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Abstract

The “Modular Assembly Kit for Security Properties” (MAKS) is a framework for both the
definition and verification of possibilistic information-flow security properties at the specification-
level. MAKS supports the uniform representation of a wide range of possibilistic information-
flow properties and provides support for the verification of such properties via unwinding results
and compositionality results. We provide a formalization of this framework in Isabelle/HOL.
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1 Introduction

This is a formalization of the Modular Assembly Kit for Security Properties (MAKS) [2, 3] in
its version from [3]. We provide a more detailed explanation on how key concepts of MAKS are
formalized in Isabelle/HOL in [1].

2 Basic Definitions

In the following, we define the notion of prefixes and the notion of projection. These definitions are
preliminaries for the remaining parts of the Isabelle/HOL formalization of MAKS.

theory Prefix
imports Main
begin

definition prefiz :: ‘e list = 'e list = bool (infix] «X» 100)
where
(i1 < 12) = (313. 11 @13 = 12)

definition prefizclosed :: (e list) set = bool
where
prefizclosed tr = (V11 € tr.VI2.12 211 — 12 € tr)

lemma empty-prefiz-of-all: [| <1
using prefiz-def [of [| I] by simp

lemma empty-trace-contained: [ prefixclosed tr ; tr # {} | =[] € tr
proof —
assume I: prefizclosed tr and
2: tr # {}
then obtain /7 where I1 € tr
by auto
with 7 have V2. 12 <11 — 12 € tr
by (simp add: prefixclosed-def)

thus [] € tr
by (simp add: empty-prefiz-of-all)
qed

lemma transitive-prefiz: [ 11 <12 ;12 18] =11 <13
by (auto simp add: prefiz-def)

end

theory Projection
imports Main
begin



definition projection:: ‘e list = ‘e set = e list (infixl <> 100)
where
11 E=filter (Azx.z€E)I

lemma projection-on-union:
NMY==I11XUuY)=11X
proof (induct I)
case Nil show ?case by (simp add: projection-def)
next
case (Cons a b) show ?case
proof (cases a € Y)
case True from Consshow a € Y = (a # b) | (XU Y)=(a# b) 1 X
by (simp add: projection-def)
next
case False from Consshow a ¢ ¥ = (a # b) 1 (XU Y)=(a#b)1 X
by (simp add: projection-def)

qed
qed
lemma projection-on-empty-trace: [| 1 X =[] by (simp add: projection-def)
lemma projection-to-emptyset-is-empty-trace: 1 1{} = [| by (simp add: projection-def)

lemma projection-idempotent: | 1 X= (1 1X) 1X by (simp add: projection-def)

lemma projection-empty-implies-absence-of-events: 1 1 X = [ = X N (set 1) = {}
by (metis empty-set inter-set-filter projection-def)

lemma disjoint-projection: X N Y ={} = (11 X)1 Y =]
proof —
assume X-Y-disjoint: X N'Y = {}
show (I 1 X) 1 Y =[] unfolding projection-def
proof (induct I)
case Nil show ?case by simp
next
case (Cons z zs) show ?Zcase
proof (cases z € X)
case True
with X-Y-disjoint have = ¢ Y by auto
thus [z+[z+2z # zs .z € X] . z € Y] =[] using Cons.hyps by auto
next

case Fulse show [z [z<2z # xs .z € X] . ¢ € Y] = || using Cons.hyps False by auto

qed
qed
qed



lemma projection-concatenation-commute:
(lrar)y1x=>111X)Q (21 X)
by (unfold projection-def, auto)

lemma projection-subset-eq-from-superset-eq:
(s 1 (XU Y)) = (ys ] (XU ¥)) = ((ss ] X) = (ys | X))
(is (?L1 = ?L2) = (?L3 = ?L4))
proof —
assume prem: ?L1 = ?L2
have ?L1 1 X = ?L3 AN ?L2 | X = 9L}
proof —
have A a. (c€e X Vae Y)Na€ X) = (a € X)
by auto
thus %thesis
by (simp add: projection-def)
qed
with prem show ?thesis
by auto
qed

lemma list-subset-iff-projection-neutral: (set 1 C X) = ((11 X) = 1)
(is ?A = ?B)
proof —
have A — “B
proof —
assume ?A
hence Az. z € (setl) = z € X
by auto
thus %thesis
by (simp add: projection-def)
qed
moreover
have B — ?4
proof —
assume ¢B
hence (set (11 X)) = set
by (simp add: projection-def)
thus %thesis
by (simp add: projection-def, auto)
qed
ultimately show ?thesis ..
qed

lemma projection-split-last: Suc n = length
Fpra(zeXANT=0Qz]QaAal
proof —

assume Suc-n-is-len-7X: Suc n = length (1 1 X)

e
I
>\/
3

= length (8 @Q o) 1 X))
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let ?L =71 X
let ?2RL = filter Az . z € X) (rev T)

have Suc n = length YRL
proof —
have rev ?L = ?RL
by (simp add: projection-def, rule rev-filter)
hence rev (rev L) = rev ?RL ..
hence 7L = rev YRL
by auto
with Suc-n-is-len-TX show ?thesis
by auto
qged
with Suc-length-conv[of n RL] obtain z zs
where RL = ¢ # s
by auto
hence z # xs = RL
by auto

from Cons-eq-filterD[OF this] obtain reva revf
where (rev 7) = reva @ z # revf
and reva-no-z: Va € set reva. a ¢ X
and z-in-X: z € X

by auto

hence rev (rev 7) = rev (reva @ z # revf)
by auto

hence 7 = (rev revf) @Q [z] @ (rev reva)
by auto

then obtain S «
where 7-is-fza: T = 5 Q [z] Q
and a-is-revreva: a = (rev reva)
and S-is-revrevB: B = (rev revf)
by auto
hence a-no-z: a1 X =[]
proof —
from a-is-revreva reva-no-z have Va € set a. a ¢ X
by auto
thus %thesis
by (simp add: projection-def)
qed

have n = length (8 Q «) 1 X)
proof —
from a-no-z have aX-zero-len: length (a1 X) = 0
by auto

from z-in-X have xzX-one-len: length ([z] 1 X) = 1
by (simp add: projection-def)

from 7-is-Bza have length ?L = length (81 X) + length ([z] 1 X) + length (a1 X)
by (simp add: projection-def)



with aX-zero-len have length ?L = length (8 1 X) + length ([z] 1 X)
by auto
with zX-one-len Suc-n-is-len-TX have n = length (81 X)
by auto
with aX-zero-len show ?thesis
by (simp add: projection-def)
qed
with z-in-X 7-is-fza a-no-r show ?thesis
by auto
qed

lemma projection-rev-commute:
rev (11 X)=(revl) 1 X
by (induct I, simp add: projection-def, simp add: projection-def)

lemma projection-split-first: [ (11 X) =z # azs] =T af. (r=aQz] @ Aa]l X =)
proof —
assume 7X-is-z-xs: (11 X) =z # xs
1

hence 0 # length (7 1 X)
by auto

hence 0 # length (rev (7 1 X))
by auto

hence 0 # length ((rev 7) 1 X)
by (simp add: projection-rev-commute)
then obtain n where Suc n = length ((rev 7) 1 X)
by (auto, metis Suc-pred length-greater-0-conv that)
from projection-split-last|OF this] obtain 38’ z' o’
where z’-in-X: 2’ € X
and revr-is-B'z'a’ rev T = B’ Q [z] @ o’
and o'X-empty: o' 1 X = |]
by auto
from revr-is-3'z'a’ have rev (rev 7) = rev (8’ Q [z] @ o) ..
hence 7-is-reva’-z"-revB’: T = rev o’ @ [z] @ rev B’
by auto
moreover
from o'X-empty have reva’X-empty: rev o' 1 X = ||
by (metis projection-rev-commute rev-is-Nil-conv)
moreover
note z’-in-X
ultimately have (71 X) = z' # ((rev 8') 1 X)
by (simp only: projection-concatenation-commute projection-def, auto)
with 7 X-is-z-zs have z = z’
by auto
with 7-is-reva’-z’-rev’ have 1-is-reva’-z-revB’: T = rev o’ @Q [z] @ rev B’
by auto
with reva’X-empty show ?thesis
by auto
qed



lemma projection-split-first-with-suffix:
[T X)=z#zs]=F ab. (tr=a@Qz]@Aa]l X=[]ABT]X=nuzs)
proof —
assume tau-proj-X: (11 X) = ¢ # xs
show %thesis
proof —
from tau-proj-X have z-in-X: x € X
by (metis IntE inter-set-filter list.set-intros(1) projection-def)
from tau-proj-X have J af.1=a@Qz]Q@FAa] X =]
using projection-split-first by auto
then obtain o § where tau-split: 7 = « Q [z] Q 8
and X-empty-prefiz:a 1 X =[]
by auto
from tau-split tau-proj-X have (o Q [z] @ 8) 1 X =z # wxs
by auto
with X-empty-prefiz have ([z] Q@ 8) 1 X =z # zs
by (simp add: projection-concatenation-commute)
hence (z # 8) | X =z # s
by auto
with z-in-X have 81 X = zs
unfolding projection-def by simp
with tau-split X-empty-prefix show ?thesis
by auto
qed
qed

lemma projection-split-arbitrary-element:
[f1X=(a@[z]@B)] X;z€ X]
= 3Ja'B. . (r=ad’Q@z]@B' A1 X=al XAB'1X=81X)
proof —
assume 7] X = (a@Qz] @B) 1 X
and z € X
{
fix n
have [t 1 X = (¢ @ [z] @ ) | X; z € X; n = length(a]X) ]
= Ja'B. . (r=a’'Qr]@B AN’ X=alXAB'1X=81X)
proof (induct n arbitrary: T o )
case (
hence a]X = ||
unfolding projection-def by simp
with 0.prems(1) 0.prems(2) have 71X = z # 51X
unfolding projection-def by simp

with «a]X = []> show Zcase
using projection-split-first-with-suffix by fastforce
next

case (Suc n)

from Suc.prems(1) have 71 X=alX Q ([z] @ §) 1X
using projection-concatenation-commute by auto

from Suc.prems(3) obtain z’ zs’ where a 1 X= =’ #zs’



and z' € X
by (metis filter-eq-ConsD length-Suc-conv projection-def)
then obtain a1 a2 where a = a1 @ [:1:’] Q as
and a11X = ||
and a2 X = zs’
using projection-split-first-with-suffix by metis
with <z’ € X» Suc.prems(1) have 71 X=z' # (a2 @Q [z] @ 8) 1X
unfolding projection-def by simp
then obtain ¢; t; where 7= t; @ [z/] @ t,
and t11X = ||
and tz]X = (a2 @ [JJ] @ 5) WX
using projection-split-first-with-suffix by metis

from Suc.prems(3) «a 1X=z' # zs"» «a = a1 Q [z'] Q a2» a11X = [ (a2l X = zs"
have n=length(a21X)
by auto

(az @ [z] @ B) 1X)

with Suc.hyps(1) Suc.prems(2) «t21X =
Q@ 3

obtain t»’ 3’ where to=ty’ @ [1z]
and 21X = a2 X
and 31X = 81X

using projection-concatenation-commute by blast

let 2a’=t; @Q [z] @ t2’ and ?8'=t;’
from «t= t; Q [z2] @ t2) <to=t2’ Q [z] @ t3" have 7=2a'Q[r]@?5’
by auto
moreover
from (a1 X=z"# 25 X = @’ € X> 21X = a21X> <a2]X = a5’
have 201X = aolX
using projection-concatenation-commute unfolding projection-def by simp
ultimately
show ?case using <t3"1X = 81X
by blast
qed
}
with«t 1 X = (¢ @ [2] @ 8) | X» « z € X)» show ?thesis

by simp
qed
lemma projection-on-intersection: | | X =[] =11 (X NY) =]
(is 2L1 = [| = ?L2 =)
proof —

assume ?L1 =[]
hence set ?L1 = {}
by simp
moreover
have set ?L2 C set ?L1
by (simp add: projection-def, auto)
ultimately have set L2 = {}
by auto
thus %thesis
by auto
qed



lemma projection-on-subset: [ Y C X; 11 X =[] =11Y =]
proof —
assume subset: Y C X
assume proj-empty: 11 X =[]
hence [ 1 (X NY) =]
by (rule projection-on-intersection)
moreover
from subset have X N'Y =Y
by auto
ultimately show ?thesis
by auto
qed

lemma projection-on-subset2: [ set I C L; 11 X' =[; XNLC X' ] =11 X =
proof —

assume setl-subset-L: set | C L

assume [-no-X" 11 X' = ||

assume X-inter-L-subset-X": X N L C X'

from X-inter-L-subset-X' l-no-X"have [ | (X N L) = |]
by (rule projection-on-subset)

moreover

have [ 1 (X NL)=(1L)1X
by (simp add: Int-commute projection-def)

moreover

note setl-subset-L

ultimately show ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed

lemma non-empty-projection-on-subset: X C Y AL 1Y =0L1Y= L1 X=01X
by (metis projection-subset-eq-from-superset-eq subset-Un-eq)

lemma projection-intersection-neutral: (set Il C X) = (11 (X NY)=11Y)
proof —
assume set | C X
hence (I 1 X) =1
by (simp add: list-subset-iff-projection-neutral)
hence (I1 X)]1Y=11Y
by simp
moreover
have (11 X)1Y=11(XNY)
by (simp add: projection-def)
ultimately show ?thesis
by simp
qed



lemma projection-commute:
1X)1Yy=01y)1X
by (simp add: projection-def conj-commute)

lemma projection-subset-elim: ¥ C X = (11 X)1 Y =11Y
by (simp only: projection-def, metis Diff-subset list-subset-iff-projection-neutral
minus-coset-filter order-trans projection-commute projection-def)

lemma projection-sequence: (zs 1 X) 1Y = (zs1 (X N Y))
by (metis Int-absorb inf-sup-ord(1) list-subset-iff-projection-neutral
projection-intersection-neutral projection-subset-elim)

fun merge :: ‘e set = ‘e set = ‘e list = e list = e list

where
merge A B[] t2 = t2 |
merge A Btl [| = t1 |

merge A B (el # t1') (e2 # t2') = (if el = e2 then
el # (merge A B t1't2’)
else (if el € (AN B) then
e2 # (merge A B (el # t1') t27)
else el # (merge A B t1' (e2 # t2))))

lemma merge-property: [set t1 C A; set t2 C B;t1 | B=1t21 A]
= lett = (merge ABt1t2)in (t1 A=tl ANt] B=12 N sett C ((set t1) U (set t2)))
unfolding Let-def
proof (induct A B t1 t2 rule: merge.induct)
case (I A B t2) thus ?case
by (metis Un-empty-left empty-subsetl list-subset-iff-projection-neutral
merge.simps(1) set-empty subset-iff-psubset-eq)
next
case (2 A B t1) thus ?case
by (metis Un-empty-right empty-subset! list-subset-iff-projection-neutral
merge.simps(2) set-empty subset-refl)
next
case (3 A B el t1' e2t2') thus ?case
proof (cases)
assume el-is-e2: el = e2

note el-is-e2
moreover
from 3(4) have set t1' C A
by auto
moreover
from 3(5) have set t2' C B
by auto
moreover
from el-is-e2 3(4—6) have t1'1 B=12"1 A
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by (simp add: projection-def)
moreover
note 3(1)
ultimately have indi: merge A Bt1't2'1 A = t1’
and ind2: merge A Bt1't2' |1 B = t2’
and ind3: set (merge A B t1' t2') C (set t1') U (set t2)
by auto

from el-is-e2 have merge-eq:
merge A B (el # t1') (e2 # t2') = el # (merge A B t1' t2)
by auto

from 3(4) indl have goall:
merge A B (el # t1') (e2 # t2) 1 A = el # t1’
by (simp only: merge-eq projection-def, auto)
moreover
from el-is-e2 3(5) ind2 have goal2:
merge A B (el # t1') (e2 # t2) 1 B = e2 # 2’
by (simp only: merge-eq projection-def, auto)
moreover
from ind3 have goal3:
set (merge A B (el # t1') (e2 # t2')) C set (el # t1') U set (e2 # t2)
by (simp only: merge-eq, auto)
ultimately show ?thesis
by auto
next
assume el-isnot-e2: el # e2
show ?thesis
proof (cases)
assume el-in-A-inter-B: el € AN B

from 3(6) el-isnot-e2 el-in-A-inter-B have e2-notin-A: e2 ¢ A
by (simp add: projection-def, auto)

note el-isnot-e2 el-in-A-inter-B 3(4)

moreover

from 3(5) have set t2' C B
by auto

moreover

from 3(6) el-isnot-e2 el-in-A-inter-B have (el # t1')1 B=1t2"1 A
by (simp add: projection-def, auto)

moreover

note 3(2)

ultimately have indi: merge A B (el # t1') t2'1 A = (el # t1')
and ind2: merge A B (el # t1') t2'1 B = t2’
and ind3: set (merge A B (el # t1') t2') C set (el # t1') U set t2'
by auto

from el-isnot-e2 el-in-A-inter-B

have merge-eq:
merge A B (el # t1') (e2 # t2') = e2 # (merge A B (el # t1') t2)
by auto

11



from el-isnot-e2 indl e2-notin-A have goall:
merge A B (el # t1') (e2 # 12") 1 A= el # t1’
by (simp only: merge-eq projection-def, auto)

moreover

from 3(5) ind2 have goal2: merge A B (el # t1') (e2 # t2') 1 B = e2 # 12’
by (simp only: merge-eq projection-def, auto)

moreover

from 3(5) ind3 have goal3:
set (merge A B (el # t1') (e2 # t2')) C set (el # t1') U set (e2 # t2)
by (simp only: merge-eq, auto)

ultimately show ?thesis
by auto

next
assume el-notin-A-inter-B: el ¢ AN B

from 3(4) el-notin-A-inter-B have el-notin-B: el ¢ B
by auto

note el-isnot-e2 el-notin-A-inter-B

moreover

from 3(4) have set t1' C A
by auto

moreover

note 3(5)

moreover

from 3(6) el-notin-B have t1'1 B = (e2 # t2') 1 A
by (simp add: projection-def)

moreover

note 3(3)

ultimately have indi: merge A B t1' (e2 # t2') 1 A = t1’
and ind2: merge A B t1' (e2 # t2) | B = (e2 # t2)
and ind3: set (merge A B t1' (e2 # 12')) C set t1' U set (e2 # 127)
by auto

from el-isnot-e2 el-notin-A-inter-B
have merge-eq: merge A B (el # t1') (e2 # t2') = el # (merge A B t1' (e2 # t2))
by auto

from 3(4) indl have goall: merge A B (el # t1') (e2 # t2) 1 A = el # t1’
by (simp only: merge-eq projection-def, auto)

moreover

from ind2 el-notin-B have goal2:
merge A B (el # t1') (e2 # t2') | B = e2 # t2'
by (simp only: merge-eq projection-def, auto)

moreover

from 3(4) ind3 have goal3:
set (merge A B (el # t17) (e2 # t2')) C set (el # t1') U set (e2 # t27)
by (simp only: merge-eq, auto)

ultimately show ?%thesis
by auto

qed

12



qed
qed

end

3 System Specification

3.1 Event Systems

We define the system model of event systems as well as the parallel composition operator for event
systems provided as part of MAKS in [3].

theory FEventSystems

imports ../Basics/ Prefix ../ Basics/ Projection
begin

record ‘e ES-rec =

E-ES :: e set
I-ES :: e set
O-ES :: e set

Tr-ES :: (‘e list) set

abbreviation ESrecEES :: 'e ES-rec = 'e set
(«E-» [1000] 1000)

where

Epg = (E-ES ES)

abbreviation ESrecIES :: ‘e ES-rec = 'e set
(<I-> [1000] 1000)

where

]ES = (I—ES ES)

abbreviation ESrecOES :: ‘e ES-rec = e set
(<02 [1000] 1000)

where

Opg = (O-ES ES)

abbreviation ESrecTrES :: ‘e ES-rec = (e list) set
(«Tr-» [1000] 1000)

where

Trpg = (Tr-ES ES)

definition es-inputs-are-events :: ‘e ES-rec = bool
where
es-inputs-are-events ES = I pg C Epg

definition es-outputs-are-events :: ‘e ES-rec = bool
where

13



es-outputs-are-events ES = Opg C Egg

definition es-inputs-outputs-disjoint :: ‘e ES-rec = bool
where
es-inputs-outputs-disjoint ES = Ipg N Opg = {}

definition traces-contain-events :: 'e ES-rec = bool
where
traces-contain-events ES = V1 € Trpg. Ve € (setl). e € Egg

definition traces-prefizclosed :: 'e ES-rec = bool
where
traces-prefixclosed ES = prefixclosed Trpg

definition ES-valid :: e ES-rec = bool

where

ES-valid ES =
es-inputs-are-events ES N es-outputs-are-events ES
A es-inputs-outputs-disjoint ES N traces-contain-events ES
A traces-prefizclosed ES

definition total :: ‘e ES-rec = 'e set = bool
where
total ESE=FE C Egg N (V7 € Trgg. Ve € E. 7 Q [e] € Trgg)

lemma totality: [ total ES E; t € Trgg; sett' CE] = tQ t' € Trgg
by (induct t' rule: rev-induct, force, simp only: total-def, auto)

definition composeES :: ‘e ES-rec = 'e ES-rec = 'e ES-rec
where
composeES ES1 ES2 =
(
E-ES = EESI U EESQ’
I-ES = (Igs1 — Ogsg) U (Igsz — Ogsi),
O-ES = (Ogs; — Igse) U (Opse — Igsy),
Tr-ES ={r . (11 Egsy) € Trgg; N (71 Eggg) € Trggs
A (set 7 C Eggr U Eggg)}
D

abbreviation composeESAbbrv :: ‘e ES-rec = ‘e ES-rec = 'e ES-rec
(- || -+[1000] 1000)

where

ES1 || ES2 = (composeES ES1 ES2)

definition composable :: ‘e ES-rec = 'e ES-rec = bool

where
composable ES1 ES2 = (Egg; N Egsg) € (Opss N Ipse) U (Ogse N Igsy))

14



lemma composeES-yields-ES:
[ ES-valid ES1; ES-valid ES2 | = ES-valid (ES1 || ES2)
unfolding ES-valid-def
proof (auto)
assume ES1-inputs-are-events: es-inputs-are-events ES1
assume FES2-inputs-are-events: es-inputs-are-events ES2
show es-inputs-are-events (ES1 || ES2) unfolding composeES-def es-inputs-are-events-def
proof (simp)
have subgoalll: IESI — OESQ - EESI @] EE52
proof (auto)
fix x
assume = € Ipg;
with ES1-inputs-are-events show = € Epg;
by (auto simp add: es-inputs-are-events-def)
qed
have subgoall2: Ipgo — Opg; € Eggy U Eggo
proof (rule subsetl, rule Unl2, auto)
fix x
assume z € [pgy
with ES2-inputs-are-events show z € Epgy
by (auto simp add: es-inputs-are-events-def)
qed
from subgoalll subgoall?2
show Ipg; — Opse € Epgi U Epse A Ipse — Ops: © Epsi U Eggs -
qed
next
assume FESI1-outputs-are-events: es-outputs-are-events ES1
assume FES2-outputs-are-events: es-outputs-are-events ES2
show es-outputs-are-events (ES1 || ES2)
unfolding composeES-def es-outputs-are-events-def
proof (simp)
have subgoal21: OESI — IES? C EESI @] EESQ
proof (auto)
fix z
assume z € Oggy
with ES1-outputs-are-events show z € Epg;
by (auto simp add: es-outputs-are-events-def)
qed
have subgoal22: Opgs — Ipg; € Eggs U Eggs
proof (rule subsetl, rule Unl2, auto)
fix x
assume z € Oggo
with ES2-outputs-are-events show = € Eggo
by (auto simp add: es-outputs-are-events-def)
qed
from subgoal21 subgoal22
show Opgy — Igse © Epsi U Fgse A Opse — Igs1 © Epsi U EEgp -
qed
next
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assume FESI-inputs-outputs-disjoint: es-inputs-outputs-disjoint ES1
assume ES2-inputs-outputs-disjoint: es-inputs-outputs-disjoint ES2
show es-inputs-outputs-disjoint (ES1 || ES2)
unfolding composeES-def es-inputs-outputs-disjoint-def
proof (simp)
have subgoal31:
{} € (Ugs1 — Opsz2 Y (Igse — Ogsi1)) N (Ogs; — Igse U (Ogse — 1Es1)
by auto
have subgoal32:
(Igs1 — Opsg U (Igsz — Ops1)) N (Ogsy — Igse U (Ogse — Tgsy)) € {}
proof (rule subsetl, erule IntE)
fix z
assume assl: z € Igg; — Oggo U (Igse — Ogsy)
then have ass1” 7 € Ips; — Opga V z € (Igse — Opsy)
by auto
assume ass2: ¢ € Opgg; — Igge U (Ogge — Igsy)
then have ass2"z € Opg; — Iggs V © € (Opge — Igs;)
by auto
note assl’
moreover {
assume leftl: € Igg; — Opge
note ass2’
moreover {
assume left2: © € Opg; — Ipgs
with left] have z€ (Iggs) N (Ogsy)
by (auto)
with ESI-inputs-outputs-disjoint have ze{}
by (auto simp add: es-inputs-outputs-disjoint-def)
}

moreover {
assume right2: z € (Ogse — I gsy)
with left! have ze (IESI - IESI)
by auto
hence ze{}
by auto
}

ultimately have ze{} ..
}
moreover {
assume rightl: z € Igge — Ofpgy
note ass2’
moreover {
assume left2: ¢ € Ogg; — Ipga
with right! have z€ (Igge — Igg9)
by auto
hence z€{}
by auto
}

moreover {
assume right2: = € (Ogge — Igg1)
with right! have z € (Igge N Opgo)
by auto
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with ES2-inputs-outputs-disjoint have ze{}
by (auto simp add: es-inputs-outputs-disjoint-def)

ultimately have ze{} ..
}
ultimately show ze{} ..
qed

from subgoal31 subgoal32
show (Igg; — Ogse U (Igse — Ogs1)) N (Ogsy — Igse U (Ogse — Igs1)) = {}
by auto
qed
next
show traces-contain-events (ES1 || ES2) unfolding composeES-def traces-contain-events-def
proof (clarsimp)
fix e
assume e € set [
and set | C EE'S] U EESQ
then have e-in-union: e € Egg; U Eggs
by auto
assume e ¢ Epgy
with e-in-union show e € Fgg;
by auto
qed
next
assume FES1-traces-prefixclosed: traces-prefixclosed ES1
assume ES2-traces-prefirclosed: traces-prefixclosed ES2
show traces-prefizclosed (ES1 || ES2)
unfolding composeES-def traces-prefirclosed-def prefixclosed-def prefix-def
proof (clarsimp)
fix 1213
have lQlS’split: (l2 Q 13) ] EESI = (ZQ W EES]) @ (13 1 EESI)
by (rule projection-concatenation-commaute)
assume (12 Q 13) | Egg; € Trgg;
with [213split have [2[3cattrace: (12 1 Eggy) Q (131 Eggy) € Trgsy
by auto
have theprefiz: (12 1 Egsy) = (121 Eggy) @ (I3 1 Egsy))
by (simp add: prefiz-def)
have prefixclosure: V esl € (Trggy). V es2. es2 = es] — es2 € (Trggy)
by (clarsimp, insert ES1-traces-prefizclosed, unfold traces-prefixclosed-def prefizclosed-def,
erule-tac x=es1 in ballE, erule-tac z=es2 in allE, erule impE, auto)
hence
(121 Egsy) @ (I3 1 Eggy)) € Trggy =V es2. es2 X ((12 1 Eggy) @ (I3 1 Eggsy))
—es2 € Trggy ..
with [213cattrace have V es2. es?2 < (12 1 Eggy) @ (I8 1 Eggy)) — es2 € Trgg;
by auto
hence (12 1 Eggy) X ((12 1 Egsy) @ (131 Eggy)) — (12 1 Eggy) € Trggy -
with theprefiz have goal51: (12 1 Eggy) € Trgsy
by simp
have lQlf))Split: (ZQ @ l3) ] EESQ = (12 W EESQ) @ (l3 ] EESQ)
by (rule projection-concatenation-commaute)
assume (2 Q [3) | Eggs € Trpgs
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with [213split have [2[3cattrace: (12 1 Epge) @ (I8 1 Eggs) € Trpse
by auto
have theprefiz: (12 1 Egge) = ((12 1 Egge) @ (13 1 Egg2))
by (simp add: prefiz-def)
have prefizclosure: V esl € Trpgy. Ves2. es?2 X es] — es2 € Trggy
by (clarsimp, insert ES2-traces-prefizclosed,
unfold traces-prefirclosed-def prefixclosed-def,
erule-tac x=esl in ballE, erule-tac x=es2 in allE, erule impFE, auto)
hence ((I2 1 Eggg) @ (I3 | Eggg)) € Trpse
=V es2.es2 2 (121 Egge) Q@ (131 Egge)) —> es2 € Trggo ..
with [213cattrace have V es2. es2 < (12 1 Egge) Q (I3 1 Egge)) — es2 € Trggo
by auto
hence (12 1 Eggg) =< ((12 1 Eggg) @ (131 Eggg)) — (12 1 Eggg) € Trggg -
with theprefiz have goal52: (12 1 Egss) € Trggs
by simp
from goal51 goal52 show goal5: 12 1 Eggy; € Trpgy AN 12 1 Egge € Trggs .-
qged
qed

end

3.2 State-Event Systems

We define the system model of state-event systems as well as the translation from state-event sys-
tems to event systems provided as part of MAKS in [3]. State-event systems are the basis for the
unwinding theorems that we prove later in this entry.

theory StateEventSystems

imports EventSystems
begin

record ('s, 'e) SES-rec =

S-SES :: s set
s0-SES :: s

E-SES :: e set
I-SES :: e set
O-SES :: e set

T-SES :: 's="'e —~'s

abbreviation SESrecSSES :: ('s, 'e) SES-rec = 's set
(¢S-» [1000] 1000)

where

Ssps = (S-SES SES)

abbreviation SESrecsOSES :: (s, 'e) SES-rec = 's
(<s0-» [1000] 1000)

where

s0gps = (s0-SES SES)
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abbreviation SESrecESES :: ('s, 'e) SES-rec = 'e set
(<E-» [1000] 1000)

where

ESES = (E-SES SES)

abbreviation SESrecISES :: (s, 'e) SES-rec = ‘e set
(«I» [1000] 1000)

where

ISES = (I—SES SES)

abbreviation SESrecOSES :: ('s, 'e) SES-rec = e set
(0= [1000] 1000)

where

Osps = (O-SES SES)

abbreviation SESrecTSES :: (s, 'e) SES-rec = (s = ‘e = 's)
(«T-» [1000] 1000)

where

TSES' = (T—SES SES)

abbreviation TSESpred :: 's = ‘e = (’s, 'e) SES-rec = 's = bool
(t- —_ - [100,100,100,100] 100)

where

se—rgps s’ = (Tgpg s e = Some s')

definition s0-is-state :: ('s, 'e) SES-rec = bool
where
s0-is-state SES = s0gps € Sggs

definition ses-inputs-are-events :: ('s, 'e) SES-rec = bool
where
ses-inputs-are-events SES = Igpg C Eggpg

definition ses-outputs-are-events :: (s, 'e) SES-rec = bool
where
ses-outputs-are-events SES = Ogps C Eggs

definition ses-inputs-outputs-disjoint :: ('s, 'e) SES-rec = bool
where
ses-inputs-outputs-disjoint SES = Igpg N Ogps = {}

definition correct-transition-relation :: ('s, 'e) SES-rec = bool
where
correct-transition-relation SES =

Vzyz zy—rgpgz — ((z € Sgps) N (y € Eggg) A (2 € Ssgg))

definition SES-valid :: (s, 'e) SES-rec = bool
where
SES-valid SES =

s0-is-state SES N ses-inputs-are-events SES
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A ses-outputs-are-events SES A ses-inputs-outputs-disjoint SES A
correct-transition-relation SES

primrec path :: ('s, 'e) SES-rec = 's = ‘e list — 's
where
path-empt: path SES s1 [] = (Some s1) |
path-nonempt: path SES s1 (e # t) =

(if (3s2. s1 e—>ggg s2)

then (path SES (the (T'ggpg sl e)) t)

else None)

abbreviation pathpred :: ‘s = 'e list = ('s, 'e) SES-rec = s = bool
(t- ==>_ - [100, 100, 100, 100] 100)

where

s t=>gpg s’ = path SES s t = Some s’

definition reachable :: (s, 'e) SES-rec = 's = bool
where
reachable SES s = (3t. s0gps t=>5ES S)

definition enabled :: ('s, 'e) SES-rec = 's = e list = bool
where
enabled SES s t = (3s'. s t=>ggg ')

definition possible-traces :: ('s, 'e) SES-rec = (e list) set
where
possible-traces SES = {t. (enabled SES sO0gpg t)}

definition induceES :: ('s, 'e) SES-rec = 'e ES-rec
where
induceES SES =

E-ES = Egpg,

I-ES = Iggg,

O-ES = Oggs,

Tr-ES = possible-traces SES
D

lemma none-remains-none : /\ s e. (path SES s t) = None
= (path SES s (t @ [e])) = None
by (induct t, auto)

20



lemma path-trans-single-neg: )\ s1. [s1 t==gpg s2; - (s2 e—>gpg sn)]
= - (s (t Q [e])=gEg sn)
by (induct t, auto)

lemma path-split-single: s1 (tQ[e])=gpg sn
= s’ sl t=gpg s’ Ns' e—rgpg sn
by (cases path SES sl t, simp add: none-remains-none,
stmp, rule ccontr, auto simp add: path-trans-single-neg)

lemma path-trans-single: N\s. [ s t=>ggg s; s’ e—>gpg sn |
= s (t Q [e])=gEg sn
proof (induct t)
case Nil thus ?case by auto
next
case (Cons a t) thus ?case
proof —
from Cons obtain s’ where trans-s-a-s1": s a—>gpg s1'
by (simp, split if-split-asm, auto)
with Cons have s1' (¢t Q [e])=ggg sn
by auto
with trans-s-a-s1’ show ?thesis
by auto
qed
qed

lemma path-split: A\ sn. [ s1 (t1 Q t2)=gpg sn |
= (3s2. (s1 t1=>gpg 52 N s2 t2=>ggg sn))
proof (induct t2 rule: rev-induct)
case Nil thus ?case by auto
next
case (snoc a t) thus ?case
proof —
from snoc have s1 (t1 Q ¢ Q [a])=>gpg sn
by auto
hence Jsn’. s1 (t1 @ t)=>gpg sn’ A sn’ a—rgpg sn
by (simp add: path-split-single)
then obtain sn’ where path-t1-t-trans-a:
s1 (t1 @ t)=>gpg sn’ A sn’ a—rgpg sn
by auto
with snoc obtain s2 where path-t1-t:
sl t1=>gpg s2 N s2 t—=>gpg sn’
by auto
with path-t1-t-trans-a have s2 (¢ Q [a])=ggg sn
by (simp add: path-trans-single)
with path-t1-t show ?thesis by auto
qed
qed
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lemma path-trans:
NAsn. [ s1 ll=gpg $2; s2 12=ggg sn ]| = s1 (1 Q 12)=ggg sn
proof (induct 12 rule: rev-induct)
case Nil thus ?case by auto
next
case (snoc a 1) thus Zcase
proof —
assume path-l11: s1 ll=>gpg 52
assume s2 (IQ[a])==ggg sn
hence Jsn’. s2 I=>gpg sn’ A sn’ [a]=ggg sn
by (simp add: path-split del: path-nonempt)
then obtain sn’ where path-l-a: s2 l=>gpg sn’' A sn’ [a]|=>gpg sn
by auto
with snoc path-11 have path-11-I: s1 (I1Ql)=>gpg sn’
by auto
with path-l-a have sn’ a— gpg sn
by (simp, split if-split-asm, auto)
with path-11-l show sI (i1 Q| Q [a])=gpgg sn
by (subst append-assoc[symmetric|, rule-tac s'=sn’ in path-trans-single, auto)
qed
qed

lemma enabledPrefizSingle : [ enabled SES s (1Q[e]) | = enabled SES s t
unfolding enabled-def
proof —
assume ass: 3s’. s (t Q [e])=gpg s’
from ass obtain s’ where s (¢ Q [¢])=gpg s’ ..
hence 3t". (s t=-gpg t') A (t' e—>ggg s')
by (rule path-split-single)
then obtain ¢’ where s t=—>gpg ¢’
by (auto)
thus 3s”. s t=gpg s’ ..
qed

lemma enabledPrefiz : | enabled SES s (t1 @ t2) | = enabled SES s t1
unfolding enabled-def
proof —
assume ass: 3s’. s (11 Q t2)=—>gpg s’
from ass obtain s’ where s (t1 @ {2)=>gpg s’ ..
hence 3t. (s t1=>gpg t A t 12=>gpg s')
by (rule path-split)
then obtain ¢ where s t1=-gpg t
by (auto)
then show Js’. s t1=gpg s’ ..
qed

22



lemma enabledPrefizSingleFinalStep : | enabled SES s (tQ[e]) | = 3 t' t". ¢t' e—>gpg t"
unfolding enabled-def
proof —
assume ass: 3s’. s (t Q [e])=ggg s’
from ass obtain s’ where s (¢ Q [¢])=gpg s’ ..
hence 3t'. (s t=>gpg t’) A (t' e—ggg s’
by (rule path-split-single)
then obtain ¢’ where ¢t e—gpg s’
by (auto)
thus 3t' t". t' e—>gpg t”’
by (auto)
qed

lemma induceES-yields-ES:
SES-valid SES = ES-valid (induceES SES)
proof (simp add: SES-valid-def ES-valid-def, auto)
assume SES-inputs-are-events: ses-inputs-are-events SES
thus es-inputs-are-events (induceES SES)
by (simp add: induceES-def ses-inputs-are-events-def es-inputs-are-events-def)
next
assume SES-outputs-are-events: ses-outputs-are-events SES
thus es-outputs-are-events (induceES SES)
by (simp add: induceES-def ses-outputs-are-events-def es-outputs-are-events-def)
next
assume SES-inputs-outputs-disjoint: ses-inputs-outputs-disjoint SES
thus es-inputs-outputs-disjoint (induceES SES)
by (simp add: induceES-def ses-inputs-outputs-disjoint-def es-inputs-outputs-disjoint-def)
next
assume SES-correct-transition-relation: correct-transition-relation SES
thus traces-contain-events (induceES SES)
unfolding induceES-def traces-contain-events-def possible-traces-def
proof (auto)
fixle
assume enabled-l: enabled SES s0gpg |
assume e-in-l: e € set |
from enabled-l e-in-l show e € Egpg
proof (induct | rule: rev-induct)
case Nil
assume e-in-empty-list: e € set [|
hence f: False
by (auto)
thus Zcase
by auto
next
case (snoc a )
from snoc.prems have [-enabled: enabled SES s0gpg !
by (simp add: enabledPrefizSingle)
show ?case
proof (cases e € (set 1))
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from snoc.hyps l-enabled show e € set | = e € Egpg
by auto
show e ¢ set |l = e € Egpg
proof —
assume e ¢ set |
with snoc.prems have e-eq-a : e=a
by auto
from snoc.prems have 3 t t'. t a—rgpg t'
by (auto simp add: enabledPrefizSingle FinalStep)
then obtain ¢ t’ where t a—>ggg t’
by auto
with e-eq-a SES-correct-transition-relation show e € Egpg
by (simp add: correct-transition-relation-def)
qged
qed
qed
qed
next
show traces-prefizclosed (induceES SES)
unfolding traces-prefizclosed-def prefizclosed-def induce ES-def possible-traces-def prefiz-def
by (clarsimp simp add: enabledPrefiz)
qed

end

4 Security Specification

4.1 Views & Flow Policies

We define views, flow policies and how views can be derived from a given flow policy.
theory Views

imports Main
begin

record ‘e V-rec =

V i e set
N :: e set
C :: e set

abbreviation VrecV :: ‘e V-rec = 'e set
(<V-> [100] 1000)

where

Vo= (Vo)

abbreviation VrecN :: ‘e V-rec = ‘e set
(«<N-» [100] 1000)

where

Ny = (N )
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abbreviation VrecC :: ‘e V-rec = ’e set
(«C-> [100] 1000)
where

Cv = (Cv)

definition VN-disjoint :: ‘e V-rec = bool
where
VN-disjoint v = Vy N Ny = {}

definition VC-disjoint :: ‘e V-rec = bool
where
VC-disjoint v = Vy N Cy = {}

definition NC-disjoint :: e V-rec = bool
where
NC-disjoint v= Ny N Cy = {}

definition V-valid :: ‘e V-rec = bool
where
V-valid v = VN-disjoint v A VC-disjoint v A NC-disjoint v

definition isViewOn :: ‘e V-rec = e set = bool
where
isViewOn V E = V-valid V A Vi, UNy U Cy = E

end

theory FlowPolicies
imports Views
begin

record 'domain FlowPolicy-rec =
D :: 'domain set
v-rel :: ("domain x 'domain) set
n-rel :: ("domain x 'domain) set
c-rel :: ("domain x 'domain) set

definition FlowPolicy :: 'domain FlowPolicy-rec = bool
where

FlowPolicy fp =
((v-rel fp) U (n-rel fp) U (c-rel fp) = ((D fp) x (D fp)))
A (v-rel fp) 0 (n-rel fp) = {}
A (v-rel fp) N (c-rel fp) = {}
A (n-rel fp) N (c-rel fp) = {}
A (Vd € (D fp). (d, d) € (v-rel fp))

type-synonym (‘e, ‘domain) dom-type = ‘e — 'domain
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definition dom :: (e, ‘"domain) dom-type = 'domain set = e set = bool
where

dom domas dset es =

(Ve. Vd. ((domas e = Some d) — (e € es A d € dset)))

definition view-dom :: 'domain FlowPolicy-rec = 'domain = (e, 'domain) dom-type = e V-rec
where
view-dom fp d domas =
(V= {e 3d" (domas e = Some d’' A (d', d) € (v-rel fp))},
N = {e. 3d’. (domas e = Some d’' A (d’, d) € (n-rel fp))},
C = {e. 3d’. (domas e = Some d’' A (d', d) € (c-rel fp))} )

end

4.2 Basic Security Predicates

We define all 14 basic security predicates provided as part of MAKS in [3].

theory BasicSecurityPredicates
imports Views ../Basics/ Projection
begin

definition areTracesOver :: (‘e list) set = e set = bool
where
areTracesOver Tr E =

V1reTr (seet) CE

type-synonym ‘e BSP = ‘e V-rec = (('e list) set) = bool

definition BSP-valid :: ‘e BSP = bool
where
BSP-valid bsp =
VYV Tr E. ( isViewOn V E A areTracesOver Tr E )
— 3 Tr'.Tr' 2 Tr NbspV Tr')

definition R :: 'e BSP
where
RV Tr =
VreTr. 3r'eTr. 7' 1 Cy =[[AT 1 Vy =71 Vy

lemma BSP-valid-R: BSP-valid R
proof —

{

26



fix Vi:('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?Tr'D Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOver-def)
moreover
have RV ?Tr’
proof —
{
fix 7
assume 7 € {t. (set t) C E}
let 2r'=71(Vy)
have 7' 1 Cy =[] A1 Vyp=711Vy
using <«isViewOn V E» disjoint-projection projection-idempotent
unfolding isViewOn-def V-valid-def VC-disjoint-def by metis
moreover
from (7 € {t. (set t) C E}» have ?7' € ?Tr’ using <isViewOn V E)
unfolding isViewOn-def
by (simp add: list-subset-iff-projection-neutral projection-commute)
ultimately
have 37'e{t.set t CE}. 71 Cyo=]AT 1 Vy=711Vy
by auto
}

thus ?thesis unfolding R-def
by auto
qed
ultimately
have 3 Tr’. Tr' > Tr ARV Tr’
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition D :: ‘e BSP
where
DV Tr=
Va B.VceCy. (B Q]
— (3a’ B ((B' @ a’)
ABTI(Vy U

lemma BSP-valid-D: BSP-valid D
proof —
{

fix Vi:('e V-rec)

fix Tr £

assume isViewOn V E

and areTracesOver Tr E

let ?Tr'={t. (set t) C E}
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have ?27r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have DV ?Tr’
unfolding D-def by auto
ultimately
have 3 Tr'. Tr' D> Tr ANDV T’
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition I :: ‘e BSP
where
1V Tr=
Va B.VceCy. (BQa) € Tr AalCy =)
— @Fa' B (BQ@[@a’)ye TrAa1Vy =alVy Aa1Cy =]
A B1(Vy U Cy) = B1(Vy U Cy)))

lemma BSP-valid-1: BSP-valid I
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have 270D Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have I V ?Tr’ using (isViewOn V E)
unfolding isViewOn-def I-def by auto
ultimately
have 3 Tr'. Tr' D> Tr ATV Tr'
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

type-synonym ‘e Rho = ‘e V-rec = 'e set

definition
Adm :: 'e V-rec = ‘e Rho = (e list) set = 'e list = 'e = bool
where
Adm'V o Tr B e =
7. (v @le]) € Tr Ayl(e V) = Bl(e V)
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definition IA :: ‘e Rho = 'e BSP

where
IApV Tr =
Ya S. VCGCV (BQa)e Tr C’V—[]/\(AdigTrﬂ c))
— @ (3 @[c]@a)ETr) o1 Vy = ol Vy
A a'lCy = [ ABT(Vy U Cy) =B1(Vy U Cy))

lemma BSP-valid-IA: BSP-valid (IA o)

proof —
{
fix V :: (‘a V-rec)
fix Tr £

assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have IA o V ?Tr' using (isViewOn V E»
unfolding isViewOn-def IA-def by auto
ultimately
have 3 Tr'. Tr' D Tr NIA oV Tr’
by auto
}
thus ?thesis
unfolding BSP-valid-def by auto
qed

definition BSD :: ‘e BSP
where
BSDV Tr =
Va S VCECV ((ﬂ Qc@a)e TrAalCy =1)
— @a (BQa')e Tr Aa'lVy =alVy Aa'lCy =)

lemma BSP-valid-BSD: BSP-valid BSD
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOuver-def)
moreover
have BSD V ?Tr’
unfolding BSD-def by auto
ultimately
have 3 Tr'. Tr' D> Tr AN BSDV Tr'
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by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition BSI :: ‘e BSP
where
BSIY Tr =
Va B.VceCy. (BQa) € Tr AalCy =)
— @a ((BQJQ@a’)e Tr Aa1Vy =alVy AalCy =)

lemma BSP-valid-BSI: BSP-valid BSI
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?27r'D> Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOver-def)
moreover
have BSI V ?Tr’ using (isViewOn V E»
unfolding isViewOn-def BSI-def by auto
ultimately
have 3 Tr’. Tr' D Tr N BSIV Tr’
by auto

thus %thesis
unfolding BSP-valid-def by auto
qed

definition BSIA :: ‘e Rho = ‘e BSP
where
BSIA oV Tr =
Va B.VeceCy. (BQa) e Tr AalCy =[] A (Adm YV o Tr B ¢))
— @a ((BQJQ@a’)e TrAa1Vy =alVy AalCy =)

lemma BSP-valid-BSIA: BSP-valid (BSIA p)

proof —
{
fix V :: (‘a V-rec)
fix Tr E

assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?Tr'D Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
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have BSIA o V ?Tr’ using <isViewOn V E»
unfolding isViewOn-def BSIA-def by auto
ultimately
have 3 Tr'. Tr' D Tr AN BSIA oV Tr'
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

record ‘e Gamma =
Nabla :: 'e set
Delta :: e set
Upsilon :: 'e set

abbreviation GammaNabla :: 'e Gamma = e set
(«<V_» [100] 1000)

where

Vr = (Nabla T)

abbreviation GammaDelta :: 'e Gamma = e set
(<A-y [100] 1000)

where

Ar = (Delta T')

abbreviation GammaUpsilon :: 'e Gamma = 'e set

(«Y-» [100] 1000)
where
Y1 = (Upsilon T')

definition FCD :: ‘e Gamma = ‘e BSP
where
FCDTV Tr =
Va B.Vce(Cy N Yp). Voe(Vy N V).
(BQle,w]@Qa)e TrAal Cy =)
— (Ja’. 38" (set §') C (Ny N Ap)
A((B@é @] @a’)e Tr

ANa1Vy =alVy AalCy =)

lemma BSP-valid-FCD: BSP-valid (FCD T")
proof —
{

fix V::('a V-rec)

fix Tr £

assume isViewOn V E

and areTracesOver Tr E

let ?Tr'={t. (set t) C E}

have ?2Tr'D> Tr
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by (meson Ball-Collect <areTracesOver Tr E) areTracesOver-def)
moreover
have FCD TV ?2Tr’
proof —
{

fixapcw

assume c € Cy N T
and v e€Vy NVp
and $Q [c,v] @Qa € ?Tr'
and o] Cy =]

let ?a’=a and 25'=|]

from (8 @Q [c ,w] @ @ € ?Tr’y have @ 25’ @ [v] @ 22’ € 2Tr’
by auto

hence (set 25') C (Ny N Ap) A ((B@ 25’ Q [v] @ 2a') € 217’

A 2o’ Vy=al Vy A 2a’ 1 Cy = 1))

using <isViewOn V E> <a 1 Cy = [
unfolding isViewOn-def <o 1 Cy = [> by auto

hence Ja’. 346" (set §') C (Ny NAp) A ((B@ '@ [v] @ a') € 2Tr'
Aa’l Vy =a Vv/\oz/] CV:H)
by blast

thus ?thesis
unfolding FCD-def by auto
qed
ultimately
have 3 Tr'. Tr' D> Tr A FCDT V Tr’
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition FCI :: 'e Gamma = ‘e BSP
where
FCITY Tr =
Ya B. VCG(CV N Tr). V’UG(VV N V).
(@ @a)e Tr AalCy =)
— (Ja’. 36" (set §') C (Ny N Ap)
A({(BQ@ld@d Qv @a’)e Tr
N o/] Vy = o1 Vy A aﬂ CV = H))

lemma BSP-valid-FCI: BSP-valid (FCI T')
proof —
{

fix V::('a V-rec)

fix Tr £

assume isViewOn V FE

and areTracesOver Tr E

let ?Tr'={t. (sett) C E}

have 270D Tr

by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
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moreover
have FCIT V ?Tr’
proof —
{
fixapcw
assume c € Cy N T
and v €Vy N Vp
and 8 Q [v] @ a € ?2Tr’
and a1 Cy =]
let ?a’=a and 25'=||
from <c € Cy N Yr» have c € E
using <isViewOn V E»
unfolding isViewOn-def by auto
with 3@ [v] @ o € ?Tr» have 8 Q [c] @ 25’ @ [v] @ 2o’ € 277’
by auto
hence (set 26') C (Ny N Ap) A ((BQ [c] @ 2’ Q [v] @ %) € ?Tr'
N ?Oc/] Vv:Oé1 Vy A ?04/1 Cvz [])
using <isViewOn V E» <o 1 Cy = [» unfolding isViewOn-def <o 1 Cy, = []» by auto
hence
Ja’. 36" (set ) C(Ny NAp) A((BQ@ [c] @4 Q [v] @a'Y) € 277
Aa'l Vy = a Vv/\a/] CV:H)
by blast
}
thus ?thesis
unfolding FCI-def by auto
qed
ultimately
have 3 Tr'. Tr' D> Tr AN FCIT YV Tr'
by auto

thus %thesis
unfolding BSP-valid-def by auto
qed

definition FCIA :: ‘e Rho = ‘e Gamma = 'e BSP
where
FCIA o TV Tr =
Va B.Vcee(Cy N Yp). Voe(Vy N V).
(B@]@a)e TrAalCy =[] A(AdnY o Tr 8 ¢c))
—>(E|a'.5|5' (set 6") C ( N Ap)
A(BOI]86 @[] Ga)e T
/\Ot]VV:Oé]VV /\OéIWCVI H))

<

lemma BSP-valid-FCIA: BSP-valid (FCIA o T')

proof —
{
fix V :: (‘a V-rec)
fix Tr £

assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}

33



have ?27r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have FCIA o TV ?Tr'
proof —
{
fixapfcov
assume c € Cy N T
and v € VV N Vr
and 8 Q [v] @ a € ?Tr'
and a1 Cy =
let ?a’=a and %'=||
from <c € Cyy N Y1) have c € F
using («isViewOn V E> unfolding isViewOn-def by auto
with 3@ [v] @ a € ?Tr» have 8 @Q [c] @ 25’ @ [v] @ %o’ € 2Tr’
by auto
hence (set 25') C (Ny NAp) A (B Q@[] @ 25’ Q [v] @ 2a’) € 217’
A 2o’ Vy=al Vy A 2a’ 1 Cy = 1))
using <isViewOn V E> «a 1 Cy = [
unfolding isViewOn-def <o 1 Cy = [> by auto
hence
Ja’. 36" (set ') C(Ny NAp) A ((BQ [c] @d'Q [v] @a') e ?2Tr
/\Oz/w VV:(X1 Vv/\a/] CV:H)
by blast
}
thus ?thesis
unfolding FCIA-def by auto
qed
ultimately
have 3 Tr'. Tr' D Tr AN FCIA o TV Tr’
by auto

thus %thesis
unfolding BSP-valid-def by auto

qed

definition SR :: ‘e BSP
where
SRY Tr=vVrelr.71(Vy UNy) € Ir

lemma BSP-valid SR
proof —

fix Vi:('e V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. 37 € Tr. t=71(Vy U Ny)} U Tr
have ?Tr'D Tr
by blast
moreover

34



have SR V ?Tr' unfolding SR-def
proof
fix 7
assume 7 € ?7r’
{
from «r € ?Tr" have (3teTr. 7=t 1 (Vy, UNy)) VTe€E Ir
by auto
hence 71 (Vy U Ny) € 2T/
proof
assume 3teTr. 7 =t 1(Vy U Ny)
hence 3t€Tr. 71 (V) U Ny)=t 1(Vy U Ny)
using projection-idempotent by metis
thus %thesis
by auto
next
assume 7 € Tr
thus ?thesis
by auto
qed
}
thus 7 1 (V) U Ny) € 2Tr’
by auto
qged
ultimately
have 3 T0'. Tr' D> Tr A SRV Tr'
by auto
}

thus ?thesis
unfolding BSP-valid-def by auto
qed

definition SD :: ‘e BSP
where
SDV Tr =
Va B.VceCy. (BQ[cJQa)e TrAalCy =) — Qac Tr

lemma BSP-valid SD
proof —
{
fix V::('e V-rec)
fix Tr £
assume isViewOn V F
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
moreover
have SD V ?Tr’ unfolding SD-def by auto
ultimately
have 3 Tr'. Tr' D> Tr A SD V Tr' by auto

}

thus ?thesis unfolding BSP-valid-def by auto
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qed

definition SI :: ‘e BSP
where
SIY Tr =
VaB.VeeCy. (BQa)e TrAalCy=][) —Q[]QacTr

lemma BSP-valid SI
proof —
{
fix V::('a V-rec)
fix Tr E
assume isViewOn V F
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?7r'D> Tr
by (meson Ball-Collect <areTracesOver Tr E» areTracesOver-def)
moreover
have ST V ?Tr’
using <isViewOn V E)
unfolding isViewOn-def SI-def by auto
ultimately
have 3 Tr'. Tr' D> Tr ASIV Tr'
by auto
}
thus %thesis
unfolding BSP-valid-def by auto
qed

definition SIA :: ‘e Rho = 'e BSP
where
SIA oV Tr =
VaB.VeeCy. (BQa)e TrAal Cy=[A(AdnV o Tr g c))
— (BQ@Q@a)e Tr

lemma BSP-valid (SIA p)
proof —
{
fix V :: (a V-rec)
fix Tr £
assume isViewOn V E
and areTracesOver Tr E
let ?Tr'={t. (set t) C E}
have ?2Tr'D> Tr
by (meson Ball-Collect <areTracesOver Tr Es areTracesOuver-def)
moreover
have SIA oV ?Tr’
using <isViewOn V E»
unfolding isViewOn-def SIA-def by auto
ultimately
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have 3 Tr'. Tr' D Tr AN SIA oV Tr'
by auto

thus %thesis
unfolding BSP-valid-def by auto
qed

end

4.3 Information-Flow Properties

We define the notion of information-flow properties from [3].

theory InformationFlowProperties
imports BasicSecurityPredicates
begin

type-synonym ‘e SP = (‘e BSP) set

type-synonym ‘e IFP-type = (‘e V-rec set) x ‘e SP

definition IFP-valid :: 'e set = e IFP-type = bool
where
IFP-valid E ifp =
YV € (fst ifp). isViewOn V E
A (Y BSP € (snd ifp). BSP-valid BSP)

definition IFPIsSatisfied :: ‘e IFP-type = (e list) set = bool
where
IFPIsSatisfied ifp Tr =

vV Ve(fst ifp). YV BSPE€(snd ifp). BSP V Tr

end

4.4 Property Library

We define the representations of several possibilistic information-flow properties from the literature
that are provided as part of MAKS in [3].

theory PropertyLibrary
imports InformationFlowProperties ../ SystemSpecification/ EventSystems ../ Verification/ Basics/ BSPTazonomy
begin

definition
HighInputsConfidential :: ‘e set = 'e set = 'e set = 'e V-rec
where
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HighInputsConfidential L H IE = (| V=L, N=H—IE, C=H N IE )

definition HighConfidential :: ‘e set = 'e set = ‘e V-rec
where
HighConfidential L H = (| V=L, N={}, C=H )

fun interleaving :: ‘e list = e list = (e list) set
where
interleaving t1 [] = {t1} |
interleaving [| t2 = {t2} |
interleaving (el # t1) (e2 # t2) =
{t. (3t t=(el # t") A t' € interleaving t1 (e2 #t2))}
U {t. 3t t=(e2 # t') A t' € interleaving (el # t1) t2)}

definition GNI :: ‘e set = ‘e set = 'e set = e IFP-type
where
GNI L H IE = ( {HighInputsConfidential L H IE}, {BSD, BSI})

lemma GNI-valid: L N H = {} = IFP-valid (L U H) (GNI L H IE)
unfolding IFP-valid-def GNI-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD BasicSecurityPredicates. BSP-valid-BSI
by auto

definition litGNI :: ‘e set = ‘e set = ‘e set = (e list) set = bool
where
lLitGNI L HIE Tr =

Y 12 13,
tl@t,?eTr/\tS’W(Lu(HfIE)) 1 (LU (H — IE))
— @t t1 @t e TrA (L (HmE)):t (L U (H n IE)))

definition IBGNI :: ‘e set = e set = e set = ‘e IFP-type
where IBGNI L H IE = ( {HighInputsConfidential L H IE}, {D, 1})

lemma IBGNI-valid: L N H = {} = IFP-valid (L U H) (IBGNI L H IE)
unfolding IFP-valid-def IBGNI-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-D BasicSecurityPredicates. BS P-valid-1
by auto

definition
ItIBGNI :: 'e set = e set = ‘e set = (e list) set = bool
where
LitIBGNI L H IE Tr =
V r-le Tr.V t-hit.
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(set t-hi) C (H N IE) At € interleaving t-hi (7-1 1 L)
— @37 eTr.7"1 (LUHNIE)) =1t)

definition FC :: ‘e set = ‘e set = e set = ‘e IFP-type
where
FCLHIE =
( {HighInputsConfidential L H IE},
{BSD, BSI, (FCD ( Nabla=IE, Delta={}, Upsilon=IE ),
(FCI (| Nabla=IE, Delta={}, Upsilon=IE | )})

lemma FC-valid: L N H = {} = IFP-valid (L U H) (FC L H IE)
unfolding IFP-valid-def FC-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD BasicSecurityPredicates. BSP-valid-BSI
BasicSecurityPredicates. BSP-valid-FCD BasicSecurityPredicates. BSP-valid-FCI
by auto

definition litFC :: e set = 'e set = e set = (e list) set = bool
where
litFC L H IE Tr =

Vi1 2.V hi € (H N IE).

(V Ui € (LN IE).
t1 Q] @t-2 e TrAt2] (HNIE) =
— (3 t-3.t-1 @ [hi) @ [l]] @ -3 € Tr
At81L=t21LAt81(HNIE)=]))
A(t-1@t2 € TrAt2] (HnNIE) =]
— (3 3. t-1 Q [hi] @ t-3 € Tr
AS1L=t21LAt81(HNIE)=]))

Qt-2e€ TrAt-21(HNIE) =]
— (3 t-8. -1 Q [li] @ -8 € Tr

1L=t21LAt31(HNIE)=1]))
Tr At-21 (HNIE) =]

t-21LAEG31(HNIE)=1]))

definition NDO :: ‘e set = e set = 'e set = e IFP-type
where
NDO UI'L H =
( {HighConfidential L H}, {BSD, (BSIA (A V. Cy, U (Vy N UI)))})

lemma NDO-valid: L N H = {} = [FP-valid (L U H) (NDO UI L H)
unfolding IFP-valid-def NDO-def HighConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD
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BasicSecurityPredicates. BSP-valid-BSIA[of (A V. Cy, U (Vy, N UI))]
by auto

definition litNDO :: e set = e set = e set = (’e list) set = bool
where
LWINDO UI L H Tr =
Vr-le Tr.V 7-hlui € Tr. V t.
HL = 7L A #1(H U (L N UID)) = 7-hlui](H U (L 0 UI)) — t € Tr

definition NF :: e set = 'e set = e IFP-type
where
NF L H = ( {HighConfidential L H}, {R})

lemma NF-valid: L N H = {} = IFP-valid (L U H) (NF L H)
unfolding IFP-valid-def NF-def HighConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-R
by auto

definition litNF :: ‘e set = ‘e set = (e list) set = bool
where
WNFLHTr=vV7reTr. 71 LeTr

definition GNF :: ‘e set = ‘e set = ‘e set = 'e IFP-type
where
GNF L H IE = ( {HighlnputsConfidential L H IE}, {R})

lemma GNF-valid: L N H = {} = IFP-valid (L U H) (GNF L H IE)
unfolding [FP-valid-def GNF-def HighlnputsConfidential-def isViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-R
by auto

definition litGNF :: ‘e set = 'e set = 'e set = (’e list) set = bool
where
litGNF L H IE Tr =

Vre Tr.37' e Tr.r| (HNIE)=[|A71L=71L

definition SEP :: e set = 'e set = e IFP-type
where
SEP L H = ( {HighConfidential L H}, {BSD, (BSIA (A V. Cy))})
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lemma SEP-valid: L N H = {} = IFP-valid (L U H) (SEP L H)
unfolding IFP-valid-def SEP-def HighConfidential-def is ViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD
BasicSecurityPredicates. BSP-valid-BSIA[of A V. Cy)]
by auto

definition litSEP :: ‘e set = e set = ('e list) set = bool
where
litSEP L H Tr =
Vr-l€ Tr.V 7-h € Tr.
interleqving (t-11 L) (t-h 1 H) C{r e Tr .71 L=7-11 L}

definition PSP :: ‘e set = 'e set = e IFP-type
where
PSP L H =
( {HighConfidential L H}, {BSD, (BSIA (A V. Cy, U Ny, U Vy)})

lemma PSP-valid: L N H = {} = IFP-valid (L U H) (PSP L H)
unfolding IFP-valid-def PSP-def HighConfidential-def is ViewOn-def
V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates. BSP-valid-BSD
BasicSecurityPredicates. BSP-valid-BSIA[of A V. Cy, U Ny, U Vy)]
by auto

definition litPSP :: ‘e set = 'e set = ('e list) set = bool
where
litPSP L H Tr =
(YreTr.t1LeTr
ANV aB (B@a)e TrA (el H) =
s (VheH BQ[eT — BQ[h]@ac Tr)

end

5 Verification

5.1 Basic Definitions

We define when an event system and a state-event system are secure given an information-flow
property.
theory SecureSystems
imports ../../SystemSpecification/State EventSystems
../ ../ SecuritySpecification / InformationFlowProperties
begin

locale Secure ESIFP =
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fixes ES :: ‘e ES-rec
and IFP :: 'e IFP-type

assumes validES: ES-valid ES
and validIFPES: IFP-valid E g IFP

context SecureESIFP
begin

definition ES-sat-IFP :: bool

where

ES-sat-IFP = IFPIsSatisfied IFP Trgg
end

locale SecureSESIFP =

fixes SES :: (s, 'e) SES-rec

and IFP : 'e IFP-type

assumes validSES: SES-valid SES
and validIFPSES: IFP-valid Egpg IFP

sublocale SecureSESIFP C SecureESIFP induceES SES IFP
by (unfold-locales, Tule induce ES-yields-ES, rule validSES,
simp add: induceES-def, rule valid[FPSES)

context SecureSESIFP
begin

abbreviation SES-sat-1FP
where

SES-sat-IFP = ES-sat-IFP

end

end

5.2 Taxonomy Results

We prove the taxonomy results from [3].

theory BSPTazonomy
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imports ../../SystemSpecification/ EventSystems
../ ../ SecuritySpecification/ BasicSecurity Predicates
begin

locale BSPTazxonomyDifferentCorrections =
fixes ES :: e ES-rec
and V :: ‘e V-rec

assumes validES: ES-valid ES
and VIsViewOnE: isViewOn V Egg

locale BSPTazonomyDifferentViews =
fixes ES :: 'e ES-rec

and Vi :: ‘e V-rec

and Vs :: ‘e V-rec

assumes validES: ES-valid ES
and V1IsViewOnkE: isViewOn V1 Egg
and Va2IsViewOnkE: isViewOn V2 Egg

locale BSPTazonomyDifferentViewsFirstDim= BSPTaxonomyDifferent Views +
assumes V2-subset-V1: VVQ C VV1

and N2-supset-N1: Ny, 2 Ny,

and C2-subset-C1: Cy, € Oy,

sublocale BSPTazxonomyDifferent ViewsFirstDim C BSPTaxonomyDifferent Views
by (unfold-locales)

locale BSPTazxonomyDifferent ViewsSecondDim= BSP TaxonomyDifferent Views +
assumes V2-subset-V1i: Vy,, C Vy,

and N2-supset-N1: Ny, 2 Ny,

and C2-equals-C1: Cy, = Cy,

sublocale BSPTazxonomyDifferent ViewsSecondDim C BSPTaxonomyDifferent Views
by (unfold-locales)

context BSPTaxonomyDifferentCorrections
begin

lemma SR-implies-R:
SRY Trpg = RV Trgg
proof —
assume SR: SRV Trgg
{
fix 7
assume 7 € Trpg
with SR have 7 1 (VV (@] Nv) € Trgg
unfolding SR-def by auto
hence 3 7. 7' € Trgg AT/ 1 Vy =71 Vy AT/ 1 Cp =
proof —
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assume tau-V-N-is-trace: 71 (Vy U Ny) € Trgg
show 3 7' 7€ Trgg AT 1 Vy =71 Vy ATl Cpy =]
proof
let ?r'=71(Vy UNy)
have 7 | (VVUNV)1 Vy =711 Vy
by (simp add: projection-subset-elim)
moreover
from VIsViewOnE have VC-disjoint ¥V N NC-disjoint V
unfolding isViewOn-def V-valid-def
by auto
then have (V) U Ny) N Cy = {}
by (simp add: NC-disjoint-def VC-disjoint-def inf-sup-distrib2)
then have 27’1 Cy = |]
by (simp add: disjoint-projection)
ultimately
show 27’ € Trgg A 27'1 Vy =171 Vy A 21’1 Cyp =]
using tau-V-N-is-trace by auto
qed
qed
}
thus %thesis
unfolding SR-def R-def by auto
qed

lemma SD-implies-BSD -
(SDV Trgg) = BSDV Trgg
proof —
assume SD: SDV Trgg
{
fix a 8 ¢
assume c € Cy
and S Qc# o€ Trgg
and alpha-C-empty: a1 Cy = ||
with SD have 3 Q@ o € Trgg
unfolding SD-def by auto
hence 3a’. Q@ a’'€ Trgg Ao’ 1 Vy=al Vy Aa'l Cy =]
using alpha-C-empty
by auto
}
thus ¢thesis
unfolding SD-def BSD-def by auto
qed

lemma BSD-implies-D:
BSD VY TT‘ES == DV TT’ES
proof —

assume BSD: BSD 'V Trgg

{
fixapec
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assume a | Cy = ||
and c € Cy,
and 5 Q [c] @ o € Trgg
with BSD obtain o’
where 8 Q o' € Trgg
anda’'1 Vy=al VYV
and o' Cy =]
by (simp add: BSD-def, auto)
hence (3o’ 3’
(ﬁ’@a’e WEsAa/] Vy =a VV/\a'1 OV:H)/\
B'1(VyuCy)=p61(VyuCy))
by auto
}
thus ?thesis
unfolding BSD-def D-def
by auto
qed

lemma SD-implies-SR:
SDY Trpg = SRV Trgg
unfolding SR-def
proof

fix 7

assume SD: SDV Trgg
assume T-trace: T € Irgg

{

fix n

have SR-via-length: [T € Trgg; n = length (11 Cy) |
= d7' € TT‘Es.T/] CV: H AT (Vquv):T] (VvUNv)
proof (induct n arbitrary: T)
case ()
note 7-in-1Tr = <t € Trgg
and <0 = length (11 Cy)»
hence 71 Cy =]
by simp
with 7-in-Tr show Zcase
by auto
next
case (Suc n)
from projection-split-last| OF Suc(3)] obtain § ¢ «
where c-in-C: c € Cy,
and 7-is-feo: T = S Q [c] Q «
and a-no-c: a1 Cy = ||
and Sa-contains-n-cs: n = length (6 Q «) 1 Cy)
by auto
with Suc(2) have Sca-in-Tr: f Q [c] Q o € Trgg
by auto
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with SD c-in-C Bca-in-Tr a-no-c obtain 8’ o’
where B8'a’~in-Tr: (8’ Q@ a') € Trgg
and a'-V-is-a-V:a'1 (V) U Ny) = a1 (Vy U Ny)
and a’-no-c: o’ 1 Cy, = ||
and p’-VC-is-B-VC: B’ ] (VV UNy U Cv) =31 (Vv UNy U Cv)
unfolding SD-def
by blast

have ('@ a’) 1 (Vy U Ny) =71 (Vy UNy)
proof —
from B'-VC-is-3-VC have B'1(Vy U Ny) =51 (Vy U Ny)
by (rule projection-subset-eq-from-superset-eq)
with a’-V-is-a-V have (3’ @ a') 1 (V) U Ny) = (8@ a) 1 (Vy U Ny)
by (simp add: projection-def)
moreover
with VIsViewOnE c-in-C have ¢ ¢ (Vy U Ny))
by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def, auto)
hence (3@ a) 1 (Vy UNy) = (8@ [c]@a)] (VyUNy)
by (simp add: projection-def)
moreover note 7-is-Bca
ultimately show ?thesis
by auto
qed
moreover
have n = length ((8’ @ a) 1 Cy)
proof —
have 8’1 Cy =p81Cy
proof —
have Vy, U Ny U Cy = Cy U (V) U Ny)
by auto
with 8’-VC-is-3-VC have 3’1 (Cy U (Vy, U Ny)) =81 (Cy U (Vy, U Ny))
by auto
thus %thesis
by (rule projection-subset-eq-from-superset-eq)
qed
with a’-no-c a-no-c have (8’ @a’) 1 Cy = (BQ@a) 1 Cy
by (simp add: projection-def)
with Ba-contains-n-cs show ?thesis
by auto
qed
with Suc.hyps B'a’-in-Tr obtain 7’
where 7' € Trgg
and 7’1 Cy = ||
and 7’1 (V) U Ny) = (8'@a’) ] (Vy U Ny)
by auto
ultimately show ?case
by auto
qged

}

hence 7 € Trgg = 37" 7'€Trpgg A 7' 1 Cy, = AT 1 (Vy UNy) =71 (Vy UNy)
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by auto

from this T-trace obtain 7’ where
7'-trace : T'€Trpg
and 7'-no-C :7'1 Cy = |
and 7'-m-rel : 7' 1 (V) U Ny) =71 (Vy U Ny)
by auto

from 7'-no-C have 7’1 (Vy, U Ny, U Cy) =7"1 (V) U Ny)
by (auto simp add: projection-on-union)

with VIsViewOnE have 7'-E-eq-VN: 7' 1 Egg = 7'1 (V) U Ny))
by (auto simp add: isViewOn-def)

from validES 7'-trace have (set 7') C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)
hence 7' | Egg = 7' by (simp add: list-subset-iff-projection-neutral)
with 7'-F-eq-VN have 7' = 7’1 (Vy, U Ny)) by auto
with 7'-r-rel have 7' = 71 (Vy, U Ny,)) by auto
with 7'-trace show 7 1 (Vy, U Ny)) € Trgg by auto
qed

lemma D-implies-R:
DY Trgg = RV Trgg
proof —

assume D: DV Trgg

{

fix ™ n

have R-via-length: [ 7 € Trgg; n = length (71 Cy) |
= 37’ c TTES-T,W CV:H/\T’] Vy=717Vy
proof (induct n arbitrary: T)
case (
note 7-in-Tr = «7 € Trge
and <0 = length (71 Cy)»
hence 71 Cy =]
by simp
with 7-in-Tr show Zcase
by auto
next
case (Suc n)
from projection-split-last| OF Suc(3)] obtain § ¢ «
where c-in-C: ¢ € Cy
and 7-is-fea: T = B Q [] Q «
and a-no-c: a1 Cy = ||
and fa-contains-n-cs: n = length ((f Q@ «) 1 Cy)
by auto
with Suc(2) have Sca-in-Tr: f Q [c] Q o € Trgg
by auto
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with D c-in-C Bca-in-Tr a-no-c obtain 8’ o’
where B'a’-in-Tr: (8’ @ ') € Trgg
and a'-V-is-a-V:a' 1 Vy =al Vy
and a’-no-c: a’1 Cy, = ||
and §'-VC-is-B-VC: "1 (Vy U Cy) = B 1 (VU Cy)
unfolding D-def
by blast

have (3'@a’) 1 Vy=71Vy
proof —
from B'-VC-is-B-VC have B'1 Vy=81Vy
by (rule projection-subset-eq-from-superset-eq)
with a'-V-is-a-V have (3’ @ a) 1 Vy=(BQa)l Vy
by (simp add: projection-def)
moreover
with VIsViewOnE c-in-C have ¢ ¢ Vy,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto)
hence (6 Qa) |1 Vy=(Q [ Q@a)1 Vy
by (simp add: projection-def)
moreover note 7-is-Fca
ultimately show ?thesis
by auto
qged
moreover
have n = length ((8’ @ o) 1 Cy)
proof —
have 8’1 Cy =81 Cy
proof —
have Vy, U Cy = Cy U Vy,
by auto
with 8'-VC-is-3-VC have 8’1 (Cy U Vi) =81 (Cy U Vy)
by auto
thus %thesis
by (rule projection-subset-eq-from-superset-eq)
qed
with a’-no-c a-no-c have (8’ @ a’) 1 Cy = (BQ@a) 1 Cy
by (simp add: projection-def)
with Ba-contains-n-cs show %thesis
by auto
qed
with Suc.hyps B8'a’-in-Tr obtain 7’
where 7' € Trpg
and 7’1 Cy = |]
and 7’| Vy =(8'@a)] Vy
by auto
ultimately show ?case
by auto
qed
}
thus %thesis
by (simp add: R-def)
qed
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lemma SR-implies-R-for-modified-view :
[SRV TTES;V/:q V= VVqu,N:{},C: Cy D]]Z>RV’TI”ES
proof —
assume SRV Trpg
andV':Q V= VVqu,N:{},C:CVD
{
from <V'=(V=VyUNy,N={},C=_Cy | VIsViewOnE
have V'IsViewOnE: isViewOn V' Egg
unfolding isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def by auto
fix 7
assume 7 € Trpg
with <SRV Trgg» have 71 (Vy, U Ny) € Trgg
unfolding SR-def by auto

let o7'=7 1V,

from <7 1 (Vy, U Ny) € Trgg» have 7' € Trgg
using <V'=( V=VyUNy,N={},C=Cy| by simp
moreover
from V'IsViewOnE have #7'1Cy,=]]
using disjoint-projection
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto
moreover
have ?7'1Vy,r = 71V,
by (simp add: projection-subset-elim)
ultimately
have 37'€Trpg. 71 Cy,r = AT 1 V=71V
by auto
}

with <SRV Trgg> show ?thesis
unfolding R-def using <V' = ( V = V), UNy ,N={}, C=Cy | by auto
qed

lemma R-implies-SR-for-modified-view :
[[RV/TT‘Es;V,:q V= Vquv,N:{},CICV D]]:>SRV Trgg
proof —
assume R V' Trpg
andV’:Q V = VVqu,NI{}7C=CVD
{
fix 7
assume 7 € Trpg
from <R V' Trpg» <7 € Trpg» obtain 7" where 7' € Trpg
and 7' 1 Cy,r = |]
and 7'1 Vyr=71Vy
unfolding R-def by auto
from VIsViewOnE V'=(V = Vy UNy ,N={}, C=Cy ) have isViewOn V' Egg
unfolding is ViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
by auto

from v’ Vyyy=711Vyn V' =(V=VyUNy,,N={},C=0Cy
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have 7' 1 (Vy,y U Nyyr) =71 (Vy,r U Nyy)
by simp

from 7' 1 Cy,y = [) have 7/ =7"1 (Vs U Ny,/)
using validES <7’ € Trgg <isViewOn V' Egg
unfolding projection-def ES-valid-def isViewOn-def traces-contain-events-def
by (metis UnE filter-True filter-empty-conv)
hence 7' =71 (V) U Ny,/)
using <T/W (Vv/ U NV/) =17 (Vvl @] NV/)>
by simp
with 7" € Trge have 71 (Vs U Ny,/) € Trgg
by auto
}
thus ?thesis
unfolding SR-def using V'=(V =V, UNy ,N={},C=Cy )
by simp
qed

lemma SD-implies-BSD-for-modified-view :
[SDY Trgg; V' =V =Vy,UNy,N={},C=Cy|] = BSDV' Trgg
proof —
assume SD V Trgg
and V'=(V = VyUNy ,N={},C=Cy)
{
fixapfec
assume c € Cy,/
and 8 Q [c] Q @ € Trgg
and o] Cyr = |]

from «c€ Cyn V' =(V=VyUNy,N={},C=0Cy)
have c € Cy,

by auto

from «a]Cyr =[P V' =(V=VyUNy,N={},C=Cy
have a1Cy, = ||

by auto

from (¢ € Cy» (B Q [c] @ a € Trgg «a]Cy =[]

have 3 @ o € Trpg using «SD V Trgg
unfolding SD-def by auto

hence Jo’. f@a'e Trgg N a’'1 Vyyy=al Vy Aa'l Cyr=]
using <a | Cy,r = [> by blast

with «SD V Trpg» show ?thesis
unfolding BSD-def using <V' = ( V = Vy, UNy,, N ={}, C = Cy | by auto
qed

lemma BSD-implies-SD-for-modified-view :

[[BSDV’TTEs;VIIG V= VVqu,NI{},CZ CV DHZ>SDV Trgg
unfolding SD-def
proof (clarsimp)
fix a B ¢
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assume BSD-view’: BSD (V = Vy, UNy ,N ={}, C = Cy| Trgg
assume alpha-no-C-view : o 1 Cy, = ]

assume c-C-view : ¢ € Cy,

assume beta-c-alpha-is-trace :  Q ¢ # « € Trgg

from BSD-view’ alpha-no-C-view c-C-view beta-c-alpha-is-trace
obtain o’
where beta-alpha'-is-trace: B @ o'€(Trgg)
and alpha-alpha”: o' 1 (Vy, U Ny) = a1 (Vy, U Ny)
and alpha’-no-C-view : o’ 1 Cy, = ||
by (auto simp add: BSD-def)

from beta-c-alpha-is-trace validES
have alpha-consists-of-events: set o C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha-no-C-view have a1 (V) U Ny, U Cy) = a1 (V) U Ny)
by (rule projection-on-union)

with VIsViewOnE have alpha-on-ES : o | Egg = a1 (V) U Ny)
unfolding isViewOn-def by simp

from alpha-consists-of-events VIsViewOnE have o | Egg = «
by (simp add: list-subset-iff-projection-neutral)

with alpha-on-ES have a-eq: oo 1 (V) U Ny) = a by auto

from beta-alpha’-is-trace validES
have alpha’-consists-of-events: set o’ C Egg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha’-no-C-view have o’ 1 (Vy, U Ny, U Cy) = o' 1 (V) U Ny))
by (rule projection-on-union)

with VIsViewOnE have alpha’-on-ES : o' 1 Egg = a'1 (V) U Ny))
unfolding isViewOn-def by (simp)

from alpha’-consists-of-events VIsViewOnE have o' | Epg = o'
by (simp add: list-subset-iff-projection-neutral)

with alpha’-on-ES have a’-eq: o’ 1 (Vy, U Ny,) = a’ by auto

from alpha-alpha’ a-eq o’-eq have o = o’ by auto

with beta-alpha’-is-trace show 8 @ a € Trpg by auto
qed

lemma SD-implies-FCD:
(SD v T’I‘Es) — FCDTYVY TTES
proof —

assume SD: SDV Trgg
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{

fixapfco
assume c € Cy N T
and ve€ Vy NVp
and alpha-C-empty: o 1 Cy =[]
and $Q [¢c, v] @ a € Trgg
moreover
with VIsViewOnE have (v # o) 1 Cy = ||
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have f @ (v # «) € Trgg
using SD unfolding SD-def by auto
with alpha-C-empty
have Ja’. 35" (set §') C (Ny NAp) A ((BQ6 Q@ [v] @a’) € Trgg
Aa'l Vy = a Vv/\a/1 CV:H)
by (metis append.simps(1) append.simps(2) bot-least list.set(1))
}
thus ?thesis
unfolding SD-def FCD-def by auto
qed

lemma SI-implies-BSI :
(SIV Trgg) = BSIV Trgg
proof —
assume SI: SIV Trgg
{
fix a 8 ¢
assume c € Cy
and 3@ «ac€ Trgg
and alpha-C-empty: a1 Cy = ||
with ST have 8 Q c # a € Trgg
unfolding SI-def by auto
hence Ja'. Q@ c# a’'€ Trggha'l Vy=al VyAa'l Cy=]
using alpha-C-empty by auto
}
thus %thesis
unfolding SI-def BSI-def by auto
qed

lemma BSI-implies-1:
(BSIV Trgg) = (I V Trgg)
proof —

assume BSI: BSI V Trgg

{
fixapfec
assume ¢ € Cy
and 8 Q@ o € Trgg
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and a1 Cy = ||

with BSI obtain o’
where 8 Q@ [c] @ o’ € Trgg
and o'l Vy =al Vy

and o' Cy =
unfolding BSI-def
by blast

hence

(30/,3’. (,B'@[c]@a'e T'I“Es/\al] Vy =a VV/\O/W Cv:[])/\
B 1 (VyuCy)=p1(VyUuCy))
by auto

thus ?thesis unfolding BSI-def I-def
by auto
qed

lemma SIA-implies-BSIA:
(SIA 0V Trgg) = (BSIA oV Trgg)
proof —
assume SIA: SIA oV Trgg
{
fixapfec
assume ¢ € Cy,
and 8 Q@ o € Trgg
and alpha-C-empty: a1 Cy = ||
and (Adm V ¢ Trgg S c)
with SIA obtain 8 Q ¢ # a € Trgg
unfolding SIA-def by auto
hence 3 a. Q@ c# a'€ TrggAa'l Vy =al VyAa'l Cy =]
using alpha-C-empty by auto
}
thus %thesis
unfolding SIA-def BSIA-def by auto
qed

lemma BSIA-implies-IA:
(BSIA oV Trgg) = (IA oV Trgg)
proof —

assume BSIA: BSIA oV Trgg

{
fixapfec

assume ¢ € Cy)
and 8 Q@ o € Trgg
and a1 Cy =]
and (Adm V ¢ Trgg B c)
with BSIA obtain o’
where 8 Q [c] @ o’ € Trgg
and o'l Vy =al Vy
and o' Cy = ||
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unfolding BSIA-def
by blast
hence (3o’ 3’
B'@ldd@a’'e Trggha’'1Vy=al VyAa'lCy=[)A
BT (Vyu Cy)=p1(VyuCy))
by auto

thus “thesis
unfolding BSIA-def IA-def by auto
qed

lemma SI-implies-SIA:
SIV Trpg = SIA oV Trgg
proof —
assume SI: SI'V Trgg
{
fix a B¢
assume ¢ € Cy
and 8 Qac Trgg
and a1 Cy =]
and AdmV o Trgg B c
with S have 8 Q (¢ # o) € Trgg
unfolding SI-def by auto
}
thus ?thesis unfolding SI-def SIA-def by auto
qed

lemma BSI-implies-BSIA:
BSI'V Trgg = BSIA ¢V Trgg
proof —
assume BSI: BSI V Trpg
{
fixapfec
assume ¢ € Cy)
and 8 Qac€ Trgg
and a1 Cy =]
and AdmV o Trgg B c
with BSThave 3 o’. 8 Q (¢ # a') € TrggAa’'1 Vy =al Vy Aa’l1 Cp =]
unfolding BSI-def by auto
}
thus %thesis
unfolding BSI-def BSIA-def by auto
qed

lemma [-implies-IA:
IV Trgg = IA oV Trgg
proof —

assume [: [ V Trpg

{
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fix a 8 ¢
assume ¢ € Cy,
and 3Qa ¢ Trgg
and ol Cy =]
and AdmV o Trgg B c
with T have 3 o’ 8. 8’ Q (c# a') € Trgg Ao’ 1 Vy =al Vy
Aa' T Cy = AR 1I(VyUuCy) =p1(VyUuly)
unfolding I-def by auto
}
thus %thesis
unfolding I-def IA-def by auto
qed

lemma SI-implies- BSI-for-modified-view :
[[S]VTTEs;V/:q V= VVqu,N:{},C:OV D]]:>BSIV/TTES
proof —
assume SI V Trpg
andV':Q V= VVUNVvN:{}7C:CVD
{
fix a 8 c
assume c € Cy,/
and f @ a € Trgg
and o] Cyr = |]

from «ce Cy,n V' =(V=VyUNy,,N={},C=Cy)
have ¢ € Cy,

by auto

from «a1Cy =[p V' =(V=VypUNy,N={},C=Cy
have a1Cy, = ||

by auto

from <«c € Cy» «f Q@ a € Trgg «a]Cy = [

have 8 Q [c] @ a € Trgg
using «SI V Trpg» unfolding SI-def by auto

hence 3o’ Q@[] @ a'€ Trgg A o' Vyyr=al Vi Aa'l Cpr=]
using a1 Cyr = [
by blast

with «SI' V Trpg» show ?thesis
unfolding BSI-def using <V'=( V = V), UNy , N ={}, C = Cy |» by auto
qed

lemma BSI-implies-SI-for-modified-view :
HBS[V/TTEs;Vl:q V=VyUNy , N={},C=Cy )] = SIV Trgg
unfolding SI-def
proof (clarsimp)
fix a B ¢
assume BSI-view': BSI (V = Vy, U Ny, N ={}, C = Cy)|) Trgg
assume alpha-no-C-view : o« 1 Cyy = ]
assume c-C-view : ¢ € Cy,
assume beta-alpha-is-trace : f @ o € Trpg
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from BSI-view' have VceCy. B Qa € Trgg Aol Cy = ||
— @a.BQ@J@a’'e TrggAa’l (VyUNy)=al(VyUNp) Aa'l Cy=1])
by (auto simp add: BSI-def)

with beta-alpha-is-trace alpha-no-C-view have V ccC)).
(o’ p@ld@a’e Trggna'l (VyUNy)=al(VyUNy)ra'l Cp=])
by auto

with this BSI-view’ c-C-view obtain o'
where beta-c-alpha’-is-trace: B Q [c] @ o’ € Trgg
and alpha-alpha”: o' 1 (Vy, U Ny) = a1 (Vy, U Ny)
and alpha’-no-C-view : o’ 1 Cy) = ||
by auto

from beta-alpha-is-trace validES
have alpha-consists-of-events: set o C Epgg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha-no-C-view have a1 (V) U Ny, U Cy) = a1 (V) U Ny)
by (rule projection-on-union)

with VIisViewOnE have alpha-on-ES : a1 Egg = a1 (Vy U Ny)
unfolding isViewOn-def by (simp)

from alpha-consists-of-events VIsViewOnE have o | Epg = «
by (simp add: list-subset-iff-projection-neutral)

with alpha-on-ES have a-eq: oo 1 (V) U Ny) = a by auto

from beta-c-alpha’-is-trace validES

have alpha’-consists-of-events: set o’ C Egg
by (auto simp add: ES-valid-def traces-contain-events-def)

from alpha’-no-C-view have o’ 1 (Vy, U Ny, U Cy) = a'1 (V) U Ny))
by (rule projection-on-union)

with VIsViewOnE have alpha’-on-ES : o' 1 Egg = a'1 (V) U Ny))
unfolding isViewOn-def by (simp)

from alpha’-consists-of-events VIsViewOnE have o' | Epg = o'
by (simp add: list-subset-iff-projection-neutral)

with alpha’-on-ES have a’-eq: o’ 1 (Vy, U Ny,) = a’ by auto
from alpha-alpha’ a-eq a’-eq have o = o’ by auto

with beta-c-alpha’-is-trace show 8 @ ¢ # a € Trgg by auto
qed

lemma SIA-implies-BSIA-for-modified-view :
[SIA oV Trpg; VI=(V=VypUNy, , N={},C=Cy|);o0V=0V]= BSIA o' V' Trgg
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proof —
assume SIA oV Trgg
andV’:q V= VvUNv,N:{},C:CVD
and oV = o'V’
{
fixapc
assume c € Cy,/
and 3 @ a € Trgg
and o] Cyr = |]
and Adm V' o' Trgg B ¢

from «cec Cyn V' =(V=VyUNy,N={},C=0Cy)
have c € Cy,

by auto
from «a1Cy =[p V' =(V=VypUNy,N={},C=Cy
have a1Cy, = ||

by auto
from <Adm V' o' Trgg B o> <oV =0 V)
have Adm V o Trgg B ¢

by (simp add: Adm-def)

from «c € Cy» B Q@ a € Trgg «alCy = []p <Adm V 0 Trgg B o
have 8 Q [c] @ a € Trgg
using «SIA o V Trpg» unfolding SIA-def by auto
hence 3o’ Q@[] Q@ a'€ Trgg A o' Vyr=al Vi Aa'l Cpr=
using a1 Cy,r = [ by blast
}
with «(SIA oV Trpg> show ?thesis
unfolding BSIA-def using V' =(V =V, UNy ,N={},C=Cy )
by auto
qed

lemma BSIA-implies-SIA-for-modified-view :
[BSIA o' V' Trps; V' =(V=VyUNy , N={},C=Cy );o0V=0V]= SIApV Trgg
proof —
assume BSIA o' V' Trpg
andV':Q V= VVuNV7N:{},O:Cv|)
and oV = o'V’
{
fix a 8 ¢
assume ¢ € Cy
and 8 Qa € Trgg
and | Cy = ||
and Adm V ¢ Trgg B ¢

from «ce Cyy V' =(V=VyUNy,N={},C=Cy
have c € Cy,/

by auto

from «a]Cy =) V' =(V=VyUNy,N={},C=Cy
have a1Cy, = []

by auto

from AdmV o Trgg B o <0V =o'V’
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have Adm V' o' Trgg B ¢
by (simp add: Adm-def)

from «c € Cyn B Q@ a € Trgg «|Cyr =[] (Adm V' o' Trpg 8 o
obtain o’ where 8 @ [c] @ o’ € Trgg
and o1 Vyyr=al Vi
and o1 Cyr =]
using (BSIA ¢’ V' Trgg» unfolding BSIA-def by blast

from 3 Q@ o € Trgg validES
have alpha-consists-of-events: set o C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)

from <8 @ [¢] @ a’ € Trpg validES
have alpha’-consists-of-events: set o’ C Epg
by (auto simp add: ES-valid-def traces-contain-events-def)

from «a'1 Vyy=a | Vyn V' =(V=VyUNy,N={},C=Cy
have a'l(Vy, U Ny)=al(Vy U Ny,) by auto
with «a'1 Cyy=[p «@|Cy =D V' =(V=VyUNy,N={},C=Cy
have Oé,'\(VV UNy U Ov):a](VV UNy U Cv)

by (simp add: projection-on-union)
with VIsViewOnE alpha-consists-of-events alpha’-consists-of-events
have a’=a unfolding is ViewOn-def

by (simp add: list-subset-iff-projection-neutral)

hence Q@ [c] @ a € Trgg
using (3 @ [c] @ o’ € Trgg» by blast

with <(BSIA o' V' Trpg» show ?thesis
unfolding SIA-def using <V'=( V = Vy UNy, , N={}, C = Cy, | by auto
qed
end

lemma Adm-implies- Adm-for-modified-rho:
[ Adm V2 02 Tr a e;02(V2) 2 o1(V1)] = Adm V1 o1 Tra e
proof —
assume Adm V2 02 Tr a e
and 02(V2) 2 e1(V1)
then obtain ~
where v Q [¢] € Tr
and v 1 2 Va=al 02 V2
unfolding Adm-def by auto
thus Adm V1 o1 Tr a e
unfolding Adm-def
using <01 V1 C 02 V2> non-empty-projection-on-subset
by blast
qed

context BSPTaxonomyDifferentCorrections
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begin

lemma SI-implies-FCI:
(SIV Trgg) = FCIT YV Trgg
proof —
assume SI: SI 'V Trgg
{
fixapco
assume c € Cyy N Yr
and v € Vy NVp
and Q@ [v] @ a € Trgg
and alpha-C-empty: a1 Cy) = ||
moreover
with VIsViewOnE have (v # o) 1 Cy = ||
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have 8 Q [c¢, v] @ o € Trgg using SI unfolding SI-def by auto
with alpha-C-empty
have Ja’. 36"
(set ) C(Ny NApP) A ((BQ@ [ @d @ [v] @a') e Trgg
Aa’l Vy =a Vv/\alw CV:H)
by (metis append.simps(1) append.simps(2) bot-least list.set(1))
}
thus %thesis
unfolding SI-def FCI-def by auto
qed

lemma SIA-implies-FCIA:
(SIA oV Trgg) = FCIA o T'V Trgg
proof —
assume SIA: SIA oV Trgg
{
fixapfco
assume c € Cyy N Y
and ve€ Vy NVp
and $Q [v] @ a € Trgg
and alpha-C-empty: a1 Cy) = ||
and Adm V o Trgg B c
moreover
with VIsViewOnE have (v # o) 1 Cy = ||
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have 8 Q [c¢, v] @ o € Trpg using SIA unfolding SIA-def by auto
with alpha-C-empty
have 3o’ 36"
(set ) C(Ny NAp) A((BQ@ [ @b Q[v] @a') e Trgg
Aa’l Vy =a VV/\a'W CV:H)
by (metis append.simps(1) append.simps(2) bot-least list.set(1))

}

thus ?thesis
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unfolding SIA-def FCIA-def by auto
qed

lemma FCIl-implies-FCIA:
(FC[ ry TTES) = FCIA ,QF % TT'ES
proof—
assume FCI: FCIT V Trgg
{
fixapfcw
assume c € Cy, N T
and ve€ Vy NVp
and 5 Q [v] @ a € Trgg
and a1 Cy =
with FCI have 3Ja’éd’ set ' C Ny N Ap A
BQl@sf @v]@a’'e Trggha’l Vy=alVypAa'l Cy=]
unfolding FCI-def by auto
}
thus %thesis
unfolding FCI-def FCIA-def by auto
qed

lemma Trivially-fulfilled-SR-C-empty:
CV = {} = SRV TTES
proof —

assume Cy={}

fix 7
assume 7 € Trpg
hence 7=7|E g using validES
unfolding ES-valid-def traces-contain-events-def projection-def by auto
with «Cy={}» have 7=71(V)UNy))
using VIsViewOnE unfolding isViewOn-def by auto
with <7 € Trgg» have 71(VyUNy) € Trgg
by auto
}
thus ?thesis
unfolding SR-def by auto
qed

lemma Trivially-fulfilled- R-C-empty:
CV:{}:RVTT‘ES
proof —

assume Cy,={}

fix 7
assume 7 € Trpg
hence 7=7|E g using validES
unfolding FES-valid-def traces-contain-events-def projection-def by auto
with <CV:{}> have 7=71( VVUNV)
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using VIsViewOnE unfolding isViewOn-def by auto
with <7 € Trgg» «Cy={} have 37" € Trgg. T1Cy,=[| A 7" 1Vy=11Vy,
unfolding projection-def by auto

thus “thesis
unfolding R-def by auto
qed

lemma Trivially-fulfilled-SD-C-empty:
OV:{}:>SDV TT“ES
by (simp add: SD-def)

lemma Trivially-fulfilled- BSD-C-empty:
CV = {} — BSDV TTES
by (simp add: BSD-def)

lemma Trivially-fulfilled-D-C-empty:
Cv:{}:DVTTES
by (simp add: D-def)

lemma Trivially-fulfilled-FCD-C-empty:
OV:{}:>FCDPV T’I“ES
by (simp add: FCD-def)

lemma Trivially-fullfilled-R-V-empty:
VV:{} — RV TTES
proof —

assume Vy={}

fix 7
assume 7 € Trpg
let #7'=[]
from «r € Trpghave 21’ € Trpg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
with «Vy={}h
have 37’ € Trgg. T1Cy=[] A T1Vy=11Vy
by (metis projection-on-empty-trace projection-to-emptyset-is-empty-trace)

thus %thesis
unfolding R-def by auto
qed

lemma Trivially-fulfilled-BSD-V-empty:
VV = {} — BSDV T?"ES
proof —

assume Vy={}

fixapfec

assume (§ Q [¢] Q@ a € Trgg
and o] Cy= ||
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from (5 Q [c] @ a € Trpg> have § € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefizclosed-def prefiz-def by auto

let ?a'=[]
from g € Trgg «<Vy={}h
have fQ 2a’'eTrpg A 2a'lVy = alVy A 2a1Cy = |]
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence
Ja’.
BQa'€Trgs A a1Vy =alVy A a'lCy =[] by blast

thus %thesis
unfolding BSD-def by auto
qed

lemma Trivially-fulfilled-D- V-empty:
VV:{}:DV Trgg
proof —

assume Vy={}

fix a 8 ¢
assume (§ Q [¢] @ a € Trgg
and o] Cy= ||

from <8 @ [¢c] @ o € Trgg have 8 € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefizclosed-def prefix-def by auto

let ?8'=8 and ?a’'=|]
from g € Trpg» «Vy={}p
have ?,3/@ ?OZIETTES AN ?Oz/w Vy = ] Vy A .?Oz/] CV = H AN ?ﬁl](VV @] Cy) = 5](VV @] Cv)
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence
Ja’ B
B'@a'€Trgg A a'lVy =alVy AalCy =[] AB1I(Vy U Cy) = BI(Vy U Cy)
by blast
}
thus %thesis
unfolding D-def by auto
qed

lemma Trivially-fulfilled-FCD-V-empty:
Vy = {} = FCDTV Trpg
by (simp add: FCD-def)

lemma Trivially-fulfilled-FCD-Nabla-Y -empty:
[[VFI{} \% TFZ{}]]:> FCDTV Trgg
proof —

assume Vp={} V Tpr={}

thus %thesis
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proof (rule disjE)
assume Vp={} thus ?thesis
by (simp add: FCD-def)
next
assume Yp={} thus ?thesis
by (simp add: FCD-def)
qed
qed

lemma Trivially-fulfilled-FCD-N-subseteq-A-and-BSD:
[[NV C AF; BSD VY TTES]] = FCDTV T?“ES
proof —
assume Ny, C Ar
and BSD V Trgg
{
fixapfcw
assume c € Cy, N T
and v € V), N Vp
and 8 Q [¢,0] @ a € Trgg
and a|Cy = ||
from (¢ € Cyy N T1» have c € Cy,
by auto
from v € Vy, NV have v € Vy,
by auto

let %a=[v] @ a
from v € Vy» «]Cy = [» have %o Cy=]]

using VisViewOnE

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
from <8 @ [¢,v] @ a € Trpg» have 5 Q [] @ 20 € Trgg

by auto

from «<BSD V Trgpg
obtain o’
where 3 @ o’ € T’I‘ES
and a’|Vy, = ([v] @ )] Vy
and a'1Cy = |]
using <c € Cy» B Q [c] Q %a € Trgg <?a]Cy = [
unfolding BSD-def by auto

fromw € Vi «@'1Vy = ([v] @ )| V> have a1 Vy = [v] @ a] Vy,
by (simp add: projection-def)
then obtain § o
where a’'=§ @ [v] @ a”
and §1Vy = ||
and a1 Vy = alVy
using projection-split-first-with-suffiz by fastforce

from «a'1Cy, = [|» <a’=6 Q [v] @ o' have §]Cy,=][]

by (metis append-is-Nil-conv projection-concatenation-commute)
from «a'1Cy, = [|» «a’=6 @ [v] @ a”» have a'"|Cy)=]]

by (metis append-is-Nil-conv projection-concatenation-commute)
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from (8 @ a' € Trgg have set a’ C Egg using validES
unfolding ES-valid-def traces-contain-events-def by auto
with <a'=§ @ [v] @ o’ have set § C Egg
by auto
with «1Cy=[p <1V = []» <Ny C Ap>
have (set 6) C (Ny N Ar)
using VIsViewOnE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?8=4 and %5'=d and %a’'=a’’
from «(set §) C (Ny, N Ap) B Q o’ € Trpg «a'=5 @Q [v] @ a’»
«@"Vy = al Vi «a@”1Cy=[p
have (set 25" )C(Ny N Ap) A 28 @ 25’ @ [v] @ ?a’ € Trgg A 201 Vy=alVy A 2a'lCy=]]
by auto
hence 3a’’ §". (set ") C (Ny N Ap) A (B@ 6”7 Q [v] @ a") € Trgg
/\Oz”/1 Vy =a Vy /\a”'1 CV e H
by auto
}
thus ?thesis
unfolding FCD-def by auto
qed

lemma Trivially-fulfilled-SI-C-empty:
CV = {} = SIV TTES
by (simp add: SI-def)

lemma Trivially-fulfilled- BSI-C-empty:
Cy = {} = BSIV Trgg
by (simp add: BSI-def)

lemma Trivially-fulfilled-1-C-empty:
CV:{}:>IV TTES
by (simp add: I-def)

lemma Trivially-fulfilled-FCI-C-empty:
Cy = {} = FCITV Trpg
by (simp add: FCI-def)

lemma Trivially-fulfilled-SIA-C-empty:
CV = {} = SIA oV TTES
by (simp add: SIA-def)

lemma Trivially-fulfilled-BSIA-C-empty:
CV I{}:>BSIAQV TTES
by (simp add: BSIA-def)

lemma Trivially-fulfilled-1A-C-empty:

Cy={}=1A0V Trgg
by (simp add: IA-def)
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lemma Trivially-fulfilled-FCIA-C-empty:
Cy ={} = FCIAT oV Trgg
by (simp add: FCIA-def)

lemma Trivially-fulfilled-FCI-V-empty:
VV = {} — FCITYV TT'ES
by (simp add: FCI-def)

lemma Trivially-fulfilled-FCIA-V-empty:
Vy ={} = FCIA oT'V Trgg
by (simp add: FCIA-def)

lemma Trivially-fulfilled- BSIA-V-empty-rho-subseteq-C-N:
[Vy={};eV2(CyUNy)] = BSIA o V Trgg
proof —
assume Vy={}
and oV D (Cy U Ny))
{
fix a 8 ¢
assume ¢ € Cy,
and 8 Q o € Trgg
and o] Cy=]|
and AdmV ¢ Trgg B ¢
from <Adm V o Trpg B ©
obtain v
where v Q [c] € Trgg
and v(e V) = Bl(e V)
unfolding Adm-def by auto
from this(1) have v € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefizclosed-def prefix-def by auto
moreover
from <8 @ o € Trpg have § € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
ultimately
have 31E ps="1E s
using validES VIsViewOnE «Vy={} <y1(e V) = Bl1(e V)» <0 V 2 (Cy U Ny)»
non-empty-projection-on-subset
unfolding ES-valid-def isViewOn-def traces-contain-events-def
by (metis empty-subsetl sup-absorb2 sup-commute)
hence 3 Q [¢] € Trgg using validES <y Q [c] € Trgg» B € Trgg <y € Trgg
unfolding ES-valid-def traces-contain-events-def
by (metis list-subset-iff-projection-neutral subsetl)

let ?2a’=]]
from 8 Q [c] € Trgg «<Vy ={}p
have 8 Q [c] @ ?2a’ €Trgg A 221Vy = alVy A 221Cy = |
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence 3 a’. B Q [c] @Qa’' €Trpg A a'1Vy =alVy A a'1Cy =]
by auto

}
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thus %thesis
unfolding BSIA-def by auto
qed

lemma Trivially-fulfilled-1A-V-empty-rho-subseteq-C-N:
[Vy={keV2(CyUNy)]=1A0 V Trgg
proof —
assume Vy={}
and oV 2 (Cy U Ny))
{
fixapfec
assume ¢ € Cy,
and 3 Q o € Trgg
and a] Cy=|]
and Adm V ¢ Trgg B ¢
from <Adm V o Trgg B ©
obtain ~
where v Q [c] € Trgg
and v(e V) = Bl(e V)
unfolding Adm-def by auto
from this(1) have v € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
moreover
from (8 @ a € Trgg» have § € Trpg using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
ultimately
have 81Eps=71EEg
using validES VIsViewOnE «Vy={} <y1(e V) = B1(e V)» <0 V D (Cy U Ny))»
non-empty-projection-on-subset
unfolding ES-valid-def isViewOn-def traces-contain-events-def
by (metis empty-subsetl sup-absorb2 sup-commute)
hence 3 @ [¢] € Trgg using validES <y Q [c] € Trgg» B € Trgg <y € Trgg
unfolding ES-valid-def traces-contain-events-def
by (metis list-subset-iff-projection-neutral subsetl)

let ?8'=p8 and ?a'=||
from 3 Q [c] € Trgg «<Vy ={}p
have ?8' @ [¢] @ %o’ €Trpg A 2a'1Vy, = alVy A 2a'1Cy = |]
A ?,8,1(VV U Cv) = BW(VV U Cv)
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence 3 o’ 3.
B'Ql]@a €Trgg AalVy =alVy Aa'lCy =]
A B1(Vy U Cy) = B1(Vy U Cy)
by auto
}
thus %thesis
unfolding IA-def by auto
qed

lemma Trivially-fulfilled-BSI- V-empty-total-ES-C"
[[VV = {}, total ES CV ]] — BSI'V TI”ES
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proof —
assume Vy, = {}
and total ES Cy,
{
fixapfec
assume § Q@ a € Trgg
and o] Cy=||
and c € Cy,
from (8 @ a € Trpg> have 8 € Trpg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefirclosed-def prefix-def by auto
with <total ES Cy» have § Q [c] € Trgg
using (¢ € () unfolding total-def by auto
moreover
from «Vy, = {}» have o Vy,=]]
unfolding projection-def by auto
ultimately
have 3a’. 8 Q [c] @ a’' € Trgg A a'lVy=alVy A a'1Cy=]]
using <o 1 Cy = [» by (metis append-Nil2 projection-idempotent)
}
thus %thesis
unfolding BSI-def by auto
qed

lemma Trivially-fulfilled-1-V-empty-total-ES-C:
[Vy ={}; total ES Cy, ] = IV Trgg
proof —
assume Vy, = {}
and total ES Cy,
{
fixa S c
assume c € Cy)
and 8 Q@ o € Trgg
and o] Cy=[]
from (8 @ a € Trpg> have 8 € Trgg
using validES
unfolding ES-valid-def traces-prefizclosed-def prefixclosed-def prefix-def by auto
with <total ES Cy» have g Q [c] € Trgg
using (¢ € Cy» unfolding total-def by auto
moreover
from «Vy, = {}» have o] Vy,=]]
unfolding projection-def by auto

ultimately
have 33’ o,
B'Q [ @a’e Trgs A a'IVy=alVy AaICy=[] A B1(Vy U Cy) = BI(Vy U Cy)
using «a 1 Cy = []» by (metis append-Nil2 projection-idempotent)
}

thus ?thesis
unfolding I-def by blast
qed
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lemma Trivially-fulfilled-FCI-Nabla-Y -empty:
[[VFI{} V TFZ{}]]:> FCITYVY TT‘ES
proof —
assume Vp={} V Tp={}
thus “thesis
proof (rule disjE)
assume Vp={} thus ?thesis
by (simp add: FCI-def)
next
assume Yp={} thus ?thesis
by (simp add: FCI-def)
qed
qed

lemma Trivially-fulfilled-FCIA-Nabla-Y -empty:
[Vr={} V Yr={}]= FCIA ¢ T'V Trgg
proof —
assume Vp={} V Tp={}
thus ?thesis
proof (rule disjE)
assume Vp={} thus ?thesis
by (simp add: FCIA-def)
next
assume Yp={} thus ?thesis
by (simp add: FCIA-def)
qed
qed

lemma Trivially-fulfilled-FCI-N-subseteq-A-and-BSI:
[[NV C AF; BSI V T’I‘Esﬂ = FCITV TTES
proof —
assume Ny C Arp
and BSI V Trgg
{
fixapfco
assume c € Cy N Y
and v € V), NV
and 8 Q [v] @ a € Trgg
and a|Cy = ||
from <c € Cyy N Y1) have c € Oy,
by auto
from <v € V) N V> have v € Vy,
by auto

let 2a=[v] @ «
from v € Vy» «a]Cy = []» have %a]Cy=|]

using VIsViewOnE

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
from (8 @ [v] @ @ € Trgg have § Q@ %a € Trgg

by auto

from «(BSI' V Trgg
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obtain o’
where 8 Q [c] @ o' € Trpg
and a'1Vy = ([v] @ @) Vy,
and a'1Cy, = ||
using <c € Cy» < Q %a € Trgg %alCy = [
unfolding BSI-def by blast

from«w € Vy» «@1Vy = ([v] @ @)] Vy» have a1 Vy, = [v] @ a] Vy,
by (simp add: projection-def)
then
obtain § o’
where a’'=§ @ [v] @ "’
and §1Vy = ||
and a/'1 VV = Oc] VV
using projection-split-first-with-suffiz by fastforce

/

from «@'1Cy = [ <a'=§ @ [v] @ a”» have §]1Cy,=]]

by (metis append-is-Nil-conv projection-concatenation-commute)
from «a'1Cy, = [|» «a’=6 @ [v] @ a”» have a'"|Cy)=]]

by (metis append-is-Nil-conv projection-concatenation-commute)

from <8 @ [¢] @ o’ € Trgg have set o’ C Epg
using validES
unfolding ES-valid-def traces-contain-events-def by auto
with <a'=§ @ [v] @ o’ have set § C Egg
by auto
with «1Cy=[p «1Vy =[] <Ny € Ap>
have (set 6) C (Ny N Ar)
using VisViewOnE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?3=3 and ?6'=§ and ?a'=a’’
from «(set §) C (Ny, N Ap) S Q [] @ o' € Trgg «a'=5 Q [v]) @ a’»
«@"Vy = al Vi a1 Cy=[p
have (set 26 )C(Ny NAp) A 23Q [] @ 25’ Q [v] @ 2o’ € Trgg A ?2a'lVy=alVy A 2a'1Cy=]]
by auto
hence 3a’’ §". (set ") C (Ny NAp) A (BQ [c] @57 Q [v] @ ') € Trgg
/\a'”1 Vy =a Vy /\a/”] CV = H
by auto
}
thus ?thesis
unfolding FCI-def by auto
qed

lemma Trivially-fulfilled-FCIA-N-subseteq-A-and-BSIA:
[[NV - AF; BSIA oV TTES]] = FCIA o'V TT‘ES
proof —
assume Ny C Ar
and BSIA oV Trgg
{
fixafcw
assume c € Cy N Y
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and v € Vyy NV
and 8 Q [v] @ @ € Trgg
and a|Cy = ||
and Adm V o Trgg B ¢

from (¢ € Cy N T1» have c € Cy,
by auto

from <v € V) N V> have v € Vy,
by auto

let 2a=[v] @ «
from v € Vy» «a]Cy = [» have %o Cy=]]

using VIsViewOnE

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
from <3 @Q [v] @ & € Trgg» have 8 Q %o € Trgg

by auto

from «BSIA oV Trgg»
obtain o’
where 8 Q [c] @ o' € Trgg
and a'1Vy = ([v] @ @) Vy,
and a'1Cy = ||
using <¢c € Cy» B Q %a € Trgg <2]Cy = [ <AdmV o Trgg B ©
unfolding BSIA-def by blast

fromw € Vy» «a'1Vy = ([v] @ )] Vy» have a1 Vy, = [v] @ a] Vy,
by (simp add: projection-def)
then
obtain § o’
where a’'=§ @ [v] @ a”
and §1Vy = ||
and a1 Vy =alVy
using projection-split-first-with-suffiz by fastforce

from «a'1Cy, = [|» <a'=6 Q [v] @ o' have §]Cy,=[]

by (metis append-is-Nil-conv projection-concatenation-commute)
from «a'1Cy, = [|» «a’=§ @ [v] @ a”» have a'"|Cy)=|]

by (metis append-is-Nil-conv projection-concatenation-commute)

from <8 @ [¢] @ a’ € Trgg have set o’ C Epg
using validES
unfolding ES-valid-def traces-contain-events-def by auto
with «a'=6 @ [v] @ o’ have set § C Egg
by auto
with <(ﬂ CV:[]> (51 VV = []) (NV - AF>
have (set 6) C (Ny N Ar) using VIsViewOnkE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?8=3 and %5'=) and %a’'=a’’
from «(set §) C (Ny, N Ap) S Q [c] @ o' € Trgg «a'=§ @ [v]) @ o’
«@"MVy = al Vi «”1Cy=[p
have (set 26 )C(Ny NAp) A 28Q [c] @ 25’ Q [v] @ 2o’ € Trgg A 2a'l Vy=alVy A 2a'1Cy=]]
by auto
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hence 3a’’ §". (set ") C(Ny NAp) A (BQ [c] @57 Q [v] @ ') € Trgg
Aa’ VV:OC1 VV/\OcW1 CV: H
by auto

thus “thesis
unfolding F'CIA-def by auto
qed

end

context BSPTaxonomyDifferentViewsFirstDim
begin

lemma R-implies-R-for-modified-view:
RV Trgg = RV2 Trgg

proof —

assume R-Vi: R V1 Trgg

{
fix 7
assume 7 € Trpg
with R-Vi have 3 7' € Trgg. 7'1 Cy, =[[AT' 1 Vy, =71 Vy,

unfolding R-def by auto

hence 3 7' € Trgg. 7'1 Cy, = AT 1 Vy, =71 Vy,

using V2-subset-V1 C2-subset-C1 non-empty-projection-on-subset projection-on-subset by blast
}
thus %thesis
unfolding R-def by auto
qed

lemma BSD-implies-BSD-for-modified-view:
BSD Vl T’I’ES:> BSD Vg TTES
proof—
assume BSD-Vi: BSD Vi Trgg
{
fixapfcn
assume c-in-Cz: ¢ € Cy,
from C2-subset-C1 c-in-C2 have c-in-Cq: ¢ € C’vl
by auto
have [3 @ [c] @ o € Trgg; a1 Cyp,=[]; n= length(a 1 Cy),)]
=3Ja . pa@a’c Trggha’l Vy, =alVy, Na' 10y, =]
proof (induct n arbitrary: o )
case (
from 0.prems(3) have a | Cy, = [| by auto
with c-in-C1 0.prems(1)
have 3 o f@a’'€ Trggha'l Vy, =al Vy, Aa’'1Cy, =]
using BSD-V; unfolding BSD-def by auto
then
obtain o’ where 8 Q a’ € Trpg
and o'l Vy, = al Vy,
and o' 1Cy, =]
by auto
from V2-subset-V1 <«a'1 Vy, = a1 Vy) have ol Vy, =aVy,
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using non-empty-projection-on-subset by blast

moreover

from ' 1Cy, =[)> C2-subset-C1 have o’ 1 Cy, = ||
using projection-on-subset by auto

ultimately

show ?case
using <3 @ o’ € Trgg by auto
next
case (Suc n)
from Suc.prems(3) projection-split-last|OF Suc.prems(3)]
obtain v1 v2 ¢1 where ci-in-C1: c1 € Cy,
and o = v1 @ [¢1] @ 72
and 72 1Cy, =]
and n = length((y1 @ v2)1 Cy,)
by auto
from Suc.prems(2) «a = v1 @ [c1] @ v2> have 71 1 Cy, = |]
by (simp add: projection-concatenation-commute)
from Suc.prems(1) <o =1 Q [c1] @ 2>
obtain ' where 8'=8 @ [c] @ v,
and ﬂ/ @) [Cl] Q@ Y2 € T’I’ES
by auto
from (8’ Q [c1] @ v2 € Trgg> <72 1Cy, = 1 € Cy,»
obtain ;' where '@ ;' € Trpg
and ’72/] VV1 = Y2 W VV1
and 72" 1y, [
using BSD-V: unfolding BSD-def by auto
from «8'= Q@ [c] @ y1» <8’ @ v2' € Trpg> have S @ [¢] @y1 Q@ 2’ € Trpg
by auto
moreover
from <y 1 Cy,=[ ¢2"1Cy, =[]> C2-subset-C1 have (y1 @ v2") | Cy, =]|
by (metis append-Nil projection-concatenation-commute projection-on-subset)
moreover
from n = length((y1 @ v2)] Cy, ) ¢y2 1Cy, = [ ¢y2" 1Cy, =[D
have n = length((y1 @ v2")] Cy),)
by (simp add: projection-concatenation-commute)
ultimately
have witness: 3 a’. f @ a’ € Trgg A o'l Vi, = (11 @ 72)) 1Vy, Aa'1Cy, =]
using Suc.hyps by auto

from ViIsViewOnE V2IsViewOnE V2-subset-V1 C2-subset-C1 c¢i-in-Cq1 have ¢1 ¢ Vv2
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto

with <@ = v1 @ [¢1] @ 72> have «a ] Vy, = (71 @ v2) 1 Vy,
unfolding projection-def by auto

hence a | Vy, =711 Vy, @y2 1 Vy,
using projection-concatenation-commute by auto

with V2-subset-V1 «<y2" 1 Vy, =721 Vyp»

have 71 1 Vy, @2 1 Vy, =v11 Vy, @421 Vy,
using non-empty-projection-on-subset by metis

with <Oé1 VV2 =71 1 VV2 @) Y2 ] VV2> have Ot1 VV2 = (’)/1 @) ’}/2,) W VV2
by (simp add: projection-concatenation-commute)

from witness <a | Vy, = (71 @727 1 Vy,»
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show Zcase
by auto
qed
}
thus “thesis
unfolding BSD-def by auto
qed

lemma D-implies-D-for-modified-view:
DV, TI”ES — D Vs TFES
proof—
assume D-Vi: D V1 Trgg
from V2-subset-V1 C2-subset-C1
have Va-union-C2-subset-Vi-union-Ci: Vy, U Cy, C Vy, U Cy, by auto
{
fixafBcn
assume c-in-Ca: ¢ € Cy,
from C2-subset-C1 c-in-Cs have c-in-Ci: ¢ € CV1

by auto
have [8 Q@ [c] @ a € Trgg; o | Cy,=[]; n= length(a 1 Cy),)]
=3 o’ 8"

B'@a’e Trgg Na'l Vy, =alVy, Aa'1Cy, =]
A B 1(Vy, U Cy,) =B 1(Vy, U Cy,)
proof (induct n arbitrary: o 8)
case (
from 0.prems(3) have a | Cy, = [| by auto
with c-in-C1 0.prems(1)
have 3 o’ 3'.
B'@a'e Trgg ANa'l Vy, =al Vy Aa'1Cy, =]
A ﬂ/](V\h U CV1) =8 ](VV1 U CV1)
using D-V; unfolding D-def by fastforce
then
obtain 3’ o’ where ' @ o’ € Trgg
and o' Vy, =al Vy,
and o' 1Cy, =[]
and 3’ ](Vvl U CV1) = ](Vvl U CV1)
by auto
from V2-subset-V1 «'1 Vy =al Vy) have ol Vy, =aVy,
using non-empty-projection-on-subset by blast

moreover

from ' 1Cy, =[] C2-subset-C1 have a’| Cy,, =[]
using projection-on-subset by auto

moreover

from 3" 1(Vy, U Cy,) = B1(Vy, U Cy,)» Va-union-Ca-subset-Vi-union-C1
have ﬂ/](VVQ U CVQ) = 1(VV2 U CVQ)
using non-empty-projection-on-subset by blast
ultimately
show ?case
using <8’ @ o’ € Trgg» by auto
next
case (Suc n)
from Suc.prems(8) projection-split-last{OF Suc.prems(3)]
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obtain v1 72 ¢1 where c¢i1-in-C1: ¢1 € CV1
and o = 71 @ [¢1] @ 72
and 7 1Oy, = |
and n = length((y1 @ v2)] Cy))
by auto
from Suc.prems(2) <« = v1 @ [c1] @ v2) have 71 1 Cy, = |]
by (simp add: projection-concatenation-commaute)
from Suc.prems(1) <o = v1 Q [c1] Q 2>
obtain 3’ where 3'=8 @ [c] @ 7,
and 8’ @ [¢1] @ v2 € Trpg
by auto
from 4’ @ [c1] @ 2 € Trggy (y2 1Cy, = [ <c1 € Cy»
obtain v;’ B’ where " @ vy’ € Trgg
and ’yg/w VV1 = V2 1 VVl
and 72’ 1Cy, =[]
and ﬂ”](VVl U CV1) = ﬁ/](VVl U OV1)
using D-V; unfolding D-def by force

from c-in-C1 have ¢ € VV1 @] CV1
by auto
moreover
from (ﬁ”W(VVI U CV1) = ﬂ/1(VV1 (@] CV1)> B'=p @ [C} Q@ ~1»
have ﬂ”](VVl U CV1) = (B8 Q][c] @~y) W(Vvl U CV1)
by auto
ultimately
have J 6/// ’Yl/~ ,6//:,6///@ [C} Q@ 71/
AB" 1(Vy, UCy) =B1(Vy, UCy,)
A 71/1(VV1 U Ovl) =" ](Vvl U Cvl)
using projection-split-arbitrary-element by fast
then
obtain 8’ 71’ where 8= "' @ [c] @ v’
and B'" W(VVI U CVI) =4 W(Vvl U CVI)
and ’ylﬂ(Vyl U CV1) =7 ](VVI U CV1)
using projection-split-arbitrary-element by auto

from 8" Q v2' € Trpg this(1)
have 8" Q [c] @ v,' @ 72" € Trgg
by simp

from «y2" 1Cy, =[)> have 72" 1 Cy,=]]
using C2-subset-C1 projection-on-subset by auto
moreover
from «<vy1 | CVQ = []) <’)/1/](VV1 U CV1) =7 1(VV1 (@] CV1)>
have 71"l Cy, = [] using C2-subset-C1 V2-subset-V1
by (metis non-empty-projection-on-subset projection-subset-eg-from-superset-eq sup-commute)

ultimately
have (v1’ @ 2 ’)]CVQ =

by (simp add: projection-concatenation-commaute)

from v ,W(VVI @] CV1) =7 ](Vvl @] CV1)> have v /] Cyl = ’yl]Cyl
using projection-subset-eq-from-superset-eq sup-commute by metis
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hence length(y1"] Cy,) = length(711Cy,,) by simp
moreover
from «y2 10y, = [ <y2"1Cy,=[]> have length(v2"1Cy,) = length(y21Cy),)
by simp
ultimately
have n=length((y1’ @ ~2')1Cy),)
by (simp add: «n = length ((y1 @ v2) 1 Cy,)> projection-concatenation-commute)

from 3" Q [c] @ v, @ 42" € Trgg (11’ @ ~2')1Cy, = [ (n=length((v1’ @ v2")1Cy, )
have witness:
Ja’'B. B @a’c Trgs N o’ VV2 = ( 71, @] ’yzl) 1 VVZ
A 06/1 CVQ = [] A B/W (VVQ U CVQ) = 6/”1 (VVQ U CVQ)
using Suc.hyps[OF 8" @ [c] @ 1" @ 2" € Trgg] by simp

from Vs-union-Cz-subset-Vi-union-Cv <" 1(Vy, U Cy,) =B 1(Vy, U Cy, )
have ﬁ”/ 1(VV2 U CVQ) =0 1(VV2 @] CVQ)
using non-empty-projection-on-subset by blast

from ViIsViewOnE VilIsViewOnE V2-subset-V1 C2-subset-C1 c1-in-C1 have ¢1 ¢ VVQ
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto
with <@ = 1 @ [c1] @ 2> have a | Vy, = (11 @ 72) | Vy,
unfolding projection-def by auto
moreover
from V2-subset-V1 «y2' | Vy, =21 Vyp have y2"1 Vy, =21 Vy,
using V2-subset-V1 by (metis projection-subset-eg-from-superset-eq subset-Un-eq)
moreover
from «y;"[(Vy, U Cy,) =11 1(Vy, U Cy,)» have vi' 1 Vy, =711 Vy,
using V2-subset-V1 by (metis projection-subset-eg-from-superset-eq subset-Un-eq)
ultimately
have o | Vy, = (71" @ y2') | Vy, using « | Vy, = (71 @ y2) | Vy,»
by (simp add: projection-concatenation-commute)

from 3" 1(Vy, U Cy,) = B1(Vy, U Oy, al Vy, = (11" @2) 1 Vi,
show ?case
using witness by simp

qed

thus %thesis
unfolding D-def by auto

context BSPTaxonomyDifferent ViewsSecondDim

lemma FCD-implies-FCD-for-modified-view-gamma:
[[FCD Fl Vl TTES;

Vv2ﬂvl'*2 - Vvlﬂvl"l; Nv2ﬂA1"2 B NvlﬂAr‘l; Ov2ﬂTF2 C Cvlﬂrplﬂ

= F'CDT's Vs TT’ES
proof —
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assume FCD I'y V1 Trgg
and VV2ﬂVF2 - VV1mVF1
and NV2ﬂAF2 B NvlﬂApl
and CVQDTFQ - CvlﬁTrl
{
fixapuvec
assume ¢ € Cy,NTp,
and v € VV2ﬂvF2
and 8 Q [c,v] @ o € Trgg
and o] Cy, = |]

N

from <c € CVQOTF2> <CV2mTF2 - CV1HTF1> have ¢ € CVIQTFI
by auto
moreover
from v € VVQOVF2> <Vv2ﬁvl'*2 - VvlﬂVFl> have v € Vylﬂvl"l
by auto
moreover
from C2-equals-C1 «a]Cy,, = [ have o|Cy,, = ]|
by auto
ultimately
obtain o’ §’ where (set 6") C (Ny, N Ar,)
and Q¢ Q@ [v] @Qa’ € Trgg
and a'|Vy, = alVy,
and o'|Cy, = ]
using <8 Q [¢,v] @ a € Trgg» <FCD 'ty V1 Trpg unfolding FCD-def by blast

from <(56t 5/) - (NV1 n AF1)> <NV20AF2 D) NV1OAF1>
have (set 6') C (Ny, N Ap,)
by auto
moreover
from | Vy, = alVy,» V2-subset-V1 have o'l Vy,, = alVy,
using non-empty-projection-on-subset by blast
moreover
from C2-equals-C1 «a'|Cy, = [)> have a'[Cy, = ||
by auto
ultimately
have 3 ¢’ a'. (set 6") C (Ny, N Ar,)
AB@sQ]@a’ e Trgg AalVy, =alVy, AalCy, =
using (3 @ §' @ [v] @ &’ € Trgg by auto
}
thus %thesis
unfolding FCD-def by blast
qed

lemma SI-implies-SI-for-modified-view :
SI V1 Trpg = SI V2 Trgg
proof —
assume SI: SI V1 Trgg
{
fix a ¢
assume c € Cy,
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and 8 Qa € Trgg
and alpha-Ca-empty: a1 Cy, = ||
moreover
with (2-equals-C1 have ¢ € Cy),
by auto
moreover
from alpha-C2-empty C2-equals-C1 have a | Cy, = ||
by auto
ultimately
have 8 Q (c # o) € Trgg
using S/ unfolding SI-def by auto

thus %thesis
unfolding SI-def by auto
qed

lemma BSI-implies- BSI-for-modified-view :
BSI V1 T?”ES = BSI V> TT‘ES
proof —
assume BSI: BSI V1 Trgg
{
fix a 8 c
assume c € Cy,
and 3Qa € Trgg
and alpha-Ca-empty: a1 Cy, = ||
moreover
with (2-equals-C1 have ¢ € Cy,
by auto
moreover
from alpha-C2-empty C2-equals-C1 have o | Cy; = |]
by auto
ultimately
have 3 o Q@[] @a’€ TrggAha'l Vy, =al Vy Aa'l Oy =]
using BSI unfolding BSI-def by auto
with V2-subset-V1 C2-equals-C1
have 3 o Q@[] @a’€ Trggha'l Vy, =al Vy, Aa'l Oy, =
using non-empty-projection-on-subset by metis
}

thus %thesis
unfolding BSI-def by auto
qed

lemma [I-implies-I-for-modified-view :
IV T’I‘ES:> 1V TT‘ES
proof —
assume I: I V1 Trgg
from V2-subset-V1 C2-equals-C1 have Va-union-Ca-subset-Vi-union-C1: Vy, U Cy, C Vy U Cy,
by auto

{
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fix a 8 ¢
assume c € Cy,

and 3Qa ¢ Trgg

and alpha-Cz-empty: a1 Cyy, = ||
moreover
with C2-equals-C1 have c € Cy),

by auto
moreover
from alpha-C2-empty C2-equals-C1 have a | Cy, =[]

by auto
ultimately
have 3 o’ 3.

B'@l@a’e Trggha'l Vy, =al Vy, Aa'1Cy, =]
A B (VV1 @] CV1) =61 (VV1 U CV1)

using / unfolding I-def by auto
with Va-union-Ca-subset-Vi-union-Cy V2-subset-V1 C2-equals-C1
have 3 o’ B".

B’ @ [c] Q@a'e TTEs/\CM/] VV2 =a VV2 Aa’l Cv2 =
A B (Vy, U Cy,) =81 (Vy, U Cy,)
using non-empty-projection-on-subset by metis

thus %thesis
unfolding I-def by auto
qed

lemma SIA-implies-SIA-for-modified-view :
[SIA 01 V1 Trgg; 02(V2) 2 01(V1) | = SIA 02 V2 Trgg
proof —
assume SIA: SIA o1 V1 Trgg
and g2-supseteq-p1: 02(V2) 2 01(V1)
{
fix a 8¢
assume c € Cy,
and 3Qa € Trgg
and alpha-Ca-empty: a1 Cy, = |]
and admissible-c-g2-V2:Adm Va2 02 Trgg B ¢
moreover
with (2-equals-C1 have c € Cy,
by auto
moreover
from alpha-C2-empty C2-equals-C1 have a | Cy, =[]
by auto
moreover
from go-supseteq-o1  admissible-c-p2-V2 have Adm V1 01 Trgg B ¢
by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have 5 Q (c # o) € Trgg
using SIA unfolding SIA-def by auto
}
thus %thesis
unfolding SIA-def by auto
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qed

lemma BSIA-implies-BSIA-for-modified-view :
[[BS[A 01 Vl TTES; QQ(VQ) 2 Ql(Vl) ]] = BSIA 02 VQ TTES
proof —
assume BSIA: BSIA o1 V1 Trgg
and g2-supseteq-01: 02(V2) 2 01(V1)
from V2-subset-V1 C2-equals-C1
have Va-union-Ca-subset-Vi-union-Ci: Vy, U Cy, C Vy, U Cy,
by auto
{
fixapfec
assume c € Cy),
and 8 Qa € Trgg
and alpha-Ca-empty: a1 Cy, = |]
and admissible-c-p2-Va:Adm Va 02 Trps B c
moreover
with C2-equals-C1 have ¢ € Cy,
by auto
moreover
from alpha-C2-empty C2-equals-C1 have o | Cy = |]
by auto
moreover
from go-supseteq-o1  admissible-c-p2-V> have Adm V1 o1 Trgg B ¢
by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately

have 3 o fQ[c]@a’€ Trggha'l Vy, =al Vy Aa'l Oy =

using BSIA unfolding BSIA-def by auto
with V2-subset-V1 C2-equals-C1

have 3 o Q@ [c]@a’e€ Trggha'l Vy, =al Vy, Aa'] Cy, =

using non-empty-projection-on-subset by metis
}
thus %thesis
unfolding BSIA-def by auto
qed

lemma [A-implies-IA-for-modified-view :
[IA o1 V1 Trgs; 02(V2) 2 01(V1) ] = IA 02 V2 Trpg
proof —
assume JA: JA o1 V1 Trgg
and g2-supseteq-01: 02(V2) 2 01(V1)
{
fixapfec
assume c € Cy,
and 8 Qa € Trgg
and alpha-Ca-empty: o1 Cy, = |]
and admissible-c-p2-Vo:Adm V2 02 Trpg B c
moreover
with (C2-equals-C1 have c € Cy,
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by auto
moreover
from alpha-C2-empty C2-equals-C1 have o | Cy, =[]
by auto
moreover
from go-supseteq-o1  admissible-c-p2-V2 have Adm V1 01 Trgg B ¢
by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have 3 o’ p’. B’ @ [c] @a'c TTEs/\a/1 VV1 =a] Vvl Ao’ CV1 = A B (VV1 U CV1) =0
1 (Vy, U Cy,)
using /A unfolding /A-def by auto
moreover
from V2-subset-V1 C2-equals-C1 have (Vy, U Cy,) € (Vy, U Cy))
by auto
ultimately
have 3 o' . g'Q[cJ@a’c Trgghna'l Vy, =al Vy, Aa'1Cy, =] AB'1(Vy, U Cy,) =
B1(Vy, U Cyy)
using V2-subset-V1 C2-equals-C1 non-empty-projection-on-subset by metis
}

thus ?thesis
unfolding [A-def by auto
qed

lemma FCI-implies-FCI-for-modified-view-gamma;:
[FCI Ty Vi Trgg;
VngvFQ - VVIQVFI; NngAl_‘g B) NvlﬂApl; CVgang C CvlﬂTrl |
— I'CI I's Vo TT‘ES
proof —
assume FCI I'y V1 Trgg
and VngVFQ - VV10VF1
and NVQHAFQ D) NvlﬂAr‘l
and CVQOTFQ - CvlﬁTpl
{
fixapfuvc
assume c € Cy,NTp,
and v € Vy,NVp,
and 8 Q [v] @ @ € Trgg

and o] Cy, = |]
from «c € Cy,NYp,» «Cyp,NTp, © Cy NYpp have c € Cy NTp,
by auto
moreover
from v € Vy,NVp,» «<Vy,NVp, C Vy NVp» have v € Vy NV,
by auto
moreover
from C2-equals-C1 «a1Cy,, = [> have o Cy, =[]
by auto
ultimately
obtain o §" where (set §°) € (Ny, N Ar,)
and 8 Q [c] @6 Q [v] @ a' € Trpg
and o'l Vy, = alVy,
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and o'|Cy, = ]
using <8 Q [v] @ a € Trgg» <FCI T'1 V1 Trpg unfolding FCI-def by blast

from <(set 5/) C (NV1 N AF1)> <NV20AF2 D NvlﬂArl>
have (set §') C (Ny, N Ar,)
by auto
moreover
from | Vy = alVy » V2-subset-V1 have o'l Vy, = alVy,
using non-empty-projection-on-subset by blast
moreover
from «Cy, = Cy» «'[Cy, = [} have a'[Cy, = ||
by auto
ultimately have 3 ¢’ o'. (set ') C (Ny, N Ar,)
ANB Q@ §'@v]@a’ e TrggAalVy, =alVy, Aa'lCy, =]
using (3 @ [c] @ 6’ @Q [v] @ o’ € Trgg by auto
}
thus ?thesis
unfolding FCI-def by blast
qed

lemma FCIA-implies-FCIA-for-modified-view-rho-gamma:
[[FC[A o1 't Vi Trgg; Qz(Vz) ) 91(]/1);
VVQQVFQ - VV1 QVFl; NVQHAFQ B NV1 ﬁAFl; CVQQTFQ - CV1 ﬂTFl ﬂ
= FCIA 02 I's Vo TT‘ES
proof —
assume FCIA o1 't V1 Trgg
and 02(V2) 2 01(V1)
and VngvFg - VV1OVF1
and NngArg 2 NvlﬁArl
and CVQHTFQ - CvlﬂTrl
{
fixapfuvc
assume ¢ € Cy,NTp,
and v € VV2QVF2
and 8 Q [v] @ o € Trgg
and a|Cy, = ||
and Adm V2 02 Trgg B ¢

U

from «c € Cy,NYp,» «Cyp,NTp, © Cy NYpp have c € Cy NTp,
by auto

moreover

from v € Vy,NVp,» «<Vy,NVp, C Vy NVp» have v € Vy NV,
by auto

moreover

from C2-equals-C1 «a1Cy,, = [> have o Cy, =[]
by auto

moreover

from <Adm V2 92 Trgg B ¢ <02(V2) 2 01(V1)» have Adm V1 o1 Trgg 5 ¢
by (simp add: Adm-implies-Adm-for-modified-rho)

ultimately
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obtain o’ §’ where (set 6') C (Ny, N Ar,)
and £ Q [] @4’ Q@ [v] @ o' € Trgg
and o'l Vy, = ol Vy,
and o'|Cy, = ]
using <8 Q [v] @ a € Trgg <FCIA o1 T'1 V1 Trgg unfolding FCIA-def by blast

from <(set 5/) C (NV1 N AF1)> <NV20AF2 D NVIHAF1>
have (set §') C (Ny, N Ar,)
by auto
moreover
from | Vy, = alVy » V2-subset-V1 have o'l Vy,, = alVy,
using non-empty-projection-on-subset by blast
moreover
from «Cy, = Cy» «'[Cy, = [} have a'[Cy, = ||
by auto
ultimately
have 3 §" a'. (set §') € (Ny, N Ar,)
A B Q[ @ §j'a [v] @ o' e Trgg N 'l VVQ = o VV2 A 'l CV2 =]
using <3 @Q [c] @ 6’ @ [v] @ @’ € Trgg» by auto
}
thus %thesis
unfolding FCIA-def by blast
qed
end

end

5.3 Unwinding

We define the unwinding conditions provided in [3] and prove the unwinding theorems from [3] that
use these unwinding conditions.

5.3.1 Unwinding Conditions

theory UnwindingConditions
imports ../Basics/ BSPTazonomy

../ ../ SystemSpecification/ State EventSystems
begin

locale Unwinding =
fixes SES :: (s, 'e) SES-rec
and V :: ‘e V-rec

assumes validSES: SES-valid SES
and validVU: isViewOn V Eggpg

sublocale Unwinding C BSP TaxonomyDifferentCorrections induceES SES 'V
by (unfold-locales, simp add: induceES-yields-ES validSES,
stmp add: induceES-def validVU)
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context Unwinding
begin

definition osc :: ‘s rel = bool

where

osc ur =

Vsl € Sggg. Vs’ e SsEs- Vs2' e Ssps- Ve € (Egpg — Cy).
(reachable SES s1 A reachable SES s1’
A sl e—sgpg s2' A (s1', s1) € ur)
—)(HSQGSSESH(;.(S] CV:H/\51 VV:[G]] Vy
A sl 6=>gpg s2 A (s2', s2) € ur)

definition Irf :: ‘s rel = bool
where
Irf ur =
Vs e SSE’S' Vs’ € SSES' Ve e Cv.
((reachable SES s A\ s c—rgpg s') — (s', s) € ur)

definition Irb :: s rel = bool
where
Irbur =Vs € Sggg.- Ve € Cy.
(reachable SES s — (s’ € Sgpg. (s c—>gps s’ A ((s, ') € ur))))

definition ferf :: ‘e Gamma = s rel = bool
where
ferf T ur =
Vee (CyNYp).Voe (VyNnvVrp).Vs e Sgrs. Vs’ € Sggs.
((reachable SES s A s ([c] @ [v])=>gpg s')
— (3s” € Sgpg- 36. (Vd € (set §). d € (Ny, N Ap)) A
s (6Q [v))=ggg s'" A (s, s") € ur))

definition ferb :: ‘e Gamma = s rel = bool
where
ferb T ur =
Vee (CyNYp).Voe (VyNnNVrp). Vs e Sgpg. Vs € Sgpg.
((reachable SES s N s v—sggg s")
— (3s' € Sgpg. 36. (Vd € (set d). d € (Ny N Ap)) A
s([c]@éQ [v])=>gpg s' A (s, s) € ur))

definition En :: ‘e Rho = 's = ‘e = bool
where
Enpse=
3B ~.3s" € Sgpg. Is" € Sgps-
s0sps B=sps s N (71 (eV)=81(eV))
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A 80 gEs Y= SES s’ A s’ e—SES s

definition lrbe :: ‘e Rho = s rel = bool
where
lrbe 0 ur =

Vs € SSES' Ve e Ov .

((reachable SES s A\ (En g s c))

— (As' € Sgpg. (s c—rgpg s’ A (s, s) € ur)))

definition ferbe :: ‘e Gamma = ‘e Rho = s rel = bool
where
ferbe T o ur =
Vee (CyNTYr).Yve (VynVp). Vs e Sgps. Vs e SsEs-
((reachable SES s A\ s v—sggg 8" A (En o s c))
s (3s' € Sgpg. 36. (Vd € (set §). d € (Ny N Ap)) A
s ([ @6 Q [v])=>gpg s" A (s", s) € ur))

end

end

5.3.2 Auxiliary Results

theory AuziliaryLemmas
imports UnwindingConditions
begin

context Unwinding
begin

lemma osc-property:
Nst s1'. [ osc ur; s1 € Sggg; s1' € SSESv al Cy = []
reachable SES s1; reachable SES s1 enabled SES s1' «; (517, s1) € ur |
= (3o’ a'1Cyp=[Aa’"1Vy=al Vy A enabled SES s1 a')
proof (induct o)
case Nil
have [ | Cy = [ A
01 Vy=1[1Vy A enabled SES s1 ||
by (simp add: enabled-def projection-def)
thus ?case by (rule exl)
next
case (Cons el al)
assume osc-true: osc ur
assume sI-in-S: s1 € Sgpg
assume s!’-in-S: s1’' € Sgpg
assume elal-C-empty: (el # al) 1 Cy =]
assume reachable-s1: reachable SES s1
assume reachable-s1’: reachable SES s1’
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assume enabled-s1'-elal: enabled SES s1’ (el # al)
assume unwindingrel-s1'-s1: (s1', s1) € ur

have elal-no-c: Va € (set (el # al)). a € (Eggg — Cy)
proof —
from reachable-s1’ obtain
where s0gpg B—>ggg s1’
by (simp add: reachable-def, auto)
moreover
from enabled-s1’-el 1 obtain 51337
where s1’ (el # al)=>gpg s1337
by(simp add: enabled-def, auto)
ultimately have s0gpg (8 Q (el # al))=gpg s1337
by (rule path-trans)
hence 8 @ (el # al) € Tr (induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)
with validSES induceES-yields-ES[of SES] have Ya € (set (8 Q (el # al))). a € Eggg
by (simp add: induceES-def ES-valid-def traces-contain-events-def)
hence V a € (set (el # al)). a € Eggg
by auto
with el al-C-empty show ?Zthesis
by (simp only: projection-def filter-empty-conv, auto)
qged

from enabled-s1’-el«l obtain s2’ where
s1'-e1-s2" s1' el —s>gpg s2'
by (simp add: enabled-def, split if-split-asm, auto)
with validSES have s2'-in-S: s2' € Sggg
by (simp add: SES-valid-def correct-transition-relation-def)
have reachable-s2": reachable SES s2’
proof —
from reachable-s1’ obtain t where
path-to-s1": s0gpg t=>gpg s1'
by (simp add: reachable-def, auto)
from si1’-e1-s2' have s1’ [el]=>gpg s2'
by simp
with path-to-s1’ have sOgps (t Q [el]) = grg s2'
by (simp add: path-trans)
thus ?thesis by (simp add: reachable-def, rule exI)
ged
from s1’-el-s2’ enabled-s1’-e1a1 obtain sn’ where
s2' al=>gpg sn'
by (simp add: enabled-def, auto)
hence enabled-s2’-a1: enabled SES 52’ a1
by (simp add: enabled-def)
from elal-no-c have el-no-c: el € (Eggg — Cy)
by simp
from elal-no-c have al-no-c: Va€c(set al). (a € (Eggg — Cy))
by simp
hence a1-proj-C-empty: a1 1 Cy = ||
by (simp add: projection-def)
from osc-true have
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[ st € Ssps; s1' € Sgps; s2' € Sgps;
el € (Eggg — Cy); reachable SES s1; reachable SES s1'
s1' el—sgpg s2% (s1', s1) € ur ]
= (352 € Sggg- 36.61 Cy = ||
AT Vy)=([e1]1 Vy) A (s1 =gpg 52 N
((s2, s2) € ur)))
by (simp add: osc-def)
with s1-in-S s1’-in-S el-no-c reachable-s1 reachable-s1’
s2"-in-S s1'-e1-s2’ unwindingrel-s1'-s1
obtain s2 § where
osc-conclusion:
s2 € Sggpg NI 1 CV:[]/\
(61 Vy) = ([el] 1 Vy) A sl 6=ggg 52 N
((s2', s2) € ur)
by auto
hence §-proj-C-empty: § 1 Cy, = ]
by (simp add: projection-def)
from osc-conclusion have s2-in-S: s2 € Sgpg
by auto
from osc-conclusion have unwindingrel-s2’-s2: (s2', s2) € ur
by auto
have reachable-s2: reachable SES s2
proof —
from reachable-s1 obtain ¢t where
path-to-s1: s0gpg t==gpg s1
by (simp add: reachable-def, auto)
from osc-conclusion have s é=gpg s2
by auto
with path-to-s1 have sOgpg (t @ §)=gpgg s2
by (simp add: path-trans)
thus ?thesis by (simp add: reachable-def, rule exI)
qed

from Cons osc-true s2-in-S s2'-in-S a1-proj-C-empty
reachable-s2 reachable-s2' enabled-s2’-a1 unwindingrel-s2'-52

obtain o’/ where a'/-props:
a”1Cy=[Aa"1Vy=allVyA enabled SES s2 o
by auto

with osc-conclusion have da'’-props:
(6@a") ] Cy =] A
(0 @a”)1 Vy = (el#al) | Vy A enabled SES s1 (6§ @ ')
by (simp add: projection-def enabled-def, auto, simp add: path-trans)

hence (6§ @ a') 1 Cy =[]
by (simp add: projection-def)

thus ?case using da’’-props by auto

qed

lemma path-state-closure: [ s T=>gpg ss s € Sgps | = s’ € Sggg
(is[?PsTs’ 2Ss SES ] = 25 s’ SES)

proof (induct T arbitrary: s s’)
case Nil with validSES show Zcase
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by (auto simp add: SES-valid-def correct-transition-relation-def)
next
case (Cons e 7) thus Zcase
proof —
assume path-er: ?P s (e # 1) s’
assume induct-hypo: \ s s’. [ ?P s 7 s’; 25 s SES | = 29 s’ SES
from path-er obtain s’ where s-e-s': s e—rgpg s’
by(simp add: path-def, split if-split-asm, auto)
with validSES have s'’-in-S: 2S s’ SES
by (simp add: SES-valid-def correct-transition-relation-def)

from s-e-s’’ path-er have path-t: ?P s’ 7 s’ by auto

from path-t s'’-in-S show ?case by (rule induct-hypo)
qed
qed

theorem En-to-Adm:
[ reachable SES s; En o s €]
= 3B. (s0sgs B=5ms s N Adm'V ¢ Tr(jqucers SES) B €)
proof —
assume En g s e
then obtain 3 v s’ s”
where s0gpg f=gEg s
and 71 (eV)=81(eV)
and s0-v-s" s0gps Y—5ps S’
and s'-e-s": s’ e—>gpg s’
by (simp add: En-def, auto)
moreover
from s0-y-s’ s’-e-s’ have sOgpg (v Q [e])=>gpg s’
by (rule path-trans-single)
hence (v @ [e]) € Tr(z’nduceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed

’

theorem Adm-to-En:
[8e Tr(induceES SES)> Adm V o Tr(induceES SES) Bel
— ds € SSES' (SOSES /3:>SE5' sN Enops e)
proof —
from validSES have s0-in-S: s0ggg € Sggs
by (simp add: SES-valid-def s0-is-state-def)

assume [ € TT(induceES SES)
then obtain s
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where s0-3-s: s0gpg B=gES s

by (simp add: induceES-def possible-traces-def enabled-def, auto)
from this have s-in-S: s € Sgpg using s0-in-S

by (rule path-state-closure)

assume Adm V o Tr(induceES SES) B e
then obtain v
where oy-is-0B: v 1 (0 V) =81 (e V)
and 3s". s0gpg (v Q [e])=>gpg s
by(simp add: Adm-def induceES-def possible-traces-def enabled-def, auto)
then obtain s’
where s0-ye-s': s0gpg (v @ [e])=>gpg "'
by auto
from this have s"-in-S: s’ € Sgpg using s0-in-9
by (rule path-state-closure)

from path-split-single|OF sO-ye-s'] obtain s’
where s0-v-s" s0spg Y= gEs S’
and s’-e-s": s e—rgpg s’
by auto

from path-state-closure[OF s0-y-s' s0-in-S] have s-in-S: s’ € Sgpg.

from s’-in-S s""-in-S s0-B-s oy-is-0f s0-y-s' s'-e-s"" s-in-S show ?thesis
by (simp add: En-def, auto)
qed

lemma state-from-induce ES-trace:
[ (B@a)e TT(induceES SES) I
= ds € Sgps- s0sgs B==>gps s N enabled SES s o N\ reachable SES s
proof —

assume Sa-in-Tr: (8 @ ) € Tr (induceES SES)
then obtain s’ where s0-Ba-s"ts0gpg (B Q@ a)=—=gpg s’
by (simp add: induceES-def possible-traces-def enabled-def, auto)

from path-split|OF s0-fa-s’] obtain s
where s0-3-5: s0gpg f=9ES S
and s a=ggg s’
by auto

hence enabled-s-a: enabled SES s «
by (simp add: enabled-def)

from s0-8-s have reachable-s: reachable SES s
by (simp add: reachable-def, auto)

from validSES have s0ggpg € Sggg

by (simp add: SES-valid-def s0-is-state-def)
with s0-8-s have s-in-S: s € Sgpg

by (rule path-state-closure)
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with s0-8-s enabled-s-a reachable-s show ?thesis
by auto
qed

lemma path-split2:s0 gpg (8 Q o)=ggg s

= 3s' € Sgps. ( s0sps B—gps s’ N s’ a=gpg s N\ reachable SES s")
proof —

assume s0-Ba-s: s0ggpg (B Q@ a)=ggg s

from path-split|OF s0-fa-s] obtain s’
where s0-3-s" s0gpg B=>gpg s’
and s"-a-s: s' a=gpg s
by auto
hence reachable SES s’
by(simp add: reachable-def, auto)
moreover
have s’ € Sgpg
proof —
from s0-3-s’ validSES path-state-closure show ?thesis
by (auto simp add: SES-valid-def s0-is-state-def)
qed

ultimately show ?thesis using s’-a-s s0-3-s’
by (auto)
qed

lemma path-split-single2:

s0sgs (B Q [a])=gps s

= 35’ € Sgps. (s0gps B—>sEs s' N s' -—rggs s A reachable SES s')
proof —

assume s0-Bz-s: sOggg (B Q [z])=gEg s

from path-split2[ OF s0-Bz-s] show ?thesis

by (auto, split if-split-asm, auto)
qed

lemma modified-view-valid: isViewOn (V = (Vy U Ny), N = {}, C = Cy|) Eggs
using validVU
unfolding isViewOn-def V-valid-def VC-disjoint-def VIN-disjoint-def NC-disjoint-def by auto

end
end
5.3.3 Unwinding Theorems

theory UnwindingResults
imports AuzxiliaryLemmas
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begin

context Unwinding
begin
theorem unwinding-theorem-BSD:
[ Irf ur; osc ur | = BSD V Tr (induceES SES)
proof —
assume [rf-true: Irf ur
assume osc-true: osc ur

{
fix a8 c

assume c-in-C: ¢ € Cy,
assume Sca-in-Tr: (8 Q [¢]) @ a) € Tr(induceES SES)
assume a-contains-no-c: a1 Cy = ||

from state-from-induce ES-trace[OF [Bca-in-Tr] obtain s1’
where s1’-in-S: s1' € Sgpg
and enabled-s1’-c: enabled SES s1’ o
and s0-8c-s1 " s0ggs (B @ [C]):>SES s1’
and reachable-s1’: reachable SES s1’
by auto

from path-split-single2| OF s0-fBc-s1’] obtain sI
where s1-in-S: s1 € Sgpg
and s0-8-s1: SOSES ﬂ:>SES s1
and sl-c-s1't s1 c—rgpg s1’
and reachable-s1: reachable SES s1
by auto

from s1-in-S s1’-in-S c-in-C reachable-s1 s1-c-s1’ Irf-true
have s1’-ur-si: ((s1’, s1) € ur)
by (simp add: lrf-def, auto)

from osc-property|OF osc-true s1-in-S s1'-in-S a-contains-no-c reachable-s1
reachable-s1' enabled-s1'-a s1'-ur-s1|
obtain o’
where a’-contains-no-c: a' 1 Cy = |]
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1-a”: enabled SES s1 o’
by auto

have fa’-in-Tr: 3 @ o’ € Tr (induceES SES)
proof —
note s0-5-s1
moreover
from enabled-s1-a’ obtain s2
where s! a'=>gpg 52
by (simp add: enabled-def, auto)
ultimately have s0gpg (8 @ o') = gpg s2
by (rule path-trans)
thus %thesis
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by (simp add: induceES-def possible-traces-def enabled-def)
qged

from pa’-in-Tr o’-V-is-a-V a'-contains-no-c have
Ja'. (B @ &) € (Tr(ingucers sBs)) A (@' 1 (Vy)) = (@l Vy)Aa'l Cy =)
by auto
}
thus ?thesis
by (simp add: BSD-def)
qed

theorem unwinding-theorem-BSI:

[ lrb ur; osc ur | = BSI V Tr (induceES SES)
proof —

assume [rb-true: lrb ur

assume osc-true: osc ur

{
fix a 8 ¢
assume c-in-C: ¢ € Cy,
assume Sa-in-ind-Tr: (8 Q a) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy) = [|

from state-from-induce ES-trace[OF Ba-in-ind-Tr] obtain s
where s1-in-S : s1 € Sggg
and path-B-yields-s1: s0gps B==gpg 51
and enabled-s1-a: enabled SES sl «
and reachable-s1: reachable SES s1
by auto

from reachable-s1 s1-in-S c-in-C' Irb-true
have 3s1'e Sgpg. s1 c—rgpg s1' A (s1, s1') € ur
by (simp add: Irb-def)
then obtain s1’
where s1'-in-S: s1' € Sgpg
and sI-trans-c-s1": s1 c—gpg s1’
and si1-s1’-in-ur: (s1, s1’) € ur
by auto

have reachable-s1": reachable SES s1’
proof —
from path-B-yields-s1 s1-trans-c-s1’ have s0gpg (8 Q [c])=>gpg s1’
by (rule path-trans-single)
thus ?thesis by (simp add: reachable-def, auto)
qed

from osc-property|OF osc-true s1'-in-S s1-in-S a-contains-no-c
reachable-s1' reachable-s1 enabled-s1-a s1-s1'-in-ur]
obtain o’
where a'-contains-no-c: ' 1 Cy) = |]
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1’-a': enabled SES s1' o’

91



by auto

have Bca’-in-ind-Tr: 8 Q [c] @ o’ € Tr (induceES SES)
proof —
from path-B-yields-s1 s1-trans-c-s1’ have s0gpg (B Q [c])=>gpg s1’
by (rule path-trans-single)
moreover
from enabled-s1’-a’ obtain s2
where s1’ a'=>gpg 2
by (simp add: enabled-def, auto)
ultimately have s0gps ((8 Q [¢]) @ a')=gpg 2
by (rule path-trans)
thus %thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from Bca’-in-ind-Tr o'-V-is-a-V «a'-contains-no-c
have 3a’. B Q@ c # o’ € Tr (induceES SES) / a1 Vy=alVyAaa'lCy=]
by auto
}

thus %thesis
by(simp add: BSI-def)
qed

theorem unwinding-theorem-BSIA:
[ lrbe o ur; osc ur | = BSIA o V TT(induceES SES)
proof —

assume [rbe-true: lrbe o ur

assume osc-true: osc ur

{
fix a 8 ¢
assume c-in-C: ¢ € Cy,
assume Sa-in-ind-Tr: (8 Q@ «a) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy) = [

assume adm: Adm V o Tr(induceES SES) B c

from state-from-induce ES-trace[OF Ba-in-ind-Tr]
obtain sI

where s1-in-S : s1 € Sggg

and s0-3-s1: s0gpg P=sEg s1

and enabled-s1-a: enabled SES sl «

and reachable-s1: reachable SES s1

by auto

have 3a’. § @[] @ a’ € Tr(induceES SES) N a1t Vy=alVyAaa'lCy=]
proof cases
assume en: En o sl ¢
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from reachable-s1 s1-in-S c-in-C' en lrbe-true
have 3s1'e Sgpg. s1 c—rgpg s1' A (sl, s1') € ur
by (simp add: lrbe-def)
then obtain si’
where s1'-in-S: s1' € Sggg
and si-trans-c-s1': s1 c—rgpg s1'
and s1-s1’-in-ur: (s1, s1') € ur
by auto

have reachable-s1": reachable SES s1’
proof —
from s0-3-s1 si-trans-c-s1’' have s0gpg (8 Q [c])=gpg s1’
by (rule path-trans-single)
thus ?thesis by (simp add: reachable-def, auto)
qged

from osc-property|OF osc-true s1'-in-S s1-in-S a-contains-no-c
reachable-s1' reachable-s1 enabled-s1-c s1-s1'-in-ur)
obtain o’
where a’-contains-no-c: a’ 1 Cy) = ||
and a'-V-is-a-V:a' 1 Vy =al Vy
and enabled-s1’-a’: enabled SES s1’ o’
by auto

have Bca’-in-ind-Tr: f @ [c] @ o' € Tr (induceES SES)
proof —
from s0-3-s1 si-trans-c-s1’' have sOgpg (8 Q [¢])=gpg s1’
by (rule path-trans-single)
moreover
from enabled-s1’-a’ obtain s2
where s1' a'=>gpg 2
by (simp add: enabled-def, auto)
ultimately have s0gps ((8 @Q [c]) @ a')=>ggg 2
by (rule path-trans)
thus %thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from Bca’-in-ind-Tr o'-V-is-a-V a’-contains-no-c show ?thesis
by auto
next
assume not-en: = En o sl ¢

let 24 = (Adm % o (Tr(induceES SES)) ﬂ C)
let 26 =3s € Sgpg. (s0sps B=>gp5 s N En o0 s c)

{

assume adm: ?A

from s0-B-s1 have B-in-Tr: 5 € TT(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)
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from g-in-Tr adm have ?E
by (rule Adm-to-En)
}

hence Adm-to-En-contr: = ?E — - ?A
by blast
with s1-in-S s0-5-s1 not-en have not-adm: - ?A
by auto
with adm show ?thesis
by auto
qed
}
thus ?thesis
by (simp add: BSIA-def)
qed

theorem unwinding-theorem-FCD:
[ ferf T ur; osc ur | = FCD TV Tr (induceES SES)
proof —

assume ferf: ferf T' ur

assume osc: 0sc ur

{
fixapfcwo

assume c-in-C-inter-Y: ¢ € (Cyy N Y1)

assume v-in-V-inter-Nabla: v € (Vy N V)

assume Scva-in-Tr: (8 Q [c] @ [v]) Q «) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy) = [|

from state-from-induce ES-trace[OF Bcva-in-Tr] obtain s1’
where s1'-in-S: s1’ € Sgpg
and s0-Bcv-s1'": sO0gpg (B @ ([c] @Q [v]))=>gpg s1’
and enabled-s1’-a: enabled SES s1' «
and reachable-s1": reachable SES s1’
by auto

from path-split2|OF s0-Bcv-s1’] obtain si
where s1-in-S: s1 € Sggg
and s0-f-s1: s0gps B=ggs 51
and si-cv-s1" sl ([c] @ [v])=>gpg s’
and reachable-s1: reachable SES s1
by (auto)

from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1'-in-S reachable-s1 si1-cv-s1’ ferf
have 3s1" € Sgpg. 38. (Vd € (set §). d € (Ny, N Ap)) A

s1 (6 Q [v])=>gpg s1” A (s1', s1") € ur

by (simp add: ferf-def)
then obtain s7’ §

where s1"-in-S: s1'' € Sgpg

and §-in-N-inter-Delta-star: (Vd € (set §). d € (Ny, N Ap))

and sI-0v-s1': s1 (6 Q [v]))=>ggg s

and s1'-ur-s1'": (s1', s1") € ur
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by auto

have reachable-s1'": reachable SES s1"’
proof —
from s0-3-s1 s1-6v-s1" have sOggg (B @ (§ Q [v]))=gpg 51"’
by (rule path-trans)
thus %thesis
by (simp add: reachable-def, auto)
qed

from osc-property|OF osc s1'-in-S s1'-in-S a-contains-no-c
reachable-s1'' reachable-s1’ enabled-s1'-a s1'-ur-s1"’]
obtain o’
where a'-contains-no-c: a’1 Cy =[]
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1'-a”: enabled SES s1"" o'
by auto

have Bdva’-in-Tr: B @6 Q [v] @ o' € Tr (induceES SES)
proof —
from s0-3-s1 s1-6v-s1" have sOgpg (B @ 6 Q [v])=>gpg s1"
by (rule path-trans)
moreover
from enabled-s1'’-a’ obtain s2
where 51" o'—=gpg s2
by (simp add: enabled-def, auto)
ultimately have sOgpg ((8 @ § Q [v]) @ a')=gpg 2
by (rule path-trans)
thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from &-in-N-inter-Delta-star Béva’-in-Tr o'-V-is-a-V o'-contains-no-c

have Ja’. 34" set 6’ C (Ny N Ap) AB Q@6 Q[v] @a’ e Tr (induceES SES)
Aa’l Vy =a Vv/\Oé/] CV:H
by auto

thus %thesis
by (simp add: FCD-def)
qed

theorem unwinding-theorem-FCI:

[ ferdb T wr; osc ur | = FCIT V Tr (induceES SES)
proof —

assume ferb: ferb T ur

assume o0sc: 0SC ur

{
fixapfcw

assume c-in-C-inter-Y: ¢ € (Cyy N T)
assume v-in-V-inter-Nabla: v € (Vy, N V)
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assume Sva-in-Tr: (8 Q [v]) Q@ a) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy = ||

from state-from-induce ES-trace[OF Bva-in-Tr] obtain s1”’
where s1'"-in-S: s1"' € Sggg
and s0-Bv-s1": sO0gpg (B Q [v]) = gpg s1"”
and enabled-s1""-a: enabled SES s1'"' «
and reachable-s1'": reachable SES s1"
by auto

from path-split-single2[OF s0-Bv-s1''] obtain s1
where s1-in-S: s1 € Sgpg
and s0-3-s51: s0gps B=ggs 51
and si-v-s1'": s1 v—rgpg s1"
and reachable-s1: reachable SES s1
by (auto)

from c-in-C-inter-Y v-in- V-inter-Nabla s1-in-S
s1"-in-S reachable-s1 s1-v-s1"" ferb

have 3s1’ € Sgpg. 33. (Vd € (set §). d € (Ny N Ap))
A sl ([c] @6 @ [v])=gpg s1’
A (51" s1") € ur
by (simp add: ferb-def)

then obtain s1’§
where s1'-in-S: s1’ € Sgpg
and §-in-N-inter-Delta-star: (Vd € (set §). d € (Ny, N Ap))
and sI-cdv-s1" s1 ([c] @ 6 @ [v])=ggg s1’
and s1'-ur-s1": (s1", s1') € ur
by auto

have reachable-s1": reachable SES s1’
proof —
from s0-B-s1 s1-cév-s1’ have sOggg (B Q@ ([¢c] @ § Q [v]))=>gpg 51’
by (rule path-trans)
thus %thesis
by (simp add: reachable-def, auto)
ged

from osc-property|OF osc s1'-in-S s1'"-in-S a-contains-no-c
reachable-s1' reachable-s1'" enabled-s1""-a s1""-ur-s1”]
obtain o’
where a'-contains-no-c: o’ 1 Cy, = [
and o'-V-is-a-V:a'1 Vy =al Vy
and enabled-s1’-a": enabled SES s1’ o’
by auto

have Bcdva’-in-Tr: B Q [c] @J @ [v] @ o’ € T""(z'nduceES SES)
proof —
let 211 = 8 Q [c] @¢ Q [v]
let 212 = o'
from s0-8-s1 s1-cdv-s1’ have sOggg (?11)=>gpg s1’
by (rule path-trans)
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moreover
from enabled-s1'-a’ obtain s1337 where s1' 212 —>gpg s1337
by (simp add: enabled-def, auto)
ultimately have s0gpg (%11 Q ?12)=gpg 51337
by (rule path-trans)
thus %thesis
by (simp add: induceES-def possible-traces-def enabled-def)
qed

from §-in-N-inter-Delta-star Bcdva’-in-Tr o'-V-is-a-V a'-contains-no-c
have 3a’ §".
set ' C(Ny NAp) ABQ[]J@é @fv] @a’e Tr (induceES SES)
/\04/1 Vy =a VV/\O/W Ov:[]
by auto
}
thus %thesis
by(simp add: FCI-def)
qed

theorem unwinding-theorem-FCIA:
[ ferbe T o ur; osc ur | = FCIA o T'V Tr (induceES SES)
proof —

assume ferbe: ferbe I' o ur

assume o0sc: 0sc ur

{
fixapfco

assume c-in-C-inter-Y: ¢ € (Cy, N Yp)

assume v-in-V-inter-Nabla: v € (Vy, N V)

assume Sva-in-Tr: (8 Q [v]) Q@ «) € Tr (induceES SES)
assume a-contains-no-c: a1 Cy = [|

assume adm: Adm V o Tr(induceES SES) B c

from state-from-induce ES-trace[OF Bva-in-Tr] obtain s1”’
where s1'-in-S: s1"' € Sggg
and s0-Bv-s1": sO0gps (B Q@ [v])=>gpg s1”
and enabled-s1""-a: enabled SES s1'"' «
and reachable-s1'": reachable SES s1"
by auto

from path-split-single2[OF s0-Bv-s1''] obtain s1
where s1-in-S: s1 € Sgpg
and s0-f-s51: s0gps B==ggs s1
and si-v-s1'" s1 v—rgpg s1"
and reachable-s1: reachable SES s1
by (auto)

have 3o’ §'.(set ' C (Ny NAp) ABQ [ @5 Qo] @ a' € Tr (induceES SES)
Na' T Vy=alVynaa'lCy=1])

proof (cases)
assume en: En ¢ sl c
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from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1''-in-S reachable-s1 s1-v-s1'’ en fcrbe
have 3s1’ € Sgpg. 36. (Vd € (set §). d € (N, N Ap))
A sl ([c] @6 Q [v]) =ggg s’
A (s1”, s1') € ur
by (simp add: ferbe-def)
then obtain s1’§
where s1’-in-S: s1' € Sggg
and §-in-N-inter-Delta-star: (Vd € (set 0). d € (Ny N Ap))
and sl-cdv-s1" s1 ([c] @ 6 Q [v]) =-ggg s’
and s1'"-ur-s1": (s1”, s1') € ur
by (auto)

have reachable-s1’: reachable SES s1’
proof —
from s0-8-s1 si-c6v-s1' have sOgpg (B @ ([¢] @ § @ [v]))=gpg s’
by (rule path-trans)
thus ?thesis
by (simp add: reachable-def, auto)
qged

from osc-property[OF osc s1’-in-S s1''-in-S a-contains-no-c reachable-s1’
reachable-s1"" enabled-s1"-a s1""-ur-s1’)
obtain o’
where a'-contains-no-c: o’ 1 Cy = ||
and a'-V-is-a-V:a' | Vy =al Vy
and enabled-s1’-a’: enabled SES s1’ o’
by auto

have Scdva’-in-Tr: B Q [c] @ @ [v] @ ' € Tr (induceES SES)

proof —
let 2l = 5 Q [c] @5 Q@ [v]
let 712 = o

from s0-8-s1 s1-cdv-s1’ have s0ggg (?11)=>gpg s1’
by (rule path-trans)
moreover
from enabled-s1’-a’ obtain s1337 where s1' ?12=—>ggg s1337
by (simp add: enabled-def, auto)
ultimately have s0gpg (911 Q ?212)=gpg $1337
by (rule path-trans)
thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def)
ged

from &-in-N-inter-Delta-star Bcdva’-in-Tr o'-V-is-a-V o'-contains-no-c
show %thesis
by auto
next
assume not-en: - En g sl ¢

let ?A = (Adm V o TT(induceES SES) B ¢)
let ?E =3s € Sgps. (s0sps B—>gE5 s N En 0 s c)
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{

assume adm: ?A

from s0-3-s1 have §-in-Tr: 8 € Tr(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def)

from f-in-Tr adm have ?F
by (rule Adm-to-En)
}
hence Adm-to-En-contr: - ?E — - ?A
by blast
with s1-in-S s0-3-s1 not-en have not-adm: - ?A
by auto
with adm show ?thesis
by auto
qed
}
thus ?thesis
by (simp add: FCIA-def)
qed

theorem unwinding-theorem-SD:
[VI=(V=(VyUNy), N={}, C=Cy);
Unwinding.lrf SES V' ur; Unwinding.osc SES V' ur |
= SDV TT(induceES SES)
proof —
assume view'-def : V' = (V = (Vy U Ny), N ={}, C = Cy)
assume Irf-view’ : Unwinding.lrf SES V' ur
assume osc-view’ : Unwinding.osc SES V' ur

interpret modified-view: Unwinding SES V'
by (unfold-locales, rule validSES, simp add: view’-def modified-view-valid)

from Irf-view’ osc-view’ have BSD-view’': BSD V' Tr (induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSD)
with view’-def BSD-implies-SD-for-modified-view show ?thesis
by auto
qed

theorem unwinding-theorem-SI:
[VIi=(1V=(VyUNy), N={}, C=Cy);
Unwinding.lrb SES V' ur; Unwinding.osc SES V' ur ]
= SI'V TT(induceES SES)
proof —
assume view'-def : V' = (V = Vy, U Ny, N ={}, C = Cy)
assume [lrb-view’ : Unwinding.lrb SES V' ur
assume osc-view' : Unwinding.osc SES V' ur

interpret modified-view: Unwinding SES V'
by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)
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from Irb-view’ osc-view' have BSI-view’: BSI V' Tr (induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSI)
with view’-def BSI-implies-SI-for-modified-view show ?thesis
by auto
qed

theorem unwinding-theorem-SIA:

[VIi=(V=(VyUNy), N={},C=Cy eV =0V,
Unwinding.lrbe SES V' ¢ ur; Unwinding.osc SES V' ur |
= SIA oV Tr(z’nduceES SES)

proof —
assume view'-def : V' = (V = Vy, U Ny,, N ={}, C = Cy)
assume p-eq: o0V =po V'’
assume [rbe-view' : Unwinding.lrbe SES V' o ur
assume osc-view’ : Unwinding.osc SES V' ur

interpret modified-view: Unwinding SES V'’
by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)

from Irbe-view’ osc-view’ have BSIA-view’ : BSIA o V'’ Tr (induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSIA)
with view’-def BSIA-implies-SIA-for-modified-view o-eq show ?thesis
by auto
qed

theorem unwinding-theorem-SR:
[Vi=(1V=(VyUNy), N={}, C=Cy);
Unwinding.lrf SES V' ur; Unwinding.osc SES V' ur |
= SRV TT(induceES SES)
proof —
assume view'-def : V' = (V = Vy, U Ny, N ={}, C = Cy)
assume Irf-view’ : Unwinding.lrf SES V' ur
assume osc-view' : Unwinding.osc SES V' ur

from Irf-view’' osc-view’ view’-def have S-view : SD V Tr (induceES SES)
by (rule-tac ur=ur in unwinding-theorem-SD, auto)
with SD-implies-SR show ?thesis
by auto
qed

theorem unwinding-theorem-D:
[ Irf ur; oscur ] = DV Tr (induceES SES)
proof —
assume [rf ur
and osc ur
hence BSD V Tr(z’nduceES SES)
by (rule unwinding-theorem-BSD)
thus %thesis
by (rule BSD-implies-D)
qed
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theorem unwinding-theorem-1I:
[ lrb ur; oscur | = IV Tr (induceES SES)
proof —
assume [lrb ur
and osc ur
hence BSI V Tr(z‘nduceES SES)
by (rule unwinding-theorem-BSI)
thus ?thesis
by (rule BSI-implies-I)
qed

theorem unwinding-theorem-IA:
[ lrbe o0 ur; osc ur | = IA o V Tr (induceES SES)
proof —
assume Irbe o ur
and osc ur
hence BSIA o V Tr(z‘nduceES SES)
by (rule unwinding-theorem-BSIA)
thus ?thesis
by (rule BSIA-implies-IA)
qed

theorem unwinding-theorem-R:
[ lrf ur; oscur ] = RV (Tr (induceES SES))
proof —
assume [rf ur
and osc ur
hence BSDV Tr (induceES SES)
by (rule unwinding-theorem-BSD)
hence DV TT(induceES SES)
by (rule BSD-implies-D)
thus %thesis
by (rule D-implies-R)
qed

end

end

5.4 Compositionality

We prove the compositionality results from [3].

5.4.1 Auxiliary Definitions & Results

theory CompositionBase
imports ../Basics/ BSPTazonomy
begin

definition
properSeparationOf Views ::
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‘e ES-rec = 'e ES-rec = 'e V-rec = 'e V-rec = ‘e V-rec = bool
where
properSeparationOfViews ES1 ES2 V V1 V2 =

Vy N Egsy = Vyg

ANVy N Eggy = Vyg

AN Cy N Egg € Cyy

N Cy N Egge C Cyp

A Nyyn Nyg={}

definition
wellBehavedComposition ::
‘e ES-rec = 'e ES-rec = ‘e V-rec = ‘e V-rec = ‘e V-rec = bool
where
wellBehavedComposition ES1 ES2 YV V1 V2 =
(Ny;NEgge=A{} ANyg N Egg; ={})
VvV (Joel.( Ny; N Egge = {} A total ES1 (OVJ N NVQ)
A BSIA o1 V1 Trpsy )
\Y (3@2. ( NVQ n EESI = {} A total ES2 (CVQ N NVI)
N BSIA 02 V2 Trggo )
V (Fol p2T1T2.(
Vri € Egsi AN Arg € Egsi A Try € Eggy
AVrg C Eggs AN Arg € Egsg A Trg © Eggy
N BSIA 01 V1 Trgg; A BSIA 02 V2 Trpgo
A total ES1 (CVI N NV.?) A total ES2 (CVQ N NVI)
N FCIA 01 T'1 V1 Trgg; N FCIA 02 T2 V2 Trggo
ANVyr N Vys CVpp UV
A Cyp N Nys CTpyp A Cyp N Nyy € Trg
ANy N App N Egge={} ANy N Apg N Eggy ={}))

locale Compositionality =
fixes ES1 :: 'e ES-rec
and ES2 :: ‘e ES-rec

and V :: ‘e V-rec

and V1 :: ‘e V-rec

and V2 :: e V-rec

assumes validES1: ES-valid ES1
and validES2: ES-valid ES2
and composableES1ES2: composable ES1 ES2

and validVC': isViewOn V (E(ESI I ESQ))
and validV1: isViewOn V1 Eggy
and validV2: isViewOn V2 E ggo

and propSep Views: properSeparationOfViews ES1 ES2 V V1 V2

and well-behaved-composition: wellBehavedComposition ES1 ES2 YV V1 V2
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sublocale Compositionality C BSP TazonomyDifferentCorrections ES1 || ES2 V
by (unfold-locales, rule composeES-yields-ES, rule validES1,
rule validES2, rule validVC')

context Compositionality
begin

lemma Vv-is-Vvi-union-Vu2: Vy = Vy; U Vygy
proof —
from propSepViews have Vy, N Egg; U Vy N Eggo = Vy; U Vyg
unfolding properSeparationOfViews-def by auto
hence Vy N (Epg; U Eggg) = Vyr U Vg
by auto
hence Vy N E(gg; || gsg) = Vvi U Vye
by (simp add: composeES-def)
with validVC show ?thesis
by (simp add: isViewOn-def, auto)
qed

lemma disjoint-Nvi-Vv2: Ny N Vyg = {}
proof —
from validV1 have Ny,; C Epg;
by (simp add: isViewOn-def, auto)
with propSep Views have Ny,; N Vyg = (Ny; N Eggy N Vy) N Egge
unfolding properSeparationOfViews-def by auto
hence Ny; N Vyg = (Ny; N Vy N Eggy) N Eggg
by auto
moreover
from validV1 have Ny; N Vy N Eggy = {}
using propSep Views unfolding properSeparationOf Views-def
by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute is ViewOn-def)
ultimately show ?thesis
by auto
qed

lemma disjoint-Nv2-Vvl: Nygs N Vi = {}
proof —
from validV2 have Ny y C Epgy
by (simp add:isViewOn-def, auto)
with propSep Views have Nyyp N Vy; = (Nyo N Egge N Vy) N Egg;
unfolding properSeparationOfViews-def by auto
hence Nyy N Vyy = (Nyg N Vy N Eggg) N Eggy
by auto
moreover
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from validV2 have Nyy N Vy N Egge = {}
using propSep Views unfolding properSeparationOf Views-def
by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute is ViewOn-def)
ultimately show ?thesis
by auto
qed

lemma merge-property”: [ set t1 C Epgy; set t2 C Epgo;

t1 1 Egsg =121 Eggp t1 1 Vy =1[;t21 Vy = [J;

t11Cy=1[;t21Cp=1[]
=3t (t]1 Eggy =t ANt] Eggg=12 At Vy=[At]Cp=[AsettC (Egs VU Egsy))
proof —

assume tI-in-Elstar: set t1 C Epgy

and t2-in-E2star: set t2 C Epgo

and t1-t2-synchronized: t1 | Eggyo = t2 | Eggy
and t1Vv-empty: t1 1 Vy = ||

and t2Vv-empty: 12 1 Vy = ||
and t1Cv-empty: t1 1 Cy = |]
and t2Cv-empty: t2 1 Cy = ||

from merge-property|OF t1-in-FE1star t2-in-E2star t1-t2-synchronized] obtain t
where t-is-interleaving: t | Egg; = t1 ANt ] Egge = t2
and t-contains-only-events-from-t1-t2: set t C set t1 U set t2
unfolding Let-def
by auto
moreover
from t1Vu-empty t2Vv-empty t-contains-only-events-from-t1-t2
have t | Vy =]
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute Vo-is-Vul-union- Vv2 projection-on-union projection-sequence t-is-interleaving)
moreover
have t 1 Cy =]
proof —
from t1Cv-empty have Vc € Cy. ¢ ¢ set t1
by (simp add: projection-def filter-empty-conv, fast)
moreover
from t2Cv-empty have Vc € Cy,. ¢ ¢ set t2
by (simp add: projection-def filter-empty-conv, fast)
ultimately have
Vee Cy. c ¢ (settl U set t2)
by auto
with t-contains-only-events-from-t1-t2 have V¢ € Cy. ¢ ¢ set t
by auto
thus %thesis
by (simp add: projection-def, metis filter-empty-conv)
qed
moreover
from t1-in-Elstar t2-in-E2star t-contains-only-events-from-t1-t2
have set t C (EES'I (@] EESQ)
by auto
ultimately show ?thesis
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by blast
qed

lemma NvI-union-Nv2-subsetof-Nv: Nyy; U Nyp C Ny
proof —
{
fix e
assume e-in-N1: e € Nyy
with validV1 have
e-in-El: e € Epgy
and e-notin-V1: e ¢ Vy,
and e-notin-C1: e ¢ Cyy
by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def
VN-disjoint-def, auto)+

from e-in-E1 e-notin-V1 propSepViews have e ¢ V',
unfolding properSeparationOfViews-def by auto
moreover
from e-in-E1 e-notin-C1 propSepViews have e ¢ Cy,
unfolding properSeparationOfViews-def by auto
moreover
note e-in-E1 validVC
ultimately have e € Ny,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
composeES-def, auto)
}
moreover {
fix e
assume e-in-N2: e € Nyo
with validV2 have
e-in-E2: e € E-ES ES2
and e-notin-V2: e ¢ Vyy
and e-notin-C2: e ¢ Cyg
by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
, auto)+

from e-in-E2 e-notin-V2 propSep Views have e ¢ V),
unfolding properSeparationOfViews-def by auto
moreover
from e-in-E2 e-notin-C2 propSep Views have e ¢ C,
unfolding properSeparationOfViews-def by auto
moreover
note e-in-E2 validVC
ultimately have e € Ny,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def
composeES-def, auto)

}

ultimately show ?thesis
by auto

qed

end
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end

theory CompositionSupport
imports CompositionBase
begin

locale CompositionSupport =
fixes ESi :: 'e ES-rec

and V :: ‘e V-rec

and Vi :: ‘e V-rec

assumes validESi: ES-valid ESi

and validVi: isViewOn Vi E gg;
and Vv-inter-Ei-is-Vvi: Vy, N Egg; = Vyy;
and Cv-inter-Ei-subsetof-Cvi: Cy N Epg; € Cy;

context CompositionSupport
begin

lemma BSD-in-subsystem:

[ceCy; (BQ[c]Qa)l Egg) € Trgg; ; BSD Vi Trgg; |
= Ja-i". (((B1 Egg) @ a-i') € Trgg;
A (a-i" 1 Vyg) = (a1 Vyy) A a-i' Cy;=1)

proof (induct length (([c] @ «) 1 Cyy;) arbitrary: 8 ¢ o)
case (

let ?L = ([c] Q@ a) 1 Egg;

from 0(8) have -El-ca-El-in-Tr1: (81 Egg;) @ (([c] @ ) 1 Egg;)) € Trgs;
by (simp only: projection-concatenation-commute)

moreover

have (L1 Vy;) = (a1 Vyy)

proof —
have (?L 1 Vi) = ([c] @ ) | Vy;
proof —

from validVi have Egg; N Vy,; = Vyy;
by (simp add: isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
, auto)
moreover
have (?L 1 Vy;) = ([c] @ a) 1 (Egg; N Vyy)
by (simp add: projection-def)
ultimately show ?thesis
by auto
qed
moreover

106



have ([c] @ a) 1 Vy; =al Vy;
proof —
have ([d] @ a) 1 Vy; = ([d 1 Vyg) @ (a1 Vi)
by (rule projection-concatenation-commaute)
moreover
have ([ | Vy;) = [
proof —
from 0(2) have [c] 1 Cy =[]
by (simp add: projection-def)
moreover
have [c] | Cy 1 Vy; =]
proof —
from validVi Cv-inter-Ei-subsetof-Cvi have Cy, N Vy; C Cy);
by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto)
moreover
from 0(1) have [c] ] Cy; = ||
by (simp only: projection-concatenation-commute, auto)
ultimately have [c] 1 (Cyy N Vyy;) =]
by (rule projection-on-subset)
thus ?thesis
by (simp only: projection-def, auto)
qed
ultimately show ?thesis
by auto
qed
ultimately show ?%thesis
by auto
qed
ultimately show ?thesis
by auto
qed
moreover
have 7L 1 Cy; = ||
proof —
from 0(1) have ([c] @ a) 1 Cy; = ||
by auto
hence ([c] @ a) 1 (Cy; N Egs) = |
by (rule projection-on-intersection)
hence (/c] @ a) | (Egg; N Cyy) = |
by (simp only: Int-commute)
thus %thesis
by (simp only: projection-def, auto)
qed
ultimately show ?case
by auto

next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain v c-i §

where c-i-in-CVi: c-i € Cy;
and ca-is-yc-id: [¢] @ a = Q [¢-i] @ 4§
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and 4-no-CVi: 61 Cy; =
and n-is-len-yd-CVi: n = length ((y Q §) 1 Cyy)
by auto

let ?L1 = ((8 Q) | Egg)
let 202 = (8 | Egg;)

note c-i-in-CVi
moreover
have list-with-c-i-in-Tr1: (?L1 Q [c-i] Q@ ?L2) € Trgg;
proof —
from c-i-in-CVi validVi have [c-i] | Egg; = [c-1]
by (simp only: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from Suc(4) ca-is-yc-id have ((8 Qv Q [¢-i] @ 0) | Egg;) € Trgs;
by auto
hence (?L1 @ ([¢-i] | Egg;) @ ?L2) € Trpg;
by (simp only: projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
have 7L2 1 Cy; = ||
proof —
from wvalidVi have Az. (z € Egg; N © € Cy;) = (z € Cyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
with §-no-CVi show ?thesis
by (simp add: projection-def)
qed
moreover note Suc(5)
ultimately obtain §’
where §'-1: (?L1 @ §') € Trgg;
and §-2: 6" 1 Vy; = 202 1 Vy;
and §-3: 6" 1 Cy; =[]
unfolding BSD-def

by blast
hence 6-2" 6" 1 Vy; =81 Vyy,
proof —
have ?2L2 1 Vy; =061 Vyy;
proof —

from validVi have Az. (z € Egg; Nz € Vy;) = (z € Vyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (simp add: projection-def)
qed
with 6’-2 show ?thesis
by auto
qed
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show ?case
proof (cases 7)

case Nil

with ca-is-yc-i0 have [c] @ a = [¢-i] @ §
by auto

hence §-is-a: § = «
by auto

from ¢'-1 have §'-1" (81 Egg;) @ 68') € Trgg;
by (simp only: Nil, auto)

moreover

note §’-2’

moreover note §'-3

ultimately show ?thesis
by (simp only: §-is-a, auto)

next

case (Cons 7 ')

with ca-is-yc-id have vy-is-cy’t v = [¢] @ v’
by simp

with n-is-len-y5-CVi have n = length (([c] @ v’ @ §) 1 Cyy;)
by auto

with §-no-CVi 6'-3 have n = length (([c] @ v’ @ 6') 1 Cyy)
by (simp only: projection-concatenation-commute)

moreover

note Suc(3)

moreover
have ((8 @ [c] @ (y' @ ") | Egg;) € Tris;
proof —
from ¢'-1 validESi have §' = §' | Epg;
proof —

let 2L =(8Q@~) 1 Egg; @4’

from 6'-1 validESi have Ve € set ?L. e € Egg;
by (simp add: ES-valid-def traces-contain-events-def)
hence set §' C Egg;
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
with 6’-1 have ?L1 Q§' = (8 @~y @ §') | Egg;
by (simp only: projection-concatenation-commute, auto)
with v-is-cy’ §’-1 show ?thesis
by auto
qed
moreover
note Suc(5)
moreover note Suc(1)[of c v @ §' §]
ultimately obtain «a-i’
where a-i’-1: 1 Egg; @ a-i' € Trgg;
and a-i"-2: a-i'1 Vi, = (v @é&") 1 Vy;
and a-i’-3: a-i’ 1 Cy; =[]
by auto
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moreover
have a-i' 1 Vy; = a1 Vyy

proof —
have a | Vy; = (v @) | Vyy
proof —
from ca-is-yc-id y-is-cy’ have a | Vy; = (v/ Q [¢-i] @ §) | Vyy;
by simp

with validVi c-i-in-CVi show ?thesis
by (simp only: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-concatenation-commute
projection-def, auto)
qed
moreover
from a-i’-2 §’-2" have a-i' | Vy; = (v @6) 1 Vyy
by (simp only: projection-concatenation-commute)
ultimately show ?thesis
by auto
qed
ultimately show ?thesis
by auto
qed
qed

lemma BSD-in-subsystem?2:
[ ((B@a)l Egg;) € Trgg; ; BSD Vi Trpg; |

= 3 a-i". (((B1 Egg) @ a-i') € Trgg; A (a-i' 1 V) = (a1 Vyy) Aa-i' | Cy;
proof (induct length (a1 Cyy;) arbitrary: 8 «)

case (

let 2L = a1 Egg;

from 0(2) have B-Fl-a-FE1-in-Tr1: (81 Egg;) @ ?L) € Trgg;
by (simp only: projection-concatenation-commute)
moreover
have (7L ] Vy;) = (a1 Vyy)
proof —
from validVi have Egg; N Vy; = Vy;
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
moreover
have (L 1 Vy;) = a1 (Egs; N Vyy)
by (simp add: projection-def)
ultimately show ?%thesis
by auto
qged
moreover
have 7L 1 Cy; = ||
proof —
from 0(1) have a1 Cy; = ||
by auto
hence a | (Cy; N Egg;) = ]
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by (rule projection-on-intersection)
hence a | (Egg; N Cy;) = |]
by (simp only: Int-commute)
thus Zthesis
by (simp only: projection-def, auto)
qged
ultimately show ?case
by auto

next
case (Suc n)

from projection-split-last{OF Suc(2)] obtain v c¢-i §
where c-i-in-CVi: c-i € Cyy;
and «-is-yc-id: o = Q [¢-i] Q@ §
and 9-no-CVi: 61 Cy; =]
and n-is-len-yd-CVi: n = length ((y Q §) 1 Cyy)
by auto

let ?2L1 = ((8 Q@) 1 Egg;)
let 702 = (6 | Egg;)

note c-i-in-CVi
moreover
have list-with-c-i-in-Tr1: (?L1 Q [c-5] Q ?L2) € Trgg;
proof —
from c-i-in-CVi validVi have [c-i] | Egg; = [c-1]
by (simp only: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from Suc(8) a-is-yc-id have ((8 Q v Q [c-i] @ §) 1 Egg;) € Trps;
by auto
hence (?L1 @ ([¢c-i] 1 Egg;) @ ?L2) € Trgg;
by (simp only: projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
have 7L2 1 Cy; = ||
proof —
from validVi have A\z. (z € Egg; Az € Cy;) = (z € Cyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
with d-no-CVi show ?thesis
by (simp add: projection-def)
qed
moreover note Suc(4)
ultimately obtain §’
where §'-1: (?L1 @ §') € Trpg;
and §'-2: 5/] VVi = ?L2 1 VVi
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and §-3: 6" 1 Cy; =[]
unfolding BSD-def

by blast
hence 6-2" 6" 1 Vy; =81 Vyy
proof —
have ?L2 1 VVz' = 51 VVi
proof —

from validVi have Az. (z € Egg; Az € V) = (x € Vyy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
thus “thesis
by (simp add: projection-def)
qed
with -2 show ?thesis
by auto
qed

from n-is-len-yd-CVi 6-no-CVi §'-3 have n = length ((y @ 6") 1 Cy);)
by (simp add: projection-concatenation-commute)

moreover
have (8 @ (y @) | Egg; € Trgg;
proof —
have §' = §' | Epg;
proof —

let 9L=(,3@’y)1 EESZ'@(S/

from ¢'-1 validESi have Ve € set ?L. e € Egg;
by (simp add: ES-valid-def traces-contain-events-def)
hence set 6’ C Egg;
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qed
with §’-1 have ?L1 @ ¢’ = (8@~ Q') | Egg;
by (simp only: projection-concatenation-commute, auto)
with §’-1 show ?thesis
by auto
qed
moreover
note Suc(4) Suc(1)[of v @ &’ §]
ultimately obtain a-i’
where resi: 81 Egg; @ a-i’ € Trgg;
and res2: a-i’' | Vy; = (y@§') 1 Vy;
and res3: a-i’' 1 Cy; = |]
by auto

have a-i' 1 Vy; = a1 Vy;
proof —
from c-i-in-CVi validVi have [c-i] | Vy; = |]
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
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VN-disjoint-def NC-disjoint-def projection-def, auto)
with a-is-yc-id §'-2" have a | Vy; = (y @ 6') 1 Vy,
by (simp only: projection-concatenation-commute, auto)
with res2 show %thesis
by auto
qed
with res! res3 show ?case
by auto
qed

end

end

5.4.2 Generalized Zipping Lemma

theory GeneralizedZippingLemma
imports CompositionBase
begin

context Compositionality
begin

lemma generalized-zipping-lemmal: [ Ny; N Egge = {}; Nys N Egg; ={} ] =
V 7 lambda t112. ( ( set T C E(pgy || psg) N set lambda C Vy A set t1 C Eggy A set 12 C Epgy
A((T1 Egsy) @tl) € Trgsy A ((T 1 Eggg) @ 12) € Trpgg A (lambda | Eggy) = (11 Vy)
A (lambda 1 Egge) = (121 Vy) A (t1 1 Cypy) = A (21 Cypo) =)
— @t ((r @) € Trgsy || Bsz) N (1 Vy) = lambda A (t 1 Cy) = 1))
proof —
assume Nvl-inter-E2-empty: Nyy; N Egge = {}
and Nv2-inter-El-empty: Nyo N Eggy = {}

{

fix 7 lambda t1 t2
assume T-in-Estar: set 7 C E(ESJ | ES2)
and lambda-in- Vustar: set lambda C Vy,
and tI-in-Elstar: set t1 C Epgy
and t2-in-E2star: set 12 C Eggo
and 7-EI-t1-in-Trl: ((1 1 Eggy) Q@ t1) € Trgg;
and 7-E2-12-in-Tr2: ((1 1 Egge) @ t2) € Trpgs
and lambda-E1-is-t1-Vv: (lambda | Eggy) = (t1 1 Vy)
and lambda-E2-is-t2-Vv: (lambda | Eggg) = (12 1 Vy)
and t1-no-Cvl: (t1 1 Cyy) = |]
and t2-no-Cv2: (12 1 Cyo) = |]

have [ set 7 C E(gs1 || Bs2);
set lambda C Vy);

set t1 C Eggy;

set t2 g EESQ;
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(71 Epsy) @ tl) € Trggy;
(71 Eggg) @ 2) € Trpgs;
lambda 1 Eggy) = (11 1 Vy);
lambda 1 Egge) = (121 Vy);

1 Cyyp) = [;

(
(
(
(
(¢1
(t21 Cyg) =11

= 3t ((rQ@t)e TT(ES] | ES2) A (t] Vv) = lambda N (t 1 Cv) =

proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (7 @ [|) € Trgs; || Es2)
proof —
have 7 € TT(ESI | ES2)
proof —
from Nil(5) validES1 have 7 | Egg; € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
from Nil(6) validES2 have 7 | Egge € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have (1 V) = [
by (simp add: projection-def)
moreover
have (] 1 Cy) = [
by (simp add: projection-def)
ultimately show ?case
by blast
next
case (Cons V' lambda’ T t1 12)
thus ?case
proof —
from Cons(3) have v'’-in-Vu: V' € Vy,
by auto

have V' € VVI N VV?
VV'e Vy, — Eggy
VV'E Vyg — Egg;
using Vu-is- Vvl-union- Vo2 v’-in-Vu propSep Views
unfolding properSeparationOfViews-def
by fastforce
moreover {
assume v'-in-Vol-inter-Vo2: V' € Vy; N Vyy
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hence v'-in-Vvl: V' € Vy; and v'-in-Vu2: V' € Vyy
by auto

with v’-in- Vv propSep Views

have v'-in-E1: V' € Epg; and v'-in-E2: V' € Eggo
unfolding properSeparationOfViews-def by auto

from Cons(2,4,8) v'-in-E1 have t1 | Vy = V' # (lambda’ | Egg;)
by (simp add: projection-def)
from projection-split-first[OF this| obtain r! s!
where t1-is-ri-v’-s1: t1 = r1 @Q [V'] Q s1
and r1-Vv-empty: v1 1 Vy = ||
by auto
with Vu-is-Vol-union-Vv2 projection-on-subset[of Vyy; Vy 1]
have r1-Vvl-empty: v1 1 Vy; = ||
by auto

from Cons(3,5,9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Egg9)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v"-s2: 12 = r2 Q [V] @ s2
and r2-Vv-empty: 72 1 Vy = ||
by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyg V) r2]
have r2-Vu2-empty: 12 1 Vyg = ||
by auto

from t1-is-ri-v’-s1 Cons(10) have ri1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 | Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v’-s1 have ri-in-Elstar: set r1 C Epg;
and sI-in-Elstar: set s1 C Epgy
by auto

from Cons(6) t1-is-r1-v'-s1
have TEl-ri-v'-sl-in-Trl: 7| Egg; @ r1 Q [V'] @ s1 € Trgg;
by simp

have ri-in-Nvlstar: set r1 C Ny
proof —

note rl-in-Elstar

moreover

from r1-Vul-empty have set r1 N Vy; = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute

Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover

from r1-Cvi-empty have set r1 N Cyy = {}
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by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qged
with Nvi-inter-E2-empty have r1E2-empty: r1 1 Egge = |]
by (metis Int-commute empty-subset] projection-on-subset2 r1-Vv-empty)

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from {2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggg
and s2-in-E2star: set s2 C Epgo
by auto

from Cons(7) t2-is-r2-v’-s2
have TE2-r2-v"-s2-in-Tr2: 7 | Egge @ r2 Q [V'] @ s2 € Trggg
by simp

have r2-in-Nv2star: set r2 C Nyp
proof —
note r2-in-E2star
moreover
from r2-Vu2-empty have set r2 N V9 = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 1 Eggy = |]
by (metis Int-commute empty-subsetl projection-on-subset2 r2- Vv-empty)

let ?tau =7 Q@ ri @ r2 @ [V

from Cons(2) ri-in-Elstar r2-in-E2star v'-in-E2
have set ?tau C (E(ESJ I ESQ))
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by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note sl-in-Elstar s2-in-E2star
moreover
from Cons(6) ri-in-Elstar r2E1-empty v'-in-E1 t1-is-r1-v’-s1
have ((?tau 1 Eggy) @ s1) € Trgg;
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
moreover
from Cons(7) r2-in-E2star r1E2-empty v'-in-E2 t2-is-r2-v’-s2
have ((Qtau] EESQ) Q 82) € Trggo
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
moreover
have lambda’ | Epg; = s1 1 Vy,
proof —
from Cons(2,4,8) v'-in-E1 have t1 1 Vy = [V @ (lambda’ | Egg)
by (simp add: projection-def)
moreover
from t1-is-ri-v’-s1 r1-Vu-empty v’-in- Vol Vu-is- Vol-union- Vo2
have t1 | Vy = [V] @ (s1 1 Vy)
by (simp only: ti-is-r1-v'-s1 projection-concatenation-commute
projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
have lambda’ 1 Epgy = s2 1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have 2 1 Vy, = [V'] @Q (lambda’ | E ggo)
by (simp add: projection-def)
moreover
from t2-is-r2-v’-s2 r2-Vv-empty v'-in- Vo2 Vo-is-Vol-union- Vo2
have 12 1 Vy = [V @ (s21 Vy)
by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute
projection-def, auto)
ultimately show ?thesis
by auto
qed
moreover
note s1-Cvl-empty s2-Cv2-empty Cons.hyps(1)[of ?tau s1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs1 | ES2)
and t'Vu-is-lambda”: t' 1 Vv, = lambda’
and t'Cv-empty: t'1 Cy) = |]
by auto

let ¢t =r1@r2Q@[V]Q@t
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note tau-t’-in-Tr
moreover
from r1-Vv-empty r2-Vv-empty t'Vv-is-lambda’ v'-in- Vv
have 7t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
from propSep Views have Cy N Egg; C Cyy
unfolding properSeparationOfViews-def by auto
hence r1 1 Cy =[]
by (metis projection-on-subset2 r1-Cvl-empty ri-in-Elstar)
moreover
from propSep Views have Cy N Epge C Cyyp
unfolding properSeparationOfViews-def by auto
hence 72 | Cy =[]
by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
moreover
note v'-in-Vo VIsViewOnE t'Cv-empty
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
qed
ultimately have %thesis
by auto
}

moreover {
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vvl: V' € Vyy,
by auto
with v'-in- Vv propSep Views have v'-in-E1: V' € Egg;
unfolding properSeparationOfViews-def
by auto

from v’-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Eggg
by (auto)

with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def, auto)

from Cons(38) Cons(4) Cons(8) v'-in-E1 have t1 | Vy, = V' # (lambda’ | Egg;)
by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1
where t1-is-r1-v’-s1: t1 = r1 @ [V'] Q s1
and r1-Vv-empty: v1 1 Vy = ||
by auto
with Vu-is-Vul-union-Vv2 projection-on-subset[of Vyy; Vy 1]
have r1-Vvl-empty: v1 1 Vy; =]
by auto

from t1-is-r1-v'-s1 Cons(10) have r1-Cvl-empty: r1 1 Cy; = ||
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by (simp add: projection-concatenation-commute)

from ¢1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 |1 Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v’-s1 have ri-in-Elstar: set r1 C Epg;
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note ri-in-Elstar
moreover
from ri-Vvi-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
from r1-Cvl-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nvi-inter-E2-empty have r1E2-empty: r1 1 Egge = |]
by (metis Int-commute empty-subset]
projection-on-subset? r1-Vvl-empty)

let ?tau =7 @ r1 @ [V

from v’-in-E1 Cons(2) ri-in-Nvlstar validV1
have set ?tau C E(ESJ | ES2)
by (simp only: isViewOn-def composeES-def V-valid-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from Cons(4) ti-is-ri-v’-s1 have set s1 C Epgy
by auto
moreover
note Cons(5)
moreover
have ?tau | Egg; @ s1 € Trggy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(83) Cons.prems(5)
projection-concatenation-commute t1-is-r1-v'-s1)
moreover
have ?tau | Egge Q t2 € Trpgs
proof —
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from v'-notin-E2 have V'] | Eggs = [|
by (simp add: projection-def)
with Cons(7) Cons(4) t1-is-ri-v'-s1 v'-notin-E2
ri-in-Nvlstar Nvl-inter-E2-empty r1E2-empty
show ?thesis
by (simp only: t1-is-ri-v'-s1 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qged
moreover
from Cons(8) t1-is-ri-v'-s1 r1-Vu-empty v'-in-E1 v'-in-Vo have lambda’ | Egg; = s1 1 Vy,
by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 have lambda’' | Egge = 21 Vy
by (simp add: projection-def)
moreover
note s1-Cvi-empty Cons(11)
moreover
note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gsi || ES2)
and t’-Vuv-is-lambda’: t' 1 V), = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let ¢t =r1 @ [V] Q¢

note tau-t’-in-Tr
moreover
from ri-Vv-empty t'- Vo-is-lambda’ v'-in- Vv
have ?¢ 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
from propSep Views have Cy N Egg; € Cyy
unfolding properSeparationOfViews-def by auto
hencer! 1 Cy = ||
by (metis projection-on-subset2 r1-Cvl-empty rl-in-Elstar)
with v’-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
qed
ultimately have %thesis
by auto
}

moreover {
assume v'-in-Vo2-minus-E1: V' € V9 — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v’-in- Vv propSep Views
have v'-in-E2: V' € Eggg
unfolding properSeparationOfViews-def by auto
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from v’-in- Vo2-minus-E1
have v'-notin-E1: V' ¢ Epgy
by (auto)
with validV1
have v'-notin-Vv1: V' ¢ V),
by (simp add:isViewOn-def V-valid-def, auto)

from Cons(4) Cons(5) Cons(9) v'-in-E2
have t2 1 Vy, = V' # (lambda’ 1 Eggs)
by (simp add: projection-def)
from projection-split-first| OF this|] obtain r2 s2
where t2-is-72-v"-52: 12 = r2 Q [V'] @ s2
and 72-Vv-empty: v2 1 Vy, = ||
by auto
with Vu-is-Vol-union-Vv2 projection-on-subset[of Vyyg V) 2]
have r2-Vv2-empty: 72 1 Vg = ||
by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggo
by auto

have r2-in-Nv2star: set 12 C Nyp
proof —
note r2-in-FE2star
moreover
from r2-Vu2-empty have set r2 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
from r2-Cv2-empty have set 72 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 1 Eggy = |]
by (metis Int-commute empty-subset]
projection-on-subset2 r2-Vu2-empty)
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let ?tau =7 @ r2 @ [V

from v’-in-E2 Cons(2) r2-in-Nv2star valid V2
have set ?tau C E(ESI | ES2)
by (simp only: composeES-def isViewOn-def V-valid-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note Cons(4)
moreover
from Cons(5) t2-is-r2-v’-s2 have set s2 C Eggy
by auto
moreover
have ?tau | Egg; @ t1 € Trggy
proof —
from v’-notin-E1 have [V 1 Egg; = [|
by (simp add: projection-def)
with Cons(6) Cons(3) t2-is-r2-v'-s2 v'-notin-E1 r2-in-Nv2star
Nv2-inter-E1-empty r2E1-empty
show %thesis
by (simp only: t2-is-r2-v'-s2 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qged
moreover
have %tau 1 Egge Q s2 € Trpgs
by (metis Cons-eq-appendl append-eq-append! calculation(4) eq-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from Cons(8) v'-notin-E1 have lambda’ | Eggy; = t1 1 Vy
by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in- Vo
have lambda’ | Epgy = s2 1 Vy,
by (simp add: projection-def)
moreover
note Cons(10) s2-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau t1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gsi || ES2)
and t'-Vuv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let ¢t =r2 @ [V]@¢t’

7 .
note tau-t-in-Tr
moreover
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from 72- Vv-empty t'-Vv-is-lambda’ v'-in- Vv
have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have %t 1 Cy = ||
proof —
from propSep Views have Cy) N Eggs C Cyo
unfolding properSeparationOfViews-def by auto
hence 72 1 Cy =[]
by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
with v'-in- Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)

qed
ultimately have ?thesis
by auto
}
ultimately show ?thesis
by blast
qed
qged
thus %thesis
by auto
qed

lemma generalized-zipping-lemma2: [ Ny N Egge = {}; total ES1 (Cy; N Nyg); BSIA o1 V1 Trggy |
—_—
V 7 lambda t1 12. ( ( set T C (E(ggy | gs2)) A set lambda C Vy, A set t1 C Eggy A set 12 C Epggy
A((T1 Egsy) @tl) € Trggy A ((T 1 Eggg) @ 12) € Trpgp
A (lambda 1 Eggy) = (t1 1 V) A (lambda | Egge) = (12 1 V)
AL ] Cyp) = [ A (12 1 Cyg) = )
— (3 6. (r @ b) € (Trpgy | psz) A (L1 Vy) = lambda A (£1 Cy) = )
proof —
assume Nvl-inter-E2-empty: Nyy; N Egge = {}
assume total-ES1-Cvi-inter-Nv2: total ES1 (Cyy N Nyg)
assume BSIA: BSIA o1 V1 Trgg;

fix 7 lambda t1 12
assume T-in-Estar: set 7 C E(ESJ | ES2)
and lambda-in-Vustar: set lambda C Vy,
and t1-in-Elstar: set t1 C Eggy
and t2-in-E2star: set t2 C Epgo
and 7-EI-t1-in-Trl: ((1 1 Eggy) Q@ t1) € Trgg;
and 7-E2-12-in-Tr2: ((1 1 Egge) @ t2) € Trggs
and lambda-E1-is-t1-Vu: (lambda |1 Eggy) = (t1 1 Vy)
and lambda-E2-is-t2-Vu: (lambda | Epge) = (12 1 Vy)
and t1-no-Cvl: (t1 1 Cyy) = |]
and t2-no-Cv2: (t2 1 Cyg) = |]

have [ set 7 C E(ESJ | ES2) set lambda C Vy;
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set t1 C FEggy; set t2 C Eggo;
(11 Egsy) @t1) € Trgsy; (T 1 Epgg) @ t2) € Trpgy;
(lambda 1 Eggy) = (t1 1 Vy); (lambda | Egge) = (t2 1 Vy);
(11 Cyy) =1 (221 Cypg) =111
= (3t. ((r@i) € Tr(gs1 | Es2) N (t1 Vy) = lambda A (t1 Cy) =1]))
proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (T Q@ H) S TT(ES] | ES2)
proof —
have 7 € TT’(ESI ” ESQ)
proof —
from Nil(5) validES1 have 7 | Egg; € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
from Nil(6) validES2 have 7 | Egge € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have ([ 1 Vy) = [
by (simp add: projection-def)
moreover
have ([ 1 Cy) =
by (simp add: projection-def)
ultimately show ?case
by blast
next
case (Cons V' lambda’ T t1 t2)
thus Zcase
proof —
from Cons(3) have v’-in-Vu: V' € Vy,
by auto

have V' € Vyir N Vyg V V'e Vyi — Egga V V'e Vye — Eggy
using propSep Views unfolding properSeparationOf Views-def
using Vu-is- Vvl-union- Vo2 v’-in- Vo by fastforce
moreover {
assume v'-in-Vol-inter-Vo2: V' € Vy; N Vyg
hence v'-in-Vv1: V' € Vy; and v'-in-Vv2: V' € Vyy
by auto
with v’-in- Vv propSep Views
have v'-in-E1: V' € Epg; and v'-in-E2: V' € Eggo
unfolding properSeparationOfViews-def by auto
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from Cons(3,5,9) v'-in-E2
have t2 1 Vy, = V' # (lambda’ 1 Epgs)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where $2-is-r2-v’-s2: 12 = r2 Q [V'] @ s2
and 72-Vv-empty: v2 1 Vy, = ||
by auto
with Vu-is- Vol-union- Vv2 projection-on-subset[of Vyyg V7, r2]
have r2-Vv2-empty: 72 1 Vg = ||
by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from {2-is-r2-v’-s2 Cons(11) have s2-Cv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 12 C Epgg
and s2-in-E2star: set s2 C Eggo
by auto

from Cons(7) t2-is-r2-v'-s2
have TE2-r2-v"-s2-in-Tr2: 7 | Eggs @ r2 @Q [V'] @ s2 € Trggg
by simp

have r2-in-Nv2star: set r2 C Nyp
proof —
note r2-in-E2star
moreover
from r2-Vv2-empty have set 12 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV?2
ultimately show ?2thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-C1-star: set (r2 1 Eggy) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set r2 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (r2 1 Eggy) € (Eggs N Nyy)
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by auto

moreover

from wvalidV'1 propSep Views

have EES] n NV2 = NV2 N CVI
unfolding properSeparationOfViews-def is ViewOn-def V-valid-def
using disjoint-Nv2-Vvl by blast

ultimately show ?thesis
by auto

qed

note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npa N Cyy) =

3 t1'. (set i1’ C Eggy

A((tr@r2)| Eggy) Q@ t1' € Trgg;

Atl] Vyr=1t11 Vy;

At Cyp=1)
proof (induct r2 | Eggy arbitrary: r2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9)
outerCons-prems(83) outerCons-prems(5) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE1: s = zs | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggy
by (simp add: projection-def, auto)
hence set s C Epgy
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggy) C (Nya N Cyy)
proof —
have set (12 1 Eggy) € (Npya N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Nyga N Cyy)
by simp
hence set zs C (Nyg N Cyy)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain ¢1”
where t1"-in-Elstar: set t1" C Epgy
and 7-zs-E1-t1"-in-Tr1: ((t Q zs) | Eggy) @ t1" € Trggy
and t1"Vul-is-t1Vul: t1"1 V= 1t1 1 Vyy
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and t1"Cvi-empty: t1"1 Cyy = ||
by auto

have z-in-Cvl-inter-Nv2: € Cyy N Nyy
proof —
from snoc(2—3) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus %thesis
by auto
qed
hence z-in-Cvl: z € Cyy
by auto
moreover
note 7-zs-E1-t1""-in-Tr1 t1"' Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((1 Q zs) | Eggy) )
proof —
from 7-zs-E1-t1"-in-Tr1 validES1
have 7-zsE1-in-Tr1: ((1 Q@ 2s) | Egg;) € Trgs;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvl-inter-Nv2 total-ES1-Cvl-inter-Nv2
have 7-zsE1-z-in-Trl: ((1 Q xs) 1 Eggy) @ [z] € Trggy
by (simp only: total-def)
moreover
have (( @ 2s) | Bggy) 1 (o1 V1) = ((r @ 25) | Eggy) 1 (0 V1)
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢1’
where resi: ((r Q zs) | Egg;) @ [z] Q t1' € Trggy
and res2: t1'1 Vy; = t1"1 Vyy
and res3: t1'1 Cy; = |]
by (simp only: BSIA-def, blast)

have set t1' C Eggy
proof —
from res1 validES1
have set (((1 Q@ zs) | Eggy) @ [z] @Q ¢1') C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T1 @ r2) | Eggy) @ t1' € Trggy
proof —
from res! zs-is-zsE1 have ((1 1 Epgy) @ (zs Q [z])) @ ¢1' € Trpg;
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
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moreover
from t1"Vui-is-t1Vvl res? have t1'1 Vy; = t1 1 Vyy
by auto
moreover
note ress
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain t1’
where t1'-in-Elstar: set t1' C Fggy
and Tr2E1-t1'-in-Tr1: ((t @ r2) | Eggy) @ t1' € Trpg;
and t1'-Vul-is-t1-Vol: t1'1 Vy; =t1 1 Vyy
and t1'-Cvl-empty: t1'1 Cyy = ||
by auto

have t1'1 Vy; = V' # (lambda’ | Eggy)
proof —
from projection-intersection-neutral|OF Cons(4), of V)]
propSep Views
have t1 1 Vy =t1 1 Vyy
unfolding properSeparationOfViews-def
by (simp only: Int-commute)
with Cons(8) t1'-Vuvl-is-t1-Vvl v'-in-E1 show ?thesis
by (simp add: projection-def)
qed
from projection-split-first|OF this] obtain r1’ s1’
where t1'-is-r1’-v'-s1" t1'=r1'Q [V'] @ s1’
and r1’-Vol-empty: v1'1 Vy; =[]
by auto

from t1'-is-r1’-v’-s1’ t1’-Cvi-empty
have r1’-Cvl-empty: r1'1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1'-is-r1’-v'-s1' t1’-Cvl-empty
have s1’-Cvi-empty: s1'1 Cyy = |]
by (simp only: projection-concatenation-commute, auto)

from t1’-in-Elstar t1'-is-r1’-v'-s1’
have r1’-in-Elstar: set r1' C Epg;
by auto
with propSep Views r1’-Vvl-empty
have r1’-Vv-empty: r1'1 Vy = |]
unfolding properSeparationOfViews-def
by (metis projection-on-subset2 subset-iff-psubset-eq)

have r1’-in-Nvistar: set r1’ C Ny,
proof —
note r1’-in-Elstar
moreover
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from r1’-Vul-empty have set r1' N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1’-Cvi-empty have set r1' N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qged
with Nvl-inter-E2-empty have r1'E2-empty: r1’' | Egge = ||
by (metis Int-commute empty-subset]
projection-on-subset2 r1'-Vul-empty)

let ?tau =7 @ r2 Q r1’ Q [V

from Cons(2) r2-in-E2star r1'-in-Elstar v'-in-E2
have set ?tau C (E(ESI I ESQ))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from t1'-in-Elstar t1'-is-r1’-v'-s1’
have set s1’' C Egg;
by simp
moreover
note s2-in-FE2star
moreover
from 7r2E1-t1'-in-Tr1 t1'-is-r1’-v’-s1’ v'-in-E1
have ?tau | Egg; @ s1’ € Trgg;
proof —
from v’-in-E1 r1'-in-Elstar
have (r@r2@Qri’'QV))1 Egg; = (1@ 1r2)1 Egg; @ri’ Q [V
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
with 7r2E1-t1'-in-Tr1 t1'-is-r1’-v’-s1’ v’-in-E1 show ?thesis
by simp
qed
moreover
from 72-in-E2star v'-in-E2 r1'E2-empty 1 E2-12-v'-52-in-Tr2
have ?tau | Epgs Q 52 € Trpgs
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
have lambda’ | Epg; = s1'1 Vy,
proof —
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from Cons(2,4,8) v'-in-E1 have t1 1 Vy, = [V'] @ (lambda’ |1 Egg;)
by (simp add: projection-def)
moreover
from t1'-is-r1’-v’-s1’ r1’-Vol-empty r1’-in-Elstar v'-in- Vvl propSep Views
have t1'1 Vy = V] @ (s1'1 Vy)
proof —
have r1’1 Vy, =[]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2
r1'-Vul-empty ri1'-in-Elstar subset-iff-psubset-eq)
with t1'-is-r1’-v’-s1’ v'-in- Vol Vu-is-Vul-union-Vv2 show ?thesis
by (simp only: t1'-is-r1’-v’-s1’ projection-concatenation-commute
projection-def, auto)
qged
moreover
have t1 | Vy =t1'1 Vy
using propSep Views unfolding properSeparationOf Views-def
by (metis Int-commute outerCons-prems(8)
projection-intersection-neutral
t1'-Vul-is-t1-Vul t1'-in-Elstar)
ultimately show %thesis
by auto
qed
moreover
have lambda’ | Epgy = s2 1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have t2 | Vy, = [V'] @ (lambda’ | Ego)
by (simp add: projection-def)
moreover
from t2-is-r2-v’-s2 r2-Vv-empty v’-in- Vo2 Vu-is- Vol-union- Vo2
have (2 1 Vy, = [V] @ (s21 Vy)
by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute projection-def, auto)
ultimately show %thesis
by auto
qed
moreover
note s1'-Cvl-empty s2-Cv2-empty Cons.hyps|of ?tau s1’ s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs; || ES2)
and t'Vu-is-lambda”: t' 1 Vv, = lambda’
and t'Cv-empty: t'1 Cy = |]
by auto

let t=r2z@ri’@V])@t

note tau-t’-in-Tr

moreover

from r2-Vv-empty r1'-Vv-empty t'Vu-is-lambda’ v'-in-Vov have 2t | Vy, = V' # lambda’
by (simp only: projection-concatenation-commute projection-def, auto)

moreover

from VIsViewOnE r2-Cv2-empty t'Cv-empty r1'-Cvl-empty v'-in- Vv
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have 7t 1 Cy =[]
proof —
from VIsViewOnE v'-in-Vo have [V'] | Cy, = ||
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
moreover
from r2-in-E2star r2-Cv2-empty propSep Views
have r2 1 Cy = ||
unfolding properSeparationOfViews-def
using projection-on-subset? by auto
moreover
from r1'-in-Elstar r1’-Cvl-empty propSep Views
have r1'1 Cy, = |]
unfolding properSeparationOfViews-def
using projection-on-subset2 by auto
moreover
note t'Cv-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto
}

moreover {
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vvl: V' € Vv,
by auto
with v’-in-Vu propSepViews have v'-in-E1: V' € Epg;
unfolding properSeparationOfViews-def by auto

from v'-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Epgg
by (auto)

with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def, auto)

from Cons(8) Cons(4) Cons(8) v'-in-E1
have t1 | Vi, = V' # (lambda’ 1 Epg;)
by (simp add: projection-def)
from projection-split-first[OF this| obtain r! s!
where t1-is-ri-v’-s1: t1 = r1 @ [V'] @ s1
and r1-Vv-empty: v1 1 Vy, = ||
by auto
with Vu-is- Vul-union- Vv2 projection-on-subset[of Vy,; Vy, r1]
have r1-Vul-empty: v1 1 Vy; =
by auto

from t1-is-r1-v'-s1 Cons(10)
have r1-Cvi-empty: r1 1 Cyy =[]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10)
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have s1-Cvi-empty: s1 1 Cyy =[]
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-r1-v’-s1
have ri-in-Elstar: set r1 C Epgy
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note ri-in-FElstar
moreover
from r1-Vvi-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
from r1-Cvl-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nvi-inter-E2-empty have r1E2-empty: r1 1 Egge = |]
by (metis Int-commute empty-subsetl projection-on-subset2 ri1-Vvl-empty)

let %tau =7 @ r1 @ [V/]

from v’-in-E1 Cons(2) ri-in-Nvlstar validV1
have set ?tau C E(ESI | ES2)
by (simp only: composeES-def isViewOn-def V-valid-def, auto)
moreover
from Cons(8) have set lambda’ C Vy,
by auto
moreover
from Cons(4) t1-is-r1-v’-s1 have set s1 C Eggy
by auto
moreover
note Cons(5)
moreover
have ?tau | Eggy Q s1 € Trggy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(8) Cons.prems(5)
projection-concatenation-commute t1-is-r1-v'-s1)
moreover
have ?tau | Egge Q t2 € Trpgs
proof —
from v'-notin-E2 have [V'] | Eggs = ||
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by (simp add: projection-def)
with Cons(7) Cons(4) ti-is-r1-v'-s1 v'-notin-E2 r1-in-Nvlstar
Nuvl-inter-E2-empty r1E2-empty
show ?thesis
by (simp only: t1-is-r1-v'-s1 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qed
moreover
from Cons(8) t1-is-ri-v'-s1 ri-Vv-empty v'-in-E1 v'-in-Vo
have lambda’ 1 Epg; = s1 1 Vy,
by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 have lambda’' | Egge = 21 Vy
by (simp add: projection-def)
moreover
note s1-Cvi-empty Cons(11)
moreover
note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain ¢’
where 7riv't’-in-Tr: ?tau Q t' € Tr(gsi | ES2)
and t’-Vuv-is-lambda’: t' 1 V), = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let ¢t =r1 @ [V] Q¢

note Triv't’-in-Tr
moreover
from r1-Vv-empty t'- Vo-is-lambda’ v'-in-Vv have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have %t 1 Cy = ||
proof —
have r1 1 Cy = ||
using propSep Views unfolding properSeparation Of Views-def
by (metis projection-on-subset2 r1-Cvl-empty r1-in-Elstar)
with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
qed
ultimately have %thesis
by auto
}

moreover {
assume v'-in-Vo2-minus-E1: V' € Vg — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v’-in- Vo propSep Views
have v'-in-E2: V' € Eggg
unfolding properSeparationOfViews-def by auto

from v’-in- Vo2-minus-E1
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have v'-notin-E1: V' ¢ Epggy
by (auto)
with validV1
have v'-notin-Vvi: V' ¢ Vy,
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

from Cons(3) Cons(5) Cons(9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Eggs)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where $2-is-r2-v"-s2: 12 = r2 Q [V] @ s2
and 72-Vv-empty: v2 1 Vy, = ||
by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||
by auto

from {2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: 2 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from {2-is-r2-v’-s2 Cons(11) have s2-Cv2-empty: s2 | Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 12 C E gy
by auto

have r2-in-Nv2star: set r2 C Nyp
proof —
note r2-in-E2star
moreover
from r2-Vu2-empty have set r2 N Vyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
moreover
from r2-Cv2-empty have set 72 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
moreover
note validV2
ultimately show %thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-C1-star: set (r2 1 Eggy) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set 12 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (12 1 Eggy) € (Egg; N Nyo)
by auto
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moreover
from validV1 propSep Views disjoint-Nv2-Vvl have Eggy; N Nyg = Nyo N Cyy
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npys N Cypy) =

3 t1'. (sett1’ C Eggy

A ((T @ r2) EESZ) Qti'e Trpgy

At1'] Vyr =111 Vyy

At1'] Cyy=1)
proof (induct 12 |1 E gy arbitrary: v2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
outerCons-prems(5) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE1: zs = 25 | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Epgy
by (simp add: projection-def, auto)
hence set s C Eggy
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggy) € (Nya N Cyy)
proof —
have set (12 1 Eggy) € (Nya N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) € (Nyg N Cyy)
by simp
hence set zs C (Nyg N Cyy)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain ¢1”
where t1"-in-Elstar: set t1"' C Egg;
and 7-zs-E1-t1"-in-Tr1: ((t Q zs) | Eggy) @ t1" € Trggy
and t1""Vul-is-t1Vvl: t1"1 V= t1 1 Vyy
and t1"Cvl-empty: t1"1 Cyy = ||
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by auto

have z-in-Cvl-inter-Nv2: x € Cy; N Nyy
proof —
from snoc(2—38) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus %thesis
by auto
qed
hence z-in-Cvl: z € Cyy
by auto
moreover
note 7-zs-E1-t1"-in-Tr1 t1"' Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((1 Q zs) 1 Eggy) )
proof —
from 7-zs-E1-t1""-in-Tr1 validES1
have 7-zsE1-in-Tr1: (T @Q zs) | Eggy) € Trpsy
by (simp add: ES-valid-def traces-prefixclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvi-inter-Nv2 total-ES1-Cvl-inter-Nv2
have 7-zsEl-z-in-Tr1: (T @ zs) | Eggy) Q [z] € Trgg;
by (simp only: total-def)
moreover
have ((1 @ zs) | Eggy) 1 (el V1) = ((r @as) | Eggy) 1 (e V1) ..
ultimately show ?Zthesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢1’
where resl: (1 @ zs) | Egg;) @ [z] Q t1' € Trggy
and res2: t1'1 Vy;=t1"1 Vyy
and res3: t1'1 Cyy = |]
by (simp only: BSIA-def, blast)

have set t1’' C Epgy
proof —
from res! validESI have set (((t Q zs) | Eggy) @ [z] @ t17) C Efpgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T @ 7‘2) 1 EESI) @t1'e Trgsy
proof —
from res! zs-is-zsE1 have ((7 1 Eggy) @ (zs @Q [z])) @ t1' € Trgg;
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from t1"Vui-is-t1Vul res? have t1'1 Vy; = t1 1 Vyy
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by auto
moreover
note ress
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain t1’
where ¢1'-in-Elstar: set t1' C Eggy
and Tr2E1-t1"-in-Tr1: ((t Q@ r2) | Eggy) @ ¢t1' € Trpg;
and t1'-Vul-is-t1-Vol: t1'1 Vy; = t1 1 Vyy
and t1'-Cvl-empty: t1'1 Cy; = ||
by auto

let ?tau =7 @ r2 @ [V

from v’-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau C E(gs1 | Es2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(8) have set lambda’ C Vy,
by auto
moreover
from Cons(5) t2-is-r2-v’-s2 have set s2 C Epgy
by auto
moreover
note t1’-in-Elstar
moreover
have ?tau | Epgo @ s2 € Trpgy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from 7r2E1-t1’-in-Tr1 v'-notin-E1 have ?tau | Egg; Q t1' € Trggy
by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v’-in-E2 v'-in- Vv
have lambda’ | Epgy = s2 1 Vy
by (simp add: projection-def)
moreover
from Cons(10) v'-notin-E1 t1'-Vvl-is-t1-Vul have lambda’ | Egg; = t1'1 Vy,
proof —
have t1’ Vy = t1' Vyi
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral
t1'-in-Elstar)
moreover
have t1 1 Vy =t1 1 Vy;
using propSep Views unfolding properSeparationOf Views-def
by (simp add: projection-def, metis Int-commute
projection-def
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projection-intersection-neutral Cons(4))
moreover
note Cons(8) v'-notin-E1 t1'-Vui-is-t1-Vul
ultimately show %thesis
by (simp add: projection-def)
qed
moreover
note s2-Cv2-empty t1'-Cvl-empty
moreover
note Cons.hyps(1)[of ?tau t1’ s2]
ultimately obtain ¢’
where 77r20't"-in-Tr: ?tau Q t’ € Tr(gsi | ES2)
and t’-Vuv-is-lambda’: t' 1 Vy, = lambda’
and t’-Cv-empty: t' 1 Cy = [|
by auto

let t=r2 @ [V]Qt

note 7r2v't’-in-Tr
moreover
from 72- Vu-empty t'- Vu-is-lambda’ v'-in- Vv
have ?t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
have r2 1 Cy, = ||
proof —
from propSep Views have Cy N Egge C Cyo
unfolding properSeparationOfViews-def by auto
from projection-on-subset[OF <Cy N Eggs C Cyg r2-Cv2-empty]
have r2 | (Egge N Cy) = ||
by (simp only: Int-commute)
with projection-intersection-neutral[OF r2-in-E2star, of Cy)| show ?thesis
by simp
qed
with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ?thesis
by auto
}

ultimately show ?thesis
by blast
qed
qged

thus ?thesis

by auto
qed
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lemma generalized-zipping-lemma3: [ Nyo N Egg; = {}; total ES2 (Cyg N Nyyq); BSIA 02 V2 Trggs |
_—
V 7 lambda t1 t2. ( ( set 7 C E(gs1 | Bs2) N set lambda C Vy, A set t1 C Eggy A set t2 C Eggo
AN((71 Egsy) @ 1) € Trpsy A (T 1 Egsg) @ 12) € Trpgy
A (lambda 1 Eggy) = (t1 1 Vy) A (lambda 1 Egge) = (t2 1 Vy))
A1 Cpp) = ] A (21 Cyg) = D)
— 3t ((rQ@¢) € TT(ESI | ES2) A (t] Vv) = lambda N (t 1 Cv) =1)))
proof —
assume Nv2-inter-El-empty: Nyyg N Eggy = {}
assume total-ES2-Cv2-inter-Nvl: total ES2 (Cyo N Nyg)
assume BSIA: BSIA 02 V2 Trggo

{

fix 7 lambda t1 t2
assume T-in-Estar: set 7 C E(ESJ | ES2)
and lambda-in-Vustar: set lambda C Vy,
and tI-in-Elstar: set t1 C Eggy
and t2-in-E2star: set t2 C Epgo
and 7-EI-t1-in-Tr1: ((1 1 Egg;) Q@ t1) € Trgg;
and 7-E2-12-in-Tr2: ((1 1 Egss) @ t2) € Trggs
and lambda-E1-is-t1-Vu: (lambda |1 Eggy) = (t1 1 Vy)
and lambda-E2-is-t2-Vu: (lambda | Epgg) = (12 1 Vy)
and t1-no-Cvi: (t1 1 Cyy) = |]
and t2-no-Cv2: (t2 1 Cyg) = ||

have [ set 7 C E(ESJ | ES2);
set lambda C Vy);
set t1 g EESZ;
set t2 C Epgo;
(7 1 Epsy) @ t1) € Trggy;
((T 1 Eggg) @ 12) € Trggy;
(lambda | Epgy) = (t1 1 Vy);
(lambda Epgg) = (t2 1 Vy);
(t11 Cyy) = I
(121 Cyg) =11
= (3 t. (1@ t) € Trggy || msey N (1 Vy) = lambda A (11 Cy) = [])
proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (7 @ [|) € Trgs; || gs2)
proof —
have 17 € TT(ESI | ES2)
proof —

from Nil(5) validES1 have 71 Egg; € Trgg;

by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)

moreover

from Nil(6) validES2 have 7 | Egge € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
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prefizclosed-def prefiz-def)
moreover
note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have ([ 1 Vy) = |
by (simp add: projection-def)
moreover
have ([ 1 Cy) = [
by (simp add: projection-def)
ultimately show ?case
by blast
next
case (Cons V' lambda’ T t1 12)
thus ?case
proof —
from Cons(3) have v'-in-Vu: V' € Vy,
by auto

have V' € VVI N VVQ
VV'e Vy; — Eggy
VV' € Vyg — Egg;
using propSep Views unfolding properSeparation Of Views-def
by (metis Diff-iff Int-commute Int-iff Un-iff
Vu-is- Vol-union- Vo2 v'-in-Vv)
moreover {
assume v’-in- Vol-inter-Vv2: V' € Vy,; N Vyy
hence v'-in-Vv2: V' € Vyp and v'-in-Vui: V' € Vy;
by auto
with v'-in- Vv
have v’-in-E2: V' € Epgy and v'-in-E1: V' € Epgy
using propSep Views unfolding properSeparationOfViews-def by auto

from Cons(2,4,8) v'-in-E1 have t1 1 Vy, = V' # (lambda’ |1 Egg;)
by (simp add: projection-def)
from projection-split-first[ OF this| obtain r! s!
where t1-is-ri-v’-s1: t1 = r1 @ [V'] @ s1
and r1-Vv-empty: v1 1 Vy, = ||
by auto
with Vo-is- VuI-union- Vv2 projection-on-subset[of Vy,; Vy, 71]
have r1-Vul-empty: v1 1 Vy; =]
by auto

from ¢1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)
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from t1-is-r1-v'-s1 Cons(10) have s1-Cvl-empty: s1 1 Cyy =[]
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v'-sl
have ri-in-Elstar: set r1 C Epg; and sl-in-Elstar: set s1 C Epgy
by auto

from Cons(6) t1-is-r1-v'-s1
have TEIl-ri-v'-s1-in-Trl: 7| Egg; @ r1 @ [V'] @ s1 € Trgg;
by simp

have ri-in-Nvlstar: set r1 C Ny
proof —
note rl-in-Elstar
moreover
from r1-Vul-empty have set v1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1-Cvi-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV'1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvl-inter-C2-star: set (r1 1 Eggs) C (Ny; N Cyg)
proof —
have set (r1 | Egge) = set r1 N Eggg
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (11 1 Egge) € (Egge N Nyyq)
by auto
moreover
from validV2 disjoint-Nvl- Vo2
have Epgo N Ny; = Ny N Cyy
using propSep Views unfolding properSeparationOf Views-def
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

note outerCons-prems = Cons.prems

have set (T] 1 EESQ) - (NVI n CVQ) —
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3 t2'. (set t2' C Epgo
N(GECEIN EESQ) Q@ t2’ e Trpgo
A t271] Vys =121 Vyy
At2'1 Oyy =)
proof (induct r1 | Egge arbitrary: v1 rule: rev-induct)
case Nil thus ?case
by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
outerCons-prems(6) projection-concatenation-commute)
next
case (snoc T xs)

have zs-is-zsE2: s = s | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggo
by (simp add: projection-def, auto)
hence set s C Eggo
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Egge) C (Ny; N Cyg)
proof —
have set (r1 1 Egge) € (Nyys N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs @ [z]) € (Nyy N Cyo)
by simp
hence set zs C (Ny; N Cyo)
by auto
with zs-is-zsE2 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs]
ultimately obtain ¢2"
where t2"'-in-E2star: set 12" C Epgg
and 7-zs-E2-12"-in-Tr2: (1 Q z5) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vg =121 Vg
and t2"'Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvl: ¢ € Cyp N Ny
proof —
from snoc(2—3) have set (zs Q [z]) C (Ny; N Cyo)
by simp
thus %thesis
by auto
qed
hence z-in-Cv2: z € Cyy
by auto
moreover
note 7-zs-E2-12"-in-Tr2 t2"' Cv2-empty
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moreover
have Adm: (Adm V2 02 Trgge ((1 Q z5) | Eggg) )
proof —
from 7-zs-E2-t2""-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q 2s) | Egge) € Trgge
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl total-ES2-Cv2-inter-Nvl
have 7-zsE2-z-in-Tr2: ((1 Q zs) | Eggg) Q [z] € Trggo
by (simp only: total-def)
moreover
have ((1 @ 2s) | Eggg) 1 (02 V2) = ((1 @ 2s) | Eggg) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢2’
where resl: ((1 Q zs) | Eggg) @ [z] Q 12’ € Trggs
and res2: 12’1 Vg =121 Vg
and res3: t2'1 Cyg = ||
by (simp only: BSIA-def, blast)

have set t2' C Epgy
proof —
from res! validES2
have set (((1 @ zs) | Egge) @Q [2] @Q t2") C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T (@ 7”]) 1 EESQ) Qt2' e TT‘ESQ
proof —
from res! zs-is-zsE2 have ((7 1 Egge) @ (zs @Q [z])) @ ¢2' € Trggs
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from (2" Vv2-is-t2Vv2 res2 have 2’1 Vyp = t2 1 Vyy
by auto
moreover
note res3
ultimately show ?Zcase
by auto
qed
from this|OF r1E2-in-Nvl-inter-C2-star] obtain t2’
where t2'-in-E2star: set 12’ C Epgg
and 7r1E2-t2'-in-Tr2: (1 @Q r1) | Egge) @ 2’ € Trpgs
and t2'-Vu2-is-t2-V2: 12" 1 Vg =121 Vyg
and t2'-Cv2-empty: t2'1 Cyg = ||
by auto
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have 12’1 Vyg = V' # (lambda’ 1 Epgs)
proof —
from projection-intersection-neutral|OF Cons(5), of V)
have t2 1 V), =121 Vyy
using propSep Views unfolding properSeparationOf Views-def
by (simp only: Int-commute)
with Cons(9) t2'-Vv2-is-12-Vv2 v'-in-E2 show ?thesis
by (simp add: projection-def)
qged
from projection-split-first|OF this] obtain r2’ s2’
where t2'-is-r2'-v'-s2" 12" = r2’ Q [V'] @ 52’
and r2'-Vu2-empty: 12’1 Vyg = ||
by auto

from t2'-is-r2'-v’-s2’ t2'-Cv2-empty
have r2’-Cv2-empty: r2'1 Cyg = |]
by (simp add: projection-concatenation-commute)

from t2'-is-r2'-v'-s2' t2'-Cv2-empty
have s2'-Cv2-empty: s2'1 Cyg = |]
by (simp only: projection-concatenation-commute, auto)

from t2'-in-E2star t2'-is-r2'-v'-s2’

have r2’-in-E2star: set r2' C Eggg
by auto

with r2’-Vv2-empty

have r2'-Vu-empty: r2'1 Vy = |]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2 subset-iff-psubset-eq)

have r2’-in-Nv2star: set 12’ C Ny
proof —
note r2’-in-E2star
moreover
from r2’-Vv2-empty have set r2' N Vyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2’-Cv2-empty have set 12’ N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV?2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qged
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with Nv2-inter-El-empty have r2'El-empty: r2' 1 Egg; = ||
by (metis Int-commute empty-subsetl projection-on-subset2 r2'-Vv2-empty)

let ?tau =7 Q r1 @ r2’ Q [V

from Cons(2) ri-in-Elstar r2'-in-E2star v'-in-E1
have set ?tau C (E(ESI I ESQ))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note s1-in-Elstar
moreover
from t2'-in-E2star ¢2'-is-r2'-v’-s2’ have set s2' C Epgq
by simp
moreover
from ri-in-Elstar v’-in-E1 r2'El-empty T El-ri-v’'-s1-in-Trl
have %tau | Epg; @ s1 € Trggyg
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
from 7ri1E2-t2'-in-Tr2 t2'-is-r2'-v’-s2’ v'-in-E2
have ?tau | Egge @ s2’ € Trggg
proof —
from v’-in-E2 r2'-in-E2star
have (1 @Qr1 @Qr2'QV])1 Egge= (1Q7r1)] Egge @ r2’ Q [V
by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def, auto)
with 7r1E2-t2'-in-Tr2 t2'-is-r2'-v’-s2’ v'-in-E2 show ?thesis
by simp
qed
moreover
have lambda’ | Epg; = s1 1 Vy,
proof —
from Cons(3,4,8) v'-in-E1 have t1 | Vy, = [V Q (lambda’ | Eggy)
by (simp add: projection-def)
moreover
from ti1-is-r1-v’-s1 r1-Vv-empty v'-in- Vol Vu-is- Vul-union- Vo2
have {1 | Vy, = [V] @ (s1 1 Vy)
by (simp only: ti-is-ri-v'-s1 projection-concatenation-commute projection-def, auto)
ultimately show %thesis
by auto
qed
moreover
have lambda’ | Epgy = s2'1 Vy
proof —
from Cons(4,5,9) v'-in-E2 have t2 | Vy, = V'] @ (lambda’ | Eggs)
by (simp add: projection-def)
moreover
from t2'-is-r2"-v’-52’ r2'-Vo2-empty r2’-in-E2star v'-in-Vv2 propSep Views
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have (2’1 Vy = [V] @ (s2'1 Vy)
proof —
have r2’1 Vy, =[]

using propSep Views unfolding properSeparationOf Views-def

by (metis projection-on-subset2
r2'-Vu2-empty r2'-in-E2star subset-iff-psubset-eq)

with t2'-is-r2'-v'-s2" v'-in-Vv2 Vu-is- Vul-union- Vv2 show ?thesis
by (simp only: t2'-is-r2’'-v’-s2’ projection-concatenation-commaute

projection-def, auto)
qed
moreover
have 12 1 Vy, =2'1 Vy,

using propSep Views unfolding properSeparation Of Views-def

by (metis Int-commute outerCons-prems(4)
projection-intersection-neutral
t2'-Vu2-is-t2-Vv2 t2'-in-E2star)
ultimately show ?thesis
by auto
qed
moreover
note s1-Cvl-empty s2'-Cv2-empty Cons.hyps|of ?tau s1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gsi || ES2)
and t'Vu-is-lambda”: t' 1 Vy, = lambda’
and t'Cv-empty: t'1 Cy = |]
by auto

let ¢t =r1@r2’@[V] @t

note tau-t’-in-Tr

moreover

from ri-Vv-empty r2’-Vv-empty t’' Vv-is-lambda’ v'-in- Vo
have ?¢ 1 Vy, = V' # lambda’

by (simp only: projection-concatenation-commute projection-def, auto)

moreover

from VIsViewOnE ri-Cvi-empty t'Cv-empty r2'-Cv2-empty v'-in- Vv

have 7t 1 Cy = ||
proof —
from VIsViewOnE v'-in-Vo have [V'] | Cy, = ||
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from ri-in-Elstar r1-Cvl-empty
have r1 1 Cy = ||

using propSep Views projection-on-subset2 unfolding properSeparationOfViews-def

by auto
moreover
from r2'-in-E2star r2’'-Cv2-empty
have 12’1 Cy, = |]

using propSep Views projection-on-subset2 unfolding properSeparationOfViews-def

by auto
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moreover
note t'Cv-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto
}

moreover {
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vwi: V' € Vv,
by auto
with v’-in-Vv have v'-in-E1: V' € Eggy
using propSep Views unfolding properSeparationOf Views-def
by auto

from v’-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Eggg
by (auto)
with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

from Cons(8) Cons(4) Cons(8) v'-in-E1
have t1 | Vy, = V' # (lambda’ 1 Epg;)
by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1
where t1-is-rl-v’-s1: t1 = r1 @ [V] @ sI
and r1-Vv-empty: v1 1 Vy, = ||
by auto
with Vu-is- VoI-union- Vv2 projection-on-subset[of Vy,; Vy, r1]
have r1-Vul-empty: v1 1 Vy; =]
by auto

from ¢1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from ¢1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 1 Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-ri-v’-s1 have ri-in-Elstar: set r1 C Epg;
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note ri1-in-Elstar
moreover
from rI-Vul-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
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moreover
from r1-Cvi-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV1
ultimately show %thesis
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvi-inter-C2-star: set (r1 1 Eggs) € (Ny; N Cyg)
proof —
have set (11 1 Eggg) = set r1 N Eggo
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (r1 1 Egge) C (Egge N Nyy)
by auto
moreover
from validV2 disjoint-Nvi-Vv2
have Epgy N Ny; = Ny; N Cygs
using propSep Views unfolding properSeparation Of Views-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

note outerCons-prems = Cons.prems

have set (11 1 Egge) € (Nyy N Cypg) =

3 t2". (set t2' C Epgog

A((t@Qr1)] Egge) Qt2' € Trggs

A t271 Vyea =121 Vygo

At2'] Cyps=1)
proof (induct r1 | Egge arbitrary: r1 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
outerCons-prems(6) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE2: s = xs | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggo
by (simp add: projection-def, auto)
hence set 1s C Epgo
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qged
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moreover
have set (zs 1 Eggs) C (Ny; N Cyyp)
proof —
have set (11 1 Egge) € (Ny; N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Ny; N Cyo)
by simp
hence set zs C (Ny; N Cyp)
by auto
with zs-is-zsE2 show Zthesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain t2"’
where (2"-in-E2star: set t2"' C Eggg
and 7-zs-E2-t2""-in-Tr2: ((1 Q z5) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vg =121 Vg
and (2" Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvi: z € Cyg N Ny;
proof —
from snoc(2—3) have set (zs Q [z]) C (Ny; N Cyog)
by simp
thus %thesis
by auto
qed
hence 7-in-Cv2: z € Cyp
by auto
moreover
note 7-1s-E2-t2""-in-Tr2 t2" Cv2-empty
moreover
have Adm: (Adm V2 02 Trgge ((1 Q 25) | Epge) )
proof —
from 7-zs-E2-t2"-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q zs) | Egge) € Trgge
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl total-ES2-Cv2-inter-Nvl
have T-zsE2-z-in-Tr2: ((1 Q zs) 1 Eggg) Q [z] € Trggs
by (simp only: total-def)
moreover
have ((7 @ zs) | Eggg) 1 (02 V2) = ((r @ as) | Eggp) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain ¢2’
where resi: ((1 Q zs) | Eggg) @ [z] Q 12 € Trpgo
and res2: 12’1 Vg =121 Vyg
and res3: 12’1 Cyg = ||
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by (simp only: BSIA-def, blast)

have set 12’ C Epgy
proof —
from res! validES2 have set (((1 Q zs) | Eggg) @ [z] Q ¢2') C Eggs
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((T Q 7”]) 1 EESQ) @2’ e TTESQ
proof —
from res! zs-is-zsE2 have ((1 | Egge) @ (zs Q [z])) @ t2' € Trggg
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qged
moreover
from t2" Vv2-is-t2Vv2 res2 have 12’1 Vyp = t2 1 Vyy
by auto
moreover
note res3
ultimately show ?Zcase
by auto
qed
from this|OF r1E2-in-Nvl-inter-C2-star] obtain t2’
where t2'-in-E2star: set t2' C Epgg
and 7r1E2-t2'-in-Tr2: (1 Q r1) | Egge) @ t2' € Trggs
and t2'-Vu2-is-t2-Vu2: 12" 1 Vyg =12 1 Vyg
and t2'-Cv2-empty: 2’1 Cyg = ||
by auto

let %tau =7 @ r1 @ [V/]

from v’-in-E1 Cons(2) ri-in-Nvlstar validV1 have set ?tau C Egs1 | Es2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(8) have set lambda’ C Vy,
by auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 C Eggy
by auto
moreover
note t2’-in-E2star
moreover
have ?tau | Eggy @ s1 € Trggy
by (metis Cons-eq-appendl append-eq-append! calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(8) Cons.prems(5)
projection-concatenation-commute t1-is-r1-v'-s1)
moreover
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from 7r1E2-t2'-in-Tr2 v'-notin-E2
have ?tau | Egge @ t2' € Trpgs
by (simp add: projection-def)
moreover
from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vo
have lambda’ | Epg; = s1 1 Vy
by (simp add: projection-def)
moreover
from Cons(11) v'-notin-E2 t2'-Vv2-is-12-Vv2
have lambda’ | Eggg = t2'1 Vy,
proof —
have (2’1 V), =1t2'1 Vyg
using propSep Views unfolding properSeparation Of Views-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral
t2'-in-E2star)
moreover
have t2 1 Vi, =t2 1 Vyy
using propSep Views unfolding properSeparation Of Views-def
by (simp add: projection-def, metis Int-commute
projection-def
projection-intersection-neutral Cons(5))
moreover
note Cons(9) v'-notin-E2 t2'-Vu2-is-t2-Vv2
ultimately show ?thesis
by (simp add: projection-def)
qed
moreover
note s1-Cvl-empty t2'-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau s1 t27]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs; || ES2)
and t’-Vuv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t'1 Cy =[]
by auto

let 2t =r1 Q@ [V]Q¢

note tau-t’-in-Tr
moreover
from r1-Vv-empty t'-Vu-is-lambda’ v'-in- Vv
have ?t 1 Vy, = V' # lambda’

by (simp add: projection-def)
moreover
have 7t 1 Cy =[]
proof —

have r1 1 Cy = ||

proof —

from propSep Views have Egg; N Cy C Cyy
unfolding properSeparationOfViews-def by auto
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from projection-on-subset[OF <Epgy N Cy C Cyp r1-Cul-empty]
have r1 1 (Egg; N Cy) =]
by (simp only: Int-commute)
with projection-intersection-neutral[OF ri-in-Elstar, of Cy)| show ?thesis
by simp
qed
with v’-in- Vo VIsViewOnE t'-Cv-empty show ?thesis
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ¢thesis
by auto
}

moreover {
assume v'-in-Vo2-minus-E1: V' € V9 — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v’-in-Vo have v’-in-E2: V' € Eggy
using propSep Views unfolding properSeparationOf Views-def
by auto

from v'-in-Vo2-minus-E1 have v'-notin-E1: V' ¢ Epg,
by (auto)
with validV1 have v'-notin-Vvl: V' ¢ Vy;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from Cons(4) Cons(5) Cons(9) v'-in-E2 have t2 1 Vy, = V' # (lambda’ | Eggs)
by (simp add: projection-def)
from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v’-s2: 12 = r2 Q [V] Q 52
and 72-Vv-empty: v2 1 Vy = ||
by auto
with Vu-is-Vol-union- Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||
by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Epgg
by auto

have r2-in-Nv2star: set 12 C Nyp
proof —

note r2-in-FE2star

moreover
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from r2-Vu2-empty have set r2 N Vyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-El-empty have r2E1-empty: 2 | Eggy = ||
by (metis Int-commute empty-subsetl projection-on-subset? r2- Vv2-empty)

let ?tau =7 @ r2 @Q [V/]

from v’-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau C E(gs1 || ES2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note Cons(4)
moreover
from Cons(5) t2-is-r2-v'-s2 have set s2 C Epgg
by auto
moreover
have ?tau 1 Egg; Q t1 € Trgg;
proof —
from v’-notin-E1 have [V 1 Egg; = [|
by (simp add: projection-def)
with Cons(6) Cons(83) t2-is-r2-v'-s2 v'-notin-E1
r2-in-Nv2star Nv2-inter-E1-empty r2E1-empty
show %thesis
by (simp only: t2-is-r2-v’-s2 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)
qged
moreover
have %tau 1 Egge Q s2 € Trpgs
by (metis Cons-eq-appendl append-eq-appendl calculation(4) eq-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from Cons(8) v'-notin-E1 have lambda’ | Egg; = ¢t1 1 Vy
by (simp add: projection-def)
moreover
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from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in- Vo
have lambda’ 1 Eggy = s2 1 Vy,
by (simp add: projection-def)
moreover
note Cons(10) s2-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau t1 s2]
ultimately obtain ¢’
where tau-t’-in-Tr: ?tau Q t' € Tr(gs; || ES2)
and t’-Vuv-is-lambda’: t' 1 Vy, = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let t=r2 @ [V]Qt

note tau-t’-in-Tr
moreover
from 72-Vv-empty t'- Vu-is-lambda’ v'-in- Vo
have ?¢ 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = |
proof —
have r2 1 Cy, = ||
using propSep Views unfolding properSeparationOfViews-def
by (metis projection-on-subset2
r2-Cv2-empty r2-in-E2star)
with v’-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)

qed
ultimately have ?thesis
by auto
}
ultimately show %thesis
by blast
qed
qged
thus ?thesis
by auto
qed

lemma generalized-zipping-lemma :

[ Vr: € Egss Ar; € Egsy Yr1 € Egsys Vre © Epsg Are € Egse; Yre € Egge;
BSIA o1 V1 Trggy; BSIA 02 V2 Trpgo; total ES1 (Cyy; N Nyyp); total ES2 (Cyg N Nyg);
FCIA o1 T'1 V1 Trgsy; FCIA 02 T2 V2 Trpso; VV] N VVQ CcVpr; U VFQ;

Cy1 N Nyg € Tpy; Cyp N Nyy © Trg;
Ny NAp; N Eggse ={}; NysNArp N Egg; = {} | =
V 7 lambda t1 t2. ( ( set T C (E(ESZ I ES.Q)) A set lambda C Vy) A settl C Epgy
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Asett2 CEggo N ((T1 Eggy) Qt1) € Trgsy A ((T1 Egge) Q t2) € Trggs

A (lambda 1 Eggy) = (t1 1 V) A (lambda | Egge) = (12 1 V)

A1 Cy) = ] A (21 Cpg) = )

— (3t (1@ 1) € (Tr(gs; | psa) A (41 Vy) = lambda A (£1 Cy) = [))
proof —

assume Nablal-subsetof-E1: Vpy C Epgy

and Deltal-subsetof-E1: Apr; C Epg;

and Upsiloni-subsetof-E1: Y1y C Epgy

and Nabla2-subsetof-E2: Vo C Epgs

and Delta2-subsetof-E2: App C Egpgo

and Upsilon2-subsetof-E2: Y19 C Epgo

and BSIA1: BSIA o1 V1 Trgg;

and BSIA2: BSIA 02 V2 Trggs

and ES1-total-Cvl-inter-Nv2: total ES1 (Cyy N Nyg)

and ES2-total-Cv2-inter-Nvl: total ES2 (Cyo N Nyyg)

and FCIA1: FCIA o1 T'1 V1 Trggq

and FCIA2: FCIA 92 T2 V2 Trggs

and VwI-inter- Vv2-subsetof-Nablal-union-Nabla2: Vy; N Vyo C Vr; U Vg

and CvI-inter-Nv2-subsetof-Upsilon1: Cyyy N Nyo C Ty

and Cv2-inter-Nvi-subsetof-Upsilon2: Cyg N Ny; C Yo

and disjoint-Nvi-inter-Deltal-inter-E2: Ny N Apy; N Egge = {}

and disjoint-Nv2-inter-Delta2-inter-E1: Nyp N Apy N Eggy = {}

{

fix 7 lambda t1 t2

have [ set 7 C (E(E‘SJ I E‘SQ))3
set lambda C Vy);
set t1 C Eggy;
set t2 Q EE,S'27
((r 1 Epgy) @ t1) € Trggy;
((T 1 Eggg) @ 12) € Trggy;
(lambda 1 Eggy) = (t1 1 Vy);
(lambda Epsg) = (tQ Vy);
(t11 Cyy) = I
(t21 Cys) =[]
= 3t ((rQ@t)e TT(ESZ | ES2) A (t] Vv) = lambda N (t 1 Cv) =1))
proof (induct lambda arbitrary: T t1 t2)
case (Nil T t1 t2)

have (7 @ []) € Tr(gg; || gs2)
proof —
have 7 € TT’(ESJ | ES2)
proof —
from Nil(5) validES1 have 7 | Egg; € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
moreover
from Nil(6) validES2 have 7 |1 Eggg € Trggo
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)

moreover
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note Nil(1)
ultimately show %thesis
by (simp add: composeES-def)
qed
thus ?thesis
by auto
qed
moreover
have ([ 1 Vy) = [
by (simp add: projection-def)
moreover
have ([ 1 Cy) = |
by (simp add: projection-def)
ultimately show Zcase
by blast
next
case (Cons V' lambda’ T t1 12)
thus Zcase
proof —

from Cons(3) have v’-in-Vu: V' € Vy,
by auto

have V' € Vyi N Vys N Vg
VvV e VVI n VVQ n VFQ
VV'e Vy; — Eggy
VV'E Vyg — Egg;
proof —
let 25 = Vy; N Vya U ( Vyr = Vg ) U (Vyg = Vyg )
have Vy; U Vyy = 25
by auto
moreover
have Vy; — Vys = Vy; — Eggy
and Vyy — Vy; = Vyg — Eggy
using propSep Views unfolding properSeparationOfViews-def by auto
moreover
note Vwi-inter- Vv2-subsetof-Nabla1-union-Nabla2
Vu-is- Vul-union- Vo2 v'-in- Vo
ultimately show %thesis
by auto
qed
moreover
{
assume v'-in- Vol-inter- Vo2-inter-Nablal: V' € Vy,; N Vys N Vpy
hence v'-in-Vv1: V' € Vy; and v'-in-Vu2: V' € Vyy
and v'-in-Nabla2: V' € Vy
by auto
with v’-in- Vv
have v'-in-E1: V' € Egg; and v'-in-E2: V' € Eggg
using propSep Views unfolding properSeparationOfViews-def by auto

from Cons(3—4) Cons(8) v'-in-E1 have t1 1 Vy, = V' # (lambda’ 1 Egg;)
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by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1

where t1-is-ri-v’-si: t1 = r1 @ [V] @ sI

and r1-Vv-empty: v1 | Vy = ||

by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyy; V) 1]
have r1-Vvl-empty: v1 1 Vy; =]

by auto

from t1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 1 Cyy = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) ti-is-ri-v’-si
have ri-in-Elstar: set 11 C Fpg; and sl-in-Elstar: set s1 C Epgy
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note rl-in-Elstar
moreover
from r1-Vvl-empty have set r1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1-Cvi-empty have set r1 N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV'1
ultimately show ?Zthesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvi-inter-C2-star: set (rl1 1 Eggs) C (Ny; N Cyg)
proof —
have set (r1 | Egge) = set r1 N Eggy
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (r1 1 Egge) € (Egge N Nyy)
by auto
moreover
from wvalidV2 disjoint-Nvi-Vv2
have Epgo N Ny = Ny N CVZ
using propSep Views unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
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by auto
qged
with Cv2-inter-Nvli-subsetof-Upsilon2
have r1E2-in-Nvi-inter-C2-Upsilon2-star: set (r1 1 Eggg) C (Ny; N Cyg N Y1g)
by auto

note outerCons-prems = Cons.prems

have set (11 1 Egge) € (Nyy N Cypg) =

3 2. (set t2' C Eggo

A((T@rl)] EESQ) Qt2' € Trpgo

A t271] Vye =121 Vyy

At2'1 Cyy =)
proof (induct r1 | Egge arbitrary: v1 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(10)
outerCons-prems(4) outerCons-prems(6) projection-concatenation-commute)

next

case (snoc T xs)

have zs-is-zsE2: s = s | Eggy
proof —
from snoc(2) have set (zs Q [z]) € Eggo
by (simp add: projection-def, auto)
hence set s C Eggo
by auto
thus %thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Egge) C (Ny; N Cyg)
proof —
have set (r1 1 Egge) € (Nyys N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs @ [z]) € (Nyy N Cyo)
by simp
hence set zs C (Ny; N Cyo)
by auto
with zs-is-xzsE2 show %thesis
by auto
qed
moreover
note snoc.hyps(1)[of zs]
ultimately obtain ¢2"’
where t2"'-in-E2star: set 12" C Epgg
and 7-zs-E2-12"-in-Tr2: (1 Q z5) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vg =121 Vg
and t2"'Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvl: z € Cygp N Ny
proof —
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from snoc(2—3) have set (zs Q [z]) C (Ny; N Cyo)
by simp
thus %thesis
by auto
qed
hence z-in-Cv2: z € Cyy
by auto
moreover
note 7-1s-E2-12""-in-Tr2 t2"' Cv2-empty
moreover
have Adm: (Adm V2 02 Trgge ((1 Q zs) | Eggg) )
proof —
from 7-zs-E2-t2""-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q xs) | Eggg) € Trgge
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl ES2-total-Cv2-inter-Nvl
have 7-zsE2-z-in-Tr2: ((1 Q zs) | Eggg) Q [z] € Trggo
by (simp only: total-def)
moreover
have ((1 @ zs) | Eggg) 1 (02 V2) = ((1 @ 2s) | Eggg) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA2
ultimately obtain t2’
where resi: ((1 Q zs) | Eggg) @ [z] Q 12 € Trpgs
and res2: t2'1 Vyg =121 Vyy
and res3: 12’1 Cyg = |]
by (simp only: BSIA-def, blast)

have set t2' C Epgy
proof —
from res! validES2 have set (T Q zs) | Eggg) Q [z] @ 12') C Fggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((1 @ r1) | Egge) @ t2' € Trpgoy
proof —
from res! zs-is-zsE2 have ((1 1 Epgs) @ (zs Q [2])) @ 2’ € Trpgg
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from {2 Vv2-is-t2Vv2 res2 have 12’1 Vyp = t2 1 Vg
by auto
moreover
note res3
ultimately show ?case
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by auto
qed
from this|OF r1E2-in-Nvi-inter-C2-star] obtain t2’
where t2'-in-E2star: set t2' C Eggy
and Tr1E2-t2'-in-Tr2: ((t Q r1) | Egge) Q t2' € Trggs
and t2'-Vu2-is-t2-V2: 12" 1 Vg =121 Vg
and t2'-Cv2-empty: t2'1 Cyy = ||
by auto

have 12’1 Vyy = V' # (lambda’ 1 Eggo)
proof —
from projection-intersection-neutral|OF Cons(5), of Vy)]
have t2 ] VV =12 W VV2
using propSep Views unfolding properSeparationOf Views-def
by (simp only: Int-commute)
with Cons(9) t2'-Vv2-is-t2-Vv2 v'-in-E2 show ?thesis
by (simp add: projection-def)
qed
from projection-split-first|OF this] obtain r2’ s2’
where t2'-is-r2'-v'-s2" 12’ = r2’ @ [V'] @ 52’
and r2'-Vu2-empty: 12’1 Vg = ||
by auto

from ¢2'-is-r2’-v'-s2' t2'-Cv2-empty have r2’-Cv2-empty: r2'1 Cy9 = |]
by (simp add: projection-concatenation-commute)

from {2'-is-r2'-v'-s2' t2'-Cv2-empty have s2'-Cv2-empty: s2' 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from {2'-in-E2star t2'-is-r2'-v’-s2' have r2'-in-E2star: set 12’ C Epgg
by auto

have r2’-in-Nuv2star: set 12’ C Ny
proof —
note r2’-in-E2star
moreover
from r2’-Vu2-empty have set r2' N Vyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2’-Cv2-empty have set 12’ N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed
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have r2'E1-in-Nv2-inter-Cl-star: set (r2'1 Eggy) C (Nyg N Cyy)
proof —
have set (r2'1 Epgy) = set r2' N Epg;
by (simp add: projection-def, auto)
with r2’-in-Nv2star have set (r2'1 Egg;) C (Eggs N Nyo)
by auto
moreover
from validV1 disjoint-Nv2-Vul
have Epg; N Nyg = Nys N Cyy
using propSep Views unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed
with CvI-inter-Nv2-subsetof- Upsilonl
have 72 'E1-in-Nv2-inter-Cvl-Upsilon1-star:
set (r2'1 Eggy) € (Nyg N Cy; N Yry)
by auto

have set (1“2/] EES]) - (NVQ N CVI NnNYTp;) =
3 51’ q1' (
set s1' C Epgy A set q1' C Cyy; N Tp; U Ny N Apy
AN(T1Eggy) @r1 @Qq1'@[V]Qsi' € Trgg;
Aql’1(Cy;NYry) =121 Eggy
A sl’ Vyr =511 Vy;
Ast'] Cyp=1))

proof (induct r2’' 1 Egg; arbitrary: r2’ rule: rev-induct)
case Nil

note si-in-Elstar

moreover

have set [] C CVI N TFI U NVI n AFI
by auto

moreover

from outerCons-prems(5) t1-is-ri-v’-si

have 7 | Egg; @Qrl Q] @ [V] @ s € Trgg;
by auto

moreover

from Nil have [| | (Cy; N Yp;) =1r2'1 Eggy
by (simp add: projection-def)

moreover

have s1 1 Vy; =511 Vyj..

moreover

note s1-Cvl-empty

ultimately show ?Zcase
by blast

next
case (snoc  xs)
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have zs-is-zsE1: s = zs | Eggy
proof —
from snoc(2) have set (zs Q [z]) € Eggy
by (simp add: projection-def, auto)
thus “thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggy) € Nygs N Cyy N Ty
proof —
from snoc(2—3) have set (zs Q [z]) C Nyg N Cyy N Ty
by simp
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain 51’ ¢q1"’
where s1'’-in-Elstar: set s1" C Eggy
and qI "-in-Cl-inter- Upsiloni-inter-Deltal: set 1" C Cy; N Yp; U Nyy N Apy
and TEI-ri-q1"-v'-s1"-in-Tr1: (11 Egg; @ r1 Q q1”) @ [V] @ s1” € Trpg;
and ¢1 "'C1-Upsiloni-is-zsE1: q1" 1 (Cyy; N Tpy) = zs | Egg;
and s1"Vi-is-s1V1: s1"1 Vy;=s11 Vyy
and s1"Cl-empty: s1”1 Cy; = ||
by auto

have z-in-Cvi-inter-Upsiloni: z € Cy; N Ty
and z-in-Cvi-inter-Nv2: © € Cy; N Ny
proof —
from snoc(2—3) have set (zs Q [z]) € (Nyo N Cyy N Trg)
by simp
thus z € Cy; N Ty
and z € Cy; N Nyy
by auto
qed
with validV1 have z-in-E1: z € Epg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

note z-in-Cvl-inter-Upsilonl
moreover
from v’-in-Vul-inter- Vo2-inter-Nablal have V' € Vy,; N Vp;
by auto
moreover
note TE1-r1-q1""-v'-s1"-in-Tr1 s1" C1-empty
moreover
have Adm: (Adm V1 o1 Trgg; (11 Epg; @ r1 @ q1") z)
proof —
from 7E1-r1-q1""-v"-s1""-in-Tr1 validES1
have (7’1 Ergy @ r1 @ q1 H) € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)

162



with z-in-Cvl-inter-Nv2 ES1-total-Cvl-inter-Nv2
have (11 Egg; @ r1 @Q q1') Q [z] € Trgg;
by (simp only: total-def)
moreover
have (11 Egg; @Qr1 @ q1')1 (01 V1) = (11 Egg; @r1 @ q1") 1 (01 V1) ..
ultimately show ?thesis
by (simp only: Adm-def, blast)
qed
moreover
note FCIA1
ultimately
obtain s1’' v’
where resi: (set v') C (Nyj; N Apyg)
and res2: (11 Egg; @rl @Qq1")Q [z] @~' @ [V] @ s1') € Trggy
and res3: (s1'1 Vyy) = (s1"1 Vyy)
and resf: s1'1 Cy; = |
unfolding FCIA-def
by blast

let ?2q1' = q1"” @ [z] @ ~'

from res2 validES1 have set s1' C Fpgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from resl z-in-Cvl-inter-Upsilonl q1''-in-Cl1-inter-Upsiloni-inter-Deltal
have set 2q1’' C Cy; N YTp; U Nyy N Apy
by auto
moreover
from res?2 have 7 | Epg; @ r1 @ 2g1' @ [V @ 51’ € Trggy
by auto
moreover
have ?q1/1 (CVZ n TFZ) = TQ/W Ergy
proof —
from validV1 res! have v'1 (Cy; N YTpy) = ]
proof —
from res! have v' = ~v'1 (Ny; N Apy)
by (simp only: list-subset-iff-projection-neutral)
hence 7' 1 (Cy; N Yry) =~"1 (Ny; N Arg) 1 (Cyy N Yry)
by simp
hence v'1 (Cy; N Yry) =91 (Ny; N Ar; N Cyy N YTry)
by (simp only: projection-def, auto)
moreover
from validV1 have NVI n AF] N CVI N TF] = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by (simp add: projection-def)
qed
hence ?q1"1 (Cy; N Ypy) = (¢1" @ [z]) 1 (Cy; N Try)
by (simp only: projection-concatenation-commute, auto)
with q1 "' C1-Upsilonl-is-zsE1 z-in-Cvl-inter- Upsilonl
have ?q1’ 1 (CVZ n TFI) = (zs ] EESI) @ [x}
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by (simp only: projection-concatenation-commute projection-def, auto)
with zs-is-zsE1 snoc(2) show ?thesis
by simp
qed
moreover
from res3 s1''V1-is-s1V1 have s1'1 Vy; = s1 1 Vyy
by simp
moreover
note res4
ultimately show ?case
by blast
qged
from this|OF r2'E1-in-Nv2-inter-Cuvi-Upsiloni-star] obtain s1’ g1’
where s1’-in-Elstar: set s1’' C Eggy
and q1’-in-Cvl-inter- Upsilonl-union-Nvl-inter-Deltal:
set q1’' C CVI NYpr;U Ny N Aryg
and TEI-ri-q1"-v'-s1"-in-Tr1: (1 | Eggy) @11 @ q1' Q [V] @ s1' € Trgg;
and g1 'Cvl-inter-Upsilonl-is-r2'E1: q1'1 (Cy; N Tpy) = r2' 1 Eggy
and s1'Vul-is-s1-Vvl: s1'1 Vi =s1 1 Vyy
and s1'Cvl-empty: s1'1 Cy; = ||
by auto

from g1 ’-in-Cvl-inter- Upsilonl-union-Nvl-inter-Deltal validV1
have q1'-in-Elstar: set q1' C Epgy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

have r2'Cuv-empty: 2’1 Cy = ||
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2
r2'-Cv2-empty r2'-in-E2star)

from validES1 TE1-r1-q1'-v'-s1"-in-Tr1
have q1'-in-Elstar: set q1' C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note r2’-in-E2star
moreover
have q1 'E2-is-r2'E1: q1' | Egge = 12’1 Eggy
proof —
from q1’-in-Cvl-inter- Upsilonl-union-Nvi-inter-Deltal
have g1’ (CVZ NYpsU Ny;n Apg) = ql’
by (simp add: list-subset-iff-projection-neutral)
hence (q1"1 (Cy; N Yp; UNy; N Apy)) |1 Egge = q1' 1 Eggp
by simp
hence q1"1 ((Cy; N YTp; U Ny N Apy) N Egge) = q1' 1 Eggy
by (simp add: projection-def)
hence q1' 1 (OVJ NYrsN EESQ) = q1'1 Eggo
by (simp only: Int-Un-distrib2 disjoint-Nvi-inter-Deltal-inter-E2, auto)
moreover
from q1'Cvi-inter-Upsilonl-is-r2'E1
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have (q1'1 (Cy; N Yry) 1 Egse = (r2'1 Egsy) 1 Eggse
by simp
hence 11 (Cy; N Yy N Eggg) = (r2'1 Eggg) 1 Egsy
by (simp add: projection-def conj-commute)
with r2’-in-E2star have q1'1 (Cy,; N Yp; N Eggg) = 2’| Egg;
by (simp only: list-subset-iff-projection-neutral)
ultimately show ?thesis
by auto
qed
moreover
have ¢q1'1 Vy, = |]
proof —
from q1'-in-Cvi-inter- Upsilonl-union-Nvi-inter-Deltal
have q1” = q1"1 (Cy; N YTp; U Ny; N Apy)
by (simp add: list-subset-iff-projection-neutral)
moreover
from g1 '-in-Elstar have q1' = q1' 1 Eggy
by (simp add: list-subset-iff-projection-neutral)
ultimately have ¢’ = q1'1 (Cy; N Yp; U Ny N Apy) 1 Eggg
by simp
hence q1' 1 Vy = g1’ (Cyr N Y UNpy NAR) 1 Egsr 1 Vy
by simp
hence q1"'1 Vy = q1"1 (Cy; N Ypy U Nyy N Apy) 1 (Vy N Eggy)
by (simp add: Int-commute projection-def)
hence q1' 1 Vy = ql’ ((CVI NYp;U Ny N Apg) N VVI)
using propSep Views unfolding properSeparationOf Views-def
by (simp add: projection-def)
hence q1' 1 Vy = ql’ (VVI N CVI NYpr;U Vys N Ny N Arg)
by (simp add: Int-Un-distrib2, metis Int-assoc Int-commute Int-left-commute Un-commute)
with validV1 show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def)
qed
moreover
have 72’1 Vy, = ||
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral
r2'-Vu2-empty r2'-in-E2star)
moreover
have ¢1'Cv-empty: q1'1 Cy = |]
proof —
from q1'-in-Elstar have foo: q1' = q1'1 Eggy
by (simp add: list-subset-iff-projection-neutral)
hence ¢q1'1 Cy = ¢q1'1 (Cy N Egg;)
by (metis Int-commute list-subset-iff-projection-neutral projection-intersection-neutral)
moreover
from propSep Views have Cy N Epg;CCyy
unfolding properSeparationOfViews-def by auto
from projection-subset-elim[OF «Cy, N Epg;CCy 1y, of q1']
have q1'1 Cy; 1 Cy 1 Eggy = q1” 1 (Cy N Eggy)
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def)
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hence q1'1 Egg; 1 Cy; 1 Cy = q1'1 (Cy N Egsy)
by (simp add: projection-commute)
with foo have ¢q1'1 (Cy; N Cy) =q1'1 (Cy N Eggy)
by (simp add: projection-def)
moreover
from q1’-in-Cvl-inter- Upsilonl-union-Nvi-inter-Deltal
have q1"1 (Cy; N Cy) = q1"1 (Cy; N YTp; UNy; N Apg) 1 (Cyy 0 Cy)
by (simp add: list-subset-iff-projection-neutral)
moreover
have (Cy; N Yp; U Ny; N Apy) N (Cyy N Cy)
= (Cy;NYp; U Cyy NNy NAp) N Cy
by fast
hence q1' 1 (CVJ NYprsU Ny N Apg) 1 (Cvz N Cv)
=4q1"1(Cy; N YTp; U Cy; N Ny NApy) 1 Cy
by (simp add: projection-sequence)
moreover
from wvalidV1
have q1'1 (Cy;NYTp;UCy; NNy N APy 1 Cy
=q1"1(Cy; N Try)1Cy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
moreover
from q1’'Cvi-inter-Upsiloni-is-r2'E1
have ¢q1'1 (Cy; N Ypy) 1 Cy =1r2"1 Egg; 1 Cy
by simp
with projection-on-intersection| OF r2’'Cuv-empty]
have ¢1'1 (Cy; N Ypy) 1 Cy =]
by (simp add: Int-commute projection-def)
ultimately show ?thesis
by auto
qed
moreover
note r2’'Cv-empty merge-property’[of q1' r2]]
ultimately obtain ¢’
where ¢'El-is-q1": ¢' | Egg; = q1’
and ¢'E2-is-r2" q' | Eggy = 12’
and ¢'V-empty: ¢'1 Vy = ||
and ¢'C-empty: ¢' 1 Cy = |]
and ¢'-in-El-union-E2-star: set ¢' C (Egg; U Eggo)
unfolding Let-def
by auto

let ?tau =7 Q r1 @ ¢’ @ [V

from Cons(2) ri-in-Elstar q'-in-El-union-E2-star v'-in-E1
have set ?tau C (E(ESJ I ESQ))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
note s!'-in-Elstar
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moreover
from ¢2'-in-E2star t2'-is-r2'-v'-s2' have set s2' C Epgo
by simp
moreover
from ¢'E1-is-q1’ r1-in-Elstar v'-in-E1 q1’-in-Elstar TE1-r1-q1'-v’-s1'-in-Tr1
have ?tau | Egg; @ s1' € Trgg;
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
from 7r1E2-t2"-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2 q'E2-is-r2’
have ?tau | Eggs @ s2' € Trggs
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have lambda’ | Egg; = s1'1 Vy,
proof —
from Cons(3—4) Cons(8) v'-in-E1 have t1 1 Vy, = [V'] @ (lambda’ 1 Epgy)
by (simp add: projection-def)
moreover
from ti1-is-r1-v’-s1 r1-Vu-empty v’'-in- Vol Vu-is- Vul-union- V2
have t1 1 Vy = V0@ (st1Vy)
by (simp only: t1-is-ri-v’-s1 projection-concatenation-commute
projection-def, auto)
moreover
have s1 1 Vy =s1'1 Vy
using propSep Views unfolding properSeparation Of Views-def
by (metis Int-commute projection-intersection-neutral
s1'Vui-is-s1-Vul s1’-in-Elstar si-in-Elstar)
ultimately show ?thesis
by auto
qed
moreover
have lambda’ | Eggy = s2'1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have t2 1 Vy, = [V'] @ (lambda’ 1 Egg9)
by (simp add: projection-def)
moreover
from t2'-is-r2’-v'-s2' r2'-Vv2-empty r2’-in-E2star v'-in- Vo2 propSep Views
have 12’1 V) = [V] @ (s2'1 Vy)
proof —
have 72’1 Vy, =[]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2 r2'-Vu2-empty
r2'-in-E2star subset-iff-psubset-eq)
with t2'-is-r2'-v"-s2" v'-in- Vo2 Vu-is-Vul-union- Vo2 show ?thesis
by (simp only: t2'-is-r2'-v'-s2’
projection-concatenation-commute projection-def, auto)
qed
moreover
have t2 W VV = t2/1 VV
using propSep Views unfolding properSeparationOf Views-def
by (metis Int-commute outerCons-prems(4)
projection-intersection-neutral t2'-Vv2-is-t2-Vv2 t2'-in-E2star)
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ultimately show %thesis
by auto

qed
moreover
note s1’'Cuvi-empty s2'-Cv2-empty Cons.hyps|of ?tau s1’ s2’|
ultimately obtain ¢’

where 7-ri-q’-v'-t’-in-Tr: ?tau Q t’' € Tr(gs; || ES2)

and t'Vo-is-lambda”: t' 1 Vy, = lambda’

and t'Cuv-empty: t'1 Cy = |]

by auto

let 2t =r1 Qgq @ [V]@t

note 7-r1-q"-v'-t'-in-Tr
moreover
from r1-Vu-empty q'V-empty t' Vo-is-lambda’ v'-in- Vo
have ?¢ 1 Vy, = V' # lambda’
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from VIsViewOnE ri-Cvl-empty t'Cv-empty q'C-empty v'-in- Vo
have 2t 1 Cy = ||
proof —
from VIsViewOnE v'-in-Vo have [V'] | Cy, = ||
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from ri-in-Elstar r1-Cvl-empty
have r1 1 Cy = ||
using propSep Views projection-on-subset2
unfolding properSeparationOfViews-def by auto
moreover
note t'Cv-empty q'C-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto
}

moreover
{
assume v'-in-Vol-inter- Vo2-inter-Nabla2: V' € Vy,; N Vs N Vg
hence v'-in-Vvl: V' € Vy; and v'-in-Vv2: V' € Vyy
and v’-in-Nabla2: V' € Vg
by auto
with v’-in-Vo propSep Views
have v'-in-E1: V' € Epg; and v'-in-E2: V' € Eggg
unfolding properSeparationOfViews-def by auto

from Cons(3,5,9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Egg9)
by (simp add: projection-def)

from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v"-52: t2 = r2 Q [V'] Q 52
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and 72-Vv-empty: v2 1 Vy = ||

by auto
with Vu-is-Vul-union-Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||

by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggg
and s2-in-E2star: set s2 C Epgo
by auto

have r2-in-Nv2star: set r2 C Nyy
proof —
note r2-in-E2star
moreover
from r2-Vu2-empty have set 12 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV?2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-Cl1-star: set (r2 1 Egg;) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set r2 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (12 1 Eggy) € (Eggsy N Nyg)
by auto
moreover
from wvalidV1 disjoint-Nv2- Vvl propSep Views
have Epg; N Nyg = Nys N CV]
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed
with CvlI-inter-Nv2-subsetof- Upsilonl
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have r2E1-in-Nv2-inter-C1-Upsilonl-star: set (r2 1 Eggs) C (Nye N Cyy N Yrg)
by auto

note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npgo N Cyy) =

3 t1. (sett1' C Eggy

A((r@r2)] Eggy) Qt1' € Trggy

A t1' Vyr=1t11 Vyy

At ] Oy =1)
proof (induct 12 | Egg; arbitrary: r2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
outerCons-prems(5) projection-concatenation-commute)

next

case (snoc  xs)

have zs-is-zsE1: zs = s | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggy
by (simp add: projection-def, auto)
hence set s C Eggy
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggs) € (Ny2 N Cyy)
proof —
have set (12 1 Eggy) € (Npa N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs @ [z]) € (Nyg N Cyy)
by simp
hence set zs C (Nyo N Cyy)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of s]
ultimately obtain ¢1"
where t1"-in-Elstar: set t1"” C Epgy
and 7-zs-E1-t1"-in-Tr1: (1 Q zs) | Eggy) Q t1" € Trggy
and t1""Vul-is-t1Vvl: t1"1 Vy; =t1 1 Vyy
and t1"'Cvl-empty: t1"1 Cyy = ||
by auto

have z-in-Cvi-inter-Nv2: © € Cy; N Ny
proof —
from snoc(2—3) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus ?thesis
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by auto
qed
hence z-in-Cvi: z € Cy);
by auto
moreover
note 7-rs-E1-t1"-in-Tr1 t1" Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((t Q zs) | Eggy) )
proof —
from 7-zs-E1-t1"-in-Tr1 validES1
have 7-zsE1-in-Trl: ((1 @ 2s) | Eggy) € Trgs;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvl-inter-Nv2 ES1-total-Cvl-inter-Nv2
have 7T-zsEl-z-in-Trl: ((1 @ zs) | Eggy) @ [z] € Trggy
by (simp only: total-def)
moreover
have ((1 @ 2s) | Eggy) 1 (¢1 V1) = ((r @as) | Eggy) 1 (o1 V1) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIAI
ultimately obtain ¢1’
where resi: ((1 Q zs) | Egg;) @ [z] Q t1' € Trpgy
and res2: t1'1 Vi =t1"1 Vyy
and res3: t1'1 Cyy = |]
by (simp only: BSIA-def, blast)

have set t1’' C Epgy
proof —
from res! validES1 have set (T Q zs) | Egg;) @ [z] @ t1') C Fggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((r @ r2) | Egg;) @ t1' € Trpg,
proof —
from res! zs-is-zsE1 have ((1 1 Epgy) @ (zs Q [z])) @ ¢1' € Trpg;
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by (simp only: snoc(2) projection-concatenation-commaute)
qed
moreover
from t1"Vvi-is-t1Vul res2 have t1'1 Vy; = t1 1 Vyy
by auto
moreover
note res3
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain 1’
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where t1'-in-Elstar: set t1' C Fggy

and 7r2E1-t1'-in-Tr1: (1 @ r2) | Eggy) @ t1' € Trpgy
and t1'-Vol-is-t1-Vol: t1'1 Vy; =t1 1 Vyy

and t1'-Cvl-empty: t1'1 Cyy = ||

by auto

have t1'1 Vy; = V' # (lambda’ 1 Eggy)
proof —
from projection-intersection-neutral] OF Cons(4), of V] propSep Views
have t1 1 Vy, =1t1 1 Vyy
unfolding properSeparationOfViews-def
by (simp only: Int-commute)
with Cons(8) t1'-Vul-is-t1-Vol v'-in-E1 show ?thesis
by (simp add: projection-def)
qed
from projection-split-first|OF this] obtain r1’ s1’
where t1’-is-r1’-v’-s1" t1' = r1’ @ [V'] @ s1’
and r1'-Vul-empty: v1'1 Vy; =[]
by auto

from ¢1'-is-r1'-v’-s1' t1'-Cvi-empty have r1’-Cvl-empty: r1'1 Cyy = |]
by (simp add: projection-concatenation-commute)

from ¢1'-is-r1'-v'-s1' t1'-Cvl-empty have s1'-Cvl-empty: s1'1 Cy; = ||
by (simp only: projection-concatenation-commute, auto)

from ¢1’'-in-Elstar t1'-is-r1'-v’-s1' have r1’'-in-Elstar: set r1’' C Epgy
by auto

have r1’-in-Nvistar: set r1’' C Ny,
proof —
note r1’-in-Elstar
moreover
from r1’-Vul-empty have set r1' N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1’-Cvi-empty have set r1' N Cy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r1’E2-in-Nvi-inter-C2-star: set (r1'1 Eggg) C (Nyy N Cyag)

proof —
have set (11’1 Eggg) = set r1' N Eggy
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by (simp add: projection-def, auto)
with r1’-in-Nvistar have set (r1'1 Eggs) € (Egge N Nyg)
by auto
moreover
from validV2 propSep Views disjoint-Nvi- Vo2
have Epgo N Ny; = Ny N Cyyp
unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed
with Cv2-inter-Nv1-subsetof-Upsilon2
have r1'E2-in-Nvl-inter-Cv2- Upsilon2-star:
set (r1'1 Eggg) € (Ny; N Cye N Try)
by auto

have set (r1’'1 Eggg) C (Ny; N Cys N Trg) =
3 52" q2' (
set s2' C Epga N set qu C CysNTraU Ny N Aryg
AN(T1FEpge) @r2 Q ¢q2'Q[V] Q@ s2'€ Trggy
A a2' 1 (Cyg N Trg) =r1'1 Eggy
A 52/1 Vyes =521 Vya
A2’ Cyg =)
proof (induct r1' 1 Eggg arbitrary: r1' rule: rev-induct)
case Nil

note s2-in-E2star

moreover

have set || C CV2 N YTrgU Nygo N AN
by auto

moreover

from outerCons-prems(6) t2-is-r2-v’-s2

have 7 | Eggo @ r2 Q | @ [V] @ s2 € Trggs
by auto

moreover

from Nil have [| | (Cyp N Ypg) =11'1 Eggo
by (simp add: projection-def)

moreover

have s2 | Vg =521 Vyg..

moreover

note s2-Cv2-empty

ultimately show ?case
by blast

next
case (snoc T xs)

have zs-is-zsE2: zs = s | Eggo
proof —
from snoc(2) have set (zs Q [z]) € Eggo
by (simp add: projection-def, auto)
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thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs | Egge) € Ny; N Cys N Ty
proof —
from snoc(2—3) have set (zs Q [z]) € Nyy; N Cya N Trp
by simp
with zs-is-zsE2 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain 52’/ ¢2"’
where s2''-in-E2star: set s2'' C Epgg
and ¢2'"'-in-C2-inter- Upsilon2-inter-Delta2: set ¢2"' C Cyg N Yo U Nyp N Apg
and TE2-r2-¢2"-v'-s2"-in-Tr2: (11 Egge @ 72 @ ¢2") Q [V] @ 52" € Trggo
and ¢2'"'C2-Upsilon2-is-zsE2: q2" 1 (Cye N T1g) = zs | Eggs
and s2"'V2-is-s2V2: s2"1 Vyg =521 Vyy
and 52" C2-empty: s2” 1 Cyg = ||
by auto

have z-in-Cv2-inter-Upsilon2: z € Cyg N Ty
and z-in-Cv2-inter-Nvl: ¢ € Cyg N Nyy
proof —
from snoc(2—3) have set (zs Q [z]) C (Nyy N Cpa N Trg)
by simp
thus z € CVQ n TFQ
and 7 € Cypp N Nyy
by auto
qed
with validV2 have z-in-E2: x € Eggy
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

note z-in-Cv2-inter- Upsilon2
moreover
from v’-in-Vul-inter- Vo2-inter-Nabla2 have V' € Vo N Vg
by auto
moreover
note TE2-72-¢2""-v"-s2""-in-Tr2 52" C2-empty
moreover
have Adm: (Adm V2 02 Trgge (11 Egge @ r2 @ ¢2"') z)
proof —
from TE2-12-q2""-v'-52""-in-Tr2 validES2
have (11 Egge @ r2 Q ¢2') € Trggs
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl ES2-total-Cv2-inter-Nvl
have (1 | Egge @ 2 @ ¢2") Q [z] € Trggs
by (simp only: total-def)
moreover
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have (11 Eggo @ r2 @ ¢2') 1 (02 V2) = (11 Egge @ r2 @ ¢2') 1 (02 V2) ..
ultimately show ?thesis
by (simp only: Adm-def, blast)
qed
moreover
note FCIA2
ultimately
obtain 52’ v’
where resi: (set v') C (Nyg N Arpg)
and res2: (11 Eggo @ r2 @ ¢2') Q@ [z] @~' @ [V] @ s2') € Trggs
and res3: (s2'1 Vyg) = (s2”1 Vyg)
and res/: s2'1 Cypg = ||
unfolding FCIA-def
by blast

let 2q2' = ¢2"' @ [z] @ v’

from res2 validES2 have set s2' C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from res1 z-in-Cv2-inter-Upsilon2 q2''-in-C2-inter- Upsilon2-inter-Delta2
have set ?q2’ C CV? NTYTrgUu Nyo N Arg
by auto
moreover
from res2 have 7 | Eggy @ r2 Q 2¢2' Q V'] Q s2' € Trggs
by auto
moreover
have ?¢2’ 1 (CVQ N TFQ) =rl" Eggo
proof —
from validV2 res! have v' 1 (Cyg N YTpg) = ]
proof —
from res! have v’ = v'1 (Nyg N Apy)
by (simp only: list-subset-iff-projection-neutral)
hence 7' 1 (Cyp N Ypg) =7'1 (Nyg N Arg) 1 (Cya N Try)
by simp
hence 7' 1 (Cyg N Yrg) =7"1 (Nyg N Apg N Cpp N Trp)
by (simp only: projection-def, auto)
moreover
from validV2 have Nyy N Apg N Cyo N Ty = {}
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by (simp add: projection-def)
qed
hence 2¢2'1 (Cys N Trg) = (¢2” Q [z]) 1 (Cys N YTrg)
by (simp only: projection-concatenation-commute, auto)
with ¢2" C2-Upsilon2-is-xsE2 z-in- Cv2-inter-Upsilon2
have 2¢2'1 (Cyg N Ypy) = (zs 1 Eggg) Q [z]
by (simp only: projection-concatenation-commaute projection-def, auto)
with zs-is-zsE2 snoc(2) show ?thesis
by simp
qed
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moreover
from res8 s2''V2-is-s2V2 have s2'1 Vyy = s2 1 Vi
by simp
moreover
note res4
ultimately show ?case
by blast
qed
from this|OF r1'E2-in-Nvi-inter-Cv2-Upsilon2-star] obtain s2’ ¢2’
where s2’-in-E2star: set s2' C Eggo
and ¢2’-in-Cv2-inter- Upsilon2-union- Nv2-inter-Delta2:
set q2' C Cya N YrgoU Nys N Apg
and TE2-12-¢2'-v'-s2"-in-Tr2: (1 | Egge) @ 12 @ ¢2' Q [V @Q 52’ € Trggs
and ¢2'Cv2-inter-Upsilon2-is-r1'E2: q2'1 (Cya N Ypg) = 11’1 Eggy
and s2'Vu2-is-s2-Vv2: s2'1 Vyg =521 Vyy
and s2'Cv2-empty: s2' 1 Cyg = ||
by auto

from ¢2’-in-Cv2-inter- Upsilon2-union- Nv2-inter-Delta2 valid V2
have ¢2'-in-E2star: set ¢2' C Epgs
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

have r1’'Cuv-empty: r1’1 Cy = ||
using propSep Views unfolding properSeparation Of Views-def
by (metis projection-on-subset2
r1’-Cvl-empty r1'-in-Elstar)

from validES2 TE2-12-q2'-v'-52"-in-Tr2
have ¢2’-in-E2star: set ¢2' C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note r1’-in-Elstar
moreover
have ¢2'El-is-r1'E2: ¢q2' 1 Egg; = 1’1 Eggo
proof —
from ¢2'-in-Cv2-inter- Upsilon2-union- Nv2-inter- Delta2
have ¢2' 1 (Cya N TrogU Nyg N Apg) = q2’
by (simp add: list-subset-iff-projection-neutral)
hence (¢2"1 (Cyg N Trg U Nyg N Apg)) 1 Epgy = 2" 1 Epggy
by simp
hence ¢2" 1 ((Cyg N Yrg U Nyp N Apg) N Eggy) = ¢2'1 Egg;
by (simp add: projection-def)
hence ¢2' | (CV2 N Yre N EESI) = g2 Erg;
by (simp only: Int-Un-distrib2 disjoint-Nv2-inter-Delta2-inter-E1, auto)
moreover
from ¢2’'Cv2-inter-Upsilon2-is-r1'E2
have (¢2"1 (Cya N Yrp)) | Egs; = (r1'1 Egsg) 1 Egsy
by simp
hence q2"1 (Cyp N Yo N Eggy) = (r1'1 Epgy) 1 Egge
by (simp add: projection-def conj-commute)
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with r1’-in-Elstar have ¢2'1 (Cys N Yrgo N Eggy) = 11’1 Egge
by (simp only: list-subset-iff-projection-neutral)
ultimately show ?thesis
by auto
qed
moreover
have ¢2'1 Vy, = |]
proof —
from ¢2’-in-Cv2-inter- Upsilon2-union-Nv2-inter-Delta2
have ¢2' = ¢2’ | (CVQ N YTre U Nyo N AFQ)
by (simp add: list-subset-iff-projection-neutral)
moreover
from ¢2'-in-E2star have ¢2' = q2' | Fggo
by (simp add: list-subset-iff-projection-neutral)
ultimately have ¢2’' = ¢2'1 (Cygs N Tpy U Nyp N Arg) 1 Eggs
by simp
hence q2'1 Vy = ¢2'1 (Cye N Trg U Nyg N Arg) 1 Egge 1 Vy
by simp
hence ¢2' 1 Vy = 2’1 (CVQ N Trg U Nyo N AFQ) 1 (VV N EES?)
by (simp add: Int-commute projection-def)
with propSep Views
have 2’ Vy = 2’1 ((CV2 N YTrgU Nys N AF,Q) N VVQ)
unfolding properSeparationOfViews-def
by (simp add: projection-def)
hence ¢2' 1 Vy = g2’ 1 (VVQ N CV? N Trg U Vys N Ny N AFQ)
by (simp add: Int-Un-distrib2, metis Int-assoc
Int-commute Int-left-commute Un-commute)
with validV2 show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def)
qed
moreover
have r1'1 Vy = |]
using propSep Views unfolding properSeparation Of Views-def
by (metis Int-commute projection-intersection-neutral
r1’-Vvl-empty r1’-in-Elstar)
moreover
have ¢2'Cv-empty: ¢2'1 Cy = |]
proof —
from ¢2'-in-E2star have foo: ¢2' = ¢2' 1 Eggg
by (simp add: list-subset-iff-projection-neutral)
hence ¢2'1 Cy = ¢2'1 (Cy N Eggs)
by (metis Int-commute list-subset-iff-projection-neutral
projection-intersection-neutral)
moreover
from propSep Views have Cy) N Egge € Cyp
unfolding properSeparationOfViews-def by auto
from projection-subset-elim[OF «Cy, N Egge € Cyg, of ¢27]
have ¢2'1 Cyg 1 Cy | Egge = q2"1 (Cy N Eggy)
by (simp add: projection-def)
hence ¢2' | Epss1 Cys 1 Cy = g2’ 1 (Cy N Eggs)
by (simp add: projection-commute)
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with foo have ¢2'1 (Cya N Cy) = ¢2'1 (Cy N Egg)
by (simp add: projection-def)
moreover
from ¢2’-in-Cv2-inter- Upsilon2-union-Nv2-inter-Delta2
have ¢2' ] (CV2 N Cv) = q2'1 (CV2 N YTrg U Nyg N AFQ) 1 (OV,Q N Cv)
by (simp add: list-subset-iff-projection-neutral)
moreover
have (Cyg N Tpg U Nyg N Apg) N (Cyg N Cy)
= (Cyg N T U Cyg N Nyg N Apg) N Cy
by fast
hence ¢2' 1 (CV2 N YTrg U Nyg N AF,Q) 1 (Cyg N Cv)
=q2"1(Cyg N Tpg U Cpa N Nyg N Apg) 1 Cy
by (simp add: projection-sequence)
moreover
from validV?2
have ¢2' (OV2 N YTre U Cvg N Nyg N AFQ) 1 CV
=¢2"1 (Cys N T 1 Cy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
moreover
from ¢2’'Cv2-inter-Upsilon2-is-r1’E2
have 2’ (OV2 N Trg) 1 OV =rl" Eggo 1 CV
by simp
with projection-on-intersection|OF r1’'Cv-empty] have ¢2'1 (Cyg N YTpg) 1 Cp = |]
by (simp add: Int-commute projection-def)
ultimately show ?thesis
by auto
qed
moreover
note r1’'Cv-empty merge-property’[of 1’ q27]
ultimately obtain ¢’
where ¢'E2-is-q2": ¢' | Egge = ¢2’
and ¢'El-is-r1" ¢' 1 Eggy = r1’
and ¢'V-empty: ¢'1 Vy = ||
and ¢'C-empty: ¢' 1 Cyp = |]
and ¢'-in-El-union-E2-star: set ¢' C (Egg; U Eggo)
unfolding Let-def
by auto

let ?tau =7 Q@ r2 @ ¢’ @ [V

from Cons(2) r2-in-E2star ¢'-in-E1-union-E2-star v'-in-E2
have set ?tau C (E(ESJ I ES?))
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from t1’-in-Elstar t1'-is-r1’-v'-s1’ have set s1’' C Epggy
by simp
moreover
note s2'-in-E2star
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moreover
from 7r2E1-t1'-in-Trl t1'-is-r1’-v'-s1' v'-in-E1 q'El-is-r1’
have ?tau | Egg; @ s1' € Trgg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from q¢'E2-is-q2' r2-in-E2star v'-in-E2 q2'-in-E2star T E2-r2-q2 '-v'-82"-in-Tr2
have ?tau | Egge @ s2' € Trggo
by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def, auto)
moreover
have lambda’' | Egg; = s1'1 Vy
proof —
from Cons(2,4,8) v'-in-E1 have t1 1 Vy, = [V'] @ (lambda’ 1 Egg;)
by (simp add: projection-def)
moreover
from t1'-is-r1’-v'-s1' r1’-Vvi-empty ri1’-in-Elstar
v’-in-Vul propSep Views
have t1'1 Vy = [V] @ (s1'1 Vy)
proof —
have r1'1 Vy =]
using propSep Views unfolding properSeparationOf Views-def
by (metis projection-on-subset2 r1'-Vvl-empty
r1’-in-Elstar subset-iff-psubset-eq)
with t1’-is-r1'-v’-s1" v'-in- Vo1 Vu-is- Vvl-union-Vv2 show ?thesis
by (simp only: t1'-is-r1’-v’-s1’ projection-concatenation-commute
projection-def, auto)
qed
moreover
have t1 1 Vy, = t1'1 Vy
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute outerCons-prems(3)
projection-intersection-neutral t1’-Vvi-is-t1-Vul t1'-in-Elstar)
ultimately show %thesis
by auto
qed
moreover
have lambda’ |1 Eggg = 52’1 Vy,
proof —
from Cons(3,5,9) v'-in-E2 have t2 | Vy, = [V'] Q (lambda’ | Eggo)
by (simp add: projection-def)
moreover
from t2-is-r2-v'-s2 r2-Vo-empty v’-in- Vo2 Vu-is-Vol-union- Vu2
have (2 1 Vy, = [V] @ (s21 Vy)
by (simp only: t2-is-r2-v’-s2 projection-concatenation-commute
projection-def, auto)
moreover
have s2 1 V) =s2'1 Vy
using propSep Views unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral
52 ' Vu2-is-s2- Vo2 s2'-in-E2star s2-in-E2star)
ultimately show %thesis
by auto
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qed
moreover
note s1'-Cvi-empty s2'Cv2-empty Cons.hyps|of ?tau s1' s2’]
ultimately obtain ¢’

where 7-r2-q'-v'-t'-in-Tr: ?tau Q@ t' € Tr(gsi || ES2)

and t'Vo-is-lambda”: t' 1 V) = lambda’

and t'Cuv-empty: t' 1 Cy = |]

by auto

let 2t =r2@gq' @[V]@t

note 7-12-q"-v'-t'-in-Tr
moreover
from 72-Vu-empty q'V-empty t' Vo-is-lambda’ v'-in- Vo
have ¢ 1 Vy, = V' # lambda’
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from VIsViewOnE r2-Cv2-empty t'Cv-empty q’'C-empty v'-in- Vo
have 7t 1 Cy = ||
proof —
from VIsViewOnE v'-in-Vo have [V 1 Cy, = ||
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
moreover
from r2-in-E2star r2-Cv2-empty
have r2 1 Cy) = ||
using propSep Views projection-on-subset2 unfolding properSeparationOfViews-def
by auto
moreover
note t'Cv-empty q'C-empty
ultimately show ?thesis
by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis
by auto

}

moreover
{
assume v'-in-Vol-minus-E2: V' € Vy; — Eggg
hence v'-in-Vvl: V' € Vyy,
by auto
with v'-in-Vv have v'-in-E1: V' € Epgy
using propSep Views unfolding properSeparationOf Views-def
by auto

from v'-in-Vol-minus-E2 have v'-notin-E2: V' ¢ Epggg
by auto
with validV2 have v'-notin-Vv2: V' ¢ Vg
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from Cons(8—4) Cons(8) v'-in-E1 have t1 1 Vy, = V' # (lambda’' | Eggy)
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by (simp add: projection-def)
from projection-split-first| OF this] obtain r1 s1

where t1-is-ri-v’-si: t1 = r1 @ [V] @ sI

and r1-Vv-empty: v1 | Vy = ||

by auto
with Vu-is-Vul-union- Vv2 projection-on-subset[of Vyy; V) 1]
have r1-Vvl-empty: v1 1 Vy; =]

by auto

from t1-is-ri-v’-s1 Cons(10) have r1-Cvl-empty: 1 1 Cyy = |]
by (simp add: projection-concatenation-commute)

from t1-is-ri-v’-s1 Cons(10) have s1-Cvl-empty: s1 1 Cyy = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-r1-v’-s1 have ri-in-Elstar: set 11 C Eggy
by auto

have ri-in-Nvlstar: set r1 C Ny
proof —
note rl-in-Elstar
moreover
from r1-Vul-empty have set v1 N Vy; = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r1-Cvi-empty have set r1 N Cyy = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV'1
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r1E2-in-Nvl-inter-C2-star: set (r1 1 Eggs) C (Ny; N Cyg)
proof —
have set (r1 | Egge) = set r1 N Eggy
by (simp add: projection-def, auto)
with r1-in-Nvlstar have set (11 1 Egge) € (Egge N Nyy)
by auto
moreover
from validV2 disjoint-Nvi- Vo2
have Epgo N Ny; = Ny N Cyy
using propSep Views unfolding properSeparationOf Views-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
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qed

with Cv2-inter-Nv1-subsetof-Upsilon2

have r1E2-in-Nvl-inter-C2-Upsilon2-star: set (r1 1 Eggg) C (Ny; N Cys N YTrg)
by auto

note outerCons-prems = Cons.prems

have set (r1 | Egge) € (Ny; N Cyp) =

3 12" ( set t2' C Eggo

A((t@r1)] Egge) @ t2' € Trggo

A t27 1] Vyea =121 Vygo

A12'] Cypg=1)
proof (induct r1 | Egge arbitrary: r1 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
outerCons-prems(6) projection-concatenation-commute)

next

case (snoc  xs)

have zs-is-zsE2: s = zs | Eggo
proof —
from snoc(2) have set (zs Q [z]) C Eggo
by (simp add: projection-def, auto)
hence set zs C (Eggo)
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggo) C (Ny; N Cyg)
proof —
have set (11 1 Egge) € (Nyy N Cyo)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Ny; N Cyy)
by simp
hence set zs C (Ny; N Cyo)
by auto
with zs-is-zsE2 show ?Zthesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain 2"
where t2"'-in-E2star: set 12" C Epgg
and 7-zs-E2-t2""-in-Tr2: ((1 Q zs) | Egge) Q 12" € Trggs
and 2" Vu2-is-t2Vv2: 12" 1 Vyp =121 Vg
and t2"'Cv2-empty: 12”1 Cyg = ||
by auto

have z-in-Cv2-inter-Nvl: x € Cyg N Ny

proof —
from snoc(2—38) have set (zs @ [z]) C (Ny; N Cyp)
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by simp
thus “thesis
by auto
qed
hence z-in-Cv2: z € Cyp
by auto
moreover
note 7-1s-E2-t2""-in-Tr2 t2" Cv2-empty
moreover
have Adm: (Adm V2 02 Trgge ((T Q z5) | Epga) )
proof —
from 7-z5-E2-t2""-in-Tr2 validES2
have 7-zsE2-in-Tr2: ((1 Q 2s) | Eggg) € Trggs
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cv2-inter-Nvl ES2-total-Cv2-inter-Nvl
have 7-zsE2-z-in-Tr2: ((1 Q zs) | Eggg) Q [z] € Trggo
by (simp only: total-def)
moreover
have ((1 @ zs) | Eggg) 1 (02 V2) = ((r @ 25) | Eggo) 1 (02 V2) ..
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA2
ultimately obtain ¢2’
where resi: ((1 Q zs) | Eggg) @ [z] Q 12 € Trggo
and res2: 12’1 Vyg =121 Vyg
and res3: t2'1 Cygp = |]
by (simp only: BSIA-def, blast)

have set t2' C Epgo
proof —
from res! validES2 have set (((1 Q zs) | Eggg) @ [z] @ 12') C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus ?thesis
by auto
qed
moreover
have ((1 Q r1) | Egge) @ t2' € Trpgy
proof —
from res! zs-is-zsE2 have ((1 | Epge) @ (25 Q [2])) @ ¢2' € Trpgs
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from 12" Vv2-is-t2Vv2 res? have 12’1 Vyg =12 1 Vyg
by auto
moreover
note res3
ultimately show ?case
by auto
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qed
from this|OF r1E2-in-Nvl-inter-C2-star| obtain ¢2’
where t2'-in-E2star: set t2' C Epgg
and 7r1E2-t2'-in-Tr2: (1 @ r1) | Eggg) @ t2' € Trggs
and t2'-Vu2-is-t2-Vv2: 121 Vyg =121 Vyg
and t2'-Cv2-empty: t2' 1 Cyg = ||
by auto

let ?tau =7 @ r1 @ [V/]

from v’-in-E1 Cons(2) ri-in-Nvistar validV1 have set ?tau C E(gs1 | ES2)
by (simp only: isViewOn-def composeES-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set lambda’ C V',
by auto
moreover
from Cons(4) t1-is-ri-v’-s1 have set s1 C Epgy
by auto
moreover
note t2'-in-E2star
moreover
have ?tau | Egg; @ s1 € Trgg;
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eq-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
projection-concatenation-commute t1-is-ri-v’-s1)
moreover
from 7r1E2-t2'-in-Tr2 v'-notin-E2 have ?tau | Eggy @ t2' € Trggg
by (simp add: projection-def)
moreover
from Cons(8) t1-is-ri-v’-s1 r1-Vu-empty v'-in-E1 v'-in-Vv have lambda’ | Egg; = s1 1 Vy
by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 t2'-Vv2-is-12- Vo2 have lambda’ | Eggg = t2'1 Vy,
proof —
have (2’1 Vy, =t2'1 Vg
using propSep Views unfolding properSeparation Of Views-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral t2'-in-E2star)
moreover
have t2 1 Vi, =121 Vyy
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral Cons(5))
moreover
note Cons(9) v'-notin-E2 t2'-Vu2-is-t2- Vo2
ultimately show ?thesis
by (simp add: projection-def)
qed
moreover
note s1-Cvl-empty t2'-Cv2-empty
moreover
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note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain ¢’
where 7riv't’-in-Tr: ?tau Q t' € Tr(gs; | ES2)
and t’-Vv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t' 1 Cy = ||
by auto

let 7t =r1@[V]Q@¢

note Triv't’-in-Tr
moreover
from r1-Vu-empty t'-Vv-is-lambda’ v'-in-Vo have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have ¢t 1 Cy = ||
proof —
have r1 1 Cy = ||
proof —
from propSepViews have Epg; N Cy) C Cyy
unfolding properSeparationOfViews-def by auto
from projection-on-subset|OF <Egg; N Cy C Cypy r1-Cul-empty]
have r1 1 (Egg; N Cy) =
by (simp only: Int-commute)
with projection-intersection-neutral|OF ri-in-Elstar, of Cy)] show ?thesis
by simp
qed
with v’-in- Vo VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ?thesis
by auto

}

moreover
{
assume v'-in-Vo2-minus-E1: V' € Vg — Epg;
hence v'-in-Vv2: V' € Vyy
by auto
with v'-in- Vv propSep Views have v'-in-E2: V' € Epgg
unfolding properSeparationOfViews-def
by auto

from v'-in-Vo2-minus-E1 have v'-notin-E1: V' ¢ Epg;
by auto
with validV1 have v'-notin-Vul: V' ¢ Vy;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from Cons(8) Cons(5) Cons(9) v'-in-E2 have 2 1 Vy, = V' # (lambda’ | Egg9)
by (simp add: projection-def)

from projection-split-first|OF this] obtain r2 s2
where t2-is-r2-v"-52: t2 = r2 Q [V'] Q 52
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and 72-Vv-empty: v2 1 Vy = ||

by auto
with Vu-is-Vul-union-Vv2 projection-on-subset[of Vyyg V) r2]
have r2-Vv2-empty: m2 1 Vg = ||

by auto

from {2-is-r2-v’-s2 Cons(11) have r2-Cv2-empty: 12 1 Cyg = |]
by (simp add: projection-concatenation-commute)

from (2-is-r2-v’-s2 Cons(11) have s2-Cuv2-empty: s2 1 Cyg = ||
by (simp only: projection-concatenation-commute, auto)

from Cons(5) t2-is-r2-v’-s2 have r2-in-E2star: set 72 C Eggg
by auto

have r2-in-Nv2star: set 12 C Nyp
proof —
note r2-in-FE2star
moreover
from r2-Vu2-empty have set r2 N Vyg = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
from r2-Cv2-empty have set r2 N Cyp = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)
moreover
note validV2
ultimately show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed

have r2E1-in-Nv2-inter-C1-star: set (r2 1 Eggs) € (Nyg N Cyy)
proof —
have set (12 1 Eggy) = set 12 N Eggy
by (simp add: projection-def, auto)
with r2-in-Nv2star have set (12 | Egg;) € (Eggy N Nyo)
by auto
moreover
from validV1 propSep Views disjoint-Nv2- Vol
have Epg; N Nyg = Nyg N Cyy
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show %thesis
by auto
qed
with Cvl-inter-Nv2-subsetof-Upsilonl
have r2E1-in-Nv2-inter-C1-Upsilonl-star: set (r2 1 Eggs) € (Nyg N Cyy N T1y)
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by auto
note outerCons-prems = Cons.prems

have set (12 1 Eggy) € (Npa N Cyy) =

3 t1' (set i1’ C Eggy

A((t@r2)| Eggy) @ t1' € Trgg;

Atl'] Vyr=1t11 Vy;

At Cyp=1))
proof (induct r2 | Eggy arbitrary: r2 rule: rev-induct)

case Nil thus ?case

by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
outerCons-prems(5) projection-concatenation-commute)

next

case (snoc  xs)

have zs-is-zsE1: s = zs | Eggy
proof —
from snoc(2) have set (zs Q [z]) C Eggy
by (simp add: projection-def, auto)
hence set xs C Epgy
by auto
thus ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have set (zs 1 Eggs) € (Nye N Cyy)
proof —
have set (12 1 Eggy) € (Npya N Cyy)
by (metis Int-commute snoc.prems)
with snoc(2) have set (zs Q [z]) C (Nyg N Cyy)
by simp
hence set zs C (Nyg N Cyyq)
by auto
with zs-is-zsE1 show ?thesis
by auto
qed
moreover
note snoc.hyps(1)[of xs
ultimately obtain t1”
where t1"-in-Elstar: set t1" C Epgy
and 7-zs-E1-t1"-in-Tr1: ((t Q zs) | Eggy) @ t1" € Trggy
and t1""Vul-is-t1Vol: t1"1 V= t1 1 Vyy
and t1"'Cvl-empty: t1"1 Cy; = ||
by auto

have z-in-Cvl-inter-Nv2: x € Cy; N Nyy
proof —
from snoc(2—38) have set (zs Q [z]) C (Nyg N Cyy)
by simp
thus %thesis
by auto
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qed
hence z-in-Cvl: z € Cyy
by auto
moreover
note 7-zs-E1-t1""-in-Tr1 t1" Cvi-empty
moreover
have Adm: (Adm V1 o1 Trgg; ((1 Q zs) | Eggy) )
proof —
from 7-zs-E1-t1"-in-Tr1 validES1
have 7-zsE1-in-Tr1: ((1 Q zs) | Eggy) € Trgs;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
with z-in-Cvi-inter-Nv2 ES1-total-Cvl-inter-Nv2
have T-zsE1-z-in-Tr1: ((r Q zs) | Eggy) Q [z] € Trggg
by (simp only: total-def)
moreover
have (v @ 25) | Bggy) 1 (o1 V1) = ((r @ s5) | Epgy) 1 (0 V1)
ultimately show ?thesis
by (simp add: Adm-def, auto)
qed
moreover note BSIA1
ultimately obtain ¢1’
where resl: ((r Q zs) | Egg;) @ [z] Q@ t1' € Trggy
and res2: t1'1 Vy;=¢1"1 Vyy
and res3: t1'1 Cyy = |]
by (simp only: BSIA-def, blast)

have set t1' C Eggy
proof —
from res! validES1 have set (((t Q zs) | Eggy) @ [z] Q t17) C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
thus %thesis
by auto
qed
moreover
have ((r @ r2) | Egg;) @ t1' € Trpg;
proof —
from res! zs-is-zsE1 have ((1 | Egg;) @ (zs @Q [2])) @ ¢t1' € Trpg;
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from t1"Vuvi-is-t1Vol res? have t1'1 Vy; = t1 1 Vyy
by auto
moreover
note res3
ultimately show ?case
by auto
qed
from this|OF r2E1-in-Nv2-inter-C1-star] obtain t1’
where t1'-in-Elstar: set t1' C Eggy
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and Tr2E1-t1"-in-Tr1: ((t @ r2) | Eggy) @ t1' € Trpg;
and t1'-Vol-is-t1-Vol: t1'1 Vy; = t1 1 Vyy

and t1'-Cvl-empty: t1'1 Cy; = ||

by auto

let ?tau =7 @ r2 Q [V/]

from v’-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau C E(gs1 | Es2)
by (simp only: composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set lambda’ C Vy,
by auto
moreover
from Cons(5) t2-is-r2-v’-s2 have set s2 C Epgy
by auto
moreover
note t1’-in-Elstar
moreover
have %tau | Epgo @ s2 € Trpgy
by (metis Cons-eq-appendl append-eq-appendl calculation(3) eg-Nil-appendl
list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
projection-concatenation-commute t2-is-r2-v'-52)
moreover
from 7r2E1-t1'-in-Tr1 v'-notin-E1 have ?tau | Egg; Q t1' € Trggy
by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v’-in-E2 v’-in- Vv
have lambda’ | Epgy = s2 1 Vy
by (simp add: projection-def)
moreover
from Cons(10) v'-notin-E1 t1'-Vvl-is-t1- Vvl
have lambda’ | Egg; = t1'1 Vy
proof —
have t1'1 Vy =t1'1 Vy;
using propSep Views unfolding properSeparationOfViews-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral t1'-in-E1star)
moreover
have t1 1 Vy =t1 1 Vy;
using propSep Views unfolding properSeparationOf Views-def
by (simp add: projection-def, metis Int-commute
projection-def projection-intersection-neutral Cons(4))
moreover
note Cons(8) v'-notin-E1 t1'-Vvl-is-t1- Vvl
ultimately show %thesis
by (simp add: projection-def)
qed
moreover
note s2-Cv2-empty t1'-Cvl-empty
moreover
note Cons.hyps(1)[of ?tau t1’ s2]
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ultimately obtain ¢’
where 7r2v't"-in-Tr: ?tau Q t’' € Tr(gsi | ES2)
and t’-Vuv-is-lambda’: t' 1 V) = lambda’
and t’-Cv-empty: t' 1 Cy =[]
by auto

let 2t =r2 @ [V]@t’

note Tr2v’t’-in-Tr
moreover
from r2-Vv-empty t'- Vo-is-lambda’ v'-in- Vv have 2t 1 Vy, = V' # lambda’
by (simp add: projection-def)
moreover
have 7t 1 Cy = ||
proof —
have r2 1 Cy, = ||
proof —
from propSep Views have Eggo N Cy C Cyo
unfolding properSeparationOfViews-def by auto
from projection-on-subset[OF <Epge N Cy C Cyg r2-Cu2-empty]
have r2 | (Egge N Cy) = ||
by (simp only: Int-commute)
with projection-intersection-neutral[OF r2-in-E2star, of Cy)| show ?thesis
by simp
qed
with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
qed
ultimately have ?thesis
by auto
}

ultimately show %thesis
by blast
qed

qed
}
thus ?thesis
by auto
qed

lemma generalized-zipping-lemma:

V 7 lambda t1 t2. ( ( set T C E(gs1 | Es2)

A set lambda C V) A set t1 C Epgy A set t2 C Eggo

AN((T1 Eggy) @tl) € Trggy A ((T 1 Eggg) @ 12) € Trggy

A (lambda 1 Eggy) = (t1 1 Vy) A (lambda | Egge) = (t2 1 Vy))

A1 Cyp) =1 A @21 Cpg) =1))

— 3t (r@t) e TT(ESI || ES2) A (1 Vy) =lambda A (t1 Cy) =1])))
proof —

note well-behaved-composition
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moreover {
assume Ny N Egge = {} A Nyg N Eggy = {}
with generalized-zipping-lemmal have ?thesis
by auto
}

moreover {
assume 3 o1. Ny; N Egge = {} A total ES1 (Cyy N Nyg) A BSIA o1 V1 Trggy
then obtain ¢! where Ny ; N Egge = {} A total ES1 (Cy; N Nyg) A BSIA o1 V1 Trggy
by auto
with generalized-zipping-lemma2[of o1] have ?thesis
by auto
}

moreover {
assume 3 p2. Nyos N Eggy = {} A total ES2 (CV2 n NVI) A BSIA 02 V2 Trpgo
then obtain ¢2 where Ny N Egg; = {} A total ES2 (Cyg N Nyy) A BSIA 02 V2 Trggs
by auto
with generalized-zipping-lemmaS3[of 02] have ?thesis
by auto
}

moreover {

assume 3 o1 p2T'1 T2. (Vp; C Eggy NAp; € Eggy A Try C Egg;
AVrg C Eggs AN Arg € Egsg A Trg © Eggy
N BSIA 01 V1 Trgg; A BSIA 02 V2 Trpgo
A total ES1 (CVI N NV.?) A total ES2 (CVQ N NVI)
N FCIA 01 T'1 V1 Trgg; N FCIA 02 T2 V2 Trggo
ANVyr N Vys CVpp UV
A Cyp N Nys CTpyp A Cyp N Nyy € Trg
ANy N App N Egge={} A Nygs N Apg N Eggy ={})

then obtain g1 ¢2 I'f I'2 where Vpr; C Egg; A Apy C Eggy A Try C Eggy
A Vrg C Epgg AN Aprg € Egsg A Trg C Epgg
N BSIA 01 V1 Trgg; N BSIA 02 V2 Trggs
A total ES1 (Cyy N Nyg) A total ES2 (Cyg N Nyy)
N FCIA o1 T'1 V1 Trgg; N FCIA 02 T2 V2 Trggo
AN Vyr N Vys CVryUVpy
A Cyy N Nys CTpy A Cyp N Ny; © Trg
ANy N App N Egge ={} A Nyg N Apg N Eggy = {}
by auto

with generalized-zipping-lemma4 [of T'1 T'2 o1 p2] have ?thesis
by auto

}

ultimately show ?thesis unfolding wellBehaved Composition-def
by blast
qed

end
end
5.4.3 Compositionality Results

theory CompositionalityResults
imports GeneralizedZippingLemma CompositionSupport
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begin

context Compositionality
begin

theorem compositionality-BSD:
[[ BSD V1 T’I”ESI; BSD V2 TTESQII = BSD YV TT(ESI ” ES,Q)
proof —
assume BSD-Tri-vi: BSD V1 Trgg;
assume BSD-Tr2-v2: BSD V2 Trpgo
{
fixapfec
assume c-in-Cv: ¢ € Cy)
assume fSca-in-Tr: (8 Q [] @ a) € Tr(gs1 || ES2)
assume «a-contains-no-c: a ] Cy =

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV2)

from SBca-in-Tr

have [ca-El-in-Trl: (B Q [c] @ a) 1 Eggy) € Trgsy
and fSca-E2-in-Tr2: (8 Q [c] Q@ ) | Eggg) € Trgge
by (auto, simp add: composeES-def)+

from composeES-yields-ES validES1 validES2 have ES-valid (ES1 || ES2)
by auto

with Bca-in-Tr have set g C E(ESJ | ES2)
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set (a1 Vy) C Vy
by (simp add: projection-def, auto)
moreover
have (a1 Vy) 1 Vy =(al Vy)
by (simp add: projection-def)
moreover
from CSES1.BSD-in-subsystem|[OF c-in-Cv Bca-El-in-Tr1 BSD-Tr1-v1]
obtain a1’
where a1’-1: (81 Egg;) @ «
and a1’-2: (a1’1 Vyy) = (o]
and 041/] CVI = H
by auto
moreover
from «l’-1 validES1 have al’-in-El: set a1’ C Egg;
by (simp add: ES-valid-def traces-contain-events-def, auto)

1) € Trgsy
Vyi)
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moreover
from «1’-2 propSepViews have ((a 1 Vy) 1 Eggy) = (al’1 Vy)
proof —
have ((a 1 Vy) 1 Eggy) = al (Vy N Eggy)
by (simp only: projection-def, auto)
with propSep Views have (a1 Vy) 1 Eggy) = (a1 Vyy)
unfolding properSeparationOfViews-def by auto
moreover
from a1’-2 have (a1’1 Vy;) = (al’1 Vy)
proof —
from al’-in-E1 have a1’ | Egg; = al’
by (simp add: list-subset-iff-projection-neutral)
hence (a1’'1 Eggy) 1 Vy =al’l1 Vy
by simp
with Vu-is-Vul-union- Vo2 have (a1'1 Egg;) 1 (Vy; U Vyg) = al’1 Vy
by simp
hence a1’ 1 (Egg; N (Vy; U Vyy)) = al’1 Vy
by (simp only: projection-def, auto)
hence a1’ 1 (EESI N VysUEgg N VVQ) =al’ Vy
by (simp add: Int-Un-distrib)
moreover
from validV1 have Egg; N Vy; = Vyy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have a1’ 1 (Vy; U Egg; N Vyg) = al’1 Vy,
by simp
moreover
have EES] N VVQ - VVI
proof —
from propSep Views Vv-is-Vvl-union-Vv2 have (Vy; U Vyg) N Egg; = Vy;
unfolding properSeparationOfViews-def by simp
hence (Vy; N Eggy U Vyg N Eggy) = Vg
by auto
with validV1 have (Vv] U Vys N EESI) = VVI
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by auto
qed
ultimately show ?thesis
by (simp add: Un-absorb2)
qed
moreover note a1’-2
ultimately show ?Zthesis
by auto
qed
moreover
from CSES2.BSD-in-subsystem[OF c-in-Cv Bca-E2-in-Tr2 BSD-Tr2-v2]
obtain a2’
where a2’-1: (81 Eggs) @ «
and a2’-2: (a2'1 Vyy) = (o]
and 0(2/] CVQ = H

2') € Trgsg
Vyga)
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by auto
moreover
from a2’-1 validES2 have a2'-in-E2: set a2’ C Epgo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from a2’-2 propSepViews have ((a 1 V) 1 Egge) = (@21 Vy)
proof —
have ((a 1 Vy) 1 Eggg) = a1 (Vy N Eggy)
by (simp only: projection-def, auto)
with propSep Views have (a1 V) 1 Egge) = (a1 Vyg)
unfolding properSeparationOfViews-def by auto
moreover
from a2’-2 have (a2'1 Vyy) = (a2'1 Vy)
proof —
from a2’-in-E2 have a2’ | Eggy = a2’
by (simp add: list-subset-iff-projection-neutral)
hence (a2'1 Egge) 1 Vy =a2'1 Vy
by simp
with Vu-is-Vul-union- Vo2 have (a2'1 Eggg) 1 (Vya U V) =a2’1 Vy,
by (simp add: Un-commute)
hence a2’ 1 (Egga N (Vya U V) =a2’1 Vy
by (simp only: projection-def, auto)
hence a2’ 1 (Egga N Vys U Egge N Vyy) = a2’ Vy,
by (simp add: Int-Un-distrib)
moreover
from validV2 have Epgo N Vygs = Vys
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have a2’ 1 (Vyas U Egga N V) =a2'1 Vy,
by simp
moreover
have Epgo N Vy; C Vi
proof —
from propSep Views Vv-is-Vvl-union-Vv2 have (Vys U Vy;) N Egge = Vyg
unfolding properSeparationOf Views-def by (simp add: Un-commute)
hence (Vys N Eggg U Vy; N Epgg) = Vg
by auto
with validV2 have (Vys U Vy; N Eggg) = Vo
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by auto
qed
ultimately show ?thesis
by (simp add: Un-absorb2)
qed
moreover note a2’-2
ultimately show ?thesis
by auto
qed
moreover note generalized-zipping-lemma
ultimately have Ja’. ((8 @ o) € (Tr(gsi | Bs2)) N (@1 Vy=(al Vy) Aa'l Cy=1])
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by blast
}
thus %thesis
unfolding BSD-def
by auto
qed

theorem compositionality-BSI:
[ BSD V1 Trggs; BSD V2 Trpge; BSI VI Trggy; BSI V2 Trggs |
= BSIV TT(ESI | ES2)
proof —
assume BSDI1: BSD V1 Trgg;
and BSD2: BSD V2 TT‘ESQ
and BSI1: BSI V1 Trggy
and BSI2: BSI V2 Trggo

fix a 8 ¢

assume c-in-Cv: ¢ € Cy,

assume Sa-in-Tr: (8 Q ) € Tr(gs1 || ES2)
assume a-no-Cv: a1 Cy) =[]

from Ba-in-Tr

have fa-El-in-Tri: (8 Q o) 1 Eggy) € Trgsg;
and fa-E2-in-Tr2: ((8 Q a) | Egge) € Trgge
by (simp add: composeES-def)+

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSESI1.BSD-in-subsystem2[OF Ba-El1-in-Tr1 BSD1] obtain a1’
where SElal’-in-Trl: 81 Egg; @ al’ € Trgg;
and ol 'Vul-is-aVvl: al'] Vy;=al Vy;
and al’'Cvi-empty: al1’1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Ba-E2-in-Tr2 BSD2)] obtain a2’
where SE2a2-in-Tr2: 81 Egge @ a2’ € Trggg
and a2 Vu2-is-aVv2: a2’ Vyg=al Vyy
and a2'Cv2-empty: a2’ 1 Cyg = ||
by auto

have 3 a1”. (set al”" C Egg; A (B Q [c]) | Eggy) @ al” € Trgg;
Aol Vyp=al Vygnal”l Cyy=1)
proof cases
assume cEIl-empty: [c] 1 Eggy = ||
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from BEIlal'-in-Tr1 validES1 have set al’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cEl-empty BE1al’-in-Tr1 have ((8 Q [c]) | Eggy) @ a1’ € Trpgy
by (simp only: projection-concatenation-commute, auto)
moreover
note o1’ Vvi-is-a Vol al’Cvl-empty
ultimately show ?thesis
by auto
next
assume cEI-not-empty: [c] 1 Eggy # [|
hence c-in-E1: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E1 propSep Views have c € Cy)y
unfolding properSeparationOfViews-def by auto
moreover
note BE1a1’-in-Trl al’Cvi-empty BSI1
ultimately obtain a1
where BEIcal’-in-Trl: (B1 Epgy) Q [c] @ a1’ € Trgg;
and ol "Vl-is-al'Vul: a1’ 1 Vy;=al’] Vyy
and «l”Cuvl-empty: a1’ 1 Cypy =
unfolding BSI-def
by blast

from validES1 BEIcal'’-in-Tr1 have set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SElcal'-in-Trl c-in-E1 have ((8 Q [c]) | Egg;) @ al’' € Trpg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a1’ Vul-is-al'Vul al'Vul-is-aVvl have a1’ 1 Vi =al Vyy
by auto
moreover
note al ' Cvl-empty
ultimately show ?thesis
by auto
qed
then obtain «1”
where a1'-in-Elstar: set a1’ C Epgy
and BcElal'-in-Tri: (B Q[c]) 1 Eggy) @ a1’ € Trpg;
and ol "Vi-is-aVol: al” 1 Vy;=al Vy;
and al”Cvl-empty: a1’ 1 Cy; =]
by auto

have 3 a2”. (set a2" C Epgo
A((B@c) 1 Eggg) @ a2” € Trpgy
ANa2'"1 Vyg=al Vyy
Aa2"] Oy =)
proof cases
assume cE2-empty: [c] 1 Egge = ||
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from SE2a2'-in-Tr2 validES2 have set a2’ C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cE2-empty BE2a2’-in-Tr2 have ((8 Q [c]) | Egge) @ a2’ € Trggs
by (simp only: projection-concatenation-commute, auto)
moreover
note a2’ Vv2-is-a Vo2 a2’ Cv2-empty
ultimately show ?thesis
by auto
next
assume cE2-not-empty: [c] 1 Egge # [|
hence c-in-E2: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E2 propSep Views have c € Cy)o
unfolding properSeparationOfViews-def by auto
moreover
note BE2a2’-in-Tr2 a2’'Cv2-empty BSI2
ultimately obtain a2
where SBE2ca2’-in-Tr2: (B 1 Epge) Q [c] @ a2” € Trpgs
and a2 Vu2-is-a2'Vu2: a2’ 1 Vyg = al2’'] Vyg
and a2”Cv2-empty: a2’ 1 Cyg = ||
unfolding BSI-def
by blast

from validES2 BE2ca2'-in-Tr2 have set a2’ C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SE2ca2'-in-Tr2 c-in-E2 have ((8 Q [c]) 1 Egge) @ a2'' € Trggg
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a2’ Vu2-is-a2'Vv2 a2'Vu2-is-aVv2 have a2’ 1 Vyg=al Vi,
by auto
moreover
note a2’ Cv2-empty
ultimately show ?thesis
by auto
qed
then obtain 2"
where a2''-in-E2star: set a2’ C Epgg
and BcE2a2"-in-Tr2: (8 Q [c]) | Epgs) @ a2” € Trpgs
and 2" Vu2-is-aVo2: a2 1 Vyg=al Vyy
and a2 Cv2-empty: a2’ 1 Cyg = ||
by auto

from VIsViewOnE c-in-Cv Ba-in-Tr have set (8 @Q [c]) C E(gs1 || Es2)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def composeES-def, auto)
moreover
have set (a1 Vy) C Vy
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by (simp add: projection-def, auto)

moreover
note al’’-in-Elstar a2''-in-E2star fcE1al'-in-Trl BcE2a2"-in-Tr2
moreover
have (a1 Vy) 1 Egg; = a1’ Vy
proof —

from a1 Vul-is-a Vvl propSepViews have a | (Vy N Epgy) = a1’ 1 (Egg; N Vy)
unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence « 1 VV 1 EESI = OL]”] EESI W VV
by (simp add: projection-def)
with a1'-in-Elstar show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
have (a 1 Vv) ] EE52 S OLQ”W VV
proof —
from «2''Vv2-is-aVv2 propSep Views have a | (Vy N Eggg) = a2’ 1 (Egge N Vy)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence « ] Vv ] EE52 = 052”] EESQ W VV
by (simp add: projection-def)
with a2 '-in-E2star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qged
moreover
note a1’ Cvil-empty a2 Cv2-empty generalized-zipping-lemma
ultimately have 3a’. (3 @Q [¢]) @ o' € Tr(gs1 || Bs2) N a1 Vy=alVyAaalCy=]
by blast
}

thus %thesis
unfolding BSI-def
by auto
qed

theorem compositionality-BSIA:
[ BSD V1 Trggy; BSD V2 Trpge; BSIA 01 V1 Trggy; BSIA 02 V2 Trpge;
(e1 V1) S (e V) N Eggy; (e2V2) C (e V) N Eggy |
= BSIA oV (TT(ESI I ESQ))
proof —
assume BSD1: BSD V1 Trggq
and BSD2: BSD V2 Trggs
and BSIAI1: BSIA o1 V1 Trgg;
and BSIA2: BSIA 02 V2 Trggs

and plvi-subset-pv-inter-E1: (91 V1) C (¢ V) N Eggy
and p2v2-subset-pv-inter-E2:(p2 V2) C (0 V) N Eggo
{

fix a 8 ¢

assume c-in-Cv: ¢ € Cy,

assume Sa-in-Tr: (8 Q ) € Tr(gs1 || Bs2)
assume a-no-Cv: a1 Cy) =[]

assume Adm: (Adm V o TT(ESJ | ES2) B o)
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then obtain v
where youv-is-Bov: v 1 (¢ V) =81 (e V)
and yc-in-Tr: (v @Q [c]) € Tr(gs1 || ES2)
unfolding Adm-def
by auto

from Ba-in-Tr

have fa-El-in-Tri: (8 Q o) 1 Eggy) € Trgsg;
and fa-E2-in-Tr2: (8 Q a) | Egge) € Trgge
by (simp add: composeES-def)+

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSES1.BSD-in-subsystem2[OF Ba-E1-in-Tr1 BSD1] obtain a1’
where SElal’-in-Trl: 81 Egg; @ al’ € Trgg;
and ol 'Vvl-issaVvl: al'| Vy;=al Vy;
and al'Cvl-empty: a1’1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Ba-E2-in-Tr2 BSD2] obtain a2’
where BE2a2'-in-Tr2: 81 Egge @ a2’ € Trggg
and a2 Vv2-is-aVv2: a2’ Vyg=a ] Vg
and a2'Cv2-empty: a2’'1 Cyg = |]
by auto

have 3 a1”. (set a1’ C Fpg;
AN((B@Qlc]) 1 Eggy) @al” € Trggy
/\a]”] Vyi =a Vyi
Aat”] Cyy =)
proof cases
assume cEIl-empty: [c] 1 Eggy = ||

from BEIal'-in-Trl validES1 have set al’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cEl-empty BE1al’-in-Trl have (8 Q [c]) | Eggy) @ al’ € Trgg;
by (simp only: projection-concatenation-commute, auto)
moreover
note a1 'Vul-is-a Vvl a1’'Cvl-empty
ultimately show ?thesis
by auto
next
assume cEI-not-empty: [c] 1 Eggy # [|
hence c-in-E1: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)
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from c-in-Cv c-in-E1 propSep Views have c € Cy)y
unfolding properSeparationOfViews-def by auto

moreover

note BE1al’-in-Trl o1'Cvl-empty

moreover

have (Adm V1 o1 Trgg; (B 1 Egsy) c)
proof —

from c-in-E1 ~yc-in-Tr have (v 1 Eggy) Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; | (o1 V1) = 81 Eggy | (o1 V1)
proof —
from vov-is-Bov have v | Egg; 1 (¢ V) =B 1 Egg; 1 (e V)
by (metis projection-commute)
with glvI-subset-pv-inter-E1 have v | (o1 V1) = 1 (o1 V1)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus %thesis
by (metis projection-commute)
qed
ultimately show #thesis unfolding Adm-def
by auto
qed
moreover
note BSIA1
ultimately obtain a1 "
where BEIcal’-in-Tr1: (B 1 Epgy) Q [c] @ a1’ € Trpg;
and ol "Vul-is-al'Vul: a1’ 1 Vy;=al’] Vyy
and «l”Cuvl-empty: a1’ Cypy =]
unfolding BSIA-def
by blast

from validES1 BEIcal'’-in-Tr1 have set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SElcal'-in-Trl c-in-E1 have ((8 Q [c]) | Egg;) @ a1’ € Trpg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a1’ Vul-is-al'Vul al’Vul-is-aVvl have a1’ 1 Vi =al Vyy
by auto
moreover
note a1’ Cvl-empty
ultimately show ?thesis
by auto
qed
then obtain a1”
where a1'-in-Elstar: set a1’ C Epgy
and BcElal'-in-Tri: (B Q [c]) 1 Eggy) @ a1’ € Trpg;
and ol "Vi-is-aVol: al” 1 Vy;=al Vy;
and al”Cvl-empty: a1’ 1 Cyy =]
by auto
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have 3 a2”. (set a2" C Eggo
A((BQ[c]) 1 Eggs) @a2” € Trggy
ANa2" 1 Vyg=al Vyg
ANa2'1 Cyy=1))
proof cases
assume cE2-empty: [c] | Eggs = ||

from BE2a2’-in-Tr2 validES2 have set a2’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from cE2-empty BE2a2’-in-Tr2 have ((8 Q [c]) | Egge) @ a2’ € Trggs
by (simp only: projection-concatenation-commute, auto)
moreover
note a2’ Vv2-is-a Vo2 a2’ Cv2-empty
ultimately show ?thesis
by auto
next
assume cE2-not-empty: [c] 1 Egge # [|
hence c-in-E2: ¢ € Eggy
by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E2 propSep Views have c € Cy)p
unfolding properSeparationOfViews-def by auto

moreover

note BE2a2’-in-Tr2 a2’'Cv2-empty

moreover

have (Adm V2 02 Trgse (81 Egge) )
proof —

from c-in-E2 ~yc-in-Tr have (v 1 Egge) @Q [c] € Trgge
by (simp add: projection-def composeES-def)
moreover
have v 1 Egge 1 (02 V2) = 81 Egge 1 (02 V2)
proof —
from yov-is-Bov have v | Egge 1 (¢ V) =B 1 Egga 1 (¢ V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v | (02 V2) = 81 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show #thesis unfolding Adm-def
by auto
qed
moreover
note BSIA2
ultimately obtain a2’
where BE2ca2’-in-Tr2: (B 1 Epge) Q [c] @ a2”" € Trpgs
and a2 Vv2-is-a2'Vu2: a2’ 1 Vyg=a2'l Vyg
and «a2”Cv2-empty: a2’ 1 Cyy = ||
unfolding BSIA-def
by blast
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from validES2 BE2ca2'-in-Tr2 have set a2’ C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from SE2ca2'-in-Tr2 c-in-E2 have ((8 Q [c]) 1 Egge) @ a2'' € Trggy
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from a2’ Vu2-is-a2'Vv2 a2'Vu2-is-aVv2 have a2’ 1 Vs =al Vi,
by auto
moreover
note a2’ Cv2-empty
ultimately show %thesis
by auto
qed
then obtain a2’
where a2''-in-E2star: set a2’ C Epgg
and BcE2a2"-in-Tr2: ((8 Q [c]) | Egge) @ a2 € Trggs
and a2 Vu2-is-aVo2: a2” 1 Vyg=al Vg
and a2 Cv2-empty: a2’ 1 Cyg = ||
by auto

from VIsViewOnE c-in-Cv Ba-in-Tr have set (8 @ [c]) C E(ES] | ES2)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def composeES-def, auto)
moreover
have set (a1 Vy) C Vy
by (simp add: projection-def, auto)
moreover
note al’’-in-Elstar a2'’-in-E2star fcEl1al'-in-Trl BcE2a2"-in-Tr2
moreover
have (a1 Vy) 1 Eggy = al1”1Vy
proof —
from o1’ Vwl-is-aVul propSep Views
have o 1 (Vy N Eggy) = a1’ 1 (Egg; N Vy)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence a | Vy 1 Egg; = a1’ 1 Egg; 1 Vy
by (simp add: projection-def)
with a1 '-in-Elstar show ?thesis
by (simp add: list-subset-iff-projection-neutral)
ged
moreover
have (a1 Vy) 1 Epge = 2”1 Vy
proof —
from a2’ Vw2-is-a V2 propSep Views
have o 1 (Vy N Eggg) = a2 1 (Egga N Vy)
unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence a | Vy | Egge = a2’ 1 Egsa 1 Vy
by (simp add: projection-def)
with a2'-in-E2star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
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note a1’ Cvl-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately have Ja’. (8 Q [c]) @ o’ € Tr(gsi | ES2) a'lT Vy=alVyAaa'lCy=]
by blast

}

thus ?thesis
unfolding BSIA-def
by auto

qed

theorem compositionality-FCD:
[ BSD V1 Trggy; BSD V2 Trpgs;
Vr N Eggs € Vi Vr N Egge © Vg
Tr N Egs; € Trg; Tr N Egse © Trg;
(Ap; N Ny; U Apg N Nyg ) C Ap;
Ny; N Apy N Egge ={}; Nyg N Apg N Eggy = {};
— FCDTYV (TT(ESZ ” ESQ))
proof —
assume BSDI1: BSD V1 Trgg;
and BSD2: BSD V2 Trggs
and Nabla-inter-E1-subset-Nablal: Vr N Eggy; C Vg
and Nabla-inter-E2-subset-Nabla2: Vi N Egge € Vo
and Upsilon-inter-E1-subset-Upsilonl: Yp N Egg; € Ty
and Upsilon-inter-E2-subset- Upsilon2: Y N Egge € Yo
and Deltal-N1-Delta2-N2-subset-Delta: ( Ay N Ny; U Apgy N Ny ) C Ap
and NI-Deltal-E2-disjoint: Nyyy N Apy N Egge = {}
and N2-Delta2-E1-disjoint: Nyyp N Ary N Eggy = {}
and FCD1: FCDT1 V1 Trggy
and FCD2: FCDT'2 V2 Trggs

{

fixa B cov

assume c-in-Cv-inter-Upsilon: ¢ € (Cy N Yp)
and v’-in- Vo-inter-Nabla: v’ € (Vy, N V)
and Bcv'a-in-Tr: (B Q [c,v] @ ) € Tr(gsi | ES2)
and aCv-empty: a1 Cy = ||

from ABcv’a-in-Tr

have Bcv'a-El-in-Trl: (((8 Q [c,v]) @ a) | Eggy) € Trgsy
and Bev'a-E2-in-Tr2: (((8 Q [¢,v]) @ &) | Eggg) € Trggs
by (simp add: composeES-def)+

interpret CSES1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)
interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSESI.BSD-in-subsystem2[OF Bcv'a-El-in-Tr1 BSD1] obtain a1’
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where Bcv'Elal’-in-Tri: (8 Q [c,v]) | Egg; @ al’ € Trggy
and ol 'Vul-is-aVvl: al'] Vy;=a 1 Vy;

and al'Cvl-empty: a1’ 1 Cyy = |]

by auto

from CSES2.BSD-in-subsystem2[OF Bcv’a-E2-in-Tr2 BSD2] obtain a2’
where Bcv'E2a2’-in-Tr2: (8 Q [c,v]) | Egge @ a2’ € Trggs
and a2 ' Vv2-is-aVu2: a2’ 1 Vyg=al Vg
and a2'Cv2-empty: a2’ 1 Cyg = |]
by auto

from c-in-Cv-inter-Upsilon v'-in- Vv-inter-Nabla valid V1
have ¢ ¢ Egg, V (¢ € Egg; Av' ¢ Eggy) V (c € Eggy A v' € Eggy)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E1: ¢ ¢ Eggy

have set [| C (Ny; N Apy)
by auto
moreover
from Bcv'Elal’-in-Trl c-notin-E1 have (8 1 Egg;) @[] @ ([v] 1 Eggy) @ al’ € Trgg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have al1’1 Vy;=al’1 Vy; ..
moreover
note al’'Cvl-empty
ultimately have 3 a1” 61", set 61" C (Ny; N Apy)
A(B1Egs) @61"Q ([v]1 Eggy) @al” € Tryg;
Aal’ Vyi =al’ Vyi Aol CVI =]
by blast
}
moreover {
assume c-in-E1: ¢ € Eggy
and v'-notin-E1: v’ ¢ Eggy

from c-in-FE1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilon1
have c-in-Cv1-Upsilonl: ¢ € (Cy; N Ypy)
unfolding properSeparationOfViews-def by auto
hence c-in-Cvi: c € Cyy
by auto
moreover
from Bev'Elal’-in-Trl c-in-E1 v'-notin-E1 have (81 Eggy) Q [c] @ al’ € Trgg;
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
note a1’'Cvi-empty BSD1
ultimately obtain a1’/
where first: (81 Egg;) @ a1’ € Trggy
and second: a1”1 Vy;=al’l Vyy
and third: a1’ 1 Cy; =[]
unfolding BSD-def
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by blast

have set [| C (Ny; N Arpy)
by auto
moreover
from first v'-notin-E1 have (8 | Egg;) @[] @ ([v] | Eggy) @ a1’ € Trpgy
by (simp add: projection-def)
moreover
note second third
ultimately
have 3 a1 61" set 51" C (Ny; N Arg)
A (B1 Egsy) @1" @ ([v]1 Eggy) @ al” € Trgg,
Aal’ Vyi =al’ Vyi Aal’ CVI =]
by blast
}
moreover {
assume c-in-E1: ¢ € Eggy
and v’-in-E1: v’ € Eggy

from c-in-FE1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilonl
have c-in-Cvi-Upsilonl: ¢ € (Cy; N Ypyg)
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E1 v’-in- Vv-inter-Nabla propSep Views Nabla-inter-E1-subset-Nablal
have v’-in-Vvl-inter-Nablal: v' € (Vy; N Vg)
unfolding properSeparationOfViews-def by auto
moreover
from Bev'Elal’-in-Trl c-in-E1 v'-in-E1 have (8 | Egg;) @Q [c,v’] @ al’ € Trgg;
by (simp add: projection-def)
moreover
note a1 ’'Cvi-empty FCD1
ultimately obtain a1’/ §1"
where first: set 61" C (Ny; N Apyg)
and second: (81 Epgy) @ 461" Q [v] @ a1’ € Trgg;
and third: a1’ 1 Vy; =al’] Vyy
and fourth: a1’ 1 Cyy = |]
unfolding FCD-def
by blast

from second v'-in-E1 have (8 | Eggy) @ 61" @ ([v ] Eggy) Q a1’ € Trggy
by (simp add: projection-def)
with first third fourth
have 3 a1 §1". set 51" C (Ny; N Apy)
A(B1 Egsy) @1" @ ([v]1 Eggy) @ al” € Trgg,
Aal’ Vyi =al’ Vyi Aal’ CVI = H
unfolding FCD-def
by blast
}
ultimately obtain a1’ §1"
where §1'"-in-Nvi-Deltal-star: set §1"" C (Nyy N Apyg)
and 8E161'vElal’-in-Tr1: (81 Eggy) @ 61" @ ([v]1 Eggy) @ al” € Trgg;
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and ol "Vl-is-al'Vul: a1’ 1 Vy; =al’l Vi,
and ol ""Cvl-empty: a1’ 1 Cyy =]
by blast
with validV1 have §1'"-in-El-star: set 61" C Egg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from c-in-Cuv-inter-Upsilon v'-in- Vo-inter-Nabla validV2
have ¢ ¢ Eggy V (c € Eggg AN v' ¢ Eggg) V (c € Eggg A v' € Egg)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E2: ¢ ¢ Eggo

have set [| C (Nyg N Arg)
by auto
moreover
from Bev'E2a2’-in-Tr2 c-notin-E2 have (81 Eggg) @[] @ ([v] 1 Egge) @ a2’ € Trggs
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have a2’'1 Vyg=a2’'1 Vyy ..
moreover
note a2’Cv2-empty
ultimately have 3 2" §2". set 62" C (Nyg N Aryg)
A (B1 Egse) @d2" @ ([v] 1 Epge) @ a2” € Trpgy
A a?”W Vye = a2'1 Vya A 042”] CV2 = H
by blast
}
moreover {
assume c-in-E2: ¢ € Eggy
and v'-notin-E2: v' ¢ Eggs

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views Upsilon-inter-E2-subset-Upsilon2
have c-in-Cv2-Upsilon2: ¢ € (Cyg N Y1g)
unfolding properSeparationOfViews-def by auto
hence c-in-Cv2: c € Cyy
by auto
moreover
from Bev'E2a2'-in-Tr2 c-in-E2 v'-notin-E2 have (8 1 Eggg) Q [c] @ a2’ € Trpgs
by (simp only: projection-concatenation-commute projection-def, auto)
moreover
note a2’'Cv2-empty BSD2
ultimately obtain a2’/
where first: (81 Egge) @ a2’ € Trggs
and second: a2” 1 Vyg= a2’ Vyy
and third: a2’ 1 Cyy = ||
unfolding BSD-def
by blast

have set [] C (Nyg N Arg)

by auto
moreover
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from first v'-notin-E2 have (81 Egge) Q@[] @ ([v] 1 Egge) @ a2 € Trggs
by (simp add: projection-def)
moreover
note second third
ultimately
have 3 a2 §2". set 62" C (Nyg N Arpg)
A (B1 Egse) @d2" @ ([v] 1 Eggg) @ a2” € Trpgy
A chl/w VVQ = O¢2/1 Vya A a2’ CV2 = H
by blast
}
moreover {
assume c-in-E2: ¢ € Eggy
and v'-in-E2: v’ € Fggy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset- Upsilon2
have c-in-Cv2-Upsilon2: ¢ € (Cyg N YTrg)
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E2 v'-in- Vu-inter-Nabla propSep Views Nabla-inter-E2-subset-Nabla2
have v’-in-Vv2-inter-Nabla2: v’ € (V9 N Vg)
unfolding properSeparationOfViews-def by auto
moreover
from Bev'E2a2'-in-Tr2 c-in-E2 v'-in-E2 have (8 1 Eggs) Q [c,0'] @ a2’ € Trggy
by (simp add: projection-def)
moreover
note a2’'Cv2-empty FCD2
ultimately obtain a2’/ §2"
where first: set §2"' C (Nyg N Apg)
and second: (81 Epge) @ 62" @Q [v] @ a2” € Trggs
and third: a2 1 Vyg=a2'] Vyg
and fourth: a2 1 Cyg = |]
unfolding FCD-def
by blast

from second v'-in-E2 have (8 | Egge) @ 62" @ ([v] 1 Egge) Q@ a2” € Trggg
by (simp add: projection-def)
with first third fourth
have 3 a2 §2". set §2”" C (Nyg N Arpg)
A (B1 Egse) @é2" @ ([v] 1 Eggg) @ a2” € Trpgy
A aQ”W Vye = a2'1 Vya A a2”] CV2 = H
unfolding FCD-def
by blast
}
ultimately obtain a2’ §2"
where §2'"-in-Nv2-Delta2-star: set §2" C (Nyg N Arg)
and BE262 vE2a2"-in-Tr2: (B 1 Eggs) @ 62" Q ([v] 1 Egge) @ a2” € Trpgs
and a2 Vv2-is-a2'Vv2: a2 1 Vyg=a2'l Vys
and 2" Cv2-empty: a2’ 1 Cyy = ||
by blast
with validV2 have §2'-in-E2-star: set §2" C Epgo
by (simp add: isViewOn-def V-valid-def
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VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from §1"-in-Nvi-Deltal-star N1-Deltal-E2-disjoint
have §1"E2-empty: 61" 1 Egge = ||
proof —
from 61"-in-Nvi-Deltal-star have 61" = 61" 1 (Ny; N Apg)
by (simp only: list-subset-iff-projection-neutral)
hence (51”1 EESQ = (5]”} (NVI n AF]) 1 EESQ
by simp
moreover
have 61”1 (Ny; N Arg) 1 Egge =61"1 (Ny; N Apy N Eggp)
by (simp only: projection-def, auto)
with Ni-Deltal-E2-disjoint have 61" 1 (Ny; N Apg) 1 Eggs = |]
by (simp add: projection-def)
ultimately show ?thesis
by simp
qged
moreover
from 62"-in-Nv2-Delta2-star N2-Delta2-E1-disjoint have 62" El-empty: 62" 1 Egg; = ||
proof —
from 62"'-in-Nv2-Delta2-star have 62" = 62" 1 (Nyg N Apg)
by (simp only: list-subset-iff-projection-neutral)
hence 62//] Epgs = (52”1 (Nvg n AF,?) 1 Ergy
by simp
moreover
have 62" 1 (Nyg 0 Apg) 1 Eggy = 02" 1 (Nyg N Apg N Eggy)
by (simp only: projection-def, auto)
with N2-Delta2-E1-disjoint have 62" 1 (Nyg N Apg) 1 Eggy = |]
by (simp add: projection-def)
ultimately show ?thesis
by simp
qed
moreover
note BE151"vElal’-in-Tr1 BE262""vE2a2"-in-Tr2 §1"-in-E1-star 62"'-in-E2-star
ultimately have 361"62"v'Elal’-in-Tr1: (3 @ 51" @ §2" Q [v]) | Egg; @ a1’ € Trgg;
and 361"62"v'E2a2"-in-Tr2: (B Q@ 61" @ 62" Q [v]) 1 Eggs @ a2” € Trggs
by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto,
simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto)

have set (3 @ d1"" @ ¢2"" Q [v]) C E(gs1 || ES2)
proof —
from [cv’a-in-Tr have set 3 C E(gs1 || ES2)
by (simp add: composeES-def)
moreover
note §1'"-in-El-star 62"'-in-E2-star
moreover
from v’-in- Vv-inter-Nabla VIsViewOnE
have v’ € E(ES] | ES2)
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by (simp add: composeES-def, auto)
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qed
moreover
have set (a1 Vy) C Vy
by (simp add: projection-def, auto)
moreover
from BE161"vElal""~in-Tr1 validES1 have al'-in-El-star: set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from BE262""vE2a2" ~in-Tr2 validES2 have a2''-in-E2-star: set a2 C Epgg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note 361'52"v'E1al-in-Tr1 B61"62'"v'E20:2"-in-Tr2
moreover
have (a1 Vy) 1 Egg; = a1’ Vy
proof —
from o1’ Vul-is-a1'Vul a1'Vui-is-a Vol propSep Views
have o 1 (Vy N Eggy) = al’ 1 (Egg; N Vy)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence a1 V1 Egg; = a1’ 1 Egg; 1 Vy
by (simp add: projection-def)
with a1 '-in-E1-star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qged
moreover
have (o | Vy) | Egge = 2”1 Vy
proof —
from o2’ Vu2-is-a2'Vv2 a2'Vu2-is-a Vo2 propSep Views
have a ] (VV N EES?) = a2’ (EE5'2 N Vv)
unfolding properSeparationOf Views-def by (simp add: Int-commute)
hence a1 Vy | Egge = a2’ 1 Egsa 1 Vy
by (simp add: projection-def)
with o2'-in-E2-star show ?thesis
by (simp add: list-subset-iff-projection-neutral)
qed
moreover
note al ' Cvl-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately obtain ¢
where first: (3@ §1”7 @ 62" Q@ v]) Qte Tr(gsi | ES2)
and second: t |1 Vy =a 1 Vy
and third: t 1 Cy = ||
by blast

from 61 ''-in-Nv1-Deltal-star 62''-in-Nv2-Delta2-star
have set (61" @ §2'") C (Ny, N Ap)
proof —
have set (61" @ §2') C Ap
proof —
from 61 "-in-Nvli-Deltal-star 62" -in-Nv2-Delta2-star
have set ((51” Q (52”) C AF] n NVI U AFQ N NV2
by auto
with Deltal-N1-Delta2-N2-subset-Delta show ?thesis
by auto
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qed
moreover
have set (61" @ §2'") C Ny,
proof —
from §1'-in-Nvl1-Deltal-star 62" "-in-Nv2-Delta2-star
have set (61" @ §2'") C (Ny; U Nyy)
by auto
with Nvi-union-Nv2-subsetof-Nv show ?thesis
by auto
qed
ultimately show %thesis
by auto
qed
moreover
from first have 8 @ (61”7 @ é2") @ [v] @ t € Tr(gs; | ES2)
by auto
moreover
note second third
ultimately have 3a’. 37" (set v') C (N N Ar)
A((B@y"@[v]@a’) € Trgg; || Es2)
A1 Vy)=(a] Vy)
ANa'l Cy=1)
by blast
}
thus ?thesis
unfolding FCD-def
by auto
qed

theorem compositionality-FCI:
[ BSD V1 Trgg;; BSD V2 Trgge; BSIA o1 V1 Trggy; BSIA 02 V2 Trggs;
total ES1 (CVI N TF]); total ES2 (CV2 N Tpg);
Vr N Egs; € Vry Vr 0 Egge © Vrg;
Tr N Egs; S Yrp Tr N Epgg © Trg;
(Ap; N Ny; UApg N Nyg) € Ap;
(Ny; N Apy N Eggg = {} A Ny N App N Eggy € Try)
V(Nys N Apg N Eggy = {} A Nyy N Apg 0 Eggy © Trg)
FCIT1 VI Trggy; FCIT2 V2 Trggs |
= FCITYVY (TT(ESZ I ESQ))
proof —
assume BSD1: BSD V1 Trggq
and BSD2: BSD V2 Trggs
and BSIA1: BSIA o1 V1 Trgg
and BSIA2: BSIA 02 V2 Trggs
and total-ES1-Cl1-inter-Upsilonl: total ES1 (Cyy N Try)
and total-ES2-C2-inter-Upsilon2: total ES2 (Cya N Tro)
and Nabla-inter-E1-subset-Nablal: Vi N Eggy € Vg
and Nabla-inter-E2-subset-Nabla2: Vi N Egge € Vo
and Upsilon-inter-E1-subset-Upsilonl: Ypr N Eggy € YTy
and Upsilon-inter-E2-subset-Upsilon2: Y N Egge € Yo
and Deltal-N1-Delta2-N2-subset-Delta: ( Apy; N Ny; U Aps N Ny ) C Ap
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and wvery-long-asm: (Nyy; N Apy; N Egge = {} A Nyg N Ape N Eggy € Tryg)
V(Ny2 N Apg N Eggy ={} A Ny N Apy N Eggg € Try)

and FCIi: FCIT1 V1 Trgg;

and FCI2: FCI T2 V2 Trggs

{
fixa B cov
assume c-in-Cv-inter-Upsilon: ¢ € (Cy N Yr)
and v’-in-Vu-inter-Nabla: v’ € (Vy, N V)
and Bv'a-in-Tr: (3 @ [v] @ a) € Tr(gsi | ES2)
and aCv-empty: o 1 Cy =[]

from Bv'a-in-Tr

have Bv'a-El-in-Tri: (((8 Q [v']) @ a) | Eggy) € Trgps;
and Bv'a-E2-in-Tr2: (8 Q [v']) @ @) 1 Egge) € Trgss
by (simp add: composeES-def)+

interpret CSESI1: CompositionSupport ES1 V V1
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)

interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from CSES1.BSD-in-subsystem2[OF Bv'a-E1-in-Tr1 BSD1] obtain a1’
where Bv'Elal’-in-Tri: (8 Q [v]) 1 Egg; @ al’ € Trgg;
and ol 'Vul-is-aVvl: al'] Vy;=a 1 Vy;
and al'Cvl-empty: al1’1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Bv'a-E2-in-Tr2 BSD2] obtain a2’
where Sv'E2a2’-in-Tr2: (8 Q [v]) | Eggs Q@ a2’ € Trpgs
and a2 Vu2-is-aVv2: a2’ Vyg=a 1 Vs
and a2'Cv2-empty: a2’ 1 Cyg = |]
by auto

note very-long-asm
moreover {
assume Nvi-inter-Deltal-inter-E2-empty: Nyy; N Apy N Eggs = {}
and Nv2-inter-Delta2-inter-E1-subsetof-Upsiloni: Nyg N Arg N Epgy € Yy

let PALPHA2"-DELTA2" =3 a2 62" (
set a2' C Epgg A set 62" C Nyp N Apy
AB1 Egg @[c | Eggp @362"” Q [v)] ] Eggg @ a2” € Trpgy
A chl/w VV? = O¢2/1 VV.? AN 052”1 CV2 = H)

from c-in-Cuv-inter-Upsilon v'-in- Vo-inter-Nabla wvalid V2
have ¢ ¢ Eggy V (c € Eggg AN v' ¢ Eggg) V (c € Eggg A v’ € Epgp)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
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assume c-notin-E2: ¢ ¢ Epgo

from validES2 Bv'E2a2’-in-Tr2 have set a2’ C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyg N Apg
by auto
moreover
from Bv'E2a2’-in-Tr2 c-notin-E2
have 31 Eggy @ [c] | Egge @[] @ [v] ] Epge @ a2 € Trggy
by (simp add: projection-def)
moreover
have a2’'1 Vyp=a2'1 Vg ..
moreover
note a2’ Cv2-empty
ultimately have ?ALPHA2"-DELTA2"
by blast
}
moreover {
assume c-in-E2: ¢ € Eggo
and v'-notin-E2: v' ¢ Epgy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset-Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Tpyo
unfolding properSeparationOfViews-def by auto
hence c € Cyy
by auto
moreover
from Sv'E2a2’-in-Tr2 v'-notin-E2 have 3 1 Eggs Q@ a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’ Cv2-empty
moreover
have (Adm V2 02 Trgss (81 Egge) ¢)
proof —
from validES2 Bv'E2a2'-in-Tr2 v'-notin-E2 have 81 Eggs € Trpgs
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def projection-concatenation-commute)
with total-ES2-C2-inter-Upsilon2 c-in-Cv2-inter- Upsilon2
have 51 Eggg Q [c] € Trggs
by (simp add: total-def)
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where one: 81 Egge @Q [¢] @ a2 € Trpgs
and two: a2’ Vyg=a2'l Vi,
and three: a2 1 Cyg = ||
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unfolding BSIA-def
by blast

from one validES2 have set a2 C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyp N Arg
by auto
moreover
from one c-in-E2 v'-notin-E2
have 81 Eggo @ [c] | Egge @[] Q [v] 1 Egge @ a2’ € Trpgo
by (simp add: projection-def)
moreover
note two three
ultimately have ?PALPHA2"-DELTA2"
by blast
}

moreover {
assume c-in-E2: ¢ € Eggo
and v’-in-E2: v’ € Efgy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset-Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Ty
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E2 propSep Views v'-in- Vv-inter-Nabla Nabla-inter-E2-subset-Nabla2
have v’ € V5 N Nabla T2
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E2 Bv'E202'-in-Tr2 have 8|1 Epgy Q [v] Q a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’ Cv2-empty FCI2
ultimately obtain a2’ §2"
where one: set 62" C Ny N Apy
and two: 81 Egge @ [c] @ 62" @ [v] @ a2” € Trggg
and three: 2”1 Vyg = a2’ Vi,
and four: a2’ 1 Cyg =[]
unfolding FCI-def
by blast

from two validES2 have set a2'' C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

note one

moreover

from two c-in-E2 v'-in-E2

have 81 Fgge @Q [c] | Egge @ 62" @Q [v'] | Egge @ a2 € Trggs
by (simp add: projection-def)

moreover

note three four
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ultimately have ?PALPHA2"-DELTA2"
by blast
}
ultimately obtain a2’/ §2"
where a2'-in-E2star: set a2' C Eggg
and §2""-in-N2-inter-DeltaZ2star:set 62" C Ny N Apg
and BE2-cE2-62"-v'E2-a2"-in-Tr2:

B1 Egse@[c] ] Eggy @062" @ [v] ] Eggy @ a2” € Trggy
and a2 Vv2-is-a2'Vu2: a2 1 Vyg=a2’'] Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset- Upsilon1
propSep Views
have cEI1-in-Cvl-inter-Upsilonl: set ([c] 1 Eggy) € Cyy N Ty
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from §2''-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl
propSep Views disjoint-Nv2-Vul
have §2''E1-in-Cvl-inter-Upsilonlstar: set (62" 1 Egg;) € Cy; N Ty
proof —
from 62"'-in-N2-inter-Delta2star
have eq: 62" 1 Epgy = 52" 1 (Nys N Arg N Eggy)
by (metis Int-commute Int-left-commute Int-lowerl Int-lower2
projection-intersection-neutral subset-trans)

from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl propSep Views
disjoint-Nv2-Vul

have NV? N AFQ n EES] - CVZ n TFI
unfolding properSeparationOfViews-def
by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

thus %thesis

by (subst eq, simp only: projection-def, auto)
qed

have ¢§2" E1-in-Cvl-inter-Upsilonistar: set ((c # 62') 1 Egg;) C Cyy; N Ty
proof —
from cE1-in-Cvl-inter-Upsilonl §2''E1-in-Cvl-inter- Upsilonlstar
have set (([C} @ (52”) 1 EESI) - CVI N Yy
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by auto
qed

have 3 a1 §1". set a1 C Epg;
A set 51" C Ny N Ap; U CV] NYr;N Nyos N Arg A B Erg; Q@ [c] 1 Egpg; @éd1"”a
[v]1 Egg @ a1’ € Trgg,
/\all/w VV]:a1'1 sz/\a]”] CVIZH
Ad61" EES,Q:(SQH] Eggy
proof cases
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assume v'-in-E1: v' € Eggy
with Nabla-inter-E1-subset-Nablal propSep Views v’-in- Vu-inter-Nabla
have v’-in-Vvl-inter-Nablal: v’ € Vy,; N Nabla I'1

unfolding properSeparationOfViews-def by auto

have [ (8 @ [v]) 1 Egg; @ a1’ € Trgg; ;

al’] Cyy = [l; set ((c # 62") 1 Eggy) € Cyy N Try;

ce CyNTp;setd2” C Nysn Apg ]

= 3 al” 61" (set a1’ C Epgy A set 61" C Ny N Ap;
U Cyy N Tpy N Nyg N Apg

ANB1Egs; Q1 Epg; @61"Q[v]] Eggy @ al” € Trgg,

/\Oz]”1 VVI :al'] VVI /\01”1 CVI = H

A61"1 (CVI NYTpy) = 621 EES])

proof (induct length ((c # 62'") | Egg;) arbitrary: 8 al’ ¢ §2")
case (

from 0(2) validESI have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H C Ny; N Apy; U Cy;NYrN Nyg N Aryg
by auto
moreover
have 1 EESI Q@ [C] 1 EESI @ H @ [’U/] 1 EESZ @al'e TTESZ
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show ?2thesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a1’'1 Vy;=al’l Vy; ..
moreover
note 0(3)
moreover
from 0(1) have [ 1 (Cy; N YTpy) =62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E1: ¢’ € Epg;
and c62"-is-puc’v: c # 62" =pQlc) Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-uvE1: n = length (1 Q@ v) 1 Eggy)
by blast

from Suc(5) c¢’-in-E1 ¢§2""-is-uc'v
have set (n 1 Eggy @ [c]) € Cy; N Ty
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by (simp only: ¢62'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cvl-inter-Upsilonl: ¢' € Cyy; N YTy
by auto
hence c¢’-in-Cvl: ¢’ € Cy; and c’-in-Upsilonl: ¢’ € Ty
by auto
with validV1 have c’-in-El: ¢’ € Egg;
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)

case Nil

with ¢62"-is-uc’v have c-is-c”: ¢ = ¢’ and 62"-is-v: §2" = v
by auto

with ¢’-in-Cvl-inter-Upsilonl have ¢ € Cy; N Yy
by simp

moreover

note v'-in- Vvi-inter-Nablal

moreover

from v'-in-E1 Suc(3) have (81 Eggy) @ [v] Q@ a1’ € Trpg;
by (simp add: projection-concatenation-commute projection-def)

moreover

note Suc(4) FCI1

ultimately obtain a1’ v
where one: set v C Ny; N Apy
and two: 81 Egg; @ [c] @y @ [v] @ al” € Trgg;
and three: 1”1 Vi =al'] Vy;
and four: a1’ 1 Cy; =]
unfolding FCI-def
by blast

let DELTA1" =v 1 Egg; Qv

from {wo validES1 have set a1’ C Fpg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from one vE1-empty
have set ?DELTA1" C NVI n AFI U CVI N TFI n NV2 N AFQ
by auto
moreover
have 31 Egg; @ [c] | Egg; @ PDELTA1" @ [v]] ] Egg; @ al” € Trggy
proof —
from c-is-¢’ ¢’-in-E1 have [c] = [] | Eggy
by (simp add: projection-def)
moreover
from v'-in-E1 have [v'] = [v'] | Egg;
by (simp add: projection-def)
moreover
note vEI1-empty two
ultimately show ?thesis
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by auto
ged
moreover
note three four
moreover
have ?DELTA1" 1 (Cy; N Ypy) =621 Eggy
proof —
have v 1 (Cy; N Try) =]
proof —
from wvalidV1 have Ny; N Ap; N (Cyy N Yy ={}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cy; N Y]
show ?thesis
by (simp add: projection-def)
qed
with 62"-is-v vE1-empty show ?thesis
by (simp add: projection-concatenation-commute)

qed
ultimately show ?thesis
by blast
next
case (Cons  zs)
with ¢§2"-is-puc’v have p-is-c-zs: p = [c] @ xs
and §2"-is-zs-c’-v: 62" = zs @Q [c] Qv
by auto
with n-is-length-uv E1 have n = length ((c¢ # (zs Q v)) 1 Eggy)
by auto
moreover
note Suc(3,4)
moreover
have set ((c¢ # (zs Qv)) 1 Eggy) € Cy; N Ty
proof —
have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) ¢62"-is-pc'v p-is-c-xs vE1-empty
show ?thesis
by (subst res, simp only: c¢62"'-is-uc’v projection-concatenation-commute
set-append, auto)
qged
moreover
note Suc(6)
moreover
from Suc(7) §2"-is-zs-¢’-v have set (zs @ v) C Nyp N Apg
by auto
moreover note Suc(1)[of czs Qv B al’]
ultimately obtain ¢ ~
where one: set § C Epgy
and two: set v C Ny N Ap; U Cpy N Yy N Nys N Arpg
and three: B1 Epg; @ [c] 1 Egg; @~y @Q [v] 1 Egg; @6 € Trggy
and four: 6 | Vy; =al'l Vi,
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and five: § 1 Cypy = ||
and siz: v | (Cy; N Ypy) = (ws Qv) | Eggy
by blast

let YBETA :/BW EESZ @ [C] 1 EESZ @’7

note c’-in-Cvl-inter-Upsilonl v'-in-Vvl-inter-Nablal
moreover
from three v'-in-E1 have ?BETA Q [v'| @ § € Trggy
by (simp add: projection-def)
moreover
note five FCI1
ultimately obtain a1’ §’
where fci-one: set ' C Ny; N Apy
and fci-two: BETA Q [¢'] @ §' Q@ [v] @ al'”' € Trggy
and fci-three: a1’ 1 Vyy; =61 Vy;y
and fci-four: a1’ Cyy =]
unfolding FCI-def
by blast

let ?DELTAI" =~ @ [¢] @ §’

from fci-two validES1 have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" C Ny NAp; U Cy; N Ty N Nys N Apg
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v
have ¢’ € CVI NYr;N Nys N Arg
by auto
with two fci-one show ?thesis
by auto
qed
moreover
from fci-two v'-in-E1
have 81 Egg; @ [¢] | Egg; @ ?DELTA1" @ [v]1 Egg; @ a1” € Trpg;
by (simp add: projection-def)
moreover
from fci-three four have a1’ 1 Vy; = al’] Vyy
by simp
moreover
note fci-four
moreover
have ?DELTA1" 1 (CVI N TF]) =462""1 Erpgq
proof —
have 6’1 (Cy; N Ypy) =]
proof —
from fci-one have V e € set §'. e € Nyy; N Apy
by auto
with validV1 have V e € set §'. e ¢ Cy; N Yy
by (simp add: isViewOn-def V-valid-def
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VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by (simp add: projection-def)
qed
with c¢’-in-E1 c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qged
ultimately show ?thesis
by blast
qged

qed
from this|OF Bv'Elal’-in-Tri al'Cvi-empty c§2" El-in-Cvl-inter-Upsilonlstar

c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star)
obtain a1’ §1"

where one: set a1’ C Egg;

and two: set §1'' C Ny N Ap; U Cy;NTr; N NysN AF?

and three: ﬂ 1 EESI Q [C} W EE'S] @éd1" @ [v’] 1 EESI Qa1 € T’I"ES]

Aal’” Vyi =al’ Vyi Aal’ CVI = H

and four: §1 "1 (CVI n TFZ) =621 Ergy

by blast

note one two three
moreover
have 61" 1 Eggo = 62" 1 Egg;
proof —
from projection-intersection-neutral|OF two, of E ggo)
Nvl-inter-Deltal-inter-E2-empty valid V2
have 61" 1 Epgs = 611 (CVI NYTpr; N NygNn A[‘Q N EESQ)
by (simp only: Int-Un-distrib2, auto)
moreover
from validV2
have CV] NYpyN Nys N Apg N Epgs = CV] NYpr;N Nyo N Arg
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have 61" 1 Epgy = 61" 1 (Cy; N Ty N Nyg N Apy)
by simp
hence 61" 1 Epgs = 511 (CVI N TF]) 1 (NVQ n Ar‘g)
by (simp add: projection-def)
with four have §1" 1 Eggo = 621 Eggy 1 (NV2 n AFQ)
by simp
hence 61" 1 Epgy = 52" 1 (NVQ N AFQ) 1 Epgy
by (simp only: projection-commute)
with §2'/-in-N2-inter-Delta2star show ?thesis
by (simp only: list-subset-iff-projection-neutral)
qged
ultimately show ?Zthesis
by blast
next
assume v'-notin-E1: v' ¢ Epgy

have [ (8 Q [v]) | Eggy @ a1’ € Trgg; ;
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a1’ Cyy = s set ((c # 62") 1 Eggy) € Cyy N Yryg s
c€ CyNTYp;setd2” C Nysn Arpg ]
= 3 a1 61" (set al” C Eggy A set 61" C Ny,
NAp; U Cy; N Yy N Nyg N Apg ANB1Egs; @[] 1 Egg; @017 Q@ [v]1 Eggy
@al” e Trgsy
/\a]”] VVI :C(]/1 VVI /\DZINW CVI = H
N61"1 Eggg =062"1 Eggy)
proof (induct length ((c # 62'") | Egg;) arbitrary: 8 al’ ¢ 62"
case 0

from 0(2) validESI have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H CNy;NAp;UCy; N YN Nyg N Aryg
by auto
moreover
have [ 1 EESI Q [C] 1 EESI Q@ H @ [’U/] 1 EESZ Qal’'e TTES]
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show ?Zthesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a1’'1 Vy;=al’l Vy; ..
moreover
note 0(3)
moreover
from 0(1) have [| | Egge = 62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E1: ¢’ € Epg;
and c62"-is-pc’v: c # 62" = pQlc) Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-uvE1: n = length (1 Q@ v) 1 Eggy)
by blast

from Suc(5) c¢’-in-E1 ¢§2""-is-puc'v
have set (11 Eggy @ [¢]) € Cyy N Yy
by (simp only: ¢62'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢'-in-Cvl-inter-Upsilonl: ¢' € Cyy; N Ty
by auto
hence c¢’-in-Cvi: ¢’ € Cyy; and c¢'-in-Upsiloni: ¢’ € Ty
by auto
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with validV1 have ¢’-in-E1: ¢’ € Epg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢§2"'-is-pc’v have c-is-c’: ¢ = ¢
and §2"-is-v: 62" = v
by auto
with ¢’-in-Cvl-inter-Upsilonl have ¢ € Cy;
by simp
moreover
from v’-notin-E1 Suc(3) have (8 1 Egg;) Q@ a1’ € Trggy
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V1 o1 Trgg; (61 Eggy) ¢
proof —
have 81 Egg; @ [c] € Trpg;
proof —
from c-is-c’ c¢’-in-Cvl-inter- Upsilonl
have c € Cy; N Ty
by simp
moreover
from validES1 Suc(3)
have (51 Eggy) € Trgs;
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute
prefixclosed-def prefiz-def, auto)
moreover
note total-ES1-C1-inter-Upsilonl
ultimately show ?thesis
unfolding total-def
by blast
qed
thus %thesis
unfolding Adm-def
by blast
qged
moreover
note BSIA1
ultimately obtain a1 "
where one: (81 Eggy) @ [c] @ al” € Trgg,
and two: a1’ 1 Vy; =al’1 Vyy
and three: a1’ 1 Cyy =[]
unfolding BSIA-def
by blast

I

let ?DELTA1" = v | Epgy
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from one validES1 have set a1” C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from vE1-empty

have set ?DELTA1" C NVI N Ap; U CVI NYpr;N NV? N AFQ
by simp

moreover

from c-is-c’ ¢’-in-E1 one v'-notin-E1 vEI-empty

have (ﬂ 1 EESI) Q [C] W EES] @ ?DELTA1" @ [v’] 1 EESZ @ a1” € TTESI
by (simp add: projection-def)

moreover

note two three

moreover

from vEI-empty 62'-is-v have ?DELTA1" | Egge = 62" 1 Egg;
by (simp add: projection-def)

ultimately show ?thesis
by blast

next

case (Cons  zs)

with ¢62"-is-pc'v

have p-is-c-zs: p = [c] @ zs and §2"-is-xs-c’-v: 62" = zs Q [¢'] Q v
by auto

with n-is-length-uv E1 have n = length ((c¢ # (zs Q v)) 1 Eggy)
by auto

moreover

note Suc(3,4)

moreover

have set ((c # (zs Qv)) 1 Eggy) € Cy; N Yy
proof —

have res: ¢ # (zs Q v) = [¢] @ (zs @ v)
by auto

from Suc(5) c¢62"-is-puc'v p-is-c-xs vE1-empty
show ?thesis
by (subst res, simp only: c¢62"'-is-uc'v projection-concatenation-commute
set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) §2"-is-zs-c’-v have set (zs @ v) C Nyy N Apg
by auto
moreover note Suc(1)[of czs Qv B al’]
ultimately obtain § v
where one: set 6 C Eggy
and two: set v C Ny; N Apg U OVJ N Ypr; N Nyg N Arg
and three: B1 Egg; @ [c] 1 Egg; @~ Q [v] | Egg; @6 € Trggg
and four: 6 | Vy; =al'l Vyy
and five: § 1 Cy; = |]
and siz: v 1 Egge = (zs Qv) | Eggy
by blast
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let YBETA = 31 Egg; Q [C] | Egg; @«

from c¢'-in-Cvl-inter-Upsilonl have ¢’ € Cy)
by auto
moreover
from three v'-notin-E1 have ?BETA Q § € Trggy
by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 o1 Trpg; ¢BETA ¢’
proof —
have ?BETA Q [c¢'] € Trgg;
proof —
from validES1 three
have ?BETA € Trggy
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute
prefizclosed-def prefiz-def, auto)
moreover
note c’-in-Cvl-inter-Upsilonl total-ES1-Cl1-inter-Upsilonl
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note BSIA1
ultimately obtain a1’
where bsia-one: ?BETA Q [¢] @ a1l € Trggy
and bsia-two: a1’ 1 Vy; =61 Vyy
and bsia-three: a1’ Cyy = |]
unfolding BSIA-def
by blast

let ?DELTA1" = v @ [¢]

from bsia-one validES1 have set a1’ C Epgy
by (simp add:isViewOn-def ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" C Ny NAr; U Cps N YTy N Nys N Apg
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v
have ¢’ € CV] N TF] N NV2 n AFQ
by auto
with two show ?thesis
by auto
qged
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moreover
from bsia-one v'-notin-E1
have [ 1 Ergy Q [C] 1 Ergy @ ?DELTA1" @ [1}/} 1 Eggq Qa1 e Trpsy
by (simp add: projection-def)
moreover
from bsia-two four have a1’ 1 Vy; = al’1 Vyy
by simp
moreover
note bsia-three
moreover
have ?DELTA1 " 1 EESQ = (52” 1 EESI
proof —
from validV2 Suc(7) §2"'-is-zs-c'-v
have ¢’ € Eggy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E1 c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qged
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'Elal’-in-Tri al’'Cvl-empty c§2'" El-in-Cvl-inter-Upsilonlstar
c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star)
show %thesis
by blast
qged
then obtain a1’ 61"
where a1 ”-in-Elstar: set al” C Eggy
and &1 '""-in-N1-inter-Deltalstar:set 61" C Nyy N Ap; U Cpy N Yp; N Nyg N Apg
and SEI1-cE1-61"-v'El-a1"-in-Tr1:
B1Eps; @[c] 1 Egg; @617 Q [v] | Epgy @ a1’ € Trigg,
and al”Vl-is-al ' Vol: al” 1 Vi =al’] Vy;
and a1’ Cvl-empty: a1’ 1 Cypy =]
and 61'E2-is-62"'E1: 61" | Egge = 62”1 Eggy
by blast

from BE1-cE1-61"-v'El-a1"-in-Tr1 BE2-cE2-02"-v'E2-a2" -in-Tr2
validES1 valid ES2

have §1'"-in-Elstar: set 61" C Epg; and §2'"-in-E2star: set 62" C E gy
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with §1"'E2-is-62" E1 merge-propertylof 61" Epg; 62" Epgs) obtain §'
where §'F1-is-61': 6" 1 Egg; = 61"
and §'E2-is-62": 6' | Eggg = 62"
and 6&'-contains-only-61""-62"-events: set §' C set 51" U set 62"
unfolding Let-def
by auto

let ?TAU =3 Q [c] @ 4§’ Q [v]
let ?LAMBDA = o | Vi,
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let 271 = a1’
let 272 = a2

have ?TAU € TT(ESI | ES2)
proof —
from BE1-cE1-61"-v'El-a1"-in-Tr1 6'El-is-01"" validES1
have 31 Egg; Q [c] | Egg; @ 6" 1 Egg; @ [v] 1 Eggy € Trps;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (6 @ [C] @é' @ [U/]) 1 EES] S TTES]
by (simp add: projection-def, auto)
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62" validES2
have 81 Epge Q [c] 1 Eggs @Q46' 1 Egge @ [v] 1 Egge € Trpss
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (8 @ [c] @ ¢' @ [v]) | Eggs € Trgge
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter- Upsilon VIsViewOnE
&'-contains-only-61""-62""-events §1"'-in-Elstar §2"'-in-E2star
have set (3 Q [c] @ 6’ @ [v]) C Egg; U Eggs
unfolding composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?thesis
unfolding composeES-def
by auto
qed
hence set ?TAU C E(ESI | ES2)
unfolding composeES-def
by auto
moreover
have set 2LAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note al’’-in-Elstar a2''-in-E2star
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 §'E1-is-61"
have ¢TAU | Ergy @ ?T1 € Trggy
by (simp only: projection-concatenation-commute, auto)
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62"
have ?TAU | Egge @ ?T2 € Trpgs
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA 1 Egg; = ?T1 1 Vy
proof —
from propSep Views have ?LAMBDA |1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
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from a1 '’-in-Elstar propSep Views
have ?T1 W VV = ?T1 ] VV]
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’Vwi-is-a Vol al’' Vul-is-al'Vul
ultimately show ?thesis
by simp
qed
moreover
have ?LAMBDA | Epgy = ?T2 1 Vy
proof —
from propSep Views
have PLAMBDA |1 Epgeo = a1 Vs
unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
from o 2'’-in-E2star propSep Views
have ?T2 1 Vy = 2T2 1 Vs
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vo2 a2’ Vu2-is-a2' Vvl
ultimately show ?thesis
by simp
qed
moreover
note a1’ Cvl-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU @ ¢ € TT‘(ESI | ES2)
and t1 Vy = 2LAMBDA
and ¢t 1 Cy = |]
by blast
moreover
have set §' C Ny, N Ap
proof —
from &'-contains-only-61""-62"-events
61"-in-N1-inter-Deltalstar 62" -in-N2-inter-Delta2star
have set §' C Ny;NAp; UNyg N Apg
by auto
with Delta1-N1-Delta2- N2-subset-Delta Nvi-union-Nv2-subsetof-Nv
show %thesis
by auto
qged
ultimately
have 3o’ ' (set v C Ny NApAB Q[ @y @ [v]@a’e Tr(gs; | ES2)
ANa'TVy=alVyAa'lCy=])
by (simp only: append-assoc, blast)
}
moreover {
assume Nv2-inter-Delta2-inter-El-empty: Nyo N Arg N Eggr = {}
and Nvl-inter-Deltal-inter-E2-subsetof-Upsilon2: Ny; N Apy N Egge € Tro
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let PALPHA1"-DELTA1" =3 a1” 61" (
set al' C Epgy A set 61" C Nyy N Apy
AB1Egg; @[ Egg; @d1" @[] 1 Egg; @al” € Trgg,
Aal’” Vyi =al’ Vyi Aol CVZ =1

from c-in-Cv-inter-Upsilon v'-in- Vv-inter-Nabla validV1
have ¢ ¢ Egg, V (c € Egg; ANv' ¢ Eggy) V (c € Eggy A v’ € Eggg)
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E1: ¢ ¢ Eggy

from validES1 Bv'Elal’-in-Tr1 have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Ny; N Ay
by auto
moreover
from Bv'Elal’-in-Trl c-notin-E1
have 81 Egg; @ [c] 1 Fgpg; @ @ [U/] 1 Eggy @ al' € Trpsy
by (simp add: projection-def)
moreover
have a1’1 Vy;=al’| Vy; ..
moreover
note a1'Cvl-empty
ultimately have ?ALPHA1"-DELTA1"
by blast
}
moreover {
assume c-in-E1: ¢ € Egg;
and v'-notin-E1: v' ¢ Egg,

from c-in-E1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilonl1
have c-in-Cvl-inter-Upsilonl: ¢ € Cy; N Ty
unfolding properSeparationOfViews-def by auto
hence c € Cy);
by auto
moreover
from Sv'Elal’-in-Tr1 v'-notin-E1 have 81 Egg; @ a1’ € Trpgy
by (simp add: projection-def)
moreover
note a1'Cvl-empty
moreover
have (Adm V1 o1 Trgg; (81 Eggy) ©)
proof —
from validES1 Bv'Elal’-in-Trl v'-notin-E1 have 81 Egg; € Trpg;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def projection-concatenation-commute)
with total-ES1-C1-inter-Upsilonl c-in-Cuvl-inter-Upsilonl
have 81 Egg; Q [c] € Trggy
by (simp add: total-def)
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thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA1
ultimately obtain o1’
where one: 31 Egg; Q [c] @ a1” € Trggy
and two: al’1 Vy;=al’l Vyy
and three: a1’ 1 Cyy = ||
unfolding BSIA-def
by blast

from one validES1 have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyj; N Apy
by auto
moreover
from one c-in-E1 v'-notin-E1
have 81 Epg; Q[c] | Egg; @[] @ [v]1 Egg; @ a1 € Trpgy
by (simp add: projection-def)
moreover
note two three
ultimately have ?PALPHA1"-DELTA1"
by blast
}

moreover {
assume c-in-E1: ¢ € Egg;
and v’-in-El: v’ € Epg;

from c-in-E1 c-in-Cv-inter- Upsilon propSep Views
Upsilon-inter-E1-subset-Upsilonl
have c-in-Cvi-inter-Upsiloni: c € Cyy N YTy
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E1 propSep Views v'-in- Vv-inter-Nabla Nabla-inter-E1-subset-Nablal
have v’ € Vy; N Nabla T'1
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E1 Bv'Elal’-in-Trl have 31 Egg; @ [v] @ al’ € Trpg;
by (simp add: projection-def)
moreover
note a1 ’'Cvl-empty FCI1
ultimately obtain a1’ §1"
where one: set 61" C Ny; N Apy
and two: f1 Egg; Q@[] @ 61" Q [v] @ al” € Trgg;
and three: a1’ 1 Vy; = al’l Vyy
and four: a1’ 1 Cyy =]
unfolding FCI-def
by blast
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from two validES1 have set a1’ C Epg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note one
moreover
from two c-in-E1 v'-in-E1
have § 1 Egg, @ [c] | Egg; @ 61" @ [v] 1 Eggy @ a1” € Trgg,
by (simp add: projection-def)
moreover
note three four
ultimately have ?PALPHA1"-DELTA1"
by blast
}
ultimately obtain a1’ 51"
where a1 '-in-Elstar: set a1’ C Epg;
and 61 "-in-N1-inter-Deltalstar:set 61" C Ny; N Apy
and BEI1-cE1-01"-v'El-a1"-in-Tr1:
B1Egs; @[c] 1 Egg; @617 @ [v] 1 Egg; @ a1’ € Tryg,
and al”"Vul-is-al'Vol: a1’ 1 Vy;=al'] Vyy
and a1”Cvl-empty: a1’ 1 Cypy =]
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset- Upsilon2 propSep Views
have cE2-in-Cv2-inter-Upsilon2: set ([c] 1 Eggs) C Cya N Trg
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from §1"'-in-Ni-inter-Deltalstar Nvi-inter-Deltal-inter-E2-subsetof-Upsilon2
propSep Views disjoint-Nvl-Vv2
have &1 "' E2-in-Cv2-inter-Upsilon2star: set (61" 1 Eggs) € Cygs N Trg
proof —
from 61 '-in-Nl-inter-Deltalstar have eq: 61" 1 Epge = 61" 1 (Ny; N Ap; N Eggg)
by (metis Int-commute Int-left-commute Int-lower2 Int-lowerl
projection-intersection-neutral subset-trans)

from validV2 Nvl-inter-Deltal-inter- E2-subsetof-Upsilon2
propSep Views disjoint-Nvl- Vo2
have NVI N AF] n EES? - CV2 n TFQ
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (subst eq, simp only: projection-def, auto)
qged

have c¢d1" E2-in-Cv2-inter-Upsilon2star: set ((c¢ # 61"") 1 Egga) € Cyg N Yy
proof —
from cE2-in-Cv2-inter-Upsilon2 §1'' E2-in-Cv2-inter- Upsilon2star
have set (([c] @ §1") 1 Eggs) € Cpa N Trg
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by auto
qed
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have 3 a2’ §2". set a2" C Epgg
A set 62" C NV? n AFQ @] CV2 N TF? n NVI n AF]
NB1Egsy @[c 1 Eggg @62"” Q@ [v]1 Epge @ a2” € Trpgy
N OZQHW VVQ = a2/1 VVQ A 012”] Cyg = H
N62"1 Eggy =01"1 Eggy
proof cases
assume v'-in-E2: v' € Epgy
with Nabla-inter-E2-subset-Nabla2
propSep Views v'-in- Vv-inter-Nabla
have v’-in-Vv2-inter-Nabla2: v’ € Vy,5 N Nabla I'2
unfolding properSeparationOfViews-def by auto

have [ (3 @ [v]) | Epge @ a2’ € Trggy ;

ag’] Cyg = [l; set (c # 61") 1 Eggy) € Cya N Trg;

ceCynTYp;setdl” C Ny;nAp;]

= 3 a2 62" (set a2"' C Epgg A set 62" C Nyg N Apg U Cyg
N Tpe N Nyy N Apyg

NB1Egsy @[c 1 Eggg @62"” Q@ [v]1 Epgg @ a2” € Trpgg

N OZQH] VVQ = a2'1 VV,Q N 042”] CV2 = H

N 62”1 (Cyg N Yrg) =01"1 Eggp)

proof (induct length ((c # 61'") | Eggg) arbitrary: 8 a2’ ¢ §1")
case (

from 0(2) validES2 have set a2’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nyos N Ars U Cpa N Yo N Nyy N Apyg
by auto
moreover
have 31 Eggy @ [c] | Epse @[] @ [v] ] Eggp @ a2’ € Trpgy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggo
by (simp add: projection-def, auto)
ultimately show ?Zthesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a2’'1 Vyg=a2'1 Vg ..
moreover
note 0(3)
moreover
from 0(1) have H 1 (OVQ N TFQ) =61"1 Eggo
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)
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from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggy
and c61"-is-pc’v: c # 51" =pQ@lc) Qv
and vE2-empty: v | Eggs = ||
and n-is-length-uv E2: n = length ((p Q v) 1 Eggo)
by blast

from Suc(5) c¢’-in-E2 ¢§1""-is-uc'v
have set (11 Epgg @ [¢]) € Cyg N Trg
by (simp only: ¢d1''-is-pc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty
by auto
hence c¢’-in-Cv2: ¢’ € Cy 9 and c’-in-Upsilon2: ¢’ € T1g
by auto
with validV2 have c’-in-E2: ¢’ € Eggg
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)

case Nil

with ¢61"-is-puc’v have c-is-¢”: ¢ = ¢’ and §1"-is-v: 61" = v
by auto

with ¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg9 N Ty
by simp

moreover

note v’-in- Vo2-inter-Nabla2

moreover

from v'-in-E2 Suc(3) have (81 Egge) @ [v] Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)

moreover

note Suc(4) FCI2

ultimately obtain a2’ v
where one: set 7 C Nyp N Ary
and two: 81 Egge @ [c] @y @ [v] @ a2” € Trggg
and three: 2”1 Vyg=a2'] Vyg
and four: a2"' 1 Cyg =[]
unfolding FCI-def
by blast

let ?DELTA2" = v | Eggs @ v

from {wo validES2 have set a2’ C Epgo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from one vE2-empty
have set 2DELTA2" C NV2 n AFQ U CVQ N TFQ N NV] n AFI
by auto
moreover
have 3| Eggy @ [c] | Egge @ PDELTA2" @ [v]] | Egge @ a2" € Trggy
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proof —
from c-is-¢’ ¢’-in-E2 have [c] = [c] | Egga
by (simp add: projection-def)
moreover
from v'-in-E2 have [v] = [v] | Eggs
by (simp add: projection-def)
moreover
note vE2-empty two
ultimately show ?thesis
by auto
ged
moreover
note three four
moreover
have ?DELTA2" 1 (CVQ n TFQ) =461""1 Egpgs
proof —
have v | (Cyg N Tpg) = ||
proof —
from validV2 have NVQ N AFQ n (OV2 n Trg) = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cyg N Ty]
show ?thesis
by (simp add: projection-def)
qed
with 61"-is-v vE2-empty show ?thesis
by (simp add: projection-concatenation-commaute)
qed
ultimately show ?2thesis

by blast
next
case (Cons z xs)
with ¢§1"-is-puc’v have p-is-c-zs: p = [c] @ xs
and §1"-is-zs-c’-v: 61" = zs @Q [c] Qv
by auto

with n-is-length-uv E2 have n = length ((c¢ # (zs Q v)) | Egga)

by auto
moreover
note Suc(3,4)
moreover
have set ((c¢ # (zs Q v)) | Eggg) € Cyg N Ty

proof —

have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) c61"-is-pc'v p-is-c-rs vE2-empty
show ?thesis
by (subst res, simp only: c¢61'"-is-pc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
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moreover

from Suc(7) 61"-is-zs-¢’-v have set (zs @ v) C Ny; N Apy
by auto

moreover note Suc(1)[of c zs Qv B a2’

ultimately obtain ¢ ~
where one: set 6 C Epgg
and two: set v C NV2 N AFQ (@] CV2 n TFQ n NV] N AF]
and three: f 1 Egge Q [] 1 Epgy @~ @ [’U’] 1 Egge @6 € Trpgo
and four: § | Vyg = a2'1 Vg
and five: § 1 Cypg = ||
and siz: v 1 (Cpga N Trg) = (zs Qv) | Eggs
by blast

let YBETA :,81 EESQ@ [C] 1 EESQ@’Y

note c’-in-Cv2-inter- Upsilon2 v'-in- Vv2-inter-Nabla2
moreover
from three v'-in-E2 have ?BETA Q [v'| @ § € Trggs
by (simp add: projection-def)
moreover
note five FCI2
ultimately obtain a2’ §’
where fci-one: set ' C Nyg N Apg
and fci-two: PBETA Q [¢'] @ §' Q@ [v] @ a2" € Trggs
and fci-three: a2'' 1 Vyg =61 Vg
and fci-four: a2''] Cyg = |]
unfolding FCI-def
by blast

let ?DELTA2" =~ @ [¢] @ §'

from fci-two validES2 have set a2 C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" C Nys N Apg U Cps N Ypre N Nyg N Apyg
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-zs-c’-v
have ¢’ € Cvg N YTrs N Ny;n Ay
by auto
with two fci-one show ?thesis
by auto
qed
moreover
from fci-two v'-in-E2
have 1 EESQ @ [C] 1 EESQ Q ?DELTA2" @ [1),} 1 EESQ Qa2 e TTESQ
by (simp add: projection-def)
moreover
from fci-three four have a2’ 1 Vg = a2’'] Vg
by simp
moreover
note fci-four
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moreover
have 9DELTA2”1 (CVQ N TFQ) =61 ”1 EESQ
proof —
have ¢’ 1 (CV2 n TFQ) =]
proof —
from fci-one have V e € set 6" e € Nyg N Apy
by auto
with validV2 have V e € set §'. e ¢ Cyg N Yy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (simp add: projection-def)
qed
with c¢’-in-E2 c’-in-Cv2-inter-Upsilon2 §1''-is-zs-c’-v vE2-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qged
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2'Cv2-empty cd1' E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon §1''-in-N1-inter-Deltalstar)
obtain a2’ §2"
where one: set a2’ C Eggg
and two: set §2"' C Nyo N AFQ UCyasNTranN Ny N Ary
and three: B 1 Egge @ [c] | Egge @ 62" @ [v] 1 Epge @ a2” € Trpgg
A a2’ Vye = a2’ Vya A a2’ Cvg = H
and four: 62”1 (Cya N Y1) = 61" 1 Eggs
by blast

note one two three

moreover

have 62" 1 Egg; = 61" 1 Eggo
proof —
from projection-intersection-neutral|OF two, of E ggy]
Nv2-inter-Delta2-inter-E1-empty valid V1
have 62" 1 Epgy = 52" 1 (CyaNYraN Nyy N APy N Eggy)
by (simp only: Int-Un-distrib2, auto)
moreover
from validV'1
have CV.? NYreN Ny N Ap; N Egg; = Cyg N YTre N Ny N Apy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately have 62" 1 Epg; = 62”1 (Cys N Yo N Ny N Apy)
by simp
hence 62" 1 Epgy = 52" 1 (CyanNTro) 1 (Nyr N Apg)
by (simp add: projection-def)
with four have §2" 1 Eggs = 61" Eggo 1 (NVI n AF])
by simp
hence 62" | Egg; = 01" 1 (Ny; N Apg) | Eggse
by (simp only: projection-commute)
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with 61"-in-N1-inter-Deltalstar show ?thesis
by (simp only: list-subset-iff-projection-neutral)
qed
ultimately show ?thesis
by blast
next
assume v'-notin-E2: v' ¢ Eggy

have
[(B@v]) ] Egge @ a2’ € Trggp; a2’] Cyg = [J;
set ((c # 01") 1 Eggg) € Cyg N Yrg;c€ Cy N
set 61" C NVI N AF] ﬂ
=3 a2 2"
(set a2’ C Epga N set 62" C Nyg N Apg U Cvg N YTre N Ny; N Apyg
NB1Egsy @[c]1 Epgg @62 @ [v]1 Epgp @ a2” € Trpgy
A a2’ Vye = a2’ Vya A a2’ CV2 =
A 52//1 Epgs = 51//] EESQ)
proof (induct length ((¢ # 61'") | Eggg) arbitrary: 8 a2’ ¢ 61"
case ()

from 0(2) validES2 have set a2’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nys N Apg U Cys N YTrgogN Ny; N Ay
by auto
moreover
have 81 Epgs Q [c] 1 Eggs @[] Q [v] 1 Egge @ a2’ € Trggg
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggo
by (simp add: projection-def, auto)
ultimately show ?thesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a2'1 Vys=a2'1 Vg ..
moreover
note 0(3%)
moreover
from 0(1) have [| | Egg; = 61" 1 Eggo
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggy
and c¢d1"-is-puc’'v: c# 61" =p Q@] Qv
and vE2-empty: v 1 Eggo = ||
and n-is-length-uv E2: n = length ((p Q v) 1 Egga)
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by blast

from Suc(5) ¢-in-E2 ¢§1""-is-pc'v have set (u 1 Eggs @Q [¢]) € Cypg N YTrg

by (simp only: ¢d1''-is-uc'v projection-concatenation-commute projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty

by auto
hence c¢’-in-Cv2: ¢’ € Cy9 and c¢’-in-Upsilon2: ¢’ € Tpg

by auto
with validV2 have ¢’-in-E2: ¢’ € Epgy

by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢61"-is-puc’v have c-is-¢’: ¢ = ¢’ and §1"-is-v: §1" = v
by auto
with ¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg
by simp
moreover
from v'-notin-E2 Suc(3) have (8 1 Eggs) Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
have 1 Eggo @] [C] € Trggo
proof —
from c-is-¢’ ¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg N Tpg
by simp
moreover
from validES2 Suc(3) have (81 Egge) € Trgss
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute
prefizclosed-def prefiz-def, auto)
moreover
note total-ES2-C2-inter-Upsilon2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where one: (81 Eggs) @ [c] @ a2" € Trggy
and two: a2’ 1 Vyg=a2’'1 Vyy
and three: a2’ 1 Cyy = ||
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unfolding BSIA-def
by blast

let ?DELTA2" = v | Epggs

from one validES2 have set a2 C Epgo
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from v E2-empty

have set ?DELTA2" C NVQ n AFQ U Cvg N TFQ N NVI n AFI
by simp

moreover

from c-is-c’ ¢’-in-E2 one v'-notin-E2 vE2-empty

have (ﬁ 1 EESQ) Q [C] 1 EES? @ ?DELTA2" @ [’U’] 1 EESQ @ a2’ c TT‘ESQ
by (simp add: projection-def)

moreover

note two three

moreover

from vE2-empty 61"-is-v have ?DELTA2" | Egg; = 61" 1 Eggo
by (simp add: projection-def)

ultimately show ?thesis

by blast
next

case (Cons z xs)

with ¢§1"-is-uc’v have p-is-c-zs: p = [c] @ xs
and §1"-is-zs-c’v: 61" = zs Q [¢] Qv
by auto

with n-is-length-pv E2 have n = length ((c # (zs Q v)) | Eggs)
by auto

moreover

note Suc(3,4)

moreover

have set ((c # (zs Q v)) | Eggg) € Cypg N Ty
proof —

have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) c61"-is-puc’v p-is-c-vs vE2-empty
show ?thesis
by (subst res, simp only: ¢§1''-is-pc'v projection-concatenation-commute
set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) 61"-is-zs-¢’-v have set (zs @ v) C Ny; N Apyg
by auto
moreover note Suc(1)[of c zs Qv B a2’
ultimately obtain ¢ ~
where one: set 6 C Eggs
and two: set v C Nys N Aps U Cpa N Yo N Nyy N Apy
and three: 81 Eggg Q [c] 1 Eggo @y Q [v] | Egge @6 € Trggs
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and four: 6 | Vyg = a2'1 Vyy

and five: § 1 Cyyp = ||

and siz: v 1 Eggy = (s Qv) | Eggs
by blast

let PBETA = 1 Egge @ [c] | Egge @ v

from c'-in-Cv2-inter-Upsilon2 have ¢’ € Cyy
by auto
moreover
from three v'-notin-E2 have ?BETA Q § € Trpgog
by (simp add: projection-def)
moreover
note five
moreover
have Adm V2 02 Trpge ¢BETA ¢’
proof —
have ?BETA Q [¢| € Trggs
proof —
from validES2 three have ?BETA € Trpgs
by (simp only: ES-valid-def traces-prefizclosed-def
projection-concatenation-commute prefizclosed-def prefiz-def, auto)
moreover
note c’-in-Cv2-inter- Upsilon2 total-ES2-C2-inter- Upsilon2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where bsia-one: ?BETA Q [¢] @ a2 € Trggo
and bsia-two: a2" 1 Vyg =61 Vg
and bsia-three: a2''1 Cyg = |]
unfolding BSIA-def
by blast

let ?DELTA2" = v @ [¢]

from bsia-one validES2 have set a2” C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" C Nyos N Arp U Cya N Yo N Ny N Apyg
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-zs-c’-v
have ¢’ € CV2 N YTrse N Ny n Ay
by auto
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with two show ?thesis
by auto
qged
moreover
from bsia-one v'-notin-E2
have [ 1 Epga (@ [C] 1 EEpgo @ ?DELTA2" @ [Uq 1 Epge Qa2 e Trpgs
by (simp add: projection-def)
moreover
from bsia-two four have a2’ 1 Vyg = a2’ Vi,
by simp
moreover
note bsia-three
moreover
have QDELTAQ// 1 EES] =61 " 1 EESQ
proof —
from validV1 Suc(7) 61"-is-zs-c’-v have ¢’ € Egg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E2 ¢’-in-Cv2-inter-Upsilon2 §1"'-is-xzs-c’-v vE2-empty six
show ?thesis
by (simp only: projection-concatenation-commute
projection-def, auto)
qged
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2'Cv2-empty c§1' E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon §1''-in-N1-inter-Deltalstar)
show %thesis
by blast
qed
then obtain a2’/ 62"
where a2'-in-E2star: set a2’ C Eggy
and §2'"-in-N2-inter-Delta2star:set §2"' C Nyyg N Apg U Cyg N Trg N Nyy N Apy
and BE2-cE2-62"-v'E2-a2"-in-Tr2:
B1 Epsy @[cl 1 Eggp @62”Q [v] ] Epgg @ a2” € Trpgy
and a2 Vv2-is-a2'Vu2: a2 1 Vyg = a2’ Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
and 02''E1-is-61""E2: 62" 1 Egg; = 61" 1 Eggo
by blast

from BE2-cE2-62"-v'E2-a2""-in-Tr2 BE1-cE1-01"-v'El-a1"'-in-Tr1
validES2 validES1

have §2'"-in-E2star: set 62" C Epgg and §1'"-in-Elstar: set 61" C Epg;
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with §2"'E1-is-61" E2 merge-propertylof 62" Epgs 61" Epg;) obtain §’
where §'E2-is-62'": §' 1 Epgy = 62"
and §'El-is-61": 6" | Egg; = 61"
and 6&'-contains-only-62''-61""-events: set §' C set §2"' U set 51"
unfolding Let-def
by auto
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let ?TAU = B Q@ [c] @ §' @ [v]
let PLAMBDA = o1 Vy,

let 272 = a2

let ¢T1 = a1’

have ?TAU € TT(ESI | ES2)
proof —
from BE2-cE2-62"-v'E2-a2"-in-Tr2 §'E2-is-02"" validES2
have 81 Eggy @ [c] | Eggp @ 6" | Egge @ [v)] | Eggg € Trggp
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (6 @ [C] @' @ [U/]) 1 EESQ S TTESQ
by (simp add: projection-def, auto)
moreover
from BE1-cE1-01"-v'El-a1’-in-Tr1 §'El-is-61" validES1
have 81 Egg; @ [c] 1 Egg; @ 6" 1 Eggy @ [v)] 1 Eggy € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3 @ [c] @ 6" @ [v]) | Egg; € Trgsy
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE §'-contains-only-62''-61"-events
62"-in-E2star 61"'-in-Elstar
have set (3@ [c] @ 6" @ [v]) C Egge U Eggy
unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?thesis
unfolding composeES-def
by auto
qed
hence set ?TAU C E(ES] | ES2)
unfolding composeES-def
by auto
moreover
have set 2LAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note a2’’-in-E2star a1'’-in-Elstar
moreover
from BE2-cE2-62"-v'E2-a2"-in-Tr2 §'E2-is-62"
have ¢TAU | Epgo @ ?T2 € Trego
by (simp only: projection-concatenation-commute, auto)
moreover
from BE1-cE1-01"-v'El-a1"-in-Tr1 §'E1-is-61"
have ?TAU | Egg; @ ?T1 € Trggy
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA 1 Egge = ?T2 1 Vy
proof —
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from propSep Views
have ?LAMBDA |1 Egge = a1 Vyy
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from «2''-in-E2star propSep Views
have ?T2 1 Vy = 2T2 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vo2 a2’ Vu2-is-a2' Vvl
ultimately show ?Zthesis
by simp
qed
moreover
have ?LAMBDA 1 Egg; = ?T1 1 Vy
proof —
from propSep Views
have ?LAMBDA 1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
from o1 '’-in-Elstar propSep Views
have ?T1 1 Vy = ?T1 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’'Vwi-is-a Vol al’' Vol-is-al'Vul
ultimately show ?thesis
by simp
qged
moreover
note a2’ Cv2-empty a1’ Cvi-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU @Q ¢ € T’I'(ESJ | ES2)
and t1 Vy = 2LAMBDA
and t ] Cy =[]
by blast
moreover
have set §' C Ny, N Ap
proof —
from §'-contains-only-62'"-61""-events §2"'-in-N2-inter- Delta2star
§1""-in-N1-inter-Deltalstar
have set §' C NV? N Arg U NV] n AF]
by auto
with Deltal-N1-Delta2-N2-subset-Delta Nvl-union-Nv2-subsetof-Nv show ?thesis
by auto
qged
ultimately have 3a’ ' (set v C Ny NAp AB Q[ @' @ [v] Q@a’e Tr(gsi || ES2)
/\o/} sza] Vv/\oz/] OV:H)
by (simp only: append-assoc, blast)

ultimately have 3o’ 7" (set 7" C Ny NAr AB Q[ @~y @v]@a’e Tr(gs1 || ES2)
Aol Vy=alVyAra'lCy=1])
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}

by blast

thus ?thesis

unfolding FCI-def
by blast

qed

theorem compositionality-FCIA:

[

BSD V1 Trggy; BSD V2 Trpgg; BSIA o1 V1 Trggy; BSIA 02 V2 Trggs;

(01 V1) C (e V) N Eggy; (02 V2) C (0 V) N Eggg;

total ES1 (CVI N TF] N NV? N Arg); total ES2 (CVQ N TFQ N NVI N AF]);
Vr N Egs; € Ve Vi N Egge © Vg

Tr N Egs; € YTry; Tr N Egge © Trg;

(

Apry; N Ny UApg N Nyg ) € A

(Nyi N Ap; N Egseg={} ANys N Apg N Egg; € Try)

\

(NygNApgN Eggy ={} ANy; NApr; N Egge € Trg) ;

FCIA 91 T1 V1 Trggy; FCIA 02 T2 V2 Trggs |
= FCIA o TV (TT(ESI I ESQ))

proof —
assume BSDI1: BSD V1 Trggq

{

and BSD2: BSD V2 TTESQ

and BSIA1: BSIA o1 V1 Trgg;

and BSIA2: BSIA 02 V2 Trggs

and plvl-subset-pv-inter-E1: (91 V1) C (¢ V) N Egg;

and o2v2-subset-gv-inter-E2: (02 V2) C (¢ V) N Eggg

and total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2:

total ES1 (Cyy N Ypy N Nyg N Arg)

and total-ES2-C2-inter- Upsilon2-inter-N1-inter-Deltal :

total ES2 (CVQ N YTre N Ny N Arg)

and Nabla-inter-E1-subset-Nablal: Vi N Eggy € Vg

and Nabla-inter-E2-subset-Nabla2: Vi N Egge € Vg

and Upsilon-inter-E1-subset-Upsilonl: Yr N Epg; € Y1y

and Upsilon-inter-E2-subset-Upsilon2: Y N Egge C Yo

and Deltal-N1-Delta2-N2-subset-Delta: ( Apy; N Ny; U Apga N Ny ) C Ap
and very-long-asm: (NV1 NAr; N Egge = {} A Nyg N Arg N Egg; C TF])
V(Ny2 N Apg N Eggy ={} A Ny 0 Apy N Eggg € Try)

and FCIAI: FCIA o1 T'1 V1 Trggy

and FCIA2: FCIA 92 T2 V2 Trggo

fixa fcov’

assume c-in-Cv-inter-Upsilon: ¢ € (Cy N Y1)
and v’-in-Vu-inter-Nabla: v’ € (Vy, N V)
and Bv'a-in-Tr: (8 @ [v] @ ) € Tr(gs1 || ES2)
and aCv-empty: o 1 Cy =[]
and Adm: Adm V (TT(ESI I ESQ)) Bc

interpret CSES1: CompositionSupport ES1 V V1

using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES1 validV1)
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interpret CSES2: CompositionSupport ES2 V V2
using propSep Views unfolding properSeparationOf Views-def
by (simp add: CompositionSupport-def validES2 validV?2)

from Av'a-in-Tr

have Bv'a-El-in-Tri: (((8 @ [v']) @ o) 1 Egg;) € Trgs;
and SBv'a-E2-in-Tr2: (8 Q [v]) @ a) | Egge) € Trggs
by (simp add: composeES-def)+

from CSESI1.BSD-in-subsystem2[OF Bv’a-El-in-Tr1 BSD1] obtain a1’
where Sv'Elal’-in-Trl: (8 Q [v]) | Epg; @ a1’ € Trpgy
and ol 'Vul-is-aVvl: al'] Vy;=al Vy;
and al’'Cvi-empty: a1’ 1 Cyy = |]
by auto

from CSES2.BSD-in-subsystem2[OF Bv'a-E2-in-Tr2 BSD2] obtain a2’
where Sv'E2a2’-in-Tr2: (8 Q [v]) | Eggs Q@ a2’ € Trpgs
and a2 Vu2-is-aVv2: a2’ Vyg=al Vyy
and a2'Cv2-empty: a2’ 1 Cyg = ||
by auto

note very-long-asm
moreover {
assume Nvi-inter-Deltal-inter-E2-empty: Nyy; N Apy N Egge = {}
and Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl: Ny N Ars N Eggy € Y1y

let PALPHA2"-DELTA2" =3 a2 §2". (
set a2" C Eggy A set 62" C ]\,//VQOAFQ .
ANB1Epsy @[c1 Epge @62"” @ [v]1 Epgy @ a2” € Trpgy
A a2’ Vye = a2’ Vya A a2’ CVQ = H)

from c-in-Cv-inter-Upsilon v'-in- Vv-inter-Nabla valid V2
have ¢ ¢ Eggy V (c € Eggg N v' ¢ Eggg) V (c € Eggg A v’ € Egg)
by (simp add: V-valid-def is ViewOn-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E2: ¢ ¢ Epgo

from validES2 Bv'E2a2’-in-Tr2 have set a2’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H - NV2 n AFQ
by auto
moreover
from Bv'E2a2’-in-Tr2 c-notin-E2
have 31 Egge @ [c] | Egge @[] Q@ [v] ] Egge @ a2’ € Trggs
by (simp add: projection-def)
moreover
have a2’'1 Vyg=a2'1 Vg ..
moreover
note a2’ Cv2-empty
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ultimately have ?ALPHA2"-DELTA2"
by blast
}

moreover {
assume c-in-E2: ¢ € Eggo
and v'-notin-E2: v' ¢ Epgy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset-Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Yo
unfolding properSeparationOfViews-def by auto
hence c € Cyy
by auto
moreover
from Sv'E2a2’-in-Tr2 v'-notin-E2 have 3 1 Eggs Q@ a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’'Cv2-empty
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
from Adm obtain v
where yguv-is-fov: v 1 (e V) =81 (¢ V)
and ~yc-in-Tr: (v Q [¢]) € Tr(gsi || ES2)
unfolding Adm-def
by auto

from c-in-E2 ~yc-in-Tr have (v 1 Egge) @Q [c] € Trggg
by (simp add: projection-def composeES-def)
moreover
have 7 | Epsy | (2 V2) = 81 Epgs 1 (02 V2)
proof —
from ygu-is-3ov have 71 Egs 1 (e V) = 81 Eggs 1 (0 V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v | (02 V2) = 81 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qed
moreover
note BSIA2
ultimately obtain a2
where one: 81 Eggs @ [c] @ a2 € Trggs
and two: a2’ Vyg=a2'1 Vyy
and three: 2”1 Cyg = ||
unfolding BSIA-def
by blast

from one validES2 have set a2’ C Eggg
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by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nygp N Apg
by auto
moreover
from one c-in-E2 v'-notin-E2
have 31 Eggy @ [c] | Egge @[] @ [v] ] Epgp @ a2” € Trggy
by (simp add: projection-def)
moreover
note two three
ultimately have ?PALPHA2"-DELTA2"
by blast
}
moreover {
assume c-in-E2: ¢ € Eggy
and v'-in-E2: v' € Eggy

from c-in-E2 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter- E2-subset- Upsilon2
have c-in-Cv2-inter-Upsilon2: ¢ € Cyp N Yo
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E2 propSep Views v'-in- Vv-inter-Nabla Nabla-inter- E2-subset-Nabla2
have v’ € Vyp N Nabla T'2
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E2 Bv'E2a2’-in-Tr2 have 81 Epgy Q [v] @ a2’ € Trpgs
by (simp add: projection-def)
moreover
note a2’'Cv2-empty
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
from Adm obtain v
where yguv-is-fov: v 1 (¢ V) =81 (¢ V)
and ~yc-in-Tr: (v Q [¢]) € Tr(gsi || ES2)
unfolding Adm-def
by auto

from c-in-E2 ~yc-in-Tr have (v 1 Egge) Q [c] € Trggg
by (simp add: projection-def composeES-def)
moreover
have 7 | Epgp | (02 V2) = 1 Epgg | (02 V2)
proof —
from ~ypv-is-Bov have v 1 Egga 1 (0 V) =81 Egge 1 (0 V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v | (02 V2) = 81 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def

245



by auto

qed

moreover

note FCIA2

ultimately obtain a2’ §2"
where one: set 62" C Ny N Apy
and two: 81 Fgge @ [c] @627 Q [v] @ a2” € Trggs
and three: a2 1 Vyg=a2’'l Vyg
and four: a2’ 1 Cyg =[]
unfolding FCIA-def
by blast

from two validES2 have set a2’ C Eggg
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

note one

moreover

from two c-in-E2 v'-in-E2

have 81 Eggy @ [c] | Epgg @ 62" @ [v] 1 Eggy @ 02" € Trpgy
by (simp add: projection-def)

moreover

note three four

ultimately have PALPHA2"-DELTA2"
by blast

}

ultimately obtain a2’ §2"
where a2"-in-E2star: set a2' C Epgg
and 62 '"-in-N2-inter-Delta2star:set 62" C Ny N Apg
and BE2-cE2-02"-v'E2-a2"-in-Tr2:
B1 Epss @[c] 1 Epge @ 62" Q@ [v] | Eggy @ a2” € Trygy
and a2”Vv2-is-a2'Vv2: a2 1 Vyg=a2'] Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
by blast

from c-in-Cv-inter- Upsilon Upsilon-inter-E1-subset-Upsilonl propSep Views
have cEI1-in-Cvl-inter-Upsilonl: set ([c] 1 Eggy) € Cyy N Ty
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from §2''-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilonl
propSep Views disjoint-Nv2- Vol
have §2''E1-in-Cvl-inter-Upsilonlstar: set (62" 1 Egg;) € Cy; N Ty
proof —
from 62"'-in-N2-inter-Delta2star
have eq: 62" 1 Epg; = 52" 1 (Nys N Arg N Eggy)
by (metis Int-commute Int-left-commute Int-lowerl Int-lower2
projection-intersection-neutral subset-trans)

from validV1 Nv2-inter-Delta2-inter-E1-subsetof- Upsilon1
propSep Views disjoint-Nv2-Vul

have NV? M AFQ n EESZ - CV] n TFI
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def
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VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus %thesis
by (subst eq, simp only: projection-def, auto)
qed

have ¢62" E1-in-Cvi-inter-Upsilonistar: set ((c¢ # 62"") 1 Eggs) € Cy; N Yy
proof —
from cE1-in-Cvl-inter-Upsilonl §2''E1-in-Cvl-inter- Upsilonlstar
have set (([c] @ 62") 1 Eggs) € Cyy; N Ty
by (simp only: projection-concatenation-commute, auto)
thus %thesis
by auto
qed

have
J a1’ 81" set a1’ C Epgr N set 51" C Ny; N Ar; U Cpy N Ty N Nyg N Apg
AB1Egg; @[c 1 Eggy @d1"Q[v] 1 Egg; @al” € Trgg,
Aal’”] Vyi =al’ Vyi Aal’ CVI = H
VAN (51//1 Epgs = 62”] Ergy
proof cases

assume v'-in-E1: v' € Eggy

with Nabla-inter-E1-subset-Nablal propSep Views v'-in- Vu-inter-Nabla

have v’-in-Vvl-inter-Nablal: v’ € Vy,; N Nabla T'1

unfolding properSeparationOfViews-def by auto

have [ (8 8 [v) 1 Bpgs ® a1’ € Trpg; |
al’l Cyy = []; set ((c # 02") 1 Egsy) € Cy; N Yy ;
c€ CyNTYp;setd2” C Nygn Apg;
Adm 'V % (TT(ESI ” ES,Q)) ,3 CII
= 3J a1’ 51"
(set al’ C Eggy N set 51" C Ny NAr; U Cps N Yy N Nys N Ay
ANB1Egs; @lc | Egg; @61"Q [v] 1 Eggy @ al” € Trgg,
Aol Vyi =l Vyi Aol Cyr=1
ANS1"1 (Cyy; N Yry) =062"1 Eggy)
proof (induct length ((c¢ # 62') 1 Eggy) arbitrary: 8 al’ ¢ §2")
case (

from 0(2) validES1 have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H C Ny;n Ar; U Cy;N TN Nyg N Aryg
by auto
moreover
have 81 Egg; Q@ [c] 1 Egg; Q| Q [v] 1 Egg; @ a1’ € Trpgy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show “thesis
by (simp add: projection-concatenation-commute projection-def)
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qed

moreover

have a1’1 Vy;=al’l Vy; ..

moreover

note 0(3)

moreover

from 0(1) have [ 1 (Cy; N Ypy) =62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)

ultimately show ?case
by blast

next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E1: ¢’ € Epg;
and c62"-is-pc’v: c # 62" =p Q@ lc) Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-uvE1: n = length ((p Q@ v) 1 Eggy)
by blast

from Suc(5) ¢'-in-E1 ¢62""-is-pc'v have set (u 1 Egg; @ [¢]) € Cyy N Ty
by (simp only: ¢62'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cvl-inter-Upsilonl: ¢' € Cyy; N YTy
by auto
hence c¢’-in-Cvl: ¢’ € Cy; and c¢’-in-Upsiloni: ¢’ € Ty
by auto
with validV1 have c’-in-El: ¢’ € Eggy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢§2"-is-uc’v have c-is-c”: ¢ = ¢’ and §2"-is-v: §2" = v
by auto
with ¢’-in-Cvl-inter-Upsilonl have ¢ € Cy; N Yy
by simp
moreover
note v'-in-Vol-inter-Nablal
moreover
from v'-in-E1 Suc(3) have (81 Eggy) @ [v] Q@ a1’ € Trgg;
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V1 Q] TTESI (B 1 EESI) Cc
proof —
from Suc(8) obtain ~
where youv-is-fov: v 1 (¢ V) =81 (¢ V)
and yc-in-Tr: (v @Q [¢]) € Tr(gs1 || ES2)
unfolding Adm-def
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by auto

from c-is-¢’ ¢’-in-E1 ~yc-in-Tr have (v 1 Egg;) Q [] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; 1 (o1 V1) = B 1 Eggs 1 (o V1)
proof —
from ~yov-is-Bov have v | Egg; 1 (e V) =81 Egg; 1 (e V)
by (metis projection-commute)
with plvI-subset-pv-inter-E1 have v 1 (o1 V1) =1 (01 V1)
by (metis Int-subset-iff ~vov-is-Bov projection-subset-elim)
thus %thesis
by (metis projection-commute)
qged
ultimately show #thesis unfolding Adm-def
by auto
qged
moreover
note FCIA1
ultimately obtain a1’ v
where one: set v C Ny; N Apy
and two: 81 Egg; Q@[] @y Q [v] @al’ € Trgg;
and three: 1”1 Vi =al’] Vy;
and four: a1’ 1 Cy; =]
unfolding FCIA-def
by blast

let ?DELTA1" = v | Egg; @

from two validES1 have set al' C Egg;
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from one vEI1-empty

have set ?DELTA1" C Ny N Ap; U Cy; N YTpy N Nys N Arg
by auto

moreover

have ﬂ 1 EES'I @ [C] ] EESI @ ?DELTA1" @ [U’} 1 EESI @ a1 " S TTESI
proof —

from c-is-¢’ ¢’-in-E1 have [c] = [c] | Eggy
by (simp add: projection-def)
moreover

from v’-in-E1 have [v] = [v/] | Eggy
by (simp add: projection-def)
moreover
note vEI-empty two
ultimately show ?thesis
by auto
qed
moreover
note three four
moreover
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have ?DELTA1" 1 (Cy; N Ypy) =621 Eggy
proof —
have v | (Cy; N Try) =]
proof —
from validV1 have Ny; N Ap; N (Cy; N Ypy) = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cyy; N Y]
show ?thesis
by (simp add: projection-def)
ged
with §2"-is-v vE1-empty show ?thesis
by (simp add: projection-concatenation-commute)
ged
ultimately show ?thesis
by blast
next
case (Cons z xs)
with ¢62"-is-pc'v
have p-is-c-zs: p = [c] @ zs and §2"-is-xs-c’-v: 62" = 25 Q [¢'] Q v
by auto
with n-is-length-pvE1 have n = length ((c # (zs Q v)) | Eggy)
by auto
moreover
note Suc(3,4)
moreover
have set ((c¢ # (zs Qv)) 1 Eggy) € Cy; N Ty
proof —
have res: ¢ # (zs Q v) =[] @ (zs Q v)
by auto

from Suc(5) c62"-is-puc’v p-is-c-vs vE1-empty
show ?thesis
by (subst res, simp only: c62'"-is-uc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) 62"-is-zs-¢’-v have set (zs @ v) C Nyg N Apg
by auto
moreover note Suc(8) Suc(1)[of czs Qv B al’]
ultimately obtain § vy
where one: set 6 C Epgy
and two: set v C Ny; N Ap; U Cpy N Yy N Nys N Arg
and three: B1 Egg; Q[c] 1 Egg; @y Q [v] 1 Egg; @6 € Trggy
and four: 6 | Vy; =al'] Vyy
and five: § 1 Cyy = ||
and siz: v 1 (Cy; N Ypry) = (xs Qv) | Eggy
by blast
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let PBETA =1 Egg; @ [c] 1 Eggy @ v

note c’-in-Cvl-inter-Upsilonl v'-in-Vvl-inter-Nablal
moreover
from three v'-in-E1 have ?BETA Q [v'] Q § € Trpgy
by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 o1 Trpg; ?BETA ¢’
proof —
have ?BETA Q [¢'] € Trpg;
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-ws-c’-v
have ¢’ € Cy; N Ty N Nys N Arg
by auto
moreover
from validES1 three have BETA € Trgg;
by (unfold ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES1-C1-inter-Upsilonl-inter-N2-inter-Delta2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note FCIA1
ultimately obtain a1’ §’
where fcia-one: set §' C Nyy; N Apy
and fcia-two: ?BETA Q [¢'] @ §' @ [v'] @ a1 € Trpgy
and fcia-three: a1”1 Vy; =481 Vyy
and fcia-four: a1’ 1 Cyy =
unfolding FCIA-def
by blast

let DELTA1" =~ @ [¢] @ §’

from fcia-two validESI have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set DELTA1" C NVI n AFI U CVI N TFI N NV2 n AFQ
proof —
from Suc(7) ¢'-in-Cvl-inter-Upsilonl 62'-is-zs-c'-v
have ¢’ € OVI N TF] n NV2 n AFQ
by auto
with two fcia-one show ?thesis
by auto

251



qed
moreover
from fcia-two v'-in-E1
have 81 Fgg; @Q [c] | Egg; @ ?DELTA1” Q [v 1 Egg; @ al” € Trgg;
by (simp add: projection-def)
moreover
from fcia-three four have a1’ 1 Vy; = al’1 Vyy
by simp
moreover
note fcia-four
moreover
have ?DELTA1" 1 (Cy; N Ypy) =621 Eggy
proof —
have §’ 1 (CVI NYrs) =1
proof —
from fcia-one have V e € set §'. e € Nyy; N Apy
by auto
with validV1 have V e € set 6'. e ¢ Cy; N Yy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by (simp add: projection-def)
ged
with c¢’-in-E1 c¢’-in-Cvl-inter-Upsilonl §2"'-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'Elal’-in-Tr1 al’Cvl-empty c¢62' El-in-Cvl-inter-Upsilonlstar
c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star Adm)
obtain a1’ §1"
where one: set a1’ C Eggy
and two: set 61" C Ny;NAp; U Cpy N YTpy N Nys N Apg
and three: 81 Egg; @ [¢] | Egg; @ 61" Q [v]1 Epg; @ a1’ € Trggy
/\al”] Vyi :Oz1/1 Vyi /\a]”] CVI = H
and four: 61”1 (Cy; N Ypy) =62" 1 Eggy
by blast

note one two three

moreover

have 61" 1 Epgs = 52" 1 Ergy
proof —
from projection-intersection-neutral|OF two, of E ggo)
Nvl-inter-Deltal-inter- E2-empty valid V2
have 61" 1 Epge = 611 (Cyr N Yy N Nys N Aprg N Eggg)
by (simp only: Int-Un-distrib2, auto)
moreover
from validV2
have OVI n TFI n NVQ n AFQ n EESQ = CVI n TFI n NV? N AF?
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by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately have 61" 1 Epgy = 61" 1 (Cy; N Ty N Nyg N Apy)
by simp
hence 61 ”1 Epgs = 51" (CVI N TFI) 1 (NVQ N AFQ)
by (simp add: projection-def)
with four have 61”1 Epgo = 62”1 Egg; 1 (Nyg N Arpg)
by simp
hence 61" 1 Epgy = 52" 1 (NVQ N Arg) 1 Eggq
by (simp only: projection-commute)
with §2"'-in-N2-inter-Delta2star show ?thesis
by (simp only: list-subset-iff-projection-neutral)
qed
ultimately show ?thesis
by blast
next
assume v'-notin-E1: v' ¢ Eggy

have [ (3 @ [v]) | Epg; @ al’ € Trgg; ;
al’] Cyy = [l; set ((c #62") 1 Eggy) € Cyy N Try;
ce CyNnNTr;set 52" C Nyo N Arg;
Adm V o (TT(ESI II ESQ)) ﬁ C]]
= J a1 61" (set al”" C Eggy A set 61" C Ny,
NAp; U Cpy 0Ty N Nys N Apg
ANB1Egs; @l Egg; @61"Q [v] 1 Egg; @al” € Trgg,
Aol Vyi =al’ Vyi Aal' CV] =
AS1" Eggo = 621 EESI)
proof (induct length ((¢ # 62'") | Egg;) arbitrary: 8 al’ ¢ §2")
case (

from 0(2) validESI have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H - NV] n AFZ @] CVI NYr;N Nyg n AFQ
by auto
moreover
have [ 1 Epgq Q [C] 1 Ergy @ H @ ['U/] 1 Ergy @al'e Tregy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Epgy
by (simp add: projection-def, auto)
ultimately show %thesis
by (simp add: projection-concatenation-commute projection-def)
qged
moreover
have a1’1 Vy;=al’1 Vy; ..
moreover
note 0(3)
moreover
from 0(1) have [| | Egge = 62" 1 Eggy
by (simp add: projection-def, split if-split-asm, auto)
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ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where ¢’-in-E1: ¢’ € Eggy
and c¢d2"-is-uc’v: c # 62" =p Q] Qv
and vEI-empty: v 1 Eggy = ||
and n-is-length-pvE1: n = length (p Q@ v) 1 Eggy)
by blast

from Suc(5) c¢-in-E1 ¢62""-is-pc'v have set (u1 Egg; @ [¢]) € Cyy N Ty

by (simp only: ¢§2"'-is-uc'v projection-concatenation-commute projection-def, auto)
hence c¢’-in-Cuvl-inter-Upsilonl: ¢' € Cyy; N YTy

by auto
hence c¢’-in-Cvl: ¢’ € Cy; and c¢’-in-Upsiloni: ¢’ € Ty

by auto
with validV1 have c’-in-El: ¢’ € Eggy

by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢§2"-is-uc’v have c-is-c”: ¢ = ¢’ and 62"-is-v: §2" = v
by auto
with ¢'-in-Cvl-inter-Upsilonl have ¢ € Cy);
by simp
moreover
from v’-notin-E1 Suc(3) have (81 Egg;) @ a1’ € Trggy
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V1 o1 Trgg; (81 Eggy) ¢
proof —
from Suc(8) obtain v
where yov-is-Bov: v 1 (e V) =81 (¢ V)
and vyc-in-Tr: (v Q [c]) € Tr(gs1 | ES2)
unfolding Adm-def
by auto

from c-is-¢’ ¢’-in-E1 ~yc-in-Tr have (v | Eggy) Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; 1 (01 V1) =B 1 Eggy 1 (01 V1)
proof —
from ~yov-is-Bov have v | Egg; 1 (e V) =81 Egg; 1 (e V)
by (metis projection-commute)
with plvl-subset-gv-inter-E1 have v 1 (o1 V1) =1 (01 V1)
by (metis Int-subset-iff ~vov-is-Bov projection-subset-elim)
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thus %thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qged
moreover
note BSIA1
ultimately obtain a1’
where one: (81 Egg;) @ [c] @ al’ € Trgg;
and two: a1’ 1 Vy; =al’l Vyy
and three: a1’ 1 Cyy =[]
unfolding BSIA-def
by blast

let ?DELTA1" = v | Eggy

from one validES1 have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from vE1-empty

have set ?DELTA1" C NVJ n AFI U CVI N TF] N NVQ n AFQ
by simp

moreover

from c-is-c’ ¢’-in-E1 one v'-notin-E1 vEI1-empty

have (ﬂ 1 EESI) @ [C] W EES] @ ?DELTA1" @ [U’] 1 EESI @ Oé]” S TTESI
by (simp add: projection-def)

moreover

note two three

moreover

from vEI-empty §2"-is-v have ?DELTA1" | Eggs = 62" |1 Eggy
by (simp add: projection-def)

ultimately show ?thesis
by blast

next

case (Cons z xs)

with ¢62"-is-pc'v

have p-is-c-zs: p = [c] @ zs and §2"-is-xs-c’-v: 62" = 25 Q [¢'] Q v
by auto

with n-is-length-pv E1 have n = length ((c¢ # (zs Q v)) | Eggy)
by auto

moreover

note Suc(3,4)

moreover

have set ((c¢ # (zs Q v)) 1 EFggy) € Cy; N Yy
proof —

have res: ¢ # (zs Q v) =[] @ (zs Q v)
by auto

from Suc(5) c62"-is-puc’v p-is-c-vs vE1-empty

show ?thesis
by (subst res, simp only: c§2''-is-uc'v projection-concatenation-commute
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set-append, auto)
ged
moreover
note Suc(6)
moreover
from Suc(7) §2"-is-zs-c’-v have set (zs @ v) C Nyg N Apg
by auto
moreover note Suc(8) Suc(1)[of czs Qv B al’]
ultimately obtain ¢ ~
where one: set § C Egg;
and two: set v C Ny; N Ap; U Cpy N Ty N Nyo N Arp
and three: B1 Egg; @ [c] 1 Egg; @~y @Q [v] 1 Egg; @ 6 € Trggy
and four: 6 | Vy; =al'l Vyy
and five: § 1 Cyy = |]
and siz: v 1 Egge = (xs Qv) | Eggy
by blast

let PBETA =1 Egg; @ [c] 1 Eggy @ v

from c¢'-in-Cvl-inter-Upsilonl have ¢’ € Cy)
by auto
moreover
from three v'-notin-E1 have ?BETA Q § € Trpg,;
by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 o1 Trpg; ¢BETA ¢’
proof —
have ?BETA Q [¢'] € Trpg;
proof —
from Suc(7) ¢'-in-Cvi-inter-Upsilonl §2'-is-zs-c'-v
have ¢’ € OVJ NYrsN NVQ n AFQ
by auto
moreover
from validES1 three have ?BETA € Trgg;
by (unfold ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES1-C1-inter-Upsilonl-inter-N2-inter-Delta2
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note BSIA1
ultimately obtain a1’
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where bsia-one: ?BETA Q [¢'| @ a1l € Trggy
and bsia-two: a1’ 1 Vyy; =61 Vyy

and bsia-three: a1’ Cyy =]

unfolding BSIA-def

by blast

let ?DELTA1" = v @ [¢]

from bsia-one validES1 have set a1 C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" C Ny NAp; U Cy; N YTpy N Nys N Apg
proof —
from Suc(7) c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v
have ¢’ € Cy;NTr; N Nys N Arg
by auto
with two show ?thesis
by auto
qed
moreover
from bsia-one v’-notin-E1
have 81 Fgg; @Q [c] | Egg; @ ?DELTA1"” Q [v 1 Egg; @ al” € Trgg;
by (simp add: projection-def)
moreover
from bsia-two four have a1’ 1 Vy; = al’1 Vyy
by simp
moreover
note bsia-three
moreover
have ?DELTA1" | Epge = 62" 1 Epg;
proof —
from validV2 Suc(7) §2"'-is-zs-c’-v have ¢’ € Eggg
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E1 c’-in-Cvl-inter-Upsilonl §2''-is-zs-c’-v vE1-empty siz
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'Elal’-in-Tr1 a1'Cvl-empty c§2'" El-in-Cvl-inter-Upsilonlstar
c-in-Cv-inter-Upsilon §2''-in-N2-inter-Delta2star Adm)
show %thesis
by blast
qed
then obtain a1’ 61"
where a1 ”-in-Elstar: set a1” C Eggy
and &1 ""-in-N1-inter-Deltalstar:set 61" C Nyy N Apy; U Cpy N Yp; N Nyg N Apg
and fEI1-cE1-61"-v'El-a1"-in-Tr1:
B1Egs; @[] 1 Egs; @é1" Q@ [v] 1 Egg; @al” € Trygg,
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and al”"Vvl-is-al'Vol: a1’ 1 Vi =al'] Vyy
and al”Cvl-empty: a1’ 1 Cypy =]

and §1 ”EQ—iS—(;Q”EI: 61" 1 EE52 = 52”W EE'S]
by blast

from BE1-cE1-01"-v'El-a1’-in-Tr1 BE2-cE2-62"-v'E2-a2"-in-Tr2 validES1
validES2

have §1'-in-Elstar: set 61" C Egg; and §2"-in-E2star: set 62" C Eggg
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with 61" E2-is-62"'E1 merge-propertylof 61" Egg; 62" Eggs] obtain ¢’
where §'E1-is-61': 6" 1 Egg; = 61"
and §'E2-is-62": 6" | Egge = 62"
and §’-contains-only-01""-62"-events: set 6’ C set 51" U set 62"
unfolding Let-def
by auto

let ?TAU = 3 Q [c] @ 4§’ Q [v]
let LAMBDA = o1 Vy,

let 271 = a1’

let 272 = a2

have ?TAU € TT(ESI | ES2)
proof —
from BE1-cE1-61"-v'El-a1"-in-Tr1 6'El-is-01"" validES1
have § 1 Egg; Q [c] 1 Egg; @ 6" Eggy @ [v)] | Eggy € Trgg;
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3@ [c] @¢' @ [v]) | Egg; € Trgs;
by (simp add: projection-def, auto)
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62" validES2
have 81 Epge Q [c] 1 Eggs @461 Egge @ [v'] 1 Egge € Trgss
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (8 @ [d] @ 3’ @ [v') | Epgy € Trig,
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE §'-contains-only-61""-62" -events
61"-in-Elstar 62"'-in-E2star
have set (3 Q [c] @ 6" @ [v]) C Egg; U Eggs
unfolding composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?thesis
unfolding composeES-def
by auto
qed
hence set ?TAU - E(ES] II ESQ)
unfolding composeES-def
by auto
moreover
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have set ZLAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note al’’-in-Elstar a2''-in-E2star
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 §'E1-is-61""
have ?TAU | Egg; @ ?T1 € Trgg;
by (simp only: projection-concatenation-commute, auto)
moreover
from BE2-cE2-62"-v'E2-a2"-in-Tr2 6'E2-is-02"
have ?TAU | Egge Q 272 € Trggs
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA | Epg, = ?T11 Vy
proof —
from propSep Views have ?LAMBDA |1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from a1'"-in-Elstar propSep Views
have ¢T1 W VV = ?T1 ] VV]
unfolding properSeparationOf Views-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’'Vwi-is-a Vol al’' Vul-is-al'Vul
ultimately show ?thesis
by simp
qed
moreover
have ?LAMBDA | Eggy = ?T2 1 Vy
proof —
from propSep Views have ?LAMBDA |1 Egge = a1 Vyy
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from «2''-in-E2star propSep Views have ?T2 1 Vy, = 272 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vw2 a2 Vu2-is-a2’' Vvl
ultimately show ?thesis
by simp
qed
moreover
note a1’ Cvi-empty a2’ Cv2-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU Q ¢ € TT(ESJ | ES2)
and ] Vy = ?LAMBDA
and t ] Cy =[]
by blast
moreover
have set §' C Ny N Arp
proof —
from §'-contains-only-61""-62""-events §1''-in-N1-inter-Deltalstar
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§2""-in-N2-inter-Delta2star
have set §' C NVI N AFI U Nvg N AFQ
by auto
with Delta1-N1-Delta2-N2-subset-Delta Nvl-union-Nv2-subsetof-Nuv
show %thesis
by auto
qed
ultimately have 3a’ ' (set Y C Ny NAp AB Q[ @~ @ [v] Q@a’e Tr(gsi | Bs2)
Aa’l Vy =a Vv/\Oé/] CV:H)
by (simp only: append-assoc, blast)
}
moreover {
assume Nv2-inter-Delta2-inter-El-empty: Nyo N Apg N Eggy = {}
and Nvl-inter-Deltal-inter-E2-subsetof-Upsilon2: Ny; N Ap; N Egge € Yo

let PALPHA1"-DELTA1"” =3 a1’ 61" (
set a1" C Epgy A set 61" C Ny N Apy )
AB1Egs; @[c 1 Egg; @61"Q [0 ] Egg; @al” € Trgg;
/\all/w VV] :a1'1 Vv1 /\a]”] CVI = H)

from c-in-Cuv-inter-Upsilon v'-in- Vu-inter-Nabla valid V1
have ¢ ¢ Epg; V (c € Egg; Av' & Eggy) V (c € Eggy Av' € Eggy)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def)
moreover {
assume c-notin-E1: ¢ ¢ Eggy

from validES1 Bv'Elal’-in-Trl have set a1’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Ny; N Apy
by auto
moreover
from Bv'Elal’-in-Trl c-notin-E1
have 31 Egg; @ [c] | Egg; @[] @ [v] ] Egg; @ a1’ € Trgg;
by (simp add: projection-def)
moreover
have a1’'1 Vy;=al’l Vy; ..
moreover
note a1’'Cvl-empty
ultimately have ?ALPHA1"-DELTA1"
by blast
}
moreover {
assume c-in-E1: ¢ € Eggy
and v’-notin-E1: v' ¢ Epg;

from c-in-FE1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cvi-inter-Upsiloni: c € Cyy N Y1y
unfolding properSeparationOfViews-def by auto

hence c € Cy);
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by auto
moreover
from Sv'Elal’-in-Tr1 v'-notin-E1 have 1 Egg; @ a1’ € Trpgy
by (simp add: projection-def)
moreover
note a1’'Cvi-empty
moreover
have Adm V1 oI Trgg; (81 Egsy) ¢
proof —
from Adm obtain v
where yov-is-Bov: v 1 (e V) =81 (0 V)
and ~yc-in-Tr: (v Q [¢]) € Tr(gsi | ES2)
unfolding Adm-def
by auto

from c-in-E1 ~vyc-in-Tr have (v | Eggy) Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v | Egg; 1 (01 V1) =B 1 Egg; 1 (01 V1)
proof —
from vyov-is-Bov have v 1 Egg; 1 (0 V) =81 Eggy 1 (e V)
by (metis projection-commute)
with glvl-subset-gv-inter-E1 have v | (o1 V1) = 81 (01 V1)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qed
moreover
note BSIA1
ultimately obtain o1’
where one: 81 Egg; @ [c] @ a1’ € Trgg;
and two: «al’1 Vy;=al’l Vyy
and three: a1’ 1 Cy; = ||
unfolding BSIA-def
by blast

from one validES1 have set a1’ C Egg;
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Ny; N Apy
by auto
moreover
from one c-in-E1 v’-notin-E1
have 31 Epg; @ [c] 1 Egg; @[] Q@ [v] 1 Eggy @ a1’ € Trggy
by (simp add: projection-def)
moreover
note two three
ultimately have ?ALPHA1"-DELTA1"
by blast
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}

moreover {
assume c-in-E1: ¢ € Eggy
and v'-in-El: v’ € Eggy

from c-in-E1 c-in-Cv-inter-Upsilon propSep Views
Upsilon-inter-E1-subset- Upsilon1
have c-in-Cvl-inter-Upsilonl: ¢ € Cy; N Yy
unfolding properSeparationOfViews-def by auto
moreover
from v’-in-E1 propSep Views v'-in- Vv-inter-Nabla
Nabla-inter-E1-subset-Nablal
have v’ € Vy,; N Nabla T'1
unfolding properSeparationOfViews-def by auto
moreover
from v'-in-E1 Bv'Elal’-in-Trl have 8| Egg; Q [v] @ a1’ € Trggy
by (simp add: projection-def)
moreover
note a1'Cvl-empty
moreover
have Adm V1 o1 Trggy (81 Eggy) ¢
proof —
from Adm obtain v
where yguv-is-fov: v 1 (¢ V) =81 (e V)
and vyc-in-Tr: (v Q [c]) € Tr(gsi | ES2)
unfolding Adm-def
by auto

from c-in-E1 ~yc-in-Tr have (v 1 Eggy) @Q [c] € Trgg;
by (simp add: projection-def composeES-def)
moreover
have v 1 Egg; 1 (01 V1) =B 1 Egg; 1 (el V1)
proof —
from vov-is-Bov have v | Egg; 1 (¢ V) =B 1 Eggy 1 (e V)
by (metis projection-commute)
with glvI-subset-pv-inter-E1 have v | (o1 V1) = 81 (o1 V1)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus ?thesis
by (metis projection-commute)
qged
ultimately show ?thesis unfolding Adm-def
by auto
qged
moreover
note FCIA1
ultimately obtain a1’/ 61"
where one: set §1"' C Nyy; N Apy
and two: 81 Fgg; Q] @617 Q [v']| @ al” € Trgg;
and three: a1’ 1 Vy;=al'1 Vyy
and four: a1’ 1 Cy; =]
unfolding FCIA-def
by blast
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from two validES1 have set a1’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

note one

moreover

from two c-in-E1 v'-in-E1

have 81 Egg; Q [c] | Egg; @ 51”7 @ v 1 Epg; @ al’” € Tresy
by (simp add: projection-def)

moreover

note three four

ultimately have ?ALPHA1"-DELTA1"
by blast

}

ultimately obtain a1’/ 61"
where a1 ”-in-Elstar: set a1” C Eggy
and &1 '"-in-N1-inter-Deltalstar:set 61" C Ny; N Apy
and fEI-cE1-61"-v'El-a1"-in-Tr1:
B1ERs; @[cd 1 Egg; @61"Q [v] ] Eggy @ al” € Trgg;
and al"Vul-is-al'Vvl: a1’ 1 Vy;=al’l Vy;
and a1’ Cvl-empty: a1’ 1 Cyy =]
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset- Upsilon2 propSep Views
have cE2-in-Cv2-inter-Upsilon2: set ([c] 1 Eggg) € Cya N Ty
unfolding properSeparationOfViews-def by (simp add: projection-def, auto)

from 81 "'-in-N1-inter-Deltalstar Nvl-inter-Deltal-inter-E2-subsetof- Upsilon2
propSep Views disjoint-Nvi-Vv2
have §1''E2-in-Cv2-inter-Upsilon2star: set (61" 1 Eggg) € Cygs N Trg
proof —
from §1''-in-N1-inter-Deltalstar
have eq: 61" 1 Epge = 01" 1 (Ny; N Ap; N Eggg)
by (metis Int-commute Int-left-commute Int-lower2 Int-lower!
projection-intersection-neutral subset-trans)

from validV2 Nvl-inter-Deltal-inter- E2-subsetof-Upsilon2
propSep Views disjoint-Nvi-Vv2

have NV] n AF] N EESQ - CV? n TFQ
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

thus ?thesis

by (subst eq, simp only: projection-def, auto)
qed

have c¢d1" E2-in-Cv2-inter-Upsilon2star: set ((c # 61"") 1 Eggs) C Cya N Ty
proof —
from cE2-in-Cv2-inter-Upsilon2 51" E2-in-Cv2-inter- Upsilon2star
have set (([¢] @ 51”) 1 EES,Q) C CysNTpry
by (simp only: projection-concatenation-commute, auto)
thus %thesis
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by auto
qed

have 3 a2 §2". set a2" C Eggg
A set 527 C Nyo N Ars U Cpa N Yo N Ny N Apyg
AB1 Epgg @[c | Eggp @362"” Q [v] ] Epgp @ a2” € Trpgy
A chl/w VVQ = O¢2/1 Vya A a2’ CV2 = H
A62" Epg; = 6171 Eggs
proof cases
assume v'-in-E2: v' € Eggy
with Nabla-inter-E2-subset-Nabla2 propSep Views v'-in- Vo-inter-Nabla
have v’-in-Vv2-inter-Nabla2: v’ € V5 N Nabla T'2
unfolding properSeparationOfViews-def by auto

have [ (8 @ [v]) | Egge @ a2’ € Trggy ;
a2’ Cyg = [l; set (¢ # 61") 1 Egge) € Cyp N Trg;
(NS CVHTF ;setd]”gNVJ ﬂAFI;
Adm V ¢ (Tr(gsy | gsz)) B ]
=3 a2 62"
(set a2 C EESQ A set 62" C NV2 N AFQ U OV? N TFQ n NVI n AFI
NB1Epsy @[c1 Eggg @62 Q [v]1 Epgg @ a2” € Trpgg
A a2’ Vye = a2’ Vys A a2’ Cvg =
Ad2"" (CVQ n YFQ) =61""1 EESQ)
proof (induct length ((c¢ # 61'") | Eggg) arbitrary: 8 a2’ ¢ 61"
case (

from 0(2) validES2 have set a2’ C Eggs
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set H - Nyg n AFQ @] CVQ n TFQ N NV] n AFI
by auto
moreover
have 31 Eggy @ [c] | Egge @[] @ [v] ] Eggp @ a2’ € Trpgy
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Epgo
by (simp add: projection-def, auto)
ultimately show %thesis
by (simp add: projection-concatenation-commute projection-def)
qged
moreover
have a2’'1 Vygs=a2'1 Vyy ..
moreover
note 0(3)
moreover
from 0(1) have [| 1 (Cys N Yrg) = 81" 1 Egge
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
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case (Suc n)

from projection-split-last|OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggy
and c¢§1"-is-puc’'v: c # 61" =p Q] Qv
and vE2-empty: v 1 Eggo = ||
and n-is-length-pr E2: n = length (p Q v) 1 Egge)
by blast

from Suc(5) ¢-in-E2 ¢61""-is-pc'v have set (u1 Egge @ [¢]) C Cyg N Ty
by (simp only: ¢61'"-is-uc'v projection-concatenation-commute
projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty
by auto
hence c¢’-in-Cv2: ¢’ € Cyg and c¢’-in-Upsilon2: ¢’ € T1g
by auto
with validV2 have c’-in-E2: ¢’ € Eggy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

show Zcase
proof (cases p)
case Nil
with ¢61"-is-puc’v have c-is-¢”: ¢ = ¢’ and §1"-is-v: §1" = v
by auto
with c¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg N Trg
by simp
moreover
note v’-in- Vu2-inter-Nabla2
moreover
from v'-in-E2 Suc(3) have (81 Egge) @ [v] Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V2 02 Trggs (81 Egge) ¢
proof —
from Suc(8) obtain v
where yov-is-Bov: v 1 (e V) =81 (¢ V)
and vyc-in-Tr: (v Q [c]) € Tr(gs1 | ES2)
unfolding Adm-def
by auto

from c-is-¢’ ¢’-in-E2 ~yc-in-Tr have (v |1 Eggs) Q [c] € Trggs
by (simp add: projection-def composeES-def)
moreover
have v 1 Eggo 1 (02 V2) = 81 Egga 1 (02 V2)
proof —
from vyouv-is-Bov have v | Eggs 1 (¢ V) =B 1 Egge 1 (e V)
by (metis projection-commute)
with p2v2-subset-pv-inter-E2 have v 1 (02 V2) = 1 (02 V2)
by (metis Int-subset-iff ~vov-is-Bov projection-subset-elim)
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thus %thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qged
moreover
note FCIA2
ultimately obtain a2’ v
where one: set v C Nys N Arg
and two: 81 Egge @ [c] @y @ [v] @ a2” € Trggs
and three: 2”1 Vyg=a2'1 Vyg
and four: a2'' 1 Cyy =[]
unfolding FCIA-def
by blast

let DELTA2" = v | Egge @ ~y

from two validES2 have set a2’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from one vE2-empty
have set ?DELTA2" C Nys N Apg U Cps N Ypre N Nyg N Apyg
by auto
moreover
have 81 Egge @ [c] | Egge @ ?DELTA2" @ [v] |1 Egge @ a2” € Trpgs
proof —
from c-is-¢’ ¢’-in-E2 have [c] = [c] | Egga
by (simp add: projection-def)
moreover
from v'-in-E2 have [v] = [v] | Eggo
by (simp add: projection-def)
moreover
note vE2-emptly two
ultimately show ?thesis
by auto
qed
moreover
note three four
moreover
have ?DELTA2" 1 (Cyg N Ypp) = 61" 1 Eggg
proof —
have 7 | (Cyg N Trg) =[]
proof —
from validV2 have NV? N AFQ n (CV2 n Trg) = {}
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with projection-intersection-neutral|OF one, of Cyg N Ty]
show ?thesis
by (simp add: projection-def)
ged

266



with §1"-is-v vE2-empty show ?thesis
by (simp add: projection-concatenation-commute)
qged
ultimately show ?thesis
by blast
next
case (Cons  xs)
with ¢d1"-is-pc'v

have p-is-c-zs: p = [c] @ zs and §1""-is-zs-c’-v: §1"" = xs @ [¢'| Qv
by auto
with n-is-length-uv E2 have n = length ((c¢ # (zs Q v)) | Eggg)
by auto
moreover
note Suc(3,4)
moreover
have set ((c # (zs Q v)) | Egge) € Cyg N Ty
proof —
have res: ¢ # (zs Q v) = [¢] Q@ (zs @ v)
by auto

from Suc(5) c61"-is-pc'v p-is-c-xs vE2-empty
show ?thesis
by (subst res, simp only: c61""-is-uc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) §1"-is-zs-c’-v have set (zs @ v) C Ny; N Apy
by auto
moreover note Suc(8) Suc(1)[of c zs Q v 3 a2’
ultimately obtain ¢ ~
where one: set 6 C Eggs
and two: set v C Nyp N Arg U CV2 N Yre N Ny N Ay
and three: B1 Epge Q [c] | Egge @ v Q [v] | Egge @ 8 € Trggs
and four: § | Vyg = a2'1 Vg
and five: § 1 Cyyp = |]
and siz: v 1 (Cpa N YTpg) = (s Qv) | Eggs
by blast

let BETA =31 Eggs Q [c] | Eggs @ v

note c’-in-Cv2-inter-Upsilon2 v'-in- Vu2-inter-Nabla2

moreover

from three v'-in-E2 have ?BETA Q [v'| @ § € Trggs
by (simp add: projection-def)

moreover

note five

moreover

have Adm V2 02 Trpgs ?BETA ¢’
proof —
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have ?BETA Q [¢| € Trggs
proof —
from Suc(7) ¢'-in-Cv2-inter-Upsilon2 61""-is-zs-¢'-v
have ¢’ € OV? N TFQ n NVI n AF]
by auto
moreover
from validES2 three have ?BETA € Trpgo
by (unfold ES-valid-def traces-prefixclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES2-C2-inter- Upsilon2-inter-N1-inter-Delta 1
ultimately show ?thesis
unfolding total-def
by blast
qed
thus Zthesis
unfolding Adm-def
by blast
qed
moreover
note FCIA2
ultimately obtain a2’ §’
where fcia-one: set ' C Nyg N Apg
and fcia-two: ?BETA @ [¢'] @ §' @ [v)] @ a2 € Trpgs
and fcia-three: a2' 1 Vyp =461 Vyg
and fcia-four: a2’ 1 Cyg = ||
unfolding FCIA-def
by blast

let ?DELTA2" = v @ [¢']| @ ¢’

from fcia-two validES2 have set a2’ C Epgy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" C Nys N Apg U Cys N Yre N Nyg N Apyg
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-xs-c'-v
have ¢’ € ng N TFQ N Ny;N AFZ
by auto
with two fcia-one show ?thesis
by auto
qed
moreover
from fcia-two v'-in-E2
have 81 Eggo @ [¢] | Egge @ ?DELTA2" @ [v] 1 Egge @ a2” € Trpgs
by (simp add: projection-def)
moreover
from fcia-three four have a2’ 1 Vg = a2’'1 Vi,
by simp
moreover
note fcia-four
moreover
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have ?DELTA2" 1 (CVQ N TF?) =401"1 Eggo
proof —
have 6’1 (Cyg N YTprg) = ||
proof —
from fcia-one have V e € set §'. ¢ € Nyp N Ay
by auto
with validV2 have V e € set §'. e ¢ Cyg N Ty
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
thus ?thesis
by (simp add: projection-def)
qed
with c¢’-in-E2 ¢’-in-Cv2-inter-Upsilon2 §1"'-is-zs-c’-v vE2-empty six
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2’'Cv2-empty
cd 1" E2-in-Cv2-inter- Upsilon2star c-in-Cv-inter-Upsilon §1"'-in-N1-inter-Deltalstar Adm)]
obtain a2’ 62"
where one: set a2 C Epgo
and two: set 62" C NV? N AFQ U OV2 n TFQ n NVI N AFZ
and three: B1 Egge Q [c] | Egge @ 62" @ [v] 1 Epge Q@ a2” € Trggs
A a2’ Vys = a2’ Vys A a2’ Cys = (]
and four: 62" 1 (CV2 n TFQ) =61""1 Eggo
by blast

note one two three

moreover

have 62" 1 Egg; = 61" 1 Epgs
proof —

from projection-intersection-neutral|OF two, of E pgy]
Nv2-inter-Delta2-inter- E1-empty validV'1

have 62" Epg; = 62" 1 (Cya N Ypg N Nyy N Apy N Eggy)
by (simp only: Int-Un-distrib2, auto)

moreover

from validV1

have Cys N Yro N Ny N Ap; N Eggy = Cpos N Tre N Nyy N Apy
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def, auto)

ultimately have §2'' | Epgy = 52" (Cya N YTpgN Nyy N Apg)
by simp

hence 62" | Egg; = 02" 1 (Cys N YTrg) 1 (Ny; N Apy)
by (simp add: projection-def)

with four have 62”1 Epg; = 61" 1 Egge 1 (Ny; N Arpy)
by simp

hence 52//1 Epg; = 6]”] (NVZ N AFZ) 1 Erga
by (simp only: projection-commute)

with 61"-in-N1-inter-Deltalstar show ?thesis
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by (simp only: list-subset-iff-projection-neutral)
qged
ultimately show ?thesis
by blast
next
assume v'-notin-E2: v' ¢ Epgy

have [ (8 @ [v]) | Egge @ a2’ € Trggy ;

a2’ Cyg = [|; set ((c # 61") 1 Eggp) € Cya N Trg;
ce CyNTYp;setdl” C Ny;NApyg;

Adm 'V o (TT(ESI I ESQ)) Becl]

=3 a2 62"
(set a2’ C Epga N set 62" C Nyo N AFQ U CyaNTYreN Nyy N Apy
NB1Epsy @[c]1 Epgg @62 @ [v]1 Epgp @ a2” € Trpgy
A a2’ Vye = a2’ Vya A a2’ CV2 = H

A 62" Epgy = 6171 EESQ)

proof (induct length ((¢ # 61'") 1 Eggg) arbitrary: S a2’ ¢ 61")

case ()

from 0(2) validES2 have set a2’ C Eggs
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [| C Nys N Apg U CVQ N YTrgN Ny N Ay
by auto
moreover
have 31 Eggy @ [c] | Egge @[] @ [v] ] Eggp @ a2’ € Trggg
proof —
note 0(2)
moreover
from 0(1) have ¢ ¢ Eggy
by (simp add: projection-def, auto)
ultimately show ?thesis
by (simp add: projection-concatenation-commute projection-def)
qed
moreover
have a2’ 1 Vygs=a2’'1 Vyg ..
moreover
note 0(3%)
moreover
from 0(1) have [| | Egg; = 61" 1 Eggo
by (simp add: projection-def, split if-split-asm, auto)
ultimately show ?case
by blast
next
case (Suc n)

from projection-split-last{OF Suc(2)] obtain u ¢’ v
where c¢’-in-E2: ¢’ € Eggo
and c61"-is-pc’v: c # 517" =pQ@lc) Qv
and vE2-empty: v | Eggy = ||
and n-is-length-uv E2: n = length ((p Q v) 1 Eggo)
by blast
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from Suc(5) c¢-in-E2 ¢61""-is-pc’v have set (n 1 Egge @ [¢]) € Cyo N Ty

by (simp only: ¢61''-is-uc'v projection-concatenation-commute projection-def, auto)
hence c¢’-in-Cv2-inter-Upsilon2: ¢’ € Cyg N Ty

by auto
hence c¢’-in-Cv2: ¢’ € Cyg and c¢’-in-Upsilon2: ¢’ € T1g

by auto
with validV2 have c’-in-E2: ¢’ € Eggy

by (simp add:isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

show ?case
proof (cases p)
case Nil
with ¢61"-is-puc’v have c-is-¢”: ¢ = ¢’ and §1"-is-v: §1" = v
by auto
with c¢’-in-Cv2-inter-Upsilon2 have ¢ € Cyg
by simp
moreover
from v'-notin-E2 Suc(3) have (8 1 Egge) Q@ a2’ € Trggs
by (simp add: projection-concatenation-commute projection-def)
moreover
note Suc(4)
moreover
have Adm V2 02 Trggs (61 Egge) ¢
proof —
from Suc(8) obtain ~y
where youv-is-fov: v 1 (e V) =81 (e V)
and ye-in-Tr: (v Q [¢]) € Tr(gs1 | ES2)
unfolding Adm-def
by auto

from c-is-¢’ ¢’-in-E2 ~yc-in-Tr have (v 1 Eggs) Q [c] € Trggs
by (simp add: projection-def composeES-def)
moreover
have v | Eggo 1 (02 V2) = B 1 Egga 1 (02 V2)
proof —
from vyouv-is-Bov have v | Egga | (e V) =81 Eggsz 1 (e V)
by (metis projection-commute)
with p2v2-subset-gv-inter-E2
have v 1 (02 V2) = B 1 (02 V2)
by (metis Int-subset-iff yov-is-Bov projection-subset-elim)
thus %thesis
by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def
by auto
qed
moreover
note BSIA2
ultimately obtain a2’
where one: (81 Egge) @ [c] @ a2” € Trggs

271



and two: a2’ 1 Vyg =a2’'1 Vyy
and three: a2’ 1 Cyy = ||
unfolding BSIA-def

by blast

let ?DELTAQ” =V W EESQ

from one validES2 have set a2 C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover

from v E2-empty

have set ?DELTA2" C Nys N Apg U Cyps N Ype N Nyg N Apyg
by simp

moreover

from c-is-¢’ ¢’-in-E2 one v'-notin-E2 vE2-empty

have (ﬁ ] EESQ) Q [C] '\ EES.? @ ?DELTA2" @ [U’] ] EESQ @ a2” S TTE52
by (simp add: projection-def)

moreover

note two three

moreover

from vE2-empty §1'"-is-v have ?DELTA2" | Epg; = 61" 1 Eggo
by (simp add: projection-def)

ultimately show ?Zthesis

by blast
next

case (Cons z xs)

with ¢§1"-is-puc’v have p-is-c-zs: p = [c] @ xs
and §1"-is-zs-c’-v: 61" = zs Q [¢] Qv
by auto

with n-is-length-uv E2 have n = length ((c¢ # (zs Q v)) 1 Egga)
by auto

moreover

note Suc(3,4)

moreover

have set ((c¢ # (zs Q v)) | Egge) € Cyg N Ty
proof —

have res: ¢ # (zs Q v) = [] @ (zs Q v)
by auto

from Suc(5) c61"-is-pc'v p-is-c-xs vE2-empty
show ?thesis
by (subst res, simp only: c¢61'"~is-pc'v
projection-concatenation-commute set-append, auto)
qed
moreover
note Suc(6)
moreover
from Suc(7) §1"-is-zs-c’-v have set (zs @ v) C Ny; N Apy
by auto
moreover note Suc(8) Suc(1)[of c zs Q@ v B a2]]
ultimately obtain ¢ ~
where one: set 6 C Eggo
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and two: set v C NV? N AFQ @] CV2 n TFQ n NVI n AF]

and three: f 1 Egge Q [c] 1 Epgy @~ @ [’U’] 1 Egge @6 € Trpgo
and four: § | Vyg = a2'1 Vg

and five: § 1 Cyg = ||

and siz: v 1 Egg; = (s Qv) | Eggs

by blast

let YBETA :,BW EESQ@ [C] 1 EESQ@’Y

from c’-in-Cv2-inter-Upsilon2 have ¢’ € Cyy
by auto
moreover
from three v'-notin-E2 have ?BETA @ § € Trggo
by (simp add: projection-def)
moreover
note five
moreover
have Adm V2 02 Trpgs ?BETA ¢’
proof —
have ?BETA Q [¢'] € Trpgs
proof —
from Suc(7) c’-in-Cv2-inter-Upsilon2 §1''-is-ws-c’-v
have ¢’ € Cys N Trg N Ny; N Arg
by auto
moreover
from validES2 three have ?BETA € Trpgs
by (unfold ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def, auto)
moreover
note total-ES2-C2-inter- Upsilon2-inter-N1-inter-Deltal
ultimately show ?thesis
unfolding total-def
by blast
qed
thus ?thesis
unfolding Adm-def
by blast
qed
moreover
note BSIA2
ultimately obtain a2’
where bsia-one: ?BETA Q [¢'] @ a2” € Trggs
and bsia-two: a2"' 1 Vyg =61 Vg
and bsia-three: a2''1 Cyg = |]
unfolding BSIA-def
by blast

let ?DELTA2" = v @ [c]

from bsia-one validES2 have set a2” C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
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moreover
have set ?DELTA2" C NV2 n AFQ @] Cyg n TFQ n NVI N Apy
proof —
from Suc(7) ¢'-in-Cv2-inter-Upsilon2 61'"-is-zs-c'-v
have ¢’ € OV? N TFQ N Ny;N Aryg
by auto
with two show ?thesis
by auto
qged
moreover
from bsia-one v'-notin-E2
have ﬁ 1 EESQ (@ [C] 1 EE52 @ ?DELTAQ” @ [1}/} 1 EESQ @ 062” S T?"ESQ
by (simp add: projection-def)
moreover
from bsia-two four have a2’ 1 Vyg = a2’ Vi,
by simp
moreover
note bsia-three
moreover
have QDELTAQ// 1 EES] =61 " 1 EESQ
proof —
from validV1 Suc(7) 61'"-is-zs-c’-v have ¢’ € Egg;
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
with c¢’-in-E2 ¢’-in-Cv2-inter-Upsilon2 §1'"'-is-xzs-c’-v vE2-empty six
show ?thesis
by (simp only: projection-concatenation-commute projection-def, auto)
qed
ultimately show ?2thesis
by blast
qed
qed
from this|OF Bv'E2a2’-in-Tr2 a2'Cv2-empty c§1'" E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon §1"'-in-N1-inter-Deltalstar Adm)]
show ?thesis
by blast
qed
then obtain a2’ 62"
where a2"-in-E2star: set a2' C Epgg
and 62 "-in-N2-inter-Delta2star:set 62" C Nyg N Apy U Cyg N Tre N Nyy N Apyg
and BE2-cE2-02"-v'E2-a2"-in-Tr2:
B1 Egse @] 1 Eggg @ 62" Q [v] ] Eggy @ a2 € Trygy
and a2 Vv2-is-a2'Vv2: a2 1 Vyg=a2'] Vyg
and a2 Cv2-empty: a2’ 1 Cyy = ||
and 62" E1-is-01"E2: 62" 1 Epgy = 61" 1 Epgs
by blast

from BE2-cE2-02"-v'E2-a2"-in-Tr2 BE1-cE1-61"-v'El-a1’-in-Tr1
validES2 validES1

have §2'"-in-E2star: set 62" C Epgy and §1'"-in-Elstar: set 61" C Epg;
by (simp-all add: ES-valid-def traces-contain-events-def, auto)

with §2''E1-is-61" E2 merge-propertylof 62" Eggy 61" Egg;] obtain ¢’

274



where §'E2-is-62'": 6" 1 Epgy = 62"

and §'El-is-61": 6' | Egg; = 61"

and §’-contains-only-62"-61""-events: set §' C set 62" U set 61"
unfolding Let-def

by auto

let ?TAU = 3@ [c] @ §' @ [v]]
let ?LAMBDA = o | Vi,

let 272 = a2

let 71 = al”

have ?TAU € TT(ES] | ES2)
proof —
from BE2-cE2-02"-v'E2-a2"-in-Tr2 6'E2-is-62" validES2
have 31 Eggy @ [c] | Egge @ 6" 1 Egge @ [v)] 1 Eggg € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3 @ [c] @ §' @ [v]) | Egge € Trgge
by (simp add: projection-def, auto)
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 6'El-is-01"" validES1
have § 1 Egg; Q [c] | Egg; @ 6" Eggy @ [v)] | Eggy € Trggy
by (simp add: ES-valid-def traces-prefizclosed-def
prefizclosed-def prefiz-def)
hence (3@ [c] @¢' @ [v]) | Egg; € Trgs;
by (simp add: projection-def, auto)
moreover
from Bv’a-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE
§'-contains-only-62"''-61""-events §2"'-in-E2star §1''-in-Elstar
have set (8 Q [c] @ §' Q [v]) C Egge U Eggy
unfolding composeES-def isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto
ultimately show ?Zthesis
unfolding composeES-def
by auto
qed
hence set ?TAU C E(ESI | ES2)
unfolding composeES-def
by auto
moreover
have set YLAMBDA C Vy,
by (simp add: projection-def, auto)
moreover
note a2’’-in-E2star al''-in-Elstar
moreover
from BE2-cE2-02"-v'E2-a2"-in-Tr2 §'E2-is-62"
have ?TAU 1 EESQ Q@ ?T2 € TTESQ
by (simp only: projection-concatenation-commute, auto)
moreover
from BE1-cE1-61"-v'El-a1"-in-Tr1 §'El-is-61"

275



have ?TAU | Egg; @ ?T1 € Trggy
by (simp only: projection-concatenation-commute, auto)
moreover
have ?LAMBDA 1 Egge = ?T2 1 Vy
proof —
from propSep Views have ?LAMBDA 1 Eggg = a1 Vyy
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from a2''-in-E2star propSep Views have ?T2 1 Vy, = 272 1 Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note a2’ Vu2-is-a Vo2 a2’ Vu2-is-a2' Vvl
ultimately show ?thesis
by simp
qed
moreover
have ?LAMBDA 1 Egg; = ?T1 1 Vy
proof —
from propSep Views have ?LAMBDA |1 Egg; = a1 Vy;
unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from «1’'-in-Elstar propSep Views have ?T1 1 Vy = ?T1 | Vyy
unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)
moreover
note al’Vwi-is-a Vol al’' Vul-is-al'Vul
ultimately show ?thesis
by simp
qed
moreover
note a2’ Cv2-empty a1’ Cvi-empty generalized-zipping-lemma
ultimately obtain ¢
where ?TAU Q t € TT(ES] | ES2)
and t1 Vy = LAMBDA
and t ] Cy =[]
by blast
moreover
have set §' C Ny N Ap
proof —
from &'-contains-only-02'"-61""-events
§2""-in-N2-inter-Delta2star 61" '-in-N1-inter-Deltalstar
have set §' C NV? N AFQ U NVI N AF]
by auto
with Deltal-N1-Delta2-N2-subset-Delta Nvl-union-Nv2-subsetof-Nv show ?thesis
by auto
qed
ultimately have 3a’ ' (set v C Ny NAp AB Q[ @' @ [v] @a’e Tr(gs; | ES2)
ANa'TVy=alVyAa'lCy=])
by (simp only: append-assoc, blast)

ultimately have 3a’'v'. (set v C Ny NAp AB Q[ @~y' @ [v]@a’e Tr(gsi | ES2)
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Ao’ Vy =a Vv/\alw OV:H)
by blast

thus %thesis
unfolding FCIA-def
by blast
qed

theorem compositionality-R:
[ RVI Trgs;; RV2 Trgse | = RV (Tr(gs; | Bs2))
proof —
assume RI1: R V1 Trpgy
and R2: RV2 T?”ESQ

{

fix 7/
assume 7’-in-Tr: 7’ € Tr(gs1 || ES2)
hence 7'El-in-Trl: 7' 1 Egg; € Trgsy
and 7'E2-in-Tr2: 7' | Egge € Trggs
unfolding composeES-def
by auto
with R! R2 obtain 71’ 72’
where 71'-in-Tr1: 71’ € Trggy
and 71'Cvl-empty: 71'1 Cy; =[]
and 71'Vui-is-t"-E1-Vol: 71" 1 Vy; =7"1 Egg; 1 Vyy
and 72"-in-Tr2: 72’ € Trggs
and 72'Cv2-empty: 72" 1 Cyg = ||
and 72 Vu2-is-t"-E2-Vv2: 72" 1 Vyo =7"1 Egga 1 Vg
unfolding R-def
by blast

have set [| € E(gg; || gs2)
by auto
moreover
have set (t'1 Vy) C Vy,
by (simp add: projection-def, auto)
moreover
from validES1 71'-in-Tr1 have 71'-in-E1: set 71’ C Eggy
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from validES2 T2'-in-Tr2 have 12'-in-E2: set 72’ C Eggo
by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from 71'-in-Trl have [| | Egg; @ 71’ € Trgg;
by (simp add: projection-def)
moreover
from 72'-in-Tr2 have [| | Eggs @ 72’ € Trpgs
by (simp add: projection-def)
moreover
have 7' 1 Vv 1 Eggy = 711 Vy
proof —
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from projection-intersection-neutral|OF 71'-in-E1, of Vy)] propSep Views
have 71'1 Vy =711"1 Vy;y
unfolding properSeparationOfViews-def
by (simp add: Int-commute)
moreover
from propSepViews have 7' 1 Vy, | Egg; =71 Vyy
unfolding properSeparationOfViews-def
by (simp add: projection-sequence)
moreover {
have 7’1 Egg; 1 Vy;=1"1(Egs; N Vyy)
by (simp add: projection-def)
moreover
from validV1 have Egg; N Vy; = Vyy
by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately have 7' 1 Epg; | Vy; =7"1 Vyy
by simp
}
moreover
note 71'Vwl-is-t’-E1-Vul
ultimately show ?thesis
by simp
qed
moreover
have 7’1 Vy, | Egge =72"1 Vy
proof —
from projection-intersection-neutral|OF 72'-in-E2, of Vy)] propSep Views
have 72’1 Vy, =72'1 Vyy
unfolding properSeparationOfViews-def
by (simp add: Int-commute)
moreover
from propSepViews have 7' 1 Vy, 1 Eggo =7'1 Vg
unfolding properSeparationOfViews-def
by (simp add: projection-sequence)
moreover {
have 7’1 Epgol Vys = ' (EE52 N Vyg)
by (simp add: projection-def)
moreover
from validV2 have Epgs N Vyg = Vo
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately have 7' 1 Epgs | Vyg =71 Vg
by simp
}
moreover
note 72’ Vu2-is-t'-E2-Vv2
ultimately show ?Zthesis
by simp
qed
moreover
note 71'Cvl-empty 72 Cv2-empty generalized-zipping-lemma
ultimately have 3t. H Q@te TT(ESI || ES2) Nt Vy = 7' Vy ANt CV = H
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by blast
}
thus Zthesis
unfolding R-def
by auto
qged

end
locale CompositionalityStrictBSPs = Compositionality +

assumes NV-inter-E1-is-NV1: Ny N Epgy = Nyy
and NV-inter-E2-is-NV2: Ny, N Epge = Nyg

sublocale CompositionalityStrictBSPs C Compositionality
by (unfold-locales)

context CompositionalityStrictBSPs
begin

theorem compositionality-SR:
[ SR V1 Trpsy; SR V2 TTESQ]] — SRV (TT(ESZ I ESQ))
proof —
assume SR V1 Trggy
and SR V2 TTESQ
{
let V1'=(V = Vy; UNy;, N={}, C=Cyy)
let ?VQIZGV = Vys U Nyg, N = {}, C = Cyy D
let 2V’ =( V=Vy U Ny, N={}, CZCV )

from validV1 have V1'IsViewOnE:: isViewOn ?V1' Eggy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from validV2 have V3 IsViewOnEs: isViewOn ?V2' Epgo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnE: isViewOn 2V’ E(gsi1||Es2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV'1
have ngl n EES] = V?Vll

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have ngl n EE'SQ = V?Vgl

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EESI - C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EES,Q - C?V2/

unfolding properSeparationOfViews-def by auto
have N?V1/ N N?VQI :{}
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by auto

note properSeparation-V1Vo=«V o1,y N Egg; = V?Vl” Vo N Egge = Vop,n
(C?V/ n EES] C C?Vlﬁ <C?V/ n EESQ - C_QV2/> <N?V1' N N?Vzl :f})

have wbci: Ngy + N Eggi={} A Ngp,r N Eggo={}
by auto

from <SR V1 Trpg, have R Vi’ Trpg;
using validES1 validV1 BSPTaxonomyDifferentCorrections.SR-implies- R-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from <SR V2 Trpge have R 2Vy' Trpgs
using validES2 validV2 BSPTaxonomyDifferentCorrections.SR-implies- R-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE1 Va'Is ViewOnEs
properSeparation-V1V2 wbcl
have Compositionality ES1 ES2 2V’ 2V’ 2V2’ unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with <R ?Vll TTESI) R ?Vzl T’"ESQ’ have R ?V, TT(ESIHESQ)
using Compositionality.compositionality-R by blast

from walidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTazonomyDifferentCorrections-def by auto
with <R .?V, TT(ES] HESQ)) have SR V TT(ESZ ”ES'Q)
using BSPTazonomyDifferentCorrections. R-implies-SR-for-modified-view by auto
}
thus ?thesis by auto
qed

theorem compositionality-SD:
[ SD V1 Trgg;; SDV2 Trpge | = SDV (TT(ESI I ESQ))
proof —
assume SD V1 Trgg;g
and SD V2 Trggo
{
let 2V,'=(V = Vyr U Ny, N={}, C = Cyy4)
let ?VQIZGV = Vys U Nyg, N = {}, C = CV,Q )
let 2V’ ZG V=Vy U Ny, NZ{}, OZCV D

from validV1 have V1 'IsViewOnE: isViewOn ?V1' Eggy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from validV2 have Vs 'IsViewOnE>: isViewOn 2Vs’ Eggo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnkE: isViewOn 2V’ E(gs1)|Es2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
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from propSepViews NV-inter-E1-is-NV1
have V?V’ N EES] = V?Vl/

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V?V’ N EESQ = V?Vz/

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EESI C C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ N EESQ C C?v2/

unfolding properSeparationOfViews-def by auto
have N?V1’ N N_QV2/ ={}

by auto

note properSeparation-ViVo=«V o,y N Eggy = Vop » (Vo N Eggg = Vo, »
(C?V/ n EESI C C?Vll) <C?V/ n EESQ - C?Vg” <N?V1/ n N?V2/ =15

have wbcl: N.?Vll n EESIZ{} A N.QVQI n EES,Q:{}
by auto

from «SD V1 Trgg; have BSD V1" Trpg,
using validES1 validV1 BSPTaxonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from «SD V2 Trpgy have BSD ?2Vs' Trpgs
using validES2 validV2 BSP TaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from validES1 validES2 composableES1ES2  V'IsViewOnE V1'IsViewOnE, Vo 'IsViewOnEs
properSeparation-Y1 V2 wbcl
have Compositionality ES1 ES2 2V’ 2V, V5’
unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with <BSD ?Vll TTESI> <BSD ?VQI TTE52> have BSD ?Vl Tr(ESZHES,?)
using Compositionality.compositionality-BSD by blast

from wvalidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto
with (BSD .?V/ W(ESIHESQ)) have SD V TT(E'SZHESQ)
using BSPTaxonomyDifferentCorrections. BS D-implies-SD-for-modified-view by auto

}

thus ?thesis by auto
qed

theorem compositionality-SI:
[[SD Vi TT’ESZ; SD V2 TTESQ; SI V1 T’I‘ESI; SI V2 TTESQ]]

= SI'V (Tr(gs; || Esz))
proof —
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assume SD V1 Trgg;
and SD V2 TTESQ
and SI V1 Trpgy
and SI V2 Trggs

{
let .?V1/:(]V = VVI U NV17 N = {}, C = CV]D
let ?VQIZGV = VVQ @] NV?’ N = {}, C = Cvg D
let 2V’ :q V:VV U Nv, NZ{}, CICV D

from validV1 have V1 'IsViewOnE:: isViewOn ?V1' Eggy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from wvalidV2 have Vs 'IsViewOnEs: isViewOn 7Vy’ Ergo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnE: isViewOn 2V’ E(ESI||ES2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV1
have V?V’ N EES] = V?Vll

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V?V/ N EESQ = V?V2/

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V’ N EESI - C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V’ N EESQ - C?VQ’

unfolding properSeparationOfViews-def by auto
have Ny, /N Ngp,» ={}

by auto

note properSeparation-V1Va=«V o),y N Eggy = V?V1/> Vo N Egge = Vap,n
<O?v/ N Egg; C C?Vll) <C?v/ N Eggs C C?Vgl) <N?V1, n N?V2/ =17

have wbc1: N?Vl/ N EES.Z:{} A N?Vgl N EES,Q:{}
by auto

from «SD V1 Trgg;» have BSD V1’ Trgg;
using validES1 validV1 BSPTazonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTazonomyDifferentCorrections-def by auto

from <SD V2 TT‘ESQ> have BSD .?Vzl TTESQ
using validES2 validV2 BSP TaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from «SI V1 TI”E51> have BSI .?Vll TTESZ
using validES1 validV1 BSPTaxonomyDifferentCorrections.SI-implies- BSI-for-modified-view
unfolding BSPTazonomyDifferentCorrections-def by auto

from ST V2 TT‘ESQ> have BSI .?Vzl TTESQ
using validES2 validV2 BSP TaxonomyDifferentCorrections.SI-implies- BSI-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto
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from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE1 Va'Is ViewOnE>
properSeparation-V1V2 wbcl
have Compositionality ES1 ES2 2V’ 2V1' 2V, unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with <BSD ?V1' Trggp <BSD Vo' Trpge «BSI V1" Trggyy «BSI 2V2' Tr g
have BSI ?Vl TT(ESZHESQ)
using Compositionality.compositionality-BSI by blast

from wvalidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto
with <BSI .QV/ TT(ESIHESQ)} have ST V TT(ESZHESQ)
using BSPTaxonomyDifferentCorrections. BSI-implies-SI-for-modified-view by auto
}
thus ?thesis by auto
qed

theorem compositionality-SIA:

[SD V1 Trggy; SD V2 Trgge; SIA o1 V1 Trpgy; SIA 02 V2 Trpge;
(1 V1) C (e V)N Eggy; (02 V2) C (e V)N Egge |
= SIA oV (TT(ESI || ES?))

proof —
assume SD V1 Trgg;g

and SD Ve TT’ESQ
and SIA o1 V1 Trgg;
and SIA QQ V2 TTESQ
and (¢1 V1) C (e V) N Egg;
and (02 V2) C (e V) N Eggy
{
let ?V1/:(|V = Vy;UNy;, N = {}, C = CVID
let ?VQIZGV = Vys U Nyy, N = {}, C = Cyg )
let 72y’ Zq VIVV U Nv, ]VZ{}7 CICV D

let 201":'a Rho =A\V. if V=2V’ then o1 V1 else {}
let 202"::'a Rho =\V. if V=2V5' then 02 V2 else {}
let ?0"::'a Rho =XV’ if V'=2V' then o V else {}

have (291’ ?V1)
have (202’ ?V5)
have (%o’ ?2V') =

(o1 V1) by simp
= (02 V2) by simp
(o V) by simp

from validV1 have V1 'IsViewOnE;: isViewOn ?V1' Epgy

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from validV2 have Vy'IsViewOnEs: isViewOn ?V2' Eggo

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
from VIsViewOnE have V'IsViewOnE: isViewOn 2V’ E(gs1||Es2)

unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
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from propSepViews NV-inter-E1-is-NV'1
have ngl n EESI = V?Vll

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have ngl n EESQ = V?VQI

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ n EESI - C?Vll

unfolding properSeparationOfViews-def by auto
from propSep Views
have C?V/ n EES? - C?VQ’

unfolding properSeparationOfViews-def by auto
have N?Vl/ N N.QVQI :{}

by auto

note properSeparation-V1iVo=<V o),y N Eggy = Vop » (Vo N Eggg = Vo, »
(C?V/ N EESI - C?Vl/) <C?V/ n EES2 - C?V2l> <N?V1, n N?Vzl =15

have wbci: Ngy + N Egg;={} A Ngp,' N Egge={}
by auto

from «SD V1 Trgg;» have BSD 2V’ Trggy
using validES1 validV1 BSPTaxzonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTazxonomyDifferentCorrections-def by auto

from «SD V2 Trpge have BSD V' Trpgs
using validES2 validV2 BSP TaxonomyDifferentCorrections.SD-implies- BSD-for-modified-view
unfolding BSPTazonomyDifferentCorrections-def by auto

from <SIA o1 V1 Trggp (%01’ ?V1') = (o1 V1)) have BSIA %o1' ?V1' Trggy
using validES1 validV1 BSPTazonomyDifferentCorrections.SIA-implies- BSIA-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by fastforce

from «SIA 02 V2 Trpge (202" ?V2') = (02 V2)» have BSIA 202’ 2V2' Trpgs
using validES2 validV2 BSPTazonomyDifferentCorrections.SIA-implies- BSIA-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by fastforce

from validES1 validES2 composableES1ES2 V'IsViewOnE V1'IsViewOnE1 Va'Is ViewOnE>
properSeparation-V1V2 wbcl

have Compositionality ES1 ES2 2V’ 2V, 2V’

unfolding Compositionality-def

by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
from (o1 V1) C (e V) N Eggp (%01’ V1) = (o1 V1) (%" V') = (0 V)
have %1’ 2V’ C %' V' N Epg;

by auto
from (02 V2) C (o V) N Eggy (202" 2V3") = (02 V2)» (20" 2V') = (o V)
have 22’ 2Vy' C %' V' N Eggg

by auto

from «Compositionality ES1 ES2 2V 2V1' 2V2"y «BSD V1’ Trggpy <BSD V2 Trpge
«(BSIA 201’ 2V1' Trgg> «BSIA 202" 2Vo' Trpge
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Po1’ V1" C 2" V' N Epgp <202 V' C 2" V' N Eggy
have BSIA ?Q, ?V/ TT(ESIHES?)
using Compositionality.compositionality-BSIA by fastforce

from walidES1 validES2 composeES-yields-ES validVC
have BSPTazonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto
with «BSIA 2o’ 7V’ Tr(gs1| Es2)’ (2" ?V') = (0 V)> have SIA ¢ V Tr(gs1| BS2)
using BSPTazonomyDifferentCorrections. BSIA-implies-SIA-for-modified-view by fastforce
}

thus ?thesis
by auto
qed
end

end
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