simp add: es-inputs-outputs-disjoint-def)

ultimately have ze{} ..
}
ultimately show ze{} ..
qed

from subgoal31 subgoal32
show (Igg; — Ogse U (Igse — Ogs1)) N (Ogsy — Igse U (Ogse — Igs1)) = {}
by auto
qed
next
show traces-contain-events (ES1 || ES2) unfolding composeES-def traces-contain-events-def
proof (clarsimp)
fix e
assume e € set [
and set | C EE'S] U EESQ
then have e-in-union: e € Egg; U Eggs
by auto
assume e ¢ Epgy
with e-in-union show e € Fgg;
by auto
qed
next
assume FES1-traces-prefixclosed: traces-prefixclosed ES1
assume ES2-traces-prefirclosed: traces-prefixclosed ES2
show traces-prefizclosed (ES1 || ES2)
unfolding composeES-def traces-prefirclosed-def prefixclosed-def prefix-def
proof (clarsimp)
fix 1213
have lQlS’split: (l2 Q 13)] EESI = (ZQ W EES]) @ (13 1 EESI)
by (rule projection-concatenation-commaute)
assume (12 Q 13) | Egg; € Trgg;
with [213split have [2[3cattrace: (12 1 Eggy) Q (131 Eggy) € Trgsy
by auto
have theprefiz: (12 1 Egsy) = (121 Eggy) @ (I3 1 Egsy))
by (simp add: prefiz-def)
have prefixclosure: V esl € (Trggy). V es2. es2 = es] — es2 € (Trggy)
by (clarsimp, insert ES1-traces-prefizclosed, unfold traces-prefixclosed-def prefizclosed-def,
erule-tac x=es1 in ballE, erule-tac z=es2 in allE, erule impE, auto)
hence
(121 Egsy) @ (I3 1 Eggy)) € Trggy =V es2. es2 X ((12 1 Eggy) @ (I3 1 Eggsy))
—es2 € Trggy ..
with [213cattrace have V es2. es?2 < (12 1 Eggy) @ (I8 1 Eggy)) — es2 € Trgg;
by auto
hence (12 1 Eggy) X ((12 1 Egsy) @ (131 Eggy)) — (12 1 Eggy) € Trggy -
with theprefiz have goal51: (12 1 Eggy) € Trgsy
by simp
have lQlf))Split: (ZQ @ l3)] EESQ = (12 W EESQ) @ (l3] EESQ)
by (rule projection-concatenation-commaute)
assume (2 Q [3) | Eggs € Trpgs

17

with [213split have [2[3cattrace: (12 1 Epge) @ (I8 1 Eggs) € Trpse
by auto
have theprefiz: (12 1 Egge) = ((12 1 Egge) @ (13 1 Egg2))
by (simp add: prefiz-def)
have prefizclosure: V esl € Trpgy. Ves2. es?2 X es] — es2 € Trggy
by (clarsimp, insert ES2-traces-prefizclosed,
unfold traces-prefirclosed-def prefixclosed-def,
erule-tac x=esl in ballE, erule-tac x=es2 in allE, erule impFE, auto)
hence ((I2 1 Eggg) @ (I3 | Eggg)) € Trpse
=V es2.es2 2 (121 Egge) Q@ (131 Egge)) —> es2 € Trggo ..
with [213cattrace have V es2. es2 < (12 1 Egge) Q (I3 1 Egge)) — es2 € Trggo
by auto
hence (12 1 Eggg) =< ((12 1 Eggg) @ (131 Eggg)) — (12 1 Eggg) € Trggg -
with theprefiz have goal52: (12 1 Egss) € Trggs
by simp
from goal51 goal52 show goal5: 12 1 Eggy; € Trpgy AN 12 1 Egge € Trggs .-
qged
qed

end

3.2 State-Event Systems

We define the system model of state-event systems as well as the translation from state-event sys-
tems to event systems provided as part of MAKS in [3]. State-event systems are the basis for the
unwinding theorems that we prove later in this entry.

theory StateEventSystems

imports EventSystems
begin

record ('s, 'e) SES-rec =

S-SES :: s set
s0-SES :: s

E-SES :: e set
I-SES :: e set
O-SES :: e set

T-SES :: 's="'e —~'s

abbreviation SESrecSSES :: ('s, 'e) SES-rec = 's set
(¢S-» [1000] 1000)

where

Ssps = (S-SES SES)

abbreviation SESrecsOSES :: (s, 'e) SES-rec = 's
(<s0-» [1000] 1000)

where

s0gps = (s0-SES SES)

18

abbreviation SESrecESES :: ('s, 'e) SES-rec = 'e set
(<E-» [1000] 1000)

where

ESES = (E-SES SES)

abbreviation SESrecISES :: (s, 'e) SES-rec = ‘e set
(«I» [1000] 1000)

where

ISES = (I—SES SES)

abbreviation SESrecOSES :: ('s, 'e) SES-rec = e set
(0= [1000] 1000)

where

Osps = (O-SES SES)

abbreviation SESrecTSES :: (s, 'e) SES-rec = (s = ‘e = 's)
(«T-» [1000] 1000)

where

TSES' = (T—SES SES)

abbreviation TSESpred :: 's = ‘e = (’s, 'e) SES-rec = 's = bool
(t- —_ - [100,100,100,100] 100)

where

se—rgps s’ = (Tgpg s e = Some s')

definition s0-is-state :: ('s, 'e) SES-rec = bool
where
s0-is-state SES = s0gps € Sggs

definition ses-inputs-are-events :: ('s, 'e) SES-rec = bool
where
ses-inputs-are-events SES = Igpg C Eggpg

definition ses-outputs-are-events :: (s, 'e) SES-rec = bool
where
ses-outputs-are-events SES = Ogps C Eggs

definition ses-inputs-outputs-disjoint :: ('s, 'e) SES-rec = bool
where
ses-inputs-outputs-disjoint SES = Igpg N Ogps = {}

definition correct-transition-relation :: ('s, 'e) SES-rec = bool
where
correct-transition-relation SES =

Vzyz zy—rgpgz — ((z € Sgps) N (y € Eggg) A (2 € Ssgg))

definition SES-valid :: (s, 'e) SES-rec = bool
where
SES-valid SES =

s0-is-state SES N ses-inputs-are-events SES

19

A ses-outputs-are-events SES A ses-inputs-outputs-disjoint SES A
correct-transition-relation SES

primrec path :: ('s, 'e) SES-rec = 's = ‘e list — 's
where
path-empt: path SES s1 [] = (Some s1) |
path-nonempt: path SES s1 (e # t) =

(if (3s2. s1 e—>ggg s2)

then (path SES (the (T'ggpg sl e)) t)

else None)

abbreviation pathpred :: ‘s = 'e list = ('s, 'e) SES-rec = s = bool
(t- ==>_ - [100, 100, 100, 100] 100)

where

s t=>gpg s’ = path SES s t = Some s’

definition reachable :: (s, 'e) SES-rec = 's = bool
where
reachable SES s = (3t. s0gps t=>5ES S)

definition enabled :: ('s, 'e) SES-rec = 's = e list = bool
where
enabled SES s t = (3s'. s t=>ggg ')

definition possible-traces :: ('s, 'e) SES-rec = (e list) set
where
possible-traces SES = {t. (enabled SES sO0gpg t)}

definition induceES :: ('s, 'e) SES-rec = 'e ES-rec
where
induceES SES =

E-ES = Egpg,

I-ES = Iggg,

O-ES = Oggs,

Tr-ES = possible-traces SES
D

lemma none-remains-none : /\ s e. (path SES s t) = None
= (path SES s (t @ [e])) = None
by (induct t, auto)

20

lemma path-trans-single-neg:)\ s1. [s1 t==gpg s2; - (s2 e—>gpg sn)]
= - (s (t Q [e])=gEg sn)
by (induct t, auto)

lemma path-split-single: s1 (tQ[e])=gpg sn
= s’ sl t=gpg s’ Ns' e—rgpg sn
by (cases path SES sl t, simp add: none-remains-none,
stmp, rule ccontr, auto simp add: path-trans-single-neg)

lemma path-trans-single: N\s. [s t=>ggg s; s’ e—>gpg sn |
= s (t Q [e])=gEg sn
proof (induct t)
case Nil thus ?case by auto
next
case (Cons a t) thus ?case
proof —
from Cons obtain s’ where trans-s-a-s1": s a—>gpg s1'
by (simp, split if-split-asm, auto)
with Cons have s1' (¢t Q [e])=ggg sn
by auto
with trans-s-a-s1’ show ?thesis
by auto
qed
qed

lemma path-split: A\ sn. [s1 (t1 Q t2)=gpg sn |
= (3s2. (s1 t1=>gpg 52 N s2 t2=>ggg sn))
proof (induct t2 rule: rev-induct)
case Nil thus ?case by auto
next
case (snoc a t) thus ?case
proof —
from snoc have s1 (t1 Q ¢ Q [a])=>gpg sn
by auto
hence Jsn’. s1 (t1 @ t)=>gpg sn’ A sn’ a—rgpg sn
by (simp add: path-split-single)
then obtain sn’ where path-t1-t-trans-a:
s1 (t1 @ t)=>gpg sn’ A sn’ a—rgpg sn
by auto
with snoc obtain s2 where path-t1-t:
sl t1=>gpg s2 N s2 t—=>gpg sn’
by auto
with path-t1-t-trans-a have s2 (¢ Q [a])=ggg sn
by (simp add: path-trans-single)
with path-t1-t show ?thesis by auto
qed
qed

21

lemma path-trans:
NAsn. [s1 ll=gpg $2; s2 12=ggg sn]| = s1 (1 Q 12)=ggg sn
proof (induct 12 rule: rev-induct)
case Nil thus ?case by auto
next
case (snoc a 1) thus Zcase
proof —
assume path-l11: s1 ll=>gpg 52
assume s2 (IQ[a])==ggg sn
hence Jsn’. s2 I=>gpg sn’ A sn’ [a]=ggg sn
by (simp add: path-split del: path-nonempt)
then obtain sn’ where path-l-a: s2 l=>gpg sn’' A sn’ [a]|=>gpg sn
by auto
with snoc path-11 have path-11-I: s1 (I1Ql)=>gpg sn’
by auto
with path-l-a have sn’ a— gpg sn
by (simp, split if-split-asm, auto)
with path-11-l show sI (i1 Q| Q [a])=gpgg sn
by (subst append-assoc[symmetric|, rule-tac s'=sn’ in path-trans-single, auto)
qed
qed

lemma enabledPrefizSingle : [enabled SES s (1Q[e]) | = enabled SES s t
unfolding enabled-def
proof —
assume ass: 3s’. s (t Q [e])=gpg s’
from ass obtain s’ where s (¢ Q [¢])=gpg s’ ..
hence 3t". (s t=-gpg t') A (t' e—>ggg s')
by (rule path-split-single)
then obtain ¢’ where s t=—>gpg ¢’
by (auto)
thus 3s”. s t=gpg s’ ..
qed

lemma enabledPrefiz : | enabled SES s (t1 @ t2) | = enabled SES s t1
unfolding enabled-def
proof —
assume ass: 3s’. s (11 Q t2)=—>gpg s’
from ass obtain s’ where s (t1 @ {2)=>gpg s’ ..
hence 3t. (s t1=>gpg t A t 12=>gpg s')
by (rule path-split)
then obtain ¢ where s t1=-gpg t
by (auto)
then show Js’. s t1=gpg s’ ..
qed

22

lemma enabledPrefizSingleFinalStep : | enabled SES s (tQ[e]) | = 3 t' t". ¢t' e—>gpg t"
unfolding enabled-def
proof —
assume ass: 3s’. s (t Q [e])=ggg s’
from ass obtain s’ where s (¢ Q [¢])=gpg s’ ..
hence 3t'. (s t=>gpg t’) A (t' e—ggg s’
by (rule path-split-single)
then obtain ¢’ where ¢t e—gpg s’
by (auto)
thus 3t' t". t' e—>gpg t”’
by (auto)
qed

lemma induceES-yields-ES:
SES-valid SES = ES-valid (induceES SES)
proof (simp add: SES-valid-def ES-valid-def, auto)
assume SES-inputs-are-events: ses-inputs-are-events SES
thus es-inputs-are-events (induceES SES)
by (simp add: induceES-def ses-inputs-are-events-def es-inputs-are-events-def)
next
assume SES-outputs-are-events: ses-outputs-are-events SES
thus es-outputs-are-events (induceES SES)
by (simp add: induceES-def ses-outputs-are-events-def es-outputs-are-events-def)
next
assume SES-inputs-outputs-disjoint: ses-inputs-outputs-disjoint SES
thus es-inputs-outputs-disjoint (induceES SES)
by (simp add: induceES-def ses-inputs-outputs-disjoint-def es-inputs-outputs-disjoint-def)
next
assume SES-correct-transition-relation: correct-transition-relation SES
thus traces-contain-events (induceES SES)
unfolding induceES-def traces-contain-events-def possible-traces-def
proof (auto)
fixle
assume enabled-l: enabled SES s0gpg |
assume e-in-l: e € set |
from enabled-l e-in-l show e € Egpg
proof (induct | rule: rev-induct)
case Nil
assume e-in-empty-list: e € set [|
hence f: False
by (auto)
thus Zcase
by auto
next
case (snoc a)
from snoc.prems have [-enabled: enabled SES s0gpg !
by (simp add: enabledPrefizSingle)
show ?case
proof (cases e € (set 1))

23

from snoc.hyps l-enabled show e € set | = e € Egpg
by auto
show e ¢ set |l = e € Egpg
proof —
assume e ¢ set |
with snoc.prems have e-eq-a : e=a
by auto
from snoc.prems have 3 t t'. t a—rgpg t'
by (auto simp add: enabledPrefizSingle FinalStep)
then obtain ¢ t’ where t a—>ggg t’
by auto
with e-eq-a SES-correct-transition-relation show e € Egpg
by (simp add: correct-transition-relation-def)
qged
qed
qed
qed
next
show traces-prefizclosed (induceES SES)
unfolding traces-prefizclosed-def prefizclosed-def induce ES-def possible-traces-def prefiz-def
by (clarsimp simp add: enabledPrefiz)
qed

end

4 Security Specification

4.1 Views & Flow Policies

We define views, flow policies and how views can be derived from a given flow policy.
theory Views

imports Main
begin

record ‘e V-rec =

V i e set
N :: e set
C :: e set

abbreviation VrecV :: ‘e V-rec = 'e set
(<V-> [100] 1000)

where

Vo= (Vo)

abbreviation VrecN :: ‘e V-rec = ‘e set
(«<N-» [100] 1000)

where

Ny = (N)

24

abbreviation VrecC :: ‘e V-rec = ’e set
(«C-> [100] 1000)
where

Cv = (Cv)

definition VN-disjoint :: ‘e V-rec = bool
where
VN-disjoint v = Vy N Ny = {}

definition VC-disjoint :: ‘e V-rec = bool
where
VC-disjoint v = Vy N Cy = {}

definition NC-disjoint :: e V-rec = bool
where
NC-disjoint v= Ny N Cy = {}

definition V-valid :: ‘e V-rec = bool
where
V-valid v = VN-disjoint v A VC-disjoint v A NC-disjoint v

definition isViewOn :: ‘e V-rec = e set = bool
where
isViewOn V E = V-valid V A Vi, UNy U Cy = E

end

theory FlowPolicies
imports Views
begin

record 'domain FlowPolicy-rec =
D :: 'domain set
v-rel :: ("domain x 'domain) set
n-rel :: ("domain x 'domain) set
c-rel :: ("domain x 'domain) set

definition FlowPolicy :: 'domain FlowPolicy-rec = bool
where

FlowPolicy fp =
((v-rel fp) U (n-rel fp) U (c-rel fp) = ((D fp) x (D fp)))
A (v-rel fp) 0 (n-rel fp) = {}
A (v-rel fp) N (c-rel fp) = {}
A (n-rel fp) N (c-rel fp) = {}
A (Vd € (D fp). (d, d) € (v-rel fp))

type-synonym (‘e, ‘domain) dom-type = ‘e — 'domain

25

definition dom :: (e, ‘"domain) dom-type = 'domain set = e set = bool
where

dom domas dset es =

(Ve. Vd. ((domas e = Some d) — (e € es A d € dset)))

definition view-dom :: 'domain FlowPolicy-rec = 'domain = (e, 'domain) dom-type = e V-rec
where
view-dom fp d domas =
(V= {e 3d" (domas e = Some d’' A (d', d) € (v-rel fp))},
N = {e. 3d’. (domas e = Some d’' A (d’, d) € (n-rel fp))},
C = {e. 3d’. (domas e = Some d’' A (d', d) € (c-rel fp))})

end

4.2 Basic Security Predicates

We define all 14 basic security predicates provided as part of MAKS in [3].

theory BasicSecurityPredicates
imports Views ../Basics/ Projection
begin

definition areTracesOver :: (‘e list) set = e set = bool
where
areTracesOver Tr E =

V1reTr (seet) CE

type-synonym ‘e BSP = ‘e V-rec = (('e list) set) = bool

definition BSP-valid :: ‘e BSP = bool
where
BSP-valid bsp =
VYV Tr E. (isViewOn V E A areTracesOver Tr E)
— 3 Tr'.Tr' 2 Tr NbspV Tr')

definition R :: 'e BSP
where
RV Tr =
VreTr. 3r'eTr. 7' 1 Cy =[[AT 1 Vy =71 Vy

lemma BSP-valid-R: BSP-valid R
proof —

{

26

fix Vi:('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?Tr'D Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOver-def)
moreover
have RV ?Tr’
proof —
{
fix 7
assume 7 € {t. (set t) C E}
let 2r'=71(Vy)
have 7' 1 Cy =[] A1 Vyp=711Vy
using <«isViewOn V E» disjoint-projection projection-idempotent
unfolding isViewOn-def V-valid-def VC-disjoint-def by metis
moreover
from (7 € {t. (set t) C E}» have ?7' € ?Tr’ using <isViewOn V E)
unfolding isViewOn-def
by (simp add: list-subset-iff-projection-neutral projection-commute)
ultimately
have 37'e{t.set t CE}. 71 Cyo=]AT 1 Vy=711Vy
by auto
}

thus ?thesis unfolding R-def
by auto
qed
ultimately
have 3 Tr’. Tr' > Tr ARV Tr’
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition D :: ‘e BSP
where
DV Tr=
Va B.VceCy. (B Q]
— (3a’ B ((B' @ a’)
ABTI(Vy U

lemma BSP-valid-D: BSP-valid D
proof —
{

fix Vi:('e V-rec)

fix Tr £

assume isViewOn V E

and areTracesOver Tr E

let ?Tr'={t. (set t) C E}

27

have ?27r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have DV ?Tr’
unfolding D-def by auto
ultimately
have 3 Tr'. Tr' D> Tr ANDV T’
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition I :: ‘e BSP
where
1V Tr=
Va B.VceCy. (BQa) € Tr AalCy =)
— @Fa' B (BQ@[@a’)ye TrAa1Vy =alVy Aa1Cy =]
A B1(Vy U Cy) = B1(Vy U Cy)))

lemma BSP-valid-1: BSP-valid I
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have 270D Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have I V ?Tr’ using (isViewOn V E)
unfolding isViewOn-def I-def by auto
ultimately
have 3 Tr'. Tr' D> Tr ATV Tr'
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

type-synonym ‘e Rho = ‘e V-rec = 'e set

definition
Adm :: 'e V-rec = ‘e Rho = (e list) set = 'e list = 'e = bool
where
Adm'V o Tr B e =
7. (v @le]) € Tr Ayl(e V) = Bl(e V)

28

definition IA :: ‘e Rho = 'e BSP

where
IApV Tr =
Ya S. VCGCV (BQa)e Tr C’V—[]/\(AdigTrﬂ c))
— @ (3 @[c]@a)ETr) o1 Vy = ol Vy
A a'lCy = [ABT(Vy U Cy) =B1(Vy U Cy))

lemma BSP-valid-IA: BSP-valid (IA o)

proof —
{
fix V :: (‘a V-rec)
fix Tr £

assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have IA o V ?Tr' using (isViewOn V E»
unfolding isViewOn-def IA-def by auto
ultimately
have 3 Tr'. Tr' D Tr NIA oV Tr’
by auto
}
thus ?thesis
unfolding BSP-valid-def by auto
qed

definition BSD :: ‘e BSP
where
BSDV Tr =
Va S VCECV ((ﬂ Qc@a)e TrAalCy =1)
— @a (BQa')e Tr Aa'lVy =alVy Aa'lCy =)

lemma BSP-valid-BSD: BSP-valid BSD
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOuver-def)
moreover
have BSD V ?Tr’
unfolding BSD-def by auto
ultimately
have 3 Tr'. Tr' D> Tr AN BSDV Tr'

29

by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition BSI :: ‘e BSP
where
BSIY Tr =
Va B.VceCy. (BQa) € Tr AalCy =)
— @a ((BQJQ@a’)e Tr Aa1Vy =alVy AalCy =)

lemma BSP-valid-BSI: BSP-valid BSI
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?27r'D> Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOver-def)
moreover
have BSI V ?Tr’ using (isViewOn V E»
unfolding isViewOn-def BSI-def by auto
ultimately
have 3 Tr’. Tr' D Tr N BSIV Tr’
by auto

thus %thesis
unfolding BSP-valid-def by auto
qed

definition BSIA :: ‘e Rho = ‘e BSP
where
BSIA oV Tr =
Va B.VeceCy. (BQa) e Tr AalCy =[] A (Adm YV o Tr B ¢))
— @a ((BQJQ@a’)e TrAa1Vy =alVy AalCy =)

lemma BSP-valid-BSIA: BSP-valid (BSIA p)

proof —
{
fix V :: (‘a V-rec)
fix Tr E

assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?Tr'D Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover

30

have BSIA o V ?Tr’ using <isViewOn V E»
unfolding isViewOn-def BSIA-def by auto
ultimately
have 3 Tr'. Tr' D Tr AN BSIA oV Tr'
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

record ‘e Gamma =
Nabla :: 'e set
Delta :: e set
Upsilon :: 'e set

abbreviation GammaNabla :: 'e Gamma = e set
(«<V_» [100] 1000)

where

Vr = (Nabla T)

abbreviation GammaDelta :: 'e Gamma = e set
(<A-y [100] 1000)

where

Ar = (Delta T')

abbreviation GammaUpsilon :: 'e Gamma = 'e set

(«Y-» [100] 1000)
where
Y1 = (Upsilon T')

definition FCD :: ‘e Gamma = ‘e BSP
where
FCDTV Tr =
Va B.Vce(Cy N Yp). Voe(Vy N V).
(BQle,w]@Qa)e TrAal Cy =)
— (Ja’. 38" (set §') C (Ny N Ap)
A((B@é @] @a’)e Tr

ANa1Vy =alVy AalCy =)

lemma BSP-valid-FCD: BSP-valid (FCD T")
proof —
{

fix V::('a V-rec)

fix Tr £

assume isViewOn V E

and areTracesOver Tr E

let ?Tr'={t. (set t) C E}

have ?2Tr'D> Tr

31

by (meson Ball-Collect <areTracesOver Tr E) areTracesOver-def)
moreover
have FCD TV ?2Tr’
proof —
{

fixapcw

assume c € Cy N T
and v e€Vy NVp
and $Q [c,v] @Qa € ?Tr'
and o] Cy =]

let ?a’=a and 25'=|]

from (8 @Q [c ,w] @ @ € ?Tr’y have @ 25’ @ [v] @ 22’ € 2Tr’
by auto

hence (set 25') C (Ny N Ap) A ((B@ 25’ Q [v] @ 2a') € 217’

A 2o’ Vy=al Vy A 2a’ 1 Cy = 1))

using <isViewOn V E> <a 1 Cy = [
unfolding isViewOn-def <o 1 Cy = [> by auto

hence Ja’. 346" (set §') C (Ny NAp) A ((B@ '@ [v] @ a') € 2Tr'
Aa’l Vy =a Vv/\oz/] CV:H)
by blast

thus ?thesis
unfolding FCD-def by auto
qed
ultimately
have 3 Tr'. Tr' D> Tr A FCDT V Tr’
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition FCI :: 'e Gamma = ‘e BSP
where
FCITY Tr =
Ya B. VCG(CV N Tr). V’UG(VV N V).
(@ @a)e Tr AalCy =)
— (Ja’. 36" (set §') C (Ny N Ap)
A({(BQ@ld@d Qv @a’)e Tr
N o/] Vy = o1 Vy A aﬂ CV = H))

lemma BSP-valid-FCI: BSP-valid (FCI T')
proof —
{

fix V::('a V-rec)

fix Tr £

assume isViewOn V FE

and areTracesOver Tr E

let ?Tr'={t. (sett) C E}

have 270D Tr

by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)

32

moreover
have FCIT V ?Tr’
proof —
{
fixapcw
assume c € Cy N T
and v €Vy N Vp
and 8 Q [v] @ a € ?2Tr’
and a1 Cy =]
let ?a’=a and 25'=||
from <c € Cy N Yr» have c € E
using <isViewOn V E»
unfolding isViewOn-def by auto
with 3@ [v] @ o € ?Tr» have 8 Q [c] @ 25’ @ [v] @ 2o’ € 277’
by auto
hence (set 26') C (Ny N Ap) A ((BQ [c] @ 2’ Q [v] @ %) € ?Tr'
N ?Oc/] Vv:Oé1 Vy A ?04/1 Cvz [])
using <isViewOn V E» <o 1 Cy = [» unfolding isViewOn-def <o 1 Cy, = []» by auto
hence
Ja’. 36" (set) C(Ny NAp) A((BQ@ [c] @4 Q [v] @a'Y) € 277
Aa'l Vy = a Vv/\a/] CV:H)
by blast
}
thus ?thesis
unfolding FCI-def by auto
qed
ultimately
have 3 Tr'. Tr' D> Tr AN FCIT YV Tr'
by auto

thus %thesis
unfolding BSP-valid-def by auto
qed

definition FCIA :: ‘e Rho = ‘e Gamma = 'e BSP
where
FCIA o TV Tr =
Va B.Vcee(Cy N Yp). Voe(Vy N V).
(B@]@a)e TrAalCy =[] A(AdnY o Tr 8 ¢c))
—>(E|a'.5|5' (set 6") C (N Ap)
A(BOI]86 @[] Ga)e T
/\Ot]VV:Oé]VV /\OéIWCVI H))

<

lemma BSP-valid-FCIA: BSP-valid (FCIA o T')

proof —
{
fix V :: (‘a V-rec)
fix Tr £

assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}

33

have ?27r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have FCIA o TV ?Tr'
proof —
{
fixapfcov
assume c € Cy N T
and v € VV N Vr
and 8 Q [v] @ a € ?Tr'
and a1 Cy =
let ?a’=a and %'=||
from <c € Cyy N Y1) have c € F
using («isViewOn V E> unfolding isViewOn-def by auto
with 3@ [v] @ a € ?Tr» have 8 @Q [c] @ 25’ @ [v] @ %o’ € 2Tr’
by auto
hence (set 25') C (Ny NAp) A (B Q@[] @ 25’ Q [v] @ 2a’) € 217’
A 2o’ Vy=al Vy A 2a’ 1 Cy = 1))
using <isViewOn V E> «a 1 Cy = [
unfolding isViewOn-def <o 1 Cy = [> by auto
hence
Ja’. 36" (set ') C(Ny NAp) A ((BQ [c] @d'Q [v] @a') e ?2Tr
/\Oz/w VV:(X1 Vv/\a/] CV:H)
by blast
}
thus ?thesis
unfolding FCIA-def by auto
qed
ultimately
have 3 Tr'. Tr' D Tr AN FCIA o TV Tr’
by auto

thus %thesis
unfolding BSP-valid-def by auto

qed

definition SR :: ‘e BSP
where
SRY Tr=vVrelr.71(Vy UNy) € Ir

lemma BSP-valid SR
proof —

fix Vi:('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. 37 € Tr. t=71(Vy U Ny)} U Tr
have ?Tr'D Tr
by blast
moreover

34

have SR V ?Tr' unfolding SR-def
proof
fix 7
assume 7 € ?7r’
{
from «r € ?Tr" have (3teTr. 7=t 1 (Vy, UNy)) VTe€E Ir
by auto
hence 71 (Vy U Ny) € 2T/
proof
assume 3teTr. 7 =t 1(Vy U Ny)
hence 3t€Tr. 71 (V) U Ny)=t 1(Vy U Ny)
using projection-idempotent by metis
thus %thesis
by auto
next
assume 7 € Tr
thus ?thesis
by auto
qed
}
thus 7 1 (V) U Ny) € 2Tr’
by auto
qged
ultimately
have 3 T0'. Tr' D> Tr A SRV Tr'
by auto
}

thus ?thesis
unfolding BSP-valid-def by auto
qed

definition SD :: ‘e BSP
where
SDV Tr =
Va B.VceCy. (BQ[cJQa)e TrAalCy =) — Qac Tr

lemma BSP-valid SD
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V F
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
moreover
have SD V ?Tr’ unfolding SD-def by auto
ultimately
have 3 Tr'. Tr' D> Tr A SD V Tr' by auto

}

thus ?thesis unfolding BSP-valid-def by auto

35

qed

definition SI :: ‘e BSP
where
SIY Tr =
VaB.VeeCy. (BQa)e TrAalCy=][) —Q[]QacTr

lemma BSP-valid SI
proof —
{
fix V::('a V-rec)
fix Tr E
assume isViewOn V F
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have ST V ?Tr’
using <isViewOn V E)
unfolding isViewOn-def SI-def by auto
ultimately
have 3 Tr'. Tr' D> Tr ASIV Tr'
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition SIA :: ‘e Rho = 'e BSP
where
SIA oV Tr =
VaB.VeeCy. (BQa)e TrAal Cy=[A(AdnV o Tr g c))
— (BQ@Q@a)e Tr

lemma BSP-valid (SIA p)
proof —
{
fix V :: (a V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?2Tr'D> Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOuver-def)
moreover
have SIA oV ?Tr’
using <isViewOn V E»
unfolding isViewOn-def SIA-def by auto
ultimately

36

have 3 Tr'. Tr' D Tr AN SIA oV Tr'
by auto

thus %thesis
unfolding BSP-valid-def by auto
qed

end

4.3 Information-Flow Properties

We define the notion of information-flow properties from [3].

theory InformationFlowProperties
imports BasicSecurityPredicates
begin

type-synonym ‘e SP = (‘e BSP) set

type-synonym ‘e IFP-type = (‘e V-rec set) x ‘e SP

definition IFP-valid :: 'e set = e IFP-type = bool
where
IFP-valid E ifp =
YV € (fst ifp). isViewOn V E
A (Y BSP € (snd ifp). BSP-valid BSP)

definition IFPIsSatisfied :: ‘e IFP-type = (e list) set = bool
where
IFPIsSatisfied ifp Tr =

vV Ve(fst ifp). YV BSPE€(snd ifp). BSP V Tr

end

4.4 Property Library

We define the representations of several possibilistic information-flow properties from the literature
that are provided as part of MAKS in [3].

theory PropertyLibrary
imports InformationFlowProperties ../ SystemSpecification/ EventSystems ../ Verification/ Basics/ BSPTazonomy
begin

definition
HighInputsConfidential :: ‘e set = 'e set = 'e set = 'e V-rec
where

37

HighInputsConfidential L H IE = (| V=L, N=H—IE, C=H N IE)

definition HighConfidential :: ‘e set = 'e set = ‘e V-rec
where
HighConfidential L H = (| V=L, N={}, C=H)

fun interleaving :: ‘e list = e list = (e list) set
where
interleaving t1 [] = {t1} |
interleaving [| t2 = {t2} |
interleaving (el # t1) (e2 # t2) =
{t. (3t t=(el # t") A t' € interleaving t1 (e2 #t2))}
U {t. 3t t=(e2 # t') A t' € interleaving (el # t1) t2)}

definition GNI :: ‘e set = ‘e set = 'e set = e IFP-type
where
GNI L H IE = ({HighInputsConfidential L H IE}, {BSD, BSI})

lemma GNI-valid: L N H = {} = IFP-valid (L U H) (GNI L H IE)
unfolding IFP-valid-def GNI-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD BasicSecurityPredicates. BSP-valid-BSI
by auto

definition litGNI :: ‘e set = ‘e set = ‘e set = (e list) set = bool
where
lLitGNI L HIE Tr =

Y 12 13,
tl@t,?eTr/\tS’W(Lu(HfIE)) 1 (LU (H — IE))
— @t t1 @t e TrA (L (HmE)):t (L U (H n IE)))

definition IBGNI :: ‘e set = e set = e set = ‘e IFP-type
where IBGNI L H IE = ({HighInputsConfidential L H IE}, {D, 1})

lemma IBGNI-valid: L N H = {} = IFP-valid (L U H) (IBGNI L H IE)
unfolding IFP-valid-def IBGNI-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-D BasicSecurityPredicates. BS P-valid-1
by auto

definition
ItIBGNI :: 'e set = e set = ‘e set = (e list) set = bool
where
LitIBGNI L H IE Tr =
V r-le Tr.V t-hit.

38

(set t-hi) C (H N IE) At € interleaving t-hi (7-1 1 L)
— @37 eTr.7"1 (LUHNIE)) =1t)

definition FC :: ‘e set = ‘e set = e set = ‘e IFP-type
where
FCLHIE =
({HighInputsConfidential L H IE},
{BSD, BSI, (FCD (Nabla=IE, Delta={}, Upsilon=IE),
(FCI (| Nabla=IE, Delta={}, Upsilon=IE |)})

lemma FC-valid: L N H = {} = IFP-valid (L U H) (FC L H IE)
unfolding IFP-valid-def FC-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD BasicSecurityPredicates. BSP-valid-BSI
BasicSecurityPredicates. BSP-valid-FCD BasicSecurityPredicates. BSP-valid-FCI
by auto

definition litFC :: e set = 'e set = e set = (e list) set = bool
where
litFC L H IE Tr =

Vi1 2.V hi € (H N IE).

(V Ui € (LN IE).
t1 Q] @t-2 e TrAt2] (HNIE) =
— (3 t-3.t-1 @ [hi) @ [l]] @ -3 € Tr
At81L=t21LAt81(HNIE)=]))
A(t-1@t2 € TrAt2] (HnNIE) =]
— (3 3. t-1 Q [hi] @ t-3 € Tr
AS1L=t21LAt81(HNIE)=]))

Qt-2e€ TrAt-21(HNIE) =]
— (3 t-8. -1 Q [li] @ -8 € Tr

1L=t21LAt31(HNIE)=1]))
Tr At-21 (HNIE) =]

t-21LAEG31(HNIE)=1]))

definition NDO :: ‘e set = e set = 'e set = e IFP-type
where
NDO UI'L H =
({HighConfidential L H}, {BSD, (BSIA (A V. Cy, U (Vy N UI)))})

lemma NDO-valid: L N H = {} = [FP-valid (L U H) (NDO UI L H)
unfolding IFP-valid-def NDO-def HighConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD

39

BasicSecurityPredicates. BSP-valid-BSIA[of (A V. Cy, U (Vy, N UI))]
by auto

definition litNDO :: e set = e set = e set = (’e list) set = bool
where
LWINDO UI L H Tr =
Vr-le Tr.V 7-hlui € Tr. V t.
HL = 7L A #1(H U (L N UID)) = 7-hlui](H U (L 0 UI)) — t € Tr

definition NF :: e set = 'e set = e IFP-type
where
NF L H = ({HighConfidential L H}, {R})

lemma NF-valid: L N H = {} = IFP-valid (L U H) (NF L H)
unfolding IFP-valid-def NF-def HighConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-R
by auto

definition litNF :: ‘e set = ‘e set = (e list) set = bool
where
WNFLHTr=vV7reTr. 71 LeTr

definition GNF :: ‘e set = ‘e set = ‘e set = 'e IFP-type
where
GNF L H IE = ({HighlnputsConfidential L H IE}, {R})

lemma GNF-valid: L N H = {} = IFP-valid (L U H) (GNF L H IE)
unfolding [FP-valid-def GNF-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-R
by auto

definition litGNF :: ‘e set = 'e set = 'e set = (’e list) set = bool
where
litGNF L H IE Tr =

Vre Tr.37' e Tr.r| (HNIE)=[|A71L=71L

definition SEP :: e set = 'e set = e IFP-type
where
SEP L H = ({HighConfidential L H}, {BSD, (BSIA (A V. Cy))})

40

lemma SEP-valid: L N H = {} = IFP-valid (L U H) (SEP L H)
unfolding IFP-valid-def SEP-def HighConfidential-def is ViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD
BasicSecurityPredicates. BSP-valid-BSIA[of A V. Cy)]
by auto

definition litSEP :: ‘e set = e set = ('e list) set = bool
where
litSEP L H Tr =
Vr-l€ Tr.V 7-h € Tr.
interleqving (t-11 L) (t-h 1 H) C{r e Tr .71 L=7-11 L}

definition PSP :: ‘e set = 'e set = e IFP-type
where
PSP L H =
({HighConfidential L H}, {BSD, (BSIA (A V. Cy, U Ny, U Vy)})

lemma PSP-valid: L N H = {} = IFP-valid (L U H) (PSP L H)
unfolding IFP-valid-def PSP-def HighConfidential-def is ViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD
BasicSecurityPredicates. BSP-valid-BSIA[of A V. Cy, U Ny, U Vy)]
by auto

definition litPSP :: ‘e set = 'e set = ('e list) set = bool
where
litPSP L H Tr =
(YreTr.t1LeTr
ANV aB (B@a)e TrA (el H) =
s (VheH BQ[eT — BQ[h]@ac Tr)

end

5 Verification

5.1 Basic Definitions

We define when an event system and a state-event system are secure given an information-flow
property.
theory SecureSystems
imports ../../SystemSpecification/State EventSystems
../ ../ SecuritySpecification / InformationFlowProperties
begin

locale Secure ESIFP =

41

fixes ES :: ‘e ES-rec
and IFP :: 'e IFP-type

assumes validES: ES-valid ES
and validIFPES: IFP-valid E g IFP

context SecureESIFP
begin

definition ES-sat-IFP :: bool

where

ES-sat-IFP = IFPIsSatisfied IFP Trgg
end

locale SecureSESIFP =

fixes SES :: (s, 'e) SES-rec

and IFP : 'e IFP-type

assumes validSES: SES-valid SES
and validIFPSES: IFP-valid Egpg IFP

sublocale SecureSESIFP C SecureESIFP induceES SES IFP
by (unfold-locales, Tule induce ES-yields-ES, rule validSES,
simp add: induceES-def, rule valid[FPSES)

context SecureSESIFP
begin

abbreviation SES-sat-1FP
where

SES-sat-IFP = ES-sat-IFP

end

end

5.2 Taxonomy Results

We prove the taxonomy results from [3].

theory BSPTazonomy

42

imports ../../SystemSpecification/ EventSystems
../ ../ SecuritySpecification/ BasicSecurity Predicates
begin

locale BSPTazxonomyDifferentCorrections =
fixes ES :: e ES-rec
and V :: ‘e V-rec

assumes validES: ES-valid ES
and VIsViewOnE: isViewOn V Egg

locale BSPTazonomyDifferentViews =
fixes ES :: 'e ES-rec

and Vi :: ‘e V-rec

and Vs :: ‘e V-rec

assumes validES: ES-valid ES
and V1IsViewOnkE: isViewOn V1 Egg
and Va2IsViewOnkE: isViewOn V2 Egg

locale BSPTazonomyDifferentViewsFirstDim= BSPTaxonomyDifferent Views +
assumes V2-subset-V1: VVQ C VV1

and N2-supset-N1: Ny, 2 Ny,

and C2-subset-C1: Cy, € Oy,

sublocale BSPTazxonomyDifferent ViewsFirstDim C BSPTaxonomyDifferent Views
by (unfold-locales)

locale BSPTazxonomyDifferent ViewsSecondDim= BSP TaxonomyDifferent Views +
assumes V2-subset-V1i: Vy,, C Vy,

and N2-supset-N1: Ny, 2 Ny,

and C2-equals-C1: Cy, = Cy,

sublocale BSPTazxonomyDifferent ViewsSecondDim C BSPTaxonomyDifferent Views
by (unfold-locales)

context BSPTaxonomyDifferentCorrections
begin

lemma SR-implies-R:
SRY Trpg = RV Trgg
proof —
assume SR: SRV Trgg
{
fix 7
assume 7 € Trpg
with SR have 7 1 (VV (@] Nv) € Trgg
unfolding SR-def by auto
hence 3 7. 7' € Trgg AT/ 1 Vy =71 Vy AT/ 1 Cp =
proof —

43

assume tau-V-N-is-trace: 71 (Vy U Ny) € Trgg
show 3 7' 7€ Trgg AT 1 Vy =71 Vy ATl Cpy =]
proof
let ?r'=71(Vy UNy)
have 7 | (VVUNV)1 Vy =711 Vy
by (simp add: projection-subset-elim)
moreover
from VIsViewOnE have VC-disjoint ¥V N NC-disjoint V
unfolding isViewOn-def V-valid-def
by auto
then have (V) U Ny) N Cy = {}
by (simp add: NC-disjoint-def VC-disjoint-def inf-sup-distrib2)
then have 27’1 Cy = |]
by (simp add: disjoint-projection)
ultimately
show 27’ € Trgg A 27'1 Vy =171 Vy A 21’1 Cyp =]
using tau-V-N-is-trace by auto
qed
qed
}
thus %thesis
unfolding SR-def R-def by auto
qed

lemma SD-implies-BSD -
(SDV Trgg) = BSDV Trgg
proof —
assume SD: SDV Trgg
{
fix a 8 ¢
assume c € Cy
and S Qc# o€ Trgg
and alpha-C-empty: a1 Cy = ||
with SD have 3 Q@ o € Trgg
unfolding SD-def by auto
hence 3a’. Q@ a’'€ Trgg Ao’ 1 Vy=al Vy Aa'l Cy =]
using alpha-C-empty
by auto
}
thus ¢thesis
unfolding SD-def BSD-def by auto
qed

lemma BSD-implies-D:
BSD VY TT‘ES == DV TT’ES
proof —

assume BSD: BSD 'V Trgg

{
fixapec

44

assume a | Cy = ||
and c € Cy,
and 5 Q [c] @ o € Trgg
with BSD obtain o’
where 8 Q o' € Trgg
anda’'1 Vy=al VYV
and o' Cy =]
by (simp add: BSD-def, auto)
hence (3o’ 3’
(ﬁ’@a’e WEsAa/] Vy =a VV/\a'1 OV:H)/\
B'1(VyuCy)=p61(VyuCy))
by auto
}
thus ?thesis
unfolding BSD-def D-def
by auto
qed

lemma SD-implies-SR:
SDY Trpg = SRV Trgg
unfolding SR-def
proof

fix 7

assume SD: SDV Trgg
assume T-trace: T € Irgg

{

fix n

have SR-via-length: [T € Trgg; n = length (11 Cy) |
= d7' € TT‘Es.T/] CV: H AT (Vquv):T] (VvUNv)
proof (induct n arbitrary: T)
case ()
note 7-in-1Tr = <t € Trgg
and <0 = length (11 Cy)»
hence 71 Cy =]
by simp
with 7-in-Tr show Zcase
by auto
next
case (Suc n)
from projection-split-last| OF Suc(3)] obtain § ¢ «
where c-in-C: c € Cy,
and 7-is-feo: T = S Q [c] Q «
and a-no-c: a1 Cy = ||
and Sa-contains-n-cs: n = length (6 Q «) 1 Cy)
by auto
with Suc(2) have Sca-in-Tr: f Q [c] Q o € Trgg
by auto

45

with SD c-in-C Bca-in-Tr a-no-c obtain 8’ o’
where B8'a’~in-Tr: (8’ Q@ a') € Trgg
and a'-V-is-a-V:a'1 (V) U Ny) = a1 (Vy U Ny)
and a’-no-c: o’ 1 Cy, = ||
and p’-VC-is-B-VC: B’] (VV UNy U Cv) =31 (Vv UNy U Cv)
unfolding SD-def
by blast

have ('@ a’) 1 (Vy U Ny) =71 (Vy UNy)
proof —
from B'-VC-is-3-VC have B'1(Vy U Ny) =51 (Vy U Ny)
by (rule projection-subset-eq-from-superset-eq)
with a’-V-is-a-V have (3’ @ a') 1 (V) U Ny) = (8@ a) 1 (Vy U Ny)
by (simp add: projection-def)
moreover
with VIsViewOnE c-in-C have ¢ ¢ (Vy U Ny))
by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def, auto)
hence (3@ a) 1 (Vy UNy) = (8@ [c]@a)] (VyUNy)
by (simp add: projection-def)
moreover note 7-is-Bca
ultimately show ?thesis
by auto
qed
moreover
have n = length ((8’ @ a) 1 Cy)
proof —
have 8’1 Cy =p81Cy
proof —
have Vy, U Ny U Cy = Cy U (V) U Ny)
by auto
with 8’-VC-is-3-VC have 3’1 (Cy U (Vy, U Ny)) =81 (Cy U (Vy, U Ny))
by auto
thus %thesis
by (rule projection-subset-eq-from-superset-eq)
qed
with a’-no-c a-no-c have (8’ @a’) 1 Cy = (BQ@a) 1 Cy
by (simp add: projection-def)
with Ba-contains-n-cs show ?thesis
by auto
qed
with Suc.hyps B'a’-in-Tr obtain 7’
where 7' € Trgg
and 7’1 Cy = ||
and 7’1 (V) U Ny) = (8'@a’)] (Vy U Ny)
by auto
ultimately show ?case
by auto
qged

}

hence 7 € Trgg = 37" 7'€Trpgg A 7' 1 Cy, = AT 1 (Vy UNy) =71 (Vy UNy)

46

by auto

from this T-trace obtain 7’ where
7'-trace : T'€Trpg
and 7'-no-C :7'1 Cy = |
and 7'-m-rel : 7' 1 (V) U Ny) =71 (Vy U Ny)
by auto

from 7'-no-C have 7’1 (Vy, U Ny, U Cy) =7"1 (V) U Ny)
by (auto simp add: projection-on-union)

with VIsViewOnE have 7'-E-eq-VN: 7' 1 Egg = 7'1 (V) U Ny))
by (auto simp add: isViewOn-def)

from validES 7'-trace have (set 7') C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)
hence 7' | Egg = 7' by (simp add: list-subset-iff-projection-neutral)
with 7'-F-eq-VN have 7' = 7’1 (Vy, U Ny)) by auto
with 7'-r-rel have 7' = 71 (Vy, U Ny,)) by auto
with 7'-trace show 7 1 (Vy, U Ny)) € Trgg by auto
qed

lemma D-implies-R:
DY Trgg = RV Trgg
proof —

assume D: DV Trgg

{

fix ™ n

have R-via-length: [7 € Trgg; n = length (71 Cy) |
= 37’ c TTES-T,W CV:H/\T’] Vy=717Vy
proof (induct n arbitrary: T)
case (
note 7-in-Tr = «7 € Trge
and <0 = length (71 Cy)»
hence 71 Cy =]
by simp
with 7-in-Tr show Zcase
by auto
next
case (Suc n)
from projection-split-last| OF Suc(3)] obtain § ¢ «
where c-in-C: ¢ € Cy
and 7-is-fea: T = B Q [] Q «
and a-no-c: a1 Cy = ||
and fa-contains-n-cs: n = length ((f Q@ «) 1 Cy)
by auto
with Suc(2) have Sca-in-Tr: f Q [c] Q o € Trgg
by auto

47

with D c-in-C Bca-in-Tr a-no-c obtain 8’ o’
where B'a’-in-Tr: (8’ @ ') € Trgg
and a'-V-is-a-V:a' 1 Vy =al Vy
and a’-no-c: a’1 Cy, = ||
and §'-VC-is-B-VC: "1 (Vy U Cy) = B 1 (VU Cy)
unfolding D-def
by blast

have (3'@a’) 1 Vy=71Vy
proof —
from B'-VC-is-B-VC have B'1 Vy=81Vy
by (rule projection-subset-eq-from-superset-eq)
with a'-V-is-a-V have (3’ @ a) 1 Vy=(BQa)l Vy
by (simp add: projection-def)
moreover
with VIsViewOnE c-in-C have ¢ ¢ Vy,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto)
hence (6 Qa) |1 Vy=(Q [Q@a)1 Vy
by (simp add: projection-def)
moreover note 7-is-Fca
ultimately show ?thesis
by auto
qged
moreover
have n = length ((8’ @ o) 1 Cy)
proof —
have 8’1 Cy =81 Cy
proof —
have Vy, U Cy = Cy U Vy,
by auto
with 8'-VC-is-3-VC have 8’1 (Cy U Vi) =81 (Cy U Vy)
by auto
thus %thesis
by (rule projection-subset-eq-from-superset-eq)
qed
with a’-no-c a-no-c have (8’ @ a’) 1 Cy = (BQ@a) 1 Cy
by (simp add: projection-def)
with Ba-contains-n-cs show %thesis
by auto
qed
with Suc.hyps B8'a’-in-Tr obtain 7’
where 7' € Trpg
and 7’1 Cy = |]
and 7’| Vy =(8'@a)] Vy
by auto
ultimately show ?case
by auto
qed
}
thus %thesis
by (simp add: R-def)
qed

48

lemma SR-implies-R-for-modified-view :
[SRV TTES;V/:q V= VVqu,N:{},C: Cy D]]Z>RV’TI”ES
proof —
assume SRV Trpg
andV':Q V= VVqu,N:{},C:CVD
{
from <V'=(V=VyUNy,N={},C=_Cy | VIsViewOnE
have V'IsViewOnE: isViewOn V' Egg
unfolding isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def by auto
fix 7
assume 7 € Trpg
with <SRV Trgg» have 71 (Vy, U Ny) € Trgg
unfolding SR-def by auto

let o7'=7 1V,

from <7 1 (Vy, U Ny) € Trgg» have 7' € Trgg
using <V'=(V=VyUNy,N={},C=Cy| by simp
moreover
from V'IsViewOnE have #7'1Cy,=]]
using disjoint-projection
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto
moreover
have ?7'1Vy,r = 71V,
by (simp add: projection-subset-elim)
ultimately
have 37'€Trpg. 71 Cy,r = AT 1 V=71V
by auto
}

with <SRV Trgg> show ?thesis
unfolding R-def using <V' = (V = V), UNy ,N={}, C=Cy | by auto
qed

lemma R-implies-SR-for-modified-view :
[[RV/TT‘Es;V,:q V= Vquv,N:{},CICV D]]:>SRV Trgg
proof —
assume R V' Trpg
andV’:Q V = VVqu,NI{}7C=CVD
{
fix 7
assume 7 € Trpg
from <R V' Trpg» <7 € Trpg» obtain 7" where 7' € Trpg
and 7' 1 Cy,r = |]
and 7'1 Vyr=71Vy
unfolding R-def by auto
from VIsViewOnE V'=(V = Vy UNy ,N={}, C=Cy) have isViewOn V' Egg
unfolding is ViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
by auto

from v’ Vyyy=711Vyn V' =(V=VyUNy,,N={},C=0Cy

49

have 7' 1 (Vy,y U Nyyr) =71 (Vy,r U Nyy)
by simp

from 7' 1 Cy,y = [) have 7/ =7"1 (Vs U Ny,/)
using validES <7’ € Trgg <isViewOn V' Egg
unfolding projection-def ES-valid-def isViewOn-def traces-contain-events-def
by (metis UnE filter-True filter-empty-conv)
hence 7' =71 (V) U Ny,/)
using <T/W (Vv/ U NV/) =17 (Vvl @] NV/)>
by simp
with 7" € Trge have 71 (Vs U Ny,/) € Trgg
by auto
}
thus ?thesis
unfolding SR-def using V'=(V =V, UNy ,N={},C=Cy)
by simp
qed

lemma SD-implies-BSD-for-modified-view :
[SDY Trgg; V' =V =Vy,UNy,N={},C=Cy|] = BSDV' Trgg
proof —
assume SD V Trgg
and V'=(V = VyUNy ,N={},C=Cy)
{
fixapfec
assume c € Cy,/
and 8 Q [c] Q @ € Trgg
and o] Cyr = |]

from «c€ Cyn V' =(V=VyUNy,N={},C=0Cy)
have c € Cy,

by auto

from «a]Cyr =[P V' =(V=VyUNy,N={},C=Cy
have a1Cy, = ||

by auto

from (¢ € Cy» (B Q [c] @ a € Trgg «a]Cy =[]

have 3 @ o € Trpg using «SD V Trgg
unfolding SD-def by auto

hence Jo’. f@a'e Trgg N a’'1 Vyyy=al Vy Aa'l Cyr=]
using <a | Cy,r = [> by blast

with «SD V Trpg» show ?thesis
unfolding BSD-def using <V' = (V = Vy, UNy,, N ={}, C = Cy | by auto
qed

lemma BSD-implies-SD-for-modified-view :

[[BSDV’TTEs;VIIG V= VVqu,NI{},CZ CV DHZ>SDV Trgg
unfolding SD-def
proof (clarsimp)
fix a B ¢

50

assume BSD-view’: BSD (V = Vy, UNy ,N ={}, C = Cy| Trgg
assume alpha-no-C-view : o 1 Cy, =]

assume c-C-view : ¢ € Cy,

assume beta-c-alpha-is-trace : Q ¢ # « € Trgg

from BSD-view’ alpha-no-C-view c-C-view beta-c-alpha-is-trace
obtain o’
where beta-alpha'-is-trace: B @ o'€(Trgg)
and alpha-alpha”: o' 1 (Vy, U Ny) = a1 (Vy, U Ny)
and alpha’-no-C-view : o’ 1 Cy, = ||
by (auto simp add: BSD-def)

from beta-c-alpha-is-trace validES
have alpha-consists-of-events: set o C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha-no-C-view have a1 (V) U Ny, U Cy) = a1 (V) U Ny)
by (rule projection-on-union)

with VIsViewOnE have alpha-on-ES : o | Egg = a1 (V) U Ny)
unfolding isViewOn-def by simp

from alpha-consists-of-events VIsViewOnE have o | Egg = «
by (simp add: list-subset-iff-projection-neutral)

with alpha-on-ES have a-eq: oo 1 (V) U Ny) = a by auto

from beta-alpha’-is-trace validES
have alpha’-consists-of-events: set o’ C Egg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha’-no-C-view have o’ 1 (Vy, U Ny, U Cy) = o' 1 (V) U Ny))
by (rule projection-on-union)

with VIsViewOnE have alpha’-on-ES : o' 1 Egg = a'1 (V) U Ny))
unfolding isViewOn-def by (simp)

from alpha’-consists-of-events VIsViewOnE have o' | Epg = o'
by (simp add: list-subset-iff-projection-neutral)

with alpha’-on-ES have a’-eq: o’ 1 (Vy, U Ny,) = a’ by auto

from alpha-alpha’ a-eq o’-eq have o = o’ by auto

with beta-alpha’-is-trace show 8 @ a € Trpg by auto
qed

lemma SD-implies-FCD:
(SD v T’I‘Es) — FCDTYVY TTES
proof —

assume SD: SDV Trgg

51

{

fixapfco
assume c € Cy N T
and ve€ Vy NVp
and alpha-C-empty: o 1 Cy =[]
and $Q [¢c, v] @ a € Trgg
moreover
with VIsViewOnE have (v # o) 1 Cy = ||
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have f @ (v # «) € Trgg
using SD unfolding SD-def by auto
with alpha-C-empty
have Ja’. 35" (set §') C (Ny NAp) A ((BQ6 Q@ [v] @a’) € Trgg
Aa'l Vy = a Vv/\a/1 CV:H)
by (metis append.simps(1) append.simps(2) bot-least list.set(1))
}
thus ?thesis
unfolding SD-def FCD-def by auto
qed

lemma SI-implies-BSI :
(SIV Trgg) = BSIV Trgg
proof —
assume SI: SIV Trgg
{
fix a 8 ¢
assume c € Cy
and 3@ «ac€ Trgg
and alpha-C-empty: a1 Cy = ||
with ST have 8 Q c # a € Trgg
unfolding SI-def by auto
hence Ja'. Q@ c# a’'€ Trggha'l Vy=al VyAa'l Cy=]
using alpha-C-empty by auto
}
thus %thesis
unfolding SI-def BSI-def by auto
qed

lemma BSI-implies-1:
(BSIV Trgg) = (I V Trgg)
proof —

assume BSI: BSI V Trgg

{
fixapfec
assume ¢ € Cy
and 8 Q@ o € Trgg

52

and a1 Cy = ||

with BSI obtain o’
where 8 Q@ [c] @ o’ € Trgg
and o'l Vy =al Vy

and o' Cy =
unfolding BSI-def
by blast

hence

(30/,3’. (,B'@[c]@a'e T'I“Es/\al] Vy =a VV/\O/W Cv:[])/\
B 1 (VyuCy)=p1(VyUuCy))
by auto

thus ?thesis unfolding BSI-def I-def
by auto
qed

lemma SIA-implies-BSIA:
(SIA 0V Trgg) = (BSIA oV Trgg)
proof —
assume SIA: SIA oV Trgg
{
fixapfec
assume ¢ € Cy,
and 8 Q@ o € Trgg
and alpha-C-empty: a1 Cy = ||
and (Adm V ¢ Trgg S c)
with SIA obtain 8 Q ¢ # a € Trgg
unfolding SIA-def by auto
hence 3 a. Q@ c# a'€ TrggAa'l Vy =al VyAa'l Cy =]
using alpha-C-empty by auto
}
thus %thesis
unfolding SIA-def BSIA-def by auto
qed

lemma BSIA-implies-IA:
(BSIA oV Trgg) = (IA oV Trgg)
proof —

assume BSIA: BSIA oV Trgg

{
fixapfec

assume ¢ € Cy)
and 8 Q@ o € Trgg
and a1 Cy =]
and (Adm V ¢ Trgg B c)
with BSIA obtain o’
where 8 Q [c] @ o’ € Trgg
and o'l Vy =al Vy
and o' Cy = ||

53

unfolding BSIA-def
by blast
hence (3o’ 3’
B'@ldd@a’'e Trggha’'1Vy=al VyAa'lCy=[)A
BT (Vyu Cy)=p1(VyuCy))
by auto

thus “thesis
unfolding BSIA-def IA-def by auto
qed

lemma SI-implies-SIA:
SIV Trpg = SIA oV Trgg
proof —
assume SI: SI'V Trgg
{
fix a B¢
assume ¢ € Cy
and 8 Qac Trgg
and a1 Cy =]
and AdmV o Trgg B c
with S have 8 Q (¢ # o) € Trgg
unfolding SI-def by auto
}
thus ?thesis unfolding SI-def SIA-def by auto
qed

lemma BSI-implies-BSIA:
BSI'V Trgg = BSIA ¢V Trgg
proof —
assume BSI: BSI V Trpg
{
fixapfec
assume ¢ € Cy)
and 8 Qac€ Trgg
and a1 Cy =]
and AdmV o Trgg B c
with BSThave 3 o’. 8 Q (¢ # a') € TrggAa’'1 Vy =al Vy Aa’l1 Cp =]
unfolding BSI-def by auto
}
thus %thesis
unfolding BSI-def BSIA-def by auto
qed

lemma [-implies-IA:
IV Trgg = IA oV Trgg
proof —

assume [: [V Trpg

{

54

fix a 8 ¢
assume ¢ € Cy,
and 3Qa ¢ Trgg
and ol Cy =]
and AdmV o Trgg B c
with T have 3 o’ 8. 8’ Q (c# a') € Trgg Ao’ 1 Vy =al Vy
Aa' T Cy = AR 1I(VyUuCy) =p1(VyUuly)
unfolding I-def by auto
}
thus %thesis
unfolding I-def IA-def by auto
qed

lemma SI-implies- BSI-for-modified-view :
[[S]VTTEs;V/:q V= VVqu,N:{},C:OV D]]:>BSIV/TTES
proof —
assume SI V Trpg
andV':Q V= VVUNVvN:{}7C:CVD
{
fix a 8 c
assume c € Cy,/
and f @ a € Trgg
and o] Cyr = |]

from «ce Cy,n V' =(V=VyUNy,,N={},C=Cy)
have ¢ € Cy,

by auto

from «a1Cy =[p V' =(V=VypUNy,N={},C=Cy
have a1Cy, = ||

by auto

from <«c € Cy» «f Q@ a € Trgg «a]Cy = [

have 8 Q [c] @ a € Trgg
using «SI V Trpg» unfolding SI-def by auto

hence 3o’ Q@[] @ a'€ Trgg A o' Vyyr=al Vi Aa'l Cpr=]
using a1 Cyr = [
by blast

with «SI' V Trpg» show ?thesis
unfolding BSI-def using <V'=(V = V), UNy , N ={}, C = Cy |» by auto
qed

lemma BSI-implies-SI-for-modified-view :
HBS[V/TTEs;Vl:q V=VyUNy , N={},C=Cy)] = SIV Trgg
unfolding SI-def
proof (clarsimp)
fix a B ¢
assume BSI-view': BSI (V = Vy, U Ny, N ={}, C = Cy)|) Trgg
assume alpha-no-C-view : o« 1 Cyy =]
assume c-C-view : ¢ € Cy,
assume beta-alpha-is-trace : f @ o € Trpg

55

from BSI-view' have VceCy. B Qa € Trgg Aol Cy = ||
— @a.BQ@J@a’'e TrggAa’l (VyUNy)=al(VyUNp) Aa'l Cy=1])
by (auto simp add: BSI-def)

with beta-alpha-is-trace alpha-no-C-view have V ccC)).
(o’ p@ld@a’e Trggna'l (VyUNy)=al(VyUNy)ra'l Cp=])
by auto

with this BSI-view’ c-C-view obtain o'
where beta-c-alpha’-is-trace: B Q [c] @ o’ € Trgg
and alpha-alpha”: o' 1 (Vy, U Ny) = a1 (Vy, U Ny)
and alpha’-no-C-view : o’ 1 Cy) = ||
by auto

from beta-alpha-is-trace validES
have alpha-consists-of-events: set o C Epgg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha-no-C-view have a1 (V) U Ny, U Cy) = a1 (V) U Ny)
by (rule projection-on-union)

with VIisViewOnE have alpha-on-ES : a1 Egg = a1 (Vy U Ny)
unfolding isViewOn-def by (simp)

from alpha-consists-of-events VIsViewOnE have o | Epg = «
by (simp add: list-subset-iff-projection-neutral)

with alpha-on-ES have a-eq: oo 1 (V) U Ny) = a by auto

from beta-c-alpha’-is-trace validES

have alpha’-consists-of-events: set o’ C Egg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha’-no-C-view have o’ 1 (Vy, U Ny, U Cy) = a'1 (V) U Ny))
by (rule projection-on-union)

with VIsViewOnE have alpha’-on-ES : o' 1 Egg = a'1 (V) U Ny))
unfolding isViewOn-def by (simp)

from alpha’-consists-of-events VIsViewOnE have o' | Epg = o'
by (simp add: list-subset-iff-projection-neutral)

with alpha’-on-ES have a’-eq: o’ 1 (Vy, U Ny,) = a’ by auto
from alpha-alpha’ a-eq a’-eq have o = o’ by auto

with beta-c-alpha’-is-trace show 8 @ ¢ # a € Trgg by auto
qed

lemma SIA-implies-BSIA-for-modified-view :
[SIA oV Trpg; VI=(V=VypUNy, , N={},C=Cy|);o0V=0V]= BSIA o' V' Trgg

56

proof —
assume SIA oV Trgg
andV’:q V= VvUNv,N:{},C:CVD
and oV = o'V’
{
fixapc
assume c € Cy,/
and 3 @ a € Trgg
and o] Cyr = |]
and Adm V' o' Trgg B ¢

from «cec Cyn V' =(V=VyUNy,N={},C=0Cy)
have c € Cy,

by auto
from «a1Cy =[p V' =(V=VypUNy,N={},C=Cy
have a1Cy, = ||

by auto
from <Adm V' o' Trgg B o> <oV =0 V)
have Adm V o Trgg B ¢

by (simp add: Adm-def)

from «c € Cy» B Q@ a € Trgg «alCy = []p <Adm V 0 Trgg B o
have 8 Q [c] @ a € Trgg
using «SIA o V Trpg» unfolding SIA-def by auto
hence 3o’ Q@[] Q@ a'€ Trgg A o' Vyr=al Vi Aa'l Cpr=
using a1 Cy,r = [by blast
}
with «(SIA oV Trpg> show ?thesis
unfolding BSIA-def using V' =(V =V, UNy ,N={},C=Cy)
by auto
qed

lemma BSIA-implies-SIA-for-modified-view :
[BSIA o' V' Trps; V' =(V=VyUNy , N={},C=Cy);o0V=0V]= SIApV Trgg
proof —
assume BSIA o' V' Trpg
andV':Q V= VVuNV7N:{},O:Cv|)
and oV = o'V’
{
fix a 8 ¢
assume ¢ € Cy
and 8 Qa € Trgg
and | Cy = ||
and Adm V ¢ Trgg B ¢

from «ce Cyy V' =(V=VyUNy,N={},C=Cy
have c € Cy,/

by auto

from «a]Cy =) V' =(V=VyUNy,N={},C=Cy
have a1Cy, = []

by auto

from AdmV o Trgg B o <0V =o'V’

o7

have Adm V' o' Trgg B ¢
by (simp add: Adm-def)

from «c € Cyn B Q@ a € Trgg «|Cyr =[] (Adm V' o' Trpg 8 o
obtain o’ where 8 @ [c] @ o’ € Trgg
and o1 Vyyr=al Vi
and o1 Cyr =]
using (BSIA ¢’ V' Trgg» unfolding BSIA-def by blast

from 3 Q@ o € Trgg validES
have alpha-consists-of-events: set o C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)

from <8 @ [¢] @ a’ € Trpg validES
have alpha’-consists-of-events: set o’ C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)

from «a'1 Vyy=a | Vyn V' =(V=VyUNy,N={},C=Cy
have a'l(Vy, U Ny)=al(Vy U Ny,) by auto
with «a'1 Cyy=[p «@|Cy =D V' =(V=VyUNy,N={},C=Cy
have Oé,'\(VV UNy U Ov):a](VV UNy U Cv)

by (simp add: projection-on-union)
with VIsViewOnE alpha-consists-of-events alpha’-consists-of-events
have a’=a unfolding is ViewOn-def

by (simp add: list-subset-iff-projection-neutral)

hence Q@ [c] @ a € Trgg
using (3 @ [c] @ o’ € Trgg» by blast

with <(BSIA o' V' Trpg» show ?thesis
unfolding SIA-def using <V'=(V = Vy UNy, , N={}, C = Cy, | by auto
qed
end

lemma Adm-implies- Adm-for-modified-rho:
[Adm V2 02 Tr a e;02(V2) 2 o1(V1)] = Adm V1 o1 Tra e
proof —
assume Adm V2 02 Tr a e
and 02(V2) 2 e1(V1)
then obtain ~
where v Q [¢] € Tr
and v 1 2 Va=al 02 V2
unfolding Adm-def by auto
thus Adm V1 o1 Tr a e
unfolding Adm-def
using <01 V1 C 02 V2> non-empty-projection-on-subset
by blast
qed

context BSPTaxonomyDifferentCorrections

58

begin

lemma SI-implies-FCI:
(SIV Trgg) = FCIT YV Trgg
proof —
assume SI: SI 'V Trgg
{
fixapco
assume c € Cyy N Yr
and v € Vy NVp
and Q@ [v] @ a € Trgg
and alpha-C-empty: a1 Cy) = ||
moreover
with VIsViewOnE have (v # o) 1 Cy = ||
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have 8 Q [c¢, v] @ o € Trgg using SI unfolding SI-def by auto
with alpha-C-empty
have Ja’. 36"
(set) C(Ny NApP) A ((BQ@ [@d @ [v] @a') e Trgg
Aa’l Vy =a Vv/\alw CV:H)
by (metis append.simps(1) append.simps(2) bot-least list.set(1))
}
thus %thesis
unfolding SI-def FCI-def by auto
qed

lemma SIA-implies-FCIA:
(SIA oV Trgg) = FCIA o T'V Trgg
proof —
assume SIA: SIA oV Trgg
{
fixapfco
assume c € Cyy N Y
and ve€ Vy NVp
and $Q [v] @ a € Trgg
and alpha-C-empty: a1 Cy) = ||
and Adm V o Trgg B c
moreover
with VIsViewOnE have (v # o) 1 Cy = ||
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have 8 Q [c¢, v] @ o € Trpg using SIA unfolding SIA-def by auto
with alpha-C-empty
have 3o’ 36"
(set) C(Ny NAp) A((BQ@ [@b Q[v] @a') e Trgg
Aa’l Vy =a VV/\a'W CV:H)
by (metis append.simps(1) append.simps(2) bot-least list.set(1))

}

thus ?thesis

59

unfolding SIA-def FCIA-def by auto
qed

lemma FCIl-implies-FCIA:
(FC[ry TTES) = FCIA ,QF % TT'ES
proof—
assume FCI: FCIT V Trgg
{
fixapfcw
assume c € Cy, N T
and ve€ Vy NVp
and 5 Q [v] @ a € Trgg
and a1 Cy =
with FCI have 3Ja’éd’ set ' C Ny N Ap A
BQl@sf @v]@a’'e Trggha’l Vy=alVypAa'l Cy=]
unfolding FCI-def by auto
}
thus %thesis
unfolding FCI-def FCIA-def by auto
qed

lemma Trivially-fulfilled-SR-C-empty:
CV = {} = SRV TTES
proof —

assume Cy={}

fix 7
assume 7 € Trpg
hence 7=7|E g using validES
unfolding ES-valid-def traces-contain-events-def projection-def by auto
with «Cy={}» have 7=71(V)UNy))
using VIsViewOnE unfolding isViewOn-def by auto
with <7 € Trgg» have 71(VyUNy) € Trgg
by auto
}
thus ?thesis
unfolding SR-def by auto
qed

lemma Trivially-fulfilled- R-C-empty:
CV:{}:RVTT‘ES
proof —

assume Cy,={}

fix 7
assume 7 € Trpg
hence 7=7|E g using validES
unfolding FES-valid-def traces-contain-events-def projection-def by auto
with <CV:{}> have 7=71(VVUNV)

60

using VIsViewOnE unfolding isViewOn-def by auto
with <7 € Trgg» «Cy={} have 37" € Trgg. T1Cy,=[| A 7" 1Vy=11Vy,
unfolding projection-def by auto

thus “thesis
unfolding R-def by auto
qed

lemma Trivially-fulfilled-SD-C-empty:
OV:{}:>SDV TT“ES
by (simp add: SD-def)

lemma Trivially-fulfilled- BSD-C-empty:
CV = {} — BSDV TTES
by (simp add: BSD-def)

lemma Trivially-fulfilled-D-C-empty:
Cv:{}:DVTTES
by (simp add: D-def)

lemma Trivially-fulfilled-FCD-C-empty:
OV:{}:>FCDPV T’I“ES
by (simp add: FCD-def)

lemma Trivially-fullfilled-R-V-empty:
VV:{} — RV TTES
proof —

assume Vy={}

fix 7
assume 7 € Trpg
let #7'=[]
from «r € Trpghave 21’ € Trpg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
with «Vy={}h
have 37’ € Trgg. T1Cy=[] A T1Vy=11Vy
by (metis projection-on-empty-trace projection-to-emptyset-is-empty-trace)

thus %thesis
unfolding R-def by auto
qed

lemma Trivially-fulfilled-BSD-V-empty:
VV = {} — BSDV T?"ES
proof —

assume Vy={}

fixapfec

assume (§ Q [¢] Q@ a € Trgg
and o] Cy= ||

61

from (5 Q [c] @ a € Trpg> have § € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefizclosed-def prefiz-def by auto

let ?a'=[]
from g € Trgg «<Vy={}h
have fQ 2a’'eTrpg A 2a'lVy = alVy A 2a1Cy = |]
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence
Ja’.
BQa'€Trgs A a1Vy =alVy A a'lCy =[] by blast

thus %thesis
unfolding BSD-def by auto
qed

lemma Trivially-fulfilled-D- V-empty:
VV:{}:DV Trgg
proof —

assume Vy={}

fix a 8 ¢
assume (§ Q [¢] @ a € Trgg
and o] Cy= ||

from <8 @ [¢c] @ o € Trgg have 8 € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefizclosed-def prefix-def by auto

let ?8'=8 and ?a’'=|]
from g € Trpg» «Vy={}p
have ?,3/@ ?OZIETTES AN ?Oz/w Vy =] Vy A .?Oz/] CV = H AN ?ﬁl](VV @] Cy) = 5](VV @] Cv)
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence
Ja’ B
B'@a'€Trgg A a'lVy =alVy AalCy =[] AB1I(Vy U Cy) = BI(Vy U Cy)
by blast
}
thus %thesis
unfolding D-def by auto
qed

lemma Trivially-fulfilled-FCD-V-empty:
Vy = {} = FCDTV Trpg
by (simp add: FCD-def)

lemma Trivially-fulfilled-FCD-Nabla-Y -empty:
[[VFI{} \% TFZ{}]]:> FCDTV Trgg
proof —

assume Vp={} V Tpr={}

thus %thesis

62

proof (rule disjE)
assume Vp={} thus ?thesis
by (simp add: FCD-def)
next
assume Yp={} thus ?thesis
by (simp add: FCD-def)
qed
qed

lemma Trivially-fulfilled-FCD-N-subseteq-A-and-BSD:
[[NV C AF; BSD VY TTES]] = FCDTV T?“ES
proof —
assume Ny, C Ar
and BSD V Trgg
{
fixapfcw
assume c € Cy, N T
and v € V), N Vp
and 8 Q [¢,0] @ a € Trgg
and a|Cy = ||
from (¢ € Cyy N T1» have c € Cy,
by auto
from v € Vy, NV have v € Vy,
by auto

let %a=[v] @ a
from v € Vy» «]Cy = [» have %o Cy=]]

using VisViewOnE

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
from <8 @ [¢,v] @ a € Trpg» have 5 Q [] @ 20 € Trgg

by auto

from «<BSD V Trgpg
obtain o’
where 3 @ o’ € T’I‘ES
and a’|Vy, = ([v] @)] Vy
and a'1Cy = |]
using <c € Cy» B Q [c] Q %a € Trgg <?a]Cy = [
unfolding BSD-def by auto

fromw € Vi «@'1Vy = ([v] @)| V> have a1 Vy = [v] @ a] Vy,
by (simp add: projection-def)
then obtain § o
where a’'=§ @ [v] @ a”
and §1Vy = ||
and a1 Vy = alVy
using projection-split-first-with-suffiz by fastforce

from «a'1Cy, = [|» <a’=6 Q [v] @ o' have §]Cy,=][]

by (metis append-is-Nil-conv projection-concatenation-commute)
from «a'1Cy, = [|» «a’=6 @ [v] @ a”» have a'"|Cy)=]]

by (metis append-is-Nil-conv projection-concatenation-commute)

63

from (8 @ a' € Trgg have set a’ C Egg using validES
unfolding ES-valid-def traces-contain-events-def by auto
with <a'=§ @ [v] @ o’ have set § C Egg
by auto
with «1Cy=[p <1V = []» <Ny C Ap>
have (set 6) C (Ny N Ar)
using VIsViewOnE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?8=4 and %5'=d and %a’'=a’’
from «(set §) C (Ny, N Ap) B Q o’ € Trpg «a'=5 @Q [v] @ a’»
«@"Vy = al Vi «a@”1Cy=[p
have (set 25")C(Ny N Ap) A 28 @ 25’ @ [v] @ ?a’ € Trgg A 201 Vy=alVy A 2a'lCy=]]
by auto
hence 3a’’ §". (set ") C (Ny N Ap) A (B@ 6”7 Q [v] @ a") € Trgg
/\Oz”/1 Vy =a Vy /\a”'1 CV e H
by auto
}
thus ?thesis
unfolding FCD-def by auto
qed

lemma Trivially-fulfilled-SI-C-empty:
CV = {} = SIV TTES
by (simp add: SI-def)

lemma Trivially-fulfilled- BSI-C-empty:
Cy = {} = BSIV Trgg
by (simp add: BSI-def)

lemma Trivially-fulfilled-1-C-empty:
CV:{}:>IV TTES
by (simp add: I-def)

lemma Trivially-fulfilled-FCI-C-empty:
Cy = {} = FCITV Trpg
by (simp add: FCI-def)

lemma Trivially-fulfilled-SIA-C-empty:
CV = {} = SIA oV TTES
by (simp add: SIA-def)

lemma Trivially-fulfilled-BSIA-C-empty:
CV I{}:>BSIAQV TTES
by (simp add: BSIA-def)

lemma Trivially-fulfilled-1A-C-empty:

Cy={}=1A0V Trgg
by (simp add: IA-def)

64

lemma Trivially-fulfilled-FCIA-C-empty:
Cy ={} = FCIAT oV Trgg
by (simp add: FCIA-def)

lemma Trivially-fulfilled-FCI-V-empty:
VV = {} — FCITYV TT'ES
by (simp add: FCI-def)

lemma Trivially-fulfilled-FCIA-V-empty:
Vy ={} = FCIA oT'V Trgg
by (simp add: FCIA-def)

lemma Trivially-fulfilled- BSIA-V-empty-rho-subseteq-C-N:
[Vy={};eV2(CyUNy)] = BSIA o V Trgg
proof —
assume Vy={}
and oV D (Cy U Ny))
{
fix a 8 ¢
assume ¢ € Cy,
and 8 Q o € Trgg
and o] Cy=]|
and AdmV ¢ Trgg B ¢
from <Adm V o Trpg B ©
obtain v
where v Q [c] € Trgg
and v(e V) = Bl(e V)
unfolding Adm-def by auto
from this(1) have v € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefizclosed-def prefix-def by auto
moreover
from <8 @ o € Trpg have § € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
ultimately
have 31E ps="1E s
using validES VIsViewOnE «Vy={} <y1(e V) = Bl1(e V)» <0 V 2 (Cy U Ny)»
non-empty-projection-on-subset
unfolding ES-valid-def isViewOn-def traces-contain-events-def
by (metis empty-subsetl sup-absorb2 sup-commute)
hence 3 Q [¢] € Trgg using validES <y Q [c] € Trgg» B € Trgg <y € Trgg
unfolding ES-valid-def traces-contain-events-def
by (metis list-subset-iff-projection-neutral subsetl)

let ?2a’=]]
from 8 Q [c] € Trgg «<Vy ={}p
have 8 Q [c] @ ?2a’ €Trgg A 221Vy = alVy A 221Cy = |
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence 3 a’. B Q [c] @Qa’' €Trpg A a'1Vy =alVy A a'1Cy =]
by auto

}

65

thus %thesis
unfolding BSIA-def by auto
qed

lemma Trivially-fulfilled-1A-V-empty-rho-subseteq-C-N:
[Vy={keV2(CyUNy)]=1A0 V Trgg
proof —
assume Vy={}
and oV 2 (Cy U Ny))
{
fixapfec
assume ¢ € Cy,
and 3 Q o € Trgg
and a] Cy=|]
and Adm V ¢ Trgg B ¢
from <Adm V o Trgg B ©
obtain ~
where v Q [c] € Trgg
and v(e V) = Bl(e V)
unfolding Adm-def by auto
from this(1) have v € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
moreover
from (8 @ a € Trgg» have § € Trpg using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
ultimately
have 81Eps=71EEg
using validES VIsViewOnE «Vy={} <y1(e V) = B1(e V)» <0 V D (Cy U Ny))»
non-empty-projection-on-subset
unfolding ES-valid-def isViewOn-def traces-contain-events-def
by (metis empty-subsetl sup-absorb2 sup-commute)
hence 3 @ [¢] € Trgg using validES <y Q [c] € Trgg» B € Trgg <y € Trgg
unfolding ES-valid-def traces-contain-events-def
by (metis list-subset-iff-projection-neutral subsetl)

let ?8'=p8 and ?a'=||
from 3 Q [c] € Trgg «<Vy ={}p
have ?8' @ [¢] @ %o’ €Trpg A 2a'1Vy, = alVy A 2a'1Cy = |]
A ?,8,1(VV U Cv) = BW(VV U Cv)
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence 3 o’ 3.
B'Ql]@a €Trgg AalVy =alVy Aa'lCy =]
A B1(Vy U Cy) = B1(Vy U Cy)
by auto
}
thus %thesis
unfolding IA-def by auto
qed

lemma Trivially-fulfilled-BSI- V-empty-total-ES-C"
[[VV = {}, total ES CV]] — BSI'V TI”ES

66

proof —
assume Vy, = {}
and total ES Cy,
{
fixapfec
assume § Q@ a € Trgg
and o] Cy=||
and c € Cy,
from (8 @ a € Trpg> have 8 € Trpg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
with <total ES Cy» have § Q [c] € Trgg
using (¢ € () unfolding total-def by auto
moreover
from «Vy, = {}» have o Vy,=]]
unfolding projection-def by auto
ultimately
have 3a’. 8 Q [c] @ a’' € Trgg A a'lVy=alVy A a'1Cy=]]
using <o 1 Cy = [» by (metis append-Nil2 projection-idempotent)
}
thus %thesis
unfolding BSI-def by auto
qed

lemma Trivially-fulfilled-1-V-empty-total-ES-C:
[Vy ={}; total ES Cy,] = IV Trgg
proof —
assume Vy, = {}
and total ES Cy,
{
fixa S c
assume c € Cy)
and 8 Q@ o € Trgg
and o] Cy=[]
from (8 @ a € Trpg> have 8 € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefixclosed-def prefix-def by auto
with <total ES Cy» have g Q [c] € Trgg
using (¢ € Cy» unfolding total-def by auto
moreover
from «Vy, = {}» have o] Vy,=]]
unfolding projection-def by auto

ultimately
have 33’ o,
B'Q [@a’e Trgs A a'IVy=alVy AaICy=[] A B1(Vy U Cy) = BI(Vy U Cy)
using «a 1 Cy = []» by (metis append-Nil2 projection-idempotent)
}

thus ?thesis
unfolding I-def by blast
qed

67

lemma Trivially-fulfilled-FCI-Nabla-Y -empty:
[[VFI{} V TFZ{}]]:> FCITYVY TT‘ES
proof —
assume Vp={} V Tp={}
thus “thesis
proof (rule disjE)
assume Vp={} thus ?thesis
by (simp add: FCI-def)
next
assume Yp={} thus ?thesis
by (simp add: FCI-def)
qed
qed

lemma Trivially-fulfilled-FCIA-Nabla-Y -empty:
[Vr={} V Yr={}]= FCIA ¢ T'V Trgg
proof —
assume Vp={} V Tp={}
thus ?thesis
proof (rule disjE)
assume Vp={} thus ?thesis
by (simp add: FCIA-def)
next
assume Yp={} thus ?thesis
by (simp add: FCIA-def)
qed
qed

lemma Trivially-fulfilled-FCI-N-subseteq-A-and-BSI:
[[NV C AF; BSI V T’I‘Esﬂ = FCITV TTES
proof —
assume Ny C Arp
and BSI V Trgg
{
fixapfco
assume c € Cy N Y
and v € V), NV
and 8 Q [v] @ a € Trgg
and a|Cy = ||
from <c € Cyy N Y1) have c € Oy,
by auto
from <v € V) N V> have v € Vy,
by auto

let 2a=[v] @ «
from v € Vy» «a]Cy = []» have %a]Cy=|]

using VIsViewOnE

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
from (8 @ [v] @ @ € Trgg have § Q@ %a € Trgg

by auto

from «(BSI' V Trgg

68

obtain o’
where 8 Q [c] @ o' € Trpg
and a'1Vy = ([v] @ @) Vy,
and a'1Cy, = ||
using <c € Cy» < Q %a € Trgg %alCy = [
unfolding BSI-def by blast

from«w € Vy» «@1Vy = ([v] @ @)] Vy» have a1 Vy, = [v] @ a] Vy,
by (simp add: projection-def)
then
obtain § o’
where a’'=§ @ [v] @ "’
and §1Vy = ||
and a/'1 VV = Oc] VV
using projection-split-first-with-suffiz by fastforce

/

from «@'1Cy = [<a'=§ @ [v] @ a”» have §]1Cy,=]]

by (metis append-is-Nil-conv projection-concatenation-commute)
from «a'1Cy, = [|» «a’=6 @ [v] @ a”» have a'"|Cy)=]]

by (metis append-is-Nil-conv projection-concatenation-commute)

from <8 @ [¢] @ o’ € Trgg have set o’ C Epg
using validES
unfolding ES-valid-def traces-contain-events-def by auto
with <a'=§ @ [v] @ o’ have set § C Egg
by auto
with «1Cy=[p «1Vy =[] <Ny € Ap>
have (set 6) C (Ny N Ar)
using VisViewOnE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?3=3 and ?6'=§ and ?a'=a’’
from «(set §) C (Ny, N Ap) S Q [] @ o' € Trgg «a'=5 Q [v]) @ a’»
«@"Vy = al Vi a1 Cy=[p
have (set 26)C(Ny NAp) A 23Q [] @ 25’ Q [v] @ 2o’ € Trgg A ?2a'lVy=alVy A 2a'1Cy=]]
by auto
hence 3a’’ §". (set ") C (Ny NAp) A (BQ [c] @57 Q [v] @ ') € Trgg
/\a'”1 Vy =a Vy /\a/”] CV = H
by auto
}
thus ?thesis
unfolding FCI-def by auto
qed

lemma Trivially-fulfilled-FCIA-N-subseteq-A-and-BSIA:
[[NV - AF; BSIA oV TTES]] = FCIA o'V TT‘ES
proof —
assume Ny C Ar
and BSIA oV Trgg
{
fixafcw
assume c € Cy N Y

69

and v € Vyy NV
and 8 Q [v] @ @ € Trgg
and a|Cy = ||
and Adm V o Trgg B ¢

from (¢ € Cy N T1» have c € Cy,
by auto

from <v € V) N V> have v € Vy,
by auto

let 2a=[v] @ «
from v € Vy» «a]Cy = [» have %o Cy=]]

using VIsViewOnE

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
from <3 @Q [v] @ & € Trgg» have 8 Q %o € Trgg

by auto

from «BSIA oV Trgg»
obtain o’
where 8 Q [c] @ o' € Trgg
and a'1Vy = ([v] @ @) Vy,
and a'1Cy = ||
using <¢c € Cy» B Q %a € Trgg <2]Cy = [<AdmV o Trgg B ©
unfolding BSIA-def by blast

fromw € Vy» «a'1Vy = ([v] @)] Vy» have a1 Vy, = [v] @ a] Vy,
by (simp add: projection-def)
then
obtain § o’
where a’'=§ @ [v] @ a”
and §1Vy = ||
and a1 Vy =alVy
using projection-split-first-with-suffiz by fastforce

from «a'1Cy, = [|» <a'=6 Q [v] @ o' have §]Cy,=[]

by (metis append-is-Nil-conv projection-concatenation-commute)
from «a'1Cy, = [|» «a’=§ @ [v] @ a”» have a'"|Cy)=|]

by (metis append-is-Nil-conv projection-concatenation-commute)

from <8 @ [¢] @ a’ € Trgg have set o’ C Epg
using validES
unfolding ES-valid-def traces-contain-events-def by auto
with «a'=6 @ [v] @ o’ have set § C Egg
by auto
with <(ﬂ CV:[]> (51 VV = []) (NV - AF>
have (set 6) C (Ny N Ar) using VIsViewOnkE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?8=3 and %5'=) and %a’'=a’’
from «(set §) C (Ny, N Ap) S Q [c] @ o' € Trgg «a'=§ @ [v]) @ o’
«@"MVy = al Vi «”1Cy=[p
have (set 26)C(Ny NAp) A 28Q [c] @ 25’ Q [v] @ 2o’ € Trgg A 2a'l Vy=alVy A 2a'1Cy=]]
by auto

70

hence 3a’’ §". (set ") C(Ny NAp) A (BQ [c] @57 Q [v] @ ') € Trgg
Aa’ VV:OC1 VV/\OcW1 CV: H
by auto

thus “thesis
unfolding F'CIA-def by auto
qed

end

context BSPTaxonomyDifferentViewsFirstDim
begin

lemma R-implies-R-for-modified-view:
RV Trgg = RV2 Trgg

proof —

assume R-Vi: R V1 Trgg

{
fix 7
assume 7 € Trpg
with R-Vi have 3 7' € Trgg. 7'1 Cy, =[[AT' 1 Vy, =71 Vy,

unfolding R-def by auto

hence 3 7' € Trgg. 7'1 Cy, = AT 1 Vy, =71 Vy,

using V2-subset-V1 C2-subset-C1 non-empty-projection-on-subset projection-on-subset by blast
}
thus %thesis
unfolding R-def by auto
qed

lemma BSD-implies-BSD-for-modified-view:
BSD Vl T’I’ES:> BSD Vg TTES
proof—
assume BSD-Vi: BSD Vi Trgg
{
fixapfcn
assume c-in-Cz: ¢ € Cy,
from C2-subset-C1 c-in-C2 have c-in-Cq: ¢ € C’vl
by auto
have [3 @ [c] @ o € Trgg; a1 Cyp,=[]; n= length(a 1 Cy),)]
=3Ja . pa@a’c Trggha’l Vy, =alVy, Na' 10y, =]
proof (induct n arbitrary: o)
case (
from 0.prems(3) have a | Cy, = [| by auto
with c-in-C1 0.prems(1)
have 3 o f@a’'€ Trggha'l Vy, =al Vy, Aa’'1Cy, =]
using BSD-V; unfolding BSD-def by auto
then
obtain o’ where 8 Q a’ € Trpg
and o'l Vy, = al Vy,
and o' 1Cy, =]
by auto
from V2-subset-V1 <«a'1 Vy, = a1 Vy) have ol Vy, =aVy,

71

using non-empty-projection-on-subset by blast

moreover

from ' 1Cy, =[)> C2-subset-C1 have o’ 1 Cy, = ||
using projection-on-subset by auto

ultimately

show ?case
using <3 @ o’ € Trgg by auto
next
case (Suc n)
from Suc.prems(3) projection-split-last|OF Suc.prems(3)]
obtain v1 v2 ¢1 where ci-in-C1: c1 € Cy,
and o = v1 @ [¢1] @ 72
and 72 1Cy, =]
and n = length((y1 @ v2)1 Cy,)
by auto
from Suc.prems(2) «a = v1 @ [c1] @ v2> have 71 1 Cy, = |]
by (simp add: projection-concatenation-commute)
from Suc.prems(1) <o =1 Q [c1] @ 2>
obtain ' where 8'=8 @ [c] @ v,
and ﬂ/ @) [Cl] Q@ Y2 € T’I’ES
by auto
from (8’ Q [c1] @ v2 € Trgg> <72 1Cy, = 1 € Cy,»
obtain ;' where '@ ;' € Trpg
and ’72/] VV1 = Y2 W VV1
and 72" 1y, [
using BSD-V: unfolding BSD-def by auto
from «8'= Q@ [c] @ y1» <8’ @ v2' € Trpg> have S @ [¢] @y1 Q@ 2’ € Trpg
by auto
moreover
from <y 1 Cy,=[¢2"1Cy, =[]> C2-subset-C1 have (y1 @ v2") | Cy, =]|
by (metis append-Nil projection-concatenation-commute projection-on-subset)
moreover
from n = length((y1 @ v2)] Cy,) ¢y2 1Cy, = [¢y2" 1Cy, =[D
have n = length((y1 @ v2")] Cy),)
by (simp add: projection-concatenation-commute)
ultimately
have witness: 3 a’. f @ a’ € Trgg A o'l Vi, = (11 @ 72)) 1Vy, Aa'1Cy, =]
using Suc.hyps by auto

from ViIsViewOnE V2IsViewOnE V2-subset-V1 C2-subset-C1 c¢i-in-Cq1 have ¢1 ¢ Vv2
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto

with <@ = v1 @ [¢1] @ 72> have «a] Vy, = (71 @ v2) 1 Vy,
unfolding projection-def by auto

hence a | Vy, =711 Vy, @y2 1 Vy,
using projection-concatenation-commute by auto

with V2-subset-V1 «<y2" 1 Vy, =721 Vyp»

have 71 1 Vy, @2 1 Vy, =v11 Vy, @421 Vy,
using non-empty-projection-on-subset by metis

with <Oé1 VV2 =71 1 VV2 @) Y2] VV2> have Ot1 VV2 = (’)/1 @) ’}/2,) W VV2
by (simp add: projection-concatenation-commute)

from witness <a | Vy, = (71 @727 1 Vy,»

72

show Zcase
by auto
qed
}
thus “thesis
unfolding BSD-def by auto
qed

lemma D-implies-D-for-modified-view:
DV, TI”ES — D Vs TFES
proof—
assume D-Vi: D V1 Trgg
from V2-subset-V1 C2-subset-C1
have Va-union-C2-subset-Vi-union-Ci: Vy, U Cy, C Vy, U Cy, by auto
{
fixafBcn
assume c-in-Ca: ¢ € Cy,
from C2-subset-C1 c-in-Cs have c-in-Ci: ¢ € CV1

by auto
have [8 Q@ [c] @ a € Trgg; o | Cy,=[]; n= length(a 1 Cy),)]
=3 o’ 8"

B'@a’e Trgg Na'l Vy, =alVy, Aa'1Cy, =]
A B 1(Vy, U Cy,) =B 1(Vy, U Cy,)
proof (induct n arbitrary: o 8)
case (
from 0.prems(3) have a | Cy, = [| by auto
with c-in-C1 0.prems(1)
have 3 o’ 3'.
B'@a'e Trgg ANa'l Vy, =al Vy Aa'1Cy, =]
A ﬂ/](V\h U CV1) =8](VV1 U CV1)
using D-V; unfolding D-def by fastforce
then
obtain 3’ o’ where ' @ o’ € Trgg
and o' Vy, =al Vy,
and o' 1Cy, =[]
and 3’](Vvl U CV1) =](Vvl U CV1)
by auto
from V2-subset-V1 «'1 Vy =al Vy) have ol Vy, =aVy,
using non-empty-projection-on-subset by blast

moreover

from ' 1Cy, =[] C2-subset-C1 have a’| Cy,, =[]
using projection-on-subset by auto

moreover

from 3" 1(Vy, U Cy,) = B1(Vy, U Cy,)» Va-union-Ca-subset-Vi-union-C1
have ﬂ/](VVQ U CVQ) = 1(VV2 U CVQ)
using non-empty-projection-on-subset by blast
ultimately
show ?case
using <8’ @ o’ € Trgg» by auto
next
case (Suc n)
from Suc.prems(8) projection-split-last{OF Suc.prems(3)]

73

obtain v1 72 ¢1 where c¢i1-in-C1: ¢1 € CV1
and o = 71 @ [¢1] @ 72
and 7 1Oy, = |
and n = length((y1 @ v2)] Cy))
by auto
from Suc.prems(2) <« = v1 @ [c1] @ v2) have 71 1 Cy, = |]
by (simp add: projection-concatenation-commaute)
from Suc.prems(1) <o = v1 Q [c1] Q 2>
obtain 3’ where 3'=8 @ [c] @ 7,
and 8’ @ [¢1] @ v2 € Trpg
by auto
from 4’ @ [c1] @ 2 € Trggy (y2 1Cy, = [<c1 € Cy»
obtain v;’ B’ where " @ vy’ € Trgg
and ’yg/w VV1 = V2 1 VVl
and 72’ 1Cy, =[]
and ﬂ”](VVl U CV1) = ﬁ/](VVl U OV1)
using D-V; unfolding D-def by force

from c-in-C1 have ¢ € VV1 @] CV1
by auto
moreover
from (ﬁ”W(VVI U CV1) = ﬂ/1(VV1 (@] CV1)> B'=p @ [C} Q@ ~1»
have ﬂ”](VVl U CV1) = (B8 Q][c] @~y) W(Vvl U CV1)
by auto
ultimately
have J 6/// ’Yl/~ ,6//:,6///@ [C} Q@ 71/
AB" 1(Vy, UCy) =B1(Vy, UCy,)
A 71/1(VV1 U Ovl) ="](Vvl U Cvl)
using projection-split-arbitrary-element by fast
then
obtain 8’ 71’ where 8= "' @ [c] @ v’
and B'" W(VVI U CVI) =4 W(Vvl U CVI)
and ’ylﬂ(Vyl U CV1) =7](VVI U CV1)
using projection-split-arbitrary-element by auto

from 8" Q v2' € Trpg this(1)
have 8" Q [c] @ v,' @ 72" € Trgg
by simp

from «y2" 1Cy, =[)> have 72" 1 Cy,=]]
using C2-subset-C1 projection-on-subset by auto
moreover
from «<vy1 | CVQ = []) <’)/1/](VV1 U CV1) =7 1(VV1 (@] CV1)>
have 71"l Cy, = [] using C2-subset-C1 V2-subset-V1
by (metis non-empty-projection-on-subset projection-subset-eg-from-superset-eq sup-commute)

ultimately
have (v1’ @ 2 ’)]CVQ =

by (simp add: projection-concatenation-commaute)

from v ,W(VVI @] CV1) =7](Vvl @] CV1)> have v /] Cyl = ’yl]Cyl
using projection-subset-eq-from-superset-eq sup-commute by metis

74

hence length(y1"] Cy,) = length(711Cy,,) by simp
moreover
from «y2 10y, = [<y2"1Cy,=[]> have length(v2"1Cy,) = length(y21Cy),)
by simp
ultimately
have n=length((y1’ @ ~2')1Cy),)
by (simp add: «n = length ((y1 @ v2) 1 Cy,)> projection-concatenation-commute)

from 3" Q [c] @ v, @ 42" € Trgg (11’ @ ~2')1Cy, = [(n=length((v1’ @ v2")1Cy,)
have witness:
Ja’'B. B @a’c Trgs N o’ VV2 = (71, @] ’yzl) 1 VVZ
A 06/1 CVQ = [] A B/W (VVQ U CVQ) = 6/”1 (VVQ U CVQ)
using Suc.hyps[OF 8" @ [c] @ 1" @ 2" € Trgg] by simp

from Vs-union-Cz-subset-Vi-union-Cv <" 1(Vy, U Cy,) =B 1(Vy, U Cy,)
have ﬁ”/ 1(VV2 U CVQ) =0 1(VV2 @] CVQ)
using non-empty-projection-on-subset by blast

from ViIsViewOnE VilIsViewOnE V2-subset-V1 C2-subset-C1 c1-in-C1 have ¢1 ¢ VVQ
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto
with <@ = 1 @ [c1] @ 2> have a | Vy, = (11 @ 72) | Vy,
unfolding projection-def by auto
moreover
from V2-subset-V1 «y2' | Vy, =21 Vyp have y2"1 Vy, =21 Vy,
using V2-subset-V1 by (metis projection-subset-eg-from-superset-eq subset-Un-eq)
moreover
from «y;"[(Vy, U Cy,) =11 1(Vy, U Cy,)» have vi' 1 Vy, =711 Vy,
using V2-subset-V1 by (metis projection-subset-eg-from-superset-eq subset-Un-eq)
ultimately
have o | Vy, = (71" @ y2') | Vy, using « | Vy, = (71 @ y2) | Vy,»
by (simp add: projection-concatenation-commute)

from 3" 1(Vy, U Cy,) = B1(Vy, U Oy, al Vy, = (11" @2) 1 Vi,
show ?case
using witness by simp

qed

thus %thesis
unfolding D-def by auto

context BSPTaxonomyDifferent ViewsSecondDim

lemma FCD-implies-FCD-for-modified-view-gamma:
[[FCD Fl Vl TTES;

Vv2ﬂvl'*2 - Vvlﬂvl"l; Nv2ﬂA1"2 B NvlﬂAr‘l; Ov2ﬂTF2 C Cvlﬂrplﬂ

= F'CDT's Vs TT’ES
proof —

(0]

assume FCD I'y V1 Trgg
and VV2ﬂVF2 - VV1mVF1
and NV2ﬂAF2 B NvlﬂApl
and CVQDTFQ - CvlﬁTrl
{
fixapuvec
assume ¢ € Cy,NTp,
and v € VV2ﬂvF2
and 8 Q [c,v] @ o € Trgg
and o] Cy, = |]

N

from <c € CVQOTF2> <CV2mTF2 - CV1HTF1> have ¢ € CVIQTFI
by auto
moreover
from v € VVQOVF2> <Vv2ﬁvl'*2 - VvlﬂVFl> have v € Vylﬂvl"l
by auto
moreover
from C2-equals-C1 «a]Cy,, = [have o|Cy,, =]|
by auto
ultimately
obtain o’ §’ where (set 6") C (Ny, N Ar,)
and Q¢ Q@ [v] @Qa’ € Trgg
and a'|Vy, = alVy,
and o'|Cy, =]
using <8 Q [¢,v] @ a € Trgg» <FCD 'ty V1 Trpg unfolding FCD-def by blast

from <(56t 5/) - (NV1 n AF1)> <NV20AF2 D) NV1OAF1>
have (set 6') C (Ny, N Ap,)
by auto
moreover
from | Vy, = alVy,» V2-subset-V1 have o'l Vy,, = alVy,
using non-empty-projection-on-subset by blast
moreover
from C2-equals-C1 «a'|Cy, = [)> have a'[Cy, = ||
by auto
ultimately
have 3 ¢’ a'. (set 6") C (Ny, N Ar,)
AB@sQ]@a’ e Trgg AalVy, =alVy, AalCy, =
using (3 @ §' @ [v] @ &’ € Trgg by auto
}
thus %thesis
unfolding FCD-def by blast
qed

lemma SI-implies-SI-for-modified-view :
SI V1 Trpg = SI V2 Trgg
proof —
assume SI: SI V1 Trgg
{
fix a ¢
assume c € Cy,

76

and 8 Qa € Trgg
and alpha-Ca-empty: a1 Cy, = ||
moreover
with (2-equals-C1 have ¢ € Cy),
by auto
moreover
from alpha-C2-empty C2-equals-C1 have a | Cy, = ||
by auto
ultimately
have 8 Q (c # o) € Trgg
using S/ unfolding SI-def by auto

thus %thesis
unfolding SI-def by auto
qed

lemma BSI-implies- BSI-for-modified-view :
BSI V1 T?”ES = BSI V> TT‘ES
proof —
assume BSI: BSI V1 Trgg
{
fix a 8 c
assume c € Cy,
and 3Qa € Trgg
and alpha-Ca-empty: a1 Cy, = ||
moreover
with (2-equals-C1 have ¢ € Cy,
by auto
moreover
from alpha-C2-empty C2-equals-C1 have o | Cy; = |]
by auto
ultimately
have 3 o Q@[] @a’€ TrggAha'l Vy, =al Vy Aa'l Oy =]
using BSI unfolding BSI-def by auto
with V2-subset-V1 C2-equals-C1
have 3 o Q@[] @a’€ Trggha'l Vy, =al Vy, Aa'l Oy, =
using non-empty-projection-on-subset by metis
}

thus %thesis
unfolding BSI-def by auto
qed

lemma [I-implies-I-for-modified-view :
IV T’I‘ES:> 1V TT‘ES
proof —
assume I: I V1 Trgg
from V2-subset-V1 C2-equals-C1 have Va-union-Ca-subset-Vi-union-C1: Vy, U Cy, C Vy U Cy,
by auto

{

7

fix a 8 ¢
assume c € Cy,

and 3Qa ¢ Trgg

and alpha-Cz-empty: a1 Cyy, = ||
moreover
with C2-equals-C1 have c € Cy),

by auto
moreover
from alpha-C2-empty C2-equals-C1 have a | Cy, =[]

by auto
ultimately
have 3 o’ 3.

B'@l@a’e Trggha'l Vy, =al Vy, Aa'1Cy, =]
A B (VV1 @] CV1) =61 (VV1 U CV1)

using / unfolding I-def by auto
with Va-union-Ca-subset-Vi-union-Cy V2-subset-V1 C2-equals-C1
have 3 o’ B".

B’ @ [c] Q@a'e TTEs/\CM/] VV2 =a VV2 Aa’l Cv2 =
A B (Vy, U Cy,) =81 (Vy, U Cy,)
using non-empty-projection-on-subset by metis

thus %thesis
unfolding I-def by auto
qed

lemma SIA-implies-SIA-for-modified-view :
[SIA 01 V1 Trgg; 02(V2) 2 01(V1) | = SIA 02 V2 Trgg
proof —
assume SIA: SIA o1 V1 Trgg
and g2-supseteq-p1: 02(V2) 2 01(V1)
{
fix a 8¢
assume c € Cy,
and 3Qa € Trgg
and alpha-Ca-empty: a1 Cy, = |]
and admissible-c-g2-V2:Adm Va2 02 Trgg B ¢
moreover
with (2-equals-C1 have c € Cy,
by auto
moreover
from alpha-C2-empty C2-equals-C1 have a | Cy, =[]
by auto
moreover
from go-supseteq-o1 admissible-c-p2-V2 have Adm V1 01 Trgg B ¢
by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have 5 Q (c # o) € Trgg
using SIA unfolding SIA-def by auto
}
thus %thesis
unfolding SIA-def by auto

78

qed

lemma BSIA-implies-BSIA-for-modified-view :
[[BS[A 01 Vl TTES; QQ(VQ) 2 Ql(Vl)]] = BSIA 02 VQ TTES
proof —
assume BSIA: BSIA o1 V1 Trgg
and g2-supseteq-01: 02(V2) 2 01(V1)
from V2-subset-V1 C2-equals-C1
have Va-union-Ca-subset-Vi-union-Ci: Vy, U Cy, C Vy, U Cy,
by auto
{
fixapfec
assume c € Cy),
and 8 Qa € Trgg
and alpha-Ca-empty: a1 Cy, = |]
and admissible-c-p2-Va:Adm Va 02 Trps B c
moreover
with C2-equals-C1 have ¢ € Cy,
by auto
moreover
from alpha-C2-empty C2-equals-C1 have o | Cy = |]
by auto
moreover
from go-supseteq-o1 admissible-c-p2-V> have Adm V1 o1 Trgg B ¢
by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately

have 3 o fQ[c]@a’€ Trggha'l Vy, =al Vy Aa'l Oy =

using BSIA unfolding BSIA-def by auto
with V2-subset-V1 C2-equals-C1

have 3 o Q@ [c]@a’e€ Trggha'l Vy, =al Vy, Aa'] Cy, =

using non-empty-projection-on-subset by metis
}
thus %thesis
unfolding BSIA-def by auto
qed

lemma [A-implies-IA-for-modified-view :
[IA o1 V1 Trgs; 02(V2) 2 01(V1)] = IA 02 V2 Trpg
proof —
assume JA: JA o1 V1 Trgg
and g2-supseteq-01: 02(V2) 2 01(V1)
{
fixapfec
assume c € Cy,
and 8 Qa € Trgg
and alpha-Ca-empty: o1 Cy, = |]
and admissible-c-p2-Vo:Adm V2 02 Trpg B c
moreover
with (C2-equals-C1 have c € Cy,

79

by auto
moreover
from alpha-C2-empty C2-equals-C1 have o | Cy, =[]
by auto
moreover
from go-supseteq-o1 admissible-c-p2-V2 have Adm V1 01 Trgg B ¢
by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have 3 o’ p’. B’ @ [c] @a'c TTEs/\a/1 VV1 =a] Vvl Ao’ CV1 = A B (VV1 U CV1) =0
1 (Vy, U Cy,)
using /A unfolding /A-def by auto
moreover
from V2-subset-V1 C2-equals-C1 have (Vy, U Cy,) € (Vy, U Cy))
by auto
ultimately
have 3 o' . g'Q[cJ@a’c Trgghna'l Vy, =al Vy, Aa'1Cy, =] AB'1(Vy, U Cy,) =
B1(Vy, U Cyy)
using V2-subset-V1 C2-equals-C1 non-empty-projection-on-subset by metis
}

thus ?thesis
unfolding [A-def by auto
qed

lemma FCI-implies-FCI-for-modified-view-gamma;:
[FCI Ty Vi Trgg;
VngvFQ - VVIQVFI; NngAl_‘g B) NvlﬂApl; CVgang C CvlﬂTrl |
— I'CI I's Vo TT‘ES
proof —
assume FCI I'y V1 Trgg
and VngVFQ - VV10VF1
and NVQHAFQ D) NvlﬂAr‘l
and CVQOTFQ - CvlﬁTpl
{
fixapfuvc
assume c € Cy,NTp,
and v € Vy,NVp,
and 8 Q [v] @ @ € Trgg

and o] Cy, = |]
from «c € Cy,NYp,» «Cyp,NTp, © Cy NYpp have c € Cy NTp,
by auto
moreover
from v € Vy,NVp,» «<Vy,NVp, C Vy NVp» have v € Vy NV,
by auto
moreover
from C2-equals-C1 «a1Cy,, = [> have o Cy, =[]
by auto
ultimately
obtain o §" where (set §°) € (Ny, N Ar,)
and 8 Q [c] @6 Q [v] @ a' € Trpg
and o'l Vy, = alVy,

80

and o'|Cy, =]
using <8 Q [v] @ a € Trgg» <FCI T'1 V1 Trpg unfolding FCI-def by blast

from <(set 5/) C (NV1 N AF1)> <NV20AF2 D NvlﬂArl>
have (set §') C (Ny, N Ar,)
by auto
moreover
from | Vy = alVy » V2-subset-V1 have o'l Vy, = alVy,
using non-empty-projection-on-subset by blast
moreover
from «Cy, = Cy» «'[Cy, = [} have a'[Cy, = ||
by auto
ultimately have 3 ¢’ o'. (set ') C (Ny, N Ar,)
ANB Q@ §'@v]@a’ e TrggAalVy, =alVy, Aa'lCy, =]
using (3 @ [c] @ 6’ @Q [v] @ o’ € Trgg by auto
}
thus ?thesis
unfolding FCI-def by blast
qed

lemma FCIA-implies-FCIA-for-modified-view-rho-gamma:
[[FC[A o1 't Vi Trgg; Qz(Vz)) 91(]/1);
VVQQVFQ - VV1 QVFl; NVQHAFQ B NV1 ﬁAFl; CVQQTFQ - CV1 ﬂTFl ﬂ
= FCIA 02 I's Vo TT‘ES
proof —
assume FCIA o1 't V1 Trgg
and 02(V2) 2 01(V1)
and VngvFg - VV1OVF1
and NngArg 2 NvlﬁArl
and CVQHTFQ - CvlﬂTrl
{
fixapfuvc
assume ¢ € Cy,NTp,
and v € VV2QVF2
and 8 Q [v] @ o € Trgg
and a|Cy, = ||
and Adm V2 02 Trgg B ¢

U

from «c € Cy,NYp,» «Cyp,NTp, © Cy NYpp have c € Cy NTp,
by auto

moreover

from v € Vy,NVp,» «<Vy,NVp, C Vy NVp» have v € Vy NV,
by auto

moreover

from C2-equals-C1 «a1Cy,, = [> have o Cy, =[]
by auto

moreover

from <Adm V2 92 Trgg B ¢ <02(V2) 2 01(V1)» have Adm V1 o1 Trgg 5 ¢
by (simp add: Adm-implies-Adm-for-modified-rho)

ultimately

81

obtain o’ §’ where (set 6') C (Ny, N Ar,)
and £ Q [] @4’ Q@ [v] @ o' € Trgg
and o'l Vy, = ol Vy,
and o'|Cy, =]
using <8 Q [v] @ a € Trgg <FCIA o1 T'1 V1 Trgg unfolding FCIA-def by blast

from <(set 5/) C (NV1 N AF1)> <NV20AF2 D NVIHAF1>
have (set §') C (Ny, N Ar,)
by auto
moreover
from | Vy, = alVy » V2-subset-V1 have o'l Vy,, = alVy,
using non-empty-projection-on-subset by blast
moreover
from «Cy, = Cy» «'[Cy, = [} have a'[Cy, = ||
by auto
ultimately
have 3 §" a'. (set §') € (Ny, N Ar,)
A B Q[@ §j'a [v] @ o' e Trgg N 'l VVQ = o VV2 A 'l CV2 =]
using <3 @Q [c] @ 6’ @ [v] @ @’ € Trgg» by auto
}
thus %thesis
unfolding FCIA-def by blast
qed
end

end

5.3 Unwinding

We define the unwinding conditions provided in [3] and prove the unwinding theorems from [3] that
use these unwinding conditions.

5.3.1 Unwinding Conditions

theory UnwindingConditions
imports ../Basics/ BSPTazonomy

../ ../ SystemSpecification/ State EventSystems
begin

locale Unwinding =
fixes SES :: (s, 'e) SES-rec
and V :: ‘e V-rec

assumes validSES: SES-valid SES
and validVU: isViewOn V Eggpg

sublocale Unwinding C BSP TaxonomyDifferentCorrections induceES SES 'V
by (unfold-locales, simp add: induceES-yields-ES validSES,
stmp add: induceES-def validVU)

82

context Unwinding
begin

definition osc :: ‘s rel = bool

where

osc ur =

Vsl € Sggg. Vs’ e SsEs- Vs2' e Ssps- Ve € (Egpg — Cy).
(reachable SES s1 A reachable SES s1’
A sl e—sgpg s2' A (s1', s1) € ur)
—)(HSQGSSESH(;.(S] CV:H/\51 VV:[G]] Vy
A sl 6=>gpg s2 A (s2', s2) € ur)

definition Irf :: ‘s rel = bool
where
Irf ur =
Vs e SSE’S' Vs’ € SSES' Ve e Cv.
((reachable SES s A\ s c—rgpg s') — (s', s) € ur)

definition Irb :: s rel = bool
where
Irbur =Vs € Sggg.- Ve € Cy.
(reachable SES s — (s’ € Sgpg. (s c—>gps s’ A ((s, ') € ur))))

definition ferf :: ‘e Gamma = s rel = bool
where
ferf T ur =
Vee (CyNYp).Voe (VyNnvVrp).Vs e Sgrs. Vs’ € Sggs.
((reachable SES s A s ([c] @ [v])=>gpg s')
— (3s” € Sgpg- 36. (Vd € (set §). d € (Ny, N Ap)) A
s (6Q [v))=ggg s'" A (s, s") € ur))

definition ferb :: ‘e Gamma = s rel = bool
where
ferb T ur =
Vee (CyNYp).Voe (VyNnNVrp). Vs e Sgpg. Vs € Sgpg.
((reachable SES s N s v—sggg s")
— (3s' € Sgpg. 36. (Vd € (set d). d € (Ny N Ap)) A
s([c]@éQ [v])=>gpg s' A (s, s) € ur))

definition En :: ‘e Rho = 's = ‘e = bool
where
Enpse=
3B ~.3s" € Sgpg. Is" € Sgps-
s0sps B=sps s N (71 (eV)=81(eV))

83

A 80 gEs Y= SES s’ A s’ e—SES s

definition lrbe :: ‘e Rho = s rel = bool
where
lrbe 0 ur =

Vs € SSES' Ve e Ov .

((reachable SES s A\ (En g s c))

— (As' € Sgpg. (s c—rgpg s’ A (s, s) € ur)))

definition ferbe :: ‘e Gamma = ‘e Rho = s rel = bool
where
ferbe T o ur =
Vee (CyNTYr).Yve (VynVp). Vs e Sgps. Vs e SsEs-
((reachable SES s A\ s v—sggg 8" A (En o s c))
s (3s' € Sgpg. 36. (Vd € (set §). d € (Ny N Ap)) A
s ([@6 Q [v])=>gpg s" A (s", s) € ur))

end

end

5.3.2 Auxiliary Results

theory AuziliaryLemmas
imports UnwindingConditions
begin

context Unwinding
begin

lemma osc-property:
Nst s1'. [osc ur; s1 € Sggg; s1' € SSESv al Cy = []
reachable SES s1; reachable SES s1 enabled SES s1' «; (517, s1) € ur |
= (3o’ a'1Cyp=[Aa’"1Vy=al Vy A enabled SES s1 a')
proof (induct o)
case Nil
have [| Cy = [A
01 Vy=1[1Vy A enabled SES s1 ||
by (simp add: enabled-def projection-def)
thus ?case by (rule exl)
next
case (Cons el al)
assume osc-true: osc ur
assume sI-in-S: s1 € Sgpg
assume s!’-in-S: s1’' € Sgpg
assume elal-C-empty: (el # al) 1 Cy =]
assume reachable-s1: reachable SES s1
assume reachable-s1’: reachable SES s1’

84

assume enabled-s1'-elal: enabled SES s1’ (el # al)
assume unwindingrel-s1'-s1: (s1', s1) € ur

have elal-no-c: Va € (set (el # al)). a € (Eggg — Cy)
proof —
from reachable-s1’ obtain
where s0gpg B—>ggg s1’
by (simp add: reachable-def, auto)
moreover
from enabled-s1’-el 1 obtain 51337
where s1’ (el # al)=>gpg s1337
by(simp add: enabled-def, auto)
ultimately have s0gpg (8 Q (el # al))=gpg s1337
by (rule path-trans)
hence 8 @ (el # al) € Tr (induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)
with validSES induceES-yields-ES[of SES] have Ya € (set (8 Q (el # al))). a € Eggg
by (simp add: induceES-def ES-valid-def traces-contain-events-def)
hence V a € (set (el # al)). a € Eggg
by auto
with el al-C-empty show ?Zthesis
by (simp only: projection-def filter-empty-conv, auto)
qged

from enabled-s1’-el«l obtain s2’ where
s1'-e1-s2" s1' el —s>gpg s2'
by (simp add: enabled-def, split if-split-asm, auto)
with validSES have s2'-in-S: s2' € Sggg
by (simp add: SES-valid-def correct-transition-relation-def)
have reachable-s2": reachable SES s2’
proof —
from reachable-s1’ obtain t where
path-to-s1": s0gpg t=>gpg s1'
by (simp add: reachable-def, auto)
from si1’-e1-s2' have s1’ [el]=>gpg s2'
by simp
with path-to-s1’ have sOgps (t Q [el]) = grg s2'
by (simp add: path-trans)
thus ?thesis by (simp add: reachable-def, rule exI)
ged
from s1’-el-s2’ enabled-s1’-e1a1 obtain sn’ where
s2' al=>gpg sn'
by (simp add: enabled-def, auto)
hence enabled-s2’-a1: enabled SES 52’ a1
by (simp add: enabled-def)
from elal-no-c have el-no-c: el € (Eggg — Cy)
by simp
from elal-no-c have al-no-c: Va€c(set al). (a € (Eggg — Cy))
by simp
hence a1-proj-C-empty: a1 1 Cy = ||
by (simp add: projection-def)
from osc-true have

85

[st € Ssps; s1' € Sgps; s2' € Sgps;
el € (Eggg — Cy); reachable SES s1; reachable SES s1'
s1' el—sgpg s2% (s1', s1) € ur]
= (352 € Sggg- 36.61 Cy = ||
AT Vy)=([e1]1 Vy) A (s1 =gpg 52 N
((s2, s2) € ur)))
by (simp add: osc-def)
with s1-in-S s1’-in-S el-no-c reachable-s1 reachable-s1’
s2"-in-S s1'-e1-s2’ unwindingrel-s1'-s1
obtain s2 § where
osc-conclusion:
s2 € Sggpg NI 1 CV:[]/\
(61 Vy) = ([el] 1 Vy) A sl 6=ggg 52 N
((s2', s2) € ur)
by auto
hence §-proj-C-empty: § 1 Cy, =]
by (simp add: projection-def)
from osc-conclusion have s2-in-S: s2 € Sgpg
by auto
from osc-conclusion have unwindingrel-s2’-s2: (s2', s2) € ur
by auto
have reachable-s2: reachable SES s2
proof —
from reachable-s1 obtain ¢t where
path-to-s1: s0gpg t==gpg s1
by (simp add: reachable-def, auto)
from osc-conclusion have s é=gpg s2
by auto
with path-to-s1 have sOgpg (t @ §)=gpgg s2
by (simp add: path-trans)
thus ?thesis by (simp add: reachable-def, rule exI)
qed

from Cons osc-true s2-in-S s2'-in-S a1-proj-C-empty
reachable-s2 reachable-s2' enabled-s2’-a1 unwindingrel-s2'-52

obtain o’/ where a'/-props:
a”1Cy=[Aa"1Vy=allVyA enabled SES s2 o
by auto

with osc-conclusion have da'’-props:
(6@a")] Cy =] A
(0 @a”)1 Vy = (el#al) | Vy A enabled SES s1 (6§ @ ')
by (simp add: projection-def enabled-def, auto, simp add: path-trans)

hence (6§ @ a') 1 Cy =[]
by (simp add: projection-def)

thus ?case using da’’-props by auto

qed

lemma path-state-closure: [s T=>gpg ss s € Sgps | = s’ € Sggg
(is[?PsTs’ 2Ss SES] = 25 s’ SES)

proof (induct T arbitrary: s s’)
case Nil with validSES show Zcase

86

by (auto simp add: SES-valid-def correct-transition-relation-def)
next
case (Cons e 7) thus Zcase
proof —
assume path-er: ?P s (e # 1) s’
assume induct-hypo: \ s s’. [?P s 7 s’; 25 s SES | = 29 s’ SES
from path-er obtain s’ where s-e-s': s e—rgpg s’
by(simp add: path-def, split if-split-asm, auto)
with validSES have s'’-in-S: 2S s’ SES
by (simp add: SES-valid-def correct-transition-relation-def)

from s-e-s’’ path-er have path-t: ?P s’ 7 s’ by auto

from path-t s'’-in-S show ?case by (rule induct-hypo)
qed
qed

theorem En-to-Adm:
[reachable SES s; En o s €]
= 3B. (s0sgs B=5ms s N Adm'V ¢ Tr(jqucers SES) B €)
proof —
assume En g s e
then obtain 3 v s’ s”
where s0gpg f=gEg s
and 71 (eV)=81(eV)
and s0-v-s" s0gps Y—5ps S’
and s'-e-s": s’ e—>gpg s’
by (simp add: En-def, auto)
moreover
from s0-y-s’ s’-e-s’ have sOgpg (v Q [e])=>gpg s’
by (rule path-trans-single)
hence (v @ [e]) € Tr(z’nduceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed

’

theorem Adm-to-En:
[8e Tr(induceES SES)> Adm V o Tr(induceES SES) Bel
— ds € SSES' (SOSES /3:>SE5' sN Enops e)
proof —
from validSES have s0-in-S: s0ggg € Sggs
by (simp add: SES-valid-def s0-is-state-def)

assume [€ TT(induceES SES)
then obtain s

87

where s0-3-s: s0gpg B=gES s

by (simp add: induceES-def possible-traces-def enabled-def, auto)
from this have s-in-S: s € Sgpg using s0-in-S

by (rule path-state-closure)

assume Adm V o Tr(induceES SES) B e
then obtain v
where oy-is-0B: v 1 (0 V) =81 (e V)
and 3s". s0gpg (v Q [e])=>gpg s
by(simp add: Adm-def induceES-def possible-traces-def enabled-def, auto)
then obtain s’
where s0-ye-s': s0gpg (v @ [e])=>gpg "'
by auto
from this have s"-in-S: s’ € Sgpg using s0-in-9
by (rule path-state-closure)

from path-split-single|OF sO-ye-s'] obtain s’
where s0-v-s" s0spg Y= gEs S’
and s’-e-s": s e—rgpg s’
by auto

from path-state-closure[OF s0-y-s' s0-in-S] have s-in-S: s’ € Sgpg.

from s’-in-S s""-in-S s0-B-s oy-is-0f s0-y-s' s'-e-s"" s-in-S show ?thesis
by (simp add: En-def, auto)
qed

lemma state-from-induce ES-trace:
[(B@a)e TT(induceES SES) I
= ds € Sgps- s0sgs B==>gps s N enabled SES s o N\ reachable SES s
proof —

assume Sa-in-Tr: (8 @) € Tr (induceES SES)
then obtain s’ where s0-Ba-s"ts0gpg (B Q@ a)=—=gpg s’
by (simp add: induceES-def possible-traces-def enabled-def, auto)

from path-split|OF s0-fa-s’] obtain s
where s0-3-5: s0gpg f=9ES S
and s a=ggg s’
by auto

hence enabled-s-a: enabled SES s «
by (simp add: enabled-def)

from s0-8-s have reachable-s: reachable SES s
by (simp add: reachable-def, auto)

from validSES have s0ggpg € Sggg

by (simp add: SES-valid-def s0-is-state-def)
with s0-8-s have s-in-S: s € Sgpg

by (rule path-state-closure)

88

with s0-8-s enabled-s-a reachable-s show ?thesis
by auto
qed

lemma path-split2:s0 gpg (8 Q o)=ggg s

= 3s' € Sgps. (s0sps B—gps s’ N s’ a=gpg s N\ reachable SES s")
proof —

assume s0-Ba-s: s0ggpg (B Q@ a)=ggg s

from path-split|OF s0-fa-s] obtain s’
where s0-3-s" s0gpg B=>gpg s’
and s"-a-s: s' a=gpg s
by auto
hence reachable SES s’
by(simp add: reachable-def, auto)
moreover
have s’ € Sgpg
proof —
from s0-3-s’ validSES path-state-closure show ?thesis
by (auto simp add: SES-valid-def s0-is-state-def)
qed

ultimately show ?thesis using s’-a-s s0-3-s’
by (auto)
qed

lemma path-split-single2:

s0sgs (B Q [a])=gps s

= 35’ € Sgps. (s0gps B—>sEs s' N s' -—rggs s A reachable SES s')
proof —

assume s0-Bz-s: sOggg (B Q [z])=gEg s

from path-split2[OF s0-Bz-s] show ?thesis

by (auto, split if-split-asm, auto)
qed

lemma modified-view-valid: isViewOn (V = (Vy U Ny), N = {}, C = Cy|) Eggs
using validVU
unfolding isViewOn-def V-valid-def VC-disjoint-def VIN-disjoint-def NC-disjoint-def by auto

end
end
5.3.3 Unwinding Theorems

theory UnwindingResults
imports AuzxiliaryLemmas

89

begin

context Unwinding
begin
theorem unwinding-theorem-BSD:
[Irf ur; osc ur | = BSD V Tr (induceES SES)
proof —
assume [rf-true: Irf ur
assume osc-true: osc ur

{
fix a8 c

assume c-in-C: ¢ € Cy,
assume Sca-in-Tr: (8 Q [¢]) @ a) € Tr(induceES SES)
assume a-contains-no-c: a1 Cy = ||

from state-from-induce ES-trace[OF [Bca-in-Tr] obtain s1’
where s1’-in-S: s1' € Sgpg
and enabled-s1’-c: enabled SES s1’ o
and s0-8c-s1 " s0ggs (B @ [C]):>SES s1’
and reachable-s1’: reachable SES s1’
by auto

from path-split-single2| OF s0-fBc-s1’] obtain sI
where s1-in-S: s1 € Sgpg
and s0-8-s1: SOSES ﬂ:>SES s1
and sl-c-s1't s1 c—rgpg s1’
and reachable-s1: reachable SES s1
by auto

from s1-in-S s1’-in-S c-in-C reachable-s1 s1-c-s1’ Irf-true
have s1’-ur-si: ((s1’, s1) € ur)
by (simp add: lrf-def, auto)

from osc-property|OF osc-true s1-in-S s1'-in-S a-contains-no-c reachable-s1
reachable-s1' enabled-s1'-a s1'-ur-s1|
obtain o’
where a’-contains-no-c: a' 1 Cy = |]
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1-a”: enabled SES s1 o’
by auto

have fa’-in-Tr: 3 @ o’ € Tr (induceES SES)
proof —
note s0-5-s1
moreover
from enabled-s1-a’ obtain s2
where s! a'=>gpg 52
by (simp add: enabled-def, auto)
ultimately have s0gpg (8 @ o') = gpg s2
by (rule path-trans)
thus %thesis

90

by (simp add: induceES-def possible-traces-def enabled-def)
qged

from pa’-in-Tr o’-V-is-a-V a'-contains-no-c have
Ja'. (B @ &) € (Tr(ingucers sBs)) A (@' 1 (Vy)) = (@l Vy)Aa'l Cy =)
by auto
}
thus ?thesis
by (simp add: BSD-def)
qed

theorem unwinding-theorem-BSI:

[lrb ur; osc ur | = BSI V Tr (induceES SES)
proof —

assume [rb-true: lrb ur

assume osc-true: osc ur

{
fix a 8 ¢
assume c-in-C: ¢ € Cy,
assume Sa-in-ind-Tr: (8 Q a) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy) = [|

from state-from-induce ES-trace[OF Ba-in-ind-Tr] obtain s
where s1-in-S : s1 € Sggg
and path-B-yields-s1: s0gps B==gpg 51
and enabled-s1-a: enabled SES sl «
and reachable-s1: reachable SES s1
by auto

from reachable-s1 s1-in-S c-in-C' Irb-true
have 3s1'e Sgpg. s1 c—rgpg s1' A (s1, s1') € ur
by (simp add: Irb-def)
then obtain s1’
where s1'-in-S: s1' € Sgpg
and sI-trans-c-s1": s1 c—gpg s1’
and si1-s1’-in-ur: (s1, s1’) € ur
by auto

have reachable-s1": reachable SES s1’
proof —
from path-B-yields-s1 s1-trans-c-s1’ have s0gpg (8 Q [c])=>gpg s1’
by (rule path-trans-single)
thus ?thesis by (simp add: reachable-def, auto)
qed

from osc-property|OF osc-true s1'-in-S s1-in-S a-contains-no-c
reachable-s1' reachable-s1 enabled-s1-a s1-s1'-in-ur]
obtain o’
where a'-contains-no-c: ' 1 Cy) = |]
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1’-a': enabled SES s1' o’

91

by auto

have Bca’-in-ind-Tr: 8 Q [c] @ o’ € Tr (induceES SES)
proof —
from path-B-yields-s1 s1-trans-c-s1’ have s0gpg (B Q [c])=>gpg s1’
by (rule path-trans-single)
moreover
from enabled-s1’-a’ obtain s2
where s1’ a'=>gpg 2
by (simp add: enabled-def, auto)
ultimately have s0gps ((8 Q [¢]) @ a')=gpg 2
by (rule path-trans)
thus %thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from Bca’-in-ind-Tr o'-V-is-a-V «a'-contains-no-c
have 3a’. B Q@ c # o’ € Tr (induceES SES) / a1 Vy=alVyAaa'lCy=]
by auto
}

thus %thesis
by(simp add: BSI-def)
qed

theorem unwinding-theorem-BSIA:
[lrbe o ur; osc ur | = BSIA o V TT(induceES SES)
proof —

assume [rbe-true: lrbe o ur

assume osc-true: osc ur

{
fix a 8 ¢
assume c-in-C: ¢ € Cy,
assume Sa-in-ind-Tr: (8 Q@ «a) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy) = [

assume adm: Adm V o Tr(induceES SES) B c

from state-from-induce ES-trace[OF Ba-in-ind-Tr]
obtain sI

where s1-in-S : s1 € Sggg

and s0-3-s1: s0gpg P=sEg s1

and enabled-s1-a: enabled SES sl «

and reachable-s1: reachable SES s1

by auto

have 3a’. § @[] @ a’ € Tr(induceES SES) N a1t Vy=alVyAaa'lCy=]
proof cases
assume en: En o sl ¢

92

from reachable-s1 s1-in-S c-in-C' en lrbe-true
have 3s1'e Sgpg. s1 c—rgpg s1' A (sl, s1') € ur
by (simp add: lrbe-def)
then obtain si’
where s1'-in-S: s1' € Sggg
and si-trans-c-s1': s1 c—rgpg s1'
and s1-s1’-in-ur: (s1, s1') € ur
by auto

have reachable-s1": reachable SES s1’
proof —
from s0-3-s1 si-trans-c-s1’' have s0gpg (8 Q [c])=gpg s1’
by (rule path-trans-single)
thus ?thesis by (simp add: reachable-def, auto)
qged

from osc-property|OF osc-true s1'-in-S s1-in-S a-contains-no-c
reachable-s1' reachable-s1 enabled-s1-c s1-s1'-in-ur)
obtain o’
where a’-contains-no-c: a’ 1 Cy) = ||
and a'-V-is-a-V:a' 1 Vy =al Vy
and enabled-s1’-a’: enabled SES s1’ o’
by auto

have Bca’-in-ind-Tr: f @ [c] @ o' € Tr (induceES SES)
proof —
from s0-3-s1 si-trans-c-s1’' have sOgpg (8 Q [¢])=gpg s1’
by (rule path-trans-single)
moreover
from enabled-s1’-a’ obtain s2
where s1' a'=>gpg 2
by (simp add: enabled-def, auto)
ultimately have s0gps ((8 @Q [c]) @ a')=>ggg 2
by (rule path-trans)
thus %thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from Bca’-in-ind-Tr o'-V-is-a-V a’-contains-no-c show ?thesis
by auto
next
assume not-en: = En o sl ¢

let 24 = (Adm % o (Tr(induceES SES)) ﬂ C)
let 26 =3s € Sgpg. (s0sps B=>gp5 s N En o0 s c)

{

assume adm: ?A

from s0-B-s1 have B-in-Tr: 5 € TT(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)

93

from g-in-Tr adm have ?E
by (rule Adm-to-En)
}

hence Adm-to-En-contr: = ?E — - ?A
by blast
with s1-in-S s0-5-s1 not-en have not-adm: - ?A
by auto
with adm show ?thesis
by auto
qed
}
thus ?thesis
by (simp add: BSIA-def)
qed

theorem unwinding-theorem-FCD:
[ferf T ur; osc ur | = FCD TV Tr (induceES SES)
proof —

assume ferf: ferf T' ur

assume osc: 0sc ur

{
fixapfcwo

assume c-in-C-inter-Y: ¢ € (Cyy N Y1)

assume v-in-V-inter-Nabla: v € (Vy N V)

assume Scva-in-Tr: (8 Q [c] @ [v]) Q «) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy) = [|

from state-from-induce ES-trace[OF Bcva-in-Tr] obtain s1’
where s1'-in-S: s1’ € Sgpg
and s0-Bcv-s1'": sO0gpg (B @ ([c] @Q [v]))=>gpg s1’
and enabled-s1’-a: enabled SES s1' «
and reachable-s1": reachable SES s1’
by auto

from path-split2|OF s0-Bcv-s1’] obtain si
where s1-in-S: s1 € Sggg
and s0-f-s1: s0gps B=ggs 51
and si-cv-s1" sl ([c] @ [v])=>gpg s’
and reachable-s1: reachable SES s1
by (auto)

from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1'-in-S reachable-s1 si1-cv-s1’ ferf
have 3s1" € Sgpg. 38. (Vd € (set §). d € (Ny, N Ap)) A

s1 (6 Q [v])=>gpg s1” A (s1', s1") € ur

by (simp add: ferf-def)
then obtain s7’ §

where s1"-in-S: s1'' € Sgpg

and §-in-N-inter-Delta-star: (Vd € (set §). d € (Ny, N Ap))

and sI-0v-s1': s1 (6 Q [v]))=>ggg s

and s1'-ur-s1'": (s1', s1") € ur

94

by auto

have reachable-s1'": reachable SES s1"’
proof —
from s0-3-s1 s1-6v-s1" have sOggg (B @ (§ Q [v]))=gpg 51"’
by (rule path-trans)
thus %thesis
by (simp add: reachable-def, auto)
qed

from osc-property|OF osc s1'-in-S s1'-in-S a-contains-no-c
reachable-s1'' reachable-s1’ enabled-s1'-a s1'-ur-s1"’]
obtain o’
where a'-contains-no-c: a’1 Cy =[]
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1'-a”: enabled SES s1"" o'
by auto

have Bdva’-in-Tr: B @6 Q [v] @ o' € Tr (induceES SES)
proof —
from s0-3-s1 s1-6v-s1" have sOgpg (B @ 6 Q [v])=>gpg s1"
by (rule path-trans)
moreover
from enabled-s1'’-a’ obtain s2
where 51" o'—=gpg s2
by (simp add: enabled-def, auto)
ultimately have sOgpg ((8 @ § Q [v]) @ a')=gpg 2
by (rule path-trans)
thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from &-in-N-inter-Delta-star Béva’-in-Tr o'-V-is-a-V o'-contains-no-c

have Ja’. 34" set 6’ C (Ny N Ap) AB Q@6 Q[v] @a’ e Tr (induceES SES)
Aa’l Vy =a Vv/\Oé/] CV:H
by auto

thus %thesis
by (simp add: FCD-def)
qed

theorem unwinding-theorem-FCI:

[ferdb T wr; osc ur | = FCIT V Tr (induceES SES)
proof —

assume ferb: ferb T ur

assume o0sc: 0SC ur

{
fixapfcw

assume c-in-C-inter-Y: ¢ € (Cyy N T)
assume v-in-V-inter-Nabla: v € (Vy, N V)

95

assume Sva-in-Tr: (8 Q [v]) Q@ a) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy = ||

from state-from-induce ES-trace[OF Bva-in-Tr] obtain s1”’
where s1'"-in-S: s1"' € Sggg
and s0-Bv-s1": sO0gpg (B Q [v]) = gpg s1"”
and enabled-s1""-a: enabled SES s1'"' «
and reachable-s1'": reachable SES s1"
by auto

from path-split-single2[OF s0-Bv-s1''] obtain s1
where s1-in-S: s1 € Sgpg
and s0-3-s51: s0gps B=ggs 51
and si-v-s1'": s1 v—rgpg s1"
and reachable-s1: reachable SES s1
by (auto)

from c-in-C-inter-Y v-in- V-inter-Nabla s1-in-S
s1"-in-S reachable-s1 s1-v-s1"" ferb

have 3s1’ € Sgpg. 33. (Vd € (set §). d € (Ny N Ap))
A sl ([c] @6 @ [v])=gpg s1’
A (51" s1") € ur
by (simp add: ferb-def)

then obtain s1’§
where s1'-in-S: s1’ € Sgpg
and §-in-N-inter-Delta-star: (Vd € (set §). d € (Ny, N Ap))
and sI-cdv-s1" s1 ([c] @ 6 @ [v])=ggg s1’
and s1'-ur-s1": (s1", s1') € ur
by auto

have reachable-s1": reachable SES s1’
proof —
from s0-B-s1 s1-cév-s1’ have sOggg (B Q@ ([¢c] @ § Q [v]))=>gpg 51’
by (rule path-trans)
thus %thesis
by (simp add: reachable-def, auto)
ged

from osc-property|OF osc s1'-in-S s1'"-in-S a-contains-no-c
reachable-s1' reachable-s1'" enabled-s1""-a s1""-ur-s1”]
obtain o’
where a'-contains-no-c: o’ 1 Cy, = [
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1’-a": enabled SES s1’ o’
by auto

have Bcdva’-in-Tr: B Q [c] @J @ [v] @ o’ € T""(z'nduceES SES)
proof —
let 211 = 8 Q [c] @¢ Q [v]
let 212 = o'
from s0-8-s1 s1-cdv-s1’ have sOggg (?11)=>gpg s1’
by (rule path-trans)

96

moreover
from enabled-s1'-a’ obtain s1337 where s1' 212 —>gpg s1337
by (simp add: enabled-def, auto)
ultimately have s0gpg (%11 Q ?12)=gpg 51337
by (rule path-trans)
thus %thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from §-in-N-inter-Delta-star Bcdva’-in-Tr o'-V-is-a-V a'-contains-no-c
have 3a’ §".
set ' C(Ny NAp) ABQ[]J@é @fv] @a’e Tr (induceES SES)
/\04/1 Vy =a VV/\O/W Ov:[]
by auto
}
thus %thesis
by(simp add: FCI-def)
qed

theorem unwinding-theorem-FCIA:
[ferbe T o ur; osc ur | = FCIA o T'V Tr (induceES SES)
proof —

assume ferbe: ferbe I' o ur

assume o0sc: 0sc ur

{
fixapfco

assume c-in-C-inter-Y: ¢ € (Cy, N Yp)

assume v-in-V-inter-Nabla: v € (Vy, N V)

assume Sva-in-Tr: (8 Q [v]) Q@ «) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy = [|

assume adm: Adm V o Tr(induceES SES) B c

from state-from-induce ES-trace[OF Bva-in-Tr] obtain s1”’
where s1'-in-S: s1"' € Sggg
and s0-Bv-s1": sO0gps (B Q@ [v])=>gpg s1”
and enabled-s1""-a: enabled SES s1'"' «
and reachable-s1'": reachable SES s1"
by auto

from path-split-single2[OF s0-Bv-s1''] obtain s1
where s1-in-S: s1 € Sgpg
and s0-f-s51: s0gps B==ggs s1
and si-v-s1'" s1 v—rgpg s1"
and reachable-s1: reachable SES s1
by (auto)

have 3o’ §'.(set ' C (Ny NAp) ABQ [@5 Qo] @ a' € Tr (induceES SES)
Na' T Vy=alVynaa'lCy=1])

proof (cases)
assume en: En ¢ sl c

97

from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1''-in-S reachable-s1 s1-v-s1'’ en fcrbe
have 3s1’ € Sgpg. 36. (Vd € (set §). d € (N, N Ap))
A sl ([c] @6 Q [v]) =ggg s’
A (s1”, s1') € ur
by (simp add: ferbe-def)
then obtain s1’§
where s1’-in-S: s1' € Sggg
and §-in-N-inter-Delta-star: (Vd € (set 0). d € (Ny N Ap))
and sl-cdv-s1" s1 ([c] @ 6 Q [v]) =-ggg s’
and s1'"-ur-s1": (s1”, s1') € ur
by (auto)

have reachable-s1’: reachable SES s1’
proof —
from s0-8-s1 si-c6v-s1' have sOgpg (B @ ([¢] @ § @ [v]))=gpg s’
by (rule path-trans)
thus ?thesis
by (simp add: reachable-def, auto)
qged

from osc-property[OF osc s1’-in-S s1''-in-S a-contains-no-c reachable-s1’
reachable-s1"" enabled-s1"-a s1""-ur-s1’)
obtain o’
where a'-contains-no-c: o’ 1 Cy = ||
and a'-V-is-a-V:a' | Vy =al Vy
and enabled-s1’-a’: enabled SES s1’ o’
by auto

have Scdva’-in-Tr: B Q [c] @ @ [v] @ ' € Tr (induceES SES)

proof —
let 2l = 5 Q [c] @5 Q@ [v]
let 712 = o

from s0-8-s1 s1-cdv-s1’ have s0ggg (?11)=>gpg s1’
by (rule path-trans)
moreover
from enabled-s1’-a’ obtain s1337 where s1' ?12=—>ggg s1337
by (simp add: enabled-def, auto)
ultimately have s0gpg (911 Q ?212)=gpg $1337
by (rule path-trans)
thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def)
ged

from &-in-N-inter-Delta-star Bcdva’-in-Tr o'-V-is-a-V o'-contains-no-c
show %thesis
by auto
next
assume not-en: - En g sl ¢

let ?A = (Adm V o TT(induceES SES) B ¢)
let ?E =3s € Sgps. (s0sps B—>gE5 s N En 0 s c)

98

{

assume adm: ?A

from s0-3-s1 have §-in-Tr: 8 € Tr(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)

from f-in-Tr adm have ?F
by (rule Adm-to-En)
}
hence Adm-to-En-contr: - ?E — - ?A
by blast
with s1-in-S s0-3-s1 not-en have not-adm: - ?A
by auto
with adm show ?thesis
by auto
qed
}
thus ?thesis
by (simp add: FCIA-def)
qed

theorem unwinding-theorem-SD:
[VI=(V=(VyUNy), N={}, C=Cy);
Unwinding.lrf SES V' ur; Unwinding.osc SES V' ur |
= SDV TT(induceES SES)
proof —
assume view'-def : V' = (V = (Vy U Ny), N ={}, C = Cy)
assume Irf-view’ : Unwinding.lrf SES V' ur
assume osc-view’ : Unwinding.osc SES V' ur

interpret modified-view: Unwinding SES V'
by (unfold-locales, rule validSES, simp add: view’-def modified-view-valid)

from Irf-view’ osc-view’ have BSD-view’': BSD V' Tr (induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSD)
with view’-def BSD-implies-SD-for-modified-view show ?thesis
by auto
qed

theorem unwinding-theorem-SI:
[VIi=(1V=(VyUNy), N={}, C=Cy);
Unwinding.lrb SES V' ur; Unwinding.osc SES V' ur]
= SI'V TT(induceES SES)
proof —
assume view'-def : V' = (V = Vy, U Ny, N ={}, C = Cy)
assume [lrb-view’ : Unwinding.lrb SES V' ur
assume osc-view' : Unwinding.osc SES V' ur

interpret modified-view: Unwinding SES V'
by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)

99

from Irb-view’ osc-view' have BSI-view’: BSI V' Tr (induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSI)
with view’-def BSI-implies-SI-for-modified-view show ?thesis
by auto
qed

theorem unwinding-theorem-SIA:

[VIi=(V=(VyUNy), N={},C=Cy eV =0V,
Unwinding.lrbe SES V' ¢ ur; Unwinding.osc SES V' ur |
= SIA oV Tr(z’nduceES SES)

proof —
assume view'-def : V' = (V = Vy, U Ny,, N ={}, C = Cy)
assume p-eq: o0V =po V'’
assume [rbe-view' : Unwinding.lrbe SES V' o ur
assume osc-view’ : Unwinding.osc SES V' ur

interpret modified-view: Unwinding SES V'’
by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)

from Irbe-view’ osc-view’ have BSIA-view’ : BSIA o V'’ Tr (induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSIA)
with view’-def BSIA-implies-SIA-for-modified-view o-eq show ?thesis
by auto
qed

theorem unwinding-theorem-SR:
[Vi=(1V=(VyUNy), N={}, C=Cy);
Unwinding.lrf SES V' ur; Unwinding.osc SES V' ur |
= SRV TT(induceES SES)
proof —
assume view'-def : V' = (V = Vy, U Ny, N ={}, C = Cy)
assume Irf-view’ : Unwinding.lrf SES V' ur
assume osc-view' : Unwinding.osc SES V' ur

from Irf-view’' osc-view’ view’-def have S-view : SD V Tr (induceES SES)
by (rule-tac ur=ur in unwinding-theorem-SD, auto)
with SD-implies-SR show ?thesis
by auto
qed

theorem unwinding-theorem-D:
[Irf ur; oscur] = DV Tr (induceES SES)
proof —
assume [rf ur
and osc ur
hence BSD V Tr(z’nduceES SES)
by (rule unwinding-theorem-BSD)
thus %thesis
by (rule BSD-implies-D)
qed

100

theorem unwinding-theorem-1I:
[lrb ur; oscur | = IV Tr (induceES SES)
proof —
assume [lrb ur
and osc ur
hence BSI V Tr(z‘nduceES SES)
by (rule unwinding-theorem-BSI)
thus ?thesis
by (rule BSI-implies-I)
qed

theorem unwinding-theorem-IA:
[lrbe o0 ur; osc ur | = IA o V Tr (induceES SES)
proof —
assume Irbe o ur
and osc ur
hence BSIA o V Tr(z‘nduceES SES)
by (rule unwinding-theorem-BSIA)
thus ?thesis
by (rule BSIA-implies-IA)
qed

theorem unwinding-theorem-R:
[lrf ur; oscur] = RV (Tr (induceES SES))
proof —
assume [rf ur
and osc ur
hence BSDV Tr (induceES SES)
by (rule unwinding-theorem-BSD)
hence DV TT(induceES SES)
by (rule BSD-implies-D)
thus %thesis
by (rule D-implies-R)
qed

end

end

5.4 Compositionality

We prove the compositionality results from [3].

5.4.1 Auxiliary Definitions & Results

theory CompositionBase
imports ../Basics/ BSPTazonomy
begin

definition
properSeparationOf Views ::

101

‘e ES-rec = 'e ES-rec = 'e V-rec = 'e V-rec = ‘e V-rec = bool
where
properSeparationOfViews ES1 ES2 V V1 V2 =

Vy N Egsy = Vyg

ANVy N Eggy = Vyg

AN Cy N Egg € Cyy

N Cy N Egge C Cyp

A Nyyn Nyg={}

definition
wellBehavedComposition ::
‘e ES-rec = 'e ES-rec = ‘e V-rec = ‘e V-rec = ‘e V-rec = bool
where
wellBehavedComposition ES1 ES2 YV V1 V2 =
(Ny;NEgge=A{} ANyg N Egg; ={})
VvV (Joel.(Ny; N Egge = {} A total ES1 (OVJ N NVQ)
A BSIA o1 V1 Trpsy)
\Y (3@2. (NVQ n EESI = {} A total ES2 (CVQ N NVI)
N BSIA 02 V2 Trggo)
V (Fol p2T1T2.(
Vri € Egsi AN Arg € Egsi A Try € Eggy
AVrg C Eggs AN Arg € Egsg A Trg © Eggy
N BSIA 01 V1 Trgg; A BSIA 02 V2 Trpgo
A total ES1 (CVI N NV.?) A total ES2 (CVQ N NVI)
N FCIA 01 T'1 V1 Trgg; N FCIA 02 T2 V2 Trggo
ANVyr N Vys CVpp UV
A Cyp N Nys CTpyp A Cyp N Nyy € Trg
ANy N App N Egge={} ANy N Apg N Eggy ={}))

locale Compositionality =
fixes ES1 :: 'e ES-rec
and ES2 :: ‘e ES-rec

and V :: ‘e V-rec

and V1 :: ‘e V-rec

and V2 :: e V-rec

assumes validES1: ES-valid ES1
and validES2: ES-valid ES2
and composableES1ES2: composable ES1 ES2

and validVC': isViewOn V (E(ESI I ESQ))
and validV1: isViewOn V1 Eggy
and validV2: isViewOn V2 E ggo

and propSep Views: properSeparationOfViews ES1 ES2 V V1 V2

and well-behaved-composition: wellBehavedComposition ES1 ES2 YV V1 V2

102

sublocale Compositionality C BSP TazonomyDifferentCorrections ES1 || ES2 V
by (unfold-locales, rule composeES-yields-ES, rule validES1,
rule validES2, rule validVC')

context Compositionality
begin

lemma Vv-is-Vvi-union-Vu2: Vy = Vy; U Vygy
proof —
from propSepViews have Vy, N Egg; U Vy N Eggo = Vy; U Vyg
unfolding properSeparationOfViews-def by auto
hence Vy N (Epg; U Eggg) = Vyr U Vg
by auto
hence Vy N E(gg; || gsg) = Vvi U Vye
by (simp add: composeES-def)
with validVC show ?thesis
by (simp add: isViewOn-def, auto)
qed

lemma disjoint-Nvi-Vv2: Ny N Vyg = {}
proof —
from validV1 have Ny,; C Epg;
by (simp add: isViewOn-def, auto)
with propSep Views have Ny,; N Vyg = (Ny; N Eggy N Vy) N Egge
unfolding properSeparationOfViews-def by auto
hence Ny; N Vyg = (Ny; N Vy N Eggy) N Eggg
by auto
moreover
from validV1 have Ny; N Vy N Eggy = {}
using propSep Views unfolding properSeparationOf Views-def
by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute is ViewOn-def)
ultimately show ?thesis
by auto
qed

lemma disjoint-Nv2-Vvl: Nygs N Vi = {}
proof —
from validV2 have Ny y C Epgy
by (simp add:isViewOn-def, auto)
with propSep Views have Nyyp N Vy; = (Nyo N Egge N Vy) N Egg;
unfolding properSeparationOfViews-def by auto
hence Nyy N Vyy = (Nyg N Vy N Eggg) N Eggy
by auto
moreover

103

from validV2 have Nyy N Vy N Egge = {}
using propSep Views unfolding properSeparationOf Views-def
by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute is ViewOn-def)
ultimately show ?thesis
by auto
qed

lemma merge-property”: [set t1 C Epgy; set t2 C Epgo;

t1 1 Egsg =121 Eggp t1 1 Vy =1[;t21 Vy = [J;

t11Cy=1[;t21Cp=1[]
=3t (t]1 Eggy =t ANt] Eggg=12 At Vy=[At]Cp=[AsettC (Egs VU Egsy))
proof —

assume tI-in-Elstar: set t1 C Epgy

and t2-in-E2star: set t2 C Epgo

and t1-t2-synchronized: t1 | Eggyo = t2 | Eggy
and t1Vv-empty: t1 1 Vy = ||

and t2Vv-empty: 12 1 Vy = ||
and t1Cv-empty: t1 1 Cy = |]
and t2Cv-empty: t2 1 Cy = ||

from merge-property|OF t1-in-FE1star t2-in-E2star t1-t2-synchronized] obtain t
where t-is-interleaving: t | Egg; = t1 ANt] Egge = t2
and t-contains-only-events-from-t1-t2: set t C set t1 U set t2
unfolding Let-def
by auto
moreover
from t1Vu-empty t2Vv-empty t-contains-only-events-from-t1-t2
have t | Vy =]
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute Vo-is-Vul-union- Vv2 projection-on-union projection-sequence t-is-interleaving)
moreover
have t 1 Cy =]
proof —
from t1Cv-empty have Vc € Cy. ¢ ¢ set t1
by (simp add: projection-def filter-empty-conv, fast)
moreover
from t2Cv-empty have Vc € Cy,. ¢ ¢ set t2
by (simp add: projection-def filter-empty-conv, fast)
ultimately have
Vee Cy. c ¢ (settl U set t2)
by auto
with t-contains-only-events-from-t1-t2 have V¢ € Cy. ¢ ¢ set t
by auto
thus %thesis
by (simp add: projection-def, metis filter-empty-conv)
qed
moreover
from t1-in-Elstar t2-in-E2star t-contains-only-events-from-t1-t2
have set t C (EES'I (@] EESQ)
by auto
ultimately show ?thesis

104

by blast
qed

lemma NvI-union-Nv2-subsetof-Nv: Nyy; U Nyp C Ny
proof —
{
fix e
assume e-in-N1: e € Nyy
with validV1 have
e-in-El: e € Epgy
and e-notin-V1: e ¢ Vy,
and e-notin-C1: e ¢ Cyy
by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def
VN-disjoint-def, auto)+

from e-in-E1 e-notin-V1 propSepViews have e ¢ V',
unfolding properSeparationOfViews-def by auto
moreover
from e-in-E1 e-notin-C1 propSepViews have e ¢ Cy,
unfolding properSeparationOfViews-def by auto
moreover
note e-in-E1 validVC
ultimately have e € Ny,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
composeES-def, auto)
}
moreover {
fix e
assume e-in-N2: e € Nyo
with validV2 have
e-in-E2: e € E-ES ES2
and e-notin-V2: e ¢ Vyy
and e-notin-C2: e ¢ Cyg
by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
, auto)+

from e-in-E2 e-notin-V2 propSep Views have e ¢ V),
unfolding properSeparationOfViews-def by auto
moreover
from e-in-E2 e-notin-C2 propSep Views have e ¢ C,
unfolding properSeparationOfViews-def by auto
moreover
note e-in-E2 validVC
ultimately have e € Ny,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def
composeES-def, auto)

}

ultimately show ?thesis
by auto

qed

end

105

end

theory CompositionSupport
imports CompositionBase
begin

locale CompositionSupport =
fixes ESi :: 'e ES-rec

and V :: ‘e V-rec

and Vi :: ‘e V-rec

assumes validESi: ES-valid ESi

and validVi: isViewOn Vi E gg;
and Vv-inter-Ei-is-Vvi: Vy, N Egg; = Vyy;
and Cv-inter-Ei-subsetof-Cvi: Cy N Epg; € Cy;

context CompositionSupport
begin

lemma BSD-in-subsystem:

[ceCy; (BQ[c]Qa)l Egg) € Trgg; ; BSD Vi Trgg; |
= Ja-i". (((B1 Egg) @ a-i') € Trgg;
A (a-i" 1 Vyg) = (a1 Vyy) A a-i' Cy;=1)

proof (induct length (([c] @ «) 1 Cyy;) arbitrary: 8 ¢ o)
case (

let ?L = ([c] Q@ a) 1 Egg;

from 0(8) have -El-ca-El-in-Tr1: (81 Egg;) @ (([c] @) 1 Egg;)) € Trgs;
by (simp only: projection-concatenation-commute)

moreover

have (L1 Vy;) = (a1 Vyy)

proof —
have (?L 1 Vi) = ([c] @) | Vy;
proof —

from validVi have Egg; N Vy,; = Vyy;
by (simp add: isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
, auto)
moreover
have (?L 1 Vy;) = ([c] @ a) 1 (Egg; N Vyy)
by (simp add: projection-def)
ultimately show ?thesis
by auto
qed
moreover

106

have ([c] @ a) 1 Vy; =al Vy;
proof —
have ([d] @ a) 1 Vy; = ([d 1 Vyg) @ (a1 Vi)
by (rule projection-concatenation-commaute)
moreover
have ([| Vy;) = [
proof —
from 0(2) have [c] 1 Cy =[]
by (simp add: projection-def)
moreover
have [c] | Cy 1 Vy; =]
proof —
from validVi Cv-inter-Ei-subsetof-Cvi have Cy, N Vy; C Cy);
by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto)
moreover
from 0(1) have [c]] Cy; = ||
by (simp only: projection-concatenation-commute, auto)
ultimately have [c] 1 (Cyy N Vyy;) =]
by (rule projection-on-subset)
thus ?thesis
by (simp only: projection-def, auto)
qed
ultimately show ?thesis
by auto
qed
ultimately show ?%thesis
by auto
qed
ultimately show ?thesis
by auto
qed
moreover
have 7L 1 Cy; = ||
proof —
from 0(1) have ([c] @ a) 1 Cy; = ||
by auto
hence ([c] @ a) 1 (Cy; N Egs) = |
by (rule projection-on-intersection)
hence (/c] @ a) | (Egg; N Cyy) = |
by (simp only: Int-commute)
thus %thesis
by (simp only: projection-def, auto)
qed
ultimately show ?case
by auto

next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain v c-i §

where c-i-in-CVi: c-i € Cy;
and ca-is-yc-id: [¢] @ a = Q [¢-i] @ 4§

107

and 4-no-CVi: 61 Cy; =
and n-is-len-yd-CVi: n = length ((y Q §) 1 Cyy)
by auto

let ?L1 = ((8 Q) | Egg)
let 202 = (8 | Egg;)

note c-i-in-CVi
moreover
have list-with-c-i-in-Tr1: (?L1 Q [c-i] Q@ ?L2) € Trgg;
proof —
from c-i-in-CVi validVi have [c-i] | Egg; = [c-1]
by (simp only: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from Suc(4) ca-is-yc-id have ((8 Qv Q [¢-i] @ 0) | Egg;) € Trgs;
by auto
hence (?L1 @ ([¢-i] | Egg;) @ ?L2) € Trpg;
by (simp only: projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
have 7L2 1 Cy; = ||
proof —
from wvalidVi have Az. (z € Egg; N © € Cy;) = (z € Cyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
with §-no-CVi show ?thesis
by (simp add: projection-def)
qed
moreover note Suc(5)
ultimately obtain §’
where §'-1: (?L1 @ §') € Trgg;
and §-2: 6" 1 Vy; = 202 1 Vy;
and §-3: 6" 1 Cy; =[]
unfolding BSD-def

by blast
hence 6-2" 6" 1 Vy; =81 Vyy,
proof —
have ?2L2 1 Vy; =061 Vyy;
proof —

from validVi have Az. (z € Egg; Nz € Vy;) = (z € Vyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (simp add: projection-def)
qed
with 6’-2 show ?thesis
by auto
qed

108

show ?case
proof (cases 7)

case Nil

with ca-is-yc-i0 have [c] @ a = [¢-i] @ §
by auto

hence §-is-a: § = «
by auto

from ¢'-1 have §'-1" (81 Egg;) @ 68') € Trgg;
by (simp only: Nil, auto)

moreover

note §’-2’

moreover note §'-3

ultimately show ?thesis
by (simp only: §-is-a, auto)

next

case (Cons 7 ')

with ca-is-yc-id have vy-is-cy’t v = [¢] @ v’
by simp

with n-is-len-y5-CVi have n = length (([c] @ v’ @ §) 1 Cyy;)
by auto

with §-no-CVi 6'-3 have n = length (([c] @ v’ @ 6') 1 Cyy)
by (simp only: projection-concatenation-commute)

moreover

note Suc(3)

moreover
have ((8 @ [c] @ (y' @ ") | Egg;) € Tris;
proof —
from ¢'-1 validESi have §' = §' | Epg;
proof —

let 2L =(8Q@~) 1 Egg; @4’

from 6'-1 validESi have Ve € set ?L. e € Egg;
by (simp add: ES-valid-def traces-contain-events-def)
hence set §' C Egg;
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
with 6’-1 have ?L1 Q§' = (8 @~y @ §') | Egg;
by (simp only: projection-concatenation-commute, auto)
with v-is-cy’ §’-1 show ?thesis
by auto
qed
moreover
note Suc(5)
moreover note Suc(1)[of c v @ §' §]
ultimately obtain «a-i’
where a-i’-1: 1 Egg; @ a-i' € Trgg;
and a-i"-2: a-i'1 Vi, = (v @é&") 1 Vy;
and a-i’-3: a-i’ 1 Cy; =[]
by auto

109

moreover
have a-i' 1 Vy; = a1 Vyy

proof —
have a | Vy; = (v @) | Vyy
proof —
from ca-is-yc-id y-is-cy’ have a | Vy; = (v/ Q [¢-i] @ §) | Vyy;
by simp

with validVi c-i-in-CVi show ?thesis
by (simp only: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-concatenation-commute
projection-def, auto)
qed
moreover
from a-i’-2 §’-2" have a-i' | Vy; = (v @6) 1 Vyy
by (simp only: projection-concatenation-commute)
ultimately show ?thesis
by auto
qed
ultimately show ?thesis
by auto
qed
qed

lemma BSD-in-subsystem?2:
[((B@a)l Egg;) € Trgg; ; BSD Vi Trpg; |

= 3 a-i". (((B1 Egg) @ a-i') € Trgg; A (a-i' 1 V) = (a1 Vyy) Aa-i' | Cy;
proof (induct length (a1 Cyy;) arbitrary: 8 «)

case (

let 2L = a1 Egg;

from 0(2) have B-Fl-a-FE1-in-Tr1: (81 Egg;) @ ?L) € Trgg;
by (simp only: projection-concatenation-commute)
moreover
have (7L] Vy;) = (a1 Vyy)
proof —
from validVi have Egg; N Vy; = Vy;
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
moreover
have (L 1 Vy;) = a1 (Egs; N Vyy)
by (simp add: projection-def)
ultimately show ?%thesis
by auto
qged
moreover
have 7L 1 Cy; = ||
proof —
from 0(1) have a1 Cy; = ||
by auto
hence a | (Cy; N Egg;) =]

110

by (rule projection-on-intersection)
hence a | (Egg; N Cy;) = |]
by (simp only: Int-commute)
thus Zthesis
by (simp only: projection-def, auto)
qged
ultimately show ?case
by auto

next
case (Suc n)

from projection-split-last{OF Suc(2)] obtain v c¢-i §
where c-i-in-CVi: c-i € Cyy;
and «-is-yc-id: o = Q [¢-i] Q@ §
and 9-no-CVi: 61 Cy; =]
and n-is-len-yd-CVi: n = length ((y Q §) 1 Cyy)
by auto

let ?2L1 = ((8 Q@) 1 Egg;)
let 702 = (6 | Egg;)

note c-i-in-CVi
moreover
have list-with-c-i-in-Tr1: (?L1 Q [c-5] Q ?L2) € Trgg;
proof —
from c-i-in-CVi validVi have [c-i] | Egg; = [c-1]
by (simp only: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from Suc(8) a-is-yc-id have ((8 Q v Q [c-i] @ §) 1 Egg;) € Trps;
by auto
hence (?L1 @ ([¢c-i] 1 Egg;) @ ?L2) € Trgg;
by (simp only: projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
have 7L2 1 Cy; = ||
proof —
from validVi have A\z. (z € Egg; Az € Cy;) = (z € Cyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
with d-no-CVi show ?thesis
by (simp add: projection-def)
qed
moreover note Suc(4)
ultimately obtain §’
where §'-1: (?L1 @ §') € Trpg;
and §'-2: 5/] VVi = ?L2 1 VVi

111

and §-3: 6" 1 Cy; =[]
unfolding BSD-def

by blast
hence 6-2" 6" 1 Vy; =81 Vyy
proof —
have ?L2 1 VVz' = 51 VVi
proof —

from validVi have Az. (z € Egg; Az € V) = (x € Vyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
thus “thesis
by (simp add: projection-def)
qed
with -2 show ?thesis
by auto
qed

from n-is-len-yd-CVi 6-no-CVi §'-3 have n = length ((y @ 6") 1 Cy);)
by (simp add: projection-concatenation-commute)

moreover
have (8 @ (y @) | Egg; € Trgg;
proof —
have §' = §' | Epg;
proof —

let 9L=(,3@’y)1 EESZ'@(S/

from ¢'-1 validESi have Ve € set ?L. e € Egg;
by (simp add: ES-valid-def traces-contain-events-def)
hence set 6’ C Egg;
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qed
with §’-1 have ?L1 @ ¢’ = (8@~ Q') | Egg;
by (simp only: projection-concatenation-commute, auto)
with §’-1 show ?thesis
by auto
qed
moreover
note Suc(4) Suc(1)[of v @ &’ §]
ultimately obtain a-i’
where resi: 81 Egg; @ a-i’ € Trgg;
and res2: a-i’' | Vy; = (y@§') 1 Vy;
and res3: a-i’' 1 Cy; = |]
by auto

have a-i' 1 Vy; = a1 Vy;
proof —
from c-i-in-CVi validVi have [c-i] | Vy; = |]
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

112

VN-disjoint-def NC-disjoint-def projection-def, auto)
with a-is-yc-id §'-2" have a | Vy; = (y @ 6') 1 Vy,
by (simp only: projection-concatenation-commute, auto)
with res2 show %thesis
by auto
qed
with res! res3 show ?case
by auto
qed

end

end

5.4.2 Generalized Zipping Lemma

theory GeneralizedZippingLemma
imports CompositionBase
begin

context Compositionality
begin

lemma generalized-zipping-lemmal: [Ny; N Egge = {}; Nys N Egg; ={}] =
V 7 lambda t112. ((set T C E(pgy || psg) N set lambda C Vy A set t1 C Eggy A set 12 C Epgy
A((T1 Egsy) @tl) € Trgsy A ((T 1 Eggg) @ 12) € Trpgg A (lambda | Eggy) = (11 Vy)
A (lambda 1 Egge) = (121 Vy) A (t1 1 Cypy) = A (21 Cypo) =)
— @t ((r @) € Trgsy || Bsz) N (1 Vy) = lambda A (t 1 Cy) = 1))
proof —
assume Nvl-inter-E2-empty: Nyy; N Egge = {}
and Nv2-inter-El-empty: Nyo N Eggy = {}

{

fix 7 lambda t1 t2
assume T-in-Estar: set 7 C E(ESJ | ES2)
and lambda-in- Vustar: set lambda C Vy,
and tI-in-Elstar: set t1 C Epgy
and t2-in-E2star: set 12 C Eggo
and 7-EI-t1-in-Trl: ((1 1 Eggy) Q@ t1) € Trgg;
and 7-E2-12-in-Tr2: ((1 1 Egge) @ t2) € Trpgs
and lambda-E1-is-t1-Vv: (lambda | Eggy) = (t1 1 Vy)
and lambda-E2-is-t2-Vv: (lambda | Eggg) = (12 1 Vy)
and t1-no-Cvl: (t1 1 Cyy) = |]
and t2-no-Cv2: (12 1 Cyo) = |]

have [set 7 C E(gs1 || Bs2);
set lambda C Vy);

set t1 C Eggy;

set t2 g EESQ;

113

(71 Epsy) @ tl) € Trggy;
(71 Eggg) @ 2) € Trpgs;
lambda 1 Eggy) = (11 1 Vy);
lambda 1 Egge) = (121 Vy);

1 Cyyp) = [;

(
(
(
(
(¢1
(t21 Cyg) =11

= 3t ((rQ@t)e TT(ES] | ES2) A (t] Vv) = lambda N (t 1 Cv) =

proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (7 @ [|) € Trgs; || Es2)
proof —
have 7 € TT(ESI | ES2)
proof —
from Nil(5) validES1 have 7 | Egg; € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
from Nil(6) validES2 have 7 | Egge € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have (1 V) = [
by (simp add: projection-def)
moreover
have (] 1 Cy) = [
by (simp add: projection-def)
ultimately show ?case
by blast
next
case (Cons V' lambda’ T t1 12)
thus ?case
proof —
from Cons(3) have v'’-in-Vu: V' € Vy,
by auto

have V' € VVI N VV?
VV'e Vy, — Eggy
VV'E Vyg — Egg;
using Vu-is- Vvl-union- Vo2 v’-in-Vu propSep Views
unfolding properSeparationOfViews-def
by fastforce
moreover {
assume v'-in-Vol-inter-Vo2: V' € Vy; N Vyy

114

)

hence v'-in-Vvl: V' € Vy; and v'-in-Vu2: V' € Vyy
by auto

with v’-in- Vv propSep Views

have v'-in-E1: V' € Epg; and v'-in-E2: V' € Eggo
unfolding properSeparationOfViews-def by auto

from Cons(2,4,8) v'-in-E1 have t1 | Vy = V' # (lambda’ | Egg;)
by (simp add: projection-def)
from projection-split-first[OF this| obtain r! s!
where t1-is-ri-v’-s1: t1 = r1 @Q [V'] Q s1
and r1-Vv-empty: v1 1 Vy = ||
by auto
with Vu-is-Vol-union-Vv2 projection-on-subset[of Vyy; Vy 1]
have r1-Vvl-empty: v1 1 Vy; = ||
by auto

from Cons(3,5,9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Egg9)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v"-s2: 12 = r2 Q [V] @ s2
and r2-Vv-empty: 72 1 Vy = ||
by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyg V) r2]
have r2-Vu2-empty: 12 1 Vyg = ||
by auto

from t1-is-ri-v’-s1 Cons(10) have ri1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 | Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v’-s1 have ri-in-Elstar: set r1 C Epg;
and sI-in-Elstar: set s1 C Epgy
by auto

from Cons(6) t1-is-r1-v'-s1
have TEl-ri-v'-sl-in-Trl: 7| Egg; @ r1 Q [V'] @ s1 € Trgg;
by simp

have ri-in-Nvlstar: set r1 C Ny
proof —

note rl-in-Elstar

moreover

from r1-Vul-empty have set r1 N Vy; = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute

Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover

from r1-Cvi-empty have set r1 N Cyy = {}

115

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qged
with Nvi-inter-E2-empty have r1E2-empty: r1 1 Egge = |]
by (metis Int-commute empty-subset] projection-on-subset2 r1-Vv-empty)

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from {2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggg
and s2-in-E2star: set s2 C Epgo
by auto

from Cons(7) t2-is-r2-v’-s2
have TE2-r2-v"-s2-in-Tr2: 7 | Egge @ r2 Q [V'] @ s2 € Trggg
by simp

have r2-in-Nv2star: set r2 C Nyp
proof —
note r2-in-E2star
moreover
from r2-Vu2-empty have set r2 N V9 = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 1 Eggy = |]
by (metis Int-commute empty-subsetl projection-on-subset2 r2- Vv-empty)

let ?tau =7 Q@ ri @ r2 @ [V

from Cons(2) ri-in-Elstar r2-in-E2star v'-in-E2
have set ?tau C (E(ESJ I ESQ))

116

by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note sl-in-Elstar s2-in-E2star
moreover
from Cons(6) ri-in-Elstar r2E1-empty v'-in-E1 t1-is-r1-v’-s1
have ((?tau 1 Eggy) @ s1) € Trgg;
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
moreover
from Cons(7) r2-in-E2star r1E2-empty v'-in-E2 t2-is-r2-v’-s2
have ((Qtau] EESQ) Q 82) € Trggo
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
moreover
have lambda’ | Epg; = s1 1 Vy,
proof —
from Cons(2,4,8) v'-in-E1 have t1 1 Vy = [V @ (lambda’ | Egg)
by (simp add: projection-def)
moreover
from t1-is-ri-v’-s1 r1-Vu-empty v’-in- Vol Vu-is- Vol-union- Vo2
have t1 | Vy = [V] @ (s1 1 Vy)
by (simp only: ti-is-r1-v'-s1 projection-concatenation-commute
projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
have lambda’ 1 Epgy = s2 1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have 2 1 Vy, = [V'] @Q (lambda’ | E ggo)
by (simp add: projection-def)
moreover
from t2-is-r2-v’-s2 r2-Vv-empty v'-in- Vo2 Vo-is-Vol-union- Vo2
have 12 1 Vy = [V @ (s21 Vy)
by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute
projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
note s1-Cvl-empty s2-Cv2-empty Cons.hyps(1)[of ?tau s1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs1 | ES2)
and t'Vu-is-lambda”: t' 1 Vv, = lambda’
and t'Cv-empty: t'1 Cy) = |]
by auto

let ¢t =r1@r2Q@[V]Q@t

117

note tau-t’-in-Tr
moreover
from r1-Vv-empty r2-Vv-empty t'Vv-is-lambda’ v'-in- Vv
have 7t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
from propSep Views have Cy N Egg; C Cyy
unfolding properSeparationOfViews-def by auto
hence r1 1 Cy =[]
by (metis projection-on-subset2 r1-Cvl-empty ri-in-Elstar)
moreover
from propSep Views have Cy N Epge C Cyyp
unfolding properSeparationOfViews-def by auto
hence 72 | Cy =[]
by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
moreover
note v'-in-Vo VIsViewOnE t'Cv-empty
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
qed
ultimately have %thesis
by auto
}

moreover {
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vvl: V' € Vyy,
by auto
with v'-in- Vv propSep Views have v'-in-E1: V' € Egg;
unfolding properSeparationOfViews-def
by auto

from v’-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Eggg
by (auto)

with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def, auto)

from Cons(38) Cons(4) Cons(8) v'-in-E1 have t1 | Vy, = V' # (lambda’ | Egg;)
by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1
where t1-is-r1-v’-s1: t1 = r1 @ [V'] Q s1
and r1-Vv-empty: v1 1 Vy = ||
by auto
with Vu-is-Vul-union-Vv2 projection-on-subset[of Vyy; Vy 1]
have r1-Vvl-empty: v1 1 Vy; =]
by auto

from t1-is-r1-v'-s1 Cons(10) have r1-Cvl-empty: r1 1 Cy; = ||

118

by (simp add: projection-concatenation-commute)

from ¢1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 |1 Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v’-s1 have ri-in-Elstar: set r1 C Epg;
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note ri-in-Elstar
moreover
from ri-Vvi-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
from r1-Cvl-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nvi-inter-E2-empty have r1E2-empty: r1 1 Egge = |]
by (metis Int-commute empty-subset]
projection-on-subset? r1-Vvl-empty)

let ?tau =7 @ r1 @ [V

from v’-in-E1 Cons(2) ri-in-Nvlstar validV1
have set ?tau C E(ESJ | ES2)
by (simp only: isViewOn-def composeES-def V-valid-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from Cons(4) ti-is-ri-v’-s1 have set s1 C Epgy
by auto
moreover
note Cons(5)
moreover
have ?tau | Egg; @ s1 € Trggy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(83) Cons.prems(5)
projection-concatenation-commute t1-is-r1-v'-s1)
moreover
have ?tau | Egge Q t2 € Trpgs
proof —

119

from v'-notin-E2 have V'] | Eggs = [|
by (simp add: projection-def)
with Cons(7) Cons(4) t1-is-ri-v'-s1 v'-notin-E2
ri-in-Nvlstar Nvl-inter-E2-empty r1E2-empty
show ?thesis
by (simp only: t1-is-ri-v'-s1 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qged
moreover
from Cons(8) t1-is-ri-v'-s1 r1-Vu-empty v'-in-E1 v'-in-Vo have lambda’ | Egg; = s1 1 Vy,
by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 have lambda’' | Egge = 21 Vy
by (simp add: projection-def)
moreover
note s1-Cvi-empty Cons(11)
moreover
note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gsi || ES2)
and t’-Vuv-is-lambda’: t' 1 V), = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let ¢t =r1 @ [V] Q¢

note tau-t’-in-Tr
moreover
from ri-Vv-empty t'- Vo-is-lambda’ v'-in- Vv
have ?¢ 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
from propSep Views have Cy N Egg; € Cyy
unfolding properSeparationOfViews-def by auto
hencer! 1 Cy = ||
by (metis projection-on-subset2 r1-Cvl-empty rl-in-Elstar)
with v’-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
qed
ultimately have %thesis
by auto
}

moreover {
assume v'-in-Vo2-minus-E1: V' € V9 — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v’-in- Vv propSep Views
have v'-in-E2: V' € Eggg
unfolding properSeparationOfViews-def by auto

120

from v’-in- Vo2-minus-E1
have v'-notin-E1: V' ¢ Epgy
by (auto)
with validV1
have v'-notin-Vv1: V' ¢ V),
by (simp add:isViewOn-def V-valid-def, auto)

from Cons(4) Cons(5) Cons(9) v'-in-E2
have t2 1 Vy, = V' # (lambda’ 1 Eggs)
by (simp add: projection-def)
from projection-split-first| OF this|] obtain r2 s2
where t2-is-72-v"-52: 12 = r2 Q [V'] @ s2
and 72-Vv-empty: v2 1 Vy, = ||
by auto
with Vu-is-Vol-union-Vv2 projection-on-subset[of Vyyg V) 2]
have r2-Vv2-empty: 72 1 Vg = ||
by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggo
by auto

have r2-in-Nv2star: set 12 C Nyp
proof —
note r2-in-FE2star
moreover
from r2-Vu2-empty have set r2 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
from r2-Cv2-empty have set 72 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 1 Eggy = |]
by (metis Int-commute empty-subset]
projection-on-subset2 r2-Vu2-empty)

121

let ?tau =7 @ r2 @ [V

from v’-in-E2 Cons(2) r2-in-Nv2star valid V2
have set ?tau C E(ESI | ES2)
by (simp only: composeES-def isViewOn-def V-valid-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note Cons(4)
moreover
from Cons(5) t2-is-r2-v’-s2 have set s2 C Eggy
by auto
moreover
have ?tau | Egg; @ t1 € Trggy
proof —
from v’-notin-E1 have [V 1 Egg; = [|
by (simp add: projection-def)
with Cons(6) Cons(3) t2-is-r2-v'-s2 v'-notin-E1 r2-in-Nv2star
Nv2-inter-E1-empty r2E1-empty
show %thesis
by (simp only: t2-is-r2-v'-s2 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qged
moreover
have %tau 1 Egge Q s2 € Trpgs
by (metis Cons-eq-appendl append-eq-append! calculation(4) eq-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from Cons(8) v'-notin-E1 have lambda’ | Eggy; = t1 1 Vy
by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in- Vo
have lambda’ | Epgy = s2 1 Vy,
by (simp add: projection-def)
moreover
note Cons(10) s2-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau t1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gsi || ES2)
and t'-Vuv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let ¢t =r2 @ [V]@¢t’

7 .
note tau-t-in-Tr
moreover

122

from 72- Vv-empty t'-Vv-is-lambda’ v'-in- Vv
have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have %t 1 Cy = ||
proof —
from propSep Views have Cy) N Eggs C Cyo
unfolding properSeparationOfViews-def by auto
hence 72 1 Cy =[]
by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
with v'-in- Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)

qed
ultimately have ?thesis
by auto
}
ultimately show ?thesis
by blast
qed
qged
thus %thesis
by auto
qed

lemma generalized-zipping-lemma2: [Ny N Egge = {}; total ES1 (Cy; N Nyg); BSIA o1 V1 Trggy |
—_—
V 7 lambda t1 12. ((set T C (E(ggy | gs2)) A set lambda C Vy, A set t1 C Eggy A set 12 C Epggy
A((T1 Egsy) @tl) € Trggy A ((T 1 Eggg) @ 12) € Trpgp
A (lambda 1 Eggy) = (t1 1 V) A (lambda | Egge) = (12 1 V)
AL] Cyp) = [A (12 1 Cyg) =)
— (3 6. (r @ b) € (Trpgy | psz) A (L1 Vy) = lambda A (£1 Cy) =)
proof —
assume Nvl-inter-E2-empty: Nyy; N Egge = {}
assume total-ES1-Cvi-inter-Nv2: total ES1 (Cyy N Nyg)
assume BSIA: BSIA o1 V1 Trgg;

fix 7 lambda t1 12
assume T-in-Estar: set 7 C E(ESJ | ES2)
and lambda-in-Vustar: set lambda C Vy,
and t1-in-Elstar: set t1 C Eggy
and t2-in-E2star: set t2 C Epgo
and 7-EI-t1-in-Trl: ((1 1 Eggy) Q@ t1) € Trgg;
and 7-E2-12-in-Tr2: ((1 1 Egge) @ t2) € Trggs
and lambda-E1-is-t1-Vu: (lambda |1 Eggy) = (t1 1 Vy)
and lambda-E2-is-t2-Vu: (lambda | Epge) = (12 1 Vy)
and t1-no-Cvl: (t1 1 Cyy) = |]
and t2-no-Cv2: (t2 1 Cyg) = |]

have [set 7 C E(ESJ | ES2) set lambda C Vy;

123

set t1 C FEggy; set t2 C Eggo;
(11 Egsy) @t1) € Trgsy; (T 1 Epgg) @ t2) € Trpgy;
(lambda 1 Eggy) = (t1 1 Vy); (lambda | Egge) = (t2 1 Vy);
(11 Cyy) =1 (221 Cypg) =111
= (3t. ((r@i) € Tr(gs1 | Es2) N (t1 Vy) = lambda A (t1 Cy) =1]))
proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (T Q@ H) S TT(ES] | ES2)
proof —
have 7 € TT’(ESI ” ESQ)
proof —
from Nil(5) validES1 have 7 | Egg; € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
from Nil(6) validES2 have 7 | Egge € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have ([1 Vy) = [
by (simp add: projection-def)
moreover
have ([1 Cy) =
by (simp add: projection-def)
ultimately show ?case
by blast
next
case (Cons V' lambda’ T t1 t2)
thus Zcase
proof —
from Cons(3) have v’-in-Vu: V' € Vy,
by auto

have V' € Vyir N Vyg V V'e Vyi — Egga V V'e Vye — Eggy
using propSep Views unfolding properSeparationOf Views-def
using Vu-is- Vvl-union- Vo2 v’-in- Vo by fastforce
moreover {
assume v'-in-Vol-inter-Vo2: V' € Vy; N Vyg
hence v'-in-Vv1: V' € Vy; and v'-in-Vv2: V' € Vyy
by auto
with v’-in- Vv propSep Views
have v'-in-E1: V' € Epg; and v'-in-E2: V' € Eggo
unfolding properSeparationOfViews-def by auto

124

from Cons(3,5,9) v'-in-E2
have t2 1 Vy, = V' # (lambda’ 1 Epgs)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where $2-is-r2-v’-s2: 12 = r2 Q [V'] @ s2
and 72-Vv-empty: v2 1 Vy, = ||
by auto
with Vu-is- Vol-union- Vv2 projection-on-subset[of Vyyg V7, r2]
have r2-Vv2-empty: 72 1 Vg = ||
by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from {2-is-r2-v’-s2 Cons(11) have s2-Cv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 12 C Epgg
and s2-in-E2star: set s2 C Eggo
by auto

from Cons(7) t2-is-r2-v'-s2
have TE2-r2-v"-s2-in-Tr2: 7 | Eggs @ r2 @Q [V'] @ s2 € Trggg
by simp

have r2-in-Nv2star: set r2 C Nyp
proof —
note r2-in-E2star
moreover
from r2-Vv2-empty have set 12 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV?2
ultimately show ?2thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-C1-star: set (r2 1 Eggy) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set r2 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (r2 1 Eggy) € (Eggs N Nyy)

125

by auto

moreover

from wvalidV'1 propSep Views

have EES] n NV2 = NV2 N CVI
unfolding properSeparationOfViews-def is ViewOn-def V-valid-def
using disjoint-Nv2-Vvl by blast

ultimately show ?thesis
by auto

qed

note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npa N Cyy) =

3 t1'. (set i1’ C Eggy

A((tr@r2)| Eggy) Q@ t1' € Trgg;

Atl] Vyr=1t11 Vy;

At Cyp=1)
proof (induct r2 | Eggy arbitrary: r2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9)
outerCons-prems(83) outerCons-prems(5) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE1: s = zs | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggy
by (simp add: projection-def, auto)
hence set s C Epgy
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggy) C (Nya N Cyy)
proof —
have set (12 1 Eggy) € (Npya N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Nyga N Cyy)
by simp
hence set zs C (Nyg N Cyy)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain ¢1”
where t1"-in-Elstar: set t1" C Epgy
and 7-zs-E1-t1"-in-Tr1: ((t Q zs) | Eggy) @ t1" € Trggy
and t1"Vul-is-t1Vul: t1"1 V= 1t1 1 Vyy

126

and t1"Cvi-empty: t1"1 Cyy = ||
by auto

have z-in-Cvl-inter-Nv2: € Cyy N Nyy
proof —
from snoc(2—3) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus %thesis
by auto
qed
hence z-in-Cvl: z € Cyy
by auto
moreover
note 7-zs-E1-t1""-in-Tr1 t1"' Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((1 Q zs) | Eggy))
proof —
from 7-zs-E1-t1"-in-Tr1 validES1
have 7-zsE1-in-Tr1: ((1 Q@ 2s) | Egg;) € Trgs;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvl-inter-Nv2 total-ES1-Cvl-inter-Nv2
have 7-zsE1-z-in-Trl: ((1 Q xs) 1 Eggy) @ [z] € Trggy
by (simp only: total-def)
moreover
have ((@ 2s) | Bggy) 1 (o1 V1) = ((r @ 25) | Eggy) 1 (0 V1)
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢1’
where resi: ((r Q zs) | Egg;) @ [z] Q t1' € Trggy
and res2: t1'1 Vy; = t1"1 Vyy
and res3: t1'1 Cy; = |]
by (simp only: BSIA-def, blast)

have set t1' C Eggy
proof —
from res1 validES1
have set (((1 Q@ zs) | Eggy) @ [z] @Q ¢1') C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T1 @ r2) | Eggy) @ t1' € Trggy
proof —
from res! zs-is-zsE1 have ((1 1 Epgy) @ (zs Q [z])) @ ¢1' € Trpg;
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed

127

moreover
from t1"Vui-is-t1Vvl res? have t1'1 Vy; = t1 1 Vyy
by auto
moreover
note ress
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain t1’
where t1'-in-Elstar: set t1' C Fggy
and Tr2E1-t1'-in-Tr1: ((t @ r2) | Eggy) @ t1' € Trpg;
and t1'-Vul-is-t1-Vol: t1'1 Vy; =t1 1 Vyy
and t1'-Cvl-empty: t1'1 Cyy = ||
by auto

have t1'1 Vy; = V' # (lambda’ | Eggy)
proof —
from projection-intersection-neutral|OF Cons(4), of V)]
propSep Views
have t1 1 Vy =t1 1 Vyy
unfolding properSeparationOfViews-def
by (simp only: Int-commute)
with Cons(8) t1'-Vuvl-is-t1-Vvl v'-in-E1 show ?thesis
by (simp add: projection-def)
qed
from projection-split-first|OF this] obtain r1’ s1’
where t1'-is-r1’-v'-s1" t1'=r1'Q [V'] @ s1’
and r1’-Vol-empty: v1'1 Vy; =[]
by auto

from t1'-is-r1’-v’-s1’ t1’-Cvi-empty
have r1’-Cvl-empty: r1'1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1'-is-r1’-v'-s1' t1’-Cvl-empty
have s1’-Cvi-empty: s1'1 Cyy = |]
by (simp only: projection-concatenation-commute, auto)

from t1’-in-Elstar t1'-is-r1’-v'-s1’
have r1’-in-Elstar: set r1' C Epg;
by auto
with propSep Views r1’-Vvl-empty
have r1’-Vv-empty: r1'1 Vy = |]
unfolding properSeparationOfViews-def
by (metis projection-on-subset2 subset-iff-psubset-eq)

have r1’-in-Nvistar: set r1’ C Ny,
proof —
note r1’-in-Elstar
moreover

128

from r1’-Vul-empty have set r1' N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1’-Cvi-empty have set r1' N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qged
with Nvl-inter-E2-empty have r1'E2-empty: r1’' | Egge = ||
by (metis Int-commute empty-subset]
projection-on-subset2 r1'-Vul-empty)

let ?tau =7 @ r2 Q r1’ Q [V

from Cons(2) r2-in-E2star r1'-in-Elstar v'-in-E2
have set ?tau C (E(ESI I ESQ))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from t1'-in-Elstar t1'-is-r1’-v'-s1’
have set s1’' C Egg;
by simp
moreover
note s2-in-FE2star
moreover
from 7r2E1-t1'-in-Tr1 t1'-is-r1’-v’-s1’ v'-in-E1
have ?tau | Egg; @ s1’ € Trgg;
proof —
from v’-in-E1 r1'-in-Elstar
have (r@r2@Qri’'QV))1 Egg; = (1@ 1r2)1 Egg; @ri’ Q [V
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
with 7r2E1-t1'-in-Tr1 t1'-is-r1’-v’-s1’ v’-in-E1 show ?thesis
by simp
qed
moreover
from 72-in-E2star v'-in-E2 r1'E2-empty 1 E2-12-v'-52-in-Tr2
have ?tau | Epgs Q 52 € Trpgs
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
have lambda’ | Epg; = s1'1 Vy,
proof —

129

from Cons(2,4,8) v'-in-E1 have t1 1 Vy, = [V'] @ (lambda’ |1 Egg;)
by (simp add: projection-def)
moreover
from t1'-is-r1’-v’-s1’ r1’-Vol-empty r1’-in-Elstar v'-in- Vvl propSep Views
have t1'1 Vy = V] @ (s1'1 Vy)
proof —
have r1’1 Vy, =[]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2
r1'-Vul-empty ri1'-in-Elstar subset-iff-psubset-eq)
with t1'-is-r1’-v’-s1’ v'-in- Vol Vu-is-Vul-union-Vv2 show ?thesis
by (simp only: t1'-is-r1’-v’-s1’ projection-concatenation-commute
projection-def, auto)
qged
moreover
have t1 | Vy =t1'1 Vy
using propSep Views unfolding properSeparationOf Views-def
by (metis Int-commute outerCons-prems(8)
projection-intersection-neutral
t1'-Vul-is-t1-Vul t1'-in-Elstar)
ultimately show %thesis
by auto
qed
moreover
have lambda’ | Epgy = s2 1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have t2 | Vy, = [V'] @ (lambda’ | Ego)
by (simp add: projection-def)
moreover
from t2-is-r2-v’-s2 r2-Vv-empty v’-in- Vo2 Vu-is- Vol-union- Vo2
have (2 1 Vy, = [V] @ (s21 Vy)
by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute projection-def, auto)
ultimately show %thesis
by auto
qed
moreover
note s1'-Cvl-empty s2-Cv2-empty Cons.hyps|of ?tau s1’ s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs; || ES2)
and t'Vu-is-lambda”: t' 1 Vv, = lambda’
and t'Cv-empty: t'1 Cy = |]
by auto

let t=r2z@ri’@V])@t

note tau-t’-in-Tr

moreover

from r2-Vv-empty r1'-Vv-empty t'Vu-is-lambda’ v'-in-Vov have 2t | Vy, = V' # lambda’
by (simp only: projection-concatenation-commute projection-def, auto)

moreover

from VIsViewOnE r2-Cv2-empty t'Cv-empty r1'-Cvl-empty v'-in- Vv

130

have 7t 1 Cy =[]
proof —
from VIsViewOnE v'-in-Vo have [V'] | Cy, = ||
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
moreover
from r2-in-E2star r2-Cv2-empty propSep Views
have r2 1 Cy = ||
unfolding properSeparationOfViews-def
using projection-on-subset? by auto
moreover
from r1'-in-Elstar r1’-Cvl-empty propSep Views
have r1'1 Cy, = |]
unfolding properSeparationOfViews-def
using projection-on-subset2 by auto
moreover
note t'Cv-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto
}

moreover {
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vvl: V' € Vv,
by auto
with v’-in-Vu propSepViews have v'-in-E1: V' € Epg;
unfolding properSeparationOfViews-def by auto

from v'-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Epgg
by (auto)

with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def, auto)

from Cons(8) Cons(4) Cons(8) v'-in-E1
have t1 | Vi, = V' # (lambda’ 1 Epg;)
by (simp add: projection-def)
from projection-split-first[OF this| obtain r! s!
where t1-is-ri-v’-s1: t1 = r1 @ [V'] @ s1
and r1-Vv-empty: v1 1 Vy, = ||
by auto
with Vu-is- Vul-union- Vv2 projection-on-subset[of Vy,; Vy, r1]
have r1-Vul-empty: v1 1 Vy; =
by auto

from t1-is-r1-v'-s1 Cons(10)
have r1-Cvi-empty: r1 1 Cyy =[]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10)

131

have s1-Cvi-empty: s1 1 Cyy =[]
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-r1-v’-s1
have ri-in-Elstar: set r1 C Epgy
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note ri-in-FElstar
moreover
from r1-Vvi-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
from r1-Cvl-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nvi-inter-E2-empty have r1E2-empty: r1 1 Egge = |]
by (metis Int-commute empty-subsetl projection-on-subset2 ri1-Vvl-empty)

let %tau =7 @ r1 @ [V/]

from v’-in-E1 Cons(2) ri-in-Nvlstar validV1
have set ?tau C E(ESI | ES2)
by (simp only: composeES-def isViewOn-def V-valid-def, auto)
moreover
from Cons(8) have set lambda’ C Vy,
by auto
moreover
from Cons(4) t1-is-r1-v’-s1 have set s1 C Eggy
by auto
moreover
note Cons(5)
moreover
have ?tau | Eggy Q s1 € Trggy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(8) Cons.prems(5)
projection-concatenation-commute t1-is-r1-v'-s1)
moreover
have ?tau | Egge Q t2 € Trpgs
proof —
from v'-notin-E2 have [V'] | Eggs = ||

132

by (simp add: projection-def)
with Cons(7) Cons(4) ti-is-r1-v'-s1 v'-notin-E2 r1-in-Nvlstar
Nuvl-inter-E2-empty r1E2-empty
show ?thesis
by (simp only: t1-is-r1-v'-s1 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qed
moreover
from Cons(8) t1-is-ri-v'-s1 ri-Vv-empty v'-in-E1 v'-in-Vo
have lambda’ 1 Epg; = s1 1 Vy,
by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 have lambda’' | Egge = 21 Vy
by (simp add: projection-def)
moreover
note s1-Cvi-empty Cons(11)
moreover
note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain ¢’
where 7riv't’-in-Tr: ?tau Q t' € Tr(gsi | ES2)
and t’-Vuv-is-lambda’: t' 1 V), = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let ¢t =r1 @ [V] Q¢

note Triv't’-in-Tr
moreover
from r1-Vv-empty t'- Vo-is-lambda’ v'-in-Vv have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have %t 1 Cy = ||
proof —
have r1 1 Cy = ||
using propSep Views unfolding properSeparation Of Views-def
by (metis projection-on-subset2 r1-Cvl-empty r1-in-Elstar)
with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
qed
ultimately have %thesis
by auto
}

moreover {
assume v'-in-Vo2-minus-E1: V' € Vg — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v’-in- Vo propSep Views
have v'-in-E2: V' € Eggg
unfolding properSeparationOfViews-def by auto

from v’-in- Vo2-minus-E1

133

have v'-notin-E1: V' ¢ Epggy
by (auto)
with validV1
have v'-notin-Vvi: V' ¢ Vy,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

from Cons(3) Cons(5) Cons(9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Eggs)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where $2-is-r2-v"-s2: 12 = r2 Q [V] @ s2
and 72-Vv-empty: v2 1 Vy, = ||
by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||
by auto

from {2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: 2 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from {2-is-r2-v’-s2 Cons(11) have s2-Cv2-empty: s2 | Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 12 C E gy
by auto

have r2-in-Nv2star: set r2 C Nyp
proof —
note r2-in-E2star
moreover
from r2-Vu2-empty have set r2 N Vyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
moreover
from r2-Cv2-empty have set 72 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
moreover
note validV2
ultimately show %thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-C1-star: set (r2 1 Eggy) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set 12 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (12 1 Eggy) € (Egg; N Nyo)
by auto

134

moreover
from validV1 propSep Views disjoint-Nv2-Vvl have Eggy; N Nyg = Nyo N Cyy
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npys N Cypy) =

3 t1'. (sett1’ C Eggy

A ((T @ r2) EESZ) Qti'e Trpgy

At1'] Vyr =111 Vyy

At1'] Cyy=1)
proof (induct 12 |1 E gy arbitrary: v2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
outerCons-prems(5) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE1: zs = 25 | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Epgy
by (simp add: projection-def, auto)
hence set s C Eggy
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggy) € (Nya N Cyy)
proof —
have set (12 1 Eggy) € (Nya N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) € (Nyg N Cyy)
by simp
hence set zs C (Nyg N Cyy)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain ¢1”
where t1"-in-Elstar: set t1"' C Egg;
and 7-zs-E1-t1"-in-Tr1: ((t Q zs) | Eggy) @ t1" € Trggy
and t1""Vul-is-t1Vvl: t1"1 V= t1 1 Vyy
and t1"Cvl-empty: t1"1 Cyy = ||

135

by auto

have z-in-Cvl-inter-Nv2: x € Cy; N Nyy
proof —
from snoc(2—38) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus %thesis
by auto
qed
hence z-in-Cvl: z € Cyy
by auto
moreover
note 7-zs-E1-t1"-in-Tr1 t1"' Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((1 Q zs) 1 Eggy))
proof —
from 7-zs-E1-t1""-in-Tr1 validES1
have 7-zsE1-in-Tr1: (T @Q zs) | Eggy) € Trpsy
by (simp add: ES-valid-def traces-prefixclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvi-inter-Nv2 total-ES1-Cvl-inter-Nv2
have 7-zsEl-z-in-Tr1: (T @ zs) | Eggy) Q [z] € Trgg;
by (simp only: total-def)
moreover
have ((1 @ zs) | Eggy) 1 (el V1) = ((r @as) | Eggy) 1 (e V1) ..
ultimately show ?Zthesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢1’
where resl: (1 @ zs) | Egg;) @ [z] Q t1' € Trggy
and res2: t1'1 Vy;=t1"1 Vyy
and res3: t1'1 Cyy = |]
by (simp only: BSIA-def, blast)

have set t1’' C Epgy
proof —
from res! validESI have set (((t Q zs) | Eggy) @ [z] @ t17) C Efpgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T @ 7‘2) 1 EESI) @t1'e Trgsy
proof —
from res! zs-is-zsE1 have ((7 1 Eggy) @ (zs @Q [z])) @ t1' € Trgg;
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from t1"Vui-is-t1Vul res? have t1'1 Vy; = t1 1 Vyy

136

by auto
moreover
note ress
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain t1’
where ¢1'-in-Elstar: set t1' C Eggy
and Tr2E1-t1"-in-Tr1: ((t Q@ r2) | Eggy) @ ¢t1' € Trpg;
and t1'-Vul-is-t1-Vol: t1'1 Vy; = t1 1 Vyy
and t1'-Cvl-empty: t1'1 Cy; = ||
by auto

let ?tau =7 @ r2 @ [V

from v’-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau C E(gs1 | Es2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(8) have set lambda’ C Vy,
by auto
moreover
from Cons(5) t2-is-r2-v’-s2 have set s2 C Epgy
by auto
moreover
note t1’-in-Elstar
moreover
have ?tau | Epgo @ s2 € Trpgy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from 7r2E1-t1’-in-Tr1 v'-notin-E1 have ?tau | Egg; Q t1' € Trggy
by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v’-in-E2 v'-in- Vv
have lambda’ | Epgy = s2 1 Vy
by (simp add: projection-def)
moreover
from Cons(10) v'-notin-E1 t1'-Vvl-is-t1-Vul have lambda’ | Egg; = t1'1 Vy,
proof —
have t1’ Vy = t1' Vyi
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral
t1'-in-Elstar)
moreover
have t1 1 Vy =t1 1 Vy;
using propSep Views unfolding properSeparationOf Views-def
by (simp add: projection-def, metis Int-commute
projection-def

137

projection-intersection-neutral Cons(4))
moreover
note Cons(8) v'-notin-E1 t1'-Vui-is-t1-Vul
ultimately show %thesis
by (simp add: projection-def)
qed
moreover
note s2-Cv2-empty t1'-Cvl-empty
moreover
note Cons.hyps(1)[of ?tau t1’ s2]
ultimately obtain ¢’
where 77r20't"-in-Tr: ?tau Q t’ € Tr(gsi | ES2)
and t’-Vuv-is-lambda’: t' 1 Vy, = lambda’
and t’-Cv-empty: t' 1 Cy = [|
by auto

let t=r2 @ [V]Qt

note 7r2v't’-in-Tr
moreover
from 72- Vu-empty t'- Vu-is-lambda’ v'-in- Vv
have ?t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
have r2 1 Cy, = ||
proof —
from propSep Views have Cy N Egge C Cyo
unfolding properSeparationOfViews-def by auto
from projection-on-subset[OF <Cy N Eggs C Cyg r2-Cv2-empty]
have r2 | (Egge N Cy) = ||
by (simp only: Int-commute)
with projection-intersection-neutral[OF r2-in-E2star, of Cy)| show ?thesis
by simp
qed
with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ?thesis
by auto
}

ultimately show ?thesis
by blast
qed
qged

thus ?thesis

by auto
qed

138

lemma generalized-zipping-lemma3: [Nyo N Egg; = {}; total ES2 (Cyg N Nyyq); BSIA 02 V2 Trggs |
_—
V 7 lambda t1 t2. ((set 7 C E(gs1 | Bs2) N set lambda C Vy, A set t1 C Eggy A set t2 C Eggo
AN((71 Egsy) @ 1) € Trpsy A (T 1 Egsg) @ 12) € Trpgy
A (lambda 1 Eggy) = (t1 1 Vy) A (lambda 1 Egge) = (t2 1 Vy))
A1 Cpp) =] A (21 Cyg) = D)
— 3t ((rQ@¢) € TT(ESI | ES2) A (t] Vv) = lambda N (t 1 Cv) =1)))
proof —
assume Nv2-inter-El-empty: Nyyg N Eggy = {}
assume total-ES2-Cv2-inter-Nvl: total ES2 (Cyo N Nyg)
assume BSIA: BSIA 02 V2 Trggo

{

fix 7 lambda t1 t2
assume T-in-Estar: set 7 C E(ESJ | ES2)
and lambda-in-Vustar: set lambda C Vy,
and tI-in-Elstar: set t1 C Eggy
and t2-in-E2star: set t2 C Epgo
and 7-EI-t1-in-Tr1: ((1 1 Egg;) Q@ t1) € Trgg;
and 7-E2-12-in-Tr2: ((1 1 Egss) @ t2) € Trggs
and lambda-E1-is-t1-Vu: (lambda |1 Eggy) = (t1 1 Vy)
and lambda-E2-is-t2-Vu: (lambda | Epgg) = (12 1 Vy)
and t1-no-Cvi: (t1 1 Cyy) = |]
and t2-no-Cv2: (t2 1 Cyg) = ||

have [set 7 C E(ESJ | ES2);
set lambda C Vy);
set t1 g EESZ;
set t2 C Epgo;
(7 1 Epsy) @ t1) € Trggy;
((T 1 Eggg) @ 12) € Trggy;
(lambda | Epgy) = (t1 1 Vy);
(lambda Epgg) = (t2 1 Vy);
(t11 Cyy) = I
(121 Cyg) =11
= (3 t. (1@ t) € Trggy || msey N (1 Vy) = lambda A (11 Cy) = [])
proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (7 @ [|) € Trgs; || gs2)
proof —
have 17 € TT(ESI | ES2)
proof —

from Nil(5) validES1 have 71 Egg; € Trgg;

by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)

moreover

from Nil(6) validES2 have 7 | Egge € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def

139

prefizclosed-def prefiz-def)
moreover
note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have ([1 Vy) = |
by (simp add: projection-def)
moreover
have ([1 Cy) = [
by (simp add: projection-def)
ultimately show ?case
by blast
next
case (Cons V' lambda’ T t1 12)
thus ?case
proof —
from Cons(3) have v'-in-Vu: V' € Vy,
by auto

have V' € VVI N VVQ
VV'e Vy; — Eggy
VV' € Vyg — Egg;
using propSep Views unfolding properSeparation Of Views-def
by (metis Diff-iff Int-commute Int-iff Un-iff
Vu-is- Vol-union- Vo2 v'-in-Vv)
moreover {
assume v’-in- Vol-inter-Vv2: V' € Vy,; N Vyy
hence v'-in-Vv2: V' € Vyp and v'-in-Vui: V' € Vy;
by auto
with v'-in- Vv
have v’-in-E2: V' € Epgy and v'-in-E1: V' € Epgy
using propSep Views unfolding properSeparationOfViews-def by auto

from Cons(2,4,8) v'-in-E1 have t1 1 Vy, = V' # (lambda’ |1 Egg;)
by (simp add: projection-def)
from projection-split-first[OF this| obtain r! s!
where t1-is-ri-v’-s1: t1 = r1 @ [V'] @ s1
and r1-Vv-empty: v1 1 Vy, = ||
by auto
with Vo-is- VuI-union- Vv2 projection-on-subset[of Vy,; Vy, 71]
have r1-Vul-empty: v1 1 Vy; =]
by auto

from ¢1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

140

from t1-is-r1-v'-s1 Cons(10) have s1-Cvl-empty: s1 1 Cyy =[]
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v'-sl
have ri-in-Elstar: set r1 C Epg; and sl-in-Elstar: set s1 C Epgy
by auto

from Cons(6) t1-is-r1-v'-s1
have TEIl-ri-v'-s1-in-Trl: 7| Egg; @ r1 @ [V'] @ s1 € Trgg;
by simp

have ri-in-Nvlstar: set r1 C Ny
proof —
note rl-in-Elstar
moreover
from r1-Vul-empty have set v1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1-Cvi-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV'1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvl-inter-C2-star: set (r1 1 Eggs) C (Ny; N Cyg)
proof —
have set (r1 | Egge) = set r1 N Eggg
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (11 1 Egge) € (Egge N Nyyq)
by auto
moreover
from validV2 disjoint-Nvl- Vo2
have Epgo N Ny; = Ny N Cyy
using propSep Views unfolding properSeparationOf Views-def
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

note outerCons-prems = Cons.prems

have set (T] 1 EESQ) - (NVI n CVQ) —

141

3 t2'. (set t2' C Epgo
N(GECEIN EESQ) Q@ t2’ e Trpgo
A t271] Vys =121 Vyy
At2'1 Oyy =)
proof (induct r1 | Egge arbitrary: v1 rule: rev-induct)
case Nil thus ?case
by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
outerCons-prems(6) projection-concatenation-commute)
next
case (snoc T xs)

have zs-is-zsE2: s = s | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggo
by (simp add: projection-def, auto)
hence set s C Eggo
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Egge) C (Ny; N Cyg)
proof —
have set (r1 1 Egge) € (Nyys N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs @ [z]) € (Nyy N Cyo)
by simp
hence set zs C (Ny; N Cyo)
by auto
with zs-is-zsE2 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs]
ultimately obtain ¢2"
where t2"'-in-E2star: set 12" C Epgg
and 7-zs-E2-12"-in-Tr2: (1 Q z5) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vg =121 Vg
and t2"'Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvl: ¢ € Cyp N Ny
proof —
from snoc(2—3) have set (zs Q [z]) C (Ny; N Cyo)
by simp
thus %thesis
by auto
qed
hence z-in-Cv2: z € Cyy
by auto
moreover
note 7-zs-E2-12"-in-Tr2 t2"' Cv2-empty

142

moreover
have Adm: (Adm V2 02 Trgge ((1 Q z5) | Eggg))
proof —
from 7-zs-E2-t2""-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q 2s) | Egge) € Trgge
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl total-ES2-Cv2-inter-Nvl
have 7-zsE2-z-in-Tr2: ((1 Q zs) | Eggg) Q [z] € Trggo
by (simp only: total-def)
moreover
have ((1 @ 2s) | Eggg) 1 (02 V2) = ((1 @ 2s) | Eggg) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢2’
where resl: ((1 Q zs) | Eggg) @ [z] Q 12’ € Trggs
and res2: 12’1 Vg =121 Vg
and res3: t2'1 Cyg = ||
by (simp only: BSIA-def, blast)

have set t2' C Epgy
proof —
from res! validES2
have set (((1 @ zs) | Egge) @Q [2] @Q t2") C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T (@ 7”]) 1 EESQ) Qt2' e TT‘ESQ
proof —
from res! zs-is-zsE2 have ((7 1 Egge) @ (zs @Q [z])) @ ¢2' € Trggs
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from (2" Vv2-is-t2Vv2 res2 have 2’1 Vyp = t2 1 Vyy
by auto
moreover
note res3
ultimately show ?Zcase
by auto
qed
from this|OF r1E2-in-Nvl-inter-C2-star] obtain t2’
where t2'-in-E2star: set 12’ C Epgg
and 7r1E2-t2'-in-Tr2: (1 @Q r1) | Egge) @ 2’ € Trpgs
and t2'-Vu2-is-t2-V2: 12" 1 Vg =121 Vyg
and t2'-Cv2-empty: t2'1 Cyg = ||
by auto

143

have 12’1 Vyg = V' # (lambda’ 1 Epgs)
proof —
from projection-intersection-neutral|OF Cons(5), of V)
have t2 1 V), =121 Vyy
using propSep Views unfolding properSeparationOf Views-def
by (simp only: Int-commute)
with Cons(9) t2'-Vv2-is-12-Vv2 v'-in-E2 show ?thesis
by (simp add: projection-def)
qged
from projection-split-first|OF this] obtain r2’ s2’
where t2'-is-r2'-v'-s2" 12" = r2’ Q [V'] @ 52’
and r2'-Vu2-empty: 12’1 Vyg = ||
by auto

from t2'-is-r2'-v’-s2’ t2'-Cv2-empty
have r2’-Cv2-empty: r2'1 Cyg = |]
by (simp add: projection-concatenation-commute)

from t2'-is-r2'-v'-s2' t2'-Cv2-empty
have s2'-Cv2-empty: s2'1 Cyg = |]
by (simp only: projection-concatenation-commute, auto)

from t2'-in-E2star t2'-is-r2'-v'-s2’

have r2’-in-E2star: set r2' C Eggg
by auto

with r2’-Vv2-empty

have r2'-Vu-empty: r2'1 Vy = |]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2 subset-iff-psubset-eq)

have r2’-in-Nv2star: set 12’ C Ny
proof —
note r2’-in-E2star
moreover
from r2’-Vv2-empty have set r2' N Vyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2’-Cv2-empty have set 12’ N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV?2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qged

144

with Nv2-inter-El-empty have r2'El-empty: r2' 1 Egg; = ||
by (metis Int-commute empty-subsetl projection-on-subset2 r2'-Vv2-empty)

let ?tau =7 Q r1 @ r2’ Q [V

from Cons(2) ri-in-Elstar r2'-in-E2star v'-in-E1
have set ?tau C (E(ESI I ESQ))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note s1-in-Elstar
moreover
from t2'-in-E2star ¢2'-is-r2'-v’-s2’ have set s2' C Epgq
by simp
moreover
from ri-in-Elstar v’-in-E1 r2'El-empty T El-ri-v’'-s1-in-Trl
have %tau | Epg; @ s1 € Trggyg
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
from 7ri1E2-t2'-in-Tr2 t2'-is-r2'-v’-s2’ v'-in-E2
have ?tau | Egge @ s2’ € Trggg
proof —
from v’-in-E2 r2'-in-E2star
have (1 @Qr1 @Qr2'QV])1 Egge= (1Q7r1)] Egge @ r2’ Q [V
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
with 7r1E2-t2'-in-Tr2 t2'-is-r2'-v’-s2’ v'-in-E2 show ?thesis
by simp
qed
moreover
have lambda’ | Epg; = s1 1 Vy,
proof —
from Cons(3,4,8) v'-in-E1 have t1 | Vy, = [V Q (lambda’ | Eggy)
by (simp add: projection-def)
moreover
from ti1-is-r1-v’-s1 r1-Vv-empty v'-in- Vol Vu-is- Vul-union- Vo2
have {1 | Vy, = [V] @ (s1 1 Vy)
by (simp only: ti-is-ri-v'-s1 projection-concatenation-commute projection-def, auto)
ultimately show %thesis
by auto
qed
moreover
have lambda’ | Epgy = s2'1 Vy
proof —
from Cons(4,5,9) v'-in-E2 have t2 | Vy, = V'] @ (lambda’ | Eggs)
by (simp add: projection-def)
moreover
from t2'-is-r2"-v’-52’ r2'-Vo2-empty r2’-in-E2star v'-in-Vv2 propSep Views

145

have (2’1 Vy = [V] @ (s2'1 Vy)
proof —
have r2’1 Vy, =[]

using propSep Views unfolding properSeparationOf Views-def

by (metis projection-on-subset2
r2'-Vu2-empty r2'-in-E2star subset-iff-psubset-eq)

with t2'-is-r2'-v'-s2" v'-in-Vv2 Vu-is- Vul-union- Vv2 show ?thesis
by (simp only: t2'-is-r2’'-v’-s2’ projection-concatenation-commaute

projection-def, auto)
qed
moreover
have 12 1 Vy, =2'1 Vy,

using propSep Views unfolding properSeparation Of Views-def

by (metis Int-commute outerCons-prems(4)
projection-intersection-neutral
t2'-Vu2-is-t2-Vv2 t2'-in-E2star)
ultimately show ?thesis
by auto
qed
moreover
note s1-Cvl-empty s2'-Cv2-empty Cons.hyps|of ?tau s1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gsi || ES2)
and t'Vu-is-lambda”: t' 1 Vy, = lambda’
and t'Cv-empty: t'1 Cy = |]
by auto

let ¢t =r1@r2’@[V] @t

note tau-t’-in-Tr

moreover

from ri-Vv-empty r2’-Vv-empty t’' Vv-is-lambda’ v'-in- Vo
have ?¢ 1 Vy, = V' # lambda’

by (simp only: projection-concatenation-commute projection-def, auto)

moreover

from VIsViewOnE ri-Cvi-empty t'Cv-empty r2'-Cv2-empty v'-in- Vv

have 7t 1 Cy = ||
proof —
from VIsViewOnE v'-in-Vo have [V'] | Cy, = ||
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from ri-in-Elstar r1-Cvl-empty
have r1 1 Cy = ||

using propSep Views projection-on-subset2 unfolding properSeparationOfViews-def

by auto
moreover
from r2'-in-E2star r2’'-Cv2-empty
have 12’1 Cy, = |]

using propSep Views projection-on-subset2 unfolding properSeparationOfViews-def

by auto

146

moreover
note t'Cv-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto
}

moreover {
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vwi: V' € Vv,
by auto
with v’-in-Vv have v'-in-E1: V' € Eggy
using propSep Views unfolding properSeparationOf Views-def
by auto

from v’-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Eggg
by (auto)
with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

from Cons(8) Cons(4) Cons(8) v'-in-E1
have t1 | Vy, = V' # (lambda’ 1 Epg;)
by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1
where t1-is-rl-v’-s1: t1 = r1 @ [V] @ sI
and r1-Vv-empty: v1 1 Vy, = ||
by auto
with Vu-is- VoI-union- Vv2 projection-on-subset[of Vy,; Vy, r1]
have r1-Vul-empty: v1 1 Vy; =]
by auto

from ¢1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from ¢1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 1 Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v’-s1 have ri-in-Elstar: set r1 C Epg;
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note ri1-in-Elstar
moreover
from rI-Vul-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

147

moreover
from r1-Cvi-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV1
ultimately show %thesis
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvi-inter-C2-star: set (r1 1 Eggs) € (Ny; N Cyg)
proof —
have set (11 1 Eggg) = set r1 N Eggo
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (r1 1 Egge) C (Egge N Nyy)
by auto
moreover
from validV2 disjoint-Nvi-Vv2
have Epgy N Ny; = Ny; N Cygs
using propSep Views unfolding properSeparation Of Views-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

note outerCons-prems = Cons.prems

have set (11 1 Egge) € (Nyy N Cypg) =

3 t2". (set t2' C Epgog

A((t@Qr1)] Egge) Qt2' € Trggs

A t271 Vyea =121 Vygo

At2'] Cyps=1)
proof (induct r1 | Egge arbitrary: r1 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
outerCons-prems(6) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE2: s = xs | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggo
by (simp add: projection-def, auto)
hence set 1s C Epgo
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qged

148

moreover
have set (zs 1 Eggs) C (Ny; N Cyyp)
proof —
have set (11 1 Egge) € (Ny; N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Ny; N Cyo)
by simp
hence set zs C (Ny; N Cyp)
by auto
with zs-is-zsE2 show Zthesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain t2"’
where (2"-in-E2star: set t2"' C Eggg
and 7-zs-E2-t2""-in-Tr2: ((1 Q z5) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vg =121 Vg
and (2" Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvi: z € Cyg N Ny;
proof —
from snoc(2—3) have set (zs Q [z]) C (Ny; N Cyog)
by simp
thus %thesis
by auto
qed
hence 7-in-Cv2: z € Cyp
by auto
moreover
note 7-1s-E2-t2""-in-Tr2 t2" Cv2-empty
moreover
have Adm: (Adm V2 02 Trgge ((1 Q 25) | Epge))
proof —
from 7-zs-E2-t2"-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q zs) | Egge) € Trgge
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl total-ES2-Cv2-inter-Nvl
have T-zsE2-z-in-Tr2: ((1 Q zs) 1 Eggg) Q [z] € Trggs
by (simp only: total-def)
moreover
have ((7 @ zs) | Eggg) 1 (02 V2) = ((r @ as) | Eggp) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢2’
where resi: ((1 Q zs) | Eggg) @ [z] Q 12 € Trpgo
and res2: 12’1 Vg =121 Vyg
and res3: 12’1 Cyg = ||

149

by (simp only: BSIA-def, blast)

have set 12’ C Epgy
proof —
from res! validES2 have set (((1 Q zs) | Eggg) @ [z] Q ¢2') C Eggs
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T Q 7”]) 1 EESQ) @2’ e TTESQ
proof —
from res! zs-is-zsE2 have ((1 | Egge) @ (zs Q [z])) @ t2' € Trggg
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qged
moreover
from t2" Vv2-is-t2Vv2 res2 have 12’1 Vyp = t2 1 Vyy
by auto
moreover
note res3
ultimately show ?Zcase
by auto
qed
from this|OF r1E2-in-Nvl-inter-C2-star] obtain t2’
where t2'-in-E2star: set t2' C Epgg
and 7r1E2-t2'-in-Tr2: (1 Q r1) | Egge) @ t2' € Trggs
and t2'-Vu2-is-t2-Vu2: 12" 1 Vyg =12 1 Vyg
and t2'-Cv2-empty: 2’1 Cyg = ||
by auto

let %tau =7 @ r1 @ [V/]

from v’-in-E1 Cons(2) ri-in-Nvlstar validV1 have set ?tau C Egs1 | Es2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(8) have set lambda’ C Vy,
by auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 C Eggy
by auto
moreover
note t2’-in-E2star
moreover
have ?tau | Eggy @ s1 € Trggy
by (metis Cons-eq-appendl append-eq-append! calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(8) Cons.prems(5)
projection-concatenation-commute t1-is-r1-v'-s1)
moreover

150

from 7r1E2-t2'-in-Tr2 v'-notin-E2
have ?tau | Egge @ t2' € Trpgs
by (simp add: projection-def)
moreover
from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vo
have lambda’ | Epg; = s1 1 Vy
by (simp add: projection-def)
moreover
from Cons(11) v'-notin-E2 t2'-Vv2-is-12-Vv2
have lambda’ | Eggg = t2'1 Vy,
proof —
have (2’1 V), =1t2'1 Vyg
using propSep Views unfolding properSeparation Of Views-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral
t2'-in-E2star)
moreover
have t2 1 Vi, =t2 1 Vyy
using propSep Views unfolding properSeparation Of Views-def
by (simp add: projection-def, metis Int-commute
projection-def
projection-intersection-neutral Cons(5))
moreover
note Cons(9) v'-notin-E2 t2'-Vu2-is-t2-Vv2
ultimately show ?thesis
by (simp add: projection-def)
qed
moreover
note s1-Cvl-empty t2'-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau s1 t27]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs; || ES2)
and t’-Vuv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t'1 Cy =[]
by auto

let 2t =r1 Q@ [V]Q¢

note tau-t’-in-Tr
moreover
from r1-Vv-empty t'-Vu-is-lambda’ v'-in- Vv
have ?t 1 Vy, = V' # lambda’

by (simp add: projection-def)
moreover
have 7t 1 Cy =[]
proof —

have r1 1 Cy = ||

proof —

from propSep Views have Egg; N Cy C Cyy
unfolding properSeparationOfViews-def by auto

151

from projection-on-subset[OF <Epgy N Cy C Cyp r1-Cul-empty]
have r1 1 (Egg; N Cy) =]
by (simp only: Int-commute)
with projection-intersection-neutral[OF ri-in-Elstar, of Cy)| show ?thesis
by simp
qed
with v’-in- Vo VIsViewOnE t'-Cv-empty show ?thesis
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ¢thesis
by auto
}

moreover {
assume v'-in-Vo2-minus-E1: V' € V9 — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v’-in-Vo have v’-in-E2: V' € Eggy
using propSep Views unfolding properSeparationOf Views-def
by auto

from v'-in-Vo2-minus-E1 have v'-notin-E1: V' ¢ Epg,
by (auto)
with validV1 have v'-notin-Vvl: V' ¢ Vy;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from Cons(4) Cons(5) Cons(9) v'-in-E2 have t2 1 Vy, = V' # (lambda’ | Eggs)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v’-s2: 12 = r2 Q [V] Q 52
and 72-Vv-empty: v2 1 Vy = ||
by auto
with Vu-is-Vol-union- Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||
by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Epgg
by auto

have r2-in-Nv2star: set 12 C Nyp
proof —

note r2-in-FE2star

moreover

152

from r2-Vu2-empty have set r2 N Vyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-El-empty have r2E1-empty: 2 | Eggy = ||
by (metis Int-commute empty-subsetl projection-on-subset? r2- Vv2-empty)

let ?tau =7 @ r2 @Q [V/]

from v’-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau C E(gs1 || ES2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note Cons(4)
moreover
from Cons(5) t2-is-r2-v'-s2 have set s2 C Epgg
by auto
moreover
have ?tau 1 Egg; Q t1 € Trgg;
proof —
from v’-notin-E1 have [V 1 Egg; = [|
by (simp add: projection-def)
with Cons(6) Cons(83) t2-is-r2-v'-s2 v'-notin-E1
r2-in-Nv2star Nv2-inter-E1-empty r2E1-empty
show %thesis
by (simp only: t2-is-r2-v’-s2 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qged
moreover
have %tau 1 Egge Q s2 € Trpgs
by (metis Cons-eq-appendl append-eq-appendl calculation(4) eq-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from Cons(8) v'-notin-E1 have lambda’ | Egg; = ¢t1 1 Vy
by (simp add: projection-def)
moreover

153

from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in- Vo
have lambda’ 1 Eggy = s2 1 Vy,
by (simp add: projection-def)
moreover
note Cons(10) s2-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau t1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs; || ES2)
and t’-Vuv-is-lambda’: t' 1 Vy, = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let t=r2 @ [V]Qt

note tau-t’-in-Tr
moreover
from 72-Vv-empty t'- Vu-is-lambda’ v'-in- Vo
have ?¢ 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = |
proof —
have r2 1 Cy, = ||
using propSep Views unfolding properSeparationOfViews-def
by (metis projection-on-subset2
r2-Cv2-empty r2-in-E2star)
with v’-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)

qed
ultimately have ?thesis
by auto
}
ultimately show %thesis
by blast
qed
qged
thus ?thesis
by auto
qed

lemma generalized-zipping-lemma :

[Vr: € Egss Ar; € Egsy Yr1 € Egsys Vre © Epsg Are € Egse; Yre € Egge;
BSIA o1 V1 Trggy; BSIA 02 V2 Trpgo; total ES1 (Cyy; N Nyyp); total ES2 (Cyg N Nyg);
FCIA o1 T'1 V1 Trgsy; FCIA 02 T2 V2 Trpso; VV] N VVQ CcVpr; U VFQ;

Cy1 N Nyg € Tpy; Cyp N Nyy © Trg;
Ny NAp; N Eggse ={}; NysNArp N Egg; = {} | =
V 7 lambda t1 t2. ((set T C (E(ESZ I ES.Q)) A set lambda C Vy) A settl C Epgy

154

Asett2 CEggo N ((T1 Eggy) Qt1) € Trgsy A ((T1 Egge) Q t2) € Trggs

A (lambda 1 Eggy) = (t1 1 V) A (lambda | Egge) = (12 1 V)

A1 Cy) =] A (21 Cpg) =)

— (3t (1@ 1) € (Tr(gs; | psa) A (41 Vy) = lambda A (£1 Cy) = [))
proof —

assume Nablal-subsetof-E1: Vpy C Epgy

and Deltal-subsetof-E1: Apr; C Epg;

and Upsiloni-subsetof-E1: Y1y C Epgy

and Nabla2-subsetof-E2: Vo C Epgs

and Delta2-subsetof-E2: App C Egpgo

and Upsilon2-subsetof-E2: Y19 C Epgo

and BSIA1: BSIA o1 V1 Trgg;

and BSIA2: BSIA 02 V2 Trggs

and ES1-total-Cvl-inter-Nv2: total ES1 (Cyy N Nyg)

and ES2-total-Cv2-inter-Nvl: total ES2 (Cyo N Nyyg)

and FCIA1: FCIA o1 T'1 V1 Trggq

and FCIA2: FCIA 92 T2 V2 Trggs

and VwI-inter- Vv2-subsetof-Nablal-union-Nabla2: Vy; N Vyo C Vr; U Vg

and CvI-inter-Nv2-subsetof-Upsilon1: Cyyy N Nyo C Ty

and Cv2-inter-Nvi-subsetof-Upsilon2: Cyg N Ny; C Yo

and disjoint-Nvi-inter-Deltal-inter-E2: Ny N Apy; N Egge = {}

and disjoint-Nv2-inter-Delta2-inter-E1: Nyp N Apy N Eggy = {}

{

fix 7 lambda t1 t2

have [set 7 C (E(E‘SJ I E‘SQ))3
set lambda C Vy);
set t1 C Eggy;
set t2 Q EE,S'27
((r 1 Epgy) @ t1) € Trggy;
((T 1 Eggg) @ 12) € Trggy;
(lambda 1 Eggy) = (t1 1 Vy);
(lambda Epsg) = (tQ Vy);
(t11 Cyy) = I
(t21 Cys) =[]
= 3t ((rQ@t)e TT(ESZ | ES2) A (t] Vv) = lambda N (t 1 Cv) =1))
proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (7 @ []) € Tr(gg; || gs2)
proof —
have 7 € TT’(ESJ | ES2)
proof —
from Nil(5) validES1 have 7 | Egg; € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
from Nil(6) validES2 have 7 |1 Eggg € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)

moreover

155

note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have ([1 Vy) = [
by (simp add: projection-def)
moreover
have ([1 Cy) = |
by (simp add: projection-def)
ultimately show Zcase
by blast
next
case (Cons V' lambda’ T t1 12)
thus Zcase
proof —

from Cons(3) have v’-in-Vu: V' € Vy,
by auto

have V' € Vyi N Vys N Vg
VvV e VVI n VVQ n VFQ
VV'e Vy; — Eggy
VV'E Vyg — Egg;
proof —
let 25 = Vy; N Vya U (Vyr = Vg) U (Vyg = Vyg)
have Vy; U Vyy = 25
by auto
moreover
have Vy; — Vys = Vy; — Eggy
and Vyy — Vy; = Vyg — Eggy
using propSep Views unfolding properSeparationOfViews-def by auto
moreover
note Vwi-inter- Vv2-subsetof-Nabla1-union-Nabla2
Vu-is- Vul-union- Vo2 v'-in- Vo
ultimately show %thesis
by auto
qed
moreover
{
assume v'-in- Vol-inter- Vo2-inter-Nablal: V' € Vy,; N Vys N Vpy
hence v'-in-Vv1: V' € Vy; and v'-in-Vu2: V' € Vyy
and v'-in-Nabla2: V' € Vy
by auto
with v’-in- Vv
have v'-in-E1: V' € Egg; and v'-in-E2: V' € Eggg
using propSep Views unfolding properSeparationOfViews-def by auto

from Cons(3—4) Cons(8) v'-in-E1 have t1 1 Vy, = V' # (lambda’ 1 Egg;)

156

by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1

where t1-is-ri-v’-si: t1 = r1 @ [V] @ sI

and r1-Vv-empty: v1 | Vy = ||

by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyy; V) 1]
have r1-Vvl-empty: v1 1 Vy; =]

by auto

from t1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 1 Cyy = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) ti-is-ri-v’-si
have ri-in-Elstar: set 11 C Fpg; and sl-in-Elstar: set s1 C Epgy
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note rl-in-Elstar
moreover
from r1-Vvl-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1-Cvi-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV'1
ultimately show ?Zthesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvi-inter-C2-star: set (rl1 1 Eggs) C (Ny; N Cyg)
proof —
have set (r1 | Egge) = set r1 N Eggy
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (r1 1 Egge) € (Egge N Nyy)
by auto
moreover
from wvalidV2 disjoint-Nvi-Vv2
have Epgo N Ny = Ny N CVZ
using propSep Views unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis

157

by auto
qged
with Cv2-inter-Nvli-subsetof-Upsilon2
have r1E2-in-Nvi-inter-C2-Upsilon2-star: set (r1 1 Eggg) C (Ny; N Cyg N Y1g)
by auto

note outerCons-prems = Cons.prems

have set (11 1 Egge) € (Nyy N Cypg) =

3 2. (set t2' C Eggo

A((T@rl)] EESQ) Qt2' € Trpgo

A t271] Vye =121 Vyy

At2'1 Cyy =)
proof (induct r1 | Egge arbitrary: v1 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(10)
outerCons-prems(4) outerCons-prems(6) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE2: s = s | Eggy
proof —
from snoc(2) have set (zs Q [z]) € Eggo
by (simp add: projection-def, auto)
hence set s C Eggo
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Egge) C (Ny; N Cyg)
proof —
have set (r1 1 Egge) € (Nyys N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs @ [z]) € (Nyy N Cyo)
by simp
hence set zs C (Ny; N Cyo)
by auto
with zs-is-xzsE2 show %thesis
by auto
qed
moreover
note snoc.hyps(1)[of zs]
ultimately obtain ¢2"’
where t2"'-in-E2star: set 12" C Epgg
and 7-zs-E2-12"-in-Tr2: (1 Q z5) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vg =121 Vg
and t2"'Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvl: z € Cygp N Ny
proof —

158

from snoc(2—3) have set (zs Q [z]) C (Ny; N Cyo)
by simp
thus %thesis
by auto
qed
hence z-in-Cv2: z € Cyy
by auto
moreover
note 7-1s-E2-12""-in-Tr2 t2"' Cv2-empty
moreover
have Adm: (Adm V2 02 Trgge ((1 Q zs) | Eggg))
proof —
from 7-zs-E2-t2""-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q xs) | Eggg) € Trgge
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl ES2-total-Cv2-inter-Nvl
have 7-zsE2-z-in-Tr2: ((1 Q zs) | Eggg) Q [z] € Trggo
by (simp only: total-def)
moreover
have ((1 @ zs) | Eggg) 1 (02 V2) = ((1 @ 2s) | Eggg) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA2
ultimately obtain t2’
where resi: ((1 Q zs) | Eggg) @ [z] Q 12 € Trpgs
and res2: t2'1 Vyg =121 Vyy
and res3: 12’1 Cyg = |]
by (simp only: BSIA-def, blast)

have set t2' C Epgy
proof —
from res! validES2 have set (T Q zs) | Eggg) Q [z] @ 12') C Fggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((1 @ r1) | Egge) @ t2' € Trpgoy
proof —
from res! zs-is-zsE2 have ((1 1 Epgs) @ (zs Q [2])) @ 2’ € Trpgg
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from {2 Vv2-is-t2Vv2 res2 have 12’1 Vyp = t2 1 Vg
by auto
moreover
note res3
ultimately show ?case

159

by auto
qed
from this|OF r1E2-in-Nvi-inter-C2-star] obtain t2’
where t2'-in-E2star: set t2' C Eggy
and Tr1E2-t2'-in-Tr2: ((t Q r1) | Egge) Q t2' € Trggs
and t2'-Vu2-is-t2-V2: 12" 1 Vg =121 Vg
and t2'-Cv2-empty: t2'1 Cyy = ||
by auto

have 12’1 Vyy = V' # (lambda’ 1 Eggo)
proof —
from projection-intersection-neutral|OF Cons(5), of Vy)]
have t2] VV =12 W VV2
using propSep Views unfolding properSeparationOf Views-def
by (simp only: Int-commute)
with Cons(9) t2'-Vv2-is-t2-Vv2 v'-in-E2 show ?thesis
by (simp add: projection-def)
qed
from projection-split-first|OF this] obtain r2’ s2’
where t2'-is-r2'-v'-s2" 12’ = r2’ @ [V'] @ 52’
and r2'-Vu2-empty: 12’1 Vg = ||
by auto

from ¢2'-is-r2’-v'-s2' t2'-Cv2-empty have r2’-Cv2-empty: r2'1 Cy9 = |]
by (simp add: projection-concatenation-commute)

from {2'-is-r2'-v'-s2' t2'-Cv2-empty have s2'-Cv2-empty: s2' 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from {2'-in-E2star t2'-is-r2'-v’-s2' have r2'-in-E2star: set 12’ C Epgg
by auto

have r2’-in-Nuv2star: set 12’ C Ny
proof —
note r2’-in-E2star
moreover
from r2’-Vu2-empty have set r2' N Vyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2’-Cv2-empty have set 12’ N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

160

have r2'E1-in-Nv2-inter-Cl-star: set (r2'1 Eggy) C (Nyg N Cyy)
proof —
have set (r2'1 Epgy) = set r2' N Epg;
by (simp add: projection-def, auto)
with r2’-in-Nv2star have set (r2'1 Egg;) C (Eggs N Nyo)
by auto
moreover
from validV1 disjoint-Nv2-Vul
have Epg; N Nyg = Nys N Cyy
using propSep Views unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed
with CvI-inter-Nv2-subsetof- Upsilonl
have 72 'E1-in-Nv2-inter-Cvl-Upsilon1-star:
set (r2'1 Eggy) € (Nyg N Cy; N Yry)
by auto

have set (1“2/] EES]) - (NVQ N CVI NnNYTp;) =
3 51’ q1' (
set s1' C Epgy A set q1' C Cyy; N Tp; U Ny N Apy
AN(T1Eggy) @r1 @Qq1'@[V]Qsi' € Trgg;
Aql’1(Cy;NYry) =121 Eggy
A sl’ Vyr =511 Vy;
Ast'] Cyp=1))

proof (induct r2’' 1 Egg; arbitrary: r2’ rule: rev-induct)
case Nil

note si-in-Elstar

moreover

have set [] C CVI N TFI U NVI n AFI
by auto

moreover

from outerCons-prems(5) t1-is-ri-v’-si

have 7 | Egg; @Qrl Q] @ [V] @ s € Trgg;
by auto

moreover

from Nil have [| | (Cy; N Yp;) =1r2'1 Eggy
by (simp add: projection-def)

moreover

have s1 1 Vy; =511 Vyj..

moreover

note s1-Cvl-empty

ultimately show ?Zcase
by blast

next
case (snoc xs)

161

have zs-is-zsE1: s = zs | Eggy
proof —
from snoc(2) have set (zs Q [z]) € Eggy
by (simp add: projection-def, auto)
thus “thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggy) € Nygs N Cyy N Ty
proof —
from snoc(2—3) have set (zs Q [z]) C Nyg N Cyy N Ty
by simp
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain 51’ ¢q1"’
where s1'’-in-Elstar: set s1" C Eggy
and qI "-in-Cl-inter- Upsiloni-inter-Deltal: set 1" C Cy; N Yp; U Nyy N Apy
and TEI-ri-q1"-v'-s1"-in-Tr1: (11 Egg; @ r1 Q q1”) @ [V] @ s1” € Trpg;
and ¢1 "'C1-Upsiloni-is-zsE1: q1" 1 (Cyy; N Tpy) = zs | Egg;
and s1"Vi-is-s1V1: s1"1 Vy;=s11 Vyy
and s1"Cl-empty: s1”1 Cy; = ||
by auto

have z-in-Cvi-inter-Upsiloni: z € Cy; N Ty
and z-in-Cvi-inter-Nv2: © € Cy; N Ny
proof —
from snoc(2—3) have set (zs Q [z]) € (Nyo N Cyy N Trg)
by simp
thus z € Cy; N Ty
and z € Cy; N Nyy
by auto
qed
with validV1 have z-in-E1: z € Epg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

note z-in-Cvl-inter-Upsilonl
moreover
from v’-in-Vul-inter- Vo2-inter-Nablal have V' € Vy,; N Vp;
by auto
moreover
note TE1-r1-q1""-v'-s1"-in-Tr1 s1" C1-empty
moreover
have Adm: (Adm V1 o1 Trgg; (11 Epg; @ r1 @ q1") z)
proof —
from 7E1-r1-q1""-v"-s1""-in-Tr1 validES1
have (7’1 Ergy @ r1 @ q1 H) € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)

162

with z-in-Cvl-inter-Nv2 ES1-total-Cvl-inter-Nv2
have (11 Egg; @ r1 @Q q1') Q [z] € Trgg;
by (simp only: total-def)
moreover
have (11 Egg; @Qr1 @ q1')1 (01 V1) = (11 Egg; @r1 @ q1") 1 (01 V1) ..
ultimately show ?thesis
by (simp only: Adm-def, blast)
qed
moreover
note FCIA1
ultimately
obtain s1’' v’
where resi: (set v') C (Nyj; N Apyg)
and res2: (11 Egg; @rl @Qq1")Q [z] @~' @ [V] @ s1') € Trggy
and res3: (s1'1 Vyy) = (s1"1 Vyy)
and resf: s1'1 Cy; = |
unfolding FCIA-def
by blast

let ?2q1' = q1"” @ [z] @ ~'

from res2 validES1 have set s1' C Fpgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from resl z-in-Cvl-inter-Upsilonl q1''-in-Cl1-inter-Upsiloni-inter-Deltal
have set 2q1’' C Cy; N YTp; U Nyy N Apy
by auto
moreover
from res?2 have 7 | Epg; @ r1 @ 2g1' @ [V @ 51’ € Trggy
by auto
moreover
have ?q1/1 (CVZ n TFZ) = TQ/W Ergy
proof —
from validV1 res! have v'1 (Cy; N YTpy) =]
proof —
from res! have v' = ~v'1 (Ny; N Apy)
by (simp only: list-subset-iff-projection-neutral)
hence 7' 1 (Cy; N Yry) =~"1 (Ny; N Arg) 1 (Cyy N Yry)
by simp
hence v'1 (Cy; N Yry) =91 (Ny; N Ar; N Cyy N YTry)
by (simp only: projection-def, auto)
moreover
from validV1 have NVI n AF] N CVI N TF] = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by (simp add: projection-def)
qed
hence ?q1"1 (Cy; N Ypy) = (¢1" @ [z]) 1 (Cy; N Try)
by (simp only: projection-concatenation-commute, auto)
with q1 "' C1-Upsilonl-is-zsE1 z-in-Cvl-inter- Upsilonl
have ?q1’ 1 (CVZ n TFI) = (zs] EESI) @ [x}

163

by (simp only: projection-concatenation-commute projection-def, auto)
with zs-is-zsE1 snoc(2) show ?thesis
by simp
qed
moreover
from res3 s1''V1-is-s1V1 have s1'1 Vy; = s1 1 Vyy
by simp
moreover
note res4
ultimately show ?case
by blast
qged
from this|OF r2'E1-in-Nv2-inter-Cuvi-Upsiloni-star] obtain s1’ g1’
where s1’-in-Elstar: set s1’' C Eggy
and q1’-in-Cvl-inter- Upsilonl-union-Nvl-inter-Deltal:
set q1’' C CVI NYpr;U Ny N Aryg
and TEI-ri-q1"-v'-s1"-in-Tr1: (1 | Eggy) @11 @ q1' Q [V] @ s1' € Trgg;
and g1 'Cvl-inter-Upsilonl-is-r2'E1: q1'1 (Cy; N Tpy) = r2' 1 Eggy
and s1'Vul-is-s1-Vvl: s1'1 Vi =s1 1 Vyy
and s1'Cvl-empty: s1'1 Cy; = ||
by auto

from g1 ’-in-Cvl-inter- Upsilonl-union-Nvl-inter-Deltal validV1
have q1'-in-Elstar: set q1' C Epgy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

have r2'Cuv-empty: 2’1 Cy = ||
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2
r2'-Cv2-empty r2'-in-E2star)

from validES1 TE1-r1-q1'-v'-s1"-in-Tr1
have q1'-in-Elstar: set q1' C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note r2’-in-E2star
moreover
have q1 'E2-is-r2'E1: q1' | Egge = 12’1 Eggy
proof —
from q1’-in-Cvl-inter- Upsilonl-union-Nvi-inter-Deltal
have g1’ (CVZ NYpsU Ny;n Apg) = ql’
by (simp add: list-subset-iff-projection-neutral)
hence (q1"1 (Cy; N Yp; UNy; N Apy)) |1 Egge = q1' 1 Eggp
by simp
hence q1"1 ((Cy; N YTp; U Ny N Apy) N Egge) = q1' 1 Eggy
by (simp add: projection-def)
hence q1' 1 (OVJ NYrsN EESQ) = q1'1 Eggo
by (simp only: Int-Un-distrib2 disjoint-Nvi-inter-Deltal-inter-E2, auto)
moreover
from q1'Cvi-inter-Upsilonl-is-r2'E1

164

have (q1'1 (Cy; N Yry) 1 Egse = (r2'1 Egsy) 1 Eggse
by simp
hence 11 (Cy; N Yy N Eggg) = (r2'1 Eggg) 1 Egsy
by (simp add: projection-def conj-commute)
with r2’-in-E2star have q1'1 (Cy,; N Yp; N Eggg) = 2’| Egg;
by (simp only: list-subset-iff-projection-neutral)
ultimately show ?thesis
by auto
qed
moreover
have ¢q1'1 Vy, = |]
proof —
from q1'-in-Cvi-inter- Upsilonl-union-Nvi-inter-Deltal
have q1” = q1"1 (Cy; N YTp; U Ny; N Apy)
by (simp add: list-subset-iff-projection-neutral)
moreover
from g1 '-in-Elstar have q1' = q1' 1 Eggy
by (simp add: list-subset-iff-projection-neutral)
ultimately have ¢’ = q1'1 (Cy; N Yp; U Ny N Apy) 1 Eggg
by simp
hence q1' 1 Vy = g1’ (Cyr N Y UNpy NAR) 1 Egsr 1 Vy
by simp
hence q1"'1 Vy = q1"1 (Cy; N Ypy U Nyy N Apy) 1 (Vy N Eggy)
by (simp add: Int-commute projection-def)
hence q1' 1 Vy = ql’ ((CVI NYp;U Ny N Apg) N VVI)
using propSep Views unfolding properSeparationOf Views-def
by (simp add: projection-def)
hence q1' 1 Vy = ql’ (VVI N CVI NYpr;U Vys N Ny N Arg)
by (simp add: Int-Un-distrib2, metis Int-assoc Int-commute Int-left-commute Un-commute)
with validV1 show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def)
qed
moreover
have 72’1 Vy, = ||
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral
r2'-Vu2-empty r2'-in-E2star)
moreover
have ¢1'Cv-empty: q1'1 Cy = |]
proof —
from q1'-in-Elstar have foo: q1' = q1'1 Eggy
by (simp add: list-subset-iff-projection-neutral)
hence ¢q1'1 Cy = ¢q1'1 (Cy N Egg;)
by (metis Int-commute list-subset-iff-projection-neutral projection-intersection-neutral)
moreover
from propSep Views have Cy N Epg;CCyy
unfolding properSeparationOfViews-def by auto
from projection-subset-elim[OF «Cy, N Epg;CCy 1y, of q1']
have q1'1 Cy; 1 Cy 1 Eggy = q1” 1 (Cy N Eggy)
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def)

165

hence q1'1 Egg; 1 Cy; 1 Cy = q1'1 (Cy N Egsy)
by (simp add: projection-commute)
with foo have ¢q1'1 (Cy; N Cy) =q1'1 (Cy N Eggy)
by (simp add: projection-def)
moreover
from q1’-in-Cvl-inter- Upsilonl-union-Nvi-inter-Deltal
have q1"1 (Cy; N Cy) = q1"1 (Cy; N YTp; UNy; N Apg) 1 (Cyy 0 Cy)
by (simp add: list-subset-iff-projection-neutral)
moreover
have (Cy; N Yp; U Ny; N Apy) N (Cyy N Cy)
= (Cy;NYp; U Cyy NNy NAp) N Cy
by fast
hence q1' 1 (CVJ NYprsU Ny N Apg) 1 (Cvz N Cv)
=4q1"1(Cy; N YTp; U Cy; N Ny NApy) 1 Cy
by (simp add: projection-sequence)
moreover
from wvalidV1
have q1'1 (Cy;NYTp;UCy; NNy N APy 1 Cy
=q1"1(Cy; N Try)1Cy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
moreover
from q1’'Cvi-inter-Upsiloni-is-r2'E1
have ¢q1'1 (Cy; N Ypy) 1 Cy =1r2"1 Egg; 1 Cy
by simp
with projection-on-intersection| OF r2’'Cuv-empty]
have ¢1'1 (Cy; N Ypy) 1 Cy =]
by (simp add: Int-commute projection-def)
ultimately show ?thesis
by auto
qed
moreover
note r2’'Cv-empty merge-property’[of q1' r2]]
ultimately obtain ¢’
where ¢'El-is-q1": ¢' | Egg; = q1’
and ¢'E2-is-r2" q' | Eggy = 12’
and ¢'V-empty: ¢'1 Vy = ||
and ¢'C-empty: ¢' 1 Cy = |]
and ¢'-in-El-union-E2-star: set ¢' C (Egg; U Eggo)
unfolding Let-def
by auto

let ?tau =7 Q r1 @ ¢’ @ [V

from Cons(2) ri-in-Elstar q'-in-El-union-E2-star v'-in-E1
have set ?tau C (E(ESJ I ESQ))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note s!'-in-Elstar

166

moreover
from ¢2'-in-E2star t2'-is-r2'-v'-s2' have set s2' C Epgo
by simp
moreover
from ¢'E1-is-q1’ r1-in-Elstar v'-in-E1 q1’-in-Elstar TE1-r1-q1'-v’-s1'-in-Tr1
have ?tau | Egg; @ s1' € Trgg;
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
from 7r1E2-t2"-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2 q'E2-is-r2’
have ?tau | Eggs @ s2' € Trggs
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have lambda’ | Egg; = s1'1 Vy,
proof —
from Cons(3—4) Cons(8) v'-in-E1 have t1 1 Vy, = [V'] @ (lambda’ 1 Epgy)
by (simp add: projection-def)
moreover
from ti1-is-r1-v’-s1 r1-Vu-empty v’'-in- Vol Vu-is- Vul-union- V2
have t1 1 Vy = V0@ (st1Vy)
by (simp only: t1-is-ri-v’-s1 projection-concatenation-commute
projection-def, auto)
moreover
have s1 1 Vy =s1'1 Vy
using propSep Views unfolding properSeparation Of Views-def
by (metis Int-commute projection-intersection-neutral
s1'Vui-is-s1-Vul s1’-in-Elstar si-in-Elstar)
ultimately show ?thesis
by auto
qed
moreover
have lambda’ | Eggy = s2'1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have t2 1 Vy, = [V'] @ (lambda’ 1 Egg9)
by (simp add: projection-def)
moreover
from t2'-is-r2’-v'-s2' r2'-Vv2-empty r2’-in-E2star v'-in- Vo2 propSep Views
have 12’1 V) = [V] @ (s2'1 Vy)
proof —
have 72’1 Vy, =[]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2 r2'-Vu2-empty
r2'-in-E2star subset-iff-psubset-eq)
with t2'-is-r2'-v"-s2" v'-in- Vo2 Vu-is-Vul-union- Vo2 show ?thesis
by (simp only: t2'-is-r2'-v'-s2’
projection-concatenation-commute projection-def, auto)
qed
moreover
have t2 W VV = t2/1 VV
using propSep Views unfolding properSeparationOf Views-def
by (metis Int-commute outerCons-prems(4)
projection-intersection-neutral t2'-Vv2-is-t2-Vv2 t2'-in-E2star)

167

ultimately show %thesis
by auto

qed
moreover
note s1’'Cuvi-empty s2'-Cv2-empty Cons.hyps|of ?tau s1’ s2’|
ultimately obtain ¢’

where 7-ri-q’-v'-t’-in-Tr: ?tau Q t’' € Tr(gs; || ES2)

and t'Vo-is-lambda”: t' 1 Vy, = lambda’

and t'Cuv-empty: t'1 Cy = |]

by auto

let 2t =r1 Qgq @ [V]@t

note 7-r1-q"-v'-t'-in-Tr
moreover
from r1-Vu-empty q'V-empty t' Vo-is-lambda’ v'-in- Vo
have ?¢ 1 Vy, = V' # lambda’
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from VIsViewOnE ri-Cvl-empty t'Cv-empty q'C-empty v'-in- Vo
have 2t 1 Cy = ||
proof —
from VIsViewOnE v'-in-Vo have [V'] | Cy, = ||
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from ri-in-Elstar r1-Cvl-empty
have r1 1 Cy = ||
using propSep Views projection-on-subset2
unfolding properSeparationOfViews-def by auto
moreover
note t'Cv-empty q'C-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto
}

moreover
{
assume v'-in-Vol-inter- Vo2-inter-Nabla2: V' € Vy,; N Vs N Vg
hence v'-in-Vvl: V' € Vy; and v'-in-Vv2: V' € Vyy
and v’-in-Nabla2: V' € Vg
by auto
with v’-in-Vo propSep Views
have v'-in-E1: V' € Epg; and v'-in-E2: V' € Eggg
unfolding properSeparationOfViews-def by auto

from Cons(3,5,9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Egg9)
by (simp add: projection-def)

from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v"-52: t2 = r2 Q [V'] Q 52

168

and 72-Vv-empty: v2 1 Vy = ||

by auto
with Vu-is-Vul-union-Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||

by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggg
and s2-in-E2star: set s2 C Epgo
by auto

have r2-in-Nv2star: set r2 C Nyy
proof —
note r2-in-E2star
moreover
from r2-Vu2-empty have set 12 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV?2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-Cl1-star: set (r2 1 Egg;) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set r2 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (12 1 Eggy) € (Eggsy N Nyg)
by auto
moreover
from wvalidV1 disjoint-Nv2- Vvl propSep Views
have Epg; N Nyg = Nys N CV]
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed
with CvlI-inter-Nv2-subsetof- Upsilonl

169

have r2E1-in-Nv2-inter-C1-Upsilonl-star: set (r2 1 Eggs) C (Nye N Cyy N Yrg)
by auto

note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npgo N Cyy) =

3 t1. (sett1' C Eggy

A((r@r2)] Eggy) Qt1' € Trggy

A t1' Vyr=1t11 Vyy

At] Oy =1)
proof (induct 12 | Egg; arbitrary: r2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
outerCons-prems(5) projection-concatenation-commute)

next

case (snoc xs)

have zs-is-zsE1: zs = s | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggy
by (simp add: projection-def, auto)
hence set s C Eggy
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggs) € (Ny2 N Cyy)
proof —
have set (12 1 Eggy) € (Npa N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs @ [z]) € (Nyg N Cyy)
by simp
hence set zs C (Nyo N Cyy)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain ¢1"
where t1"-in-Elstar: set t1"” C Epgy
and 7-zs-E1-t1"-in-Tr1: (1 Q zs) | Eggy) Q t1" € Trggy
and t1""Vul-is-t1Vvl: t1"1 Vy; =t1 1 Vyy
and t1"'Cvl-empty: t1"1 Cyy = ||
by auto

have z-in-Cvi-inter-Nv2: © € Cy; N Ny
proof —
from snoc(2—3) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus ?thesis

170

by auto
qed
hence z-in-Cvi: z € Cy);
by auto
moreover
note 7-rs-E1-t1"-in-Tr1 t1" Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((t Q zs) | Eggy))
proof —
from 7-zs-E1-t1"-in-Tr1 validES1
have 7-zsE1-in-Trl: ((1 @ 2s) | Eggy) € Trgs;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvl-inter-Nv2 ES1-total-Cvl-inter-Nv2
have 7T-zsEl-z-in-Trl: ((1 @ zs) | Eggy) @ [z] € Trggy
by (simp only: total-def)
moreover
have ((1 @ 2s) | Eggy) 1 (¢1 V1) = ((r @as) | Eggy) 1 (o1 V1) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIAI
ultimately obtain ¢1’
where resi: ((1 Q zs) | Egg;) @ [z] Q t1' € Trpgy
and res2: t1'1 Vi =t1"1 Vyy
and res3: t1'1 Cyy = |]
by (simp only: BSIA-def, blast)

have set t1’' C Epgy
proof —
from res! validES1 have set (T Q zs) | Egg;) @ [z] @ t1') C Fggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((r @ r2) | Egg;) @ t1' € Trpg,
proof —
from res! zs-is-zsE1 have ((1 1 Epgy) @ (zs Q [z])) @ ¢1' € Trpg;
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by (simp only: snoc(2) projection-concatenation-commaute)
qed
moreover
from t1"Vvi-is-t1Vul res2 have t1'1 Vy; = t1 1 Vyy
by auto
moreover
note res3
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain 1’

171

where t1'-in-Elstar: set t1' C Fggy

and 7r2E1-t1'-in-Tr1: (1 @ r2) | Eggy) @ t1' € Trpgy
and t1'-Vol-is-t1-Vol: t1'1 Vy; =t1 1 Vyy

and t1'-Cvl-empty: t1'1 Cyy = ||

by auto

have t1'1 Vy; = V' # (lambda’ 1 Eggy)
proof —
from projection-intersection-neutral] OF Cons(4), of V] propSep Views
have t1 1 Vy, =1t1 1 Vyy
unfolding properSeparationOfViews-def
by (simp only: Int-commute)
with Cons(8) t1'-Vul-is-t1-Vol v'-in-E1 show ?thesis
by (simp add: projection-def)
qed
from projection-split-first|OF this] obtain r1’ s1’
where t1’-is-r1’-v’-s1" t1' = r1’ @ [V'] @ s1’
and r1'-Vul-empty: v1'1 Vy; =[]
by auto

from ¢1'-is-r1'-v’-s1' t1'-Cvi-empty have r1’-Cvl-empty: r1'1 Cyy = |]
by (simp add: projection-concatenation-commute)

from ¢1'-is-r1'-v'-s1' t1'-Cvl-empty have s1'-Cvl-empty: s1'1 Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from ¢1’'-in-Elstar t1'-is-r1'-v’-s1' have r1’'-in-Elstar: set r1’' C Epgy
by auto

have r1’-in-Nvistar: set r1’' C Ny,
proof —
note r1’-in-Elstar
moreover
from r1’-Vul-empty have set r1' N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1’-Cvi-empty have set r1' N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r1’E2-in-Nvi-inter-C2-star: set (r1'1 Eggg) C (Nyy N Cyag)

proof —
have set (11’1 Eggg) = set r1' N Eggy

172

by (simp add: projection-def, auto)
with r1’-in-Nvistar have set (r1'1 Eggs) € (Egge N Nyg)
by auto
moreover
from validV2 propSep Views disjoint-Nvi- Vo2
have Epgo N Ny; = Ny N Cyyp
unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed
with Cv2-inter-Nv1-subsetof-Upsilon2
have r1'E2-in-Nvl-inter-Cv2- Upsilon2-star:
set (r1'1 Eggg) € (Ny; N Cye N Try)
by auto

have set (r1’'1 Eggg) C (Ny; N Cys N Trg) =
3 52" q2' (
set s2' C Epga N set qu C CysNTraU Ny N Aryg
AN(T1FEpge) @r2 Q ¢q2'Q[V] Q@ s2'€ Trggy
A a2' 1 (Cyg N Trg) =r1'1 Eggy
A 52/1 Vyes =521 Vya
A2’ Cyg =)
proof (induct r1' 1 Eggg arbitrary: r1' rule: rev-induct)
case Nil

note s2-in-E2star

moreover

have set || C CV2 N YTrgU Nygo N AN
by auto

moreover

from outerCons-prems(6) t2-is-r2-v’-s2

have 7 | Eggo @ r2 Q | @ [V] @ s2 € Trggs
by auto

moreover

from Nil have [| | (Cyp N Ypg) =11'1 Eggo
by (simp add: projection-def)

moreover

have s2 | Vg =521 Vyg..

moreover

note s2-Cv2-empty

ultimately show ?case
by blast

next
case (snoc T xs)

have zs-is-zsE2: zs = s | Eggo
proof —
from snoc(2) have set (zs Q [z]) € Eggo
by (simp add: projection-def, auto)

173

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs | Egge) € Ny; N Cys N Ty
proof —
from snoc(2—3) have set (zs Q [z]) € Nyy; N Cya N Trp
by simp
with zs-is-zsE2 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain 52’/ ¢2"’
where s2''-in-E2star: set s2'' C Epgg
and ¢2'"'-in-C2-inter- Upsilon2-inter-Delta2: set ¢2"' C Cyg N Yo U Nyp N Apg
and TE2-r2-¢2"-v'-s2"-in-Tr2: (11 Egge @ 72 @ ¢2") Q [V] @ 52" € Trggo
and ¢2'"'C2-Upsilon2-is-zsE2: q2" 1 (Cye N T1g) = zs | Eggs
and s2"'V2-is-s2V2: s2"1 Vyg =521 Vyy
and 52" C2-empty: s2” 1 Cyg = ||
by auto

have z-in-Cv2-inter-Upsilon2: z € Cyg N Ty
and z-in-Cv2-inter-Nvl: ¢ € Cyg N Nyy
proof —
from snoc(2—3) have set (zs Q [z]) C (Nyy N Cpa N Trg)
by simp
thus z € CVQ n TFQ
and 7 € Cypp N Nyy
by auto
qed
with validV2 have z-in-E2: x € Eggy
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

note z-in-Cv2-inter- Upsilon2
moreover
from v’-in-Vul-inter- Vo2-inter-Nabla2 have V' € Vo N Vg
by auto
moreover
note TE2-72-¢2""-v"-s2""-in-Tr2 52" C2-empty
moreover
have Adm: (Adm V2 02 Trgge (11 Egge @ r2 @ ¢2"') z)
proof —
from TE2-12-q2""-v'-52""-in-Tr2 validES2
have (11 Egge @ r2 Q ¢2') € Trggs
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl ES2-total-Cv2-inter-Nvl
have (1 | Egge @ 2 @ ¢2") Q [z] € Trggs
by (simp only: total-def)
moreover

174

have (11 Eggo @ r2 @ ¢2') 1 (02 V2) = (11 Egge @ r2 @ ¢2') 1 (02 V2) ..
ultimately show ?thesis
by (simp only: Adm-def, blast)
qed
moreover
note FCIA2
ultimately
obtain 52’ v’
where resi: (set v') C (Nyg N Arpg)
and res2: (11 Eggo @ r2 @ ¢2') Q@ [z] @~' @ [V] @ s2') € Trggs
and res3: (s2'1 Vyg) = (s2”1 Vyg)
and res/: s2'1 Cypg = ||
unfolding FCIA-def
by blast

let 2q2' = ¢2"' @ [z] @ v’

from res2 validES2 have set s2' C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from res1 z-in-Cv2-inter-Upsilon2 q2''-in-C2-inter- Upsilon2-inter-Delta2
have set ?q2’ C CV? NTYTrgUu Nyo N Arg
by auto
moreover
from res2 have 7 | Eggy @ r2 Q 2¢2' Q V'] Q s2' € Trggs
by auto
moreover
have ?¢2’ 1 (CVQ N TFQ) =rl" Eggo
proof —
from validV2 res! have v' 1 (Cyg N YTpg) =]
proof —
from res! have v’ = v'1 (Nyg N Apy)
by (simp only: list-subset-iff-projection-neutral)
hence 7' 1 (Cyp N Ypg) =7'1 (Nyg N Arg) 1 (Cya N Try)
by simp
hence 7' 1 (Cyg N Yrg) =7"1 (Nyg N Apg N Cpp N Trp)
by (simp only: projection-def, auto)
moreover
from validV2 have Nyy N Apg N Cyo N Ty = {}
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by (simp add: projection-def)
qed
hence 2¢2'1 (Cys N Trg) = (¢2” Q [z]) 1 (Cys N YTrg)
by (simp only: projection-concatenation-commute, auto)
with ¢2" C2-Upsilon2-is-xsE2 z-in- Cv2-inter-Upsilon2
have 2¢2'1 (Cyg N Ypy) = (zs 1 Eggg) Q [z]
by (simp only: projection-concatenation-commaute projection-def, auto)
with zs-is-zsE2 snoc(2) show ?thesis
by simp
qed

175

moreover
from res8 s2''V2-is-s2V2 have s2'1 Vyy = s2 1 Vi
by simp
moreover
note res4
ultimately show ?case
by blast
qed
from this|OF r1'E2-in-Nvi-inter-Cv2-Upsilon2-star] obtain s2’ ¢2’
where s2’-in-E2star: set s2' C Eggo
and ¢2’-in-Cv2-inter- Upsilon2-union- Nv2-inter-Delta2:
set q2' C Cya N YrgoU Nys N Apg
and TE2-12-¢2'-v'-s2"-in-Tr2: (1 | Egge) @ 12 @ ¢2' Q [V @Q 52’ € Trggs
and ¢2'Cv2-inter-Upsilon2-is-r1'E2: q2'1 (Cya N Ypg) = 11’1 Eggy
and s2'Vu2-is-s2-Vv2: s2'1 Vyg =521 Vyy
and s2'Cv2-empty: s2' 1 Cyg = ||
by auto

from ¢2’-in-Cv2-inter- Upsilon2-union- Nv2-inter-Delta2 valid V2
have ¢2'-in-E2star: set ¢2' C Epgs
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

have r1’'Cuv-empty: r1’1 Cy = ||
using propSep Views unfolding properSeparation Of Views-def
by (metis projection-on-subset2
r1’-Cvl-empty r1'-in-Elstar)

from validES2 TE2-12-q2'-v'-52"-in-Tr2
have ¢2’-in-E2star: set ¢2' C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note r1’-in-Elstar
moreover
have ¢2'El-is-r1'E2: ¢q2' 1 Egg; = 1’1 Eggo
proof —
from ¢2'-in-Cv2-inter- Upsilon2-union- Nv2-inter- Delta2
have ¢2' 1 (Cya N TrogU Nyg N Apg) = q2’
by (simp add: list-subset-iff-projection-neutral)
hence (¢2"1 (Cyg N Trg U Nyg N Apg)) 1 Epgy = 2" 1 Epggy
by simp
hence ¢2" 1 ((Cyg N Yrg U Nyp N Apg) N Eggy) = ¢2'1 Egg;
by (simp add: projection-def)
hence ¢2' | (CV2 N Yre N EESI) = g2 Erg;
by (simp only: Int-Un-distrib2 disjoint-Nv2-inter-Delta2-inter-E1, auto)
moreover
from ¢2’'Cv2-inter-Upsilon2-is-r1'E2
have (¢2"1 (Cya N Yrp)) | Egs; = (r1'1 Egsg) 1 Egsy
by simp
hence q2"1 (Cyp N Yo N Eggy) = (r1'1 Epgy) 1 Egge
by (simp add: projection-def conj-commute)

176

with r1’-in-Elstar have ¢2'1 (Cys N Yrgo N Eggy) = 11’1 Egge
by (simp only: list-subset-iff-projection-neutral)
ultimately show ?thesis
by auto
qed
moreover
have ¢2'1 Vy, = |]
proof —
from ¢2’-in-Cv2-inter- Upsilon2-union-Nv2-inter-Delta2
have ¢2' = ¢2’ | (CVQ N YTre U Nyo N AFQ)
by (simp add: list-subset-iff-projection-neutral)
moreover
from ¢2'-in-E2star have ¢2' = q2' | Fggo
by (simp add: list-subset-iff-projection-neutral)
ultimately have ¢2’' = ¢2'1 (Cygs N Tpy U Nyp N Arg) 1 Eggs
by simp
hence q2'1 Vy = ¢2'1 (Cye N Trg U Nyg N Arg) 1 Egge 1 Vy
by simp
hence ¢2' 1 Vy = 2’1 (CVQ N Trg U Nyo N AFQ) 1 (VV N EES?)
by (simp add: Int-commute projection-def)
with propSep Views
have 2’ Vy = 2’1 ((CV2 N YTrgU Nys N AF,Q) N VVQ)
unfolding properSeparationOfViews-def
by (simp add: projection-def)
hence ¢2' 1 Vy = g2’ 1 (VVQ N CV? N Trg U Vys N Ny N AFQ)
by (simp add: Int-Un-distrib2, metis Int-assoc
Int-commute Int-left-commute Un-commute)
with validV2 show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def)
qed
moreover
have r1'1 Vy = |]
using propSep Views unfolding properSeparation Of Views-def
by (metis Int-commute projection-intersection-neutral
r1’-Vvl-empty r1’-in-Elstar)
moreover
have ¢2'Cv-empty: ¢2'1 Cy = |]
proof —
from ¢2'-in-E2star have foo: ¢2' = ¢2' 1 Eggg
by (simp add: list-subset-iff-projection-neutral)
hence ¢2'1 Cy = ¢2'1 (Cy N Eggs)
by (metis Int-commute list-subset-iff-projection-neutral
projection-intersection-neutral)
moreover
from propSep Views have Cy) N Egge € Cyp
unfolding properSeparationOfViews-def by auto
from projection-subset-elim[OF «Cy, N Egge € Cyg, of ¢27]
have ¢2'1 Cyg 1 Cy | Egge = q2"1 (Cy N Eggy)
by (simp add: projection-def)
hence ¢2' | Epss1 Cys 1 Cy = g2’ 1 (Cy N Eggs)
by (simp add: projection-commute)

177

with foo have ¢2'1 (Cya N Cy) = ¢2'1 (Cy N Egg)
by (simp add: projection-def)
moreover
from ¢2’-in-Cv2-inter- Upsilon2-union-Nv2-inter-Delta2
have ¢2'] (CV2 N Cv) = q2'1 (CV2 N YTrg U Nyg N AFQ) 1 (OV,Q N Cv)
by (simp add: list-subset-iff-projection-neutral)
moreover
have (Cyg N Tpg U Nyg N Apg) N (Cyg N Cy)
= (Cyg N T U Cyg N Nyg N Apg) N Cy
by fast
hence ¢2' 1 (CV2 N YTrg U Nyg N AF,Q) 1 (Cyg N Cv)
=q2"1(Cyg N Tpg U Cpa N Nyg N Apg) 1 Cy
by (simp add: projection-sequence)
moreover
from validV?2
have ¢2' (OV2 N YTre U Cvg N Nyg N AFQ) 1 CV
=¢2"1 (Cys N T 1 Cy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
moreover
from ¢2’'Cv2-inter-Upsilon2-is-r1’E2
have 2’ (OV2 N Trg) 1 OV =rl" Eggo 1 CV
by simp
with projection-on-intersection|OF r1’'Cv-empty] have ¢2'1 (Cyg N YTpg) 1 Cp = |]
by (simp add: Int-commute projection-def)
ultimately show ?thesis
by auto
qed
moreover
note r1’'Cv-empty merge-property’[of 1’ q27]
ultimately obtain ¢’
where ¢'E2-is-q2": ¢' | Egge = ¢2’
and ¢'El-is-r1" ¢' 1 Eggy = r1’
and ¢'V-empty: ¢'1 Vy = ||
and ¢'C-empty: ¢' 1 Cyp = |]
and ¢'-in-El-union-E2-star: set ¢' C (Egg; U Eggo)
unfolding Let-def
by auto

let ?tau =7 Q@ r2 @ ¢’ @ [V

from Cons(2) r2-in-E2star ¢'-in-E1-union-E2-star v'-in-E2
have set ?tau C (E(ESJ I ES?))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from t1’-in-Elstar t1'-is-r1’-v'-s1’ have set s1’' C Epggy
by simp
moreover
note s2'-in-E2star

178

moreover
from 7r2E1-t1'-in-Trl t1'-is-r1’-v'-s1' v'-in-E1 q'El-is-r1’
have ?tau | Egg; @ s1' € Trgg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from q¢'E2-is-q2' r2-in-E2star v'-in-E2 q2'-in-E2star T E2-r2-q2 '-v'-82"-in-Tr2
have ?tau | Egge @ s2' € Trggo
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
have lambda’' | Egg; = s1'1 Vy
proof —
from Cons(2,4,8) v'-in-E1 have t1 1 Vy, = [V'] @ (lambda’ 1 Egg;)
by (simp add: projection-def)
moreover
from t1'-is-r1’-v'-s1' r1’-Vvi-empty ri1’-in-Elstar
v’-in-Vul propSep Views
have t1'1 Vy = [V] @ (s1'1 Vy)
proof —
have r1'1 Vy =]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2 r1'-Vvl-empty
r1’-in-Elstar subset-iff-psubset-eq)
with t1’-is-r1'-v’-s1" v'-in- Vo1 Vu-is- Vvl-union-Vv2 show ?thesis
by (simp only: t1'-is-r1’-v’-s1’ projection-concatenation-commute
projection-def, auto)
qed
moreover
have t1 1 Vy, = t1'1 Vy
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute outerCons-prems(3)
projection-intersection-neutral t1’-Vvi-is-t1-Vul t1'-in-Elstar)
ultimately show %thesis
by auto
qed
moreover
have lambda’ |1 Eggg = 52’1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have t2 | Vy, = [V'] Q (lambda’ | Eggo)
by (simp add: projection-def)
moreover
from t2-is-r2-v'-s2 r2-Vo-empty v’-in- Vo2 Vu-is-Vol-union- Vu2
have (2 1 Vy, = [V] @ (s21 Vy)
by (simp only: t2-is-r2-v’-s2 projection-concatenation-commute
projection-def, auto)
moreover
have s2 1 V) =s2'1 Vy
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral
52 ' Vu2-is-s2- Vo2 s2'-in-E2star s2-in-E2star)
ultimately show %thesis
by auto

179

qed
moreover
note s1'-Cvi-empty s2'Cv2-empty Cons.hyps|of ?tau s1' s2’]
ultimately obtain ¢’

where 7-r2-q'-v'-t'-in-Tr: ?tau Q@ t' € Tr(gsi || ES2)

and t'Vo-is-lambda”: t' 1 V) = lambda’

and t'Cuv-empty: t' 1 Cy = |]

by auto

let 2t =r2@gq' @[V]@t

note 7-12-q"-v'-t'-in-Tr
moreover
from 72-Vu-empty q'V-empty t' Vo-is-lambda’ v'-in- Vo
have ¢ 1 Vy, = V' # lambda’
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from VIsViewOnE r2-Cv2-empty t'Cv-empty q’'C-empty v'-in- Vo
have 7t 1 Cy = ||
proof —
from VIsViewOnE v'-in-Vo have [V 1 Cy, = ||
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from r2-in-E2star r2-Cv2-empty
have r2 1 Cy) = ||
using propSep Views projection-on-subset2 unfolding properSeparationOfViews-def
by auto
moreover
note t'Cv-empty q'C-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto

}

moreover
{
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vvl: V' € Vyy,
by auto
with v'-in-Vv have v'-in-E1: V' € Epgy
using propSep Views unfolding properSeparationOf Views-def
by auto

from v'-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Epggg
by auto
with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from Cons(8—4) Cons(8) v'-in-E1 have t1 1 Vy, = V' # (lambda’' | Eggy)

180

by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1

where t1-is-ri-v’-si: t1 = r1 @ [V] @ sI

and r1-Vv-empty: v1 | Vy = ||

by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyy; V) 1]
have r1-Vvl-empty: v1 1 Vy; =]

by auto

from t1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 1 Cyy = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-r1-v’-s1 have ri-in-Elstar: set 11 C Eggy
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note rl-in-Elstar
moreover
from r1-Vul-empty have set v1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1-Cvi-empty have set r1 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV'1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvl-inter-C2-star: set (r1 1 Eggs) C (Ny; N Cyg)
proof —
have set (r1 | Egge) = set r1 N Eggy
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (11 1 Egge) € (Egge N Nyy)
by auto
moreover
from validV2 disjoint-Nvi- Vo2
have Epgo N Ny; = Ny N Cyy
using propSep Views unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto

181

qed

with Cv2-inter-Nv1-subsetof-Upsilon2

have r1E2-in-Nvl-inter-C2-Upsilon2-star: set (r1 1 Eggg) C (Ny; N Cys N YTrg)
by auto

note outerCons-prems = Cons.prems

have set (r1 | Egge) € (Ny; N Cyp) =

3 12" (set t2' C Eggo

A((t@r1)] Egge) @ t2' € Trggo

A t27 1] Vyea =121 Vygo

A12'] Cypg=1)
proof (induct r1 | Egge arbitrary: r1 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
outerCons-prems(6) projection-concatenation-commute)

next

case (snoc xs)

have zs-is-zsE2: s = zs | Eggo
proof —
from snoc(2) have set (zs Q [z]) C Eggo
by (simp add: projection-def, auto)
hence set zs C (Eggo)
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggo) C (Ny; N Cyg)
proof —
have set (11 1 Egge) € (Nyy N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Ny; N Cyy)
by simp
hence set zs C (Ny; N Cyo)
by auto
with zs-is-zsE2 show ?Zthesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain 2"
where t2"'-in-E2star: set 12" C Epgg
and 7-zs-E2-t2""-in-Tr2: ((1 Q zs) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vyp =121 Vg
and t2"'Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvl: x € Cyg N Ny

proof —
from snoc(2—38) have set (zs @ [z]) C (Ny; N Cyp)

182

by simp
thus “thesis
by auto
qed
hence z-in-Cv2: z € Cyp
by auto
moreover
note 7-1s-E2-t2""-in-Tr2 t2" Cv2-empty
moreover
have Adm: (Adm V2 02 Trgge ((T Q z5) | Epga))
proof —
from 7-z5-E2-t2""-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q 2s) | Eggg) € Trggs
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl ES2-total-Cv2-inter-Nvl
have 7-zsE2-z-in-Tr2: ((1 Q zs) | Eggg) Q [z] € Trggo
by (simp only: total-def)
moreover
have ((1 @ zs) | Eggg) 1 (02 V2) = ((r @ 25) | Eggo) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA2
ultimately obtain ¢2’
where resi: ((1 Q zs) | Eggg) @ [z] Q 12 € Trggo
and res2: 12’1 Vyg =121 Vyg
and res3: t2'1 Cygp = |]
by (simp only: BSIA-def, blast)

have set t2' C Epgo
proof —
from res! validES2 have set (((1 Q zs) | Eggg) @ [z] @ 12') C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus ?thesis
by auto
qed
moreover
have ((1 Q r1) | Egge) @ t2' € Trpgy
proof —
from res! zs-is-zsE2 have ((1 | Epge) @ (25 Q [2])) @ ¢2' € Trpgs
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from 12" Vv2-is-t2Vv2 res? have 12’1 Vyg =12 1 Vyg
by auto
moreover
note res3
ultimately show ?case
by auto

183

qed
from this|OF r1E2-in-Nvl-inter-C2-star| obtain ¢2’
where t2'-in-E2star: set t2' C Epgg
and 7r1E2-t2'-in-Tr2: (1 @ r1) | Eggg) @ t2' € Trggs
and t2'-Vu2-is-t2-Vv2: 121 Vyg =121 Vyg
and t2'-Cv2-empty: t2' 1 Cyg = ||
by auto

let ?tau =7 @ r1 @ [V/]

from v’-in-E1 Cons(2) ri-in-Nvistar validV1 have set ?tau C E(gs1 | ES2)
by (simp only: isViewOn-def composeES-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set lambda’ C V',
by auto
moreover
from Cons(4) t1-is-ri-v’-s1 have set s1 C Epgy
by auto
moreover
note t2'-in-E2star
moreover
have ?tau | Egg; @ s1 € Trgg;
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eq-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
projection-concatenation-commute t1-is-ri-v’-s1)
moreover
from 7r1E2-t2'-in-Tr2 v'-notin-E2 have ?tau | Eggy @ t2' € Trggg
by (simp add: projection-def)
moreover
from Cons(8) t1-is-ri-v’-s1 r1-Vu-empty v'-in-E1 v'-in-Vv have lambda’ | Egg; = s1 1 Vy
by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 t2'-Vv2-is-12- Vo2 have lambda’ | Eggg = t2'1 Vy,
proof —
have (2’1 Vy, =t2'1 Vg
using propSep Views unfolding properSeparation Of Views-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral t2'-in-E2star)
moreover
have t2 1 Vi, =121 Vyy
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral Cons(5))
moreover
note Cons(9) v'-notin-E2 t2'-Vu2-is-t2- Vo2
ultimately show ?thesis
by (simp add: projection-def)
qed
moreover
note s1-Cvl-empty t2'-Cv2-empty
moreover

184

note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain ¢’
where 7riv't’-in-Tr: ?tau Q t' € Tr(gs; | ES2)
and t’-Vv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t' 1 Cy = ||
by auto

let 7t =r1@[V]Q@¢

note Triv't’-in-Tr
moreover
from r1-Vu-empty t'-Vv-is-lambda’ v'-in-Vo have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have ¢t 1 Cy = ||
proof —
have r1 1 Cy = ||
proof —
from propSepViews have Epg; N Cy) C Cyy
unfolding properSeparationOfViews-def by auto
from projection-on-subset|OF <Egg; N Cy C Cypy r1-Cul-empty]
have r1 1 (Egg; N Cy) =
by (simp only: Int-commute)
with projection-intersection-neutral|OF ri-in-Elstar, of Cy)] show ?thesis
by simp
qed
with v’-in- Vo VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ?thesis
by auto

}

moreover
{
assume v'-in-Vo2-minus-E1: V' € Vg — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v'-in- Vv propSep Views have v'-in-E2: V' € Epgg
unfolding properSeparationOfViews-def
by auto

from v'-in-Vo2-minus-E1 have v'-notin-E1: V' ¢ Epg;
by auto
with validV1 have v'-notin-Vul: V' ¢ Vy;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from Cons(8) Cons(5) Cons(9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Egg9)
by (simp add: projection-def)

from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v"-52: t2 = r2 Q [V'] Q 52

185

and 72-Vv-empty: v2 1 Vy = ||

by auto
with Vu-is-Vul-union-Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||

by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggg
by auto

have r2-in-Nv2star: set 12 C Nyp
proof —
note r2-in-FE2star
moreover
from r2-Vu2-empty have set r2 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-C1-star: set (r2 1 Eggs) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set 12 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (12 | Egg;) € (Eggy N Nyo)
by auto
moreover
from validV1 propSep Views disjoint-Nv2- Vol
have Epg; N Nyg = Nyg N Cyy
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show %thesis
by auto
qed
with Cvl-inter-Nv2-subsetof-Upsilonl
have r2E1-in-Nv2-inter-C1-Upsilonl-star: set (r2 1 Eggs) € (Nyg N Cyy N T1y)

186

by auto
note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npa N Cyy) =

3 t1' (set i1’ C Eggy

A((t@r2)| Eggy) @ t1' € Trgg;

Atl'] Vyr=1t11 Vy;

At Cyp=1))
proof (induct r2 | Eggy arbitrary: r2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
outerCons-prems(5) projection-concatenation-commute)

next

case (snoc xs)

have zs-is-zsE1: s = zs | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggy
by (simp add: projection-def, auto)
hence set xs C Epgy
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggs) € (Nye N Cyy)
proof —
have set (12 1 Eggy) € (Npya N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Nyg N Cyy)
by simp
hence set zs C (Nyg N Cyyq)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain t1”
where t1"-in-Elstar: set t1" C Epgy
and 7-zs-E1-t1"-in-Tr1: ((t Q zs) | Eggy) @ t1" € Trggy
and t1""Vul-is-t1Vol: t1"1 V= t1 1 Vyy
and t1"'Cvl-empty: t1"1 Cy; = ||
by auto

have z-in-Cvl-inter-Nv2: x € Cy; N Nyy
proof —
from snoc(2—38) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus %thesis
by auto

187

qed
hence z-in-Cvl: z € Cyy
by auto
moreover
note 7-zs-E1-t1""-in-Tr1 t1" Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((1 Q zs) | Eggy))
proof —
from 7-zs-E1-t1"-in-Tr1 validES1
have 7-zsE1-in-Tr1: ((1 Q zs) | Eggy) € Trgs;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvi-inter-Nv2 ES1-total-Cvl-inter-Nv2
have T-zsE1-z-in-Tr1: ((r Q zs) | Eggy) Q [z] € Trggg
by (simp only: total-def)
moreover
have (v @ 25) | Bggy) 1 (o1 V1) = ((r @ s5) | Epgy) 1 (0 V1)
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA1
ultimately obtain ¢1’
where resl: ((r Q zs) | Egg;) @ [z] Q@ t1' € Trggy
and res2: t1'1 Vy;=¢1"1 Vyy
and res3: t1'1 Cyy = |]
by (simp only: BSIA-def, blast)

have set t1' C Eggy
proof —
from res! validES1 have set (((t Q zs) | Eggy) @ [z] Q t17) C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((r @ r2) | Egg;) @ t1' € Trpg;
proof —
from res! zs-is-zsE1 have ((1 | Egg;) @ (zs @Q [2])) @ ¢t1' € Trpg;
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from t1"Vuvi-is-t1Vol res? have t1'1 Vy; = t1 1 Vyy
by auto
moreover
note res3
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain t1’
where t1'-in-Elstar: set t1' C Eggy

188

and Tr2E1-t1"-in-Tr1: ((t @ r2) | Eggy) @ t1' € Trpg;
and t1'-Vol-is-t1-Vol: t1'1 Vy; = t1 1 Vyy

and t1'-Cvl-empty: t1'1 Cy; = ||

by auto

let ?tau =7 @ r2 Q [V/]

from v’-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau C E(gs1 | Es2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from Cons(5) t2-is-r2-v’-s2 have set s2 C Epgy
by auto
moreover
note t1’-in-Elstar
moreover
have %tau | Epgo @ s2 € Trpgy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-52)
moreover
from 7r2E1-t1'-in-Tr1 v'-notin-E1 have ?tau | Egg; Q t1' € Trggy
by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v’-in-E2 v’-in- Vv
have lambda’ | Epgy = s2 1 Vy
by (simp add: projection-def)
moreover
from Cons(10) v'-notin-E1 t1'-Vvl-is-t1- Vvl
have lambda’ | Egg; = t1'1 Vy
proof —
have t1'1 Vy =t1'1 Vy;
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral t1'-in-E1star)
moreover
have t1 1 Vy =t1 1 Vy;
using propSep Views unfolding properSeparationOf Views-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral Cons(4))
moreover
note Cons(8) v'-notin-E1 t1'-Vvl-is-t1- Vvl
ultimately show %thesis
by (simp add: projection-def)
qed
moreover
note s2-Cv2-empty t1'-Cvl-empty
moreover
note Cons.hyps(1)[of ?tau t1’ s2]

189

ultimately obtain ¢’
where 7r2v't"-in-Tr: ?tau Q t’' € Tr(gsi | ES2)
and t’-Vuv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let 2t =r2 @ [V]@t’

note Tr2v’t’-in-Tr
moreover
from r2-Vv-empty t'- Vo-is-lambda’ v'-in- Vv have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
have r2 1 Cy, = ||
proof —
from propSep Views have Eggo N Cy C Cyo
unfolding properSeparationOfViews-def by auto
from projection-on-subset[OF <Epge N Cy C Cyg r2-Cu2-empty]
have r2 | (Egge N Cy) = ||
by (simp only: Int-commute)
with projection-intersection-neutral[OF r2-in-E2star, of Cy)| show ?thesis
by simp
qed
with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ?thesis
by auto
}

ultimately show %thesis
by blast
qed

qed
}
thus ?thesis
by auto
qed

lemma generalized-zipping-lemma:

V 7 lambda t1 t2. ((set T C E(gs1 | Es2)

A set lambda C V) A set t1 C Epgy A set t2 C Eggo

AN((T1 Eggy) @tl) € Trggy A ((T 1 Eggg) @ 12) € Trggy

A (lambda 1 Eggy) = (t1 1 Vy) A (lambda | Egge) = (t2 1 Vy))

A1 Cyp) =1 A @21 Cpg) =1))

— 3t (r@t) e TT(ESI || ES2) A (1 Vy) =lambda A (t1 Cy) =1])))
proof —

note well-behaved-composition

190

moreover {
assume Ny N Egge = {} A Nyg N Eggy = {}
with generalized-zipping-lemmal have ?thesis
by auto
}

moreover {
assume 3 o1. Ny; N Egge = {} A total ES1 (Cyy N Nyg) A BSIA o1 V1 Trggy
then obtain ¢! where Ny ; N Egge = {} A total ES1 (Cy; N Nyg) A BSIA o1 V1 Trggy
by auto
with generalized-zipping-lemma2[of o1] have ?thesis
by auto
}

moreover {
assume 3 p2. Nyos N Eggy = {} A total ES2 (CV2 n NVI) A BSIA 02 V2 Trpgo
then obtain ¢2 where Ny N Egg; = {} A total ES2 (Cyg N Nyy) A BSIA 02 V2 Trggs
by auto
with generalized-zipping-lemmaS3[of 02] have ?thesis
by auto
}

moreover {

assume 3 o1 p2T'1 T2. (Vp; C Eggy NAp; € Eggy A Try C Egg;
AVrg C Eggs AN Arg € Egsg A Trg © Eggy
N BSIA 01 V1 Trgg; A BSIA 02 V2 Trpgo
A total ES1 (CVI N NV.?) A total ES2 (CVQ N NVI)
N FCIA 01 T'1 V1 Trgg; N FCIA 02 T2 V2 Trggo
ANVyr N Vys CVpp UV
A Cyp N Nys CTpyp A Cyp N Nyy € Trg
ANy N App N Egge={} A Nygs N Apg N Eggy ={})

then obtain g1 ¢2 I'f I'2 where Vpr; C Egg; A Apy C Eggy A Try C Eggy
A Vrg C Epgg AN Aprg € Egsg A Trg C Epgg
N BSIA 01 V1 Trgg; N BSIA 02 V2 Trggs
A total ES1 (Cyy N Nyg) A total ES2 (Cyg N Nyy)
N FCIA o1 T'1 V1 Trgg; N FCIA 02 T2 V2 Trggo
AN Vyr N Vys CVryUVpy
A Cyy N Nys CTpy A Cyp N Ny; © Trg
ANy N App N Egge ={} A Nyg N Apg N Eggy = {}
by auto

with generalized-zipping-lemma4 [of T'1 T'2 o1 p2] have ?thesis
by auto

}

ultimately show ?thesis unfolding wellBehaved Composition-def
by blast
qed

end
end
5.4.3 Compositionality Results

theory CompositionalityResults
imports GeneralizedZippingLemma CompositionSupport

191

begin

context Compositionality
begin

theorem compositionality-BSD:
[[BSD V1 T’I”ESI; BSD V2 TTESQII = BSD YV TT(ESI ” ES,Q)
proof —
assume BSD-Tri-vi: BSD V1 Trgg;
assume BSD-Tr2-v2: BSD V2 Trpgo
{
fixapfec
assume c-in-Cv: ¢ € Cy)
assume fSca-in-Tr: (8 Q [] @ a) € Tr(gs1 || ES2)
assume «a-contains-no-c: a] Cy =

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV2)

from SBca-in-Tr

have [ca-El-in-Trl: (B Q [c] @ a) 1 Eggy) € Trgsy
and fSca-E2-in-Tr2: (8 Q [c] Q@) | Eggg) € Trgge
by (auto, simp add: composeES-def)+

from composeES-yields-ES validES1 validES2 have ES-valid (ES1 || ES2)
by auto

with Bca-in-Tr have set g C E(ESJ | ES2)
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set (a1 Vy) C Vy
by (simp add: projection-def, auto)
moreover
have (a1 Vy) 1 Vy =(al Vy)
by (simp add: projection-def)
moreover
from CSES1.BSD-in-subsystem|[OF c-in-Cv Bca-El-in-Tr1 BSD-Tr1-v1]
obtain a1’
where a1’-1: (81 Egg;) @ «
and a1’-2: (a1’1 Vyy) = (o]
and 041/] CVI = H
by auto
moreover
from «l’-1 validES1 have al’-in-El: set a1’ C Egg;
by (simp add: ES-valid-def traces-contain-events-def, auto)

1) € Trgsy
Vyi)

192

moreover
from «1’-2 propSepViews have ((a 1 Vy) 1 Eggy) = (al’1 Vy)
proof —
have ((a 1 Vy) 1 Eggy) = al (Vy N Eggy)
by (simp only: projection-def, auto)
with propSep Views have (a1 Vy) 1 Eggy) = (a1 Vyy)
unfolding properSeparationOfViews-def by auto
moreover
from a1’-2 have (a1’1 Vy;) = (al’1 Vy)
proof —
from al’-in-E1 have a1’ | Egg; = al’
by (simp add: list-subset-iff-projection-neutral)
hence (a1’'1 Eggy) 1 Vy =al’l1 Vy
by simp
with Vu-is-Vul-union- Vo2 have (a1'1 Egg;) 1 (Vy; U Vyg) = al’1 Vy
by simp
hence a1’ 1 (Egg; N (Vy; U Vyy)) = al’1 Vy
by (simp only: projection-def, auto)
hence a1’ 1 (EESI N VysUEgg N VVQ) =al’ Vy
by (simp add: Int-Un-distrib)
moreover
from validV1 have Egg; N Vy; = Vyy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have a1’ 1 (Vy; U Egg; N Vyg) = al’1 Vy,
by simp
moreover
have EES] N VVQ - VVI
proof —
from propSep Views Vv-is-Vvl-union-Vv2 have (Vy; U Vyg) N Egg; = Vy;
unfolding properSeparationOfViews-def by simp
hence (Vy; N Eggy U Vyg N Eggy) = Vg
by auto
with validV1 have (Vv] U Vys N EESI) = VVI
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by auto
qed
ultimately show ?thesis
by (simp add: Un-absorb2)
qed
moreover note a1’-2
ultimately show ?Zthesis
by auto
qed
moreover
from CSES2.BSD-in-subsystem[OF c-in-Cv Bca-E2-in-Tr2 BSD-Tr2-v2]
obtain a2’
where a2’-1: (81 Eggs) @ «
and a2’-2: (a2'1 Vyy) = (o]
and 0(2/] CVQ = H

2') € Trgsg
Vyga)

193

by auto
moreover
from a2’-1 validES2 have a2'-in-E2: set a2’ C Epgo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from a2’-2 propSepViews have ((a 1 V) 1 Egge) = (@21 Vy)
proof —
have ((a 1 Vy) 1 Eggg) = a1 (Vy N Eggy)
by (simp only: projection-def, auto)
with propSep Views have (a1 V) 1 Egge) = (a1 Vyg)
unfolding properSeparationOfViews-def by auto
moreover
from a2’-2 have (a2'1 Vyy) = (a2'1 Vy)
proof —
from a2’-in-E2 have a2’ | Eggy = a2’
by (simp add: list-subset-iff-projection-neutral)
hence (a2'1 Egge) 1 Vy =a2'1 Vy
by simp
with Vu-is-Vul-union- Vo2 have (a2'1 Eggg) 1 (Vya U V) =a2’1 Vy,
by (simp add: Un-commute)
hence a2’ 1 (Egga N (Vya U V) =a2’1 Vy
by (simp only: projection-def, auto)
hence a2’ 1 (Egga N Vys U Egge N Vyy) = a2’ Vy,
by (simp add: Int-Un-distrib)
moreover
from validV2 have Epgo N Vygs = Vys
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have a2’ 1 (Vyas U Egga N V) =a2'1 Vy,
by simp
moreover
have Epgo N Vy; C Vi
proof —
from propSep Views Vv-is-Vvl-union-Vv2 have (Vys U Vy;) N Egge = Vyg
unfolding properSeparationOf Views-def by (simp add: Un-commute)
hence (Vys N Eggg U Vy; N Epgg) = Vg
by auto
with validV2 have (Vys U Vy; N Eggg) = Vo
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by auto
qed
ultimately show ?thesis
by (simp add: Un-absorb2)
qed
moreover note a2’-2
ultimately show ?thesis
by auto
qed
moreover note generalized-zipping-lemma
ultimately have Ja’. ((8 @ o) € (Tr(gsi | Bs2)) N (@1 Vy=(al Vy) Aa'l Cy=1])

194

by blast
}
thus %thesis
unfolding BSD-def
by auto
qed

theorem compositionality-BSI:
[BSD V1 Trggs; BSD V2 Trpge; BSI VI Trggy; BSI V2 Trggs |
= BSIV TT(ESI | ES2)
proof —
assume BSDI1: BSD V1 Trgg;
and BSD2: BSD V2 TT‘ESQ
and BSI1: BSI V1 Trggy
and BSI2: BSI V2 Trggo

fix a 8 ¢

assume c-in-Cv: ¢ € Cy,

assume Sa-in-Tr: (8 Q) € Tr(gs1 || ES2)
assume a-no-Cv: a1 Cy) =[]

from Ba-in-Tr

have fa-El-in-Tri: (8 Q o) 1 Eggy) € Trgsg;
and fa-E2-in-Tr2: ((8 Q a) | Egge) € Trgge
by (simp add: composeES-def)+

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSESI1.BSD-in-subsystem2[OF Ba-El1-in-Tr1 BSD1] obtain a1’
where SElal’-in-Trl: 81 Egg; @ al’ € Trgg;
and ol 'Vul-is-aVvl: al'] Vy;=al Vy;
and al’'Cvi-empty: al1’1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Ba-E2-in-Tr2 BSD2)] obtain a2’
where SE2a2-in-Tr2: 81 Egge @ a2’ € Trggg
and a2 Vu2-is-aVv2: a2’ Vyg=al Vyy
and a2'Cv2-empty: a2’ 1 Cyg = ||
by auto

have 3 a1”. (set al”" C Egg; A (B Q [c]) | Eggy) @ al” € Trgg;
Aol Vyp=al Vygnal”l Cyy=1)
proof cases
assume cEIl-empty: [c] 1 Eggy = ||

195

from BEIlal'-in-Tr1 validES1 have set al’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cEl-empty BE1al’-in-Tr1 have ((8 Q [c]) | Eggy) @ a1’ € Trpgy
by (simp only: projection-concatenation-commute, auto)
moreover
note o1’ Vvi-is-a Vol al’Cvl-empty
ultimately show ?thesis
by auto
next
assume cEI-not-empty: [c] 1 Eggy # [|
hence c-in-E1: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E1 propSep Views have c € Cy)y
unfolding properSeparationOfViews-def by auto
moreover
note BE1a1’-in-Trl al’Cvi-empty BSI1
ultimately obtain a1
where BEIcal’-in-Trl: (B1 Epgy) Q [c] @ a1’ € Trgg;
and ol "Vl-is-al'Vul: a1’ 1 Vy;=al’] Vyy
and «l”Cuvl-empty: a1’ 1 Cypy =
unfolding BSI-def
by blast

from validES1 BEIcal'’-in-Tr1 have set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SElcal'-in-Trl c-in-E1 have ((8 Q [c]) | Egg;) @ al’' € Trpg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a1’ Vul-is-al'Vul al'Vul-is-aVvl have a1’ 1 Vi =al Vyy
by auto
moreover
note al ' Cvl-empty
ultimately show ?thesis
by auto
qed
then obtain «1”
where a1'-in-Elstar: set a1’ C Epgy
and BcElal'-in-Tri: (B Q[c]) 1 Eggy) @ a1’ € Trpg;
and ol "Vi-is-aVol: al” 1 Vy;=al Vy;
and al”Cvl-empty: a1’ 1 Cy; =]
by auto

have 3 a2”. (set a2" C Epgo
A((B@c) 1 Eggg) @ a2” € Trpgy
ANa2'"1 Vyg=al Vyy
Aa2"] Oy =)
proof cases
assume cE2-empty: [c] 1 Egge = ||

196

from SE2a2'-in-Tr2 validES2 have set a2’ C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cE2-empty BE2a2’-in-Tr2 have ((8 Q [c]) | Egge) @ a2’ € Trggs
by (simp only: projection-concatenation-commute, auto)
moreover
note a2’ Vv2-is-a Vo2 a2’ Cv2-empty
ultimately show ?thesis
by auto
next
assume cE2-not-empty: [c] 1 Egge # [|
hence c-in-E2: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E2 propSep Views have c € Cy)o
unfolding properSeparationOfViews-def by auto
moreover
note BE2a2’-in-Tr2 a2’'Cv2-empty BSI2
ultimately obtain a2
where SBE2ca2’-in-Tr2: (B 1 Epge) Q [c] @ a2” € Trpgs
and a2 Vu2-is-a2'Vu2: a2’ 1 Vyg = al2’'] Vyg
and a2”Cv2-empty: a2’ 1 Cyg = ||
unfolding BSI-def
by blast

from validES2 BE2ca2'-in-Tr2 have set a2’ C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SE2ca2'-in-Tr2 c-in-E2 have ((8 Q [c]) 1 Egge) @ a2'' € Trggg
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a2’ Vu2-is-a2'Vv2 a2'Vu2-is-aVv2 have a2’ 1 Vyg=al Vi,
by auto
moreover
note a2’ Cv2-empty
ultimately show ?thesis
by auto
qed
then obtain 2"
where a2''-in-E2star: set a2’ C Epgg
and BcE2a2"-in-Tr2: (8 Q [c]) | Epgs) @ a2” € Trpgs
and 2" Vu2-is-aVo2: a2 1 Vyg=al Vyy
and a2 Cv2-empty: a2’ 1 Cyg = ||
by auto

from VIsViewOnE c-in-Cv Ba-in-Tr have set (8 @Q [c]) C E(gs1 || Es2)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def composeES-def, auto)
moreover
have set (a1 Vy) C Vy

197

by (simp add: projection-def, auto)

moreover
note al’’-in-Elstar a2''-in-E2star fcE1al'-in-Trl BcE2a2"-in-Tr2
moreover
have (a1 Vy) 1 Egg; = a1’ Vy
proof —

from a1 Vul-is-a Vvl propSepViews have a | (Vy N Epgy) = a1’ 1 (Egg; N Vy)
unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence « 1 VV 1 EESI = OL]”] EESI W VV
by (simp add: projection-def)
with a1'-in-Elstar show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have (a 1 Vv)] EE52 S OLQ”W VV
proof —
from «2''Vv2-is-aVv2 propSep Views have a | (Vy N Eggg) = a2’ 1 (Egge N Vy)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence «] Vv] EE52 = 052”] EESQ W VV
by (simp add: projection-def)
with a2 '-in-E2star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qged
moreover
note a1’ Cvil-empty a2 Cv2-empty generalized-zipping-lemma
ultimately have 3a’. (3 @Q [¢]) @ o' € Tr(gs1 || Bs2) N a1 Vy=alVyAaalCy=]
by blast
}

thus %thesis
unfolding BSI-def
by auto
qed

theorem compositionality-BSIA:
[BSD V1 Trggy; BSD V2 Trpge; BSIA 01 V1 Trggy; BSIA 02 V2 Trpge;
(e1 V1) S (e V) N Eggy; (e2V2) C (e V) N Eggy |
= BSIA oV (TT(ESI I ESQ))
proof —
assume BSD1: BSD V1 Trggq
and BSD2: BSD V2 Trggs
and BSIAI1: BSIA o1 V1 Trgg;
and BSIA2: BSIA 02 V2 Trggs

and plvi-subset-pv-inter-E1: (91 V1) C (¢ V) N Eggy
and p2v2-subset-pv-inter-E2:(p2 V2) C (0 V) N Eggo
{

fix a 8 ¢

assume c-in-Cv: ¢ € Cy,

assume Sa-in-Tr: (8 Q) € Tr(gs1 || Bs2)
assume a-no-Cv: a1 Cy) =[]

assume Adm: (Adm V o TT(ESJ | ES2) B o)

198

then obtain v
where youv-is-Bov: v 1 (¢ V) =81 (e V)
and yc-in-Tr: (v @Q [c]) € Tr(gs1 || ES2)
unfolding Adm-def
by auto

from Ba-in-Tr

have fa-El-in-Tri: (8 Q o) 1 Eggy) € Trgsg;
and fa-E2-in-Tr2: (8 Q a) | Egge) € Trgge
by (simp add: composeES-def)+

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSES1.BSD-in-subsystem2[OF Ba-E1-in-Tr1 BSD1] obtain a1’
where SElal’-in-Trl: 81 Egg; @ al’ € Trgg;
and ol 'Vvl-issaVvl: al'| Vy;=al Vy;
and al'Cvl-empty: a1’1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Ba-E2-in-Tr2 BSD2] obtain a2’
where BE2a2'-in-Tr2: 81 Egge @ a2’ € Trggg
and a2 Vv2-is-aVv2: a2’ Vyg=a] Vg
and a2'Cv2-empty: a2’'1 Cyg = |]
by auto

have 3 a1”. (set a1’ C Fpg;
AN((B@Qlc]) 1 Eggy) @al” € Trggy
/\a]”] Vyi =a Vyi
Aat”] Cyy =)
proof cases
assume cEIl-empty: [c] 1 Eggy = ||

from BEIal'-in-Trl validES1 have set al’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cEl-empty BE1al’-in-Trl have (8 Q [c]) | Eggy) @ al’ € Trgg;
by (simp only: projection-concatenation-commute, auto)
moreover
note a1 'Vul-is-a Vvl a1’'Cvl-empty
ultimately show ?thesis
by auto
next
assume cEI-not-empty: [c] 1 Eggy # [|
hence c-in-E1: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

199

from c-in-Cv c-in-E1 propSep Views have c € Cy)y
unfolding properSeparationOfViews-def by auto

moreover

note BE1al’-in-Trl o1'Cvl-empty

moreover

have (Adm V1 o1 Trgg; (B 1 Egsy) c)
proof —

from c-in-E1 ~yc-in-Tr have (v 1 Eggy) Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; | (o1 V1) = 81 Eggy | (o1 V1)
proof —
from vov-is-Bov have v | Egg; 1 (¢ V) =B 1 Egg; 1 (e V)
by (metis projection-commute)
with glvI-subset-pv-inter-E1 have v | (o1 V1) = 1 (o1 V1)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus %thesis
by (metis projection-commute)
qed
ultimately show #thesis unfolding Adm-def
by auto
qed
moreover
note BSIA1
ultimately obtain a1 "
where BEIcal’-in-Tr1: (B 1 Epgy) Q [c] @ a1’ € Trpg;
and ol "Vul-is-al'Vul: a1’ 1 Vy;=al’] Vyy
and «l”Cuvl-empty: a1’ Cypy =]
unfolding BSIA-def
by blast

from validES1 BEIcal'’-in-Tr1 have set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SElcal'-in-Trl c-in-E1 have ((8 Q [c]) | Egg;) @ a1’ € Trpg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a1’ Vul-is-al'Vul al’Vul-is-aVvl have a1’ 1 Vi =al Vyy
by auto
moreover
note a1’ Cvl-empty
ultimately show ?thesis
by auto
qed
then obtain a1”
where a1'-in-Elstar: set a1’ C Epgy
and BcElal'-in-Tri: (B Q [c]) 1 Eggy) @ a1’ € Trpg;
and ol "Vi-is-aVol: al” 1 Vy;=al Vy;
and al”Cvl-empty: a1’ 1 Cyy =]
by auto

200

have 3 a2”. (set a2" C Eggo
A((BQ[c]) 1 Eggs) @a2” € Trggy
ANa2" 1 Vyg=al Vyg
ANa2'1 Cyy=1))
proof cases
assume cE2-empty: [c] | Eggs = ||

from BE2a2’-in-Tr2 validES2 have set a2’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cE2-empty BE2a2’-in-Tr2 have ((8 Q [c]) | Egge) @ a2’ € Trggs
by (simp only: projection-concatenation-commute, auto)
moreover
note a2’ Vv2-is-a Vo2 a2’ Cv2-empty
ultimately show ?thesis
by auto
next
assume cE2-not-empty: [c] 1 Egge # [|
hence c-in-E2: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E2 propSep Views have c € Cy)p
unfolding properSeparationOfViews-def by auto

moreover

note BE2a2’-in-Tr2 a2’'Cv2-empty

moreover

have (Adm V2 02 Trgse (81 Egge))
proof —

from c-in-E2 ~yc-in-Tr have (v 1 Egge) @Q [c] € Trgge
by (simp add: projection-def composeES-def)
moreover
have v 1 Egge 1 (02 V2) = 81 Egge 1 (02 V2)
proof —
from yov-is-Bov have v | Egge 1 (¢ V) =B 1 Egga 1 (¢ V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v | (02 V2) = 81 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show #thesis unfolding Adm-def
by auto
qed
moreover
note BSIA2
ultimately obtain a2’
where BE2ca2’-in-Tr2: (B 1 Epge) Q [c] @ a2”" € Trpgs
and a2 Vv2-is-a2'Vu2: a2’ 1 Vyg=a2'l Vyg
and «a2”Cv2-empty: a2’ 1 Cyy = ||
unfolding BSIA-def
by blast

201

from validES2 BE2ca2'-in-Tr2 have set a2’ C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SE2ca2'-in-Tr2 c-in-E2 have ((8 Q [c]) 1 Egge) @ a2'' € Trggy
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a2’ Vu2-is-a2'Vv2 a2'Vu2-is-aVv2 have a2’ 1 Vs =al Vi,
by auto
moreover
note a2’ Cv2-empty
ultimately show %thesis
by auto
qed
then obtain a2’
where a2''-in-E2star: set a2’ C Epgg
and BcE2a2"-in-Tr2: ((8 Q [c]) | Egge) @ a2 € Trggs
and a2 Vu2-is-aVo2: a2” 1 Vyg=al Vg
and a2 Cv2-empty: a2’ 1 Cyg = ||
by auto

from VIsViewOnE c-in-Cv Ba-in-Tr have set (8 @ [c]) C E(ES] | ES2)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def composeES-def, auto)
moreover
have set (a1 Vy) C Vy
by (simp add: projection-def, auto)
moreover
note al’’-in-Elstar a2'’-in-E2star fcEl1al'-in-Trl BcE2a2"-in-Tr2
moreover
have (a1 Vy) 1 Eggy = al1”1Vy
proof —
from o1’ Vwl-is-aVul propSep Views
have o 1 (Vy N Eggy) = a1’ 1 (Egg; N Vy)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence a | Vy 1 Egg; = a1’ 1 Egg; 1 Vy
by (simp add: projection-def)
with a1 '-in-Elstar show ?thesis
by (simp add: list-subset-iff-projection-neutral)
ged
moreover
have (a1 Vy) 1 Epge = 2”1 Vy
proof —
from a2’ Vw2-is-a V2 propSep Views
have o 1 (Vy N Eggg) = a2 1 (Egga N Vy)
unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence a | Vy | Egge = a2’ 1 Egsa 1 Vy
by (simp add: projection-def)
with a2'-in-E2star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover

202

note a1’ Cvl-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately have Ja’. (8 Q [c]) @ o’ € Tr(gsi | ES2) a'lT Vy=alVyAaa'lCy=]
by blast

}

thus ?thesis
unfolding BSIA-def
by auto

qed

theorem compositionality-FCD:
[BSD V1 Trggy; BSD V2 Trpgs;
Vr N Eggs € Vi Vr N Egge © Vg
Tr N Egs; € Trg; Tr N Egse © Trg;
(Ap; N Ny; U Apg N Nyg) C Ap;
Ny; N Apy N Egge ={}; Nyg N Apg N Eggy = {};
— FCDTYV (TT(ESZ ” ESQ))
proof —
assume BSDI1: BSD V1 Trgg;
and BSD2: BSD V2 Trggs
and Nabla-inter-E1-subset-Nablal: Vr N Eggy; C Vg
and Nabla-inter-E2-subset-Nabla2: Vi N Egge € Vo
and Upsilon-inter-E1-subset-Upsilonl: Yp N Egg; € Ty
and Upsilon-inter-E2-subset- Upsilon2: Y N Egge € Yo
and Deltal-N1-Delta2-N2-subset-Delta: (Ay N Ny; U Apgy N Ny) C Ap
and NI-Deltal-E2-disjoint: Nyyy N Apy N Egge = {}
and N2-Delta2-E1-disjoint: Nyyp N Ary N Eggy = {}
and FCD1: FCDT1 V1 Trggy
and FCD2: FCDT'2 V2 Trggs

{

fixa B cov

assume c-in-Cv-inter-Upsilon: ¢ € (Cy N Yp)
and v’-in- Vo-inter-Nabla: v’ € (Vy, N V)
and Bcv'a-in-Tr: (B Q [c,v] @) € Tr(gsi | ES2)
and aCv-empty: a1 Cy = ||

from ABcv’a-in-Tr

have Bcv'a-El-in-Trl: (((8 Q [c,v]) @ a) | Eggy) € Trgsy
and Bev'a-E2-in-Tr2: (((8 Q [¢,v]) @ &) | Eggg) € Trggs
by (simp add: composeES-def)+

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)
interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSESI.BSD-in-subsystem2[OF Bcv'a-El-in-Tr1 BSD1] obtain a1’

203

where Bcv'Elal’-in-Tri: (8 Q [c,v]) | Egg; @ al’ € Trggy
and ol 'Vul-is-aVvl: al'] Vy;=a 1 Vy;

and al'Cvl-empty: a1’ 1 Cyy = |]

by auto

from CSES2.BSD-in-subsystem2[OF Bcv’a-E2-in-Tr2 BSD2] obtain a2’
where Bcv'E2a2’-in-Tr2: (8 Q [c,v]) | Egge @ a2’ € Trggs
and a2 ' Vv2-is-aVu2: a2’ 1 Vyg=al Vg
and a2'Cv2-empty: a2’ 1 Cyg = |]
by auto

from c-in-Cv-inter-Upsilon v'-in- Vv-inter-Nabla valid V1
have ¢ ¢ Egg, V (¢ € Egg; Av' ¢ Eggy) V (c € Eggy A v' € Eggy)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E1: ¢ ¢ Eggy

have set [| C (Ny; N Apy)
by auto
moreover
from Bcv'Elal’-in-Trl c-notin-E1 have (8 1 Egg;) @[] @ ([v] 1 Eggy) @ al’ € Trgg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have al1’1 Vy;=al’1 Vy; ..
moreover
note al’'Cvl-empty
ultimately have 3 a1” 61", set 61" C (Ny; N Apy)
A(B1Egs) @61"Q ([v]1 Eggy) @al” € Tryg;
Aal’ Vyi =al’ Vyi Aol CVI =]
by blast
}
moreover {
assume c-in-E1: ¢ € Eggy
and v'-notin-E1: v’ ¢ Eggy

from c-in-FE1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilon1
have c-in-Cv1-Upsilonl: ¢ € (Cy; N Ypy)
unfolding properSeparationOfViews-def by auto
hence c-in-Cvi: c € Cyy
by auto
moreover
from Bev'Elal’-in-Trl c-in-E1 v'-notin-E1 have (81 Eggy) Q [c] @ al’ € Trgg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
note a1’'Cvi-empty BSD1
ultimately obtain a1’/
where first: (81 Egg;) @ a1’ € Trggy
and second: a1”1 Vy;=al’l Vyy
and third: a1’ 1 Cy; =[]
unfolding BSD-def

204

by blast

have set [| C (Ny; N Arpy)
by auto
moreover
from first v'-notin-E1 have (8 | Egg;) @[] @ ([v] | Eggy) @ a1’ € Trpgy
by (simp add: projection-def)
moreover
note second third
ultimately
have 3 a1 61" set 51" C (Ny; N Arg)
A (B1 Egsy) @1" @ ([v]1 Eggy) @ al” € Trgg,
Aal’ Vyi =al’ Vyi Aal’ CVI =]
by blast
}
moreover {
assume c-in-E1: ¢ € Eggy
and v’-in-E1: v’ € Eggy

from c-in-FE1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilonl
have c-in-Cvi-Upsilonl: ¢ € (Cy; N Ypyg)
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E1 v’-in- Vv-inter-Nabla propSep Views Nabla-inter-E1-subset-Nablal
have v’-in-Vvl-inter-Nablal: v' € (Vy; N Vg)
unfolding properSeparationOfViews-def by auto
moreover
from Bev'Elal’-in-Trl c-in-E1 v'-in-E1 have (8 | Egg;) @Q [c,v’] @ al’ € Trgg;
by (simp add: projection-def)
moreover
note a1 ’'Cvi-empty FCD1
ultimately obtain a1’/ §1"
where first: set 61" C (Ny; N Apyg)
and second: (81 Epgy) @ 461" Q [v] @ a1’ € Trgg;
and third: a1’ 1 Vy; =al’] Vyy
and fourth: a1’ 1 Cyy = |]
unfolding FCD-def
by blast

from second v'-in-E1 have (8 | Eggy) @ 61" @ ([v] Eggy) Q a1’ € Trggy
by (simp add: projection-def)
with first third fourth
have 3 a1 §1". set 51" C (Ny; N Apy)
A(B1 Egsy) @1" @ ([v]1 Eggy) @ al” € Trgg,
Aal’ Vyi =al’ Vyi Aal’ CVI = H
unfolding FCD-def
by blast
}
ultimately obtain a1’ §1"
where §1'"-in-Nvi-Deltal-star: set §1"" C (Nyy N Apyg)
and 8E161'vElal’-in-Tr1: (81 Eggy) @ 61" @ ([v]1 Eggy) @ al” € Trgg;

205

and ol "Vl-is-al'Vul: a1’ 1 Vy; =al’l Vi,
and ol ""Cvl-empty: a1’ 1 Cyy =]
by blast
with validV1 have §1'"-in-El-star: set 61" C Egg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from c-in-Cuv-inter-Upsilon v'-in- Vo-inter-Nabla validV2
have ¢ ¢ Eggy V (c € Eggg AN v' ¢ Eggg) V (c € Eggg A v' € Egg)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E2: ¢ ¢ Eggo

have set [| C (Nyg N Arg)
by auto
moreover
from Bev'E2a2’-in-Tr2 c-notin-E2 have (81 Eggg) @[] @ ([v] 1 Egge) @ a2’ € Trggs
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have a2’'1 Vyg=a2’'1 Vyy ..
moreover
note a2’Cv2-empty
ultimately have 3 2" §2". set 62" C (Nyg N Aryg)
A (B1 Egse) @d2" @ ([v] 1 Epge) @ a2” € Trpgy
A a?”W Vye = a2'1 Vya A 042”] CV2 = H
by blast
}
moreover {
assume c-in-E2: ¢ € Eggy
and v'-notin-E2: v' ¢ Eggs

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views Upsilon-inter-E2-subset-Upsilon2
have c-in-Cv2-Upsilon2: ¢ € (Cyg N Y1g)
unfolding properSeparationOfViews-def by auto
hence c-in-Cv2: c € Cyy
by auto
moreover
from Bev'E2a2'-in-Tr2 c-in-E2 v'-notin-E2 have (8 1 Eggg) Q [c] @ a2’ € Trpgs
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
note a2’'Cv2-empty BSD2
ultimately obtain a2’/
where first: (81 Egge) @ a2’ € Trggs
and second: a2” 1 Vyg= a2’ Vyy
and third: a2’ 1 Cyy = ||
unfolding BSD-def
by blast

have set [] C (Nyg N Arg)

by auto
moreover

206

from first v'-notin-E2 have (81 Egge) Q@[] @ ([v] 1 Egge) @ a2 € Trggs
by (simp add: projection-def)
moreover
note second third
ultimately
have 3 a2 §2". set 62" C (Nyg N Arpg)
A (B1 Egse) @d2" @ ([v] 1 Eggg) @ a2” € Trpgy
A chl/w VVQ = O¢2/1 Vya A a2’ CV2 = H
by blast
}
moreover {
assume c-in-E2: ¢ € Eggy
and v'-in-E2: v’ € Fggy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset- Upsilon2
have c-in-Cv2-Upsilon2: ¢ € (Cyg N YTrg)
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E2 v'-in- Vu-inter-Nabla propSep Views Nabla-inter-E2-subset-Nabla2
have v’-in-Vv2-inter-Nabla2: v’ € (V9 N Vg)
unfolding properSeparationOfViews-def by auto
moreover
from Bev'E2a2'-in-Tr2 c-in-E2 v'-in-E2 have (8 1 Eggs) Q [c,0'] @ a2’ € Trggy
by (simp add: projection-def)
moreover
note a2’'Cv2-empty FCD2
ultimately obtain a2’/ §2"
where first: set §2"' C (Nyg N Apg)
and second: (81 Epge) @ 62" @Q [v] @ a2” € Trggs
and third: a2 1 Vyg=a2'] Vyg
and fourth: a2 1 Cyg = |]
unfolding FCD-def
by blast

from second v'-in-E2 have (8 | Egge) @ 62" @ ([v] 1 Egge) Q@ a2” € Trggg
by (simp add: projection-def)
with first third fourth
have 3 a2 §2". set §2”" C (Nyg N Arpg)
A (B1 Egse) @é2" @ ([v] 1 Eggg) @ a2” € Trpgy
A aQ”W Vye = a2'1 Vya A a2”] CV2 = H
unfolding FCD-def
by blast
}
ultimately obtain a2’ §2"
where §2'"-in-Nv2-Delta2-star: set §2" C (Nyg N Arg)
and BE262 vE2a2"-in-Tr2: (B 1 Eggs) @ 62" Q ([v] 1 Egge) @ a2” € Trpgs
and a2 Vv2-is-a2'Vv2: a2 1 Vyg=a2'l Vys
and 2" Cv2-empty: a2’ 1 Cyy = ||
by blast
with validV2 have §2'-in-E2-star: set §2" C Epgo
by (simp add: isViewOn-def V-valid-def

207

VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from §1"-in-Nvi-Deltal-star N1-Deltal-E2-disjoint
have §1"E2-empty: 61" 1 Egge = ||
proof —
from 61"-in-Nvi-Deltal-star have 61" = 61" 1 (Ny; N Apg)
by (simp only: list-subset-iff-projection-neutral)
hence (51”1 EESQ = (5]”} (NVI n AF]) 1 EESQ
by simp
moreover
have 61”1 (Ny; N Arg) 1 Egge =61"1 (Ny; N Apy N Eggp)
by (simp only: projection-def, auto)
with Ni-Deltal-E2-disjoint have 61" 1 (Ny; N Apg) 1 Eggs = |]
by (simp add: projection-def)
ultimately show ?thesis
by simp
qged
moreover
from 62"-in-Nv2-Delta2-star N2-Delta2-E1-disjoint have 62" El-empty: 62" 1 Egg; = ||
proof —
from 62"'-in-Nv2-Delta2-star have 62" = 62" 1 (Nyg N Apg)
by (simp only: list-subset-iff-projection-neutral)
hence 62//] Epgs = (52”1 (Nvg n AF,?) 1 Ergy
by simp
moreover
have 62" 1 (Nyg 0 Apg) 1 Eggy = 02" 1 (Nyg N Apg N Eggy)
by (simp only: projection-def, auto)
with N2-Delta2-E1-disjoint have 62" 1 (Nyg N Apg) 1 Eggy = |]
by (simp add: projection-def)
ultimately show ?thesis
by simp
qed
moreover
note BE151"vElal’-in-Tr1 BE262""vE2a2"-in-Tr2 §1"-in-E1-star 62"'-in-E2-star
ultimately have 361"62"v'Elal’-in-Tr1: (3 @ 51" @ §2" Q [v]) | Egg; @ a1’ € Trgg;
and 361"62"v'E2a2"-in-Tr2: (B Q@ 61" @ 62" Q [v]) 1 Eggs @ a2” € Trggs
by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto,
simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto)

have set (3 @ d1"" @ ¢2"" Q [v]) C E(gs1 || ES2)
proof —
from [cv’a-in-Tr have set 3 C E(gs1 || ES2)
by (simp add: composeES-def)
moreover
note §1'"-in-El-star 62"'-in-E2-star
moreover
from v’-in- Vv-inter-Nabla VIsViewOnE
have v’ € E(ES] | ES2)
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by (simp add: composeES-def, auto)

208

qed
moreover
have set (a1 Vy) C Vy
by (simp add: projection-def, auto)
moreover
from BE161"vElal""~in-Tr1 validES1 have al'-in-El-star: set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from BE262""vE2a2" ~in-Tr2 validES2 have a2''-in-E2-star: set a2 C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note 361'52"v'E1al-in-Tr1 B61"62'"v'E20:2"-in-Tr2
moreover
have (a1 Vy) 1 Egg; = a1’ Vy
proof —
from o1’ Vul-is-a1'Vul a1'Vui-is-a Vol propSep Views
have o 1 (Vy N Eggy) = al’ 1 (Egg; N Vy)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence a1 V1 Egg; = a1’ 1 Egg; 1 Vy
by (simp add: projection-def)
with a1 '-in-E1-star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qged
moreover
have (o | Vy) | Egge = 2”1 Vy
proof —
from o2’ Vu2-is-a2'Vv2 a2'Vu2-is-a Vo2 propSep Views
have a] (VV N EES?) = a2’ (EE5'2 N Vv)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence a1 Vy | Egge = a2’ 1 Egsa 1 Vy
by (simp add: projection-def)
with o2'-in-E2-star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
note al ' Cvl-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately obtain ¢
where first: (3@ §1”7 @ 62" Q@ v]) Qte Tr(gsi | ES2)
and second: t |1 Vy =a 1 Vy
and third: t 1 Cy = ||
by blast

from 61 ''-in-Nv1-Deltal-star 62''-in-Nv2-Delta2-star
have set (61" @ §2'") C (Ny, N Ap)
proof —
have set (61" @ §2') C Ap
proof —
from 61 "-in-Nvli-Deltal-star 62" -in-Nv2-Delta2-star
have set ((51” Q (52”) C AF] n NVI U AFQ N NV2
by auto
with Deltal-N1-Delta2-N2-subset-Delta show ?thesis
by auto

209

qed
moreover
have set (61" @ §2'") C Ny,
proof —
from §1'-in-Nvl1-Deltal-star 62" "-in-Nv2-Delta2-star
have set (61" @ §2'") C (Ny; U Nyy)
by auto
with Nvi-union-Nv2-subsetof-Nv show ?thesis
by auto
qed
ultimately show %thesis
by auto
qed
moreover
from first have 8 @ (61”7 @ é2") @ [v] @ t € Tr(gs; | ES2)
by auto
moreover
note second third
ultimately have 3a’. 37" (set v') C (N N Ar)
A((B@y"@[v]@a’) € Trgg; || Es2)
A1 Vy)=(a] Vy)
ANa'l Cy=1)
by blast
}
thus ?thesis
unfolding FCD-def
by auto
qed

theorem compositionality-FCI:
[BSD V1 Trgg;; BSD V2 Trgge; BSIA o1 V1 Trggy; BSIA 02 V2 Trggs;
total ES1 (CVI N TF]); total ES2 (CV2 N Tpg);
Vr N Egs; € Vry Vr 0 Egge © Vrg;
Tr N Egs; S Yrp Tr N Epgg © Trg;
(Ap; N Ny; UApg N Nyg) € Ap;
(Ny; N Apy N Eggg = {} A Ny N App N Eggy € Try)
V(Nys N Apg N Eggy = {} A Nyy N Apg 0 Eggy © Trg)
FCIT1 VI Trggy; FCIT2 V2 Trggs |
= FCITYVY (TT(ESZ I ESQ))
proof —
assume BSD1: BSD V1 Trggq
and BSD2: BSD V2 Trggs
and BSIA1: BSIA o1 V1 Trgg
and BSIA2: BSIA 02 V2 Trggs
and total-ES1-Cl1-inter-Upsilonl: total ES1 (Cyy N Try)
and total-ES2-C2-inter-Upsilon2: total ES2 (Cya N Tro)
and Nabla-inter-E1-subset-Nablal: Vi N Eggy € Vg
and Nabla-inter-E2-subset-Nabla2: Vi N Egge € Vo
and Upsilon-inter-E1-subset-Upsilonl: Ypr N Eggy € YTy
and Upsilon-inter-E2-subset-Upsilon2: Y N Egge € Yo
and Deltal-N1-Delta2-N2-subset-Delta: (Apy; N Ny; U Aps N Ny) C Ap

210

and wvery-long-asm: (Nyy; N Apy; N Egge = {} A Nyg N Ape N Eggy € Tryg)
V(Ny2 N Apg N Eggy ={} A Ny N Apy N Eggg € Try)

and FCIi: FCIT1 V1 Trgg;

and FCI2: FCI T2 V2 Trggs

{
fixa B cov
assume c-in-Cv-inter-Upsilon: ¢ € (Cy N Yr)
and v’-in-Vu-inter-Nabla: v’ € (Vy, N V)
and Bv'a-in-Tr: (3 @ [v] @ a) € Tr(gsi | ES2)
and aCv-empty: o 1 Cy =[]

from Bv'a-in-Tr

have Bv'a-El-in-Tri: (((8 Q [v']) @ a) | Eggy) € Trgps;
and Bv'a-E2-in-Tr2: (8 Q [v']) @ @) 1 Egge) € Trgss
by (simp add: composeES-def)+

interpret CSESI1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSES1.BSD-in-subsystem2[OF Bv'a-E1-in-Tr1 BSD1] obtain a1’
where Bv'Elal’-in-Tri: (8 Q [v]) 1 Egg; @ al’ € Trgg;
and ol 'Vul-is-aVvl: al'] Vy;=a 1 Vy;
and al'Cvl-empty: al1’1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Bv'a-E2-in-Tr2 BSD2] obtain a2’
where Sv'E2a2’-in-Tr2: (8 Q [v]) | Eggs Q@ a2’ € Trpgs
and a2 Vu2-is-aVv2: a2’ Vyg=a 1 Vs
and a2'Cv2-empty: a2’ 1 Cyg = |]
by auto

note very-long-asm
moreover {
assume Nvi-inter-Deltal-inter-E2-empty: Nyy; N Apy N Eggs = {}
and Nv2-inter-Delta2-inter-E1-subsetof-Upsiloni: Nyg N Arg N Epgy € Yy

let PALPHA2"-DELTA2" =3 a2 62" (
set a2' C Epgg A set 62" C Nyp N Apy
AB1 Egg @[c | Eggp @362"” Q [v)]] Eggg @ a2” € Trpgy
A chl/w VV? = O¢2/1 VV.? AN 052”1 CV2 = H)

from c-in-Cuv-inter-Upsilon v'-in- Vo-inter-Nabla wvalid V2
have ¢ ¢ Eggy V (c € Eggg AN v' ¢ Eggg) V (c € Eggg A v’ € Epgp)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {

211

assume c-notin-E2: ¢ ¢ Epgo

from validES2 Bv'E2a2’-in-Tr2 have set a2’ C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyg N Apg
by auto
moreover
from Bv'E2a2’-in-Tr2 c-notin-E2
have 31 Eggy @ [c] | Egge @[] @ [v]] Epge @ a2 € Trggy
by (simp add: projection-def)
moreover
have a2’'1 Vyp=a2'1 Vg ..
moreover
note a2’ Cv2-empty
ultimately have ?ALPHA2"-DELTA2"
by blast
}
moreover {
assume c-in-E2: ¢ € Eggo
and v'-notin-E2: v' ¢ Epgy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset-Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Tpyo
unfolding properSeparationOfViews-def by auto
hence c € Cyy
by auto
moreover
from Sv'E2a2’-in-Tr2 v'-notin-E2 have 3 1 Eggs Q@ a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’ Cv2-empty
moreover
have (Adm V2 02 Trgss (81 Egge) ¢)
proof —
from validES2 Bv'E2a2'-in-Tr2 v'-notin-E2 have 81 Eggs € Trpgs
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def projection-concatenation-commute)
with total-ES2-C2-inter-Upsilon2 c-in-Cv2-inter- Upsilon2
have 51 Eggg Q [c] € Trggs
by (simp add: total-def)
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where one: 81 Egge @Q [¢] @ a2 € Trpgs
and two: a2’ Vyg=a2'l Vi,
and three: a2 1 Cyg = ||

212

unfolding BSIA-def
by blast

from one validES2 have set a2 C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyp N Arg
by auto
moreover
from one c-in-E2 v'-notin-E2
have 81 Eggo @ [c] | Egge @[] Q [v] 1 Egge @ a2’ € Trpgo
by (simp add: projection-def)
moreover
note two three
ultimately have ?PALPHA2"-DELTA2"
by blast
}

moreover {
assume c-in-E2: ¢ € Eggo
and v’-in-E2: v’ € Efgy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset-Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Ty
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E2 propSep Views v'-in- Vv-inter-Nabla Nabla-inter-E2-subset-Nabla2
have v’ € V5 N Nabla T2
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E2 Bv'E202'-in-Tr2 have 8|1 Epgy Q [v] Q a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’ Cv2-empty FCI2
ultimately obtain a2’ §2"
where one: set 62" C Ny N Apy
and two: 81 Egge @ [c] @ 62" @ [v] @ a2” € Trggg
and three: 2”1 Vyg = a2’ Vi,
and four: a2’ 1 Cyg =[]
unfolding FCI-def
by blast

from two validES2 have set a2'' C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

note one

moreover

from two c-in-E2 v'-in-E2

have 81 Fgge @Q [c] | Egge @ 62" @Q [v'] | Egge @ a2 € Trggs
by (simp add: projection-def)

moreover

note three four

213

ultimately have ?PALPHA2"-DELTA2"
by blast
}
ultimately obtain a2’/ §2"
where a2'-in-E2star: set a2' C Eggg
and §2""-in-N2-inter-DeltaZ2star:set 62" C Ny N Apg
and BE2-cE2-62"-v'E2-a2"-in-Tr2:

B1 Egse@[c]] Eggy @062" @ [v]] Eggy @ a2” € Trggy
and a2 Vv2-is-a2'Vu2: a2 1 Vyg=a2’'] Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset- Upsilon1
propSep Views
have cEI1-in-Cvl-inter-Upsilonl: set ([c] 1 Eggy) € Cyy N Ty
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from §2''-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl
propSep Views disjoint-Nv2-Vul
have §2''E1-in-Cvl-inter-Upsilonlstar: set (62" 1 Egg;) € Cy; N Ty
proof —
from 62"'-in-N2-inter-Delta2star
have eq: 62" 1 Epgy = 52" 1 (Nys N Arg N Eggy)
by (metis Int-commute Int-left-commute Int-lowerl Int-lower2
projection-intersection-neutral subset-trans)

from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl propSep Views
disjoint-Nv2-Vul

have NV? N AFQ n EES] - CVZ n TFI
unfolding properSeparationOfViews-def
by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

thus %thesis

by (subst eq, simp only: projection-def, auto)
qed

have ¢§2" E1-in-Cvl-inter-Upsilonistar: set ((c # 62') 1 Egg;) C Cyy; N Ty
proof —
from cE1-in-Cvl-inter-Upsilonl §2''E1-in-Cvl-inter- Upsilonlstar
have set (([C} @ (52”) 1 EESI) - CVI N Yy
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by auto
qed

have 3 a1 §1". set a1 C Epg;
A set 51" C Ny N Ap; U CV] NYr;N Nyos N Arg A B Erg; Q@ [c] 1 Egpg; @éd1"”a
[v]1 Egg @ a1’ € Trgg,
/\all/w VV]:a1'1 sz/\a]”] CVIZH
Ad61" EES,Q:(SQH] Eggy
proof cases

214

assume v'-in-E1: v' € Eggy
with Nabla-inter-E1-subset-Nablal propSep Views v’-in- Vu-inter-Nabla
have v’-in-Vvl-inter-Nablal: v’ € Vy,; N Nabla I'1

unfolding properSeparationOfViews-def by auto

have [(8 @ [v]) 1 Egg; @ a1’ € Trgg; ;

al’] Cyy = [l; set ((c # 62") 1 Eggy) € Cyy N Try;

ce CyNTp;setd2” C Nysn Apg]

= 3 al” 61" (set a1’ C Epgy A set 61" C Ny N Ap;
U Cyy N Tpy N Nyg N Apg

ANB1Egs; Q1 Epg; @61"Q[v]] Eggy @ al” € Trgg,

/\Oz]”1 VVI :al'] VVI /\01”1 CVI = H

A61"1 (CVI NYTpy) = 621 EES])

proof (induct length ((c # 62'") | Egg;) arbitrary: 8 al’ ¢ §2")
case (

from 0(2) validESI have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H C Ny; N Apy; U Cy;NYrN Nyg N Aryg
by auto
moreover
have 1 EESI Q@ [C] 1 EESI @ H @ [’U/] 1 EESZ @al'e TTESZ
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show ?2thesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a1’'1 Vy;=al’l Vy; ..
moreover
note 0(3)
moreover
from 0(1) have [1 (Cy; N YTpy) =62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E1: ¢’ € Epg;
and c62"-is-puc’v: c # 62" =pQlc) Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-uvE1: n = length (1 Q@ v) 1 Eggy)
by blast

from Suc(5) c¢’-in-E1 ¢§2""-is-uc'v
have set (n 1 Eggy @ [c]) € Cy; N Ty

215

by (simp only: ¢62'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cvl-inter-Upsilonl: ¢' € Cyy; N YTy
by auto
hence c¢’-in-Cvl: ¢’ € Cy; and c’-in-Upsilonl: ¢’ € Ty
by auto
with validV1 have c’-in-El: ¢’ € Egg;
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)

case Nil

with ¢62"-is-uc’v have c-is-c”: ¢ = ¢’ and 62"-is-v: §2" = v
by auto

with ¢’-in-Cvl-inter-Upsilonl have ¢ € Cy; N Yy
by simp

moreover

note v'-in- Vvi-inter-Nablal

moreover

from v'-in-E1 Suc(3) have (81 Eggy) @ [v] Q@ a1’ € Trpg;
by (simp add: projection-concatenation-commute projection-def)

moreover

note Suc(4) FCI1

ultimately obtain a1’ v
where one: set v C Ny; N Apy
and two: 81 Egg; @ [c] @y @ [v] @ al” € Trgg;
and three: 1”1 Vi =al'] Vy;
and four: a1’ 1 Cy; =]
unfolding FCI-def
by blast

let DELTA1" =v 1 Egg; Qv

from {wo validES1 have set a1’ C Fpg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from one vE1-empty
have set ?DELTA1" C NVI n AFI U CVI N TFI n NV2 N AFQ
by auto
moreover
have 31 Egg; @ [c] | Egg; @ PDELTA1" @ [v]]] Egg; @ al” € Trggy
proof —
from c-is-¢’ ¢’-in-E1 have [c] = [] | Eggy
by (simp add: projection-def)
moreover
from v'-in-E1 have [v'] = [v'] | Egg;
by (simp add: projection-def)
moreover
note vEI1-empty two
ultimately show ?thesis

216

by auto
ged
moreover
note three four
moreover
have ?DELTA1" 1 (Cy; N Ypy) =621 Eggy
proof —
have v 1 (Cy; N Try) =]
proof —
from wvalidV1 have Ny; N Ap; N (Cyy N Yy ={}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cy; N Y]
show ?thesis
by (simp add: projection-def)
qed
with 62"-is-v vE1-empty show ?thesis
by (simp add: projection-concatenation-commute)

qed
ultimately show ?thesis
by blast
next
case (Cons zs)
with ¢§2"-is-puc’v have p-is-c-zs: p = [c] @ xs
and §2"-is-zs-c’-v: 62" = zs @Q [c] Qv
by auto
with n-is-length-uv E1 have n = length ((c¢ # (zs Q v)) 1 Eggy)
by auto
moreover
note Suc(3,4)
moreover
have set ((c¢ # (zs Qv)) 1 Eggy) € Cy; N Ty
proof —
have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) ¢62"-is-pc'v p-is-c-xs vE1-empty
show ?thesis
by (subst res, simp only: c¢62"'-is-uc’v projection-concatenation-commute
set-append, auto)
qged
moreover
note Suc(6)
moreover
from Suc(7) §2"-is-zs-¢’-v have set (zs @ v) C Nyp N Apg
by auto
moreover note Suc(1)[of czs Qv B al’]
ultimately obtain ¢ ~
where one: set § C Epgy
and two: set v C Ny N Ap; U Cpy N Yy N Nys N Arpg
and three: B1 Epg; @ [c] 1 Egg; @~y @Q [v] 1 Egg; @6 € Trggy
and four: 6 | Vy; =al'l Vi,

217

and five: § 1 Cypy = ||
and siz: v | (Cy; N Ypy) = (ws Qv) | Eggy
by blast

let YBETA :/BW EESZ @ [C] 1 EESZ @’7

note c’-in-Cvl-inter-Upsilonl v'-in-Vvl-inter-Nablal
moreover
from three v'-in-E1 have ?BETA Q [v'| @ § € Trggy
by (simp add: projection-def)
moreover
note five FCI1
ultimately obtain a1’ §’
where fci-one: set ' C Ny; N Apy
and fci-two: BETA Q [¢'] @ §' Q@ [v] @ al'”' € Trggy
and fci-three: a1’ 1 Vyy; =61 Vy;y
and fci-four: a1’ Cyy =]
unfolding FCI-def
by blast

let ?DELTAI" =~ @ [¢] @ §’

from fci-two validES1 have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" C Ny NAp; U Cy; N Ty N Nys N Apg
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v
have ¢’ € CVI NYr;N Nys N Arg
by auto
with two fci-one show ?thesis
by auto
qed
moreover
from fci-two v'-in-E1
have 81 Egg; @ [¢] | Egg; @ ?DELTA1" @ [v]1 Egg; @ a1” € Trpg;
by (simp add: projection-def)
moreover
from fci-three four have a1’ 1 Vy; = al’] Vyy
by simp
moreover
note fci-four
moreover
have ?DELTA1" 1 (CVI N TF]) =462""1 Erpgq
proof —
have 6’1 (Cy; N Ypy) =]
proof —
from fci-one have V e € set §'. e € Nyy; N Apy
by auto
with validV1 have V e € set §'. e ¢ Cy; N Yy
by (simp add: isViewOn-def V-valid-def

218

VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by (simp add: projection-def)
qed
with c¢’-in-E1 c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qged
ultimately show ?thesis
by blast
qged

qed
from this|OF Bv'Elal’-in-Tri al'Cvi-empty c§2" El-in-Cvl-inter-Upsilonlstar

c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star)
obtain a1’ §1"

where one: set a1’ C Egg;

and two: set §1'' C Ny N Ap; U Cy;NTr; N NysN AF?

and three: ﬂ 1 EESI Q [C} W EE'S] @éd1" @ [v’] 1 EESI Qa1 € T’I"ES]

Aal’” Vyi =al’ Vyi Aal’ CVI = H

and four: §1 "1 (CVI n TFZ) =621 Ergy

by blast

note one two three
moreover
have 61" 1 Eggo = 62" 1 Egg;
proof —
from projection-intersection-neutral|OF two, of E ggo)
Nvl-inter-Deltal-inter-E2-empty valid V2
have 61" 1 Epgs = 611 (CVI NYTpr; N NygNn A[‘Q N EESQ)
by (simp only: Int-Un-distrib2, auto)
moreover
from validV2
have CV] NYpyN Nys N Apg N Epgs = CV] NYpr;N Nyo N Arg
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have 61" 1 Epgy = 61" 1 (Cy; N Ty N Nyg N Apy)
by simp
hence 61" 1 Epgs = 511 (CVI N TF]) 1 (NVQ n Ar‘g)
by (simp add: projection-def)
with four have §1" 1 Eggo = 621 Eggy 1 (NV2 n AFQ)
by simp
hence 61" 1 Epgy = 52" 1 (NVQ N AFQ) 1 Epgy
by (simp only: projection-commute)
with §2'/-in-N2-inter-Delta2star show ?thesis
by (simp only: list-subset-iff-projection-neutral)
qged
ultimately show ?Zthesis
by blast
next
assume v'-notin-E1: v' ¢ Epgy

have [(8 Q [v]) | Eggy @ a1’ € Trgg; ;

219

a1’ Cyy = s set ((c # 62") 1 Eggy) € Cyy N Yryg s
c€ CyNTYp;setd2” C Nysn Arpg]
= 3 a1 61" (set al” C Eggy A set 61" C Ny,
NAp; U Cy; N Yy N Nyg N Apg ANB1Egs; @[] 1 Egg; @017 Q@ [v]1 Eggy
@al” e Trgsy
/\a]”] VVI :C(]/1 VVI /\DZINW CVI = H
N61"1 Eggg =062"1 Eggy)
proof (induct length ((c # 62'") | Egg;) arbitrary: 8 al’ ¢ 62"
case 0

from 0(2) validESI have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H CNy;NAp;UCy; N YN Nyg N Aryg
by auto
moreover
have [1 EESI Q [C] 1 EESI Q@ H @ [’U/] 1 EESZ Qal’'e TTES]
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show ?Zthesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a1’'1 Vy;=al’l Vy; ..
moreover
note 0(3)
moreover
from 0(1) have [| | Egge = 62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E1: ¢’ € Epg;
and c62"-is-pc’v: c # 62" = pQlc) Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-uvE1: n = length (1 Q@ v) 1 Eggy)
by blast

from Suc(5) c¢’-in-E1 ¢§2""-is-puc'v
have set (11 Eggy @ [¢]) € Cyy N Yy
by (simp only: ¢62'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢'-in-Cvl-inter-Upsilonl: ¢' € Cyy; N Ty
by auto
hence c¢’-in-Cvi: ¢’ € Cyy; and c¢'-in-Upsiloni: ¢’ € Ty
by auto

220

with validV1 have ¢’-in-E1: ¢’ € Epg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢§2"'-is-pc’v have c-is-c’: ¢ = ¢
and §2"-is-v: 62" = v
by auto
with ¢’-in-Cvl-inter-Upsilonl have ¢ € Cy;
by simp
moreover
from v’-notin-E1 Suc(3) have (8 1 Egg;) Q@ a1’ € Trggy
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V1 o1 Trgg; (61 Eggy) ¢
proof —
have 81 Egg; @ [c] € Trpg;
proof —
from c-is-c’ c¢’-in-Cvl-inter- Upsilonl
have c € Cy; N Ty
by simp
moreover
from validES1 Suc(3)
have (51 Eggy) € Trgs;
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute
prefixclosed-def prefiz-def, auto)
moreover
note total-ES1-C1-inter-Upsilonl
ultimately show ?thesis
unfolding total-def
by blast
qed
thus %thesis
unfolding Adm-def
by blast
qged
moreover
note BSIA1
ultimately obtain a1 "
where one: (81 Eggy) @ [c] @ al” € Trgg,
and two: a1’ 1 Vy; =al’1 Vyy
and three: a1’ 1 Cyy =[]
unfolding BSIA-def
by blast

I

let ?DELTA1" = v | Epgy

221

from one validES1 have set a1” C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from vE1-empty

have set ?DELTA1" C NVI N Ap; U CVI NYpr;N NV? N AFQ
by simp

moreover

from c-is-c’ ¢’-in-E1 one v'-notin-E1 vEI-empty

have (ﬂ 1 EESI) Q [C] W EES] @ ?DELTA1" @ [v’] 1 EESZ @ a1” € TTESI
by (simp add: projection-def)

moreover

note two three

moreover

from vEI-empty 62'-is-v have ?DELTA1" | Egge = 62" 1 Egg;
by (simp add: projection-def)

ultimately show ?thesis
by blast

next

case (Cons zs)

with ¢62"-is-pc'v

have p-is-c-zs: p = [c] @ zs and §2"-is-xs-c’-v: 62" = zs Q [¢'] Q v
by auto

with n-is-length-uv E1 have n = length ((c¢ # (zs Q v)) 1 Eggy)
by auto

moreover

note Suc(3,4)

moreover

have set ((c # (zs Qv)) 1 Eggy) € Cy; N Yy
proof —

have res: ¢ # (zs Q v) = [¢] @ (zs @ v)
by auto

from Suc(5) c¢62"-is-puc'v p-is-c-xs vE1-empty
show ?thesis
by (subst res, simp only: c¢62"'-is-uc'v projection-concatenation-commute
set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) §2"-is-zs-c’-v have set (zs @ v) C Nyy N Apg
by auto
moreover note Suc(1)[of czs Qv B al’]
ultimately obtain § v
where one: set 6 C Eggy
and two: set v C Ny; N Apg U OVJ N Ypr; N Nyg N Arg
and three: B1 Egg; @ [c] 1 Egg; @~ Q [v] | Egg; @6 € Trggg
and four: 6 | Vy; =al'l Vyy
and five: § 1 Cy; = |]
and siz: v 1 Egge = (zs Qv) | Eggy
by blast

222

let YBETA = 31 Egg; Q [C] | Egg; @«

from c¢'-in-Cvl-inter-Upsilonl have ¢’ € Cy)
by auto
moreover
from three v'-notin-E1 have ?BETA Q § € Trggy
by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 o1 Trpg; ¢BETA ¢’
proof —
have ?BETA Q [c¢'] € Trgg;
proof —
from validES1 three
have ?BETA € Trggy
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute
prefizclosed-def prefiz-def, auto)
moreover
note c’-in-Cvl-inter-Upsilonl total-ES1-Cl1-inter-Upsilonl
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note BSIA1
ultimately obtain a1’
where bsia-one: ?BETA Q [¢] @ a1l € Trggy
and bsia-two: a1’ 1 Vy; =61 Vyy
and bsia-three: a1’ Cyy = |]
unfolding BSIA-def
by blast

let ?DELTA1" = v @ [¢]

from bsia-one validES1 have set a1’ C Epgy
by (simp add:isViewOn-def ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" C Ny NAr; U Cps N YTy N Nys N Apg
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v
have ¢’ € CV] N TF] N NV2 n AFQ
by auto
with two show ?thesis
by auto
qged

223

moreover
from bsia-one v'-notin-E1
have [1 Ergy Q [C] 1 Ergy @ ?DELTA1" @ [1}/} 1 Eggq Qa1 e Trpsy
by (simp add: projection-def)
moreover
from bsia-two four have a1’ 1 Vy; = al’1 Vyy
by simp
moreover
note bsia-three
moreover
have ?DELTA1 " 1 EESQ = (52” 1 EESI
proof —
from validV2 Suc(7) §2"'-is-zs-c'-v
have ¢’ € Eggy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E1 c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qged
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'Elal’-in-Tri al’'Cvl-empty c§2'" El-in-Cvl-inter-Upsilonlstar
c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star)
show %thesis
by blast
qged
then obtain a1’ 61"
where a1 ”-in-Elstar: set al” C Eggy
and &1 '""-in-N1-inter-Deltalstar:set 61" C Nyy N Ap; U Cpy N Yp; N Nyg N Apg
and SEI1-cE1-61"-v'El-a1"-in-Tr1:
B1Eps; @[c] 1 Egg; @617 Q [v] | Epgy @ a1’ € Trigg,
and al”Vl-is-al ' Vol: al” 1 Vi =al’] Vy;
and a1’ Cvl-empty: a1’ 1 Cypy =]
and 61'E2-is-62"'E1: 61" | Egge = 62”1 Eggy
by blast

from BE1-cE1-61"-v'El-a1"-in-Tr1 BE2-cE2-02"-v'E2-a2" -in-Tr2
validES1 valid ES2

have §1'"-in-Elstar: set 61" C Epg; and §2'"-in-E2star: set 62" C E gy
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with §1"'E2-is-62" E1 merge-propertylof 61" Epg; 62" Epgs) obtain §'
where §'F1-is-61': 6" 1 Egg; = 61"
and §'E2-is-62": 6' | Eggg = 62"
and 6&'-contains-only-61""-62"-events: set §' C set 51" U set 62"
unfolding Let-def
by auto

let ?TAU =3 Q [c] @ 4§’ Q [v]
let ?LAMBDA = o | Vi,

224

let 271 = a1’
let 272 = a2

have ?TAU € TT(ESI | ES2)
proof —
from BE1-cE1-61"-v'El-a1"-in-Tr1 6'El-is-01"" validES1
have 31 Egg; Q [c] | Egg; @ 6" 1 Egg; @ [v] 1 Eggy € Trps;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (6 @ [C] @é' @ [U/]) 1 EES] S TTES]
by (simp add: projection-def, auto)
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62" validES2
have 81 Epge Q [c] 1 Eggs @Q46' 1 Egge @ [v] 1 Egge € Trpss
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (8 @ [c] @ ¢' @ [v]) | Eggs € Trgge
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter- Upsilon VIsViewOnE
&'-contains-only-61""-62""-events §1"'-in-Elstar §2"'-in-E2star
have set (3 Q [c] @ 6’ @ [v]) C Egg; U Eggs
unfolding composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?thesis
unfolding composeES-def
by auto
qed
hence set ?TAU C E(ESI | ES2)
unfolding composeES-def
by auto
moreover
have set 2LAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note al’’-in-Elstar a2''-in-E2star
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 §'E1-is-61"
have ¢TAU | Ergy @ ?T1 € Trggy
by (simp only: projection-concatenation-commute, auto)
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62"
have ?TAU | Egge @ ?T2 € Trpgs
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA 1 Egg; = ?T1 1 Vy
proof —
from propSep Views have ?LAMBDA |1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover

225

from a1 '’-in-Elstar propSep Views
have ?T1 W VV = ?T1] VV]
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’Vwi-is-a Vol al’' Vul-is-al'Vul
ultimately show ?thesis
by simp
qed
moreover
have ?LAMBDA | Epgy = ?T2 1 Vy
proof —
from propSep Views
have PLAMBDA |1 Epgeo = a1 Vs
unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
from o 2'’-in-E2star propSep Views
have ?T2 1 Vy = 2T2 1 Vs
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vo2 a2’ Vu2-is-a2' Vvl
ultimately show ?thesis
by simp
qed
moreover
note a1’ Cvl-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU @ ¢ € TT‘(ESI | ES2)
and t1 Vy = 2LAMBDA
and ¢t 1 Cy = |]
by blast
moreover
have set §' C Ny, N Ap
proof —
from &'-contains-only-61""-62"-events
61"-in-N1-inter-Deltalstar 62" -in-N2-inter-Delta2star
have set §' C Ny;NAp; UNyg N Apg
by auto
with Delta1-N1-Delta2- N2-subset-Delta Nvi-union-Nv2-subsetof-Nv
show %thesis
by auto
qged
ultimately
have 3o’ ' (set v C Ny NApAB Q[@y @ [v]@a’e Tr(gs; | ES2)
ANa'TVy=alVyAa'lCy=])
by (simp only: append-assoc, blast)
}
moreover {
assume Nv2-inter-Delta2-inter-El-empty: Nyo N Arg N Eggr = {}
and Nvl-inter-Deltal-inter-E2-subsetof-Upsilon2: Ny; N Apy N Egge € Tro

226

let PALPHA1"-DELTA1" =3 a1” 61" (
set al' C Epgy A set 61" C Nyy N Apy
AB1Egg; @[Egg; @d1" @[] 1 Egg; @al” € Trgg,
Aal’” Vyi =al’ Vyi Aol CVZ =1

from c-in-Cv-inter-Upsilon v'-in- Vv-inter-Nabla validV1
have ¢ ¢ Egg, V (c € Egg; ANv' ¢ Eggy) V (c € Eggy A v’ € Eggg)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E1: ¢ ¢ Eggy

from validES1 Bv'Elal’-in-Tr1 have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Ny; N Ay
by auto
moreover
from Bv'Elal’-in-Trl c-notin-E1
have 81 Egg; @ [c] 1 Fgpg; @ @ [U/] 1 Eggy @ al' € Trpsy
by (simp add: projection-def)
moreover
have a1’1 Vy;=al’| Vy; ..
moreover
note a1'Cvl-empty
ultimately have ?ALPHA1"-DELTA1"
by blast
}
moreover {
assume c-in-E1: ¢ € Egg;
and v'-notin-E1: v' ¢ Egg,

from c-in-E1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilonl1
have c-in-Cvl-inter-Upsilonl: ¢ € Cy; N Ty
unfolding properSeparationOfViews-def by auto
hence c € Cy);
by auto
moreover
from Sv'Elal’-in-Tr1 v'-notin-E1 have 81 Egg; @ a1’ € Trpgy
by (simp add: projection-def)
moreover
note a1'Cvl-empty
moreover
have (Adm V1 o1 Trgg; (81 Eggy) ©)
proof —
from validES1 Bv'Elal’-in-Trl v'-notin-E1 have 81 Egg; € Trpg;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def projection-concatenation-commute)
with total-ES1-C1-inter-Upsilonl c-in-Cuvl-inter-Upsilonl
have 81 Egg; Q [c] € Trggy
by (simp add: total-def)

227

thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA1
ultimately obtain o1’
where one: 31 Egg; Q [c] @ a1” € Trggy
and two: al’1 Vy;=al’l Vyy
and three: a1’ 1 Cyy = ||
unfolding BSIA-def
by blast

from one validES1 have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyj; N Apy
by auto
moreover
from one c-in-E1 v'-notin-E1
have 81 Epg; Q[c] | Egg; @[] @ [v]1 Egg; @ a1 € Trpgy
by (simp add: projection-def)
moreover
note two three
ultimately have ?PALPHA1"-DELTA1"
by blast
}

moreover {
assume c-in-E1: ¢ € Egg;
and v’-in-El: v’ € Epg;

from c-in-E1 c-in-Cv-inter- Upsilon propSep Views
Upsilon-inter-E1-subset-Upsilonl
have c-in-Cvi-inter-Upsiloni: c € Cyy N YTy
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E1 propSep Views v'-in- Vv-inter-Nabla Nabla-inter-E1-subset-Nablal
have v’ € Vy; N Nabla T'1
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E1 Bv'Elal’-in-Trl have 31 Egg; @ [v] @ al’ € Trpg;
by (simp add: projection-def)
moreover
note a1 ’'Cvl-empty FCI1
ultimately obtain a1’ §1"
where one: set 61" C Ny; N Apy
and two: f1 Egg; Q@[] @ 61" Q [v] @ al” € Trgg;
and three: a1’ 1 Vy; = al’l Vyy
and four: a1’ 1 Cyy =]
unfolding FCI-def
by blast

228

from two validES1 have set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note one
moreover
from two c-in-E1 v'-in-E1
have § 1 Egg, @ [c] | Egg; @ 61" @ [v] 1 Eggy @ a1” € Trgg,
by (simp add: projection-def)
moreover
note three four
ultimately have ?PALPHA1"-DELTA1"
by blast
}
ultimately obtain a1’ 51"
where a1 '-in-Elstar: set a1’ C Epg;
and 61 "-in-N1-inter-Deltalstar:set 61" C Ny; N Apy
and BEI1-cE1-01"-v'El-a1"-in-Tr1:
B1Egs; @[c] 1 Egg; @617 @ [v] 1 Egg; @ a1’ € Tryg,
and al”"Vul-is-al'Vol: a1’ 1 Vy;=al'] Vyy
and a1”Cvl-empty: a1’ 1 Cypy =]
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset- Upsilon2 propSep Views
have cE2-in-Cv2-inter-Upsilon2: set ([c] 1 Eggs) C Cya N Trg
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from §1"'-in-Ni-inter-Deltalstar Nvi-inter-Deltal-inter-E2-subsetof-Upsilon2
propSep Views disjoint-Nvl-Vv2
have &1 "' E2-in-Cv2-inter-Upsilon2star: set (61" 1 Eggs) € Cygs N Trg
proof —
from 61 '-in-Nl-inter-Deltalstar have eq: 61" 1 Epge = 61" 1 (Ny; N Ap; N Eggg)
by (metis Int-commute Int-left-commute Int-lower2 Int-lowerl
projection-intersection-neutral subset-trans)

from validV2 Nvl-inter-Deltal-inter- E2-subsetof-Upsilon2
propSep Views disjoint-Nvl- Vo2
have NVI N AF] n EES? - CV2 n TFQ
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (subst eq, simp only: projection-def, auto)
qged

have c¢d1" E2-in-Cv2-inter-Upsilon2star: set ((c¢ # 61"") 1 Egga) € Cyg N Yy
proof —
from cE2-in-Cv2-inter-Upsilon2 §1'' E2-in-Cv2-inter- Upsilon2star
have set (([c] @ §1") 1 Eggs) € Cpa N Trg
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by auto
qed

229

have 3 a2’ §2". set a2" C Epgg
A set 62" C NV? n AFQ @] CV2 N TF? n NVI n AF]
NB1Egsy @[c 1 Eggg @62"” Q@ [v]1 Epge @ a2” € Trpgy
N OZQHW VVQ = a2/1 VVQ A 012”] Cyg = H
N62"1 Eggy =01"1 Eggy
proof cases
assume v'-in-E2: v' € Epgy
with Nabla-inter-E2-subset-Nabla2
propSep Views v'-in- Vv-inter-Nabla
have v’-in-Vv2-inter-Nabla2: v’ € Vy,5 N Nabla I'2
unfolding properSeparationOfViews-def by auto

have [(3 @ [v]) | Epge @ a2’ € Trggy ;

ag’] Cyg = [l; set (c # 61") 1 Eggy) € Cya N Trg;

ceCynTYp;setdl” C Ny;nAp;]

= 3 a2 62" (set a2"' C Epgg A set 62" C Nyg N Apg U Cyg
N Tpe N Nyy N Apyg

NB1Egsy @[c 1 Eggg @62"” Q@ [v]1 Epgg @ a2” € Trpgg

N OZQH] VVQ = a2'1 VV,Q N 042”] CV2 = H

N 62”1 (Cyg N Yrg) =01"1 Eggp)

proof (induct length ((c # 61'") | Eggg) arbitrary: 8 a2’ ¢ §1")
case (

from 0(2) validES2 have set a2’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyos N Ars U Cpa N Yo N Nyy N Apyg
by auto
moreover
have 31 Eggy @ [c] | Epse @[] @ [v]] Eggp @ a2’ € Trpgy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggo
by (simp add: projection-def, auto)
ultimately show ?Zthesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a2’'1 Vyg=a2'1 Vg ..
moreover
note 0(3)
moreover
from 0(1) have H 1 (OVQ N TFQ) =61"1 Eggo
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

230

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggy
and c61"-is-pc’v: c # 51" =pQ@lc) Qv
and vE2-empty: v | Eggs = ||
and n-is-length-uv E2: n = length ((p Q v) 1 Eggo)
by blast

from Suc(5) c¢’-in-E2 ¢§1""-is-uc'v
have set (11 Epgg @ [¢]) € Cyg N Trg
by (simp only: ¢d1''-is-pc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty
by auto
hence c¢’-in-Cv2: ¢’ € Cy 9 and c’-in-Upsilon2: ¢’ € T1g
by auto
with validV2 have c’-in-E2: ¢’ € Eggg
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)

case Nil

with ¢61"-is-puc’v have c-is-¢”: ¢ = ¢’ and §1"-is-v: 61" = v
by auto

with ¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg9 N Ty
by simp

moreover

note v’-in- Vo2-inter-Nabla2

moreover

from v'-in-E2 Suc(3) have (81 Egge) @ [v] Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)

moreover

note Suc(4) FCI2

ultimately obtain a2’ v
where one: set 7 C Nyp N Ary
and two: 81 Egge @ [c] @y @ [v] @ a2” € Trggg
and three: 2”1 Vyg=a2'] Vyg
and four: a2"' 1 Cyg =[]
unfolding FCI-def
by blast

let ?DELTA2" = v | Eggs @ v

from {wo validES2 have set a2’ C Epgo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from one vE2-empty
have set 2DELTA2" C NV2 n AFQ U CVQ N TFQ N NV] n AFI
by auto
moreover
have 3| Eggy @ [c] | Egge @ PDELTA2" @ [v]] | Egge @ a2" € Trggy

231

proof —
from c-is-¢’ ¢’-in-E2 have [c] = [c] | Egga
by (simp add: projection-def)
moreover
from v'-in-E2 have [v] = [v] | Eggs
by (simp add: projection-def)
moreover
note vE2-empty two
ultimately show ?thesis
by auto
ged
moreover
note three four
moreover
have ?DELTA2" 1 (CVQ n TFQ) =461""1 Egpgs
proof —
have v | (Cyg N Tpg) = ||
proof —
from validV2 have NVQ N AFQ n (OV2 n Trg) = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cyg N Ty]
show ?thesis
by (simp add: projection-def)
qed
with 61"-is-v vE2-empty show ?thesis
by (simp add: projection-concatenation-commaute)
qed
ultimately show ?2thesis

by blast
next
case (Cons z xs)
with ¢§1"-is-puc’v have p-is-c-zs: p = [c] @ xs
and §1"-is-zs-c’-v: 61" = zs @Q [c] Qv
by auto

with n-is-length-uv E2 have n = length ((c¢ # (zs Q v)) | Egga)

by auto
moreover
note Suc(3,4)
moreover
have set ((c¢ # (zs Q v)) | Eggg) € Cyg N Ty

proof —

have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) c61"-is-pc'v p-is-c-rs vE2-empty
show ?thesis
by (subst res, simp only: c¢61'"-is-pc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)

232

moreover

from Suc(7) 61"-is-zs-¢’-v have set (zs @ v) C Ny; N Apy
by auto

moreover note Suc(1)[of c zs Qv B a2’

ultimately obtain ¢ ~
where one: set 6 C Epgg
and two: set v C NV2 N AFQ (@] CV2 n TFQ n NV] N AF]
and three: f 1 Egge Q [] 1 Epgy @~ @ [’U’] 1 Egge @6 € Trpgo
and four: § | Vyg = a2'1 Vg
and five: § 1 Cypg = ||
and siz: v 1 (Cpga N Trg) = (zs Qv) | Eggs
by blast

let YBETA :,81 EESQ@ [C] 1 EESQ@’Y

note c’-in-Cv2-inter- Upsilon2 v'-in- Vv2-inter-Nabla2
moreover
from three v'-in-E2 have ?BETA Q [v'| @ § € Trggs
by (simp add: projection-def)
moreover
note five FCI2
ultimately obtain a2’ §’
where fci-one: set ' C Nyg N Apg
and fci-two: PBETA Q [¢'] @ §' Q@ [v] @ a2" € Trggs
and fci-three: a2'' 1 Vyg =61 Vg
and fci-four: a2''] Cyg = |]
unfolding FCI-def
by blast

let ?DELTA2" =~ @ [¢] @ §'

from fci-two validES2 have set a2 C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" C Nys N Apg U Cps N Ypre N Nyg N Apyg
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-zs-c’-v
have ¢’ € Cvg N YTrs N Ny;n Ay
by auto
with two fci-one show ?thesis
by auto
qed
moreover
from fci-two v'-in-E2
have 1 EESQ @ [C] 1 EESQ Q ?DELTA2" @ [1),} 1 EESQ Qa2 e TTESQ
by (simp add: projection-def)
moreover
from fci-three four have a2’ 1 Vg = a2’'] Vg
by simp
moreover
note fci-four

233

moreover
have 9DELTA2”1 (CVQ N TFQ) =61 ”1 EESQ
proof —
have ¢’ 1 (CV2 n TFQ) =]
proof —
from fci-one have V e € set 6" e € Nyg N Apy
by auto
with validV2 have V e € set §'. e ¢ Cyg N Yy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (simp add: projection-def)
qed
with c¢’-in-E2 c’-in-Cv2-inter-Upsilon2 §1''-is-zs-c’-v vE2-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qged
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2'Cv2-empty cd1' E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon §1''-in-N1-inter-Deltalstar)
obtain a2’ §2"
where one: set a2’ C Eggg
and two: set §2"' C Nyo N AFQ UCyasNTranN Ny N Ary
and three: B 1 Egge @ [c] | Egge @ 62" @ [v] 1 Epge @ a2” € Trpgg
A a2’ Vye = a2’ Vya A a2’ Cvg = H
and four: 62”1 (Cya N Y1) = 61" 1 Eggs
by blast

note one two three

moreover

have 62" 1 Egg; = 61" 1 Eggo
proof —
from projection-intersection-neutral|OF two, of E ggy]
Nv2-inter-Delta2-inter-E1-empty valid V1
have 62" 1 Epgy = 52" 1 (CyaNYraN Nyy N APy N Eggy)
by (simp only: Int-Un-distrib2, auto)
moreover
from validV'1
have CV.? NYreN Ny N Ap; N Egg; = Cyg N YTre N Ny N Apy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately have 62" 1 Epg; = 62”1 (Cys N Yo N Ny N Apy)
by simp
hence 62" 1 Epgy = 52" 1 (CyanNTro) 1 (Nyr N Apg)
by (simp add: projection-def)
with four have §2" 1 Eggs = 61" Eggo 1 (NVI n AF])
by simp
hence 62" | Egg; = 01" 1 (Ny; N Apg) | Eggse
by (simp only: projection-commute)

234

with 61"-in-N1-inter-Deltalstar show ?thesis
by (simp only: list-subset-iff-projection-neutral)
qed
ultimately show ?thesis
by blast
next
assume v'-notin-E2: v' ¢ Eggy

have
[(B@v])] Egge @ a2’ € Trggp; a2’] Cyg = [J;
set ((c # 01") 1 Eggg) € Cyg N Yrg;c€ Cy N
set 61" C NVI N AF] ﬂ
=3 a2 2"
(set a2’ C Epga N set 62" C Nyg N Apg U Cvg N YTre N Ny; N Apyg
NB1Egsy @[c]1 Epgg @62 @ [v]1 Epgp @ a2” € Trpgy
A a2’ Vye = a2’ Vya A a2’ CV2 =
A 52//1 Epgs = 51//] EESQ)
proof (induct length ((¢ # 61'") | Eggg) arbitrary: 8 a2’ ¢ 61"
case ()

from 0(2) validES2 have set a2’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nys N Apg U Cys N YTrgogN Ny; N Ay
by auto
moreover
have 81 Epgs Q [c] 1 Eggs @[] Q [v] 1 Egge @ a2’ € Trggg
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggo
by (simp add: projection-def, auto)
ultimately show ?thesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a2'1 Vys=a2'1 Vg ..
moreover
note 0(3%)
moreover
from 0(1) have [| | Egg; = 61" 1 Eggo
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggy
and c¢d1"-is-puc’'v: c# 61" =p Q@] Qv
and vE2-empty: v 1 Eggo = ||
and n-is-length-uv E2: n = length ((p Q v) 1 Egga)

235

by blast

from Suc(5) ¢-in-E2 ¢§1""-is-pc'v have set (u 1 Eggs @Q [¢]) € Cypg N YTrg

by (simp only: ¢d1''-is-uc'v projection-concatenation-commute projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty

by auto
hence c¢’-in-Cv2: ¢’ € Cy9 and c¢’-in-Upsilon2: ¢’ € Tpg

by auto
with validV2 have ¢’-in-E2: ¢’ € Epgy

by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢61"-is-puc’v have c-is-¢’: ¢ = ¢’ and §1"-is-v: §1" = v
by auto
with ¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg
by simp
moreover
from v'-notin-E2 Suc(3) have (8 1 Eggs) Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
have 1 Eggo @] [C] € Trggo
proof —
from c-is-¢’ ¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg N Tpg
by simp
moreover
from validES2 Suc(3) have (81 Egge) € Trgss
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute
prefizclosed-def prefiz-def, auto)
moreover
note total-ES2-C2-inter-Upsilon2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where one: (81 Eggs) @ [c] @ a2" € Trggy
and two: a2’ 1 Vyg=a2’'1 Vyy
and three: a2’ 1 Cyy = ||

236

unfolding BSIA-def
by blast

let ?DELTA2" = v | Epggs

from one validES2 have set a2 C Epgo
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from v E2-empty

have set ?DELTA2" C NVQ n AFQ U Cvg N TFQ N NVI n AFI
by simp

moreover

from c-is-c’ ¢’-in-E2 one v'-notin-E2 vE2-empty

have (ﬁ 1 EESQ) Q [C] 1 EES? @ ?DELTA2" @ [’U’] 1 EESQ @ a2’ c TT‘ESQ
by (simp add: projection-def)

moreover

note two three

moreover

from vE2-empty 61"-is-v have ?DELTA2" | Egg; = 61" 1 Eggo
by (simp add: projection-def)

ultimately show ?thesis

by blast
next

case (Cons z xs)

with ¢§1"-is-uc’v have p-is-c-zs: p = [c] @ xs
and §1"-is-zs-c’v: 61" = zs Q [¢] Qv
by auto

with n-is-length-pv E2 have n = length ((c # (zs Q v)) | Eggs)
by auto

moreover

note Suc(3,4)

moreover

have set ((c # (zs Q v)) | Eggg) € Cypg N Ty
proof —

have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) c61"-is-puc’v p-is-c-vs vE2-empty
show ?thesis
by (subst res, simp only: ¢§1''-is-pc'v projection-concatenation-commute
set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) 61"-is-zs-¢’-v have set (zs @ v) C Ny; N Apyg
by auto
moreover note Suc(1)[of c zs Qv B a2’
ultimately obtain ¢ ~
where one: set 6 C Eggs
and two: set v C Nys N Aps U Cpa N Yo N Nyy N Apy
and three: 81 Eggg Q [c] 1 Eggo @y Q [v] | Egge @6 € Trggs

237

and four: 6 | Vyg = a2'1 Vyy

and five: § 1 Cyyp = ||

and siz: v 1 Eggy = (s Qv) | Eggs
by blast

let PBETA = 1 Egge @ [c] | Egge @ v

from c'-in-Cv2-inter-Upsilon2 have ¢’ € Cyy
by auto
moreover
from three v'-notin-E2 have ?BETA Q § € Trpgog
by (simp add: projection-def)
moreover
note five
moreover
have Adm V2 02 Trpge ¢BETA ¢’
proof —
have ?BETA Q [¢| € Trggs
proof —
from validES2 three have ?BETA € Trpgs
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute prefizclosed-def prefiz-def, auto)
moreover
note c’-in-Cv2-inter- Upsilon2 total-ES2-C2-inter- Upsilon2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where bsia-one: ?BETA Q [¢] @ a2 € Trggo
and bsia-two: a2" 1 Vyg =61 Vg
and bsia-three: a2''1 Cyg = |]
unfolding BSIA-def
by blast

let ?DELTA2" = v @ [¢]

from bsia-one validES2 have set a2” C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" C Nyos N Arp U Cya N Yo N Ny N Apyg
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-zs-c’-v
have ¢’ € CV2 N YTrse N Ny n Ay
by auto

238

with two show ?thesis
by auto
qged
moreover
from bsia-one v'-notin-E2
have [1 Epga (@ [C] 1 EEpgo @ ?DELTA2" @ [Uq 1 Epge Qa2 e Trpgs
by (simp add: projection-def)
moreover
from bsia-two four have a2’ 1 Vyg = a2’ Vi,
by simp
moreover
note bsia-three
moreover
have QDELTAQ// 1 EES] =61 " 1 EESQ
proof —
from validV1 Suc(7) 61"-is-zs-c’-v have ¢’ € Egg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E2 ¢’-in-Cv2-inter-Upsilon2 §1"'-is-xzs-c’-v vE2-empty six
show ?thesis
by (simp only: projection-concatenation-commute
projection-def, auto)
qged
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2'Cv2-empty c§1' E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon §1''-in-N1-inter-Deltalstar)
show %thesis
by blast
qed
then obtain a2’/ 62"
where a2'-in-E2star: set a2’ C Eggy
and §2'"-in-N2-inter-Delta2star:set §2"' C Nyyg N Apg U Cyg N Trg N Nyy N Apy
and BE2-cE2-62"-v'E2-a2"-in-Tr2:
B1 Epsy @[cl 1 Eggp @62”Q [v]] Epgg @ a2” € Trpgy
and a2 Vv2-is-a2'Vu2: a2 1 Vyg = a2’ Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
and 02''E1-is-61""E2: 62" 1 Egg; = 61" 1 Eggo
by blast

from BE2-cE2-62"-v'E2-a2""-in-Tr2 BE1-cE1-01"-v'El-a1"'-in-Tr1
validES2 validES1

have §2'"-in-E2star: set 62" C Epgg and §1'"-in-Elstar: set 61" C Epg;
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with §2"'E1-is-61" E2 merge-propertylof 62" Epgs 61" Epg;) obtain §’
where §'E2-is-62'": §' 1 Epgy = 62"
and §'El-is-61": 6" | Egg; = 61"
and 6&'-contains-only-62''-61""-events: set §' C set §2"' U set 51"
unfolding Let-def
by auto

239

let ?TAU = B Q@ [c] @ §' @ [v]
let PLAMBDA = o1 Vy,

let 272 = a2

let ¢T1 = a1’

have ?TAU € TT(ESI | ES2)
proof —
from BE2-cE2-62"-v'E2-a2"-in-Tr2 §'E2-is-02"" validES2
have 81 Eggy @ [c] | Eggp @ 6" | Egge @ [v)] | Eggg € Trggp
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (6 @ [C] @' @ [U/]) 1 EESQ S TTESQ
by (simp add: projection-def, auto)
moreover
from BE1-cE1-01"-v'El-a1’-in-Tr1 §'El-is-61" validES1
have 81 Egg; @ [c] 1 Egg; @ 6" 1 Eggy @ [v)] 1 Eggy € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3 @ [c] @ 6" @ [v]) | Egg; € Trgsy
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE §'-contains-only-62''-61"-events
62"-in-E2star 61"'-in-Elstar
have set (3@ [c] @ 6" @ [v]) C Egge U Eggy
unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?thesis
unfolding composeES-def
by auto
qed
hence set ?TAU C E(ES] | ES2)
unfolding composeES-def
by auto
moreover
have set 2LAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note a2’’-in-E2star a1'’-in-Elstar
moreover
from BE2-cE2-62"-v'E2-a2"-in-Tr2 §'E2-is-62"
have ¢TAU | Epgo @ ?T2 € Trego
by (simp only: projection-concatenation-commute, auto)
moreover
from BE1-cE1-01"-v'El-a1"-in-Tr1 §'E1-is-61"
have ?TAU | Egg; @ ?T1 € Trggy
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA 1 Egge = ?T2 1 Vy
proof —

240

from propSep Views
have ?LAMBDA |1 Egge = a1 Vyy
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from «2''-in-E2star propSep Views
have ?T2 1 Vy = 2T2 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vo2 a2’ Vu2-is-a2' Vvl
ultimately show ?Zthesis
by simp
qed
moreover
have ?LAMBDA 1 Egg; = ?T1 1 Vy
proof —
from propSep Views
have ?LAMBDA 1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
from o1 '’-in-Elstar propSep Views
have ?T1 1 Vy = ?T1 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’'Vwi-is-a Vol al’' Vol-is-al'Vul
ultimately show ?thesis
by simp
qged
moreover
note a2’ Cv2-empty a1’ Cvi-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU @Q ¢ € T’I'(ESJ | ES2)
and t1 Vy = 2LAMBDA
and t] Cy =[]
by blast
moreover
have set §' C Ny, N Ap
proof —
from §'-contains-only-62'"-61""-events §2"'-in-N2-inter- Delta2star
§1""-in-N1-inter-Deltalstar
have set §' C NV? N Arg U NV] n AF]
by auto
with Deltal-N1-Delta2-N2-subset-Delta Nvl-union-Nv2-subsetof-Nv show ?thesis
by auto
qged
ultimately have 3a’ ' (set v C Ny NAp AB Q[@' @ [v] Q@a’e Tr(gsi || ES2)
/\o/} sza] Vv/\oz/] OV:H)
by (simp only: append-assoc, blast)

ultimately have 3o’ 7" (set 7" C Ny NAr AB Q[@~y @v]@a’e Tr(gs1 || ES2)
Aol Vy=alVyAra'lCy=1])

241

}

by blast

thus ?thesis

unfolding FCI-def
by blast

qed

theorem compositionality-FCIA:

[

BSD V1 Trggy; BSD V2 Trpgg; BSIA o1 V1 Trggy; BSIA 02 V2 Trggs;

(01 V1) C (e V) N Eggy; (02 V2) C (0 V) N Eggg;

total ES1 (CVI N TF] N NV? N Arg); total ES2 (CVQ N TFQ N NVI N AF]);
Vr N Egs; € Ve Vi N Egge © Vg

Tr N Egs; € YTry; Tr N Egge © Trg;

(

Apry; N Ny UApg N Nyg) € A

(Nyi N Ap; N Egseg={} ANys N Apg N Egg; € Try)

\

(NygNApgN Eggy ={} ANy; NApr; N Egge € Trg) ;

FCIA 91 T1 V1 Trggy; FCIA 02 T2 V2 Trggs |
= FCIA o TV (TT(ESI I ESQ))

proof —
assume BSDI1: BSD V1 Trggq

{

and BSD2: BSD V2 TTESQ

and BSIA1: BSIA o1 V1 Trgg;

and BSIA2: BSIA 02 V2 Trggs

and plvl-subset-pv-inter-E1: (91 V1) C (¢ V) N Egg;

and o2v2-subset-gv-inter-E2: (02 V2) C (¢ V) N Eggg

and total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2:

total ES1 (Cyy N Ypy N Nyg N Arg)

and total-ES2-C2-inter- Upsilon2-inter-N1-inter-Deltal :

total ES2 (CVQ N YTre N Ny N Arg)

and Nabla-inter-E1-subset-Nablal: Vi N Eggy € Vg

and Nabla-inter-E2-subset-Nabla2: Vi N Egge € Vg

and Upsilon-inter-E1-subset-Upsilonl: Yr N Epg; € Y1y

and Upsilon-inter-E2-subset-Upsilon2: Y N Egge C Yo

and Deltal-N1-Delta2-N2-subset-Delta: (Apy; N Ny; U Apga N Ny) C Ap
and very-long-asm: (NV1 NAr; N Egge = {} A Nyg N Arg N Egg; C TF])
V(Ny2 N Apg N Eggy ={} A Ny 0 Apy N Eggg € Try)

and FCIAI: FCIA o1 T'1 V1 Trggy

and FCIA2: FCIA 92 T2 V2 Trggo

fixa fcov’

assume c-in-Cv-inter-Upsilon: ¢ € (Cy N Y1)
and v’-in-Vu-inter-Nabla: v’ € (Vy, N V)
and Bv'a-in-Tr: (8 @ [v] @) € Tr(gs1 || ES2)
and aCv-empty: o 1 Cy =[]
and Adm: Adm V (TT(ESI I ESQ)) Bc

interpret CSES1: CompositionSupport ES1 V V1

using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

242

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from Av'a-in-Tr

have Bv'a-El-in-Tri: (((8 @ [v']) @ o) 1 Egg;) € Trgs;
and SBv'a-E2-in-Tr2: (8 Q [v]) @ a) | Egge) € Trggs
by (simp add: composeES-def)+

from CSESI1.BSD-in-subsystem2[OF Bv’a-El-in-Tr1 BSD1] obtain a1’
where Sv'Elal’-in-Trl: (8 Q [v]) | Epg; @ a1’ € Trpgy
and ol 'Vul-is-aVvl: al'] Vy;=al Vy;
and al’'Cvi-empty: a1’ 1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Bv'a-E2-in-Tr2 BSD2] obtain a2’
where Sv'E2a2’-in-Tr2: (8 Q [v]) | Eggs Q@ a2’ € Trpgs
and a2 Vu2-is-aVv2: a2’ Vyg=al Vyy
and a2'Cv2-empty: a2’ 1 Cyg = ||
by auto

note very-long-asm
moreover {
assume Nvi-inter-Deltal-inter-E2-empty: Nyy; N Apy N Egge = {}
and Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl: Ny N Ars N Eggy € Y1y

let PALPHA2"-DELTA2" =3 a2 §2". (
set a2" C Eggy A set 62" C]\,//VQOAFQ .
ANB1Epsy @[c1 Epge @62"” @ [v]1 Epgy @ a2” € Trpgy
A a2’ Vye = a2’ Vya A a2’ CVQ = H)

from c-in-Cv-inter-Upsilon v'-in- Vv-inter-Nabla valid V2
have ¢ ¢ Eggy V (c € Eggg N v' ¢ Eggg) V (c € Eggg A v’ € Egg)
by (simp add: V-valid-def is ViewOn-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E2: ¢ ¢ Epgo

from validES2 Bv'E2a2’-in-Tr2 have set a2’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H - NV2 n AFQ
by auto
moreover
from Bv'E2a2’-in-Tr2 c-notin-E2
have 31 Egge @ [c] | Egge @[] Q@ [v]] Egge @ a2’ € Trggs
by (simp add: projection-def)
moreover
have a2’'1 Vyg=a2'1 Vg ..
moreover
note a2’ Cv2-empty

243

ultimately have ?ALPHA2"-DELTA2"
by blast
}

moreover {
assume c-in-E2: ¢ € Eggo
and v'-notin-E2: v' ¢ Epgy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset-Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Yo
unfolding properSeparationOfViews-def by auto
hence c € Cyy
by auto
moreover
from Sv'E2a2’-in-Tr2 v'-notin-E2 have 3 1 Eggs Q@ a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’'Cv2-empty
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
from Adm obtain v
where yguv-is-fov: v 1 (e V) =81 (¢ V)
and ~yc-in-Tr: (v Q [¢]) € Tr(gsi || ES2)
unfolding Adm-def
by auto

from c-in-E2 ~yc-in-Tr have (v 1 Egge) @Q [c] € Trggg
by (simp add: projection-def composeES-def)
moreover
have 7 | Epsy | (2 V2) = 81 Epgs 1 (02 V2)
proof —
from ygu-is-3ov have 71 Egs 1 (e V) = 81 Eggs 1 (0 V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v | (02 V2) = 81 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qed
moreover
note BSIA2
ultimately obtain a2
where one: 81 Eggs @ [c] @ a2 € Trggs
and two: a2’ Vyg=a2'1 Vyy
and three: 2”1 Cyg = ||
unfolding BSIA-def
by blast

from one validES2 have set a2’ C Eggg

244

by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nygp N Apg
by auto
moreover
from one c-in-E2 v'-notin-E2
have 31 Eggy @ [c] | Egge @[] @ [v]] Epgp @ a2” € Trggy
by (simp add: projection-def)
moreover
note two three
ultimately have ?PALPHA2"-DELTA2"
by blast
}
moreover {
assume c-in-E2: ¢ € Eggy
and v'-in-E2: v' € Eggy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset- Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Yo
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E2 propSep Views v'-in- Vv-inter-Nabla Nabla-inter- E2-subset-Nabla2
have v’ € Vyp N Nabla T'2
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E2 Bv'E2a2’-in-Tr2 have 81 Epgy Q [v] @ a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’'Cv2-empty
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
from Adm obtain v
where yguv-is-fov: v 1 (¢ V) =81 (¢ V)
and ~yc-in-Tr: (v Q [¢]) € Tr(gsi || ES2)
unfolding Adm-def
by auto

from c-in-E2 ~yc-in-Tr have (v 1 Egge) Q [c] € Trggg
by (simp add: projection-def composeES-def)
moreover
have 7 | Epgp | (02 V2) = 1 Epgg | (02 V2)
proof —
from ~ypv-is-Bov have v 1 Egga 1 (0 V) =81 Egge 1 (0 V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v | (02 V2) = 81 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def

245

by auto

qed

moreover

note FCIA2

ultimately obtain a2’ §2"
where one: set 62" C Ny N Apy
and two: 81 Fgge @ [c] @627 Q [v] @ a2” € Trggs
and three: a2 1 Vyg=a2’'l Vyg
and four: a2’ 1 Cyg =[]
unfolding FCIA-def
by blast

from two validES2 have set a2’ C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

note one

moreover

from two c-in-E2 v'-in-E2

have 81 Eggy @ [c] | Epgg @ 62" @ [v] 1 Eggy @ 02" € Trpgy
by (simp add: projection-def)

moreover

note three four

ultimately have PALPHA2"-DELTA2"
by blast

}

ultimately obtain a2’ §2"
where a2"-in-E2star: set a2' C Epgg
and 62 '"-in-N2-inter-Delta2star:set 62" C Ny N Apg
and BE2-cE2-02"-v'E2-a2"-in-Tr2:
B1 Epss @[c] 1 Epge @ 62" Q@ [v] | Eggy @ a2” € Trygy
and a2”Vv2-is-a2'Vv2: a2 1 Vyg=a2'] Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
by blast

from c-in-Cv-inter- Upsilon Upsilon-inter-E1-subset-Upsilonl propSep Views
have cEI1-in-Cvl-inter-Upsilonl: set ([c] 1 Eggy) € Cyy N Ty
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from §2''-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl
propSep Views disjoint-Nv2- Vol
have §2''E1-in-Cvl-inter-Upsilonlstar: set (62" 1 Egg;) € Cy; N Ty
proof —
from 62"'-in-N2-inter-Delta2star
have eq: 62" 1 Epg; = 52" 1 (Nys N Arg N Eggy)
by (metis Int-commute Int-left-commute Int-lowerl Int-lower2
projection-intersection-neutral subset-trans)

from validV1 Nv2-inter-Delta2-inter-E1-subsetof- Upsilon1
propSep Views disjoint-Nv2-Vul

have NV? M AFQ n EESZ - CV] n TFI
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

246

VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (subst eq, simp only: projection-def, auto)
qed

have ¢62" E1-in-Cvi-inter-Upsilonistar: set ((c¢ # 62"") 1 Eggs) € Cy; N Yy
proof —
from cE1-in-Cvl-inter-Upsilonl §2''E1-in-Cvl-inter- Upsilonlstar
have set (([c] @ 62") 1 Eggs) € Cyy; N Ty
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by auto
qed

have
J a1’ 81" set a1’ C Epgr N set 51" C Ny; N Ar; U Cpy N Ty N Nyg N Apg
AB1Egg; @[c 1 Eggy @d1"Q[v] 1 Egg; @al” € Trgg,
Aal’”] Vyi =al’ Vyi Aal’ CVI = H
VAN (51//1 Epgs = 62”] Ergy
proof cases

assume v'-in-E1: v' € Eggy

with Nabla-inter-E1-subset-Nablal propSep Views v'-in- Vu-inter-Nabla

have v’-in-Vvl-inter-Nablal: v’ € Vy,; N Nabla T'1

unfolding properSeparationOfViews-def by auto

have [(8 8 [v) 1 Bpgs ® a1’ € Trpg; |
al’l Cyy = []; set ((c # 02") 1 Egsy) € Cy; N Yy ;
c€ CyNTYp;setd2” C Nygn Apg;
Adm 'V % (TT(ESI ” ES,Q)) ,3 CII
= 3J a1’ 51"
(set al’ C Eggy N set 51" C Ny NAr; U Cps N Yy N Nys N Ay
ANB1Egs; @lc | Egg; @61"Q [v] 1 Eggy @ al” € Trgg,
Aol Vyi =l Vyi Aol Cyr=1
ANS1"1 (Cyy; N Yry) =062"1 Eggy)
proof (induct length ((c¢ # 62') 1 Eggy) arbitrary: 8 al’ ¢ §2")
case (

from 0(2) validES1 have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H C Ny;n Ar; U Cy;N TN Nyg N Aryg
by auto
moreover
have 81 Egg; Q@ [c] 1 Egg; Q| Q [v] 1 Egg; @ a1’ € Trpgy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show “thesis
by (simp add: projection-concatenation-commute projection-def)

247

qed

moreover

have a1’1 Vy;=al’l Vy; ..

moreover

note 0(3)

moreover

from 0(1) have [1 (Cy; N Ypy) =62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)

ultimately show ?case
by blast

next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E1: ¢’ € Epg;
and c62"-is-pc’v: c # 62" =p Q@ lc) Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-uvE1: n = length ((p Q@ v) 1 Eggy)
by blast

from Suc(5) ¢'-in-E1 ¢62""-is-pc'v have set (u 1 Egg; @ [¢]) € Cyy N Ty
by (simp only: ¢62'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cvl-inter-Upsilonl: ¢' € Cyy; N YTy
by auto
hence c¢’-in-Cvl: ¢’ € Cy; and c¢’-in-Upsiloni: ¢’ € Ty
by auto
with validV1 have c’-in-El: ¢’ € Eggy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢§2"-is-uc’v have c-is-c”: ¢ = ¢’ and §2"-is-v: §2" = v
by auto
with ¢’-in-Cvl-inter-Upsilonl have ¢ € Cy; N Yy
by simp
moreover
note v'-in-Vol-inter-Nablal
moreover
from v'-in-E1 Suc(3) have (81 Eggy) @ [v] Q@ a1’ € Trgg;
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V1 Q] TTESI (B 1 EESI) Cc
proof —
from Suc(8) obtain ~
where youv-is-fov: v 1 (¢ V) =81 (¢ V)
and yc-in-Tr: (v @Q [¢]) € Tr(gs1 || ES2)
unfolding Adm-def

248

by auto

from c-is-¢’ ¢’-in-E1 ~yc-in-Tr have (v 1 Egg;) Q [] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; 1 (o1 V1) = B 1 Eggs 1 (o V1)
proof —
from ~yov-is-Bov have v | Egg; 1 (e V) =81 Egg; 1 (e V)
by (metis projection-commute)
with plvI-subset-pv-inter-E1 have v 1 (o1 V1) =1 (01 V1)
by (metis Int-subset-iff ~vov-is-Bov projection-subset-elim)
thus %thesis
by (metis projection-commute)
qged
ultimately show #thesis unfolding Adm-def
by auto
qged
moreover
note FCIA1
ultimately obtain a1’ v
where one: set v C Ny; N Apy
and two: 81 Egg; Q@[] @y Q [v] @al’ € Trgg;
and three: 1”1 Vi =al’] Vy;
and four: a1’ 1 Cy; =]
unfolding FCIA-def
by blast

let ?DELTA1" = v | Egg; @

from two validES1 have set al' C Egg;
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from one vEI1-empty

have set ?DELTA1" C Ny N Ap; U Cy; N YTpy N Nys N Arg
by auto

moreover

have ﬂ 1 EES'I @ [C]] EESI @ ?DELTA1" @ [U’} 1 EESI @ a1 " S TTESI
proof —

from c-is-¢’ ¢’-in-E1 have [c] = [c] | Eggy
by (simp add: projection-def)
moreover

from v’-in-E1 have [v] = [v/] | Eggy
by (simp add: projection-def)
moreover
note vEI-empty two
ultimately show ?thesis
by auto
qed
moreover
note three four
moreover

249

have ?DELTA1" 1 (Cy; N Ypy) =621 Eggy
proof —
have v | (Cy; N Try) =]
proof —
from validV1 have Ny; N Ap; N (Cy; N Ypy) = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cyy; N Y]
show ?thesis
by (simp add: projection-def)
ged
with §2"-is-v vE1-empty show ?thesis
by (simp add: projection-concatenation-commute)
ged
ultimately show ?thesis
by blast
next
case (Cons z xs)
with ¢62"-is-pc'v
have p-is-c-zs: p = [c] @ zs and §2"-is-xs-c’-v: 62" = 25 Q [¢'] Q v
by auto
with n-is-length-pvE1 have n = length ((c # (zs Q v)) | Eggy)
by auto
moreover
note Suc(3,4)
moreover
have set ((c¢ # (zs Qv)) 1 Eggy) € Cy; N Ty
proof —
have res: ¢ # (zs Q v) =[] @ (zs Q v)
by auto

from Suc(5) c62"-is-puc’v p-is-c-vs vE1-empty
show ?thesis
by (subst res, simp only: c62'"-is-uc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) 62"-is-zs-¢’-v have set (zs @ v) C Nyg N Apg
by auto
moreover note Suc(8) Suc(1)[of czs Qv B al’]
ultimately obtain § vy
where one: set 6 C Epgy
and two: set v C Ny; N Ap; U Cpy N Yy N Nys N Arg
and three: B1 Egg; Q[c] 1 Egg; @y Q [v] 1 Egg; @6 € Trggy
and four: 6 | Vy; =al'] Vyy
and five: § 1 Cyy = ||
and siz: v 1 (Cy; N Ypry) = (xs Qv) | Eggy
by blast

250

let PBETA =1 Egg; @ [c] 1 Eggy @ v

note c’-in-Cvl-inter-Upsilonl v'-in-Vvl-inter-Nablal
moreover
from three v'-in-E1 have ?BETA Q [v'] Q § € Trpgy
by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 o1 Trpg; ?BETA ¢’
proof —
have ?BETA Q [¢'] € Trpg;
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-ws-c’-v
have ¢’ € Cy; N Ty N Nys N Arg
by auto
moreover
from validES1 three have BETA € Trgg;
by (unfold ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES1-C1-inter-Upsilonl-inter-N2-inter-Delta2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note FCIA1
ultimately obtain a1’ §’
where fcia-one: set §' C Nyy; N Apy
and fcia-two: ?BETA Q [¢'] @ §' @ [v'] @ a1 € Trpgy
and fcia-three: a1”1 Vy; =481 Vyy
and fcia-four: a1’ 1 Cyy =
unfolding FCIA-def
by blast

let DELTA1" =~ @ [¢] @ §’

from fcia-two validESI have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set DELTA1" C NVI n AFI U CVI N TFI N NV2 n AFQ
proof —
from Suc(7) ¢'-in-Cvl-inter-Upsilonl 62'-is-zs-c'-v
have ¢’ € OVI N TF] n NV2 n AFQ
by auto
with two fcia-one show ?thesis
by auto

251

qed
moreover
from fcia-two v'-in-E1
have 81 Fgg; @Q [c] | Egg; @ ?DELTA1” Q [v 1 Egg; @ al” € Trgg;
by (simp add: projection-def)
moreover
from fcia-three four have a1’ 1 Vy; = al’1 Vyy
by simp
moreover
note fcia-four
moreover
have ?DELTA1" 1 (Cy; N Ypy) =621 Eggy
proof —
have §’ 1 (CVI NYrs) =1
proof —
from fcia-one have V e € set §'. e € Nyy; N Apy
by auto
with validV1 have V e € set 6'. e ¢ Cy; N Yy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by (simp add: projection-def)
ged
with c¢’-in-E1 c¢’-in-Cvl-inter-Upsilonl §2"'-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'Elal’-in-Tr1 al’Cvl-empty c¢62' El-in-Cvl-inter-Upsilonlstar
c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star Adm)
obtain a1’ §1"
where one: set a1’ C Eggy
and two: set 61" C Ny;NAp; U Cpy N YTpy N Nys N Apg
and three: 81 Egg; @ [¢] | Egg; @ 61" Q [v]1 Epg; @ a1’ € Trggy
/\al”] Vyi :Oz1/1 Vyi /\a]”] CVI = H
and four: 61”1 (Cy; N Ypy) =62" 1 Eggy
by blast

note one two three

moreover

have 61" 1 Epgs = 52" 1 Ergy
proof —
from projection-intersection-neutral|OF two, of E ggo)
Nvl-inter-Deltal-inter- E2-empty valid V2
have 61" 1 Epge = 611 (Cyr N Yy N Nys N Aprg N Eggg)
by (simp only: Int-Un-distrib2, auto)
moreover
from validV2
have OVI n TFI n NVQ n AFQ n EESQ = CVI n TFI n NV? N AF?

252

by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately have 61" 1 Epgy = 61" 1 (Cy; N Ty N Nyg N Apy)
by simp
hence 61 ”1 Epgs = 51" (CVI N TFI) 1 (NVQ N AFQ)
by (simp add: projection-def)
with four have 61”1 Epgo = 62”1 Egg; 1 (Nyg N Arpg)
by simp
hence 61" 1 Epgy = 52" 1 (NVQ N Arg) 1 Eggq
by (simp only: projection-commute)
with §2"'-in-N2-inter-Delta2star show ?thesis
by (simp only: list-subset-iff-projection-neutral)
qed
ultimately show ?thesis
by blast
next
assume v'-notin-E1: v' ¢ Eggy

have [(3 @ [v]) | Epg; @ al’ € Trgg; ;
al’] Cyy = [l; set ((c #62") 1 Eggy) € Cyy N Try;
ce CyNnNTr;set 52" C Nyo N Arg;
Adm V o (TT(ESI II ESQ)) ﬁ C]]
= J a1 61" (set al”" C Eggy A set 61" C Ny,
NAp; U Cpy 0Ty N Nys N Apg
ANB1Egs; @l Egg; @61"Q [v] 1 Egg; @al” € Trgg,
Aol Vyi =al’ Vyi Aal' CV] =
AS1" Eggo = 621 EESI)
proof (induct length ((¢ # 62'") | Egg;) arbitrary: 8 al’ ¢ §2")
case (

from 0(2) validESI have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H - NV] n AFZ @] CVI NYr;N Nyg n AFQ
by auto
moreover
have [1 Epgq Q [C] 1 Ergy @ H @ ['U/] 1 Ergy @al'e Tregy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Epgy
by (simp add: projection-def, auto)
ultimately show %thesis
by (simp add: projection-concatenation-commute projection-def)
qged
moreover
have a1’1 Vy;=al’1 Vy; ..
moreover
note 0(3)
moreover
from 0(1) have [| | Egge = 62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)

253

ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where ¢’-in-E1: ¢’ € Eggy
and c¢d2"-is-uc’v: c # 62" =p Q] Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-pvE1: n = length (p Q@ v) 1 Eggy)
by blast

from Suc(5) c¢-in-E1 ¢62""-is-pc'v have set (u1 Egg; @ [¢]) € Cyy N Ty

by (simp only: ¢§2"'-is-uc'v projection-concatenation-commute projection-def, auto)
hence c¢’-in-Cuvl-inter-Upsilonl: ¢' € Cyy; N YTy

by auto
hence c¢’-in-Cvl: ¢’ € Cy; and c¢’-in-Upsiloni: ¢’ € Ty

by auto
with validV1 have c’-in-El: ¢’ € Eggy

by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢§2"-is-uc’v have c-is-c”: ¢ = ¢’ and 62"-is-v: §2" = v
by auto
with ¢'-in-Cvl-inter-Upsilonl have ¢ € Cy);
by simp
moreover
from v’-notin-E1 Suc(3) have (81 Egg;) @ a1’ € Trggy
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V1 o1 Trgg; (81 Eggy) ¢
proof —
from Suc(8) obtain v
where yov-is-Bov: v 1 (e V) =81 (¢ V)
and vyc-in-Tr: (v Q [c]) € Tr(gs1 | ES2)
unfolding Adm-def
by auto

from c-is-¢’ ¢’-in-E1 ~yc-in-Tr have (v | Eggy) Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; 1 (01 V1) =B 1 Eggy 1 (01 V1)
proof —
from ~yov-is-Bov have v | Egg; 1 (e V) =81 Egg; 1 (e V)
by (metis projection-commute)
with plvl-subset-gv-inter-E1 have v 1 (o1 V1) =1 (01 V1)
by (metis Int-subset-iff ~vov-is-Bov projection-subset-elim)

254

thus %thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qged
moreover
note BSIA1
ultimately obtain a1’
where one: (81 Egg;) @ [c] @ al’ € Trgg;
and two: a1’ 1 Vy; =al’l Vyy
and three: a1’ 1 Cyy =[]
unfolding BSIA-def
by blast

let ?DELTA1" = v | Eggy

from one validES1 have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from vE1-empty

have set ?DELTA1" C NVJ n AFI U CVI N TF] N NVQ n AFQ
by simp

moreover

from c-is-c’ ¢’-in-E1 one v'-notin-E1 vEI1-empty

have (ﬂ 1 EESI) @ [C] W EES] @ ?DELTA1" @ [U’] 1 EESI @ Oé]” S TTESI
by (simp add: projection-def)

moreover

note two three

moreover

from vEI-empty §2"-is-v have ?DELTA1" | Eggs = 62" |1 Eggy
by (simp add: projection-def)

ultimately show ?thesis
by blast

next

case (Cons z xs)

with ¢62"-is-pc'v

have p-is-c-zs: p = [c] @ zs and §2"-is-xs-c’-v: 62" = 25 Q [¢'] Q v
by auto

with n-is-length-pv E1 have n = length ((c¢ # (zs Q v)) | Eggy)
by auto

moreover

note Suc(3,4)

moreover

have set ((c¢ # (zs Q v)) 1 EFggy) € Cy; N Yy
proof —

have res: ¢ # (zs Q v) =[] @ (zs Q v)
by auto

from Suc(5) c62"-is-puc’v p-is-c-vs vE1-empty

show ?thesis
by (subst res, simp only: c§2''-is-uc'v projection-concatenation-commute

255

set-append, auto)
ged
moreover
note Suc(6)
moreover
from Suc(7) §2"-is-zs-c’-v have set (zs @ v) C Nyg N Apg
by auto
moreover note Suc(8) Suc(1)[of czs Qv B al’]
ultimately obtain ¢ ~
where one: set § C Egg;
and two: set v C Ny; N Ap; U Cpy N Ty N Nyo N Arp
and three: B1 Egg; @ [c] 1 Egg; @~y @Q [v] 1 Egg; @ 6 € Trggy
and four: 6 | Vy; =al'l Vyy
and five: § 1 Cyy = |]
and siz: v 1 Egge = (xs Qv) | Eggy
by blast

let PBETA =1 Egg; @ [c] 1 Eggy @ v

from c¢'-in-Cvl-inter-Upsilonl have ¢’ € Cy)
by auto
moreover
from three v'-notin-E1 have ?BETA Q § € Trpg,;
by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 o1 Trpg; ¢BETA ¢’
proof —
have ?BETA Q [¢'] € Trpg;
proof —
from Suc(7) ¢'-in-Cvi-inter-Upsilonl §2'-is-zs-c'-v
have ¢’ € OVJ NYrsN NVQ n AFQ
by auto
moreover
from validES1 three have ?BETA € Trgg;
by (unfold ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES1-C1-inter-Upsilonl-inter-N2-inter-Delta2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note BSIA1
ultimately obtain a1’

256

where bsia-one: ?BETA Q [¢'| @ a1l € Trggy
and bsia-two: a1’ 1 Vyy; =61 Vyy

and bsia-three: a1’ Cyy =]

unfolding BSIA-def

by blast

let ?DELTA1" = v @ [¢]

from bsia-one validES1 have set a1 C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" C Ny NAp; U Cy; N YTpy N Nys N Apg
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v
have ¢’ € Cy;NTr; N Nys N Arg
by auto
with two show ?thesis
by auto
qed
moreover
from bsia-one v’-notin-E1
have 81 Fgg; @Q [c] | Egg; @ ?DELTA1"” Q [v 1 Egg; @ al” € Trgg;
by (simp add: projection-def)
moreover
from bsia-two four have a1’ 1 Vy; = al’1 Vyy
by simp
moreover
note bsia-three
moreover
have ?DELTA1" | Epge = 62" 1 Epg;
proof —
from validV2 Suc(7) §2"'-is-zs-c’-v have ¢’ € Eggg
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E1 c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'Elal’-in-Tr1 a1'Cvl-empty c§2'" El-in-Cvl-inter-Upsilonlstar
c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star Adm)
show %thesis
by blast
qed
then obtain a1’ 61"
where a1 ”-in-Elstar: set a1” C Eggy
and &1 ""-in-N1-inter-Deltalstar:set 61" C Nyy N Apy; U Cpy N Yp; N Nyg N Apg
and fEI1-cE1-61"-v'El-a1"-in-Tr1:
B1Egs; @[] 1 Egs; @é1" Q@ [v] 1 Egg; @al” € Trygg,

257

and al”"Vvl-is-al'Vol: a1’ 1 Vi =al'] Vyy
and al”Cvl-empty: a1’ 1 Cypy =]

and §1 ”EQ—iS—(;Q”EI: 61" 1 EE52 = 52”W EE'S]
by blast

from BE1-cE1-01"-v'El-a1’-in-Tr1 BE2-cE2-62"-v'E2-a2"-in-Tr2 validES1
validES2

have §1'-in-Elstar: set 61" C Egg; and §2"-in-E2star: set 62" C Eggg
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with 61" E2-is-62"'E1 merge-propertylof 61" Egg; 62" Eggs] obtain ¢’
where §'E1-is-61': 6" 1 Egg; = 61"
and §'E2-is-62": 6" | Egge = 62"
and §’-contains-only-01""-62"-events: set 6’ C set 51" U set 62"
unfolding Let-def
by auto

let ?TAU = 3 Q [c] @ 4§’ Q [v]
let LAMBDA = o1 Vy,

let 271 = a1’

let 272 = a2

have ?TAU € TT(ESI | ES2)
proof —
from BE1-cE1-61"-v'El-a1"-in-Tr1 6'El-is-01"" validES1
have § 1 Egg; Q [c] 1 Egg; @ 6" Eggy @ [v)] | Eggy € Trgg;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3@ [c] @¢' @ [v]) | Egg; € Trgs;
by (simp add: projection-def, auto)
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62" validES2
have 81 Epge Q [c] 1 Eggs @461 Egge @ [v'] 1 Egge € Trgss
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (8 @ [d] @ 3’ @ [v') | Epgy € Trig,
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE §'-contains-only-61""-62" -events
61"-in-Elstar 62"'-in-E2star
have set (3 Q [c] @ 6" @ [v]) C Egg; U Eggs
unfolding composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?thesis
unfolding composeES-def
by auto
qed
hence set ?TAU - E(ES] II ESQ)
unfolding composeES-def
by auto
moreover

258

have set ZLAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note al’’-in-Elstar a2''-in-E2star
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 §'E1-is-61""
have ?TAU | Egg; @ ?T1 € Trgg;
by (simp only: projection-concatenation-commute, auto)
moreover
from BE2-cE2-62"-v'E2-a2"-in-Tr2 6'E2-is-02"
have ?TAU | Egge Q 272 € Trggs
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA | Epg, = ?T11 Vy
proof —
from propSep Views have ?LAMBDA |1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from a1'"-in-Elstar propSep Views
have ¢T1 W VV = ?T1] VV]
unfolding properSeparationOf Views-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’'Vwi-is-a Vol al’' Vul-is-al'Vul
ultimately show ?thesis
by simp
qed
moreover
have ?LAMBDA | Eggy = ?T2 1 Vy
proof —
from propSep Views have ?LAMBDA |1 Egge = a1 Vyy
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from «2''-in-E2star propSep Views have ?T2 1 Vy, = 272 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vw2 a2 Vu2-is-a2’' Vvl
ultimately show ?thesis
by simp
qed
moreover
note a1’ Cvi-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU Q ¢ € TT(ESJ | ES2)
and] Vy = ?LAMBDA
and t] Cy =[]
by blast
moreover
have set §' C Ny N Arp
proof —
from §'-contains-only-61""-62""-events §1''-in-N1-inter-Deltalstar

259

§2""-in-N2-inter-Delta2star
have set §' C NVI N AFI U Nvg N AFQ
by auto
with Delta1-N1-Delta2-N2-subset-Delta Nvl-union-Nv2-subsetof-Nuv
show %thesis
by auto
qed
ultimately have 3a’ ' (set Y C Ny NAp AB Q[@~ @ [v] Q@a’e Tr(gsi | Bs2)
Aa’l Vy =a Vv/\Oé/] CV:H)
by (simp only: append-assoc, blast)
}
moreover {
assume Nv2-inter-Delta2-inter-El-empty: Nyo N Apg N Eggy = {}
and Nvl-inter-Deltal-inter-E2-subsetof-Upsilon2: Ny; N Ap; N Egge € Yo

let PALPHA1"-DELTA1"” =3 a1’ 61" (
set a1" C Epgy A set 61" C Ny N Apy)
AB1Egs; @[c 1 Egg; @61"Q [0] Egg; @al” € Trgg;
/\all/w VV] :a1'1 Vv1 /\a]”] CVI = H)

from c-in-Cuv-inter-Upsilon v'-in- Vu-inter-Nabla valid V1
have ¢ ¢ Epg; V (c € Egg; Av' & Eggy) V (c € Eggy Av' € Eggy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E1: ¢ ¢ Eggy

from validES1 Bv'Elal’-in-Trl have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Ny; N Apy
by auto
moreover
from Bv'Elal’-in-Trl c-notin-E1
have 31 Egg; @ [c] | Egg; @[] @ [v]] Egg; @ a1’ € Trgg;
by (simp add: projection-def)
moreover
have a1’'1 Vy;=al’l Vy; ..
moreover
note a1’'Cvl-empty
ultimately have ?ALPHA1"-DELTA1"
by blast
}
moreover {
assume c-in-E1: ¢ € Eggy
and v’-notin-E1: v' ¢ Epg;

from c-in-FE1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cvi-inter-Upsiloni: c € Cyy N Y1y
unfolding properSeparationOfViews-def by auto

hence c € Cy);

260

by auto
moreover
from Sv'Elal’-in-Tr1 v'-notin-E1 have 1 Egg; @ a1’ € Trpgy
by (simp add: projection-def)
moreover
note a1’'Cvi-empty
moreover
have Adm V1 oI Trgg; (81 Egsy) ¢
proof —
from Adm obtain v
where yov-is-Bov: v 1 (e V) =81 (0 V)
and ~yc-in-Tr: (v Q [¢]) € Tr(gsi | ES2)
unfolding Adm-def
by auto

from c-in-E1 ~vyc-in-Tr have (v | Eggy) Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; 1 (01 V1) =B 1 Egg; 1 (01 V1)
proof —
from vyov-is-Bov have v 1 Egg; 1 (0 V) =81 Eggy 1 (e V)
by (metis projection-commute)
with glvl-subset-gv-inter-E1 have v | (o1 V1) = 81 (01 V1)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qed
moreover
note BSIA1
ultimately obtain o1’
where one: 81 Egg; @ [c] @ a1’ € Trgg;
and two: «al’1 Vy;=al’l Vyy
and three: a1’ 1 Cy; = ||
unfolding BSIA-def
by blast

from one validES1 have set a1’ C Egg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Ny; N Apy
by auto
moreover
from one c-in-E1 v’-notin-E1
have 31 Epg; @ [c] 1 Egg; @[] Q@ [v] 1 Eggy @ a1’ € Trggy
by (simp add: projection-def)
moreover
note two three
ultimately have ?ALPHA1"-DELTA1"
by blast

261

}

moreover {
assume c-in-E1: ¢ € Eggy
and v'-in-El: v’ € Eggy

from c-in-E1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilon1
have c-in-Cvl-inter-Upsilonl: ¢ € Cy; N Yy
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E1 propSep Views v'-in- Vv-inter-Nabla
Nabla-inter-E1-subset-Nablal
have v’ € Vy,; N Nabla T'1
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E1 Bv'Elal’-in-Trl have 8| Egg; Q [v] @ a1’ € Trggy
by (simp add: projection-def)
moreover
note a1'Cvl-empty
moreover
have Adm V1 o1 Trggy (81 Eggy) ¢
proof —
from Adm obtain v
where yguv-is-fov: v 1 (¢ V) =81 (e V)
and vyc-in-Tr: (v Q [c]) € Tr(gsi | ES2)
unfolding Adm-def
by auto

from c-in-E1 ~yc-in-Tr have (v 1 Eggy) @Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v 1 Egg; 1 (01 V1) =B 1 Egg; 1 (el V1)
proof —
from vov-is-Bov have v | Egg; 1 (¢ V) =B 1 Eggy 1 (e V)
by (metis projection-commute)
with glvI-subset-pv-inter-E1 have v | (o1 V1) = 81 (o1 V1)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qged
ultimately show ?thesis unfolding Adm-def
by auto
qged
moreover
note FCIA1
ultimately obtain a1’/ 61"
where one: set §1"' C Nyy; N Apy
and two: 81 Fgg; Q] @617 Q [v']| @ al” € Trgg;
and three: a1’ 1 Vy;=al'1 Vyy
and four: a1’ 1 Cy; =]
unfolding FCIA-def
by blast

262

from two validES1 have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

note one

moreover

from two c-in-E1 v'-in-E1

have 81 Egg; Q [c] | Egg; @ 51”7 @ v 1 Epg; @ al’” € Tresy
by (simp add: projection-def)

moreover

note three four

ultimately have ?ALPHA1"-DELTA1"
by blast

}

ultimately obtain a1’/ 61"
where a1 ”-in-Elstar: set a1” C Eggy
and &1 '"-in-N1-inter-Deltalstar:set 61" C Ny; N Apy
and fEI-cE1-61"-v'El-a1"-in-Tr1:
B1ERs; @[cd 1 Egg; @61"Q [v]] Eggy @ al” € Trgg;
and al"Vul-is-al'Vvl: a1’ 1 Vy;=al’l Vy;
and a1’ Cvl-empty: a1’ 1 Cyy =]
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset- Upsilon2 propSep Views
have cE2-in-Cv2-inter-Upsilon2: set ([c] 1 Eggg) € Cya N Ty
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from 81 "'-in-N1-inter-Deltalstar Nvl-inter-Deltal-inter-E2-subsetof- Upsilon2
propSep Views disjoint-Nvi-Vv2
have §1''E2-in-Cv2-inter-Upsilon2star: set (61" 1 Eggg) € Cygs N Trg
proof —
from §1''-in-N1-inter-Deltalstar
have eq: 61" 1 Epge = 01" 1 (Ny; N Ap; N Eggg)
by (metis Int-commute Int-left-commute Int-lower2 Int-lower!
projection-intersection-neutral subset-trans)

from validV2 Nvl-inter-Deltal-inter- E2-subsetof-Upsilon2
propSep Views disjoint-Nvi-Vv2

have NV] n AF] N EESQ - CV? n TFQ
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

thus ?thesis

by (subst eq, simp only: projection-def, auto)
qed

have c¢d1" E2-in-Cv2-inter-Upsilon2star: set ((c # 61"") 1 Eggs) C Cya N Ty
proof —
from cE2-in-Cv2-inter-Upsilon2 51" E2-in-Cv2-inter- Upsilon2star
have set (([¢] @ 51”) 1 EES,Q) C CysNTpry
by (simp only: projection-concatenation-commute, auto)
thus %thesis

263

by auto
qed

have 3 a2 §2". set a2" C Eggg
A set 527 C Nyo N Ars U Cpa N Yo N Ny N Apyg
AB1 Epgg @[c | Eggp @362"” Q [v]] Epgp @ a2” € Trpgy
A chl/w VVQ = O¢2/1 Vya A a2’ CV2 = H
A62" Epg; = 6171 Eggs
proof cases
assume v'-in-E2: v' € Eggy
with Nabla-inter-E2-subset-Nabla2 propSep Views v'-in- Vo-inter-Nabla
have v’-in-Vv2-inter-Nabla2: v’ € V5 N Nabla T'2
unfolding properSeparationOfViews-def by auto

have [(8 @ [v]) | Egge @ a2’ € Trggy ;
a2’ Cyg = [l; set (¢ # 61") 1 Egge) € Cyp N Trg;
(NS CVHTF ;setd]”gNVJ ﬂAFI;
Adm V ¢ (Tr(gsy | gsz)) B]
=3 a2 62"
(set a2 C EESQ A set 62" C NV2 N AFQ U OV? N TFQ n NVI n AFI
NB1Epsy @[c1 Eggg @62 Q [v]1 Epgg @ a2” € Trpgg
A a2’ Vye = a2’ Vys A a2’ Cvg =
Ad2"" (CVQ n YFQ) =61""1 EESQ)
proof (induct length ((c¢ # 61'") | Eggg) arbitrary: 8 a2’ ¢ 61"
case (

from 0(2) validES2 have set a2’ C Eggs
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H - Nyg n AFQ @] CVQ n TFQ N NV] n AFI
by auto
moreover
have 31 Eggy @ [c] | Egge @[] @ [v]] Eggp @ a2’ € Trpgy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Epgo
by (simp add: projection-def, auto)
ultimately show %thesis
by (simp add: projection-concatenation-commute projection-def)
qged
moreover
have a2’'1 Vygs=a2'1 Vyy ..
moreover
note 0(3)
moreover
from 0(1) have [| 1 (Cys N Yrg) = 81" 1 Egge
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next

264

case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggy
and c¢§1"-is-puc’'v: c # 61" =p Q] Qv
and vE2-empty: v 1 Eggo = ||
and n-is-length-pr E2: n = length (p Q v) 1 Egge)
by blast

from Suc(5) ¢-in-E2 ¢61""-is-pc'v have set (u1 Egge @ [¢]) C Cyg N Ty
by (simp only: ¢61'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty
by auto
hence c¢’-in-Cv2: ¢’ € Cyg and c¢’-in-Upsilon2: ¢’ € T1g
by auto
with validV2 have c’-in-E2: ¢’ € Eggy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

show Zcase
proof (cases p)
case Nil
with ¢61"-is-puc’v have c-is-¢”: ¢ = ¢’ and §1"-is-v: §1" = v
by auto
with c¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg N Trg
by simp
moreover
note v’-in- Vu2-inter-Nabla2
moreover
from v'-in-E2 Suc(3) have (81 Egge) @ [v] Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
from Suc(8) obtain v
where yov-is-Bov: v 1 (e V) =81 (¢ V)
and vyc-in-Tr: (v Q [c]) € Tr(gs1 | ES2)
unfolding Adm-def
by auto

from c-is-¢’ ¢’-in-E2 ~yc-in-Tr have (v |1 Eggs) Q [c] € Trggs
by (simp add: projection-def composeES-def)
moreover
have v 1 Eggo 1 (02 V2) = 81 Egga 1 (02 V2)
proof —
from vyouv-is-Bov have v | Eggs 1 (¢ V) =B 1 Egge 1 (e V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v 1 (02 V2) = 1 (02 V2)
by (metis Int-subset-iff ~vov-is-Bov projection-subset-elim)

265

thus %thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qged
moreover
note FCIA2
ultimately obtain a2’ v
where one: set v C Nys N Arg
and two: 81 Egge @ [c] @y @ [v] @ a2” € Trggs
and three: 2”1 Vyg=a2'1 Vyg
and four: a2'' 1 Cyy =[]
unfolding FCIA-def
by blast

let DELTA2" = v | Egge @ ~y

from two validES2 have set a2’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from one vE2-empty
have set ?DELTA2" C Nys N Apg U Cps N Ypre N Nyg N Apyg
by auto
moreover
have 81 Egge @ [c] | Egge @ ?DELTA2" @ [v] |1 Egge @ a2” € Trpgs
proof —
from c-is-¢’ ¢’-in-E2 have [c] = [c] | Egga
by (simp add: projection-def)
moreover
from v'-in-E2 have [v] = [v] | Eggo
by (simp add: projection-def)
moreover
note vE2-emptly two
ultimately show ?thesis
by auto
qed
moreover
note three four
moreover
have ?DELTA2" 1 (Cyg N Ypp) = 61" 1 Eggg
proof —
have 7 | (Cyg N Trg) =[]
proof —
from validV2 have NV? N AFQ n (CV2 n Trg) = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cyg N Ty]
show ?thesis
by (simp add: projection-def)
ged

266

with §1"-is-v vE2-empty show ?thesis
by (simp add: projection-concatenation-commute)
qged
ultimately show ?thesis
by blast
next
case (Cons xs)
with ¢d1"-is-pc'v

have p-is-c-zs: p = [c] @ zs and §1""-is-zs-c’-v: §1"" = xs @ [¢'| Qv
by auto
with n-is-length-uv E2 have n = length ((c¢ # (zs Q v)) | Eggg)
by auto
moreover
note Suc(3,4)
moreover
have set ((c # (zs Q v)) | Egge) € Cyg N Ty
proof —
have res: ¢ # (zs Q v) = [¢] Q@ (zs @ v)
by auto

from Suc(5) c61"-is-pc'v p-is-c-xs vE2-empty
show ?thesis
by (subst res, simp only: c61""-is-uc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) §1"-is-zs-c’-v have set (zs @ v) C Ny; N Apy
by auto
moreover note Suc(8) Suc(1)[of c zs Q v 3 a2’
ultimately obtain ¢ ~
where one: set 6 C Eggs
and two: set v C Nyp N Arg U CV2 N Yre N Ny N Ay
and three: B1 Epge Q [c] | Egge @ v Q [v] | Egge @ 8 € Trggs
and four: § | Vyg = a2'1 Vg
and five: § 1 Cyyp = |]
and siz: v 1 (Cpa N YTpg) = (s Qv) | Eggs
by blast

let BETA =31 Eggs Q [c] | Eggs @ v

note c’-in-Cv2-inter-Upsilon2 v'-in- Vu2-inter-Nabla2

moreover

from three v'-in-E2 have ?BETA Q [v'| @ § € Trggs
by (simp add: projection-def)

moreover

note five

moreover

have Adm V2 02 Trpgs ?BETA ¢’
proof —

267

have ?BETA Q [¢| € Trggs
proof —
from Suc(7) ¢'-in-Cv2-inter-Upsilon2 61""-is-zs-¢'-v
have ¢’ € OV? N TFQ n NVI n AF]
by auto
moreover
from validES2 three have ?BETA € Trpgo
by (unfold ES-valid-def traces-prefixclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES2-C2-inter- Upsilon2-inter-N1-inter-Delta 1
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note FCIA2
ultimately obtain a2’ §’
where fcia-one: set ' C Nyg N Apg
and fcia-two: ?BETA @ [¢'] @ §' @ [v)] @ a2 € Trpgs
and fcia-three: a2' 1 Vyp =461 Vyg
and fcia-four: a2’ 1 Cyg = ||
unfolding FCIA-def
by blast

let ?DELTA2" = v @ [¢']| @ ¢’

from fcia-two validES2 have set a2’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" C Nys N Apg U Cys N Yre N Nyg N Apyg
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-xs-c'-v
have ¢’ € ng N TFQ N Ny;N AFZ
by auto
with two fcia-one show ?thesis
by auto
qed
moreover
from fcia-two v'-in-E2
have 81 Eggo @ [¢] | Egge @ ?DELTA2" @ [v] 1 Egge @ a2” € Trpgs
by (simp add: projection-def)
moreover
from fcia-three four have a2’ 1 Vg = a2’'1 Vi,
by simp
moreover
note fcia-four
moreover

268

have ?DELTA2" 1 (CVQ N TF?) =401"1 Eggo
proof —
have 6’1 (Cyg N YTprg) = ||
proof —
from fcia-one have V e € set §'. ¢ € Nyp N Ay
by auto
with validV2 have V e € set §'. e ¢ Cyg N Ty
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by (simp add: projection-def)
qed
with c¢’-in-E2 ¢’-in-Cv2-inter-Upsilon2 §1"'-is-zs-c’-v vE2-empty six
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2’'Cv2-empty
cd 1" E2-in-Cv2-inter- Upsilon2star c-in-Cv-inter-Upsilon §1"'-in-N1-inter-Deltalstar Adm)]
obtain a2’ 62"
where one: set a2 C Epgo
and two: set 62" C NV? N AFQ U OV2 n TFQ n NVI N AFZ
and three: B1 Egge Q [c] | Egge @ 62" @ [v] 1 Epge Q@ a2” € Trggs
A a2’ Vys = a2’ Vys A a2’ Cys = (]
and four: 62" 1 (CV2 n TFQ) =61""1 Eggo
by blast

note one two three

moreover

have 62" 1 Egg; = 61" 1 Epgs
proof —

from projection-intersection-neutral|OF two, of E pgy]
Nv2-inter-Delta2-inter- E1-empty validV'1

have 62" Epg; = 62" 1 (Cya N Ypg N Nyy N Apy N Eggy)
by (simp only: Int-Un-distrib2, auto)

moreover

from validV1

have Cys N Yro N Ny N Ap; N Eggy = Cpos N Tre N Nyy N Apy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

ultimately have §2'' | Epgy = 52" (Cya N YTpgN Nyy N Apg)
by simp

hence 62" | Egg; = 02" 1 (Cys N YTrg) 1 (Ny; N Apy)
by (simp add: projection-def)

with four have 62”1 Epg; = 61" 1 Egge 1 (Ny; N Arpy)
by simp

hence 52//1 Epg; = 6]”] (NVZ N AFZ) 1 Erga
by (simp only: projection-commute)

with 61"-in-N1-inter-Deltalstar show ?thesis

269

by (simp only: list-subset-iff-projection-neutral)
qged
ultimately show ?thesis
by blast
next
assume v'-notin-E2: v' ¢ Epgy

have [(8 @ [v]) | Egge @ a2’ € Trggy ;

a2’ Cyg = [|; set ((c # 61") 1 Eggp) € Cya N Trg;
ce CyNTYp;setdl” C Ny;NApyg;

Adm 'V o (TT(ESI I ESQ)) Becl]

=3 a2 62"
(set a2’ C Epga N set 62" C Nyo N AFQ U CyaNTYreN Nyy N Apy
NB1Epsy @[c]1 Epgg @62 @ [v]1 Epgp @ a2” € Trpgy
A a2’ Vye = a2’ Vya A a2’ CV2 = H

A 62" Epgy = 6171 EESQ)

proof (induct length ((¢ # 61'") 1 Eggg) arbitrary: S a2’ ¢ 61")

case ()

from 0(2) validES2 have set a2’ C Eggs
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nys N Apg U CVQ N YTrgN Ny N Ay
by auto
moreover
have 31 Eggy @ [c] | Egge @[] @ [v]] Eggp @ a2’ € Trggg
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show ?thesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a2’ 1 Vygs=a2’'1 Vyg ..
moreover
note 0(3%)
moreover
from 0(1) have [| | Egg; = 61" 1 Eggo
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last{OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggo
and c61"-is-pc’v: c # 517" =pQ@lc) Qv
and vE2-empty: v | Eggy = ||
and n-is-length-uv E2: n = length ((p Q v) 1 Eggo)
by blast

270

from Suc(5) c¢-in-E2 ¢61""-is-pc’v have set (n 1 Egge @ [¢]) € Cyo N Ty

by (simp only: ¢61''-is-uc'v projection-concatenation-commute projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty

by auto
hence c¢’-in-Cv2: ¢’ € Cyg and c¢’-in-Upsilon2: ¢’ € T1g

by auto
with validV2 have c’-in-E2: ¢’ € Eggy

by (simp add:isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢61"-is-puc’v have c-is-¢”: ¢ = ¢’ and §1"-is-v: §1" = v
by auto
with c¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg
by simp
moreover
from v'-notin-E2 Suc(3) have (8 1 Egge) Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V2 02 Trggs (61 Egge) ¢
proof —
from Suc(8) obtain ~y
where youv-is-fov: v 1 (e V) =81 (e V)
and ye-in-Tr: (v Q [¢]) € Tr(gs1 | ES2)
unfolding Adm-def
by auto

from c-is-¢’ ¢’-in-E2 ~yc-in-Tr have (v 1 Eggs) Q [c] € Trggs
by (simp add: projection-def composeES-def)
moreover
have v | Eggo 1 (02 V2) = B 1 Egga 1 (02 V2)
proof —
from vyouv-is-Bov have v | Egga | (e V) =81 Eggsz 1 (e V)
by (metis projection-commute)
with p2v2-subset-gv-inter-E2
have v 1 (02 V2) = B 1 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus %thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qed
moreover
note BSIA2
ultimately obtain a2’
where one: (81 Egge) @ [c] @ a2” € Trggs

271

and two: a2’ 1 Vyg =a2’'1 Vyy
and three: a2’ 1 Cyy = ||
unfolding BSIA-def

by blast

let ?DELTAQ” =V W EESQ

from one validES2 have set a2 C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from v E2-empty

have set ?DELTA2" C Nys N Apg U Cyps N Ype N Nyg N Apyg
by simp

moreover

from c-is-¢’ ¢’-in-E2 one v'-notin-E2 vE2-empty

have (ﬁ] EESQ) Q [C] '\ EES.? @ ?DELTA2" @ [U’]] EESQ @ a2” S TTE52
by (simp add: projection-def)

moreover

note two three

moreover

from vE2-empty §1'"-is-v have ?DELTA2" | Epg; = 61" 1 Eggo
by (simp add: projection-def)

ultimately show ?Zthesis

by blast
next

case (Cons z xs)

with ¢§1"-is-puc’v have p-is-c-zs: p = [c] @ xs
and §1"-is-zs-c’-v: 61" = zs Q [¢] Qv
by auto

with n-is-length-uv E2 have n = length ((c¢ # (zs Q v)) 1 Egga)
by auto

moreover

note Suc(3,4)

moreover

have set ((c¢ # (zs Q v)) | Egge) € Cyg N Ty
proof —

have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) c61"-is-pc'v p-is-c-xs vE2-empty
show ?thesis
by (subst res, simp only: c¢61'"~is-pc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) §1"-is-zs-c’-v have set (zs @ v) C Ny; N Apy
by auto
moreover note Suc(8) Suc(1)[of c zs Q@ v B a2]]
ultimately obtain ¢ ~
where one: set 6 C Eggo

272

and two: set v C NV? N AFQ @] CV2 n TFQ n NVI n AF]

and three: f 1 Egge Q [c] 1 Epgy @~ @ [’U’] 1 Egge @6 € Trpgo
and four: § | Vyg = a2'1 Vg

and five: § 1 Cyg = ||

and siz: v 1 Egg; = (s Qv) | Eggs

by blast

let YBETA :,BW EESQ@ [C] 1 EESQ@’Y

from c’-in-Cv2-inter-Upsilon2 have ¢’ € Cyy
by auto
moreover
from three v'-notin-E2 have ?BETA @ § € Trggo
by (simp add: projection-def)
moreover
note five
moreover
have Adm V2 02 Trpgs ?BETA ¢’
proof —
have ?BETA Q [¢'] € Trpgs
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-ws-c’-v
have ¢’ € Cys N Trg N Ny; N Arg
by auto
moreover
from validES2 three have ?BETA € Trpgs
by (unfold ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES2-C2-inter- Upsilon2-inter-N1-inter-Deltal
ultimately show ?thesis
unfolding total-def
by blast
qed
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where bsia-one: ?BETA Q [¢'] @ a2” € Trggs
and bsia-two: a2"' 1 Vyg =61 Vg
and bsia-three: a2''1 Cyg = |]
unfolding BSIA-def
by blast

let ?DELTA2" = v @ [c]

from bsia-one validES2 have set a2” C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)

273

moreover
have set ?DELTA2" C NV2 n AFQ @] Cyg n TFQ n NVI N Apy
proof —
from Suc(7) ¢'-in-Cv2-inter-Upsilon2 61'"-is-zs-c'-v
have ¢’ € OV? N TFQ N Ny;N Aryg
by auto
with two show ?thesis
by auto
qged
moreover
from bsia-one v'-notin-E2
have ﬁ 1 EESQ (@ [C] 1 EE52 @ ?DELTAQ” @ [1}/} 1 EESQ @ 062” S T?"ESQ
by (simp add: projection-def)
moreover
from bsia-two four have a2’ 1 Vyg = a2’ Vi,
by simp
moreover
note bsia-three
moreover
have QDELTAQ// 1 EES] =61 " 1 EESQ
proof —
from validV1 Suc(7) 61'"-is-zs-c’-v have ¢’ € Egg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E2 ¢’-in-Cv2-inter-Upsilon2 §1'"'-is-xzs-c’-v vE2-empty six
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?2thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2'Cv2-empty c§1'" E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon §1"'-in-N1-inter-Deltalstar Adm)]
show ?thesis
by blast
qed
then obtain a2’ 62"
where a2"-in-E2star: set a2' C Epgg
and 62 "-in-N2-inter-Delta2star:set 62" C Nyg N Apy U Cyg N Tre N Nyy N Apyg
and BE2-cE2-02"-v'E2-a2"-in-Tr2:
B1 Egse @] 1 Eggg @ 62" Q [v]] Eggy @ a2 € Trygy
and a2 Vv2-is-a2'Vv2: a2 1 Vyg=a2'] Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
and 62" E1-is-01"E2: 62" 1 Epgy = 61" 1 Epgs
by blast

from BE2-cE2-02"-v'E2-a2"-in-Tr2 BE1-cE1-61"-v'El-a1’-in-Tr1
validES2 validES1

have §2'"-in-E2star: set 62" C Epgy and §1'"-in-Elstar: set 61" C Epg;
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with §2''E1-is-61" E2 merge-propertylof 62" Eggy 61" Egg;] obtain ¢’

274

where §'E2-is-62'": 6" 1 Epgy = 62"

and §'El-is-61": 6' | Egg; = 61"

and §’-contains-only-62"-61""-events: set §' C set 62" U set 61"
unfolding Let-def

by auto

let ?TAU = 3@ [c] @ §' @ [v]]
let ?LAMBDA = o | Vi,

let 272 = a2

let 71 = al”

have ?TAU € TT(ES] | ES2)
proof —
from BE2-cE2-02"-v'E2-a2"-in-Tr2 6'E2-is-62" validES2
have 31 Eggy @ [c] | Egge @ 6" 1 Egge @ [v)] 1 Eggg € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3 @ [c] @ §' @ [v]) | Egge € Trgge
by (simp add: projection-def, auto)
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 6'El-is-01"" validES1
have § 1 Egg; Q [c] | Egg; @ 6" Eggy @ [v)] | Eggy € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3@ [c] @¢' @ [v]) | Egg; € Trgs;
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE
§'-contains-only-62"''-61""-events §2"'-in-E2star §1''-in-Elstar
have set (8 Q [c] @ §' Q [v]) C Egge U Eggy
unfolding composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?Zthesis
unfolding composeES-def
by auto
qed
hence set ?TAU C E(ESI | ES2)
unfolding composeES-def
by auto
moreover
have set YLAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note a2’’-in-E2star al''-in-Elstar
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62"
have ?TAU 1 EESQ Q@ ?T2 € TTESQ
by (simp only: projection-concatenation-commute, auto)
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 §'El-is-61"

275

have ?TAU | Egg; @ ?T1 € Trggy
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA 1 Egge = ?T2 1 Vy
proof —
from propSep Views have ?LAMBDA 1 Eggg = a1 Vyy
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from a2''-in-E2star propSep Views have ?T2 1 Vy, = 272 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vo2 a2’ Vu2-is-a2' Vvl
ultimately show ?thesis
by simp
qed
moreover
have ?LAMBDA 1 Egg; = ?T1 1 Vy
proof —
from propSep Views have ?LAMBDA |1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from «1’'-in-Elstar propSep Views have ?T1 1 Vy = ?T1 | Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’Vwi-is-a Vol al’' Vul-is-al'Vul
ultimately show ?thesis
by simp
qed
moreover
note a2’ Cv2-empty a1’ Cvi-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU Q t € TT(ES] | ES2)
and t1 Vy = LAMBDA
and t] Cy =[]
by blast
moreover
have set §' C Ny N Ap
proof —
from &'-contains-only-02'"-61""-events
§2""-in-N2-inter-Delta2star 61" '-in-N1-inter-Deltalstar
have set §' C NV? N AFQ U NVI N AF]
by auto
with Deltal-N1-Delta2-N2-subset-Delta Nvl-union-Nv2-subsetof-Nv show ?thesis
by auto
qed
ultimately have 3a’ ' (set v C Ny NAp AB Q[@' @ [v] @a’e Tr(gs; | ES2)
ANa'TVy=alVyAa'lCy=])
by (simp only: append-assoc, blast)

ultimately have 3a’'v'. (set v C Ny NAp AB Q[@~y' @ [v]@a’e Tr(gsi | ES2)

276

Ao’ Vy =a Vv/\alw OV:H)
by blast

thus %thesis
unfolding FCIA-def
by blast
qed

theorem compositionality-R:
[RVI Trgs;; RV2 Trgse | = RV (Tr(gs; | Bs2))
proof —
assume RI1: R V1 Trpgy
and R2: RV2 T?”ESQ

{

fix 7/
assume 7’-in-Tr: 7’ € Tr(gs1 || ES2)
hence 7'El-in-Trl: 7' 1 Egg; € Trgsy
and 7'E2-in-Tr2: 7' | Egge € Trggs
unfolding composeES-def
by auto
with R! R2 obtain 71’ 72’
where 71'-in-Tr1: 71’ € Trggy
and 71'Cvl-empty: 71'1 Cy; =[]
and 71'Vui-is-t"-E1-Vol: 71" 1 Vy; =7"1 Egg; 1 Vyy
and 72"-in-Tr2: 72’ € Trggs
and 72'Cv2-empty: 72" 1 Cyg = ||
and 72 Vu2-is-t"-E2-Vv2: 72" 1 Vyo =7"1 Egga 1 Vg
unfolding R-def
by blast

have set [| € E(gg; || gs2)
by auto
moreover
have set (t'1 Vy) C Vy,
by (simp add: projection-def, auto)
moreover
from validES1 71'-in-Tr1 have 71'-in-E1: set 71’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from validES2 T2'-in-Tr2 have 12'-in-E2: set 72’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from 71'-in-Trl have [| | Egg; @ 71’ € Trgg;
by (simp add: projection-def)
moreover
from 72'-in-Tr2 have [| | Eggs @ 72’ € Trpgs
by (simp add: projection-def)
moreover
have 7' 1 Vv 1 Eggy = 711 Vy
proof —

277

from projection-intersection-neutral|OF 71'-in-E1, of Vy)] propSep Views
have 71'1 Vy =711"1 Vy;y
unfolding properSeparationOfViews-def
by (simp add: Int-commute)
moreover
from propSepViews have 7' 1 Vy, | Egg; =71 Vyy
unfolding properSeparationOfViews-def
by (simp add: projection-sequence)
moreover {
have 7’1 Egg; 1 Vy;=1"1(Egs; N Vyy)
by (simp add: projection-def)
moreover
from validV1 have Egg; N Vy; = Vyy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have 7' 1 Epg; | Vy; =7"1 Vyy
by simp
}
moreover
note 71'Vwl-is-t’-E1-Vul
ultimately show ?thesis
by simp
qed
moreover
have 7’1 Vy, | Egge =72"1 Vy
proof —
from projection-intersection-neutral|OF 72'-in-E2, of Vy)] propSep Views
have 72’1 Vy, =72'1 Vyy
unfolding properSeparationOfViews-def
by (simp add: Int-commute)
moreover
from propSepViews have 7' 1 Vy, 1 Eggo =7'1 Vg
unfolding properSeparationOfViews-def
by (simp add: projection-sequence)
moreover {
have 7’1 Epgol Vys = ' (EE52 N Vyg)
by (simp add: projection-def)
moreover
from validV2 have Epgs N Vyg = Vo
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately have 7' 1 Epgs | Vyg =71 Vg
by simp
}
moreover
note 72’ Vu2-is-t'-E2-Vv2
ultimately show ?Zthesis
by simp
qed
moreover
note 71'Cvl-empty 72 Cv2-empty generalized-zipping-lemma
ultimately have 3t. H Q@te TT(ESI || ES2) Nt Vy = 7' Vy ANt CV = H

278

by blast
}
thus Zthesis
unfolding R-def
by auto
qged

end
locale CompositionalityStrictBSPs = Compositionality +

assumes NV-inter-E1-is-NV1: Ny N Epgy = Nyy
and NV-inter-E2-is-NV2: Ny, N Epge = Nyg

sublocale CompositionalityStrictBSPs C Compositionality
by (unfold-locales)

context CompositionalityStrictBSPs
begin

theorem compositionality-SR:
[SR V1 Trpsy; SR V2 TTESQ]] — SRV (TT(ESZ I ESQ))
proof —
assume SR V1 Trggy
and SR V2 TTESQ
{
let V1'=(V = Vy; UNy;, N={}, C=Cyy)
let ?VQIZGV = Vys U Nyg, N = {}, C = Cyy D
let 2V’ =(V=Vy U Ny, N={}, CZCV)

from validV1 have V1'IsViewOnE:: isViewOn ?V1' Eggy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from validV2 have V3 IsViewOnEs: isViewOn ?V2' Epgo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnE: isViewOn 2V’ E(gsi1||Es2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV'1
have ngl n EES] = V?Vll

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have ngl n EE'SQ = V?Vgl

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EESI - C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EES,Q - C?V2/

unfolding properSeparationOfViews-def by auto
have N?V1/ N N?VQI :{}

279

by auto

note properSeparation-V1Vo=«V o1,y N Egg; = V?Vl” Vo N Egge = Vop,n
(C?V/ n EES] C C?Vlﬁ <C?V/ n EESQ - C_QV2/> <N?V1' N N?Vzl :f})

have wbci: Ngy + N Eggi={} A Ngp,r N Eggo={}
by auto

from <SR V1 Trpg, have R Vi’ Trpg;
using validES1 validV1 BSPTaxonomyDifferentCorrections.SR-implies- R-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from <SR V2 Trpge have R 2Vy' Trpgs
using validES2 validV2 BSPTaxonomyDifferentCorrections.SR-implies- R-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE1 Va'Is ViewOnEs
properSeparation-V1V2 wbcl
have Compositionality ES1 ES2 2V’ 2V’ 2V2’ unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with <R ?Vll TTESI) R ?Vzl T’"ESQ’ have R ?V, TT(ESIHESQ)
using Compositionality.compositionality-R by blast

from walidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTazonomyDifferentCorrections-def by auto
with <R .?V, TT(ES] HESQ)) have SR V TT(ESZ ”ES'Q)
using BSPTazonomyDifferentCorrections. R-implies-SR-for-modified-view by auto
}
thus ?thesis by auto
qed

theorem compositionality-SD:
[SD V1 Trgg;; SDV2 Trpge | = SDV (TT(ESI I ESQ))
proof —
assume SD V1 Trgg;g
and SD V2 Trggo
{
let 2V,'=(V = Vyr U Ny, N={}, C = Cyy4)
let ?VQIZGV = Vys U Nyg, N = {}, C = CV,Q)
let 2V’ ZG V=Vy U Ny, NZ{}, OZCV D

from validV1 have V1 'IsViewOnE: isViewOn ?V1' Eggy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from validV2 have Vs 'IsViewOnE>: isViewOn 2Vs’ Eggo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnkE: isViewOn 2V’ E(gs1)|Es2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

280

from propSepViews NV-inter-E1-is-NV1
have V?V’ N EES] = V?Vl/

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V?V’ N EESQ = V?Vz/

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EESI C C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EESQ C C?v2/

unfolding properSeparationOfViews-def by auto
have N?V1’ N N_QV2/ ={}

by auto

note properSeparation-ViVo=«V o,y N Eggy = Vop » (Vo N Eggg = Vo, »
(C?V/ n EESI C C?Vll) <C?V/ n EESQ - C?Vg” <N?V1/ n N?V2/ =15

have wbcl: N.?Vll n EESIZ{} A N.QVQI n EES,Q:{}
by auto

from «SD V1 Trgg; have BSD V1" Trpg,
using validES1 validV1 BSPTaxonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from «SD V2 Trpgy have BSD ?2Vs' Trpgs
using validES2 validV2 BSP TaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE, Vo 'IsViewOnEs
properSeparation-Y1 V2 wbcl
have Compositionality ES1 ES2 2V’ 2V, V5’
unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with <BSD ?Vll TTESI> <BSD ?VQI TTE52> have BSD ?Vl Tr(ESZHES,?)
using Compositionality.compositionality-BSD by blast

from wvalidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto
with (BSD .?V/ W(ESIHESQ)) have SD V TT(E'SZHESQ)
using BSPTaxonomyDifferentCorrections. BS D-implies-SD-for-modified-view by auto

}

thus ?thesis by auto
qed

theorem compositionality-SI:
[[SD Vi TT’ESZ; SD V2 TTESQ; SI V1 T’I‘ESI; SI V2 TTESQ]]

= SI'V (Tr(gs; || Esz))
proof —

281

assume SD V1 Trgg;
and SD V2 TTESQ
and SI V1 Trpgy
and SI V2 Trggs

{
let .?V1/:(]V = VVI U NV17 N = {}, C = CV]D
let ?VQIZGV = VVQ @] NV?’ N = {}, C = Cvg D
let 2V’ :q V:VV U Nv, NZ{}, CICV D

from validV1 have V1 'IsViewOnE:: isViewOn ?V1' Eggy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from wvalidV2 have Vs 'IsViewOnEs: isViewOn 7Vy’ Ergo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnE: isViewOn 2V’ E(ESI||ES2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV1
have V?V’ N EES] = V?Vll

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V?V/ N EESQ = V?V2/

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V’ N EESI - C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V’ N EESQ - C?VQ’

unfolding properSeparationOfViews-def by auto
have Ny, /N Ngp,» ={}

by auto

note properSeparation-V1Va=«V o),y N Eggy = V?V1/> Vo N Egge = Vap,n
<O?v/ N Egg; C C?Vll) <C?v/ N Eggs C C?Vgl) <N?V1, n N?V2/ =17

have wbc1: N?Vl/ N EES.Z:{} A N?Vgl N EES,Q:{}
by auto

from «SD V1 Trgg;» have BSD V1’ Trgg;
using validES1 validV1 BSPTazonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTazonomyDifferentCorrections-def by auto

from <SD V2 TT‘ESQ> have BSD .?Vzl TTESQ
using validES2 validV2 BSP TaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from «SI V1 TI”E51> have BSI .?Vll TTESZ
using validES1 validV1 BSPTaxonomyDifferentCorrections.SI-implies- BSI-for-modified-view
unfolding BSPTazonomyDifferentCorrections-def by auto

from ST V2 TT‘ESQ> have BSI .?Vzl TTESQ
using validES2 validV2 BSP TaxonomyDifferentCorrections.SI-implies- BSI-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

282

from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE1 Va'Is ViewOnE>
properSeparation-V1V2 wbcl
have Compositionality ES1 ES2 2V’ 2V1' 2V, unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with <BSD ?V1' Trggp <BSD Vo' Trpge «BSI V1" Trggyy «BSI 2V2' Tr g
have BSI ?Vl TT(ESZHESQ)
using Compositionality.compositionality-BSI by blast

from wvalidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto
with <BSI .QV/ TT(ESIHESQ)} have ST V TT(ESZHESQ)
using BSPTaxonomyDifferentCorrections. BSI-implies-SI-for-modified-view by auto
}
thus ?thesis by auto
qed

theorem compositionality-SIA:

[SD V1 Trggy; SD V2 Trgge; SIA o1 V1 Trpgy; SIA 02 V2 Trpge;
(1 V1) C (e V)N Eggy; (02 V2) C (e V)N Egge |
= SIA oV (TT(ESI || ES?))

proof —
assume SD V1 Trgg;g

and SD Ve TT’ESQ
and SIA o1 V1 Trgg;
and SIA QQ V2 TTESQ
and (¢1 V1) C (e V) N Egg;
and (02 V2) C (e V) N Eggy
{
let ?V1/:(|V = Vy;UNy;, N = {}, C = CVID
let ?VQIZGV = Vys U Nyy, N = {}, C = Cyg)
let 72y’ Zq VIVV U Nv,]VZ{}7 CICV D

let 201":'a Rho =A\V. if V=2V’ then o1 V1 else {}
let 202"::'a Rho =\V. if V=2V5' then 02 V2 else {}
let ?0"::'a Rho =XV’ if V'=2V' then o V else {}

have (291’ ?V1)
have (202’ ?V5)
have (%o’ ?2V') =

(o1 V1) by simp
= (02 V2) by simp
(o V) by simp

from validV1 have V1 'IsViewOnE;: isViewOn ?V1' Epgy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from validV2 have Vy'IsViewOnEs: isViewOn ?V2' Eggo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnE: isViewOn 2V’ E(gs1||Es2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

283

from propSepViews NV-inter-E1-is-NV'1
have ngl n EESI = V?Vll

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have ngl n EESQ = V?VQI

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ n EESI - C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ n EES? - C?VQ’

unfolding properSeparationOfViews-def by auto
have N?Vl/ N N.QVQI :{}

by auto

note properSeparation-V1iVo=<V o),y N Eggy = Vop » (Vo N Eggg = Vo, »
(C?V/ N EESI - C?Vl/) <C?V/ n EES2 - C?V2l> <N?V1, n N?Vzl =15

have wbci: Ngy + N Egg;={} A Ngp,' N Egge={}
by auto

from «SD V1 Trgg;» have BSD 2V’ Trggy
using validES1 validV1 BSPTaxzonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTazxonomyDifferentCorrections-def by auto

from «SD V2 Trpge have BSD V' Trpgs
using validES2 validV2 BSP TaxonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTazonomyDifferentCorrections-def by auto

from <SIA o1 V1 Trggp (%01’ ?V1') = (o1 V1)) have BSIA %o1' ?V1' Trggy
using validES1 validV1 BSPTazonomyDifferentCorrections.SIA-implies- BSIA-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by fastforce

from «SIA 02 V2 Trpge (202" ?V2') = (02 V2)» have BSIA 202’ 2V2' Trpgs
using validES2 validV2 BSPTazonomyDifferentCorrections.SIA-implies- BSIA-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by fastforce

from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE1 Va'Is ViewOnE>
properSeparation-V1V2 wbcl

have Compositionality ES1 ES2 2V’ 2V, 2V’

unfolding Compositionality-def

by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
from (o1 V1) C (e V) N Eggp (%01’ V1) = (o1 V1) (%" V') = (0 V)
have %1’ 2V’ C %' V' N Epg;

by auto
from (02 V2) C (o V) N Eggy (202" 2V3") = (02 V2)» (20" 2V') = (o V)
have 22’ 2Vy' C %' V' N Eggg

by auto

from «Compositionality ES1 ES2 2V 2V1' 2V2"y «BSD V1’ Trggpy <BSD V2 Trpge
«(BSIA 201’ 2V1' Trgg> «BSIA 202" 2Vo' Trpge

284

Po1’ V1" C 2" V' N Epgp <202 V' C 2" V' N Eggy
have BSIA ?Q, ?V/ TT(ESIHES?)
using Compositionality.compositionality-BSIA by fastforce

from walidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto
with «BSIA 2o’ 7V’ Tr(gs1| Es2)’ (2" ?V') = (0 V)> have SIA ¢ V Tr(gs1| BS2)
using BSPTazonomyDifferentCorrections. BSIA-implies-SIA-for-modified-view by fastforce
}

thus ?thesis
by auto
qed
end

end

Acknowledgments

This work was partially funded by the DFG (German Research Foundation) under the projects
FM-SecEng (MA 3326/1-2, MA 3326/1-3) and RSCP (MA 3326/4-3).

References

[1] S. Grewe, H. Mantel, M. Tasch, R. Gay, and H. Sudbrock. I-MAKS — A Framework for
Information-Flow Security in Isabelle/HOL. Technical Report TUD-CS-2018-0056, TU Darm-
stadt, 2018.

[2] H. Mantel. Possibilistic Definitions of Security — An Assembly Kit. In Proceedings of the 15th
IEEE Computer Security Foundations Workshop (CSFW), pages 185-199, 2000.

[3] H. Mantel. A Uniform Framework for the Formal Specification and Verification of Information
Flow Security. PhD thesis, Saarland University, Saarbriicken, Germany, 2003.

285

	Introduction
	Basic Definitions
	System Specification
	Event Systems
	State-Event Systems

	Security Specification
	Views & Flow Policies
	Basic Security Predicates
	Information-Flow Properties
	Property Library

	Verification
	Basic Definitions
	Taxonomy Results
	Unwinding
	Unwinding Conditions
	Auxiliary Results
	Unwinding Theorems

	Compositionality
	Auxiliary Definitions & Results
	Generalized Zipping Lemma
	Compositionality Results

