An Isabelle/HOL Formalization of the Modular Assembly Kit for Security Properties

Oliver Bračevac, Richard Gay, Sylvia Grewe, Heiko Mantel, Henning Sudbrock, Markus Tasch

Abstract

The "Modular Assembly Kit for Security Properties" (MAKS) is a framework for both the definition and verification of possibilistic information-flow security properties at the specification-level. MAKS supports the uniform representation of a wide range of possibilistic information-flow properties and provides support for the verification of such properties via unwinding results and compositionality results. We provide a formalization of this framework in Isabelle/HOL.

Contents

1 Introduction			ion	2	
2	Bas	Basic Definitions			
3	System Specification				
	3.1	Event	Systems	. 13	
	3.2	State-1	Event Systems	. 18	
4	Sec	urity S	Specification	24	
	4.1	Views	& Flow Policies	. 24	
	4.2	Basic	Security Predicates	. 26	
	4.3	Inform	nation-Flow Properties	. 37	
	4.4	Proper	rty Library	. 37	
5	Verification 41				
	5.1	Basic	Definitions	. 41	
	5.2	2 Taxonomy Results		. 42	
	5.3	Unwin	nding	. 82	
		5.3.1	Unwinding Conditions	. 82	
		5.3.2	Auxiliary Results	. 84	
		5.3.3	Unwinding Theorems	. 89	
	5.4	Comp	ositionality	. 101	
		5.4.1	Auxiliary Definitions & Results	. 101	
		5.4.2	Generalized Zipping Lemma	. 113	
		5.4.3	Compositionality Results	. 191	

1 Introduction

This is a formalization of the Modular Assembly Kit for Security Properties (MAKS) [2, 3] in its version from [3]. We provide a more detailed explanation on how key concepts of MAKS are formalized in Isabelle/HOL in [1].

2 Basic Definitions

In the following, we define the notion of prefixes and the notion of projection. These definitions are preliminaries for the remaining parts of the Isabelle/HOL formalization of MAKS.

theory *Prefix* imports *Main* begin

definition prefix :: 'e list \Rightarrow 'e list \Rightarrow bool (infixl $\langle \preceq \rangle$ 100) where $(l1 \leq l2) \equiv (\exists \ l3. \ l1 \ @ \ l3 = l2)$

definition prefixclosed ::: ('e list) set \Rightarrow bool where prefixclosed $tr \equiv (\forall l1 \in tr. \forall l2. l2 \leq l1 \longrightarrow l2 \in tr)$

lemma empty-prefix-of-all: [] $\leq l$ using prefix-def [of [] l] by simp

lemma empty-trace-contained: [[prefixclosed $tr ; tr \neq \{\}$]] \Longrightarrow [] $\in tr$ **proof** – **assume** 1: prefixclosed tr and 2: $tr \neq \{\}$ **then obtain** l1 where l1 $\in tr$ by auto with 1 have $\forall l2. l2 \leq l1 \longrightarrow l2 \in tr$ by (simp add: prefixclosed-def) **thus** [] $\in tr$ by (simp add: empty-prefix-of-all) **qed**

lemma transitive-prefix: $[[l1 \leq l2; l2 \leq l3]] \implies l1 \leq l3$ **by** (auto simp add: prefix-def)

end theory Projection imports Main begin **definition** projection:: 'e list \Rightarrow 'e set \Rightarrow 'e list (infix) (\rightarrow 100) where $l \uparrow E \equiv filter (\lambda x . x \in E) l$

lemma projection-on-union: $l \uparrow Y = [] \implies l \uparrow (X \cup Y) = l \uparrow X$ **proof** (induct l) **case** Nil **show** ?case **by** (simp add: projection-def) **next case** (Cons a b) **show** ?case **proof** (cases $a \in Y$) **case** True **from** Cons **show** $a \in Y \implies (a \# b) \uparrow (X \cup Y) = (a \# b) \uparrow X$ **by** (simp add: projection-def) **next case** False **from** Cons **show** $a \notin Y \implies (a \# b) \uparrow (X \cup Y) = (a \# b) \uparrow X$ **by** (simp add: projection-def) **qed qed**

lemma projection-on-empty-trace: [] | X = [] by (simp add: projection-def)

lemma projection-to-emptyset-is-empty-trace: $l \mid \{\} = []$ by (simp add: projection-def)

lemma projection-idempotent: $l \upharpoonright X = (l \upharpoonright X) \upharpoonright X$ by (simp add: projection-def)

lemma projection-empty-implies-absence-of-events: $l \upharpoonright X = [] \implies X \cap (set \ l) = \{\}$ by (metis empty-set inter-set-filter projection-def)

```
lemma disjoint-projection: X \cap Y = \{\} \Longrightarrow (l \uparrow X) \uparrow Y = []
proof -
 assume X-Y-disjoint: X \cap Y = \{\}
 show (l \uparrow X) \uparrow Y = [] unfolding projection-def
 proof (induct l)
   case Nil show ?case by simp
 \mathbf{next}
   case (Cons x xs) show ?case
   proof (cases x \in X)
     case True
     with X-Y-disjoint have x \notin Y by auto
     thus [x \leftarrow [x \leftarrow x \ \# \ xs \ . \ x \in X] \ . \ x \in Y] = [] using Cons.hyps by auto
   next
     case False show [x \leftarrow [x \leftarrow x \ \# \ xs \ . \ x \in X] \ . \ x \in Y] = [] using Cons.hyps False by auto
    qed
 \mathbf{qed}
\mathbf{qed}
```

lemma projection-concatenation-commute: (l1 @ l2) | X = (l1 | X) @ (l2 | X)**by** (unfold projection-def, auto)

 $\begin{array}{l} \textbf{lemma projection-subset-eq-from-superset-eq:}\\ ((xs \mid (X \cup Y)) = (ys \mid (X \cup Y))) \Longrightarrow ((xs \mid X) = (ys \mid X))\\ \textbf{(is } (?L1 = ?L2) \Longrightarrow (?L3 = ?L4))\\ \textbf{proof } -\\ \textbf{assume prem: } ?L1 = ?L2\\ \textbf{have } ?L1 \mid X = ?L3 \land ?L2 \mid X = ?L4\\ \textbf{proof } -\\ \textbf{have } \land a. ((a \in X \lor a \in Y) \land a \in X) = (a \in X)\\ \textbf{by auto}\\ \textbf{thus } ?thesis\\ \textbf{by } (simp \ add: \ projection-def)\\ \textbf{qed}\\ \textbf{with } prem \ \textbf{show } ?thesis\\ \textbf{by } auto\\ \textbf{qed} \end{array}$

lemma *list-subset-iff-projection-neutral*: (set $l \subseteq X$) = (($l \uparrow X$) = l) (is ?A = ?B)proof – have $?A \implies ?B$ proof assume ?Ahence $\bigwedge x. \ x \in (set \ l) \Longrightarrow x \in X$ by auto thus ?thesis **by** (simp add: projection-def) qed moreover have $?B \implies ?A$ proof – $\mathbf{assume}~?B$ hence $(set (l \uparrow X)) = set l$ **by** (*simp add: projection-def*) $\mathbf{thus}~? thesis$ by (simp add: projection-def, auto) \mathbf{qed} ultimately show ?thesis .. \mathbf{qed}

lemma projection-split-last: Suc $n = length (\tau | X) \Longrightarrow$ $\exists \beta x \alpha. (x \in X \land \tau = \beta @ [x] @ \alpha \land \alpha | X = [] \land n = length ((\beta @ \alpha) | X))$ **proof** – **assume** Suc-n-is-len- τX : Suc $n = length (\tau | X)$ let $?L = \tau \uparrow X$ let $?RL = filter \ (\lambda x \ . \ x \in X) \ (rev \ \tau)$ have Suc n = length ?RL proof have rev ?L = ?RL**by** (*simp add: projection-def, rule rev-filter*) hence rev (rev ?L) = rev ?RL ..hence ?L = rev ?RL**by** *auto* with Suc-n-is-len- τX show ?thesis by auto qed with Suc-length-conv[of $n \ RL$] obtain $x \ xs$ where ?RL = x # xsby auto hence x # xs = ?RLby auto from Cons-eq-filterD[OF this] obtain $rev\alpha \ rev\beta$ where $(rev \ \tau) = rev\alpha @ x \ \# rev\beta$ and $rev\alpha$ -no-x: $\forall a \in set rev\alpha$. $a \notin X$ and x-in-X: $x \in X$ by auto hence $rev (rev \tau) = rev (rev\alpha @ x \# rev\beta)$ by auto hence $\tau = (rev rev\beta) @ [x] @ (rev rev\alpha)$ by auto then obtain $\beta \alpha$ where τ -is- $\beta x \alpha$: $\tau = \beta @ [x] @ \alpha$ and α -is-revrev α : $\alpha = (rev rev \alpha)$ and β -is-revrev β : $\beta = (rev rev \beta)$ by *auto* hence α -no-x: $\alpha \uparrow X = []$ proof – from α -is-revrev α rev α -no-x have $\forall a \in set \ \alpha. \ a \notin X$ by auto thus ?thesis **by** (*simp add: projection-def*) qed have $n = length ((\beta @ \alpha) | X)$ proof from α -no-x have αX -zero-len: length $(\alpha \uparrow X) = 0$ by auto from x-in-X have xX-one-len: length ([x] | X) = 1**by** (*simp add: projection-def*)

```
from \tau-is-\beta x \alpha have length ?L = length (\beta \uparrow X) + length ([x] \uparrow X) + length (\alpha \uparrow X) by (simp add: projection-def)
```

with αX -zero-len have length $?L = length (\beta \mid X) + length ([x] \mid X)$ by *auto* with *xX*-one-len Suc-*n*-is-len- τX have $n = length (\beta \mid X)$ by *auto* with αX -zero-len show ?thesis **by** (*simp add: projection-def*) \mathbf{qed} with x-in-X τ -is- $\beta x \alpha \alpha$ -no-x show ?thesis by auto \mathbf{qed} lemma projection-rev-commute: $rev (l \uparrow X) = (rev l) \uparrow X$ by (induct l, simp add: projection-def, simp add: projection-def) lemma projection-split-first: $[(\tau \uparrow X) = x \# xs] \implies \exists \alpha \beta. (\tau = \alpha @ [x] @ \beta \land \alpha \uparrow X = [])$ proof assume τX -is-x-xs: $(\tau \uparrow X) = x \# xs$ hence $0 \neq length (\tau \mid X)$ $\mathbf{by} \ auto$ hence $0 \neq length (rev (\tau \mid X))$ by auto hence $0 \neq length ((rev \tau) \mid X)$ **by** (*simp add: projection-rev-commute*) then obtain *n* where Suc $n = length ((rev \tau) \mid X)$ by (auto, metis Suc-pred length-greater-0-conv that) from projection-split-last[OF this] obtain $\beta' x' \alpha'$ where x'-in-X: $x' \in X$ and $rev\tau$ -is- $\beta' x' \alpha'$: $rev \tau = \beta' @ [x'] @ \alpha'$ and $\alpha' X$ -empty: $\alpha' \upharpoonright X = []$ by auto from $rev\tau$ -is- $\beta' x' \alpha'$ have $rev (rev \tau) = rev (\beta' @ [x'] @ \alpha') ...$ hence τ -is-rev α' -x'-rev β' : τ = rev $\alpha' @ [x'] @ rev \beta'$ by auto moreover from $\alpha' X$ -empty have $rev \alpha' X$ -empty: $rev \alpha' \mid X = []$ **by** (*metis projection-rev-commute rev-is-Nil-conv*) moreover note x'-in-X ultimately have $(\tau \uparrow X) = x' \# ((rev \beta') \uparrow X)$ by (simp only: projection-concatenation-commute projection-def, auto) with τX -is-x-xs have x = x'**by** *auto* with τ -is-rev α' -x'-rev β' have τ -is-rev α' -x-rev β' : τ = rev $\alpha' @ [x] @$ rev β' by *auto* with $rev\alpha' X$ -empty show ?thesis by auto qed

lemma projection-split-first-with-suffix: $\llbracket (\tau \uparrow X) = x \# xs \rrbracket \Longrightarrow \exists \alpha \beta. (\tau = \alpha @ [x] @ \beta \land \alpha \uparrow X = [] \land \beta \uparrow X = xs)$ proof assume tau-proj-X: $(\tau \uparrow X) = x \# xs$ show ?thesis proof from tau-proj-X have x-in-X: $x \in X$ **by** (*metis IntE inter-set-filter list.set-intros*(1) *projection-def*) from tau-proj-X have $\exists \alpha \beta. \tau = \alpha @ [x] @ \beta \land \alpha \upharpoonright X = []$ using projection-split-first by auto then obtain $\alpha \beta$ where *tau-split*: $\tau = \alpha @ [x] @ \beta$ and X-empty-prefix: $\alpha \upharpoonright X = []$ by auto from tau-split tau-proj-X have $(\alpha @ [x] @ \beta) | X = x \# xs$ by *auto* with X-empty-prefix have $([x] @ \beta) | X = x \# xs$ **by** (*simp add: projection-concatenation-commute*) hence $(x \# \beta) \uparrow X = x \# xs$ by auto with *x-in-X* have $\beta \uparrow X = xs$ unfolding projection-def by simp with tau-split X-empty-prefix show ?thesis by auto \mathbf{qed} qed

```
lemma projection-split-arbitrary-element:
  \llbracket \tau \mid X = (\alpha @ [x] @ \beta) \mid X; x \in X \rrbracket
       \implies \exists \alpha' \beta'. (\tau = \alpha' @ [x] @ \beta' \land \alpha' \upharpoonright X = \alpha \upharpoonright X \land \beta' \upharpoonright X = \beta \upharpoonright X)
proof –
  assume \tau \upharpoonright X = (\alpha @ [x] @ \beta) \upharpoonright X
  and x \in X
  {
    fix n
    have \llbracket \tau \mid X = (\alpha @ [x] @ \beta) \mid X; x \in X; n = length(\alpha \mid X) \rrbracket
            \implies \exists \alpha' \beta'. \ (\tau = \alpha' @ [x] @ \beta' \land \alpha' \upharpoonright X = \alpha \upharpoonright X \land \beta' \upharpoonright X = \beta \upharpoonright X)
    proof (induct n arbitrary: \tau \alpha)
       \mathbf{case} \ \theta
       hence \alpha | X = []
         unfolding \ projection-def \ by \ simp
       with 0.prems(1) 0.prems(2) have \tau | X = x \# \beta | X
         unfolding projection-def by simp
       with \langle \alpha | X = [] \rangle show ?case
         using projection-split-first-with-suffix by fastforce
     \mathbf{next}
       case (Suc n)
       from Suc.prems(1) have \tau | X = \alpha | X @ ([x] @ \beta) | X
         using projection-concatenation-commute by auto
       from Suc.prems(3) obtain x' xs' where \alpha \uparrow X = x' \# xs'
```

and $x' \in X$ by (metis filter-eq-ConsD length-Suc-conv projection-def) then obtain $a_1 a_2$ where $\alpha = a_1 @ [x'] @ a_2$ **and** $a_1 | X = []$ and $a_2 | X = xs'$ using projection-split-first-with-suffix by metis with $\langle x' \in X \rangle$ Suc.prems(1) have $\tau | X = x' \# (a_2 @ [x] @ \beta) | X$ unfolding projection-def by simp then obtain t_1 t_2 where $\tau = t_1 @ [x'] @ t_2$ and $t_1 | X = []$ and $t_2 | X = (a_2 @ [x] @ \beta) | X$ using projection-split-first-with-suffix by metis $\mathbf{from} \ Suc.prems(3) \ \langle \alpha \ | X = x' \ \# \ xs' \rangle \ \langle \alpha = a_1 \ @ \ [x'] \ @ \ a_2 \rangle \ \langle a_1 | X = [] \rangle \ \langle a_2 | X = xs' \rangle$ have $n = length(a_2 | X)$ by auto with Suc.hyps(1) Suc.prems(2) $\langle t_2 | X = (a_2 @ [x] @ \beta) | X \rangle$ obtain $t_2' t_3'$ where $t_2 = t_2' @ [x] @ t_3'$ and $t_2'|X = a_2|X$ and $t_3'|X = \beta|X$ ${\bf using} \ projection-concatenation-commute} \ {\bf by} \ blast$ let $?\alpha' = t_1 @ [x'] @ t_2'$ and $?\beta' = t_3'$ from $\langle \tau = t_1 @ [x'] @ t_2 \rangle \langle t_2 = t_2' @ [x] @ t_3' \rangle$ have $\tau = ?\alpha'@[x]@?\beta'$ by auto moreover $\mathbf{from} \quad \langle \alpha \mid X = x' \ \# \ xs' \rangle \quad \langle t_1 \mid X = [] \rangle \ \langle x' \in X \rangle \ \langle t_2' \mid X = a_2 \mid X \rangle \ \langle a_2 \mid X = xs' \rangle$ have $?\alpha'|X = \alpha|X$ using projection-concatenation-commute unfolding projection-def by simp ultimately show ?case using $\langle t_3' | X = \beta | X \rangle$ $\mathbf{by} \ blast$ \mathbf{qed} } with $\langle \tau \mid X = (\alpha @ [x] @ \beta) \mid X \rangle \langle x \in X \rangle$ show ?thesis $\mathbf{by} \ simp$ qed **lemma** projection-on-intersection: $l \upharpoonright X = [] \Longrightarrow l \upharpoonright (X \cap Y) = []$ $(is ?L1 = [] \implies ?L2 = [])$ proof – assume ?L1 = []hence set $?L1 = \{\}$ by simp moreover have set $?L2 \subseteq set ?L1$ by (simp add: projection-def, auto) ultimately have set $?L2 = \{\}$ by auto thus ?thesis by auto

```
\mathbf{qed}
```

lemma projection-on-subset: $[Y \subseteq X; l \uparrow X = []] \implies l \uparrow Y = []$ **proof** – **assume** subset: $Y \subseteq X$ **assume** proj-empty: $l \uparrow X = []$ **hence** $l \uparrow (X \cap Y) = []$ **by** (rule projection-on-intersection) **moreover from** subset **have** $X \cap Y = Y$ **by** auto **ultimately show** ?thesis **by** auto **qed**

lemma projection-on-subset2: $[[set \ l \subseteq L; \ l \upharpoonright X' = []; \ X \cap L \subseteq X']] \Longrightarrow l \upharpoonright X = []$ **proof** – **assume** setl-subset-L: set $l \subseteq L$ **assume** l-no-X': $l \upharpoonright X' = []$ **assume** X-inter-L-subset-X': $X \cap L \subseteq X'$

from X-inter-L-subset-X' l-no-X' have $l \upharpoonright (X \cap L) = []$ by (rule projection-on-subset) moreover have $l \upharpoonright (X \cap L) = (l \upharpoonright L) \upharpoonright X$ by (simp add: Int-commute projection-def) moreover note setl-subset-L ultimately show ?thesis by (simp add: list-subset-iff-projection-neutral) qed

lemma non-empty-projection-on-subset: $X \subseteq Y \land l_1 \upharpoonright Y = l_2 \upharpoonright Y \implies l_1 \upharpoonright X = l_2 \upharpoonright X$ **by** (metis projection-subset-eq-from-superset-eq subset-Un-eq)

lemma projection-intersection-neutral: (set $l \subseteq X$) \implies ($l \uparrow (X \cap Y) = l \uparrow Y$) proof – assume set $l \subseteq X$ hence ($l \uparrow X$) = lby (simp add: list-subset-iff-projection-neutral) hence ($l \uparrow X$) $\uparrow Y = l \uparrow Y$ by simp moreover have ($l \uparrow X$) $\uparrow Y = l \uparrow (X \cap Y)$ by (simp add: projection-def) ultimately show ?thesis by simp qed **lemma** projection-commute:

(l | X) | Y = (l | Y) | Xby (simp add: projection-def conj-commute)

lemma projection-subset-elim: $Y \subseteq X \Longrightarrow (l \mid X) \mid Y = l \mid Y$ **by** (simp only: projection-def, metis Diff-subset list-subset-iff-projection-neutral minus-coset-filter order-trans projection-commute projection-def)

lemma projection-sequence: $(xs \uparrow X) \uparrow Y = (xs \uparrow (X \cap Y))$

 $\mathbf{by} \; (\textit{metis Int-absorb inf-sup-ord}(1) \; \textit{list-subset-iff-projection-neutral} \\$

 $projection\-intersection\-neutral\ projection\-subset\-elim)$

fun merge :: 'e set \Rightarrow 'e set \Rightarrow 'e list \Rightarrow 'e list \Rightarrow 'e list where merge $A \ B \ [] \ t2 = t2 |$ merge $A \ B \ t1 \ [] = t1 |$ merge $A \ B \ (e1 \ \# \ t1') \ (e2 \ \# \ t2') = (if \ e1 = e2 \ then$ $e1 \ \# \ (merge \ A \ B \ t1' \ t2')$ $else \ (if \ e1 \in (A \cap B) \ then$ $e2 \ \# \ (merge \ A \ B \ t1' \ t2')$ $else \ e1 \ \# \ (merge \ A \ B \ t1' \ (e2 \ \# \ t2'))))$

lemma merge-property: [set $t1 \subseteq A$; set $t2 \subseteq B$; $t1 \upharpoonright B = t2 \upharpoonright A$] $\implies let t = (merge \ A \ B \ t1 \ t2) \ in \ (t \ | \ A = t1 \ \land \ t \ | \ B = t2 \ \land \ set \ t \subseteq ((set \ t1) \ \cup \ (set \ t2)))$ unfolding Let-def **proof** (*induct A B t1 t2 rule: merge.induct*) case (1 A B t2) thus ?case $\mathbf{by} \ (metis \ Un-empty-left \ empty-subset I \ list-subset-iff-projection-neutral$ merge.simps(1) set-empty subset-iff-psubset-eq) \mathbf{next} case (2 A B t1) thus ?case by (metis Un-empty-right empty-subset list-subset-iff-projection-neutral merge.simps(2) set-empty subset-refl) \mathbf{next} case (3 A B e1 t1' e2 t2') thus ?case **proof** (*cases*) assume e1-is-e2: e1 = e2note e1-is-e2 moreover from 3(4) have set $t1' \subseteq A$ by auto moreover from 3(5) have set $t2' \subseteq B$ by auto moreover from e1-is-e2 3(4-6) have t1' | B = t2' | A

by (*simp add: projection-def*) moreover note 3(1)ultimately have ind1: merge A B $t1' t2' \mid A = t1'$ and ind2: merge A B $t1' t2' \upharpoonright B = t2'$ and ind3: set (merge A B t1' t2') \subseteq (set t1') \cup (set t2') by auto from *e1-is-e2* have *merge-eq*: merge A B (e1 # t1') (e2 # t2') = e1 # (merge A B t1' t2') by auto from 3(4) ind1 have goal1: merge A B (e1 # t1') (e2 # t2') | A = e1 # t1' **by** (*simp only: merge-eq projection-def, auto*) moreover from e1-is-e2 3(5) ind2 have goal2: merge A B (e1 # t1') (e2 # t2') | B = e2 # t2'**by** (*simp only: merge-eq projection-def, auto*) moreover from *ind3* have *goal3*: set (merge A B (e1 # t1') (e2 # t2')) \subseteq set (e1 # t1') \cup set (e2 # t2') **by** (*simp only: merge-eq, auto*) ultimately show ?thesis by auto \mathbf{next} assume e1-isnot-e2: $e1 \neq e2$ show ?thesis **proof** (*cases*) assume e1-in-A-inter-B: $e1 \in A \cap B$ from 3(6) e1-isnot-e2 e1-in-A-inter-B have e2-notin-A: e2 \notin A **by** (simp add: projection-def, auto) note e1-isnot-e2 e1-in-A-inter-B 3(4) moreover from 3(5) have set $t2' \subseteq B$ by auto moreover from 3(6) e1-isnot-e2 e1-in-A-inter-B have $(e1 \# t1') \upharpoonright B = t2' \upharpoonright A$ **by** (simp add: projection-def, auto) moreover **note** 3(2) ultimately have ind1: merge A B (e1 # t1') t2' | A = (e1 # t1') and ind2: merge A B (e1 # t1') t2' | B = t2' and ind3: set (merge A B (e1 # t1') t2') \subseteq set (e1 # t1') \cup set t2' by auto from e1-isnot-e2 e1-in-A-inter-B have *merge-eq*: merge A B (e1 # t1') (e2 # t2') = e2 # (merge A B (e1 # t1') t2') $\mathbf{by} \ auto$

from e1-isnot-e2 ind1 e2-notin-A have goal1: merge $A B (e1 \# t1') (e2 \# t2') \uparrow A = e1 \# t1'$ **by** (simp only: merge-eq projection-def, auto) moreover from 3(5) ind2 have goal2: merge A B (e1 # t1') (e2 # t2') | B = e2 # t2' **by** (*simp only: merge-eq projection-def, auto*) moreover from 3(5) ind 3 have goal 3: set (merge A B (e1 # t1') (e2 # t2')) \subseteq set (e1 # t1') \cup set (e2 # t2') by (simp only: merge-eq, auto) ultimately show ?thesis by auto next assume e1-notin-A-inter-B: e1 \notin A \cap B from 3(4) e1-notin-A-inter-B have e1-notin-B: e1 \notin B by auto note e1-isnot-e2 e1-notin-A-inter-B moreover from 3(4) have set $t1' \subseteq A$ by auto moreover note 3(5)moreover from 3(6) e1-notin-B have t1' | B = (e2 # t2') | A**by** (*simp add: projection-def*) moreover note $\Im(\Im)$ ultimately have ind1: merge A B t1' (e2 # t2') | A = t1' and *ind2*: merge A B t1' (e2 # t2') | B = (e2 # t2') and ind3: set (merge A B t1' (e2 # t2')) \subseteq set t1' \cup set (e2 # t2') $\mathbf{by} \ auto$ from e1-isnot-e2 e1-notin-A-inter-B have merge-eq: merge A B (e1 # t1') (e2 # t2') = e1 # (merge A B t1' (e2 # t2'))by auto from 3(4) ind1 have goal1: merge A B (e1 # t1') (e2 # t2') $\uparrow A = e1 \# t1'$ **by** (*simp only: merge-eq projection-def, auto*) moreover from *ind2* e1-notin-B have goal2: merge A B (e1 # t1') (e2 # t2') | B = e2 # t2'**by** (simp only: merge-eq projection-def, auto) moreover from 3(4) ind 3 have goal 3: set (merge A B (e1 # t1') (e2 # t2')) \subseteq set (e1 # t1') \cup set (e2 # t2') by (simp only: merge-eq, auto) ultimately show ?thesis by *auto* qed

```
qed
qed
```

 \mathbf{end}

3 System Specification

3.1 Event Systems

We define the system model of event systems as well as the parallel composition operator for event systems provided as part of MAKS in [3].

theory EventSystems imports ../Basics/Prefix ../Basics/Projection begin

record 'e ES-rec = E-ES :: 'e set I-ES :: 'e set O-ES :: 'e set Tr-ES :: ('e list) set

abbreviation ESrecEES :: 'e ES-rec \Rightarrow 'e set ($\langle E_{-} \rangle$ [1000] 1000) **where** $E_{ES} \equiv (E\text{-}ES \ ES)$

abbreviation ESrecIES :: 'e ES-rec \Rightarrow 'e set ($\langle I_{-} \rangle$ [1000] 1000) **where** $I_{ES} \equiv (I\text{-}ES \ ES)$

abbreviation ESrecOES :: 'e ES-rec \Rightarrow 'e set ($\langle O_{-} \rangle$ [1000] 1000) **where** $O_{ES} \equiv (O\text{-}ES \ ES)$

abbreviation ESrecTrES :: 'e ES-rec \Rightarrow ('e list) set ($\langle Tr_{-} \rangle$ [1000] 1000) where $Tr_{ES} \equiv (Tr$ -ES ES)

definition es-inputs-are-events :: 'e ES-rec \Rightarrow bool where es-inputs-are-events $ES \equiv I_{ES} \subseteq E_{ES}$

definition es-outputs-are-events :: 'e ES-rec \Rightarrow bool where

es-outputs-are-events $ES \equiv O_{ES} \subseteq E_{ES}$

definition es-inputs-outputs-disjoint :: 'e ES-rec \Rightarrow bool where es-inputs-outputs-disjoint ES $\equiv I_{ES} \cap O_{ES} = \{\}$

definition traces-contain-events :: 'e ES-rec \Rightarrow bool where traces-contain-events $ES \equiv \forall l \in Tr_{ES}$. $\forall e \in (set \ l). \ e \in E_{ES}$

definition traces-prefixclosed :: 'e ES-rec \Rightarrow bool where traces-prefixclosed ES \equiv prefixclosed Tr_{ES}

definition total :: 'e ES-rec \Rightarrow 'e set \Rightarrow bool where total ES $E \equiv E \subseteq E_{ES} \land (\forall \tau \in Tr_{ES}. \forall e \in E. \tau @ [e] \in Tr_{ES})$

lemma totality: \llbracket total ES E; $t \in Tr_{ES}$; set $t' \subseteq E \rrbracket \Longrightarrow t @ t' \in Tr_{ES}$ by (induct t' rule: rev-induct, force, simp only: total-def, auto)

 $\begin{array}{l} \mbox{definition } composeES :: 'e \ ES \ rec \Rightarrow rec \Rightarrow rec \Rightarrow rec \ ES \ rec \Rightarrow rec \ rec \ ES \ rec \Rightarrow rec \ ES \ rec \ rec \ ES \ r$

abbreviation composeESAbbrv :: 'e ES-rec \Rightarrow 'e ES-rec \Rightarrow 'e ES-rec ($\langle - \parallel - \rangle [1000] \ 1000$) **where** ES1 \parallel ES2 \equiv (composeES ES1 ES2)

definition composable :: 'e ES-rec \Rightarrow 'e ES-rec \Rightarrow bool **where** composable ES1 ES2 \equiv ($E_{ES1} \cap E_{ES2}$) \subseteq (($O_{ES1} \cap I_{ES2}$) \cup ($O_{ES2} \cap I_{ES1}$)) **lemma** composeES-yields-ES: $\llbracket ES$ -valid ES1; ES-valid ES2 $\rrbracket \Longrightarrow$ ES-valid (ES1 \parallel ES2) unfolding ES-valid-def proof (auto) assume ES1-inputs-are-events: es-inputs-are-events ES1 assume ES2-inputs-are-events: es-inputs-are-events ES2 show es-inputs-are-events (ES1 \parallel ES2) unfolding composeES-def es-inputs-are-events-def **proof** (simp)have subgoal11: $I_{ES1} - O_{ES2} \subseteq E_{ES1} \cup E_{ES2}$ proof (auto) fix xassume $x \in I_{ES1}$ with ES1-inputs-are-events show $x \in E_{ES1}$ **by** (*auto simp add: es-inputs-are-events-def*) qed have subgoal12: $I_{ES2} - O_{ES1} \subseteq E_{ES1} \cup E_{ES2}$ proof (rule subsetI, rule UnI2, auto) fix xassume $x \in I_{ES2}$ with ES2-inputs-are-events show $x \in E_{ES2}$ by (auto simp add: es-inputs-are-events-def) qed **from** *subgoal11 subgoal12* show $I_{ES1} - O_{ES2} \subseteq E_{ES1} \cup E_{ES2} \wedge I_{ES2} - O_{ES1} \subseteq E_{ES1} \cup E_{ES2}$.. qed \mathbf{next} ${\bf assume} \ ES1 \text{-} outputs \text{-} are \text{-} events \text{:} \ es \text{-} outputs \text{-} are \text{-} events \ ES1$ assume ES2-outputs-are-events: es-outputs-are-events ES2 **show** es-outputs-are-events (ES1 \parallel ES2) ${\bf unfolding} \ compose ES-def \ es-outputs-are-events-def$ proof (simp) have subgoal21: $O_{ES1} - I_{ES2} \subseteq E_{ES1} \cup E_{ES2}$ proof (auto) fix xassume $x \in O_{ES1}$ with ES1-outputs-are-events show $x \in E_{ES1}$ **by** (*auto simp add: es-outputs-are-events-def*) qed have subgoal 22: $O_{ES2} - I_{ES1} \subseteq E_{ES1} \cup E_{ES2}$ proof (rule subsetI, rule UnI2, auto) fix xassume $x \in O_{ES2}$ with ES2-outputs-are-events show $x \in E_{ES2}$ by (auto simp add: es-outputs-are-events-def) \mathbf{qed} from subgoal21 subgoal22 show $O_{ES1} - I_{ES2} \subseteq E_{ES1} \cup E_{ES2} \land O_{ES2} - I_{ES1} \subseteq E_{ES1} \cup E_{ES2}$. qed \mathbf{next}

 ${\bf assume} \ ES1\-inputs\-outputs\-disjoint: \ es\-inputs\-outputs\-disjoint \ ES1$ ${\bf assume} \ ES2\-inputs\-outputs\-disjoint:\ es\-inputs\-outputs\-disjoint\ ES2$ **show** es-inputs-outputs-disjoint (ES1 \parallel ES2) unfolding composeES-def es-inputs-outputs-disjoint-def **proof** (*simp*) have subgoal31: $\{\} \subseteq (I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})) \cap (O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1}))$ by auto have subgoal32: $(I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})) \cap (O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1})) \subseteq \{\}$ proof (rule subsetI, erule IntE) fix xassume ass1: $x \in I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})$ then have $ass1': x \in I_{ES1} - O_{ES2} \lor x \in (I_{ES2} - O_{ES1})$ by auto assume ass2: $x \in O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1})$ then have $ass2':x \in O_{ES1} - I_{ES2} \lor x \in (O_{ES2} - I_{ES1})$ by auto note ass1' moreover { assume left1: $x \in I_{ES1} - O_{ES2}$ note ass2 moreover { assume *left2*: $x \in O_{ES1} - I_{ES2}$ with *left1* have $x \in (I_{ES1}) \cap (O_{ES1})$ by (auto) with ES1-inputs-outputs-disjoint have $x \in \{\}$ **by** (*auto simp add: es-inputs-outputs-disjoint-def*) } moreover { assume right2: $x \in (O_{ES2} - I_{ES1})$ with left1 have $x \in (I_{ES1} - I_{ES1})$ by auto hence $x \in \{\}$ by auto } ultimately have $x \in \{\}$.. } moreover { assume right1: $x \in I_{ES2} - O_{ES1}$ note ass2' moreover { assume left2: $x \in O_{ES1} - I_{ES2}$ with right1 have $x \in (I_{ES2} - I_{ES2})$ by auto hence $x \in \{\}$ by auto } moreover { assume right2: $x \in (O_{ES2} - I_{ES1})$ with right1 have $x \in (I_{ES2} \cap O_{ES2})$ by auto

```
with ES2-inputs-outputs-disjoint have x \in \{\}
            by (auto simp add: es-inputs-outputs-disjoint-def)
        }
        ultimately have x \in \{\} ..
      }
     ultimately show x \in \{\} ..
    qed
    from subgoal31 subgoal32
   \mathbf{show} \ (I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})) \cap (O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1})) = \{\}
     by auto
 qed
next
 show traces-contain-events (ES1 \parallel ES2) unfolding composeES-def traces-contain-events-def
   proof (clarsimp)
     fix l e
     assume e \in set l
       and set l \subseteq E_{ES1} \cup E_{ES2}
      then have e-in-union: e \in E_{ES1} \cup E_{ES2}
       by auto
      assume e \notin E_{ES2}
      with e-in-union show e \in E_{ES1}
        \mathbf{by} \ auto
    qed
next
 assume ES1-traces-prefixclosed: traces-prefixclosed ES1
 assume ES2-traces-prefixclosed: traces-prefixclosed ES2
 show traces-prefixclosed (ES1 \parallel ES2)
    unfolding composeES-def traces-prefixclosed-def prefixclosed-def prefix-def
  proof (clarsimp)
   fix 12 13
   have l2l3split: (l2 @ l3) \uparrow E_{ES1} = (l2 \uparrow E_{ES1}) @ (l3 \uparrow E_{ES1})
     by (rule projection-concatenation-commute)
    assume (l2 @ l3) \uparrow E_{ES1} \in Tr_{ES1}
    with l2l3split have l2l3cattrace: (l2 | E_{ES1}) @ (l3 | E_{ES1}) \in Tr_{ES1}
     by auto
    have the prefix: (l2 \uparrow E_{ES1}) \preceq ((l2 \uparrow E_{ES1}) @ (l3 \uparrow E_{ES1}))
     by (simp add: prefix-def)
    have prefixclosure: \forall es1 \in (Tr_{ES1}). \forall es2. es2 \leq es1 \longrightarrow es2 \in (Tr_{ES1})
     by (clarsimp, insert ES1-traces-prefixclosed, unfold traces-prefixclosed-def prefixclosed-def,
        erule-tac \ x=es1 in ballE, erule-tac \ x=es2 in allE, erule \ impE, auto)
   hence
       ((l2 | E_{ES1}) @ (l3 | E_{ES1})) \in Tr_{ES1} \Longrightarrow \forall es2. es2 \preceq ((l2 | E_{ES1}) @ (l3 | E_{ES1}))
         \longrightarrow es2 \in Tr_{ES1}..
    with l2l3cattrace have \forall es2. es2 \leq ((l2 \upharpoonright E_{ES1}) \otimes (l3 \upharpoonright E_{ES1})) \longrightarrow es2 \in Tr_{ES1}
     bv auto
    \mathbf{hence}~(l2 \upharpoonright E_{ES1}) \preceq ((l2 \upharpoonright E_{ES1}) @~(l3 \upharpoonright E_{ES1})) \longrightarrow (l2 \upharpoonright E_{ES1}) \in \mathit{Tr}_{ES1} \mathrel{.}
    with the prefix have goal 51: (l2 | E_{ES1}) \in Tr_{ES1}
     by simp
    have l2l3split: (l2 @ l3) | E_{ES2} = (l2 | E_{ES2}) @ (l3 | E_{ES2})
     by (rule projection-concatenation-commute)
    assume (l2 @ l3) | E_{ES2} \in Tr_{ES2}
```

with *l2l3split* have *l2l3cattrace*: (*l2* | E_{ES2}) @ (*l3* | E_{ES2}) \in Tr_{ES2} by auto have the prefix: $(l2 \upharpoonright E_{ES2}) \preceq ((l2 \upharpoonright E_{ES2}) @ (l3 \upharpoonright E_{ES2}))$ **by** (*simp add: prefix-def*) have prefixclosure: $\forall es1 \in Tr_{ES2}$. $\forall es2. es2 \preceq es1 \longrightarrow es2 \in Tr_{ES2}$ by (clarsimp, insert ES2-traces-prefixclosed, unfold traces-prefixclosed-def prefixclosed-def, erule-tac x=es1 in ballE, erule-tac x=es2 in allE, erule impE, auto) $\begin{array}{l} \textbf{hence} \quad ((l2 \ | \ E_{ES2}) @ (l3 \ | \ E_{ES2})) \in Tr_{ES2} \\ \Longrightarrow \forall \ es2. \ es2 \ \preceq ((l2 \ | \ E_{ES2}) @ (l3 \ | \ E_{ES2})) \longrightarrow es2 \in Tr_{ES2} \\ \textbf{with} \ l2l3cattrace \ \textbf{have} \ \forall \ es2. \ es2 \ \preceq ((l2 \ | \ E_{ES2}) @ (l3 \ | \ E_{ES2})) \longrightarrow es2 \in Tr_{ES2} \end{array}$ by auto $\mathbf{hence}~(l2~1~E_{ES2}) \preceq ((l2~1~E_{ES2}) @~(l3~1~E_{ES2})) \longrightarrow (l2~1~E_{ES2}) \in \mathit{Tr}_{ES2} \mathrel{.}$ with the prefix have goal 52: $(l2 | E_{ES2}) \in Tr_{ES2}$ by simp from goal51 goal52 show goal5: $l2 \mid E_{ES1} \in Tr_{ES1} \land l2 \mid E_{ES2} \in Tr_{ES2}$.. qed qed

 \mathbf{end}

3.2 State-Event Systems

We define the system model of state-event systems as well as the translation from state-event systems to event systems provided as part of MAKS in [3]. State-event systems are the basis for the unwinding theorems that we prove later in this entry.

```
theory StateEventSystems
imports EventSystems
begin
```

record ('s, 'e) SES-rec = S-SES :: 's set s0-SES :: 's E-SES :: 'e set I-SES :: 'e set O-SES :: 'e set T-SES :: 's \Rightarrow 'e \rightarrow 's

abbreviation SESrecSSES :: ('s, 'e) SES-rec \Rightarrow 's set ($\langle S_{-} \rangle$ [1000] 1000) where $S_{SES} \equiv (S\text{-}SES SES)$

abbreviation SESrecs0SES :: ('s, 'e) SES-rec \Rightarrow 's ($\langle s0 \rangle [1000] 1000$) **where** $s0_{SES} \equiv (s0$ -SES SES) **abbreviation** SESrecESES :: ('s, 'e) SES-rec \Rightarrow 'e set ($\langle E_{-} \rangle$ [1000] 1000) **where** $E_{SES} \equiv (E\text{-}SES SES)$

abbreviation SESrecISES :: ('s, 'e) SES-rec \Rightarrow 'e set ($\langle I_{-} \rangle$ [1000] 1000) where $I_{SES} \equiv$ (I-SES SES)

abbreviation SESrecOSES :: ('s, 'e) SES-rec \Rightarrow 'e set ($\langle O_{-} \rangle$ [1000] 1000) where $O_{SES} \equiv (O\text{-SES SES})$

abbreviation SESrecTSES :: ('s, 'e) SES-rec \Rightarrow ('s \Rightarrow 'e \rightarrow 's) ($\langle T_{-} \rangle$ [1000] 1000) where $T_{SES} \equiv$ (T-SES SES)

abbreviation TSESpred :: $'s \Rightarrow 'e \Rightarrow ('s, 'e)$ SES-rec $\Rightarrow 's \Rightarrow bool$ ($\langle - - \rightarrow - - \rangle [100, 100, 100, 100]$ 100) where $s \ e \longrightarrow_{SES} s' \equiv (T_{SES} \ s \ e = Some \ s')$

definition s0-is-state :: ('s, 'e) SES-rec \Rightarrow bool where s0-is-state SES \equiv s0_{SES} \in S_{SES}

definition ses-inputs-are-events :: ('s, 'e) SES-rec \Rightarrow bool where ses-inputs-are-events SES $\equiv I_{SES} \subseteq E_{SES}$

definition ses-outputs-are-events :: ('s, 'e) SES-rec \Rightarrow bool where ses-outputs-are-events SES $\equiv O_{SES} \subseteq E_{SES}$

definition ses-inputs-outputs-disjoint :: ('s, 'e) SES-rec \Rightarrow bool where ses-inputs-outputs-disjoint SES $\equiv I_{SES} \cap O_{SES} = \{\}$

definition correct-transition-relation :: ('s, 'e) SES-rec \Rightarrow bool **where** correct-transition-relation SES \equiv $\forall x \ y \ z. \ x \ y \longrightarrow_{SES} z \longrightarrow ((x \in S_{SES}) \land (y \in E_{SES}) \land (z \in S_{SES}))$

definition SES-valid ::: ('s, 'e) SES-rec \Rightarrow bool where SES-valid SES \equiv s0-is-state SES \land ses-inputs-are-events SES \land ses-outputs-are-events SES \land ses-inputs-outputs-disjoint SES \land correct-transition-relation SES

primec path :: ('s, 'e) SES-rec \Rightarrow 's \Rightarrow 'e list \rightarrow 's **where** path-empt: path SES s1 [] = (Some s1) | path-nonempt: path SES s1 (e # t) = (if (\exists s2. s1 e \rightarrow SES s2) then (path SES (the (T_{SES} s1 e)) t) else None) **characteristics** pathematic "(a > (a list \Rightarrow ((a 'c) SES rec \Rightarrow (a))

abbreviation pathpred :: $s' \Rightarrow e$ list $\Rightarrow (s, e)$ SES-rec $\Rightarrow s \Rightarrow bool$ ($- \rightarrow - \rightarrow [100, 100, 100, 100]$ 100) where $s t \Longrightarrow_{SES} s' \equiv path SES s t = Some s'$

definition reachable :: ('s, 'e) SES-rec \Rightarrow 's \Rightarrow bool where reachable SES $s \equiv (\exists t. so_{SES} t \Longrightarrow_{SES} s)$

definition enabled :: ('s, 'e) SES-rec \Rightarrow 's \Rightarrow 'e list \Rightarrow bool where enabled SES s t $\equiv (\exists s'. s t \Longrightarrow_{SES} s')$

definition possible-traces :: ('s, 'e) SES-rec \Rightarrow ('e list) set where possible-traces SES \equiv {t. (enabled SES s0_{SES} t)}

definition induceES ::: ('s, 'e) SES-rec \Rightarrow 'e ES-rec where induceES SES \equiv (E-ES = E_{SES} , I-ES = I_{SES} , O-ES = O_{SES} , Tr-ES = possible-traces SES)

lemma none-remains-none : $\bigwedge s \ e. \ (path \ SES \ s \ t) = None$ $\implies (path \ SES \ s \ (t \ @ [e])) = None$ **by** (induct t, auto) **lemma** path-trans-single-neg: \bigwedge s1. $[s1 \ t \Longrightarrow_{SES} s2; \neg (s2 \ e \longrightarrow_{SES} sn)]]$ $\implies \neg (s1 \ (t @ [e]) \Longrightarrow_{SES} sn)$ **by** (*induct t, auto*) **lemma** path-split-single: s1 (t@[e]) \Longrightarrow_{SES} sn $\implies \exists s'. s1 t \implies_{SES} s' \land s' e \longrightarrow_{SES} sn$ by (cases path SES s1 t, simp add: none-remains-none, simp, rule ccontr, auto simp add: path-trans-single-neg) **lemma** path-trans-single: $\land s. \ [s \ t \Longrightarrow_{SES} s'; \ s' \ e \longrightarrow_{SES} sn \]$ $\implies s \ (t \ @ \ [e]) \implies_{SES} sn$ **proof** (*induct* t) case Nil thus ?case by auto \mathbf{next} case (Cons a t) thus ?case proof from Cons obtain s1' where trans-s-a-s1': $s \xrightarrow{a \longrightarrow SES} s1'$ **by** (*simp*, *split if-split-asm*, *auto*) with Cons have $s1'(t @ [e]) \Longrightarrow_{SES} sn$ by auto with trans-s-a-s1' show ?thesis $\mathbf{by} \ auto$ qed qed lemma path-split: \bigwedge sn. [[s1 (t1 @ t2) \Longrightarrow_{SES} sn]] $\Longrightarrow (\exists \mathit{s2.} (\mathit{s1} \ t1 \Longrightarrow_{SES} \mathit{s2} \land \mathit{s2} \ t2 \Longrightarrow_{SES} \mathit{sn}))$ proof (induct t2 rule: rev-induct) case Nil thus ?case by auto next case $(snoc \ a \ t)$ thus ?case proof from snoc have s1 (t1 @ t @ [a]) $\Longrightarrow_{SES} sn$ by auto hence $\exists sn'. s1 \ (t1 \ @ t) \Longrightarrow_{SES} sn' \land sn' a \longrightarrow_{SES} sn$ **by** (*simp add: path-split-single*) then obtain *sn'* where *path-t1-t-trans-a*: $s1 (t1 @ t) \Longrightarrow_{SES} sn' \wedge sn' a \longrightarrow_{SES} sn$ by *auto* with snoc obtain s2 where path-t1-t: $s1 t1 \Longrightarrow_{SES} s2 \land s2 t \Longrightarrow_{SES} sn'$ by *auto* with path-t1-t-trans-a have s2 (t @ [a]) $\Longrightarrow_{SES} sn$ **by** (*simp add: path-trans-single*) with path-t1-t show ?thesis by auto qed

```
\mathbf{qed}
```

lemma path-trans: $\bigwedge sn. \ [\![s1 \ l1 \Longrightarrow_{SES} s2; s2 \ l2 \Longrightarrow_{SES} sn \]\!] \Longrightarrow s1 \ (l1 \ @ \ l2) \Longrightarrow_{SES} sn$ proof (induct l2 rule: rev-induct) case Nil thus ?case by auto \mathbf{next} case (snoc a l) thus ?case proof assume path-l1: s1 $l1 \Longrightarrow_{SES} s2$ assume s2 $(l@[a]) \Longrightarrow_{SES} sn$ hence $\exists sn'. s2 \implies_{SES} sn' \land sn' [a] \Longrightarrow_{SES} sn$ by (simp add: path-split del: path-nonempt) then obtain sn' where path-l-a: $s2 \implies_{SES} sn' \land sn' [a] \Longrightarrow_{SES} sn$ by auto with snoc path-l1 have path-l1-l: s1 (l1@l) $\Longrightarrow_{SES} sn'$ by auto with path-l-a have $sn' \xrightarrow{} ses$ sn by (simp, split if-split-asm, auto) with path-l1-l show s1 (l1 @ l @ [a]) $\Longrightarrow_{SES} sn$ by (subst append-assoc[symmetric], rule-tac s'=sn' in path-trans-single, auto) \mathbf{qed} \mathbf{qed}

```
\begin{array}{l} \textbf{lemma enabledPrefixSingle} : \llbracket enabled SES \ s \ (t@[e]) \ \rrbracket \implies enabled SES \ s \ t \\ \textbf{unfolding enabled-def} \\ \textbf{proof} - \\ \textbf{assume } ass : \exists s'. \ s \ (t \ @ \ [e]) \implies_{SES} s' \\ \textbf{from } ass \ \textbf{obtain } s' \ \textbf{where } s \ (t \ @ \ [e]) \implies_{SES} s' \\ \textbf{from } ass \ \textbf{obtain } s' \ \textbf{where } s \ (t \ @ \ [e]) \implies_{SES} s' \\ \textbf{hence } \exists t'. \ (s \ t \implies_{SES} t') \land (t' \ e \implies_{SES} s') \\ \textbf{by } (rule \ path-split-single) \\ \textbf{then obtain } t' \ \textbf{where } s \ t \implies_{SES} t' \\ \textbf{by } (auto) \\ \textbf{thus } \exists s'. \ s \ t \implies_{SES} s' \\ \textbf{.} \\ \textbf{qed} \end{array}
```

```
\begin{array}{l} \textbf{lemma enabledPrefix} : \llbracket enabled SES \ s \ (t1 \ @ \ t2) \ \rrbracket \implies enabled SES \ s \ t1 \\ \textbf{unfolding enabled-def} \\ \textbf{proof} - \\ \textbf{assume } ass: \exists \ s'. \ s \ (t1 \ @ \ t2) \Longrightarrow_{SES} \ s' \\ \textbf{from } ass \ \textbf{obtain } s' \ \textbf{where } s \ (t1 \ @ \ t2) \Longrightarrow_{SES} \ s' \\ \textbf{from } ass \ \textbf{obtain } s' \ \textbf{where } s \ (t1 \ @ \ t2) \Longrightarrow_{SES} \ s' \\ \textbf{hence } \exists \ t. \ (s \ t1 \Longrightarrow_{SES} \ t \ \land \ t2 \Longrightarrow_{SES} \ s') \\ \textbf{by } (rule \ path-split) \\ \textbf{then obtain } t \ \textbf{where } s \ t1 \Longrightarrow_{SES} \ t \\ \textbf{by } (auto) \\ \textbf{then show } \exists \ s'. \ s \ t1 \Longrightarrow_{SES} \ s' \ .. \\ \textbf{qed} \end{array}
```

```
\begin{array}{l} \textbf{lemma enabledPrefixSingleFinalStep} : \llbracket enabled SES \ s \ (t@[e]) \ \rrbracket \Longrightarrow \exists \ t' \ t''. \ t' \ e \longrightarrow_{SES} \ t'' \\ \textbf{unfolding enabled-def} \\ \textbf{proof} \ - \\ \textbf{assume } ass : \exists \ s'. \ s \ (t \ @ \ [e]) \Longrightarrow_{SES} \ s' \\ \textbf{from } ass \ \textbf{obtain } \ s' \ \textbf{where } s \ (t \ @ \ [e]) \Longrightarrow_{SES} \ s' \\ \textbf{from } ass \ \textbf{obtain } \ s' \ \textbf{where } s \ (t \ @ \ [e]) \Longrightarrow_{SES} \ s' \\ \textbf{hence } \exists \ t'. \ (s \ t \Longrightarrow_{SES} \ t') \ \land \ (t' \ e \longrightarrow_{SES} \ s') \\ \textbf{by } (rule \ path-split-single) \\ \textbf{then obtain } \ t' \ \textbf{where } \ t' \ e \longrightarrow_{SES} \ s' \\ \textbf{by } (auto) \\ \textbf{thus } \exists \ t' \ t''. \ t' \ e \longrightarrow_{SES} \ t'' \\ \textbf{by } (auto) \\ \textbf{thus } \exists \ t' \ t''. \ t' \ e \longrightarrow_{SES} \ t'' \\ \textbf{by } (auto) \end{array}
```

```
\mathbf{qed}
```

```
lemma induceES-yields-ES:
 SES-valid SES \implies ES-valid (induceES SES)
proof (simp add: SES-valid-def ES-valid-def, auto)
 assume SES-inputs-are-events: ses-inputs-are-events SES
 thus es-inputs-are-events (induceES SES)
   by (simp add: induceES-def ses-inputs-are-events-def es-inputs-are-events-def)
\mathbf{next}
 assume SES-outputs-are-events: ses-outputs-are-events SES
 thus es-outputs-are-events (induceES SES)
   by (simp add: induceES-def ses-outputs-are-events-def es-outputs-are-events-def)
\mathbf{next}
 assume SES-inputs-outputs-disjoint: ses-inputs-outputs-disjoint SES
 thus es-inputs-outputs-disjoint (induceES SES)
    \mathbf{by} \ (simp \ add: \ induce ES-def \ ses-inputs-outputs-disjoint-def \ es-inputs-outputs-disjoint-def) 
\mathbf{next}
 {\bf assume} \ SES\-correct\-transition\-relation:\ correct\-transition\-relation\ SES
 thus traces-contain-events (induceES SES)
     unfolding induceES-def traces-contain-events-def possible-traces-def
   proof (auto)
   fix l e
   assume enabled-l: enabled SES sO_{SES} l
   assume e-in-l: e \in set l
   from enabled-l e-in-l show e \in E_{SES}
   proof (induct l rule: rev-induct)
     \mathbf{case} \ Nil
      assume e-in-empty-list: e \in set []
      hence f: False
        by (auto)
      thus ?case
        by auto
     \mathbf{next}
     case (snoc \ a \ l)
     from snoc.prems have l-enabled: enabled SES s0 SES l
      by (simp add: enabledPrefixSingle)
      \mathbf{show}~? case
        proof (cases e \in (set \ l))
```

```
from snoc.hyps l-enabled show e \in set \ l \Longrightarrow e \in E_{SES}
             by auto
           show e \notin set \ l \Longrightarrow e \in E_{SES}
             proof -
               assume e \notin set l
               with snoc.prems have e-eq-a : e=a
                 by auto
               from snoc.prems have \exists t t'. t a \longrightarrow_{SES} t'
                 by (auto simp add: enabledPrefixSingleFinalStep)
               then obtain t t' where t a \longrightarrow_{SES} t'
                 by auto
               with e-eq-a SES-correct-transition-relation show e \in E_{SES}
                 by (simp add: correct-transition-relation-def)
            \mathbf{qed}
        \mathbf{qed}
     \mathbf{qed}
  qed
\mathbf{next}
 show traces-prefixclosed (induceES SES)
   {\bf unfolding} \ traces-prefix closed-def \ prefix closed-def \ induce ES-def \ possible-traces-def \ prefix-def
   by (clarsimp simp add: enabledPrefix)
\mathbf{qed}
```

 \mathbf{end}

4 Security Specification

4.1 Views & Flow Policies

We define views, flow policies and how views can be derived from a given flow policy.

theory Views imports Main begin

record 'e V-rec = $V :: 'e \ set$ $N :: 'e \ set$ $C :: 'e \ set$

abbreviation $Vrec V :: 'e \ V - rec \Rightarrow 'e \ set$ ($\langle V_{-} \rangle \ [100] \ 1000$) where $Vv \equiv (Vv)$

abbreviation $VrecN :: 'e \ V - rec \Rightarrow 'e \ set$ ($\langle N_- \rangle \ [100] \ 1000$) where $N_v \equiv (N \ v)$ abbreviation $VrecC :: 'e \ V - rec \Rightarrow 'e \ set$ ($\langle C_{-} \rangle \ [100] \ 1000$) where $C_v \equiv (C \ v)$

definition VN-disjoint :: 'e V-rec \Rightarrow bool where VN-disjoint $v \equiv V_v \cap N_v = \{\}$

definition VC-disjoint :: 'e V-rec \Rightarrow bool where VC-disjoint $v \equiv V_v \cap C_v = \{\}$

definition NC-disjoint :: 'e V-rec \Rightarrow bool where NC-disjoint $v \equiv N_v \cap C_v = \{\}$

definition V-valid :: 'e V-rec \Rightarrow bool **where** V-valid $v \equiv VN$ -disjoint $v \land VC$ -disjoint $v \land NC$ -disjoint v

definition is ViewOn :: 'e V-rec \Rightarrow 'e set \Rightarrow bool where is ViewOn $\mathcal{V} E \equiv$ V-valid $\mathcal{V} \land V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}} = E$

end theory FlowPolicies imports Views begin

record 'domain FlowPolicy-rec = D :: 'domain set v-rel :: ('domain \times 'domain) set n-rel :: ('domain \times 'domain) set c-rel :: ('domain \times 'domain) set

definition FlowPolicy :: 'domain FlowPolicy-rec \Rightarrow bool where FlowPolicy $fp \equiv$

 $\begin{array}{l} ((v \operatorname{rel} fp) \cup (n \operatorname{rel} fp) \cup (c \operatorname{rel} fp) = ((D \ fp) \times (D \ fp))) \\ \wedge (v \operatorname{rel} fp) \cap (n \operatorname{rel} fp) = \{\} \\ \wedge (v \operatorname{rel} fp) \cap (c \operatorname{rel} fp) = \{\} \\ \wedge (n \operatorname{rel} fp) \cap (c \operatorname{rel} fp) = \{\} \\ \wedge (\forall \ d \in (D \ fp). \ (d, \ d) \in (v \operatorname{rel} fp)) \end{array}$

type-synonym ('e, 'domain) dom-type = 'e \rightarrow 'domain

definition dom :: ('e, 'domain) dom-type \Rightarrow 'domain set \Rightarrow 'e set \Rightarrow bool where dom domas dset es \equiv $(\forall e. \forall d. ((domas e = Some d) \longrightarrow (e \in es \land d \in dset)))$

definition view-dom :: 'domain FlowPolicy-rec \Rightarrow 'domain \Rightarrow ('e, 'domain) dom-type \Rightarrow 'e V-rec where

 $\begin{array}{l} \textit{view-dom fp } d \textit{ domas} \equiv \\ (V = \{e. \exists d'. (\textit{domas } e = \textit{Some } d' \land (d', d) \in (v\text{-}rel \textit{fp}))\}, \\ N = \{e. \exists d'. (\textit{domas } e = \textit{Some } d' \land (d', d) \in (n\text{-}rel \textit{fp}))\}, \\ C = \{e. \exists d'. (\textit{domas } e = \textit{Some } d' \land (d', d) \in (c\text{-}rel \textit{fp}))\} \} \end{array}$

 \mathbf{end}

4.2 Basic Security Predicates

We define all 14 basic security predicates provided as part of MAKS in [3].

```
theory BasicSecurityPredicates
imports Views ../Basics/Projection
begin
```

definition are TracesOver :: ('e list) set \Rightarrow 'e set \Rightarrow bool where are TracesOver Tr $E \equiv$ $\forall \tau \in Tr. (set \tau) \subseteq E$

type-synonym 'e BSP = 'e V-rec \Rightarrow (('e list) set) \Rightarrow bool

 $\begin{array}{ll} \textbf{definition} \ BSP\text{-valid} :: 'e \ BSP \Rightarrow bool\\ \textbf{where}\\ BSP\text{-valid} \ bsp \equiv\\ \forall \mathcal{V} \ Tr \ E. \ (\ is ViewOn \ \mathcal{V} \ E \ \land \ are TracesOver \ Tr \ E \)\\ & \longrightarrow (\exists \ Tr'. \ Tr' \supseteq \ Tr \ \land \ bsp \ \mathcal{V} \ Tr') \end{array}$

definition R :: 'e BSPwhere $R \mathcal{V} Tr \equiv$ $\forall \tau \in Tr. \exists \tau' \in Tr. \tau' \upharpoonright C_{\mathcal{V}} = [] \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}$ lemma BSP-valid-R: BSP-valid R

 $proof - {$

fix \mathcal{V} ::('e V-rec) fix Tr Eassume $isViewOn \ V \ E$ and are Traces Over Tr E let $?Tr' = \{t. (set t) \subseteq E\}$ have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect (areTracesOver Tr E) areTracesOver-def) moreover have $R \mathcal{V} ?Tr'$ proof -{ fix τ **assume** $\tau \in \{t. (set t) \subseteq E\}$ let $?\tau' = \tau \upharpoonright (V_{\mathcal{V}})$ have $?\tau' \upharpoonright C_{\mathcal{V}} = [] \land ?\tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}$ using $(is ViewOn \ V \ E)$ disjoint-projection projection-idempotent unfolding is ViewOn-def V-valid-def VC-disjoint-def by metis moreover from $\langle \tau \in \{t. (set t) \subseteq E\}$ have $?\tau' \in ?Tr'$ using $\langle isViewOn \mathcal{V} E \rangle$ unfolding is ViewOn-def $\mathbf{by} \ (simp \ add: \ list-subset-iff-projection-neutral \ projection-commute)$ ultimately have $\exists \tau' \in \{t. set t \subseteq E\}$. $\tau' \upharpoonright C_{\mathcal{V}} = [] \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}$ by auto ł thus ?thesis unfolding R-def by auto qed ultimately have $\exists Tr'. Tr' \supseteq Tr \land R \mathcal{V} Tr'$ by auto } thus ?thesis unfolding BSP-valid-def by auto qed definition D :: 'e BSPwhere $D \ \mathcal{V} \ Tr \equiv$ $\forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ [c] \ @ \ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [])$ $\longrightarrow (\exists \alpha' \beta'. ((\beta' @ \alpha') \in Tr \land \alpha') V_{\mathcal{V}} = \alpha V_{\mathcal{V}} \land \alpha') C_{\mathcal{V}} = []$ $\wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})) \rangle$ lemma BSP-valid-D: BSP-valid D proof – { fix $\mathcal{V}::('e \ V\text{-}rec)$ fix Tr Eassume $isViewOn \ V \ E$ and areTracesOver Tr E let $?Tr' = \{t. (set t) \subseteq E\}$

have $?Tr' \supseteq Tr$ by (meson Ball-Collect (areTracesOver Tr E) areTracesOver-def) moreover have $D \mathcal{V} ?Tr'$ unfolding D-def by auto ultimately have $\exists Tr'. Tr' \supseteq Tr \land D \mathcal{V} Tr'$ by auto } thus ?thesis unfolding BSP-valid-def by auto ged

definition I :: e BSPwhere $I \mathcal{V} Tr \equiv$ $\forall \alpha \beta. \forall c \in C_{\mathcal{V}}. ((\beta @ \alpha) \in Tr \land \alpha \upharpoonright C_{\mathcal{V}} = [])$ $\longrightarrow (\exists \alpha' \beta'. ((\beta' @ [c] @ \alpha') \in Tr \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []$ $\land \beta' \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}})))$

lemma BSP-valid-I: BSP-valid I proof – { fix $\mathcal{V}::('e \ V\text{-}rec)$ fix Tr Eassume $isViewOn \ V \ E$ and are Traces Over Tr E let $?Tr' = \{t. (set t) \subseteq E\}$ have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def) moreover have $I \mathcal{V}$?Tr' using $\langle is ViewOn \mathcal{V} E \rangle$ unfolding isViewOn-def I-def by auto ultimately have $\exists Tr'. Tr' \supseteq Tr \land I \mathcal{V} Tr'$ by auto } thus ?thesisunfolding BSP-valid-def by auto \mathbf{qed}

type-synonym 'e Rho = 'e V-rec \Rightarrow 'e set

definition $Adm :: e V \text{-rec} \Rightarrow e Rho \Rightarrow (e list) set \Rightarrow e list \Rightarrow e \Rightarrow bool$ **where** $Adm \mathcal{V} \varrho Tr \beta e \equiv$ $\exists \gamma. ((\gamma @ [e]) \in Tr \land \gamma | (\varrho \mathcal{V}) = \beta | (\varrho \mathcal{V}))$ **definition** *IA* :: 'e *Rho* \Rightarrow 'e *BSP* where $IA \ \varrho \ \mathcal{V} \ Tr \equiv$ $\forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [] \land (Adm \ \mathcal{V} \ \varrho \ Tr \ \beta \ c)) \\ \longrightarrow (\exists \ \alpha' \ \beta'. \ ((\beta' \ @ \ [c] \ @ \ \alpha') \in Tr) \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}}$ $\wedge \alpha' | C_{\mathcal{V}} = [] \wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}}))$ lemma BSP-valid-IA: BSP-valid (IA ρ) proof -{ fix \mathcal{V} :: ('a V-rec) fix Tr Eassume $isViewOn \ \mathcal{V} \ E$ and are Traces Over Tr E let $?Tr' = \{t. (set t) \subseteq E\}$ have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def) moreover have IA $\rho \mathcal{V}$?Tr' using $\langle isViewOn \mathcal{V} E \rangle$ unfolding is ViewOn-def IA-def by auto ultimately have $\exists Tr'. Tr' \supseteq Tr \land IA \varrho \mathcal{V} Tr'$ by auto } thus ?thesis unfolding BSP-valid-def by auto qed definition BSD :: 'e BSP where $BSD \mathcal{V} Tr \equiv$ $\forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ [c] \ @ \ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [])$ $\longrightarrow (\exists \alpha'. (\beta @ \alpha') \in Tr \land \alpha' V_{\mathcal{V}} = \alpha V_{\mathcal{V}} \land \alpha' C_{\mathcal{V}} = []))$ lemma BSP-valid-BSD: BSP-valid BSD proof -{ fix $\mathcal{V}::('e \ V\text{-}rec)$ fix Tr Eassume $isViewOn \ V \ E$ and are Traces Over Tr E let $?Tr' = \{t. (set t) \subseteq E\}$ have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect < areTracesOver Tr E> areTracesOver-def) moreover have BSD \mathcal{V} ?Tr' unfolding BSD-def by auto ultimately have $\exists Tr'. Tr' \supseteq Tr \land BSD \mathcal{V} Tr'$

```
by auto
      }
      thus ?thesis
              unfolding BSP-valid-def by auto
qed
definition BSI :: 'e BSP
where
BSI \ \mathcal{V} \ Tr \equiv
      \begin{array}{l} \forall \alpha \ \beta. \ \forall \ c \in C_{\mathcal{V}}. \ ((\beta \ @ \ \alpha) \in \ Tr \ \land \ \alpha \upharpoonright C_{\mathcal{V}} = []) \\ \longrightarrow (\exists \ \alpha'. \ ((\beta \ @ \ [c] \ @ \ \alpha') \in \ Tr \ \land \ \alpha' \upharpoonright V_{\mathcal{V}} = \ \alpha \upharpoonright V_{\mathcal{V}} \land \ \alpha' \upharpoonright C_{\mathcal{V}} = [])) \end{array} 
lemma BSP-valid-BSI: BSP-valid BSI
proof –
     \{ fix \mathcal{V}::('e V-rec) \\ \neg F \\ \neg \rightarrow  \rightarrow \rightarrow  
             fix Tr E
             assume isViewOn \ V \ E
             and areTracesOver Tr E
             let ?Tr' = \{t. (set t) \subseteq E\}
              have ?Tr' \supseteq Tr
                     by (meson Ball-Collect < areTracesOver Tr E> areTracesOver-def)
              moreover
              have BSI \mathcal{V} ?Tr' using \langle isViewOn \ \mathcal{V} \ E \rangle
                     unfolding is ViewOn-def BSI-def by auto
               ultimately
              have \exists Tr'. Tr' \supseteq Tr \land BSI \mathcal{V} Tr'
                     by auto
       }
      thus ?thesis
               unfolding BSP-valid-def by auto
\mathbf{qed}
definition BSIA :: 'e Rho \Rightarrow 'e BSP
where
BSIA \varrho \mathcal{V} Tr \equiv
      \forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [] \land (Adm \ \mathcal{V} \ \varrho \ Tr \ \beta \ c))
               \longrightarrow (\exists \alpha'. ((\beta @ [c] @ \alpha') \in Tr \land \alpha' V_{\mathcal{V}} = \alpha V_{\mathcal{V}} \land \alpha' C_{\mathcal{V}} = []))
lemma BSP-valid-BSIA: BSP-valid (BSIA \rho)
proof –
        {
              fix \mathcal{V} :: ('a \ V\text{-}rec)
             fix Tr E
             assume isViewOn \ \mathcal{V} \ E
             and areTracesOver Tr E
             let ?Tr' = \{t. (set t) \subseteq E\}
             have ?Tr' \supseteq Tr
                    by (meson Ball-Collect < areTracesOver Tr E> areTracesOver-def)
               moreover
```

have $BSIA \ \varrho \ V \ ?Tr'$ using $\langle is ViewOn \ V \ E \rangle$ unfolding is ViewOn-def BSIA-def by auto ultimately have $\exists Tr'. Tr' \supseteq Tr \land BSIA \ \varrho \ V \ Tr'$ by auto } thus ?thesis unfolding BSP-valid-def by auto qed

record 'e Gamma = Nabla :: 'e set Delta :: 'e set Upsilon :: 'e set

abbreviation GammaNabla :: 'e Gamma \Rightarrow 'e set ($\langle \nabla_{-} \rangle$ [100] 1000) **where** $\nabla_{\Gamma} \equiv (Nabla \ \Gamma)$

abbreviation GammaDelta :: 'e Gamma \Rightarrow 'e set ($\langle \Delta_{-} \rangle$ [100] 1000) **where** $\Delta_{\Gamma} \equiv (Delta \Gamma)$

abbreviation GammaUpsilon :: 'e Gamma \Rightarrow 'e set ($\langle \Upsilon_{-} \rangle$ [100] 1000) where $\Upsilon_{\Gamma} \equiv (Upsilon \ \Gamma)$

 $\begin{array}{l} \text{definition } FCD :: 'e \ Gamma \Rightarrow 'e \ BSP \\ \text{where} \\ FCD \ \Gamma \ \mathcal{V} \ Tr \equiv \\ \forall \alpha \ \beta. \ \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \\ ((\beta \ @ \ [c,v] \ @ \ \alpha) \in Tr \land \alpha \uparrow C_{\mathcal{V}} = []) \\ \longrightarrow (\exists \alpha'. \ \exists \delta'. \ (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \\ \land ((\beta \ @ \ \delta' \ @ \ [v] \ @ \ \alpha') \in Tr \\ \land \alpha'| \ V_{\mathcal{V}} = \alpha| \ V_{\mathcal{V}} \land \alpha'| \ C_{\mathcal{V}} = [])) \end{array}$

lemma BSP-valid-FCD: BSP-valid (FCD Γ) proof – { fix $\mathcal{V}::('a \ V\text{-rec})$ fix $Tr \ E$ assume isViewOn $\mathcal{V} \ E$ and areTracesOver $Tr \ E$ let $?Tr'=\{t. (set t) \subseteq E\}$

have $?Tr' \supseteq Tr$

```
by (meson Ball-Collect (areTracesOver Tr E) areTracesOver-def)
      moreover
      have FCD \ \Gamma \ \mathcal{V} \ ?Tr'
        proof –
            ł
              fix \alpha \beta c v
              assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
                  and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
                  and \beta @ [c,v] @ \alpha \in ?Tr'
                  and \alpha \upharpoonright C_{\mathcal{V}} = []
              let ?\alpha' = \alpha and ?\delta' = []
              from \langle \beta @ [c,v] @ \alpha \in ?Tr' \rangle have \beta @ ?\delta' @ [v] @ ?\alpha' \in ?Tr'
                 by auto
              hence (set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ ?\delta' @ [v] @ ?\alpha') \in ?Tr'
                                \wedge ?\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land ?\alpha' \upharpoonright C_{\mathcal{V}} = [])
                 using \langle is ViewOn \ \mathcal{V} \ E \rangle \langle \alpha \mid C_{\mathcal{V}} = [] \rangle
                 unfolding is ViewOn-def \langle \alpha | C_{\mathcal{V}} = [] \rangle by auto
              hence \exists \alpha' . \exists \delta' . (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ \ \delta' @ [v] @ \ \alpha') \in ?Tr'
                 \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
                 \mathbf{by} \ blast
           }
           thus ?thesis
              unfolding FCD-def by auto
        \mathbf{qed}
      ultimately
     have \exists Tr'. Tr' \supseteq Tr \land FCD \ \Gamma \ V \ Tr'
        by auto
   }
  thus ?thesis
      unfolding BSP-valid-def by auto
qed
definition FCI :: 'e \ Gamma \Rightarrow 'e \ BSP
where
FCI \ \Gamma \ \mathcal{V} \ Tr \equiv
  \forall \alpha \ \beta. \ \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}).
     ((\beta @ [v] @ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [])
         \longrightarrow (\exists \alpha' \exists \delta' (set \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
                                \wedge ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr
                                \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-FCI: BSP-valid (FCI \Gamma)
proof –
   {
     fix \mathcal{V}::('a \ V\text{-}rec)
     fix Tr E
     assume isViewOn \ V \ E
     and are Traces Over Tr E
     let ?Tr' = \{t. (set t) \subseteq E\}
     have ?Tr' \supseteq Tr
        \mathbf{by} \; (meson \; Ball\text{-}Collect \; \langle are \mathit{TracesOver} \; \mathit{Tr} \; E \rangle \; are \mathit{TracesOver-def})
```

```
moreover
      have FCI \ \Gamma \ \mathcal{V} \ ?Tr'
         proof -
             ł
               fix \alpha \beta c v
               assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
                    and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
                    and \beta @ [v] @ \alpha \in ?Tr'
                    and \alpha \upharpoonright C_{\mathcal{V}} = []
               let ?\alpha' = \alpha and ?\delta' = []
               from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in E
                   \mathbf{using} \ \langle \textit{isViewOn} \ \mathcal{V} \ E \rangle
                  unfolding isViewOn-def by auto
               with \langle \beta @ [v] @ \alpha \in ?Tr' \rangle have \beta @ [c] @ ?\delta' @ [v] @ ?\alpha' \in ?Tr'
                  by auto
               hence (set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ ?\delta' @ [v] @ ?\alpha') \in ?Tr'
                                   \wedge ?\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land ?\alpha' \upharpoonright C_{\mathcal{V}} = [])
                 \textbf{using } \langle is ViewOn \ \mathcal{V} \ E \rangle \ \langle \alpha \ | \ C_{\mathcal{V}} = [] \rangle \textbf{ unfolding } is ViewOn-def \ \langle \alpha \ | \ C_{\mathcal{V}} = [] \rangle \textbf{ by } auto
              hence
                 \exists \alpha' : \exists \delta' : (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in ?Tr'
                  \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = [])
                   by blast
            }
            thus ?thesis
               unfolding FCI-def by auto
         qed
      ultimately
      have \exists Tr'. Tr' \supseteq Tr \land FCI \ \Gamma \ \mathcal{V} \ Tr'
         \mathbf{by} \ auto
   }
  \mathbf{thus}~? thesis
      unfolding BSP-valid-def by auto
\mathbf{qed}
definition FCIA :: 'e Rho \Rightarrow 'e Gamma \Rightarrow 'e BSP
where
FCIA \rho \ \Gamma \ V \ Tr \equiv
  \forall \alpha \ \beta. \ \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}).
      ((\beta @ [v] @ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [] \land (Adm \ \mathcal{V} \ \varrho \ Tr \ \beta \ c))
         \longrightarrow (\exists \alpha' . \exists \delta' . (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
                                  \wedge ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr
                                  \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-FCIA: BSP-valid (FCIA \rho \Gamma)
proof –
   {
      fix \mathcal{V} :: ('a V-rec)
     fix Tr E
```

assume is ViewOn \mathcal{V} E and are Traces Over Tr E let $?Tr'=\{t. (set t) \subseteq E\}$

have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect < areTracesOver Tr E> areTracesOver-def) moreover have FCIA $\rho \Gamma \mathcal{V}$?Tr' proof -{ fix $\alpha \beta c v$ assume $c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}$ and $v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}$ and $\beta @ [v] @ \alpha \in ?Tr'$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ let $?\alpha' = \alpha$ and $?\delta' = []$ from $\langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle$ have $c \in E$ using $\langle isViewOn \ V \ E \rangle$ unfolding isViewOn-def by auto with $\langle \beta @ [v] @ \alpha \in ?Tr' \rangle$ have $\beta @ [c] @ ?\delta' @ [v] @ ?\alpha' \in ?Tr'$ by *auto* hence $(set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ ?\delta' @ [v] @ ?\alpha') \in ?Tr'$ $\wedge ?\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge ?\alpha' \upharpoonright C_{\mathcal{V}} = [])$ using $\langle is ViewOn \ \mathcal{V} \ E \rangle \langle \alpha \mid C_{\mathcal{V}} = [] \rangle$ **unfolding** is ViewOn-def $\langle \alpha | C_{\mathcal{V}} = [] \rangle$ by auto hence $\exists \alpha'. \exists \delta'. (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in ?Tr'$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = [])$ by blast } thus ?thesis unfolding FCIA-def by auto qed ultimately have $\exists Tr'. Tr' \supseteq Tr \land FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr'$ by auto } thus ?thesis unfolding BSP-valid-def by auto qed definition SR :: 'e BSPwhere $SR \ \mathcal{V} \ Tr \equiv \forall \tau \in Tr. \ \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr$ lemma BSP-valid SR proof – { fix \mathcal{V} ::('e V-rec) fix Tr Eassume $isViewOn \ \mathcal{V} \ E$ and areTracesOver Tr Elet $?Tr' = \{t. \exists \tau \in Tr. t = \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}})\} \cup Tr$ have $?Tr' \supseteq Tr$ **by** blast moreover

```
have SR \ \mathcal{V} \ ?Tr' unfolding SR-def
       proof
         fix \tau
         assume \tau \in ?Tr'
          {
            from \langle \tau \in ?Tr' \rangle have (\exists t \in Tr. \tau = t \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}})) \lor \tau \in Tr
              by auto
            hence \tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in ?Tr'
              proof
                 assume \exists t \in Tr. \tau = t \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
                 hence \exists t \in Tr. \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = t \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
                   using projection-idempotent by metis
                 \mathbf{thus}~? thesis
                   by auto
               \mathbf{next}
                 assume \tau \in Tr
                 thus ?thesis
                   by auto
               qed
         }
         thus \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in ?Tr'
            \mathbf{by} \ auto
       \mathbf{qed}
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land SR \mathcal{V} Tr'
       by auto
  }
  thus ?thesis
    unfolding BSP-valid-def by auto
\mathbf{qed}
definition SD :: 'e BSP
where
SD \ \mathcal{V} \ Tr \equiv
  \forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ [c] \ @ \ \alpha) \in Tr \land \alpha \upharpoonright C_{\mathcal{V}} = []) \longrightarrow \beta \ @ \ \alpha \in Tr
lemma BSP-valid SD
proof –
  {
    fix \mathcal{V}::('e V-rec)
    fix Tr E
    assume isViewOn \ \mathcal{V} \ E
    and are Traces Over Tr E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr by (meson Ball-Collect (are Traces Over Tr E) are Traces Over-def)
    moreover
    have SD \ \mathcal{V} \ ?Tr' unfolding SD-def by auto
    ultimately
    have \exists Tr'. Tr' \supseteq Tr \land SD \mathcal{V} Tr' by auto
  }
  thus ?thesis unfolding BSP-valid-def by auto
```

 \mathbf{qed}

definition SI :: 'e BSP where $SI \ \mathcal{V} \ Tr \equiv$ $\forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ \alpha) \in Tr \land \alpha \mid C_{\mathcal{V}} = []) \longrightarrow \beta \ @ \ [c] \ @ \ \alpha \in Tr$ lemma BSP-valid SI proof -{ fix \mathcal{V} ::('a V-rec) fix Tr Eassume $isViewOn \ V \ E$ and areTracesOver Tr E let $?Tr' = \{t. (set t) \subseteq E\}$ have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def) moreover have SI \mathcal{V} ?Tr' using $\langle is ViewOn \ \mathcal{V} \ E \rangle$ unfolding is ViewOn-def SI-def by auto ultimately have $\exists Tr'. Tr' \supseteq Tr \land SI \mathcal{V} Tr'$ by auto } thus ?thesis unfolding BSP-valid-def by auto qed definition SIA :: 'e Rho \Rightarrow 'e BSP where $SIA \ \varrho \ \mathcal{V} \ Tr \equiv$ $\forall \alpha \ \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta \ @ \ \alpha) \in \mathit{Tr} \ \land \ \alpha \ | \ C_{\mathcal{V}} = [] \land (\mathit{Adm} \ \mathcal{V} \ \varrho \ \mathit{Tr} \ \beta \ c))$ $\longrightarrow (\beta @ [c] @ \alpha) \in Tr$ lemma BSP-valid (SIA ρ) proof -{ fix $\mathcal{V} :: ('a \ V\text{-}rec)$ fix Tr E $\textbf{assume} ~ \textit{isViewOn} ~ \mathcal{V} ~ E$ and are Traces Over Tr E let $?Tr' = \{t. (set t) \subseteq E\}$ have $?Tr' \supseteq Tr$ **by** (meson Ball-Collect < areTracesOver Tr E> areTracesOver-def) moreover have SIA $\varrho \mathcal{V}$?Tr' using $\langle is ViewOn \ \mathcal{V} \ E \rangle$ unfolding is ViewOn-def SIA-def by auto ultimately
```
have \exists Tr'. Tr' \supseteq Tr \land SIA \ \varrho \ \mathcal{V} \ Tr'
by auto
}
thus ?thesis
unfolding BSP-valid-def by auto
qed
```

 \mathbf{end}

4.3 Information-Flow Properties

We define the notion of information-flow properties from [3].

theory InformationFlowProperties imports BasicSecurityPredicates begin

type-synonym 'e SP = ('e BSP) set

type-synonym 'e IFP-type = ('e V-rec set) \times 'e SP

definition *IFPIsSatisfied* :: 'e *IFP-type* \Rightarrow ('e list) set \Rightarrow bool where *IFPIsSatisfied ifp* $Tr \equiv$ $\forall \ \mathcal{V} \in (fst \ ifp). \forall \ BSP \in (snd \ ifp). BSP \ \mathcal{V} \ Tr$

 \mathbf{end}

4.4 Property Library

We define the representations of several possibilistic information-flow properties from the literature that are provided as part of MAKS in [3].

theory PropertyLibrary imports InformationFlowProperties ../SystemSpecification/EventSystems ../Verification/Basics/BSPTaxonomy begin

definition HighInputsConfidential :: 'e set \Rightarrow 'e set \Rightarrow 'e set \Rightarrow 'e V-rec where HighInputsConfidential L H IE $\equiv (V=L, N=H-IE, C=H \cap IE)$

definition HighConfidential :: 'e set \Rightarrow 'e set \Rightarrow 'e V-rec where HighConfidential L H \equiv (| V=L, N={}, C=H |)

fun interleaving :: 'e list \Rightarrow 'e list \Rightarrow ('e list) set **where** interleaving [] = {t1} | interleaving [] t2 = {t2} | interleaving (e1 # t1) (e2 # t2) = {t. ($\exists t'. t=(e1 # t') \land t' \in interleaving t1 (e2 #t2))$ } \cup {t. ($\exists t'. t=(e2 # t') \land t' \in interleaving (e1 # t1) t2$)}

definition $GNI :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type$ **where** $GNI \ L \ H \ IE \equiv (\{HighInputsConfidential \ L \ H \ IE\}, \{BSD, BSI\})$

 $\begin{array}{l} \textbf{definition } litGNI :: 'e \; set \Rightarrow 'e \; set \Rightarrow 'e \; set \Rightarrow ('e \; list) \; set \Rightarrow bool \\ \textbf{where} \\ litGNI \; L \; H \; IE \; Tr \equiv \\ \forall \; t1 \; t2 \; t3. \\ t1 \; @ \; t2 \in Tr \; \land \; t3 \; \upharpoonright \; (L \cup (H - IE)) = t2 \; \upharpoonright \; (L \cup (H - IE)) \\ \longrightarrow \; (\exists \; t4. \; t1 \; @ \; t4 \in Tr \; \land \; t4 \upharpoonright (L \cup (H \cap IE)) = t3 \upharpoonright (L \cup (H \cap IE))) \end{array}$

definition *IBGNI* :: 'e set \Rightarrow 'e set \Rightarrow 'e set \Rightarrow 'e *IFP-type* **where** *IBGNI L H IE* \equiv ({*HighInputsConfidential L H IE*}, {*D*, *I*})

 $\begin{array}{l} \textbf{definition} \\ \textit{litIBGNI} :: 'e \; set \Rightarrow 'e \; set \Rightarrow ('e \; list) \; set \Rightarrow \textit{bool} \\ \textbf{where} \\ \textit{litIBGNI L H IE } Tr \equiv \\ \forall \; \tau \text{-}l \in Tr. \; \forall \; t\text{-}hi \; t. \end{array}$

 $(set t-hi) \subseteq (H \cap IE) \land t \in interleaving t-hi \ (\tau - l \upharpoonright L) \\ \longrightarrow (\exists \ \tau' \in Tr. \ \tau' \upharpoonright (L \cup (H \cap IE)) = t)$

 $\begin{array}{l} \textbf{definition } FC :: \ 'e \ set \Rightarrow \ 'e \ set \Rightarrow \ 'e \ set \Rightarrow \ 'e \ IFP-type \\ \textbf{where} \\ FC \ L \ H \ IE \equiv \\ (\ \{HighInputsConfidential \ L \ H \ IE\}, \\ \{BSD, \ BSI, \ (FCD \ (\ Nabla=IE, \ Delta=\{\}, \ Upsilon=IE \)), \\ (FCI \ (\ Nabla=IE, \ Delta=\{\}, \ Upsilon=IE \)) \} \\ \textbf{lemma } FC-valid: \ L \cap H = \{\} \Longrightarrow IFP-valid \ (L \cup H) \ (FC \ L \ H \ IE) \\ \textbf{unfolding } IFP-valid-def \ FC-def \ HighInputsConfidential-def \ is ViewOn-def \\ V-valid-def \ VN-disjoint-def \ VC-disjoint-def \ NC-disjoint-def \end{array}$

using BasicSecurityPredicates.BSP-valid-BSD BasicSecurityPredicates.BSP-valid-BSI BasicSecurityPredicates.BSP-valid-FCD BasicSecurityPredicates.BSP-valid-FCI **by** auto

```
definition litFC :: e set \Rightarrow e set \Rightarrow e set \Rightarrow (e list) set \Rightarrow bool
where
litFC \ L \ H \ IE \ Tr \equiv
  \forall t-1 \ t-2. \ \forall \ hi \in (H \cap IE).
  (
     (\forall \ li \in (L \cap IE).
       t-1 @ [li] @ t-2 \in Tr \land t-2 \mid (H \cap IE) = []
       \longrightarrow (\exists t-3. t-1 @ [hi] @ [li] @ t-3 \in Tr
                       \wedge t-3 \mid L = t-2 \mid L \wedge t-3 \mid (H \cap IE) = [])
       \land (t-1 @ t-2 \in Tr \land t-2 \upharpoonright (H \cap IE) = []
           \longrightarrow (\exists t-3. t-1 @ [hi] @ t-3 \in Tr
                           \wedge t-3 \uparrow L = t-2 \uparrow L \wedge t-3 \uparrow (H \cap IE) = [])
      \land (\forall \ li \in (L \cap IE).
            t-1 @ [hi] @ [li] @ t-2 \in Tr \land t-2 | (H \cap IE) = []
             \longrightarrow (\exists t-3. t-1 @ [li] @ t-3 \in Tr
                             \wedge t - 3 \uparrow L = t - 2 \uparrow L \wedge t - 3 \uparrow (H \cap IE) = [])
            \land (t-1 @ [hi] @ t-2 \in Tr \land t-2 \uparrow (H \cap IE) = []
               \longrightarrow (\exists t-3. t-1 @ t-3 \in Tr
                               \wedge t-3 \mid L = t-2 \mid L \wedge t-3 \mid (H \cap IE) = [])
  )
```

 $\begin{array}{l} \textbf{definition } NDO :: \ 'e \ set \Rightarrow \ 'e \ set \Rightarrow \ 'e \ set \Rightarrow \ 'e \ IFP-type \\ \textbf{where} \\ NDO \ UI \ L \ H \equiv \\ (\ \{HighConfidential \ L \ H\}, \ \{BSD, \ (BSIA \ (\lambda \ \mathcal{V}. \ C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cap \ UI)))\}) \\ \textbf{lemma } NDO-valid: \ L \cap H = \{\} \Longrightarrow IFP-valid \ (L \cup H) \ (NDO \ UI \ L \ H) \\ \textbf{unfolding } IFP-valid-def \ NDO-def \ HighConfidential-def \ is ViewOn-def \\ V-valid-def \ VN-disjoint-def \ VC-disjoint-def \ NC-disjoint-def \end{array}$

using BasicSecurityPredicates.BSP-valid-BSD

BasicSecurityPredicates.BSP-valid-BSIA[of $(\lambda \ V. \ C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cap UI))]$ by auto

definition $litNDO :: 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool$ **where** $litNDO \ UI \ L \ H \ Tr \equiv$ $\forall \tau \cdot l \in Tr. \ \forall \ \tau \cdot hlui \in Tr. \ \forall \ t.$ $t|L = \tau \cdot l|L \land t|(H \cup (L \cap UI)) = \tau \cdot hlui|(H \cup (L \cap UI)) \longrightarrow t \in Tr$

definition $NF :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type$ **where** $NF \ L \ H \equiv (\{ HighConfidential \ L \ H \}, \{ R \})$

definition $litNF :: 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool$ where $litNF \ L \ H \ Tr \equiv \forall \tau \in Tr. \ \tau \ | \ L \in Tr$

definition $GNF :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type$ **where** $GNF \ L \ H \ IE \equiv (\{HighInputsConfidential \ L \ H \ IE\}, \{R\})$

definition $litGNF :: 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool$ **where** $litGNF \ L \ H \ IE \ Tr \equiv$ $\forall \tau \in Tr. \exists \tau' \in Tr. \ \tau' | \ (H \cap IE) = [] \land \tau' | \ L = \tau \mid L$

definition SEP :: 'e set \Rightarrow 'e set \Rightarrow 'e IFP-type **where** SEP L H \equiv ({HighConfidential L H}, {BSD, (BSIA ($\lambda \ V. \ C_V$))})

 $\begin{array}{l} \textbf{definition} \ litSEP :: \ 'e \ set \Rightarrow \ 'e \ set \Rightarrow \ ('e \ list) \ set \Rightarrow \ bool\\ \textbf{where}\\ litSEP \ L \ H \ Tr \equiv\\ \forall \tau \text{-}l \in \ Tr. \ \forall \ \tau \text{-}h \in \ Tr.\\ interleaving \ (\tau \text{-}l \ \mid L) \ (\tau \text{-}h \ \mid H) \subseteq \{\tau \in \ Tr \ . \ \tau \ \mid L = \tau \text{-}l \ \mid L\} \end{array}$

definition *PSP* :: 'e set \Rightarrow 'e set \Rightarrow 'e *IFP-type* **where** *PSP L H* \equiv ({*HighConfidential L H*}, {*BSD*, (*BSIA* ($\lambda \ \mathcal{V}. \ C_{\mathcal{V}} \cup N_{\mathcal{V}} \cup V_{\mathcal{V}}$))})

lemma PSP-valid: $L \cap H = \{\} \implies$ IFP-valid $(L \cup H)$ (PSP L H) **unfolding** IFP-valid-def PSP-def HighConfidential-def isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def **using** BasicSecurityPredicates.BSP-valid-BSD BasicSecurityPredicates.BSP-valid-BSIA[of $\lambda \ V. \ C_{\mathcal{V}} \cup N_{\mathcal{V}} \cup V_{\mathcal{V}}]$ by auto

 $\begin{array}{l} \textbf{definition } litPSP :: 'e \; set \Rightarrow 'e \; set \Rightarrow ('e \; list) \; set \Rightarrow bool \\ \textbf{where} \\ litPSP \; L \; H \; Tr \equiv \\ (\forall \tau \in Tr. \; \tau \mid L \in Tr) \\ \land \; (\forall \; \alpha \; \beta. \; (\beta @ \; \alpha) \in Tr \land (\alpha \mid H) = [] \\ \longrightarrow \; (\forall \; h \in H. \; \beta @ \; [h] \in Tr \; \longrightarrow \; \beta @ \; [h] @ \; \alpha \in Tr)) \end{array}$

 \mathbf{end}

5 Verification

5.1 Basic Definitions

We define when an event system and a state-event system are secure given an information-flow property.

```
theory SecureSystems
imports ../../SystemSpecification/StateEventSystems
../../SecuritySpecification/InformationFlowProperties
begin
```

 ${\bf locale} \ Secure ESIFP =$

fixes ES :: 'e ES-rec and IFP :: 'e IFP-type

context SecureESIFP
begin

definition ES-sat-IFP :: bool where ES-sat-IFP \equiv IFPIsSatisfied IFP Tr_{ES}

 \mathbf{end}

locale SecureSESIFP =
fixes SES :: ('s, 'e) SES-rec
and IFP :: 'e IFP-type

sublocale SecureSESIFP \subseteq SecureESIFP induceES SES IFP **by** (unfold-locales, rule induceES-yields-ES, rule validSES, simp add: induceES-def, rule validIFPSES)

context SecureSESIFP begin

abbreviation SES-sat-IFP **where** SES-sat-IFP \equiv ES-sat-IFP

 \mathbf{end}

 \mathbf{end}

5.2 Taxonomy Results

We prove the taxonomy results from [3].

theory BSPTaxonomy

imports ../../SystemSpecification/EventSystems
../../SecuritySpecification/BasicSecurityPredicates
begin

locale BSPTaxonomyDifferentCorrections = fixes ES :: 'e ES-rec and $\mathcal{V} :: 'e V$ -rec

assumes validES: ES-valid ES and VIsViewOnE: isViewOn $\mathcal{V} \in E_{ES}$

locale BSPTaxonomyDifferentViews = fixes ES :: 'e ES-rec and \mathcal{V}_1 :: 'e V-rec and \mathcal{V}_2 :: 'e V-rec

assumes validES: ES-valid ES and \mathcal{V}_1 IsViewOnE: isViewOn \mathcal{V}_1 E_{ES} and \mathcal{V}_2 IsViewOnE: isViewOn \mathcal{V}_2 E_{ES}

sublocale $BSPTaxonomyDifferentViewsFirstDim \subseteq BSPTaxonomyDifferentViews$ by (unfold-locales)

sublocale $BSPTaxonomyDifferentViewsSecondDim \subseteq BSPTaxonomyDifferentViews$ **by** (unfold-locales)

context BSPTaxonomyDifferentCorrections **begin**

 $\begin{array}{l} \textbf{lemma } SR\text{-implies-}R\text{:}\\ SR \; \mathcal{V} \; Tr_{ES} \Longrightarrow R \; \mathcal{V} \; Tr_{ES}\\ \textbf{proof} \;-\\ \textbf{assume } SR\text{:} \; SR \; \mathcal{V} \; Tr_{ES} \\ \left\{ \begin{array}{c} \textbf{fix } \tau\\ \textbf{assume } \tau \in \; Tr_{ES}\\ \textbf{with } SR \; \textbf{have } \tau \;|\; (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in \; Tr_{ES}\\ \textbf{unfolding } SR\text{-}def \; \textbf{by } auto\\ \textbf{hence } \exists \; \tau'. \; \tau' \in \; Tr_{ES} \land \; \tau' \;|\; V_{\mathcal{V}} = \tau \;|\; V_{\mathcal{V}} \land \; \tau' \;|\; C_{\mathcal{V}} = \; []\\ \textbf{proof } - \end{array} \right.$

assume tau-V-N-is-trace: $\tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES}$ show $\exists \tau'. \tau' \in Tr_{ES} \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}} \land \tau' \upharpoonright C_{\mathcal{V}} = []$ proof let $?\tau' = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ have $\tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}$ **by** (*simp add: projection-subset-elim*) moreover from VIsViewOnE have VC-disjoint $V \land NC$ -disjoint Vunfolding is ViewOn-def V-valid-def by auto then have $(V_{\mathcal{V}} \cup N_{\mathcal{V}}) \cap C_{\mathcal{V}} = \{\}$ by (simp add: NC-disjoint-def VC-disjoint-def inf-sup-distrib2) then have $?\tau' \upharpoonright C_{\mathcal{V}} = []$ by (simp add: disjoint-projection) ultimately show $?\tau' \in Tr_{ES} \land ?\tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}} \land ?\tau' \upharpoonright C_{\mathcal{V}} = []$ using tau-V-N-is-trace by auto qed \mathbf{qed} } thus ?thesisunfolding SR-def R-def by auto \mathbf{qed} lemma SD-implies-BSD : $(SD \ \mathcal{V} \ Tr_{ES}) \Longrightarrow BSD \ \mathcal{V} \ Tr_{ES}$ proof assume SD: SD \mathcal{V} Tr_{ES} { fix $\alpha \ \beta \ c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ c \# \alpha \in \mathit{Tr}_{ES}$ and alpha-C-empty: $\alpha \upharpoonright C_{\mathcal{V}} = []$ with SD have $\beta @ \alpha \in Tr_{ES}$ unfolding SD-def by auto hence $\exists \alpha'. \beta @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []$ using *alpha-C-empty* $\mathbf{by} \ auto$ } thus ?thesisunfolding SD-def BSD-def by auto \mathbf{qed}

fix $\alpha \beta c$

```
assume \alpha \uparrow C_{\mathcal{V}} = []
        and c \in C_{\mathcal{V}}
        and \beta @ [c] @ \alpha \in Tr_{ES}
      with BSD obtain \alpha'
        where \beta @ \alpha' \in Tr_{ES}
        and \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V \mathcal{V}
        and \alpha' \upharpoonright C_{\mathcal{V}} = []
        by (simp add: BSD-def, auto)
     hence (\exists \alpha' \beta').
        (\beta' @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []) \land
        \hat{\beta}' \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
        \mathbf{by} \ auto
  }
  thus ?thesis
     unfolding BSD-def D-def
     \mathbf{by} \ auto
\mathbf{qed}
lemma SD-implies-SR:
SD \ \mathcal{V} \ Tr_{ES} \Longrightarrow SR \ \mathcal{V} \ Tr_{ES}
\mathbf{unfolding} \ SR\text{-}def
proof
  fix \tau
  \textbf{assume SD: SD V Tr}_{ES}
  assume \tau-trace: \tau \in Tr_{ES}
 {
fix n
     have SR-via-length: [[ \tau \in Tr_{ES}; n = length \ (\tau \uparrow C_{\mathcal{V}}) ]]
         \implies \exists \tau' \in Tr_{ES}. \ \tau' \upharpoonright C_{\mathcal{V}} = [\land \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
      proof (induct n arbitrary: \tau)
        case \theta
        note \tau-in-Tr = \langle \tau \in Tr_{ES} \rangle
           and \langle \theta = length \ (\tau \uparrow C_{\mathcal{V}}) \rangle
        hence \tau \upharpoonright C_{\mathcal{V}} = []
           by simp
         with \tau-in-Tr show ?case
           \mathbf{by} \ auto
     next
        case (Suc n)
        from projection-split-last[OF Suc(3)] obtain \beta \ c \ \alpha
           where c\text{-in-}C: c \in C_{\mathcal{V}}
           and \tau-is-\beta c \alpha: \tau = \beta @ [c] @ \alpha
           and \alpha-no-c: \alpha \uparrow C_{\mathcal{V}} = []
           and \beta\alpha-contains-n-cs: n = length ((\beta @ \alpha) \uparrow C_{\mathcal{V}})
         by auto
         with Suc(2) have \beta c \alpha-in-Tr: \beta @ [c] @ \alpha \in Tr_{ES}
           by auto
```

with SD c-in-C $\beta c \alpha$ -in-Tr α -no-c obtain $\beta' \alpha'$ where $\beta' \alpha'$ -in-Tr: $(\beta' @ \alpha') \in Tr_{ES}$ and α' -V-is- α -V: $\alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ and α' -no-c: $\alpha' \upharpoonright C_{\mathcal{V}} = []$ and $\beta' - VC - is - \beta - VC$: $\beta' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}})$ unfolding SD-def by blast have $(\beta' @ \alpha') \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ proof from $\beta' - VC - is - \beta - VC$ have $\beta' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \beta \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ **by** (*rule projection-subset-eq-from-superset-eq*) with α' -V-is- α -V have $(\beta' @ \alpha') \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = (\beta @ \alpha) \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ **by** (*simp add: projection-def*) moreover with VIsViewOnE c-in-C have $c \notin (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def, auto) hence $(\beta @ \alpha) \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = (\beta @ [c] @ \alpha) \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ **by** (*simp add: projection-def*) moreover note τ -is- $\beta c \alpha$ ultimately show ?thesis $\mathbf{by} \ auto$ \mathbf{qed} moreover have $n = length ((\beta' @ \alpha') + C_{\mathcal{V}})$ proof have $\beta' \upharpoonright C_{\mathcal{V}} = \beta \upharpoonright C_{\mathcal{V}}$ proof have $V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}} = C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by auto with β' -VC-is- β -VC have $\beta' \uparrow (C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cup N_{\mathcal{V}})) = \beta \uparrow (C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cup N_{\mathcal{V}}))$ by auto thus ?thesis **by** (*rule projection-subset-eq-from-superset-eq*) \mathbf{qed} with α' -no-c α -no-c have $(\beta' @ \alpha') \uparrow C_{\mathcal{V}} = (\beta @ \alpha) \uparrow C_{\mathcal{V}}$ by (simp add: projection-def) with $\beta \alpha$ -contains-n-cs show ?thesis by auto \mathbf{qed} with Suc.hyps $\beta' \alpha'$ -in-Tr obtain τ' where $\tau' \in Tr_{ES}$ and $\tau' \upharpoonright C_{\mathcal{V}} = \overline{[]}$ and $\tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = (\beta' @ \alpha') \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by *auto* ultimately show ?case by auto qed

hence $\tau \in Tr_{ES} \Longrightarrow \exists \tau'. \tau' \in Tr_{ES} \land \tau' \upharpoonright C_{\mathcal{V}} = [] \land \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$

}

by auto

from this τ -trace obtain τ' where τ' -trace : $\tau' \in Tr_{ES}$ and τ' -no-C : $\tau' \upharpoonright C_{\mathcal{V}} = []$ and τ' - τ -rel : $\tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by auto

from τ' -no-C have $\tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by (auto simp add: projection-on-union)

```
with VIsViewOnE have \tau'-E-eq-VN: \tau' \upharpoonright E_{ES} = \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
by (auto simp add: isViewOn-def)
```

```
from validES \tau'-trace have (set \tau') \subseteq E_{ES}
by (auto simp add: ES-valid-def traces-contain-events-def)
hence \tau' \mid E_{ES} = \tau' by (simp add: list-subset-iff-projection-neutral)
with \tau'-E-eq-VN have \tau' = \tau' \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) by auto
with \tau'-\tau-rel have \tau' = \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) by auto
with \tau'-trace show \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES} by auto
qed
```

```
fix \tau n
```

```
have R-via-length: [\tau \in Tr_{ES}; n = length (\tau | C_{\mathcal{V}})]
                               \implies \exists \tau' \in Tr_{ES}. \ \tau' \upharpoonright C_{\mathcal{V}} = [] \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}
proof (induct n arbitrary: \tau)
   case \theta
   note \tau-in-Tr = \langle \tau \in Tr_{ES} \rangle
     and \langle \theta = length \ (\tau \uparrow C_{\mathcal{V}}) \rangle
   hence \tau \upharpoonright C_{\mathcal{V}} = []
      \mathbf{by} \ simp
   with \tau-in-Tr show ?case
     by auto
\mathbf{next}
   case (Suc n)
   from projection-split-last[OF Suc(3)] obtain \beta \ c \ \alpha
      where c\text{-in-}C: c \in C_{\mathcal{V}}
      and \tau-is-\beta c \alpha: \tau = \beta \ @ [c] @ \alpha
      and \alpha-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
      and \beta \alpha-contains-n-cs: n = length ((\beta @ \alpha) \uparrow C_{\mathcal{V}})
   by auto
   with Suc(2) have \beta c \alpha-in-Tr: \beta @ [c] @ \alpha \in Tr_{ES}
      \mathbf{by} \ auto
```

with D c-in-C $\beta c \alpha$ -in-Tr α -no-c obtain $\beta' \alpha'$ where $\beta' \alpha'$ -in-Tr: $(\beta' @ \alpha') \in Tr_{ES}$ and α' -V-is- α -V: $\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}$ and α' -no-c: $\alpha' \upharpoonright C_{\mathcal{V}} = []$ and $\beta' - VC - is - \beta - VC$: $\beta' \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}})$ unfolding D-def by blast have $(\beta' @ \alpha') \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}$ proof from $\beta' - VC - is - \beta - VC$ have $\beta' \uparrow V_{\mathcal{V}} = \beta \uparrow V_{\mathcal{V}}$ $\mathbf{by}~(rule~projection\textit{-subset-eq-from-superset-eq})$ with α' -V-is- α -V have $(\beta' @ \alpha') \upharpoonright V_{\mathcal{V}} = (\beta @ \alpha) \upharpoonright V_{\mathcal{V}}$ **by** (simp add: projection-def) moreover with VIsViewOnE c-in-C have $c \notin V_{\mathcal{V}}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto) hence $(\beta @ \alpha) \upharpoonright V_{\mathcal{V}} = (\beta @ [c] @ \alpha) \upharpoonright V_{\mathcal{V}}$ **by** (*simp add: projection-def*) moreover note τ -is- $\beta c \alpha$ ultimately show ?thesis by auto \mathbf{qed} moreover have $n = length ((\beta' @ \alpha') \uparrow C_{\mathcal{V}})$ proof – have $\beta' \upharpoonright C_{\mathcal{V}} = \beta \upharpoonright C_{\mathcal{V}}$ proof – have $V_{\mathcal{V}} \cup C_{\mathcal{V}} = C_{\mathcal{V}} \cup V_{\mathcal{V}}$ by auto with β' -VC-is- β -VC have $\beta' \upharpoonright (C_{\mathcal{V}} \cup V_{\mathcal{V}}) = \beta \upharpoonright (C_{\mathcal{V}} \cup V_{\mathcal{V}})$ $\mathbf{by} \ auto$ thus ?thesis $\mathbf{by}~(\textit{rule~projection-subset-eq-from-superset-eq})$ \mathbf{qed} with α' -no-c α -no-c have $(\beta' @ \alpha') \upharpoonright C_{\mathcal{V}} = (\beta @ \alpha) \upharpoonright C_{\mathcal{V}}$ **by** (*simp add: projection-def*) with $\beta \alpha$ -contains-n-cs show ?thesis by auto \mathbf{qed} with Suc.hyps $\beta' \alpha'$ -in-Tr obtain τ' where $\tau' \in Tr_{ES}$ and $\tau' \upharpoonright C_{\mathcal{V}} = []$ and $\tau' \upharpoonright V_{\mathcal{V}} = (\beta' @ \alpha') \upharpoonright V_{\mathcal{V}}$ $\mathbf{by} \ auto$ ultimately show ?case $\mathbf{by} \ auto$ \mathbf{qed} thus ?thesisby (simp add: R-def)

qed

}

lemma SR-implies-R-for-modified-view : $\llbracket SR \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \) \rrbracket \Longrightarrow R \ \mathcal{V}' \ Tr_{ES}$ proof assume SR ${\cal V}~{\it Tr}_{ES}$ and $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}})$ ł from $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}} , N = \{ \}, C = C_{\mathcal{V}} \rangle$ VIsViewOnE have V'Is ViewOnE: is ViewOn $\mathcal{V}' E_{ES}$ unfolding is ViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def by auto fix τ $\mathbf{assume}\ \tau \in\ \mathit{Tr}_{ES}$ with $\langle SR \ \mathcal{V} \ Tr_{ES} \rangle$ have $\tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES}$ unfolding SR-def by auto let $?\tau' = \tau | V_{\mathcal{V}'}$ from $\langle \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES}$ have $?\tau' \in Tr_{ES}$ using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup \widetilde{N_{\mathcal{V}}}, N = \{ \}, C = \widetilde{C_{\mathcal{V}}} \}$ by simp moreover from V'IsViewOnE have $?\tau'|C_{V'}=[]$ using disjoint-projection unfolding is ViewOn-def V-valid-def VC-disjoint-def by auto moreover have $?\tau' | V_{\mathcal{V}'} = \tau | V_{\mathcal{V}'}$ **by** (*simp add: projection-subset-elim*) ultimately have $\exists \tau' \in Tr_{ES}$. $\tau' \upharpoonright C_{\mathcal{V}'} = [] \land \tau' \upharpoonright V_{\mathcal{V}'} = \tau \upharpoonright V_{\mathcal{V}'}$ by auto } with $\langle SR \ V \ Tr_{ES} \rangle$ show ?thesis unfolding *R*-def using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \}$ by auto qed **lemma** *R-implies-SR-for-modified-view* : $\llbracket \mathcal{V}' \operatorname{Tr}_{ES}; \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \mid \} \Longrightarrow SR \mathcal{V} \operatorname{Tr}_{ES}$ proof assume $R \ \mathcal{V}' \ \textit{Tr}_{ES}$ and $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}})$ { fix τ assume $\tau \in Tr_{ES}$ from $\langle R \mathcal{V}' Tr_{ES} \rangle \langle \tau \in Tr_{ES} \rangle$ obtain τ' where $\tau' \in Tr_{ES}$ and $\tau' \upharpoonright C_{\mathcal{V}'} = []$ and $\tau' \upharpoonright V_{\mathcal{V}'} = \tau \upharpoonright V_{\mathcal{V}'}$ unfolding *R*-def by auto **from** $VIsViewOnE \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}})$ **have** $isViewOn \ \mathcal{V}' E_{ES}$ **unfolding** isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def by auto

 $\mathbf{from} \ \langle \tau' \upharpoonright V_{\mathcal{V}'} = \tau \upharpoonright V_{\mathcal{V}'} \ \ \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \) \rangle$

have $\tau' \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) = \tau \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})$ by simp from $\langle \tau' \upharpoonright C_{\mathcal{V}'} = [] \rangle$ have $\tau' = \tau' \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})$ $\textbf{using } valid ES \ \langle \tau' \in \ Tr_{ES} \rangle \ \langle is ViewOn \ \mathcal{V}' \ E_{ES} \rangle$ unfolding projection-def ES-valid-def is ViewOn-def traces-contain-events-def **by** (*metis* UnE filter-True filter-empty-conv) hence $\tau' = \tau \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})$ using $\langle \tau' \uparrow (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) = \tau \uparrow (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})$ by simp with $\langle \tau' \in Tr_{ES} \rangle$ have $\tau \uparrow (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) \in Tr_{ES}$ $\mathbf{by} \ auto$ } thus ?thesis unfolding SR-def using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \} \rangle$ by simp qed

 ${\bf lemma} \ SD\text{-}implies\text{-}BSD\text{-}for\text{-}modified\text{-}view:$ $\llbracket SD \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, \ N = \{ \}, \ C = C_{\mathcal{V}} \) \rrbracket \Longrightarrow BSD \ \mathcal{V}' \ Tr_{ES}$ proof assume SD \mathcal{V} Tr_{ES} and $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \}$ { fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}'}$ and $\beta @ [c] @ \alpha \in Tr_{ES}$ and $\alpha | C_{\mathcal{V}'} = []$ from $\langle c \in C_{\mathcal{V}'} \rangle \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \rangle \rangle$ have $c \in C_{\mathcal{V}}$ by auto from $\langle \alpha | C_{\mathcal{V}'} = [] \rangle \langle \mathcal{V}' = (] V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}} \rangle \rangle$ have $\alpha | C_{\mathcal{V}} = []$ by *auto* from $\langle c \in C_{\mathcal{V}} \rangle \langle \beta @ [c] @ \alpha \in Tr_{ES} \langle \alpha | C_{\mathcal{V}} = [] \rangle$ have $\beta @ \alpha \in Tr_{ES}$ using $\langle SD \mathcal{V} Tr_{ES} \rangle$ unfolding SD-def by auto hence $\exists \alpha' : \beta @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'} \land \alpha' \upharpoonright C_{\mathcal{V}'} = []$ using $\langle \alpha \mid C_{\mathcal{V}'} = [] \rangle$ by blast } with $\langle SD \ V \ Tr_{ES} \rangle$ show ?thesis unfolding BSD-def using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \}$ by auto \mathbf{qed} **lemma** BSD-implies-SD-for-modified-view :

 $\begin{bmatrix}BSD \ \mathcal{V}' \ Tr_{ES}; \ \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}} \) \end{bmatrix} \Longrightarrow SD \ \mathcal{V} \ Tr_{ES}$ unfolding SD-def proof(clarsimp) fix $\alpha \beta c$ assume BSD-view': BSD ($V = V_{\mathcal{V}} \cup N_{\mathcal{V}}$, $N = \{\}$, $C = C_{\mathcal{V}}$) Tr_{ES} assume alpha-no-C-view : $\alpha \upharpoonright C_{\mathcal{V}} = []$ assume c-C-view : $c \in C_{\mathcal{V}}$ **assume** beta-c-alpha-is-trace : $\beta @ c \# \alpha \in Tr_{ES}$ from BSD-view' alpha-no-C-view c-C-view beta-c-alpha-is-trace obtain α' where beta-alpha'-is-trace: $\beta @ \alpha' \in (Tr_{ES})$ and $alpha-alpha': \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ and $alpha'-no-C-view: \alpha' \upharpoonright C_{\mathcal{V}} = []$ by (auto simp add: BSD-def) ${\bf from} \ beta\mbox{-}c\mbox{-}alpha\mbox{-}is\mbox{-}trace \ validES$ have alpha-consists-of-events: set $\alpha \subseteq E_{ES}$ **by** (*auto simp add: ES-valid-def traces-contain-events-def*) from alpha-no-C-view have $\alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by (rule projection-on-union) with VIsViewOnE have alpha-on-ES : $\alpha \upharpoonright E_{ES} = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ unfolding is ViewOn-def by simp from alpha-consists-of-events VIsViewOnE have $\alpha \upharpoonright E_{ES} = \alpha$ **by** (*simp add: list-subset-iff-projection-neutral*) with alpha-on-ES have α -eq: $\alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha$ by auto from beta-alpha'-is-trace validES have alpha'-consists-of-events: set $\alpha' \subseteq E_{ES}$ **by** (*auto simp add: ES-valid-def traces-contain-events-def*) from alpha'-no-C-view have $\alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by (rule projection-on-union) with VIsViewOnE have alpha'-on-ES : $\alpha' \upharpoonright E_{ES} = \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ unfolding *isViewOn-def* by (*simp*) from alpha'-consists-of-events VIsViewOnE have $\alpha' \upharpoonright E_{ES} = \alpha'$ **by** (*simp add: list-subset-iff-projection-neutral*) with alpha'-on-ES have α' -eq: $\alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha'$ by auto from alpha- $alpha' \alpha$ - $eq \alpha'$ -eq have $\alpha = \alpha'$ by auto

with beta-alpha'-is-trace show $\beta @ \alpha \in Tr_{ES}$ by auto qed

{ fix $\alpha \ \beta \ c \ v$ assume $c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}$ and $v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}$ and alpha-C-empty: $\alpha \upharpoonright C_{\mathcal{V}} = []$ and $\beta @ [c, v] @ \alpha \in Tr_{ES}$ moreover with VIsViewOnE have $(v \# \alpha) \uparrow C_{\mathcal{V}} = []$ unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto ultimately have $\beta @ (v \# \alpha) \in Tr_{ES}$ using SD unfolding SD-def by auto with alpha-C-empty have $\exists \alpha' . \exists \delta' . (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ \ \delta' @ [v] @ \ \alpha') \in Tr_{ES}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$ by (metis append.simps(1) append.simps(2) bot-least list.set(1))} thus ?thesisunfolding SD-def FCD-def by auto qed

```
lemma SI-implies-BSI :
(SI \ \mathcal{V} \ Tr_{ES}) \Longrightarrow BSI \ \mathcal{V} \ Tr_{ES}
proof -
  assume SI: SI \mathcal{V} Tr<sub>ES</sub>
  {
    fix \alpha \beta c
    assume c \in C_{\mathcal{V}}
       and \beta @ \alpha \in Tr_{ES}
       and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
     with SI have \beta @ c \# \alpha \in Tr_{ES}
       unfolding SI-def by auto
     hence \exists \alpha'. \beta @ c \# \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
       using alpha-C-empty by auto
  }
  thus ?thesis
     unfolding SI-def BSI-def by auto
\mathbf{qed}
```

fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ \alpha \in Tr_{ES}$

```
and \alpha \upharpoonright C_{\mathcal{V}} = []
      with BSI obtain \alpha'
        where \beta @ [c] @ \alpha' \in Tr_{ES}
        and \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
        and \alpha' \upharpoonright C_{\mathcal{V}} = []
        unfolding BSI-def
        by blast
     hence
        (\exists \alpha' \beta'. (\beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []) \land
                          \beta' \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
        by auto
  }
  thus ?thesis unfolding BSI-def I-def
     \mathbf{by} \ auto
\mathbf{qed}
lemma SIA-implies-BSIA:
(SIA \ \varrho \ \mathcal{V} \ Tr_{ES}) \Longrightarrow (BSIA \ \varrho \ \mathcal{V} \ Tr_{ES})
proof -
  assume SIA: SIA \varrho \ V \ Tr_{ES}
  {
     fix \alpha \beta c
     assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in Tr_{ES}
        and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
        and (Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c)
      with SIA obtain \beta \ \ c \ \# \ \alpha \in Tr_{ES}
         unfolding SIA-def by auto
     hence \exists \alpha' \beta @ c \# \alpha' \in Tr_{ES} \land \alpha' V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
        using alpha-C-empty by auto
   }
  thus ?thesis
      unfolding SIA-def BSIA-def by auto
qed
lemma BSIA-implies-IA:
(BSIA \ \varrho \ \mathcal{V} \ Tr_{ES}) \Longrightarrow (IA \ \varrho \ \mathcal{V} \ Tr_{ES})
proof -
  assume BSIA: BSIA \varrho \mathcal{V} Tr_{ES}
   {
     fix \alpha \beta c
     assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in Tr_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
and (Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c)
      with BSIA obtain \alpha
        where \beta @ [c] @ \alpha' \in Tr_{ES}
        and \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
        and \alpha' \uparrow \dot{C}_{\mathcal{V}} = []
```

```
unfolding BSIA-def
        \mathbf{by} \ blast
      hence (\exists \alpha' \beta').
        (\beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []) \land
        \beta' \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
        by auto
  }
  thus ?thesis
     unfolding BSIA-def IA-def by auto
qed
lemma SI-implies-SIA:
\mathit{SI ~\mathcal{V} ~Tr}_{ES} \Longrightarrow \mathit{SIA ~\varrho ~\mathcal{V} ~Tr}_{ES}
proof –
  assume SI: SI V Tr<sub>ES</sub>
   {
     fix \alpha \beta c
     assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in Tr_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
        and Adm \mathcal V \ \varrho \ {\it Tr}_{ES} \ \beta \ c
     with SI have \beta @ (c \# \alpha) \in Tr_{ES}
        {\bf unfolding} \ SI{-}def \ {\bf by} \ auto
  }
  thus ?thesis unfolding SI-def SIA-def by auto
\mathbf{qed}
lemma BSI-implies-BSIA:
BSI \mathcal{V} Tr<sub>ES</sub> \Longrightarrow BSIA \varrho \mathcal{V} Tr<sub>ES</sub>
proof –
  assume BSI: BSI \mathcal{V} Tr<sub>ES</sub>
   {
     fix \alpha \beta c
     assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in Tr_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
        and Adm \mathcal{V} \varrho \ Tr_{ES} \beta c
     with BSI have \exists \alpha' \cdot \beta \otimes (c \# \alpha') \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
        unfolding BSI-def by auto
   }
  thus ?thesis
     unfolding BSI-def BSIA-def by auto
\mathbf{qed}
lemma I-implies-IA:
```

```
 \begin{array}{l} I \ \mathcal{V} \ Tr_{ES} \Longrightarrow IA \ \varrho \ \mathcal{V} \ Tr_{ES} \\ \textbf{proof} \ - \\ \textbf{assume} \ I: \ I \ \mathcal{V} \ Tr_{ES} \\ \{ \end{array}
```

fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ \alpha \in Tr_{ES}$ and $\alpha \mid C_{\mathcal{V}} = []$ and $Adm \mathcal{V} \varrho \ Tr_{ES} \beta c$ with I have $\exists \alpha' \beta' . \beta' @ (c \# \alpha') \in Tr_{ES} \land \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land \alpha' \mid C_{\mathcal{V}} = [] \land \beta' \mid (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \mid (V_{\mathcal{V}} \cup C_{\mathcal{V}})$ unfolding I-def by auto } thus ?thesis unfolding I-def IA-def by auto

```
qed
```

lemma *SI-implies-BSI-for-modified-view* : $\llbracket SI \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{\} \ , \ C = C_{\mathcal{V}} \ \| \Longrightarrow BSI \ \mathcal{V}' \ Tr_{ES}$ proof assume SI V Tr_{ES} and $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}})$ { fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}'}$ and $\beta @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}'} = []$ from $\langle c \in C_{\mathcal{V}'} \rangle \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \rangle \rangle$ have $c \in C_{\mathcal{V}}$ by auto from $\langle \alpha | C_{\mathcal{V}'} = [] \rangle \langle \mathcal{V}' = (] V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}} \rangle \rangle$ have $\alpha | C_{\mathcal{V}} = []$ by auto $\mathbf{from} \ \langle c \in C_{\mathcal{V}} \rangle \ \langle \beta \ @ \alpha \in Tr_{ES} \rangle \ \langle \alpha | C_{\mathcal{V}} = [] \rangle$ have $\beta @ [c] @ \alpha \in Tr_{ES}$ using $\langle SI \ \mathcal{V} \ Tr_{ES} \rangle$ unfolding SI-def by auto hence $\exists \alpha' : \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'} \land \alpha' \upharpoonright C_{\mathcal{V}'} = []$ using $\langle \alpha \mid C_{\mathcal{V}'} = [] \rangle$ $\mathbf{by} \ blast$ } with $\langle SI \ \mathcal{V} \ Tr_{ES} \rangle$ show ?thesis unfolding BSI-def using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \}$ by auto qed

 $\begin{array}{l} \textbf{lemma }BSI\text{-implies-SI-for-modified-view}:\\ \llbracket BSI \; \mathcal{V}' \; Tr_{ES}; \; \mathcal{V}' = (\mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \;, \; N = \{ \} \;, \; C = C_{\mathcal{V}} \; \| \rrbracket \Longrightarrow SI \; \mathcal{V} \; Tr_{ES} \\ \textbf{unfolding }SI\text{-}def \\ \textbf{proof } (clarsimp) \\ \textbf{fix } \alpha \; \beta \; c \\ \textbf{assume }BSI\text{-view}': \; BSI \; (\mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, \; N = \{ \}, \; C = C_{\mathcal{V}}) \; Tr_{ES} \\ \textbf{assume } alpha\text{-}no\text{-}C\text{-view}: \; \alpha \; \mid \; C_{\mathcal{V}} = [] \\ \textbf{assume } c\text{-}C\text{-view}: \; c \in C_{\mathcal{V}} \\ \textbf{assume } beta\text{-}alpha\text{-}is\text{-}trace: \; \beta @ \alpha \in Tr_{ES} \end{array}$

from BSI-view' have $\forall c \in C_{\mathcal{V}}$. $\beta @ \alpha \in Tr_{ES} \land \alpha \uparrow C_{\mathcal{V}} = []$ $\longrightarrow (\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \land \alpha' \uparrow C_{\mathcal{V}} = [])$ by (auto simp add: BSI-def) with beta-alpha-is-trace alpha-no-C-view have $\forall c \in C_{\mathcal{V}}$. $(\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \land \alpha' \uparrow C_{\mathcal{V}} = [])$ by auto with this BSI-view' c-C-view obtain α' where beta-c-alpha'-is-trace: $\beta @ [c] @ \alpha' \in Tr_{ES}$ and alpha-alpha': $\alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ and alpha'-no-C-view : $\alpha' \upharpoonright C_{\mathcal{V}} = []$ by auto **from** beta-alpha-is-trace validES have alpha-consists-of-events: set $\alpha \subseteq E_{ES}$ by (auto simp add: ES-valid-def traces-contain-events-def) from alpha-no-C-view have $\alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ **by** (*rule projection-on-union*) with VIsViewOnE have alpha-on-ES : $\alpha \uparrow E_{ES} = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ **unfolding** *isViewOn-def* **by** (*simp*) from alpha-consists-of-events VIsViewOnE have $\alpha \upharpoonright E_{ES} = \alpha$ **by** (simp add: list-subset-iff-projection-neutral) with alpha-on-ES have α -eq: $\alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha$ by auto from beta-c-alpha'-is-trace validES have alpha'-consists-of-events: set $\alpha' \subseteq E_{ES}$ by (auto simp add: ES-valid-def traces-contain-events-def) from alpha'-no-C-view have $\alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by (rule projection-on-union) with VIsViewOnE have alpha'-on-ES : $\alpha' \upharpoonright E_{ES} = \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ **unfolding** *isViewOn-def* **by** (*simp*) from alpha'-consists-of-events VIsViewOnE have $\alpha' \upharpoonright E_{ES} = \alpha'$ **by** (*simp add: list-subset-iff-projection-neutral*) with alpha'-on-ES have α' -eq: $\alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha'$ by auto from alpha- $alpha' \alpha$ - $eq \alpha'$ -eq have $\alpha = \alpha'$ by auto

with beta-c-alpha'-is-trace show $\beta @ c \# \alpha \in Tr_{ES}$ by auto qed

 $\begin{array}{l} \textbf{lemma } SIA\text{-implies-BSIA-for-modified-view :} \\ \llbracket SIA \ \varrho \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = (\ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ \) \ ; \ \varrho \ \mathcal{V} = \varrho' \ \mathcal{V}' \rrbracket \Longrightarrow BSIA \ \varrho' \ \mathcal{V}' \ Tr_{ES} \\ \end{array}$

proof assume SIA $\varrho \ \mathcal{V} \ Tr_{ES}$ and $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}} , N = \{ \}, C = C_{\mathcal{V}} \}$ and $\rho \mathcal{V} = \rho' \mathcal{V}'$ ł fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}'}$ and $\beta @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}'} = []$ and $Adm' \mathcal{V}' \varrho' Tr_{ES} \beta c$ from $\langle c \in C_{\mathcal{V}'} \rangle \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \rangle$ have $c \in C_{\mathcal{V}}$ by auto from $\langle \alpha | C_{\mathcal{V}'} = [] \rangle \langle \mathcal{V}' = (] V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}} \rangle \rangle$ have $\alpha \upharpoonright C_{\mathcal{V}} = []$ by *auto* from $\langle Adm \ \mathcal{V}' \ \varrho' \ Tr_{ES} \ \beta \ c \rangle \ \langle \varrho \ \mathcal{V} = \ \varrho' \ \mathcal{V}' \rangle$ have $Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c$ **by** (simp add: Adm-def) $\mathbf{from} \ \langle c \in C_{\mathcal{V}} \rangle \ \langle \beta \ @ \alpha \in Tr_{ES} \rangle \ \langle \alpha | C_{\mathcal{V}} = [] \rangle \ \langle Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c \rangle$ have $\beta @ [c] @ \alpha \in Tr_{ES}$ using $\langle SIA \ \varrho \ V \ Tr_{ES} \rangle$ unfolding SIA-def by auto hence $\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'} \land \alpha' \upharpoonright C_{\mathcal{V}'} = []$ using $\langle \alpha \mid C_{\mathcal{V}'} = [] \rangle$ by blast } with $\langle SIA \ \varrho \ V \ Tr_{ES} \rangle$ show ?thesis unfolding BSIA-def using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \} \rangle$ by auto qed ${\bf lemma} \ BSIA\ implies\ SIA\ for\ modified\ view:$ $[BSIA \ \varrho' \ \mathcal{V}' \ Tr_{ES}; \ \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \); \ \varrho \ \mathcal{V} = \varrho' \ \mathcal{V}'] \Longrightarrow SIA \ \varrho \ \mathcal{V} \ Tr_{ES} = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V}} \ (V = V_{\mathcal{V}} \cup V_{\mathcal{V}}) = C_{\mathcal{V} \cup V_{\mathcal{V}}) = C_{\mathcal{V} \cup V_{\mathcal{V}}) = C_{\mathcal{$ proof assume BSIA $\varrho' \mathcal{V}' \operatorname{Tr}_{ES}$ and $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}})$ and $\varrho \mathcal{V} = \varrho' \mathcal{V}'$ { fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ and $Adm \mathcal{V} \varrho \ Tr_{ES} \beta c$ from $\langle c \in C_{\mathcal{V}} \rangle \quad \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \rangle \rangle$ have $c \in C_{\mathcal{V}'}$ by auto from $\langle \alpha | C_{\mathcal{V}} = [] \rangle \langle \mathcal{V}' = (] V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}} \rangle \rangle$ have $\alpha \upharpoonright C_{\mathcal{V}'} = []$ by auto $\mathbf{from} \quad \langle Adm \ \mathcal{V} \ \varrho \ \operatorname{Tr}_{ES} \ \beta \ c \rangle \ \langle \varrho \ \mathcal{V} = \ \varrho' \ \mathcal{V}' \rangle$

have Adm $\mathcal{V}' \, \varrho' \, \operatorname{Tr}_{ES} \beta \, c$ **by** (*simp add*: *Adm-def*) $\mathbf{from} \ \langle c \in \ C_{\mathcal{V}'} \rangle \ \langle \beta \ @ \ \alpha \in \ Tr_{ES} \rangle \ \langle \alpha | \ C_{\mathcal{V}'} = [] \rangle \ \langle Adm \ \mathcal{V}' \ \varrho' \ Tr_{ES} \ \beta \ c \rangle$ obtain α' where $\beta @ [c] @ \alpha' \in Tr_{ES}$ and $\alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'}$ and $\alpha' \upharpoonright C_{\mathcal{V}'} = []$ using $\langle BSIA \ \varrho' \ \mathcal{V}' \ Tr_{ES} \rangle$ unfolding BSIA-def by blast have alpha-consists-of-events: set $\alpha \subseteq E_{ES}$ by (auto simp add: ES-valid-def traces-contain-events-def) from $\langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle$ validES have alpha'-consists-of-events: set $\alpha' \subseteq E_{ES}$ **by** (*auto simp add: ES-valid-def traces-contain-events-def*) $\mathbf{from} \ \langle \alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'} \ \langle \mathcal{V}' = \emptyset \ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{\} \ , \ C = C_{\mathcal{V}} \ \rangle$ have $\alpha' | (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha | (V_{\mathcal{V}} \cup N_{\mathcal{V}})$ by auto with $\langle \alpha' | C_{\mathcal{V}'} = [] \rangle \langle \alpha | C_{\mathcal{V}} = [] \rangle \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}} , N = \{\}, C = C_{\mathcal{V}} \rangle \rangle$ have $\alpha' | (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha | (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}})$ **by** (*simp add: projection-on-union*) with VIsViewOnE alpha-consists-of-events alpha'-consists-of-events have $\alpha' = \alpha$ unfolding *isViewOn-def* **by** (*simp add: list-subset-iff-projection-neutral*) hence $\beta @ [c] @ \alpha \in Tr_{ES}$ using $\langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle$ by blast } with $\langle BSIA \ \varrho' \ \mathcal{V}' \ Tr_{ES} \rangle$ show ?thesis unfolding SIA-def using $\langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}})$ by auto \mathbf{qed} end **lemma** *Adm-implies-Adm-for-modified-rho*: $\llbracket Adm \ \mathcal{V}_2 \ \varrho_2 \ Tr \ \alpha \ e; \varrho_2(\mathcal{V}_2) \supseteq \ \varrho_1(\mathcal{V}_1) \rrbracket \Longrightarrow Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr \ \alpha \ e$ proof assume $Adm \mathcal{V}_2 \varrho_2 Tr \alpha e$ and $\varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)$ then obtain γ where $\gamma @ [e] \in Tr$ and $\gamma \mid \varrho_2 \mathcal{V}_2 = \alpha \mid \varrho_2 \mathcal{V}_2$ unfolding Adm-def by auto thus $Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr \ \alpha \ e$ unfolding Adm-def using $\langle \varrho_1 \ \mathcal{V}_1 \subseteq \varrho_2 \ \mathcal{V}_2 \rangle$ non-empty-projection-on-subset by blast

qed

 ${\bf context} \ BSPT a xonomy Different Corrections$

begin

```
lemma SI-implies-FCI:
(SI \ \mathcal{V} \ Tr_{ES}) \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
   assume SI: SI \mathcal{V} Tr<sub>ES</sub>
     ł
     fix \alpha \ \beta \ c \ v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
       and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
and \beta @ [v] @ \alpha \in Tr_{ES}
       and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
     moreover
     with VIsViewOnE have (v \# \alpha) \upharpoonright C_{\mathcal{V}} = []
       unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto
     ultimately
     have \beta @ [c, v] @ \alpha \in Tr_{ES} using SI unfolding SI-def by auto
     with alpha-C-empty
    have \exists \alpha' . \exists \delta'.
                  (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \ \delta' @ [v] @ \ \alpha') \in Tr_{ES}
                    \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
       by (metis append.simps(1) append.simps(2) bot-least list.set(1))
  }
  thus ?thesis
     unfolding SI-def FCI-def by auto
qed
lemma SIA-implies-FCIA:
(SIA \ \varrho \ \mathcal{V} \ Tr_{ES}) \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof –
   assume SIA: SIA \varrho \mathcal{V} Tr_{ES}
     {
     fix \alpha \ \beta \ c \ v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
       and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
       and \beta @ [v] @ \alpha \in Tr_{ES}
       and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
       and Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c
     moreover
     with VIsViewOnE have (v \# \alpha) \upharpoonright C_{\mathcal{V}} = []
       unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto
     ultimately
     have \beta @ [c, v] @ \alpha \in Tr_{ES} using SIA unfolding SIA-def by auto
     with alpha-C-empty
     have \exists \alpha' . \exists \delta' .
                  (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr_{ES})
                    \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = [])
       by (metis append.simps(1) append.simps(2) bot-least list.set(1))
  }
  thus ?thesis
```

```
unfolding SIA-def FCIA-def by auto
qed
```

```
lemma FCI-implies-FCIA:
(FCI \ \Gamma \ V \ Tr_{ES}) \Longrightarrow FCIA \ \varrho \ \Gamma \ V \ Tr_{ES}
proof -
  assume FCI: FCI \Gamma \mathcal{V} Tr_{ES}
   {
     \mathbf{fix}\ \alpha\ \beta\ c\ v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
       and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
        and \beta @ [v] @ \alpha \in Tr_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
     with FCI have \exists \alpha' \delta'. set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land
                                   \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
                                        unfolding FCI-def by auto
  }
  thus ?thesis
     unfolding FCI-def FCIA-def by auto
qed
```

```
lemma Trivially-fulfilled-SR-C-empty:
C_{\mathcal{V}} = \{\} \Longrightarrow SR \ \mathcal{V} \ Tr_{ES}
proof -
  assume C_{\mathcal{V}} = \{\}
  {
    fix \tau
    assume \tau \in Tr_{ES}
    hence \tau = \tau | E_{ES} using validES
       unfolding \widetilde{ES}-valid-def traces-contain-events-def projection-def by auto
    with \langle C_{\mathcal{V}} = \{\} \rangle have \tau = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
       using VIsViewOnE unfolding isViewOn-def by auto
    with \langle \tau \in Tr_{ES} \rangle have \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES}
       by auto
  }
  thus ?thesis
    unfolding SR-def by auto
qed
lemma Trivially-fulfilled-R-C-empty:
C_{\mathcal{V}} = \{\} \Longrightarrow R \ \mathcal{V} \ Tr_{ES}
proof –
  assume C_{\mathcal{V}} = \{\}
  {
    fix \tau
    assume \tau \in Tr_{ES}
    hence \tau = \tau | E_{ES} using validES
      unfolding ES-valid-def traces-contain-events-def projection-def by auto
     with \langle C_{\mathcal{V}} = \{\} \rangle have \tau = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
```

 ${\bf using} \ VIsViewOnE \ {\bf unfolding} \ isViewOn-def \ {\bf by} \ auto$ with $\langle \tau \in Tr_{ES} \rangle \langle C_{\mathcal{V}} = \{\}$ have $\exists \tau' \in Tr_{ES}$. $\tau \upharpoonright C_{\mathcal{V}} = [] \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}$ unfolding projection-def by auto } thus ?thesis unfolding *R*-def by auto qed lemma Trivially-fulfilled-SD-C-empty: $C_{\mathcal{V}} = \{\} \Longrightarrow SD \ \mathcal{V} \ Tr_{ES}$ by (simp add: SD-def) **lemma** *Trivially-fulfilled-BSD-C-empty*: $C_{\mathcal{V}} = \{\} \Longrightarrow BSD \ \mathcal{V} \ Tr_{ES}$ **by** (*simp add: BSD-def*) **lemma** *Trivially-fulfilled-D-C-empty*: $C_{\mathcal{V}} = \{\} \Longrightarrow D \ \mathcal{V} \ Tr_{ES}$ by (simp add: D-def) ${\bf lemma} \ \ Trivially\mbox{-}fulfilled\mbox{-}FCD\mbox{-}C\mbox{-}empty:$ $C_{\mathcal{V}} = \{\} \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}$ by (simp add: FCD-def) lemma Trivially-fullfilled-R-V-empty: $V_{\mathcal{V}} = \{\} \Longrightarrow R \ \mathcal{V} \ Tr_{ES}$ proof assume $V_{\mathcal{V}} = \{\}$ { fix τ assume $\tau \in Tr_{ES}$ let $?\tau' = []$ from $\langle \tau \in Tr_{ES} \rangle$ have $?\tau' \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefix-losed-def prefix-def by auto with $\langle V_{\mathcal{V}} = \{\} \rangle$ have $\exists \tau' \in Tr_{ES}$. $\tau' | C_{\mathcal{V}} = [] \land \tau' | V_{\mathcal{V}} = \tau | V_{\mathcal{V}}$ **by** (*metis* projection-on-empty-trace projection-to-emptyset-is-empty-trace) } thus ?thesisunfolding *R*-def by auto qed ${\bf lemma} \ \ Trivially\mbox{-}fulfilled\mbox{-}BSD\mbox{-}V\mbox{-}empty:$ $V_{\mathcal{V}} = \{\} \Longrightarrow BSD \ \mathcal{V} \ Tr_{ES}$ proof – assume $V_{\mathcal{V}} = \{\}$ { fix $\alpha \beta c$ assume $\beta @ [c] @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$

using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto let $?\alpha' = []$ from $\langle \beta \in Tr_{ES} \rangle \langle V_{\mathcal{V}} = \{\} \rangle$ have $\beta @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []$ by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace) hence $\exists\,\alpha'\!.$ $\beta @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []$ by blast } thus ?thesis unfolding BSD-def by auto qed **lemma** *Trivially-fulfilled-D-V-empty*: $V_{\mathcal{V}} = \{\} \Longrightarrow D \mathcal{V} Tr_{ES}$ proof – assume $V_{\mathcal{V}} = \{\}$ { fix $\alpha \beta c$ assume $\beta @ [c] @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ from $\langle \beta @ [c] @ \alpha \in Tr_{ES} \rangle$ have $\beta \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto let $\beta'=\beta$ and $\alpha'=[]$ from $\langle \beta \in Tr_{ES} \rangle \langle V_{\mathcal{V}} = \{\} \rangle$ have $?\beta' @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = [] \land ?\beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})$ by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace) hence $\exists \alpha' \beta'.$ $\beta' @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = [] \land \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})$ by blast } thus ?thesisunfolding D-def by auto qed **lemma** *Trivially-fulfilled-FCD-V-empty*: $V_{\mathcal{V}} = \{\} \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}$ by (simp add: FCD-def) **lemma** *Trivially-fulfilled-FCD-Nabla-* Υ *-empty*: $\llbracket \nabla_{\Gamma} = \{\} \lor \Upsilon_{\Gamma} = \{\} \rrbracket \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}$ proof assume $\nabla_{\Gamma} = \{\} \lor \Upsilon_{\Gamma} = \{\}$

thus ?thesis

proof(rule disjE) assume $\nabla_{\Gamma} = \{\}$ thus *?thesis* by (simp add: FCD-def) \mathbf{next} assume $\Upsilon_{\Gamma} = \{\}$ thus *?thesis* **by** (*simp add: FCD-def*) qed qed $\textbf{lemma } \textit{Trivially-fulfilled-FCD-N-subseteq-} \Delta \textit{-and-} BSD:$ $\llbracket N_{\mathcal{V}} \subseteq \Delta_{\Gamma}; BSD \ \mathcal{V} \ Tr_{ES} \rrbracket \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}$ proof – assume $N_{\mathcal{V}} \subseteq \Delta_{\Gamma}$ and BSD V Tr_{ES} { fix $\alpha \beta c v$ assume $c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}$ and $v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}$ and $\beta @ [c,v] @ \alpha \in Tr_{ES}$ and $\alpha | C_{\mathcal{V}} = []$ from $\langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle$ have $c \in C_{\mathcal{V}}$ by auto from $\langle v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \rangle$ have $v \in V_{\mathcal{V}}$ by auto let $?\alpha = [v] @ \alpha$ from $\langle v \in V_{\mathcal{V}} \rangle \langle \alpha | C_{\mathcal{V}} = [] \rangle$ have $?\alpha | C_{\mathcal{V}} = []$ using VIsViewOnE unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto from $\langle \beta @ [c,v] @ \alpha \in Tr_{ES} \rangle$ have $\beta @ [c] @ ?\alpha \in Tr_{ES}$ $\mathbf{by} \ auto$ from $\langle BSD \ \mathcal{V} \ Tr_{ES} \rangle$ obtain α' where $\beta @ \alpha' \in Tr_{ES}$ and $\alpha' V_{\mathcal{V}} = ([v] \ @ \alpha) V_{\mathcal{V}}$ and $\alpha' | C_{\mathcal{V}} = []$ using $\langle c \in C_{\mathcal{V}} \rangle$ $\langle \beta @ [c] @ ?\alpha \in Tr_{ES} \rangle \langle ?\alpha | C_{\mathcal{V}} = [] \rangle$ unfolding BSD-def by auto $\mathbf{from} \langle v \in V_{\mathcal{V}} \rangle \langle \alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}} \rangle \mathbf{have} \ \alpha' | V_{\mathcal{V}} = [v] @ \alpha | V_{\mathcal{V}}$ **by** (simp add: projection-def) then obtain $\delta \alpha^{\prime\prime}$ where $\alpha' = \delta @ [v] @ \alpha''$ and $\delta | V_{\mathcal{V}} = []$ and $\alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}}$ using projection-split-first-with-suffix by fastforce from $\langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have $\delta | C_{\mathcal{V}} = []$ **by** (*metis append-is-Nil-conv projection-concatenation-commute*)

from $\langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have $\alpha'' | C_{\mathcal{V}} = []$ by (metis append-is-Nil-conv projection-concatenation-commute)

from $\langle \beta @ \alpha' \in Tr_{ES} \rangle$ have set $\alpha' \subseteq E_{ES}$ using validES unfolding ES-valid-def traces-contain-events-def by auto with $\langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have set $\delta \subseteq E_{ES}$ by *auto* with $\langle \delta | C_{\mathcal{V}} = [] \rangle \langle \delta | V_{\mathcal{V}} = [] \rangle \langle N_{\mathcal{V}} \subseteq \Delta_{\Gamma} \rangle$ have $(set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})$ using VIsViewOnE projection-empty-implies-absence-of-events ${\bf unfolding} \ is View On-def \ projection-def \ {\bf by} \ blast$ let $\beta = \beta$ and $\delta' = \delta$ and $\alpha' = \alpha''$ $\mathbf{from} \, \triangleleft(set \; \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land \triangleleft \beta @ \alpha' \in \mathit{Tr}_{ES} \lor \triangleleft \alpha' = \delta @ [v] @ \alpha'' \land \beta = \delta \land \beta \land \beta = \delta \land \beta = \delta \land \beta = \delta \land \beta = \delta \land \beta \land \beta$ $\langle \alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \rangle \langle \alpha'' | C_{\mathcal{V}} = [] \rangle$ $\mathbf{have} \; (set \; ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \; \land \; ?\delta \; @ \; ?\delta' \; @ \; [v] \; @ \; ?\alpha' \in \; Tr_{ES} \land \; ?\alpha'| \; V_{\mathcal{V}} = \alpha | \; V_{\mathcal{V}} \land \; ?\alpha'| \; C_{\mathcal{V}} = []$ **by** *auto* hence $\exists \alpha^{\prime\prime\prime} \delta^{\prime\prime}$. (set $\delta^{\prime\prime}$) $\subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land (\beta @ \delta^{\prime\prime} @ [v] @ \alpha^{\prime\prime\prime}) \in Tr_{ES}$ $\wedge \alpha^{\prime\prime\prime} \upharpoonright \dot{V}_{\mathcal{V}} = \alpha \upharpoonright \dot{V}_{\mathcal{V}} \land \alpha^{\prime\prime\prime} \upharpoonright C_{\mathcal{V}} = \llbracket$ by auto } thus ?thesis unfolding FCD-def by auto

 \mathbf{qed}

lemma Trivially-fulfilled-SI-C-empty: $C_{\mathcal{V}} = \{\} \Longrightarrow SI \ \mathcal{V} \ Tr_{ES}$ by (simp add: SI-def) **lemma** *Trivially-fulfilled-BSI-C-empty*: $C_{\mathcal{V}} = \{\} \Longrightarrow BSI \ \mathcal{V} \ Tr_{ES}$ by (simp add: BSI-def) lemma Trivially-fulfilled-I-C-empty: $C_{\mathcal{V}} = \{\} \Longrightarrow I \ \mathcal{V} \ Tr_{ES}$ by (simp add: I-def) **lemma** *Trivially-fulfilled-FCI-C-empty*: $C_{\mathcal{V}} = \{\} \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}$ by (simp add: FCI-def) **lemma** *Trivially-fulfilled-SIA-C-empty*: $C_{\mathcal{V}} = \{\} \Longrightarrow SIA \ \varrho \ \mathcal{V} \ Tr_{ES}$ by (simp add: SIA-def) ${\bf lemma} \ \ Trivially {\it -fulfilled} {\it -BSIA-C-empty}:$ $C_{\mathcal{V}} = \{\} \Longrightarrow BSIA \ \varrho \ \mathcal{V} \ Tr_{ES}$ by (simp add: BSIA-def) **lemma** *Trivially-fulfilled-IA-C-empty*: $C_{\mathcal{V}} = \{\} \Longrightarrow IA \ \varrho \ \mathcal{V} \ Tr_{ES}$ by (simp add: IA-def)

lemma Trivially-fulfilled-FCIA-C-empty: $C_{\mathcal{V}} = \{\} \Longrightarrow FCIA \ \Gamma \ \varrho \ \mathcal{V} \ Tr_{ES}$ by (simp add: FCIA-def) **lemma** Trivially-fulfilled-FCI-V-empty: $V_{\mathcal{V}} = \{\} \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}$ **by** (*simp add: FCI-def*) lemma Trivially-fulfilled-FCIA-V-empty: $V_{\mathcal{V}} = \{\} \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{ES}$ by (simp add: FCIA-def) **lemma** *Trivially-fulfilled-BSIA-V-empty-rho-subseteq-C-N*: $\llbracket V_{\mathcal{V}} = \{\}; \ \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \ \rrbracket \Longrightarrow BSIA \ \varrho \ \mathcal{V} \ Tr_{ES}$ proof – assume $V_{\mathcal{V}} = \{\}$ and $\varrho \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}})$ { fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ and $Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c$ from $\langle Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c \rangle$ obtain γ where $\gamma @ [c] \in Tr_{ES}$ and $\gamma_1(\varrho \ \mathcal{V}) = \beta_1(\varrho \ \mathcal{V})$ unfolding Adm-def by auto from this(1) have $\gamma \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto moreover from $\langle \beta @ \alpha \in Tr_{ES} \rangle$ have $\beta \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto ultimately have $\beta | E_{ES} = \gamma | E_{ES}$ using validES VIsViewOnE $\langle V_{\mathcal{V}} = \{\} \rangle \langle \gamma | (\varrho \ \mathcal{V}) = \beta | (\varrho \ \mathcal{V}) \rangle \langle \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \rangle$ non-empty-projection-on-subsetunfolding ES-valid-def is ViewOn-def traces-contain-events-def **by** (*metis empty-subsetI sup-absorb2 sup-commute*) hence $\beta @ [c] \in Tr_{ES}$ using validES $\langle \gamma @ [c] \in Tr_{ES} \rangle \langle \beta \in Tr_{ES} \rangle \langle \gamma \in Tr_{ES} \rangle$ ${\bf unfolding} \ ES-valid-def \ traces-contain-events-def$ **by** (*metis list-subset-iff-projection-neutral subsetI*) let $?\alpha' = []$ from $\langle \beta @ [c] \in Tr_{ES} \langle V_{\mathcal{V}} = \{\} \rangle$ have $\beta @ [c] @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []$ by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace) hence $\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []$ $\mathbf{by} \ auto$

}

thus ?thesis unfolding BSIA-def by auto \mathbf{qed} **lemma** *Trivially-fulfilled-IA-V-empty-rho-subseteq-C-N*: $\llbracket V_{\mathcal{V}} = \{\}; \ \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \ \rrbracket \Longrightarrow IA \ \varrho \ \mathcal{V} \ Tr_{ES}$ proof assume $V_{\mathcal{V}} = \{\}$ and $\varrho \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}})$ { fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ \alpha \in \mathit{Tr}_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ and $Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c$ from $\langle Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c \rangle$ obtain γ where $\gamma @ [c] \in Tr_{ES}$ and $\gamma | (\varrho \ \mathcal{V}) = \beta | (\varrho \ \mathcal{V})$ unfolding Adm-def by auto from this(1) have $\gamma \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto moreover from $\langle \beta @ \alpha \in Tr_{ES} \rangle$ have $\beta \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto ultimately have $\beta | E_{ES} = \gamma | E_{ES}$ using validES VIsViewOnE $\langle V_{\mathcal{V}} = \{\} \rangle \langle \gamma | (\varrho \ \mathcal{V}) = \beta | (\varrho \ \mathcal{V}) \rangle \langle \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \rangle$ non-empty-projection-on-subset unfolding ES-valid-def is ViewOn-def traces-contain-events-def **by** (*metis empty-subsetI sup-absorb2 sup-commute*) hence $\beta @ [c] \in Tr_{ES}$ using validES $\langle \gamma @ [c] \in Tr_{ES} \rangle \langle \beta \in Tr_{ES} \rangle \langle \gamma \in Tr_{ES} \rangle$ unfolding ES-valid-def traces-contain-events-def **by** (*metis list-subset-iff-projection-neutral subsetI*) let $\beta'=\beta$ and $\alpha'=[]$ from $\langle \beta @ [c] \in Tr_{ES} \langle V_{\mathcal{V}} = \{\} \rangle$ have $?\beta' @ [c] @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []$ $\wedge ?\beta'|(V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta|(V_{\mathcal{V}} \cup C_{\mathcal{V}})$ by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace) hence $\exists \alpha' \beta'$. $\beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []$ $\wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})$ by auto } thus ?thesis unfolding IA-def by auto qed **lemma** Trivially-fulfilled-BSI-V-empty-total-ES-C:

 $\llbracket V_{\mathcal{V}} = \{\}; \text{ total } ES \ C_{\mathcal{V}} \ \rrbracket \Longrightarrow BSI \ \mathcal{V} \ Tr_{ES}$

proof – assume $V_{\mathcal{V}} = \{\}$ and total ES $C_{\mathcal{V}}$ { fix $\alpha \beta c$ $\textbf{assume} \ \beta \ @ \ \alpha \in \ \textit{Tr}_{ES}$ and $\alpha | C_{\mathcal{V}} = []$ and $c \in C_{\mathcal{V}}$ from $\langle \beta @ \alpha \in Tr_{ES} \rangle$ have $\beta \in Tr_{ES}$ using validES ${\bf unfolding} \ ES-valid-def \ traces-prefixclosed-def \ prefixclosed-def \ prefix-def \ {\bf by} \ auto$ with $\langle total \ ES \ C_{\mathcal{V}} \rangle$ have $\beta \ @ \ [c] \in Tr_{ES}$ using $\langle c \in C_{\mathcal{V}} \rangle$ unfolding total-def by auto moreover from $\langle V_{\mathcal{V}} = \{\}$ have $\alpha | V_{\mathcal{V}} = []$ unfolding projection-def by auto ultimately have $\exists \alpha' . \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []$ using $\langle \alpha \mid C_{\mathcal{V}} = [] \rangle$ by (metis append-Nil2 projection-idempotent) } thus ?thesisunfolding BSI-def by auto \mathbf{qed} **lemma** *Trivially-fulfilled-I-V-empty-total-ES-C*: $\llbracket V_{\mathcal{V}} = \{\}; \text{ total } ES \ C_{\mathcal{V}} \ \rrbracket \Longrightarrow I \ \mathcal{V} \ Tr_{ES}$ proof assume $V_{\mathcal{V}} = \{\}$ and total ES $C_{\mathcal{V}}$ { fix $\alpha \ \beta \ c$ assume $c \in C_{\mathcal{V}}$ and $\beta @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ from $\langle \beta @ \alpha \in Tr_{ES} \rangle$ have $\beta \in Tr_{ES}$ using validES unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto with $\langle total \ ES \ C_{\mathcal{V}} \rangle$ have $\beta @ [c] \in Tr_{ES}$ using $\langle c \in C_{\mathcal{V}} \rangle$ unfolding total-def by auto moreover from $\langle V_{\mathcal{V}} = \{\}$ have $\alpha | V_{\mathcal{V}} = []$ unfolding projection-def by auto ultimately have $\exists \beta' \alpha'$. $\beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = [] \land \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})$ using $\langle \alpha \mid C_{\mathcal{V}} = [] \rangle$ by (metis append-Nil2 projection-idempotent) } thus ?thesis unfolding *I*-def by blast qed

```
\mathbf{lemma} \ \textit{Trivially-fulfilled-FCI-Nabla-} \Upsilon \textit{-empty:}
\llbracket \nabla_{\Gamma} = \{\} \lor \Upsilon_{\Gamma} = \{\} \rrbracket \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
  \mathbf{assume} \ \nabla_{\Gamma} {=} \{\} \ \lor \ \Upsilon_{\Gamma} {=} \{\}
  thus ?thesis
  proof(rule disjE)
     assume \nabla_{\Gamma} = \{\} thus ?thesis
        by (simp add: FCI-def)
  \mathbf{next}
     assume \Upsilon_{\Gamma} = \{\} thus ?thesis
        by (simp add: FCI-def)
  \mathbf{qed}
qed
lemma Trivially-fulfilled-FCIA-Nabla-\Upsilon-empty:
\llbracket \nabla_{\Gamma} = \{\} \lor \Upsilon_{\Gamma} = \{\} \rrbracket \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
  \mathbf{assume}\ \nabla_{\Gamma}{=}\{\}\,\vee\,\Upsilon_{\Gamma}{=}\{\}
  thus ?thesis
  proof(rule disjE)
     assume \nabla_{\Gamma} = \{\} thus ?thesis
        by (simp add: FCIA-def)
  \mathbf{next}
     assume \Upsilon_{\Gamma} = \{\} thus ?thesis
        by (simp add: FCIA-def)
  \mathbf{qed}
\mathbf{qed}
lemma Trivially-fulfilled-FCI-N-subseteq-\Delta-and-BSI:
\llbracket N_{\mathcal{V}} \subseteq \Delta_{\Gamma}; BSI \ \mathcal{V} \ Tr_{ES} \rrbracket \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
  assume N_{\mathcal{V}} \subseteq \Delta_{\Gamma}
      and BSI \mathcal{V} Tr_{ES}
   {
     fix \alpha \ \beta \ c \ v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
         and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
         and \beta @ [v] @ \alpha \in Tr_{ES}
         and \alpha \upharpoonright C_{\mathcal{V}} = []
     from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in C_{\mathcal{V}}
        \mathbf{by} \ auto
     from \langle v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \rangle have v \in V_{\mathcal{V}}
        by auto
     let ?\alpha = [v] @ \alpha
     from \langle v \in V_{\mathcal{V}} \rangle \langle \alpha | C_{\mathcal{V}} = [] \rangle have ?\alpha | C_{\mathcal{V}} = []
        using VIsViewOnE
        unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto
     from \langle \beta @ [v] @ \alpha \in Tr_{ES} \rangle have \beta @ ?\alpha \in Tr_{ES}
        by auto
```

from $\langle BSI \ \mathcal{V} \ Tr_{ES} \rangle$

obtain α' where $\beta @ [c] @ \alpha' \in Tr_{ES}$ and $\alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}}$ and $\alpha' | C_{\mathcal{V}} = []$ using $\langle c \in C_{\mathcal{V}} \rangle \ \langle \beta @ ?\alpha \in Tr_{ES} \rangle \langle ?\alpha | C_{\mathcal{V}} = [] \rangle$ unfolding BSI-def by blast from $\langle v \in V_{\mathcal{V}} \rangle \langle \alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}} \rangle$ have $\alpha' | V_{\mathcal{V}} = [v] @ \alpha | V_{\mathcal{V}}$ **by** (*simp add: projection-def*) then obtain $\delta \alpha''$ where $\alpha' = \delta @ [v] @ \alpha''$ and $\delta | V_{\mathcal{V}} = []$ and $\alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}}$ using projection-split-first-with-suffix by fastforce from $\langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have $\delta | C_{\mathcal{V}} = []$ **by** (*metis append-is-Nil-conv projection-concatenation-commute*) from $\langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have $\alpha'' | C_{\mathcal{V}} = []$ **by** (*metis append-is-Nil-conv projection-concatenation-commute*) from $\langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle$ have set $\alpha' \subseteq E_{ES}$ using validES unfolding ES-valid-def traces-contain-events-def by auto with $\langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have set $\delta \subseteq E_{ES}$ by auto with $\langle \delta | C_{\mathcal{V}} = [] \rangle \langle \delta | V_{\mathcal{V}} = [] \rangle \langle N_{\mathcal{V}} \subseteq \Delta_{\Gamma} \rangle$ have $(set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})$ using VIsViewOnE projection-empty-implies-absence-of-events unfolding is ViewOn-def projection-def by blast let $\beta = \beta$ and $\delta' = \delta$ and $\alpha' = \alpha''$ $\mathbf{from} \mathrel{\scriptstyle{\triangleleft}} (set \; \delta) \subseteq (N_\mathcal{V} \cap \Delta_\Gamma) \mathrel{\scriptstyle{\mid}} \mathrel{\scriptstyle{\mid}} \beta @ [c] @ \alpha' \in \mathit{Tr}_{ES} \mathrel{\scriptstyle{\mid}} \mathrel{\scriptstyle{\mid}} \alpha' = \delta @ [v] @ \alpha'' \mathrel{\scriptstyle{\mid}}$ $\langle \alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \rangle \langle \alpha'' | C_{\mathcal{V}} = [] \rangle$ have $(set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ?\beta @ [c] @ ?\delta' @ [v] @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []$ by auto hence $\exists \alpha^{\prime\prime\prime} \delta^{\prime\prime}$. (set $\delta^{\prime\prime}$) $\subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land (\beta @ [c] @ \delta^{\prime\prime} @ [v] @ \alpha^{\prime\prime\prime}) \in Tr_{ES}$ $\wedge \alpha^{\prime\prime\prime} \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha^{\prime\prime\prime} \upharpoonright C_{\mathcal{V}} = []$ $\mathbf{by} \ auto$ } thus ?thesis unfolding FCI-def by auto qed **lemma** Trivially-fulfilled-FCIA-N-subseteq- Δ -and-BSIA: $\llbracket N_{\mathcal{V}} \subseteq \Delta_{\Gamma}; BSIA \ \varrho \ \mathcal{V} \ Tr_{ES} \rrbracket \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{ES}$ proof assume $N_{\mathcal{V}} \subseteq \Delta_{\Gamma}$ and BSIA $\varrho \mathcal{V} Tr_{ES}$ { fix $\alpha \beta c v$ assume $c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}$

and $v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}$ and $\beta @ [v] @ \alpha \in Tr_{ES}$ and $\alpha \upharpoonright C_{\mathcal{V}} = []$ and $Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c$ from $\langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle$ have $c \in C_{\mathcal{V}}$ by auto from $\langle v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \rangle$ have $v \in V_{\mathcal{V}}$ by auto let $?\alpha = [v] @ \alpha$ from $\langle v \in V_{\mathcal{V}} \rangle \langle \alpha | C_{\mathcal{V}} = [] \rangle$ have $?\alpha | C_{\mathcal{V}} = []$ ${\bf using} \ VIsViewOnE$ unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto by auto **from** $\langle BSIA \ \varrho \ \mathcal{V} \ Tr_{ES} \rangle$ obtain α' where $\beta @ [c] @ \alpha' \in Tr_{ES}$ and $\alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}}$ and $\alpha' | C_{\mathcal{V}} = []$ $\mathbf{using} \ \langle c \in C_{\mathcal{V}} \rangle \ \ \langle \beta \ @ \ ?\alpha \in Tr_{ES} \rangle \ \langle ?\alpha | \ C_{\mathcal{V}} = [] \rangle \ \langle Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c \rangle$ unfolding BSIA-def by blast $\mathbf{from} \langle v \in V_{\mathcal{V}} \rangle \langle \alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}} \rangle \mathbf{have} \ \alpha' | V_{\mathcal{V}} = [v] @ \alpha | V_{\mathcal{V}}$ **by** (*simp add: projection-def*) then obtain $\delta \alpha''$ where $\alpha' = \delta @ [v] @ \alpha''$ and $\delta | V_{\mathcal{V}} = []$ and $\alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}}$ using projection-split-first-with-suffix by fastforce from $\langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have $\delta | C_{\mathcal{V}} = []$ **by** (*metis append-is-Nil-conv projection-concatenation-commute*) $\mathbf{from} \, \left< \alpha' \right| C_{\mathcal{V}} = \left[\right> \left< \alpha' = \delta \right. @ \left[v \right] \left. @ \left. \alpha'' \right> \mathbf{have} \right. \alpha'' \left< C_{\mathcal{V}} = \left[\right] \right>$ **by** (*metis append-is-Nil-conv projection-concatenation-commute*) from $\langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle$ have set $\alpha' \subseteq E_{ES}$ using validES unfolding ES-valid-def traces-contain-events-def by auto with $\langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ have set $\delta \subseteq E_{ES}$ by auto with $\langle \delta | C_{\mathcal{V}} = [] \rangle \langle \delta | V_{\mathcal{V}} = [] \rangle \langle N_{\mathcal{V}} \subseteq \Delta_{\Gamma} \rangle$ have $(set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})$ using VIsViewOnE projection-empty-implies-absence-of-events unfolding is ViewOn-def projection-def by blast let $?\beta = \beta$ and $?\delta' = \delta$ and $?\alpha' = \alpha''$ from $\langle (set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \rangle \langle \beta @ [c] @ \alpha' \in Tr_{ES} \langle \alpha' = \delta @ [v] @ \alpha'' \rangle$ $\langle \alpha^{\prime\prime} | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \rangle \langle \alpha^{\prime\prime} | C_{\mathcal{V}} = [] \rangle$

have $(set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ?\beta @ [c] @ ?\delta' @ [v] @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []$ by *auto* hence $\exists \alpha''' \delta''. (set \delta'') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land (\beta @ [c] @ \delta'' @ [v] @ \alpha''') \in Tr_{ES} \land \alpha''' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha''' \upharpoonright C_{\mathcal{V}} = []$ by auto } thus ?thesis unfolding FCIA-def by auto qed end context BSPTaxonomyDifferentViewsFirstDim begin lemma R-implies-R-for-modified-view: $R \mathcal{V}_1 \ Tr_{ES} \Longrightarrow R \mathcal{V}_2 \ Tr_{ES}$ proof assume $R-\mathcal{V}_1: R \mathcal{V}_1 \ Tr_{ES}$

{ fix τ assume $\tau \in Tr_{ES}$ with *R*- \mathcal{V}_1 have $\exists \tau' \in Tr_{ES}$. $\tau' \upharpoonright C_{\mathcal{V}_1} = [] \land \tau' \upharpoonright V_{\mathcal{V}_1} = \tau \upharpoonright V_{\mathcal{V}_1}$ unfolding *R*-def by auto hence $\exists \tau' \in Tr_{ES}$. $\tau' \upharpoonright C_{\mathcal{V}_2} = [] \land \tau' \upharpoonright V_{\mathcal{V}_2} = \tau \upharpoonright V_{\mathcal{V}_2}$ using V2-subset-V1 C2-subset-C1 non-empty-projection-on-subset projection-on-subset by blast } thus ?thesis unfolding *R*-def by auto qed lemma BSD-implies-BSD-for-modified-view: $BSD \mathcal{V}_1 \ Tr_{ES} \Longrightarrow BSD \mathcal{V}_2 \ Tr_{ES}$ proofassume $BSD-\mathcal{V}_1$: $BSD \ \mathcal{V}_1 \ Tr_{ES}$ { fix $\alpha \beta c n$ assume $c\text{-in-}C_2: c \in C_{\mathcal{V}_2}$ from C2-subset-C1 $c\text{-in-}C_2$ have $c\text{-in-}C_1: c \in C_{\mathcal{V}_1}$ by auto $\begin{array}{l} \mathbf{have} \ \llbracket \beta \ @ \ [c] \ @ \ \alpha \in \ Tr_{ES}; \ \alpha \ | \ C_{\mathcal{V}_2} = \llbracket]; \ n = \ length(\alpha \ | \ C_{\mathcal{V}_1}) \rrbracket \\ \implies \exists \ \alpha'. \ \beta \ @ \ \alpha' \in \ Tr_{ES} \land \alpha' | \ V_{\mathcal{V}_2} = \alpha \ | \ V_{\mathcal{V}_2} \land \alpha' \ | \ C_{\mathcal{V}_2} = \llbracket] \end{array}$ **proof**(*induct* n *arbitrary*: α) $\mathbf{case} \ \theta$ from 0.prems(3) have $\alpha \upharpoonright C_{\mathcal{V}_1} = []$ by *auto* with $c\text{-in-}C_1 \ 0.prems(1)$ have $\exists \alpha'. \beta @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = []$ using $BSD-\mathcal{V}_1$ unfolding BSD-def by auto then obtain α' where $\beta @ \alpha' \in Tr_{ES}$ and $\alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1}$ and $\alpha' \upharpoonright C_{\mathcal{V}_1} = []$ by auto

 $\mathbf{from} \ \ V2\text{-}subset\text{-}V1 \ \ \ \langle \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \rangle \ \ \mathbf{have} \ \ \alpha' \upharpoonright V_{\mathcal{V}_2} = \alpha \upharpoonright V_{\mathcal{V}_2}$

using non-empty-projection-on-subset by blast moreover from $\langle \alpha' | C_{\mathcal{V}_1} = [] \rangle$ C2-subset-C1 have $\alpha' | C_{\mathcal{V}_2} = []$ using projection-on-subset by auto ultimately show ?case using $\langle \beta @ \alpha' \in Tr_{ES} \rangle$ by *auto* next case (Suc n) **from** Suc.prems(3) projection-split-last[OF Suc.prems(3)] obtain $\gamma_1 \gamma_2 c_1$ where c_1 -in- C_1 : $c_1 \in C_{\mathcal{V}_1}$ and $\alpha = \gamma_1 @ [c_1] @ \gamma_2$ and $\gamma_2 \upharpoonright C_{\mathcal{V}_1} = []$ and $n = length((\gamma_1 @ \gamma_2) | C_{\mathcal{V}_1})$ **bv** auto from Suc.prems(2) $\langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle$ have $\gamma_1 \upharpoonright C_{\mathcal{V}_2} = []$ **by** (*simp add: projection-concatenation-commute*) from $Suc.prems(1) < \alpha = \gamma_1 @ [c_1] @ \gamma_2 > \beta$ obtain β' where $\beta' = \beta @ [c] @ \gamma_1$ and $\beta' @ [c_1] @ \gamma_2 \in Tr_{ES}$ $\mathbf{by} \ auto$ from $\langle \beta' @ [c_1] @ \gamma_2 \in Tr_{ES} \ \langle \gamma_2 | C_{\mathcal{V}_1} = [] \rangle \langle c_1 \in C_{\mathcal{V}_1} \rangle$ obtain γ_2 where $\beta' @ \gamma_2' \in Tr_{ES}$ and $\gamma_2' \upharpoonright V_{\mathcal{V}_1} = \gamma_2 \upharpoonright V_{\mathcal{V}_1}$ and $\gamma_2' \upharpoonright C_{\mathcal{V}_1} = []$ using $BSD-\mathcal{V}_1$ unfolding BSD-def by auto from $\langle \beta' = \beta @ [c] @ \gamma_1 \rangle \langle \beta' @ \gamma_2' \in Tr_{ES} \rangle$ have $\beta @ [c] @ \gamma_1 @ \gamma_2' \in Tr_{ES}$ by auto moreover from $\langle \gamma_1 | C_{\mathcal{V}_2} = [] \rangle \langle \gamma_2' | C_{\mathcal{V}_1} = [] \rangle C2$ -subset-C1 have $(\gamma_1 @ \gamma_2') | C_{\mathcal{V}_2} = []$ by (metis append-Nil projection-concatenation-commute projection-on-subset) moreover $\mathbf{from} \ \langle n = length((\gamma_1 @ \gamma_2) | C_{\mathcal{V}_1}) \rangle \ \langle \gamma_2 | C_{\mathcal{V}_1} = [] \rangle \ \langle \gamma_2' | C_{\mathcal{V}_1} = [] \rangle$ have $n = length((\gamma_1 @ \gamma_2') | C_{\mathcal{V}_1})$ **by** (*simp* add: *projection-concatenation-commute*) ultimately have witness: $\exists \alpha' \beta @ \alpha' \in Tr_{ES} \land \alpha' V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2') | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []$ using Suc.hyps by auto from \mathcal{V}_1 Is ViewOnE \mathcal{V}_2 Is ViewOnE V2-subset-V1 C2-subset-C1 c_1 -in-C₁ have $c_1 \notin V_{\mathcal{V}_2}$ unfolding is ViewOn-def V-valid-def VC-disjoint-def by auto with $\langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle$ have $\alpha \upharpoonright V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2) \upharpoonright V_{\mathcal{V}_2}$ unfolding projection-def by auto

hence $\alpha \mid V_{\mathcal{V}_2} = \gamma_1 \mid V_{\mathcal{V}_2} @ \gamma_2 \mid V_{\mathcal{V}_2}$ using projection-concatenation-commute by auto with V2-subset-V1 $\langle \gamma_2' \mid V_{\mathcal{V}_1} = \gamma_2 \mid V_{\mathcal{V}_1} \rangle$ have $\gamma_1 \mid V_{\mathcal{V}_2} @ \gamma_2 \mid V_{\mathcal{V}_2} = \gamma_1 \mid V_{\mathcal{V}_2} @ \gamma_2' \mid V_{\mathcal{V}_2}$

using non-empty-projection-on-subset by metis with $\langle \alpha \mid V_{\mathcal{V}_2} = \gamma_1 \mid V_{\mathcal{V}_2} @ \gamma_2 \mid V_{\mathcal{V}_2} \rangle$ have $\alpha \mid V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2') \mid V_{\mathcal{V}_2}$ by (simp add: projection-concatenation-commute)

from witness $\langle \alpha \mid V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2') \mid V_{\mathcal{V}_2} \rangle$
$\mathbf{show}~? case$ by auto \mathbf{qed} } thus ?thesis unfolding BSD-def by auto qed **lemma** *D-implies-D-for-modified-view*: $D \mathcal{V}_1 Tr_{ES} \Longrightarrow D \mathcal{V}_2 Tr_{ES}$ proofassume $D-\mathcal{V}_1$: $D \mathcal{V}_1 Tr_{ES}$ from V2-subset-V1 C2-subset-C1 have V_2 -union- C_2 -subset- V_1 -union- C_1 : $V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2} \subseteq V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}$ by auto { fix $\alpha \beta c n$ assume *c-in-C*₂: $c \in C_{\mathcal{V}_2}$ from C2-subset-C1 c-in- \tilde{C}_2 have c-in- C_1 : $c \in C_{\mathcal{V}_1}$ by auto have $[\beta @ [c] @ \alpha \in Tr_{ES}; \alpha \upharpoonright C_{\mathcal{V}_2} = []; n = length(\alpha \upharpoonright C_{\mathcal{V}_1})]$ $\implies \exists \alpha' \beta'.$ $\begin{array}{c} \beta' @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = [] \\ \land \beta' | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \\ \end{array} \\ \mathbf{proof}(induct \ n \ arbitrary: \alpha \ \beta \) \end{array}$ case θ from 0.prems(3) have $\alpha \upharpoonright C_{\mathcal{V}_1} = []$ by *auto* with $c\text{-in-}C_1 \ 0.prems(1)$ have $\exists \alpha' \beta'$ $\begin{array}{l} \beta' @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = [] \\ \land \beta' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \\ \text{using } D \cdot \mathcal{V}_1 \text{ unfolding } D \cdot def \text{ by } fastforce \\ \end{array}$ then obtain $\beta' \alpha'$ where $\beta' @ \alpha' \in Tr_{ES}$ and $\alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1}$ and $\alpha' \upharpoonright C_{\mathcal{V}_1} = []$ and $\beta' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ by auto from V2-subset-V1 $\langle \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1} \rangle$ have $\alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2}$ using non-empty-projection-on-subset by blast moreover from $\langle \alpha' | C_{\mathcal{V}_1} = [] \rangle$ C2-subset-C1 have $\alpha' | C_{\mathcal{V}_2} = []$ using projection-on-subset by auto moreover $\begin{array}{l} \mathbf{from} \ \langle \beta' \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle \quad V_2\text{-}union\text{-}C_2\text{-}subset\text{-}V_1\text{-}union\text{-}C_1 \\ \mathbf{have} \ \beta' \ | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \ | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \\ \end{array}$ using non-empty-projection-on-subset by blast ultimately $\mathbf{show}~? case$ using $\langle \beta' @ \alpha' \in Tr_{ES} \rangle$ by *auto* \mathbf{next} case (Suc n) **from** Suc.prems(3) projection-split-last[OF Suc.prems(3)]

obtain $\gamma_1 \gamma_2 c_1$ where c_1 -in- C_1 : $c_1 \in C_{\mathcal{V}_1}$ and $\alpha = \gamma_1 @ [c_1] @ \gamma_2$ and $\gamma_2 \upharpoonright C_{\mathcal{V}_1} = []$ and $n = length((\gamma_1 @ \gamma_2) | C_{\mathcal{V}_1})$ by auto from $Suc.prems(2) \langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle$ have $\gamma_1 \upharpoonright C_{\mathcal{V}_2} = []$ **by** (*simp add: projection-concatenation-commute*) from $Suc.prems(1) < \alpha = \gamma_1 @ [c_1] @ \gamma_2 > \beta$ obtain β' where $\beta' = \beta @ [c] @ \gamma_1$ and $\beta' @ [c_1] @ \gamma_2 \in Tr_{ES}$ by *auto* $\begin{array}{l} \mathbf{from} \ \langle \beta' @ [c_1] @ \gamma_2 \in \mathit{Tr}_{ES} \rangle \ \langle \gamma_2 \ | \mathit{C}_{\mathcal{V}_1} = [] \rangle \ \langle c_1 \in \mathit{C}_{\mathcal{V}_1} \rangle \\ \mathbf{obtain} \ \gamma_2' \ \beta'' \ \mathbf{where} \ \ \beta'' @ \gamma_2' \in \mathit{Tr}_{ES} \end{array}$ and $\gamma_2' \upharpoonright V_{\mathcal{V}_1} = \gamma_2 \upharpoonright V_{\mathcal{V}_1}$ and $\gamma_2' | C_{\mathcal{V}_1} = []$ and $\beta'' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ using $D - \mathcal{V}_1$ unfolding \overline{D} -def by force from $c\text{-in-}C_1$ have $c \in V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}$ by auto moreover $\begin{array}{l} \mathbf{from} \ \ \langle \beta^{\prime\prime} \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta^{\prime} \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle \ \langle \beta^{\prime} = \beta \ @ \ [c] \ @ \ \gamma_1 \rangle \\ \mathbf{have} \ \beta^{\prime\prime} \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = (\beta \ @ \ [c] \ @ \ \gamma_1) \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \\ \end{array}$ by auto ultimately have $\exists \beta''' \gamma_1' \cdot \beta'' = \beta''' @ [c] @ \gamma_1'$ $\wedge \beta^{\prime\prime\prime} (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ $\wedge \gamma_1 ' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ using projection-split-arbitrary-element by fast then obtain $\beta^{\prime\prime\prime} \gamma_1{}^\prime$ where $\beta^{\prime\prime} = \beta^{\prime\prime\prime} @ [c] @ \gamma_1{}^\prime$ and $\beta^{\prime\prime\prime} \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ and $\gamma_1 \urcorner (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ using projection-split-arbitrary-element by auto from $\langle \beta'' @ \gamma_2' \in Tr_{ES} \rangle$ this(1) have $\beta^{\prime\prime\prime} @ [c] @ \gamma_1' @ \gamma_2' \in Tr_{ES}$ by simp from $\langle \gamma_2' | C_{\mathcal{V}_1} = [] \rangle$ have $\gamma_2' | C_{\mathcal{V}_2} = []$ using C2-subset-C1 projection-on-subset by auto moreover

from $\langle \gamma_1 | C_{\mathcal{V}_2} = [] \langle \gamma_1' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle$ have $\gamma_1' | C_{\mathcal{V}_2} = []$ using C2-subset-C1 V2-subset-V1

 $\mathbf{by} \ (\textit{met}\ddot{is} \ \textit{non-empty-projection-on-subset} \ \textit{projection-subset-eq-from-superset-eq} \ \textit{sup-commute})$

ultimately

have $(\gamma_1' @ \gamma_2') | C_{\mathcal{V}_2} = []$ by (simp add: projection-concatenation-commute)

from $\langle \gamma_1' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle$ have $\gamma_1' | C_{\mathcal{V}_1} = \gamma_1 | C_{\mathcal{V}_1}$ using projection-subset-eq-from-superset-eq sup-commute by metis hence $length(\gamma_1'|C_{\mathcal{V}_1}) = length(\gamma_1|C_{\mathcal{V}_1})$ by simpmoreover from $\langle \gamma_2 | C_{\mathcal{V}_1} = [] \langle \gamma_2 | C_{\mathcal{V}_1} = [] \rangle$ have $length(\gamma_2 | C_{\mathcal{V}_1}) = length(\gamma_2 | C_{\mathcal{V}_1})$ by simp ultimately have $n = length((\gamma_1' @ \gamma_2') | C_{\mathcal{V}_1})$ by (simp add: $\langle n = length \ ((\hat{\gamma}_1 @ \gamma_2) \uparrow C_{\mathcal{V}_1}) \rangle$ projection-concatenation-commute)

 $\mathbf{from} \langle \beta^{\prime\prime\prime} @ [c] @ \gamma_1 ' @ \gamma_2 ' \in Tr_{ES} \langle (\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_2} = [] \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \rangle \rangle \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \rangle \rangle \rangle \rangle \rangle \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{V}_1}) \rangle \rangle \rangle \rangle \langle n = length((\gamma_1 ' @ \gamma_2') | C_{\mathcal{$ have witness: $\begin{array}{l} \exists \alpha' \beta' \overset{\circ}{\scriptstyle 0} \alpha' \in \operatorname{Tr}_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_2} = (\gamma_1' \overset{\circ}{\scriptstyle 0} \gamma_2') \upharpoonright V_{\mathcal{V}_2} \\ \land \alpha' \upharpoonright C_{\mathcal{V}_2} = [] \land \beta' \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta''' \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \\ \text{using } Suc.hyps[OF < \beta''' \overset{\circ}{\scriptstyle 0} [c] \overset{\circ}{\scriptstyle 0} \gamma_1' \overset{\circ}{\scriptstyle 0} \gamma_2' \in \operatorname{Tr}_{ES}] \text{ by } simp \end{array}$ $\begin{array}{l} \text{from } V_2\text{-}\textit{union-}C_2\text{-}\textit{subset-}V_1\text{-}\textit{union-}C_1 \quad \langle \beta^{\prime\prime\prime} \quad ((V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \mid (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle \\ \text{have } \beta^{\prime\prime\prime\prime} \quad ((V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \mid (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \\ \end{array}$ using non-empty-projection-on-subset by blast from \mathcal{V}_1 Is ViewOnE \mathcal{V}_2 Is ViewOnE V2-subset-V1 C2-subset-C1 c_1 -in- C_1 have $c_1 \notin V_{\mathcal{V}_2}$ unfolding is ViewOn-def V-valid-def VC-disjoint-def by auto with $\langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle$ have $\alpha \upharpoonright V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2) \upharpoonright V_{\mathcal{V}_2}$ unfolding projection-def by auto moreover from V2-subset-V1 $\langle \gamma_2' | V_{\mathcal{V}_1} = \gamma_2 | V_{\mathcal{V}_1} \rangle$ have $\gamma_2' | V_{\mathcal{V}_2} = \gamma_2 | V_{\mathcal{V}_2}$ using V2-subset-V1 by (metis projection-subset-eq-from-superset-eq subset-Un-eq) moreover $\mathbf{from} \, \left< \gamma_1 \right| (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 \mid (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \right> \mathbf{have} \, \gamma_1 \mid V_{\mathcal{V}_2} = \gamma_1 \mid V_{\mathcal{V}_2}$ using V2-subset-V1 by (metis projection-subset-eq-from-superset-eq subset-Un-eq) ultimately have $\alpha \upharpoonright V_{\mathcal{V}_2} = (\gamma_1 ' @ \gamma_2') \upharpoonright V_{\mathcal{V}_2}$ using $\langle \alpha \upharpoonright V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2) \upharpoonright V_{\mathcal{V}_2} \rangle$ by (simp add: projection-concatenation-commute) from $\langle \beta^{\prime\prime\prime} | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \rangle \langle \alpha | V_{\mathcal{V}_2} = (\gamma_1' @ \gamma_2') | V_{\mathcal{V}_2} \rangle$ show ?case using witness by simp \mathbf{qed} thus ?thesis unfolding D-def by auto ${\bf context} \ BSPT a xonomy Different Views Second Dim$ begin

lemma *FCD-implies-FCD-for-modified-view-gamma*: $\llbracket FCD \ \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES};$ $\begin{array}{cccc} V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \stackrel{\text{\tiny LDJ}}{\subseteq} V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}; & N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \stackrel{\text{\tiny D}}{=} & N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}; & C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \stackrel{\text{\tiny D}}{\subseteq} & C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \end{array} \\ \underset{\mathbf{c}}{\longrightarrow} & FCD \ \Gamma_2 \ \mathcal{V}_2 \ Tr_{ES} \end{array}$ proof –

}

qed end

assume FCD $\Gamma_1 \mathcal{V}_1 Tr_{ES}$ and $V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}$ and $N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}$ and $C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}$ { fix $\alpha \beta v c$ assume $c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}$ and $v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2}$ and $\beta @ [c,v] @ \alpha \in Tr_{ES}$ and $\alpha | C_{\mathcal{V}_2} = []$ from $\langle c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \rangle \langle C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \rangle$ have $c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}$ by auto moreover from $\langle v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \rangle \langle V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \rangle$ have $v \in V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}$ by *auto* moreover from C2-equals-C1 $\langle \alpha | C_{\mathcal{V}_2} = [] \rangle$ have $\alpha | C_{\mathcal{V}_1} = []$ by auto ultimately obtain $\alpha' \, \delta'$ where $(set \, \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1})$ and $\beta @ \delta' @ [v] @ \alpha' \in Tr_{ES}$ and $\alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1}$ and $\alpha' | C_{\mathcal{V}_1} = []$ using $\langle \beta @ [c,v] @ \alpha \in Tr_{ES} \rangle \langle FCD \Gamma_1 \mathcal{V}_1 Tr_{ES} \rangle$ unfolding FCD-def by blast from $\langle (set \ \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \rangle \langle N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \rangle$ have $(set \ \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})$ by auto moreover from $\langle \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1} \rangle$ V2-subset-V1 have $\alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2}$ using non-empty-projection-on-subset by blast moreover from C2-equals-C1 $\langle \alpha' | C_{\mathcal{V}_1} = [] \rangle$ have $\alpha' | C_{\mathcal{V}_2} = []$ by auto ultimately have $\exists \ \delta' \ \alpha'. \ (set \ \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})$ $\land \ \beta \ @ \ \delta' @ \ [v] \ @ \ \alpha' \in Tr_{ES} \land \ \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []$ using $\langle \beta @ \delta' @ [v] @ \alpha' \in Tr_{ES} \rangle$ by auto } thus ?thesis unfolding FCD-def by blast \mathbf{qed} **lemma** SI-implies-SI-for-modified-view :

 $SI \ \mathcal{V}_1 \ Tr_{ES} \Longrightarrow SI \ \mathcal{V}_2 \ Tr_{ES}$ proof – assume $SI: SI \ \mathcal{V}_1 \ Tr_{ES}$ { fix $\alpha \ \beta \ c$ assume $c \in C_{\mathcal{V}_2}$

```
and \beta @ \alpha \in Tr_{ES}
and alpha-C_2-empty: \alpha \upharpoonright C_{\mathcal{V}_2} = []
moreover
with C2-equals-C1 have c \in C_{\mathcal{V}_1}
by auto
moreover
from alpha-C_2-empty C2-equals-C1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
by auto
ultimately
have \beta @ (c \# \alpha) \in Tr_{ES}
using SI unfolding SI-def by auto
}
thus ?thesis
unfolding SI-def by auto
```

```
\mathbf{qed}
```

```
{\bf lemma} \ BSI-implies-BSI-for-modified-view:
BSI \ \mathcal{V}_1 \ Tr_{ES} \Longrightarrow BSI \ \mathcal{V}_2 \ Tr_{ES}
proof –
  assume BSI: BSI \mathcal{V}_1 Tr_{ES}
  {
     fix \alpha \beta c
    assume c \in C_{\mathcal{V}_2}
and \beta @ \alpha \in Tr_{ES}
       and alpha-C_2-empty: \alpha \upharpoonright C_{\mathcal{V}_2} = []
     moreover
     with C2-equals-C1 have c \in C_{\mathcal{V}_1}
       by auto
     moreover
     from alpha-C_2-empty C2-equals-C1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
       by auto
     ultimately
     have \exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = []
       using BSI unfolding BSI-def by auto
     with V2-subset-V1 C2-equals-C1
     have \exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_2} = \alpha \upharpoonright V_{\mathcal{V}_2} \land \alpha' \upharpoonright C_{\mathcal{V}_2} = []
       using non-empty-projection-on-subset by metis
   }
  thus ?thesis
     unfolding BSI-def by auto
\mathbf{qed}
```

fix $\alpha \beta c$ $\begin{array}{l} \textbf{assume} \ c \in C_{\mathcal{V}_2} \\ \textbf{and} \ \ \beta \ @ \ \alpha \in \ Tr_{ES} \end{array}$ and alpha- C_2 -empty: $\alpha \upharpoonright C_{\mathcal{V}_2} = []$ moreover with C2-equals-C1 have $c \in C_{\mathcal{V}_1}$ by auto moreover from alpha-C₂-empty C₂-equals-C₁ have $\alpha \upharpoonright C_{\mathcal{V}_1} = []$ by auto ultimately have $\exists \alpha' \beta'$. $\begin{array}{l} \beta' @ [c] @ \alpha' \in \operatorname{Tr}_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = [] \\ \land \beta' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \end{array}$ using I unfolding I-def by auto with V_2 -union- C_2 -subset- V_1 -union- C_1 V2-subset-V1 C2-equals-C1 have $\exists \alpha' \beta'$. $\begin{array}{l} \beta' @ [c] @ \alpha' \in \operatorname{Tr}_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_2} = \alpha \upharpoonright V_{\mathcal{V}_2} \land \alpha' \upharpoonright C_{\mathcal{V}_2} = [] \\ \land \beta' \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \end{array}$ using non-empty-projection-on-subset by metis } thus ?thesis unfolding I-def by auto \mathbf{qed} lemma SIA-implies-SIA-for-modified-view : $[SIA \ \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)]] \Longrightarrow SIA \ \varrho_2 \ \mathcal{V}_2 \ Tr_{ES}$ proof assume SIA: SIA $\rho_1 \mathcal{V}_1 Tr_{ES}$ and ϱ_2 -supseteq- ϱ_1 : $\varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)$ { fix $\alpha \beta c$ assume $c \in C_{\mathcal{V}_2}$ and $\beta @ \alpha \in Tr_{ES}$

and alpha- C_2 -empty: $\alpha \upharpoonright C_{\mathcal{V}_2} = []$

and $admissible-c-\varrho_2-\mathcal{V}_2:Adm \ \mathcal{\tilde{V}}_2 \ \varrho_2 \ Tr_{ES} \ \beta \ c$ moreover with C2-equals-C1 have $c \in C_{\mathcal{V}_1}$

by auto moreover

by auto moreover from ϱ_2 -supseteq- ϱ_1 admissible-c- ϱ_2 - \mathcal{V}_2 have $Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr_{ES} \ \beta \ c$

by (simp add: Adm-implies-Adm-for-modified-rho) ultimately have $\beta @ (c \# \alpha) \in Tr_{ES}$

from alpha- C_2 -empty C2-equals-C1 have $\alpha \upharpoonright C_{\mathcal{V}_1} = []$

```
using SIA unfolding SIA-def by auto
```

}

thus ?thesis unfolding SIA-def by auto \mathbf{qed}

lemma BSIA-implies-BSIA-for-modified-view : $[BSIA \ \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)]] \Longrightarrow BSIA \ \varrho_2 \ \mathcal{V}_2 \ Tr_{ES}$ proof assume BSIA: BSIA $\rho_1 \mathcal{V}_1 Tr_{ES}$ and ϱ_2 -supseteq- ϱ_1 : $\varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)$ ${\bf from} \ V2\text{-}subset\text{-}V1 \ C2\text{-}equals\text{-}C1$ have V_2 -union- C_2 -subset- V_1 -union- C_1 : $V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2} \subseteq V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}$ by auto { fix $\alpha \beta c$ $\begin{array}{ll} \textbf{assume} \ c \in C_{\mathcal{V}_2} \\ \textbf{and} \ \ \beta \ @ \ \alpha \in \ Tr_{ES} \end{array}$ and alpha- C_2 -empty: $\alpha \upharpoonright C_{\mathcal{V}_2} = []$ and admissible-c- ϱ_2 - \mathcal{V}_2 : $Adm \ \tilde{\mathcal{V}_2} \ \varrho_2 \ Tr_{ES} \ \beta \ c$ moreover with C2-equals-C1 have $c \in C_{\mathcal{V}_1}$ by auto moreover from alpha- C_2 -empty C2-equals-C1 have $\alpha \upharpoonright C_{\mathcal{V}_1} = []$ by auto moreover from ϱ_2 -supseteq- ϱ_1 admissible-c- ϱ_2 - \mathcal{V}_2 have $Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr_{ES} \ \beta \ c$ by (simp add: Adm-implies-Adm-for-modified-rho) ultimately have $\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = []$ using BSIA unfolding BSIA-def by auto with V2-subset-V1 C2-equals-C1 $\mathbf{have} \exists \ \alpha'. \ \beta \ @ \ [c] \ @ \ \alpha' \in \ Tr_{ES} \land \ \alpha' \upharpoonright \ V_{\mathcal{V}_2} = \alpha \upharpoonright \ V_{\mathcal{V}_2} \land \ \alpha' \upharpoonright \ C_{\mathcal{V}_2} = []$ using non-empty-projection-on-subset by metis } thus ?thesis unfolding BSIA-def by auto qed

by auto moreover from alpha-C₂-empty C₂-equals-C₁ have $\alpha \upharpoonright C_{\mathcal{V}_1} = []$ by auto moreover from ϱ_2 -supseteq- ϱ_1 admissible-c- ϱ_2 - \mathcal{V}_2 have Adm $\mathcal{V}_1 \ \varrho_1 \ Tr_{ES} \ \beta \ c$ **by** (*simp add: Adm-implies-Adm-for-modified-rho*) ultimately have $\exists \alpha' \beta' . \beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = [] \land \beta' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta$ $| (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ using IA unfolding IA-def by auto moreover from V2-subset-V1 C2-equals-C1 have $(V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \subseteq (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})$ by auto ultimately have $\exists \alpha' \beta' . \beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_2} = \alpha \upharpoonright V_{\mathcal{V}_2} \land \alpha' \upharpoonright C_{\mathcal{V}_2} = [] \land \beta' \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \sqcup (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \sqcup (V_{\mathcal{V}_2} \sqcup (V_{\mathcal{V}_2} \sqcup (V_{\mathcal{V}_2} \sqcup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \sqcup (V_{\mathcal{V}_2} \sqcup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \sqcup (V_{\mathcal{V}_2} \sqcup C_{\mathcal{V}_2}) = [] \land \beta' \lor (V_{\mathcal{V}_2} \sqcup C_{\mathcal{V}_2}) = [] \land$ $\beta \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2})$ using V2-subset-V1 C2-equals-C1 non-empty-projection-on-subset by metis } thus ?thesis unfolding IA-def by auto

```
\mathbf{qed}
```

```
lemma FCI-implies-FCI-for-modified-view-gamma:
 \begin{bmatrix} FCI \ \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES}; \\ V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}; \\ N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}; \\ C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \end{bmatrix}  \implies FCI \ \Gamma_2 \ \mathcal{V}_2 \ Tr_{ES} 
proof -
     assume FCI \Gamma_1 \mathcal{V}_1 Tr_{ES}
           and V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}
and N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
and C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
     {
          fix \alpha \ \beta \ v \ c
          assume c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}
                and v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2}
and \beta @ [v] @ \alpha \in Tr_{ES}
                 and \alpha | C_{\mathcal{V}_2} = []
          from \langle c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \rangle \langle C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \rangle have c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
               by auto
          moreover
          from \langle v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \rangle \langle V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \rangle have v \in V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}
              by auto
          moreover
          from C2-equals-C1 \langle \alpha | C_{\mathcal{V}_2} = [] \rangle have \alpha | C_{\mathcal{V}_1} = []
             by auto
          ultimately
          obtain \alpha' \delta' where (set \ \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1})
and \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES}
                                            and \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1}
```

and $\alpha' | C_{\mathcal{V}_1} = []$ using $\langle \beta @ [v] @ \alpha \in Tr_{ES} \rangle \langle FCI \Gamma_1 \mathcal{V}_1 Tr_{ES} \rangle$ unfolding FCI-def by blast $\mathbf{from} \, \langle (set \, \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \rangle \, \langle N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq \, N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \rangle$ have (set δ') $\subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})$ by auto moreover from $\langle \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1} \rangle$ V2-subset-V1 have $\alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2}$ using non-empty-projection-on-subset by blast moreover from $\langle C_{\mathcal{V}_2} = C_{\mathcal{V}_1} \rangle \langle \alpha' | C_{\mathcal{V}_1} = [] \rangle$ have $\alpha' | C_{\mathcal{V}_2} = []$ by auto ultimately have $\exists \delta' \alpha'. (set \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})$ $\land \beta @ [c] @ \delta'@ [v] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []$ using $\langle \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES}$ by *auto* } thus ?thesis unfolding FCI-def by blast

 \mathbf{qed}

 ${\bf lemma} \ FCIA\ implies\ FCIA\ for\ modified\ view\ rho\ gamma:$ [[FCIA $\varrho_1 \ \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1);$ $\begin{array}{cccc} V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq & V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}; & N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq & N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}; & C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq & C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \end{array} \\ \Longrightarrow & FCIA \begin{array}{cccc} \varrho_2 & \Gamma_2 & \mathcal{V}_2 & Tr_{ES} \end{array} \end{array}$ proof assume FCIA $\rho_1 \Gamma_1 \mathcal{V}_1 Tr_{ES}$ and $\varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)$ and $V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}$ and $N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}$ and $C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}$ { fix $\alpha \ \beta \ v \ c$ assume $c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}$ and $v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2}$ and $\beta @ [v] @ <math>\alpha \in Tr_{ES}$ and $\alpha | C_{\mathcal{V}_2} = []$ and $Adm \mathcal{V}_2 \ \varrho_2 \ Tr_{ES} \ \beta \ c$ from $\langle c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \rangle \langle C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \rangle$ have $c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}$ by auto moreover from $\langle v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \rangle \langle V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \rangle$ have $v \in V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}$ by auto moreover from C2-equals-C1 $\langle \alpha | C_{\mathcal{V}_2} = [] \rangle$ have $\alpha | C_{\mathcal{V}_1} = []$ by auto moreover from $\langle Adm \ \mathcal{V}_2 \ \varrho_2 \ Tr_{ES} \ \beta \ c \rangle \ \langle \varrho_2(\mathcal{V}_2) \supseteq \ \varrho_1(\mathcal{V}_1) \rangle$ have $Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr_{ES} \ \beta \ c$ by (simp add: Adm-implies-Adm-for-modified-rho) ultimately

81

 $\begin{array}{l} \mathbf{obtain} \ \alpha' \ \delta' \ \mathbf{where} \ (set \ \delta') \subseteq (N_{\mathcal{V}_1} \ \cap \ \Delta_{\Gamma_1}) \\ \mathbf{and} \ \beta \ \underline{@} \ [c] \ \underline{@} \ \delta' \ \underline{@} \ [v] \ \underline{@} \ \alpha' \in \ Tr_{ES} \end{array}$ and $\alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1}$ and $\alpha' | C_{\mathcal{V}_1} = []$ using $\langle \beta @ [v] @ \alpha \in Tr_{ES} \langle FCIA \ \varrho_1 \ \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES} \rangle$ unfolding *FCIA-def* by blast by auto moreover from $\langle \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1} \rangle$ V2-subset-V1 have $\alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2}$ using non-empty-projection-on-subset by blast moreover from $\langle C_{\mathcal{V}_2} = C_{\mathcal{V}_1} \rangle \langle \alpha' | C_{\mathcal{V}_1} = [] \rangle$ have $\alpha' | C_{\mathcal{V}_2} = []$ by auto ultimately have $\exists \delta' \alpha'. (set \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})$ $\land \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []$ using $\langle \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES}$ by *auto* } thus ?thesisunfolding FCIA-def by blast \mathbf{qed} \mathbf{end}

 \mathbf{end}

5.3 Unwinding

We define the unwinding conditions provided in [3] and prove the unwinding theorems from [3] that use these unwinding conditions.

5.3.1 Unwinding Conditions

theory UnwindingConditions
imports ../Basics/BSPTaxonomy
../../SystemSpecification/StateEventSystems
begin

locale Unwinding = fixes SES :: ('s, 'e) SES-rec and \mathcal{V} :: 'e V-rec

assumes validSES: SES-valid SES and validVU: isViewOn $V E_{SES}$

sublocale Unwinding \subseteq BSPTaxonomyDifferentCorrections induceES SES \mathcal{V} by (unfold-locales, simp add: induceES-yields-ES validSES, simp add: induceES-def validVU) context Unwinding
begin

 $\begin{array}{l} \text{definition } osc ::: 's \ rel \Rightarrow bool \\ \text{where} \\ osc \ ur \equiv \\ \forall \ s1 \in S_{SES}. \ \forall \ s1' \in S_{SES}. \ \forall \ s2' \in S_{SES}. \ \forall \ e \in (E_{SES} - C_{\mathcal{V}}). \\ (reachable \ SES \ s1 \ \land \ reachable \ SES \ s1' \\ \land \ s1' \ e \longrightarrow_{SES} \ s2' \land (s1', \ s1) \in ur) \\ \longrightarrow (\exists \ s2 \in S_{SES}. \ \exists \ \delta. \ \delta \ \uparrow \ C_{\mathcal{V}} = [] \ \land \ \delta \ \uparrow \ V_{\mathcal{V}} = [e] \ \uparrow \ V_{\mathcal{V}} \\ \land \ s1 \ \delta \Longrightarrow_{SES} \ s2 \land (s2', \ s2) \in ur) \end{array}$

 $\begin{array}{l} \textbf{definition } lrf :: 's \ rel \Rightarrow bool \\ \textbf{where} \\ lrf \ ur \equiv \\ \forall \ s \in S_{SES}. \ \forall \ s' \in S_{SES}. \ \forall \ c \in C_{\mathcal{V}}. \\ ((reachable \ SES \ s \land \ s \ c \longrightarrow_{SES} \ s') \longrightarrow (s', \ s) \in ur) \end{array}$

 $\begin{array}{l} \textbf{definition } lrb :: 's \ rel \Rightarrow bool \\ \textbf{where} \\ lrb \ ur \equiv \forall \ s \in S_{SES}. \ \forall \ c \in C_{\mathcal{V}}. \\ (reachable \ SES \ s \longrightarrow (\exists \ s' \in S_{SES}. \ (s \ c \longrightarrow_{SES} \ s' \land ((s, \ s') \in ur)))) \end{array}$

definition fcrf :: 'e Gamma \Rightarrow 's rel \Rightarrow bool where fcrf Γ ur \equiv $\forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \forall s \in S_{SES}. \forall s' \in S_{SES}.$ $((reachable SES s \land s ([c] @ [v]) \Longrightarrow_{SES} s')$

 $\begin{array}{c} ((reachable SES \ s \land s \ ([c] @ [v]) \Longrightarrow_{SES} s') \\ \longrightarrow (\exists \ s'' \in S_{SES}. \ \exists \ \delta. \ (\forall \ d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land \\ s \ (\delta \ @ [v]) \Longrightarrow_{SES} s'' \land (s', \ s'') \in ur)) \end{array}$

 $\begin{array}{l} \text{definition } fcrb :: 'e \ Gamma \Rightarrow 's \ rel \Rightarrow bool \\ \text{where} \\ fcrb \ \Gamma \ ur \equiv \\ \forall \ c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall \ v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \ \forall \ s \in S_{SES}. \ \forall \ s'' \in S_{SES}. \\ ((reachable \ SES \ s \land \ s \ v \longrightarrow_{SES} \ s'') \\ \longrightarrow (\exists \ s' \in S_{SES}. \ \exists \ \delta. \ (\forall \ d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land \\ s \ ([c] \ @ \ \delta \ @ \ [v]) \Longrightarrow_{SES} \ s' \land (s'', \ s') \in ur)) \end{array}$

 $\begin{array}{l} \textbf{definition } En :: \ 'e \ Rho \Rightarrow \ 's \Rightarrow \ 'e \Rightarrow \ bool\\ \textbf{where}\\ En \ \varrho \ s \ e \equiv\\ \exists \ \beta \ \gamma. \ \exists \ s' \in S_{SES}. \ \exists \ s'' \in S_{SES}.\\ s \theta_{SES} \ \beta \Longrightarrow_{SES} \ s \ \land \ (\gamma \ \mid (\varrho \ \mathcal{V}) = \beta \ \mid (\varrho \ \mathcal{V})) \end{array}$

 $\wedge \ s0_{SES} \ \gamma \Longrightarrow_{SES} \ s' \wedge \ s' \ e \longrightarrow_{SES} \ s''$

 $\begin{array}{l} \textbf{definition } lrbe :: \ 'e \ Rho \Rightarrow \ 's \ rel \Rightarrow bool \\ \textbf{where} \\ lrbe \ \varrho \ ur \equiv \\ \forall s \in S_{SES}. \ \forall c \in C_{\mathcal{V}} \\ ((reachable \ SES \ s \land (En \ \varrho \ s \ c)) \\ \longrightarrow (\exists s' \in S_{SES}. \ (s \ c \longrightarrow_{SES} \ s' \land (s, \ s') \in ur))) \end{array}$

 $\begin{array}{l} \textbf{definition } fcrbe :: 'e \ Gamma \Rightarrow 'e \ Rho \Rightarrow 's \ rel \Rightarrow bool \\ \textbf{where} \\ fcrbe \ \Gamma \ \varrho \ ur \equiv \\ \forall \ c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall \ v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \ \forall \ s \in S_{SES}. \ \forall \ s'' \in S_{SES}. \\ ((reachable \ SES \ s \land \ s \ v \longrightarrow_{SES} \ s'' \land (En \ \varrho \ s \ c)) \\ \longrightarrow (\exists \ s' \in S_{SES}. \ \exists \ \delta. \ (\forall \ d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land \\ s \ ([c] \ @ \ \delta \ @ \ [v]) \Longrightarrow_{SES} \ s' \land (s'', \ s') \in ur)) \end{array}$

 \mathbf{end}

 \mathbf{end}

5.3.2 Auxiliary Results

theory AuxiliaryLemmas imports UnwindingConditions begin

context Unwinding
begin

lemma *osc-property*: $\begin{array}{l} \bigwedge s1 \ s1'. \ \llbracket \ osc \ ur; \ s1 \in S_{SES}; \ s1' \in S_{SES}; \ \alpha \restriction C_{\mathcal{V}} = \llbracket; \\ reachable \ SES \ s1; \ reachable \ SES \ s1'; \ enabled \ SES \ s1' \ \alpha; \ (s1', \ s1) \in ur \ \rrbracket \end{array}$ $\implies (\exists \alpha'. \alpha' \mid C_{\mathcal{V}} = [] \land \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land enabled SES s1 \alpha')$ **proof** (*induct* α) case Nil have [] $\uparrow C_{\mathcal{V}} = [] \land$ $[] \uparrow V_{\mathcal{V}} = [] \uparrow V_{\mathcal{V}} \land enabled SES \ s1 \ []$ by (simp add: enabled-def projection-def) thus ?case by (rule exI) \mathbf{next} case (Cons e1 α 1) $\mathbf{assume} \ osc\text{-}true\text{:} \ osc \ ur$ assume s1-in-S: $s1 \in S_{SES}$ assume s1'-in-S: $s1' \in S_{SES}$ assume $e1\alpha 1$ -C-empty: $(e1 \# \alpha 1) \uparrow C_{\mathcal{V}} = []$ assume reachable-s1: reachable SES s1 assume reachable-s1': reachable SES s1'

assume enabled-s1'-e1 α 1: enabled SES s1' (e1 # α 1) assume unwindingrel-s1'-s1: $(s1', s1) \in ur$ have $e1 \alpha 1$ -no-c: $\forall a \in (set \ (e1 \ \# \alpha 1)). \ a \in (E_{SES} - C_{\mathcal{V}})$ proof from reachable-s1 ' obtain β where $s\theta_{SES} \beta \Longrightarrow_{SES} s1'$ **by**(*simp add: reachable-def, auto*) moreover from enabled-s1'-e1a1 obtain s1337 where $s1'(e1 \# \alpha 1) \Longrightarrow_{SES} s1337$ **by**(simp add: enabled-def, auto) ultimately have $sO_{SES} (\beta @ (e1 \# \alpha 1)) \Longrightarrow_{SES} s1337$ **by**(*rule path-trans*) hence $\beta @ (e1 \# \alpha 1) \in Tr_{(induceES SES)}$ **by** (*simp add: induceES-def possible-traces-def enabled-def*) with validSES induceES-yields-ES[of SES] have $\forall a \in (set \ (\beta @ (e1 \# \alpha 1))). a \in E_{SES})$ **by** (*simp add: induceES-def ES-valid-def traces-contain-events-def*) **hence** $\forall a \in (set (e1 \# \alpha 1)). a \in E_{SES}$ by auto with $e1\alpha1$ -C-empty show ?thesis **by** (*simp only: projection-def filter-empty-conv, auto*) qed from enabled-s1'-e1 α 1 obtain s2' where s1'-e1-s2': $s1' e1 \longrightarrow_{SES} s2'$ by (simp add: enabled-def, split if-split-asm, auto) with validSES have s2'-in-S: $s2' \in S_{SES}$ by (simp add: SES-valid-def correct-transition-relation-def) have reachable-s2': reachable SES s2' proof – from reachable-s1' obtain t where $path-to-s1': s0_{SES} t \Longrightarrow_{SES} s1'$ by (simp add: reachable-def, auto) from s1'-e1-s2' have $s1'[e1] \Longrightarrow_{SES} s2'$ by simp with path-to-s1' have sO_{SES} (t @ [e1]) $\Longrightarrow_{SES} s2'$ by (simp add: path-trans) thus ?thesis by (simp add: reachable-def, rule exI) ged from s1'-e1-s2' enabled- $s1'-e1\alpha 1$ obtain sn' where $s2' \alpha 1 \Longrightarrow_{SES} sn'$ by (simp add: enabled-def, auto) hence enabled-s2'- α 1: enabled SES s2' α 1 **by** (*simp add: enabled-def*) from $e1\alpha 1$ -no-c have e1-no-c: $e1 \in (E_{SES} - C_{\mathcal{V}})$ by simp from $e1\alpha 1$ -no-c have $\alpha 1$ -no-c: $\forall a \in (set \ \alpha 1)$. $(a \in (E_{SES} - C_{\mathcal{V}}))$ by simp hence $\alpha 1$ -proj-C-empty: $\alpha 1 \upharpoonright C_{\mathcal{V}} = []$ **by** (*simp add: projection-def*) from osc-true have

 $\llbracket s1 \in S_{SES}; s1' \in S_{SES}; s2' \in S_{SES};$ $e1 \in (E_{SES} - C_{\mathcal{V}})$; reachable SES s1; reachable SES s1'; $s1' e1 \longrightarrow_{SES} s2'; (s1', s1) \in ur]$ $\implies (\exists s2 \in S_{SES}, \exists \delta, \delta \restriction C_{\mathcal{V}} = []$ $\wedge \ (\delta \upharpoonright V_{\mathcal{V}}) = ([e1] \upharpoonright V_{\mathcal{V}}) \land (s1 \ \delta \Longrightarrow_{SES} s2 \land$ $((s2', s2) \in ur)))$ **by** (*simp add: osc-def*) with s1-in-S s1'-in-S e1-no-c reachable-s1 reachable-s1' s2'-in-S s1'-e1-s2' unwindingrel-s1'-s1 obtain $s2 \delta$ where osc-conclusion: $s\mathcal{2} \in S_{SES} \land \delta \restriction C_{\mathcal{V}} = [] \land$ $(\delta \upharpoonright V_{\mathcal{V}}) = ([e1] \upharpoonright V_{\mathcal{V}}) \land s1 \ \delta \Longrightarrow_{SES} s2 \land$ $((s2', s2) \in ur)$ $\mathbf{by} \ auto$ hence δ -proj-C-empty: $\delta \upharpoonright C_{\mathcal{V}} = []$ **by** (*simp add: projection-def*) from osc-conclusion have s2-in-S: $s2 \in S_{SES}$ by auto from osc-conclusion have unwindingrel-s2'-s2: $(s2', s2) \in ur$ by auto have reachable-s2: reachable SES s2 proof – from reachable-s1 obtain t where $path-to-s1: s0_{SES} t \Longrightarrow_{SES} s1$ by (simp add: reachable-def, auto) from osc-conclusion have s1 $\delta \Longrightarrow_{SES} s2$ by auto with path-to-s1 have $s \theta_{SES}$ (t @ δ) $\Longrightarrow_{SES} s2$ by (simp add: path-trans) thus ?thesis by (simp add: reachable-def, rule exI) qed from Cons osc-true s2-in-S s2'-in-S a1-proj-C-empty reachable-s2 reachable-s2' $enabled-s2'-\alpha1$ unwindingrel-s2'-s2obtain α'' where α'' -props: $\alpha'' \upharpoonright C_{\mathcal{V}} = [] \land \alpha'' \upharpoonright V_{\mathcal{V}} = \alpha 1 \upharpoonright V_{\mathcal{V}} \land enabled SES \ s2 \ \alpha''$ by auto with osc-conclusion have $\delta \alpha''$ -props: $(\delta @ \alpha'') \uparrow C_{\mathcal{V}} = [] \land$ $(\delta @ \alpha'') | V_{\mathcal{V}} = (e1 \# \alpha 1) | V_{\mathcal{V}} \land enabled SES s1 (\delta @ \alpha'')$ $\mathbf{by} \ (simp \ add: \ projection-def \ enabled-def, \ auto, \ simp \ add: \ path-trans)$ hence $(\delta @ \alpha'') \uparrow C_{\mathcal{V}} = []$ **by** (simp add: projection-def) thus ?case using $\delta \alpha''$ -props by auto

```
\mathbf{qed}
```

 $\begin{array}{l} \textbf{lemma path-state-closure: } \llbracket s \ \tau \Longrightarrow_{SES} s'; \ s \in S_{SES} \ \rrbracket \Longrightarrow s' \in S_{SES} \\ (\textbf{is} \ \llbracket \ ?P \ s \ \tau \ s'; \ ?S \ s \ SES \ \rrbracket \Longrightarrow \ ?S \ s' \ SES \) \\ \textbf{proof} \ (induct \ \tau \ arbitrary: \ s \ s') \\ \textbf{case} \ Nil \ \textbf{with} \ validSES \ \textbf{show} \ ?case \end{array}$

by (auto simp add: SES-valid-def correct-transition-relation-def) next case (Cons $e \tau$) thus ?case proof – assume path- $e\tau$: ?P s ($e \# \tau$) s' assume induct-hypo: $\bigwedge s s'$. [[?P s $\tau s'$; ?S s SES]] \implies ?S s' SES from path- $e\tau$ obtain s'' where s-e-s'': s $e \longrightarrow_{SES} s''$ by(simp add: path-def, split if-split-asm, auto) with validSES have s''-in-S: ?S s'' SES by (simp add: SES-valid-def correct-transition-relation-def) from s-e-s'' path- $e\tau$ have path- τ : ?P s'' τ s' by auto

```
from path-\tau s''-in-S show ?case by (rule induct-hypo) qed qed
```

```
theorem En-to-Adm:
[\![ reachable SES s; En \ \varrho \ s \ e]\!]
\implies \exists \beta. (so_{SES} \beta \Longrightarrow_{SES} s \land Adm \ \mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ e \ )
proof –
  assume En \ \varrho \ s \ e
  then obtain \beta~\gamma~s^\prime~s^{\prime\prime}
     where s0_{SES} \beta \Longrightarrow_{SES} s
and \gamma \uparrow (\varrho V) = \beta \uparrow (\varrho V)
and s0 \neg \gamma \cdot s' : s0_{SES} \gamma \Longrightarrow_{SES} s'
and s' - e \cdot s'' : s' e \longrightarrow_{SES} s''
     by (simp add: En-def, auto)
  moreover
     from s0-\gamma-s' s'-e-s'' have s0_{SES} (\gamma @ [e]) \Longrightarrow_{SES} s''
        by (rule path-trans-single)
     hence (\gamma @ [e]) \in Tr_{(induceES SES)}
        by(simp add: induceES-def possible-traces-def enabled-def)
  ultimately show ?thesis
     by (simp add: Adm-def, auto)
qed
```

 $\begin{array}{l} \textbf{theorem } Adm\text{-}to\text{-}En: \\ \llbracket \beta \in Tr_{(induceES \; SES)}; \; Adm \; \mathcal{V} \; \varrho \; Tr_{(induceES \; SES)} \; \beta \; e \; \rrbracket \\ \Longrightarrow \; \exists \; s \in S_{SES}. \; (s0_{SES} \; \beta \Longrightarrow_{SES} \; s \wedge En \; \varrho \; s \; e) \\ \textbf{proof} \; - \\ \textbf{from } validSES \; \textbf{have } s0\text{-}in\text{-}S: \; s0_{SES} \in S_{SES} \\ \textbf{by} \; (simp \; add: \; SES\text{-valid-def } s0\text{-}is\text{-}state\text{-}def) \\ \end{array}$

assume $\beta \in Tr_{(induceES SES)}$ then obtain s where $s0\text{-}\beta\text{-}s\text{: }s0_{SES}\beta \Longrightarrow_{SES}s$ by (simp add: induceES-def possible-traces-def enabled-def, auto) from this have s-in-S: $s \in S_{SES}$ using s0-in-Sby (rule path-state-closure)

assume $Adm \ \mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ e$ then obtain γ where $\varrho\gamma$ -is- $\varrho\beta$: $\gamma \ 1 \ (\varrho \ \mathcal{V}) = \beta \ 1 \ (\varrho \ \mathcal{V})$ and $\exists s''. so_{SES} \ (\gamma \ @ \ [e]) \Longrightarrow_{SES} s''$ by (simp add: Adm-def induceES-def possible-traces-def enabled-def, auto) then obtain s''where $so_{\gamma}e$ - $s'': so_{SES} \ (\gamma \ @ \ [e]) \Longrightarrow_{SES} s''$ by auto from this have s''-in-S: $s'' \in S_{SES}$ using so_{-in-S} by (rule path-state-closure) from path-split-single[OF $so_{\gamma}e$ -s''] obtain s'where so_{γ} - $s': so_{SES} \ \gamma \Longrightarrow_{SES} \ s'$

where $s0^{-}\gamma - s'$: $s0^{-}_{SES} \gamma \Longrightarrow_{SES} s'$ and s' - e - s'': $s' e \longrightarrow_{SES} s''$ by *auto*

from *path-state-closure*[OF $s0-\gamma-s' \ s0-in-S$] have s'-in-S: $s' \in S_{SES}$.

from s'-in-S s''-in-S s0-β-s ργ-is-ρβ s0-γ-s' s'-e-s'' s-in-S show ?thesis
by (simp add: En-def, auto)
qed

assume $\beta \alpha$ -in-Tr: $(\beta @ \alpha) \in Tr_{(induceES SES)}$ then obtain s' where s0- $\beta \alpha$ -s': $s0_{SES} (\beta @ \alpha) \Longrightarrow_{SES} s'$ by (simp add: induceES-def possible-traces-def enabled-def, auto)

from path-split[OF s0- $\beta\alpha$ -s'] obtain swhere s0- β -s: $s0_{SES} \beta \Longrightarrow_{SES} s$ and $s \alpha \Longrightarrow_{SES} s'$ by auto hence enabled-s- α : enabled SES $s \alpha$ by (simp add: enabled-def)

from $s0-\beta$ -s have reachable-s: reachable SES s by(simp add: reachable-def, auto)

from validSES have $sO_{SES} \in S_{SES}$ by (simp add: SES-valid-def sO-is-state-def) with $sO-\beta$ -s have s-in-S: $s \in S_{SES}$ by (rule path-state-closure)

```
with s0-\beta-s enabled-s-\alpha reachable-s show ?thesis
       by auto
  \mathbf{qed}
lemma path-split2:s<br/>0_{SES}~(\beta @ \alpha) \Longrightarrow_{SES} s
  \implies \exists s' \in S_{SES}. (so_{SES} \beta \Longrightarrow_{SES} s' \land s' \alpha \Longrightarrow_{SES} s \land reachable SES s')
proof -
  assume s0-\beta\alpha-s: s0<sub>SES</sub> (\beta @ \alpha)\Longrightarrow<sub>SES</sub> s
  from path-split[OF s0-\beta\alpha-s] obtain s'
    where s0 - \beta - s': s0_{SES} \beta \Longrightarrow_{SES} s'
    and s'-\alpha-s: s' \alpha \Longrightarrow_{SES} s
    by auto
  hence reachable SES s'
    by(simp add: reachable-def, auto)
  moreover
  have s' \in S_{SES}
    proof -
       \mathbf{from} \ \textit{s0-}\beta\textit{-}s' \ \textit{validSES} \ \textit{path-state-closure} \ \mathbf{show} \ \textit{?thesis}
         by (auto simp add: SES-valid-def s0-is-state-def)
    \mathbf{qed}
  ultimately show ?thesis using s' - \alpha - s \ s0 - \beta - s'
    \mathbf{by}(auto)
\mathbf{qed}
lemma path-split-single2:
  s \mathcal{O}_{SES} \ (\beta @ [x]) \Longrightarrow_{SES} s
  \implies \exists s' \in S_{SES} \text{ (so } S_{ES} \beta \Longrightarrow_{SES} s' \land s' x \longrightarrow_{SES} s \land reachable SES s')
proof –
  assume s0-\beta x-s: s0_{SES} \ (\beta @ [x]) \Longrightarrow_{SES} s
  from path-split2[OF s0-\beta x-s] show ?thesis
     by (auto, split if-split-asm, auto)
qed
```

```
lemma modified-view-valid: is ViewOn (V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}}) E_{SES}
using validVU
unfolding is ViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def by auto
```

 \mathbf{end}

 \mathbf{end}

5.3.3 Unwinding Theorems

theory UnwindingResults imports AuxiliaryLemmas begin

context Unwinding begin **theorem** unwinding-theorem-BSD: $\llbracket \textit{ lrf ur; osc ur } \rrbracket \Longrightarrow \textit{BSD V Tr}_{(\textit{induceES SES})}$ proof assume *lrf-true*: *lrf ur* assume osc-true: osc ur { fix $\alpha \beta c$ assume *c-in-C*: $c \in C_{\mathcal{V}}$ assume $\beta c \alpha$ -in-Tr: $((\beta @ [c]) @ \alpha) \in Tr_{(induceES SES)}$ assume α -contains-no-c: $\alpha \upharpoonright C_{\mathcal{V}} = []$ from state-from-induceES-trace[OF $\beta c\alpha$ -in-Tr] obtain s1' where s1'-in-S: $s1' \in S_{SES}$ and enabled-s1'- α : enabled SES s1' α and s0- βc -s1': $s0_{SES}$ ($\beta @ [c]$) $\Longrightarrow_{SES} s1'$ and reachable-s1': reachable SES s1 by auto

```
from path-split-single2[OF s0-\betac-s1'] obtain s1
where s1-in-S: s1 \in S_{SES}
and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
and s1-c-s1': s1 \ c \longrightarrow_{SES} s1'
and reachable-s1: reachable SES s1
by auto
```

```
from s1-in-S s1'-in-S c-in-C reachable-s1 s1-c-s1' lrf-true have s1'-ur-s1: ((s1', s1) \in ur) by (simp \ add: \ lrf-def, \ auto)
```

```
from osc-property[OF osc-true s1-in-S s1'-in-S \alpha-contains-no-c reachable-s1
reachable-s1' enabled-s1'-\alpha s1'-ur-s1]
obtain \alpha'
where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
and enabled-s1-\alpha': enabled SES s1 \alpha'
by auto
have \beta \alpha'-in-Tr: \beta @ \alpha' \in Tr_{(induceES SES)}
proof –
note s0-\beta-s1
moreover
from enabled-s1-\alpha' obtain s2
where s1 \alpha' \Longrightarrow SES s2
by (simp add: enabled-def, auto)
```

```
ultimately have so_{SES} (\beta @ \alpha') \Longrightarrow_{SES} s2
by (rule path-trans)
```

```
thus ?thesis
```

 $\mathbf{by} \ (simp \ add: \ induce ES-def \ possible-traces-def \ enabled-def)$ \mathbf{qed} from $\beta \alpha'$ -in-Tr α' -V-is- α -V α' -contains-no-c have $\exists \alpha'. ((\beta @ \alpha') \in (Tr_{(induceES SES)}) \land (\alpha' \upharpoonright (V_{\mathcal{V}})) = (\alpha \upharpoonright V_{\mathcal{V}}) \land \alpha' \upharpoonright C_{\mathcal{V}} = [])$ by auto } thus ?thesis by (simp add: BSD-def) \mathbf{qed} **theorem** unwinding-theorem-BSI: $\llbracket \text{ lrb } ur; \text{ osc } ur \rrbracket \Longrightarrow BSI \ \mathcal{V} \ Tr_{(induceES \ SES)}$ proof assume lrb-true: lrb ur assume osc-true: osc ur { fix $\alpha \beta c$ assume *c-in-C*: $c \in C_{\mathcal{V}}$ assume $\beta \alpha$ -in-ind-Tr: $(\beta @ \alpha) \in Tr_{(induceES SES)}$ assume α -contains-no-c: $\alpha \upharpoonright C_{\mathcal{V}} = []$ from state-from-induceES-trace[OF $\beta \alpha$ -in-ind-Tr] obtain s1 where s1-in- $S: s1 \in S_{SES}$ and path- β -yields-s1: $s0_{SES} \beta \Longrightarrow_{SES} s1$ and enabled-s1- α : enabled SES s1 α and reachable-s1: reachable SES s1 by auto from reachable-s1 s1-in-S c-in-C lrb-true have $\exists s1' \in S_{SES}$. $s1 \ c \longrightarrow_{SES} s1' \land (s1, s1') \in ur$ **by**(*simp add*: *lrb-def*) then obtain s1' where s1'-in-S: $s1' \in S_{SES}$ and s1-trans-c-s1': s1 $c \xrightarrow{\sim}_{SES} s1'$ and s1-s1'-in-ur: $(s1, s1') \in ur$ by auto have reachable-s1': reachable SES s1' proof – from path- β -yields-s1 s1-trans-c-s1' have s0 SES ($\beta @ [c] \implies$ SES s1' **by** (*rule path-trans-single*) thus ?thesis by (simp add: reachable-def, auto) qed from osc-property[OF osc-true s1'-in-S s1-in-S α -contains-no-c reachable-s1' reachable-s1 enabled-s1- α s1-s1'-in-ur] obtain α' where α' -contains-no-c: $\alpha' \upharpoonright C_{\mathcal{V}} = []$ and α' -V-is- α -V: $\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}$ and enabled-s1'- α' : enabled SES s1' α'

by auto

```
have \beta c \alpha'-in-ind-Tr: \beta @ [c] @ \alpha' \in Tr_{(induceES SES)}
    proof –
      from path-\beta-yields-s1 s1-trans-c-s1' have s0 <sub>SES</sub> (\beta @ [c])\Longrightarrow<sub>SES</sub> s1'
         by (rule path-trans-single)
      moreover
       from enabled-s1'-\alpha' obtain s2
         where s1' \alpha' \Longrightarrow_{SES} s2
         by (simp add: enabled-def, auto)
       ultimately have s\theta_{SES} ((\beta @ [c]) @ \alpha')\Longrightarrow_{SES} s2
         by (rule path-trans)
      thus ?thesis
         by (simp add: induceES-def possible-traces-def enabled-def)
    qed
    from \beta c \alpha'-in-ind-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c
    have \exists \alpha'. \beta @ c \# \alpha' \in Tr_{(induceES SES)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
      by auto
  }
  thus ?thesis
    by(simp add: BSI-def)
qed
theorem unwinding-theorem-BSIA:
\llbracket \text{ lrbe } \varrho \text{ ur; osc ur } \rrbracket \Longrightarrow BSIA \ \varrho \ \mathcal{V} \ Tr_{(induceES \ SES)}
proof –
  assume lrbe-true: lrbe \rho ur
  assume osc-true: osc ur
  {
```

fix $\alpha \beta c$ assume *c-in-C*: $c \in C_{\mathcal{V}}$ assume $\beta \alpha$ -*in-ind-Tr*: $(\beta @ \alpha) \in Tr_{(induceES SES)}$ assume α -contains-no-c: $\alpha \mid C_{\mathcal{V}} = []$

assume adm: Adm $\mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ c$

```
from state-from-induceES-trace[OF \beta \alpha-in-ind-Tr]
obtain s1
where s1-in-S : s1 \in S<sub>SES</sub>
and s0-\beta-s1: s0<sub>SES</sub> \beta \Longrightarrow<sub>SES</sub> s1
and enabled-s1-\alpha: enabled SES s1 \alpha
and reachable-s1: reachable SES s1
by auto
```

```
have \exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{(induceES SES)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
proof cases
assume en: En \varrho s1 c
```

```
from reachable-s1 s1-in-S c-in-C en lrbe-true
 have \exists s1' \in S_{SES}. s1 \ c \longrightarrow_{SES} s1' \land (s1, s1') \in ur
   by(simp add: lrbe-def)
 then obtain s1'
   where s1'-in-S: s1' \in S_{SES}
   and s1-trans-c-s1': s1 c \longrightarrow_{SES} s1'
   and s1-s1'-in-ur: (s1, s1') \in ur
   by auto
 have reachable-s1': reachable SES s1'
 proof -
   from s0-\beta-s1 s1-trans-c-s1 ' have s0 _{SES} (\beta @ [c])\Longrightarrow_{SES} s1 '
     by (rule path-trans-single)
   thus ?thesis by (simp add: reachable-def, auto)
 qed
 from osc-property[OF osc-true s1'-in-S s1-in-S \alpha-contains-no-c
   reachable-s1 ' reachable-s1 enabled-s1-\alpha s1-s1 '-in-ur]
 obtain \alpha'
   where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
   and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
   and enabled-s1'-\alpha': enabled SES s1' \alpha'
   by auto
 have \beta c \alpha'-in-ind-Tr: \beta @ [c] @ \alpha' \in Tr_{(induceES SES)}
 proof –
   from s0-\beta-s1 \ s1-trans-c-s1 ' have s0_{SES} \ (\beta @ [c]) \Longrightarrow_{SES} s1 '
      by (rule path-trans-single)
   moreover
   from enabled-s1'-\alpha' obtain s2
      where s1' \alpha' \Longrightarrow_{SES} s2
      by (simp add: enabled-def, auto)
   ultimately have s\theta_{SES} ((\beta @ [c]) @ \alpha')\Longrightarrow_{SES} s2
      by (rule path-trans)
   thus ?thesis
      by (simp add: induceES-def possible-traces-def enabled-def)
 \mathbf{qed}
 from \beta c \alpha'-in-ind-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c show ?thesis
   by auto
\mathbf{next}
 assume not-en: \neg En \varrho s1 c
 let ?A = (Adm \ \mathcal{V} \ \varrho \ (Tr_{(induceES \ SES)}) \ \beta \ c)
 let ?E = \exists s \in S_{SES}. (so_{SES} \beta \Longrightarrow_{SES} s \land En \ \rho \ s \ c)
```

{

assume adm: ?A

```
from s0-\beta-s1 have \beta-in-Tr: \beta \in Tr_{(induceES SES)}
by (simp \ add: \ induceES-def \ possible-traces-def \ enabled-def)
```

```
from \beta-in-Tr adm have ?E
          by (rule Adm-to-En)
      }
      hence Adm-to-En-contr: \neg ?E \implies \neg ?A
        by blast
      with s1-in-S s0-\beta-s1 not-en have not-adm: \neg ?A
        by auto
      with adm show ?thesis
        by auto
    qed
  }
  thus ?thesis
    by (simp add: BSIA-def)
qed
theorem unwinding-theorem-FCD:
\llbracket \textit{ fcrf } \Gamma \textit{ ur; osc ur } \rrbracket \Longrightarrow \textit{ FCD } \Gamma \textit{ V } \textit{ Tr}_{(\textit{induceES SES})}
proof -
  assume fcrf: fcrf \Gamma ur
  assume osc: osc ur
  {
    fix \alpha \beta c v
    assume c-in-C-inter-Y: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
    assume v-in-V-inter-Nabla: v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
    assume \beta cv\alpha-in-Tr: ((\beta @ [c] @ [v]) @ \alpha) \in Tr_{(induceES SES)}
    assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
    from state-from-induceES-trace[OF \beta cv\alpha-in-Tr] obtain s1'
      where s1'-in-S: s1' \in S_{SES}
      and s0 - \beta cv - s1' : s0_{SES} (\tilde{\beta} @ ([c] @ [v])) \Longrightarrow_{SES} s1'
      and enabled-s1'-\alpha: enabled SES s1' \alpha
      and reachable-s1': reachable SES s1'
      by auto
    from path-split2[OF s0-\beta cv-s1'] obtain s1
      where s1-in-S: s1 \in S_{SES}
      and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
      and s1-cv-s1': s1^{-}([c] @ [v]) \Longrightarrow_{SES} s1'
      and reachable-s1: reachable SES s1
      by (auto)
    from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1'-in-S reachable-s1 s1-cv-s1' fcrf
    have \exists s1 \\ '' \in S_{SES}. \exists \delta. (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land
      s1 \ (\delta @ [v]) \Longrightarrow_{SES} s1'' \land (s1', s1'') \in ur
      by (simp add: fcrf-def)
    then obtain s1^{\prime\prime}\delta
      where s1''-in-S: s1'' \in S_{SES}
      and \delta-in-N-inter-Delta-star: (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))
      and s1-\delta v-s1'': s1 (\delta @ [v])\Longrightarrow_{SES} s1''
      and s1'-ur-s1'': (s1', s1'') \in ur
```

by auto

```
have reachable-s1": reachable SES s1"
     proof -
       from s0{-}\beta{-}s1 \ s1{-}\delta v{-}s1'' have s0_{SES} \ (\beta @ (\delta @ [v])) \Longrightarrow_{SES} s1''
          by (rule path-trans)
       thus ?thesis
          by (simp add: reachable-def, auto)
     qed
     from osc-property[OF osc s1 "-in-S s1 '-in-S α-contains-no-c
       reachable-s1" reachable-s1' enabled-s1'-a s1'-ur-s1"]
     obtain \alpha'
       where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
       and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
and enabled-s1''-\alpha': enabled SES s1'' \alpha'
       by auto
     have \beta \delta v \alpha'-in-Tr: \beta @ \delta @ [v] @ \alpha' \in Tr_{(induceES SES)}
       proof ·
          from s0-\beta-s1 s1-\delta v-s1'' have s0_{SES} (\beta @ \delta @ [v])\Longrightarrow_{SES} s1''
            by (rule path-trans)
          moreover
          from enabled-s1 ''-\alpha' obtain s2
            where s1^{\prime\prime} \alpha' \Longrightarrow_{SES} s2
            by (simp add: enabled-def, auto)
          ultimately have sO_{SES} ((\beta @ \delta @ [v]) @ \alpha')\Longrightarrow_{SES} s2
            by (rule path-trans)
          thus ?thesis
            by (simp add: induceES-def possible-traces-def enabled-def)
       qed
       from \delta-in-N-inter-Delta-star \beta \delta v \alpha'-in-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c
       have \exists \alpha' . \exists \delta' . set \ \delta' \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land \beta @ \delta' @ [v] @ \alpha' \in Tr_{(induceES SES)}
          \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = []
          by auto
  }
  thus ?thesis
    by (simp add: FCD-def)
qed
theorem unwinding-theorem-FCI:
\llbracket \text{ fcrb } \Gamma \text{ ur; osc ur } \rrbracket \Longrightarrow \text{ FCI } \Gamma \text{ } \mathcal{V} \text{ } \text{Tr}_{(induceES \text{ SES})}
proof -
  assume fcrb: fcrb \Gamma ur
  assume osc: osc ur
  {
    fix \alpha \beta c v
    assume c-in-C-inter-Y: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
    assume v-in-V-inter-Nabla: v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
```

assume $\beta v \alpha$ -in-Tr: (($\beta @ [v]$) @ α) $\in Tr_{(induceES SES)}$ assume α -contains-no-c: $\alpha \upharpoonright C_{\mathcal{V}} = []$ from state-from-induceES-trace[OF $\beta v \alpha$ -in-Tr] obtain s1 " where s1''-in-S: $s1'' \in S_{SES}$ and $s0\text{-}\beta v\text{-}s1^{\prime\prime}\text{:} s0_{SES} \ (\beta \ \textcircled{@} \ [v]) \Longrightarrow_{SES} s1^{\prime\prime}$ and enabled-s1"- α : enabled SES s1" α and reachable-s1 $^{\prime\prime}\!\!:$ reachable SES s1 $^{\prime\prime}\!\!$ $\mathbf{by} \ auto$ from path-split-single2[OF s0- β v-s1''] obtain s1 where s1-in-S: $s1 \in S_{SES}$ and $s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1$ and s1-v-s1'': $s1v \longrightarrow_{SES} s1'$ and reachable-s1: reachable SES s1 **by** (*auto*) from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S $s1\,^{\prime\prime}\text{-}in\text{-}S\ reachable\text{-}s1\ s1\text{-}v\text{-}s1\,^{\prime\prime}\ fcrb$ have $\exists s1' \in S_{SES}$. $\exists \delta$. $(\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))$ $\wedge \ s1 \ ([c] @ \delta \ \textcircled{@} \ v]) \Longrightarrow_{SES} s1'$ \land (s1 '', s1 ') \in ur **by** (*simp add: fcrb-def*) then obtain $s1'\delta$ where s1'-in-S: $s1' \in S_{SES}$ and δ -in-N-inter-Delta-star: $(\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))$ and $s1-c\delta v-s1'$: s1 ([c] @ δ @ [v]) $\Longrightarrow_{SES} s1'$ and $s1''-ur-s1': (s1'', s1') \in ur$ by auto have reachable-s1': reachable SES s1' proof - $\mathbf{from} \ s0\text{-}\beta\text{-}s1 \ s1\text{-}c\delta v\text{-}s1 \ ' \mathbf{have} \ s0_{SES} \ (\beta \ @ \ ([c] \ @ \ \delta \ @ \ [v])) \Longrightarrow_{SES} s1 \ '$ by (rule path-trans) thus ?thesis by (simp add: reachable-def, auto) qed from osc-property[OF osc s1'-in-S s1''-in-S α-contains-no-c reachable-s1' reachable-s1'' enabled-s1''-a s1''-ur-s1'] obtain α' where α' -contains-no-c: $\alpha' \upharpoonright C_{\mathcal{V}} = []$ and α' -V-is- α -V: $\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}$ and enabled-s1'- α' : enabled SES s1' α' by auto have $\beta c \delta v \alpha' - in - Tr$: $\beta @ [c] @ \delta @ [v] @ \alpha' \in Tr_{(induceES SES)}$ proof let $?l1 = \beta @ [c] @ \delta @ [v]$ let $?l2 = \alpha'$ from $s0-\beta-s1 \ s1-c\delta v-s1'$ have $s0_{SES}$ (?l1) $\Longrightarrow_{SES} s1'$ by (rule path-trans)

moreover from enabled-s1'- α' obtain s1337 where s1' ?l2 \Longrightarrow_{SES} s1337 by (simp add: enabled-def, auto) ultimately have sO_{SES} (?l1 @ ?l2) $\Longrightarrow_{SES} s1337$ by (rule path-trans) thus ?thesis **by** (*simp add: induceES-def possible-traces-def enabled-def*) \mathbf{qed} from δ -in-N-inter-Delta-star $\beta c \delta v \alpha'$ -in-Tr α' -V-is- α -V α' -contains-no-c have $\exists \alpha' \delta'$. set $\delta' \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{(induceES SES)}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = []$ by auto } thus ?thesis **by**(*simp add*: *FCI-def*) qed **theorem** *unwinding-theorem-FCIA*: $\llbracket fcrbe \ \Gamma \ \varrho \ ur; \ osc \ ur \ \rrbracket \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{(induceES \ SES)}$ proof – assume fcrbe: fcrbe $\Gamma \rho ur$ assume osc: osc ur { fix $\alpha \beta c v$ assume *c-in-C-inter-Y*: $c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})$ assume v-in-V-inter-Nabla: $v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})$ assume $\beta v \alpha$ -in-Tr: (($\beta @ [v]$) @ α) $\in Tr_{(induceES SES)}$ assume α -contains-no-c: $\alpha \upharpoonright C_{\mathcal{V}} = []$ assume adm: Adm $\mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ c$ from state-from-induceES-trace[OF $\beta v \alpha$ -in-Tr] obtain s1 " where s1''-in-S: $s1'' \in S_{SES}$ and s0- βv -s1'': $s0_{SES}$ ($\beta @ [v]$) $\Longrightarrow_{SES} s1''$ and enabled-s1''- α : enabled SES $s1'' \alpha$ and reachable-s1 $^{\prime\prime}$: reachable SES s1 $^{\prime\prime}$ by *auto* from path-split-single2[OF s0- βv -s1''] obtain s1 where s1-in-S: $s1 \in S_{SES}$ and $s0-\beta-s1$: $s0_{SES} \beta \Longrightarrow_{SES} s1$ and s1-v-s1'': $s1 v \longrightarrow_{SES} s1''$ and reachable-s1: reachable SES s1 **by** (*auto*) have $\exists \alpha' \delta' (set \ \delta' \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{(induceES SES)}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$ **proof** (*cases*) assume en: En ϱ s1 c

from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1"-in-S reachable-s1 s1-v-s1" en fcrbe have $\exists s1' \in S_{SES}$. $\exists \delta$. $(\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))$ $\wedge s1 ([c] @ \delta @ [v]) \Longrightarrow_{SES} s1'$ $\land (s1'', s1') \in ur$ **by** (*simp add: fcrbe-def*) then obtain $s1'\delta$ where s1'-in-S: $s1' \in S_{SES}$ and δ -in-N-inter-Delta-star: $(\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))$ and s1- $c\delta v$ -s1': s1 ([c] @ δ @ [v]) $\Longrightarrow_{SES} s1'$ and s1''-ur-s1': $(s1'', s1') \in ur$ **by** (auto) have reachable-s1': reachable SES s1' proof – from s0- β -s1 s1- $c\delta v$ -s1' have $s0_{SES}$ ($\beta @ ([c] @ \delta @ [v])) \Longrightarrow_{SES} s1'$ **by** (*rule path-trans*) $\mathbf{thus}~? thesis$ by (simp add: reachable-def, auto) qed from osc-property[OF osc s1'-in-S s1''-in-S α-contains-no-c reachable-s1' reachable-s1" enabled-s1"-\alpha s1"-ur-s1] obtain α' where α' -contains-no-c: $\alpha' \upharpoonright C_{\mathcal{V}} = []$ and α' -V-is- α -V: $\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}$ and enabled-s1'- α' : enabled SES s1' α' by auto have $\beta c \delta v \alpha' - in - Tr$: $\beta @ [c] @ \delta @ [v] @ \alpha' \in Tr_{(induceES SES)}$ proof – let $?l1 = \beta @ [c] @ \delta @ [v]$ let $?l2 = \alpha'$ from s0- β -s1 s1- $c\delta v$ -s1' have $s0_{SES}$ (?l1) \Longrightarrow_{SES} s1'by (rule path-trans) moreover from enabled-s1'- α' obtain s1337 where s1' ?l2 \Longrightarrow_{SES} s1337 by (simp add: enabled-def, auto) ultimately have $s \theta_{SES}$ (?l1 @ ?l2) $\Longrightarrow_{SES} s1337$ **by** (*rule path-trans*) thus ?thesis **by** (*simp add: induceES-def possible-traces-def enabled-def*) qed from δ -in-N-inter-Delta-star $\beta c \delta v \alpha'$ -in-Tr α' -V-is- α -V α' -contains-no-c show ?thesis by auto next assume not-en: \neg En ρ s1 c let $?A = (Adm \ \mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ c)$

 $\mathbf{let} \ ?E = \exists \ s \in S_{SES}. \ (so_{SES} \ \beta \Longrightarrow_{SES} \ s \ \land \ En \ \varrho \ s \ c)$

{ assume adm: ?A

```
from s0-\beta-s1 have \beta-in-Tr: \beta \in Tr_{(induceES SES)}
         by (simp add: induceES-def possible-traces-def enabled-def)
        from \beta-in-Tr adm have ?E
          by (rule Adm-to-En)
      }
      hence Adm-to-En-contr: \neg ?E \implies \neg ?A
        by blast
      with s1-in-S s0-\beta-s1 not-en have not-adm: \neg ?A
       by auto
      with adm show ?thesis
       by auto
   \mathbf{qed}
  }
 thus ?thesis
   by (simp add: FCIA-def)
qed
theorem unwinding-theorem-SD:
\llbracket \mathcal{V}' = ( V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{ \}, C = C_{\mathcal{V}} \};
  Unwinding.lrf SES \mathcal{V}' ur; Unwinding.osc SES \mathcal{V}' ur
  \implies SD \mathcal{V} Tr<sub>(induceES SES)</sub>
proof -
 assume view'-def : \mathcal{V}' = (V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}})
 assume lrf-view': Unwinding.lrf SES \mathcal{V}' ur
 assume osc-view': Unwinding.osc SES \mathcal{V}' ur
 interpret modified-view: Unwinding SES \mathcal{V}'
```

 $\mathbf{by} \ (unfold-locales, \ rule \ validSES, \ simp \ add: \ view'-def \ modified-view-valid)$

from lrf-view' osc-view' have BSD-view': BSD V' Tr(induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSD)
with view'-def BSD-implies-SD-for-modified-view show ?thesis
by auto

 \mathbf{qed}

theorem unwinding-theorem-SI: $\begin{bmatrix} \mathcal{V}' = (V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}}); \\ Unwinding.lrb SES \mathcal{V}' ur; Unwinding.osc SES \mathcal{V}' ur]] \\ \implies SI \mathcal{V} Tr_{(induceES SES)} \\ \mathbf{proof} - \\ \text{assume view'-def} : \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \\ \text{assume lrb-view'} : Unwinding.lrb SES \mathcal{V}' ur \\ \text{assume osc-view'} : Unwinding.osc SES \mathcal{V}' ur \\ \end{bmatrix}$

interpret modified-view: Unwinding SES \mathcal{V}' by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)

from lrb-view' osc-view' have BSI-view' : $BSI \ \mathcal{V}' \ Tr_{(induceES \ SES)}$ by (rule-tac ur=ur in modified-view.unwinding-theorem-BSI) with view'-def BSI-implies-SI-for-modified-view show ?thesis by *auto* \mathbf{qed} **theorem** *unwinding-theorem-SIA*: $\begin{bmatrix} \mathcal{V}' = (V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{ \}, C = C_{\mathcal{V}} \mid ; \varrho \mathcal{V} = \varrho \mathcal{V}'; \\ Unwinding.lrbe SES \mathcal{V}' \varrho ur; Unwinding.osc SES \mathcal{V}' ur \end{bmatrix}$ \implies SIA $\varrho \mathcal{V} Tr_{(induceES SES)}$ proof – assume view'-def : $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})$ assume ϱ -eq : $\varrho \mathcal{V} = \varrho \mathcal{V}'$ assume lrbe-view': Unwinding. $lrbe SES \mathcal{V}' \rho ur$ assume osc-view': Unwinding.osc SES \mathcal{V}' ur interpret modified-view: Unwinding SES \mathcal{V}' by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid) from *lrbe-view'* osc-view' have BSIA-view': BSIA $\varrho \mathcal{V}' Tr_{(induceES SES)}$ by (rule-tac ur=ur in modified-view.unwinding-theorem-BSIA) with view'-def BSIA-implies-SIA-for-modified-view p-eq show ?thesis by auto qed **theorem** *unwinding-theorem-SR*: $\llbracket \mathcal{V}' = (V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{ \}, C = C_{\mathcal{V}} \};$ Unwinding.lrf SES \mathcal{V}' ur; Unwinding.osc SES \mathcal{V}' ur \llbracket \implies SR \mathcal{V} Tr_(induceES SES) proof assume view'-def : $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})$ assume lrf-view': Unwinding.lrf SES \mathcal{V}' ur assume osc-view': Unwinding.osc SES \mathcal{V}' ur from lrf-view' osc-view' view'-def have S-view : SD \mathcal{V} $Tr_{(induceES SES)}$ by (rule-tac ur=ur in unwinding-theorem-SD, auto) with SD-implies-SR show ?thesis by *auto* qed **theorem** *unwinding-theorem-D*: $\llbracket lrf ur; osc ur \rrbracket \Longrightarrow D \mathcal{V} Tr_{(induceES SES)}$ proof assume *lrf* ur and $osc \ ur$ hence $BSD \ V \ Tr_{(induceES \ SES)}$ by (rule unwinding-theorem-BSD) thus ?thesis **by** (*rule BSD-implies-D*) qed

theorem unwinding-theorem-I: $[lrb ur; osc ur] \implies I \ V \ Tr_{(induceES \ SES)}$ proof – assume lrb ur and osc ur hence BSI V $Tr_{(induceES \ SES)}$ by (rule unwinding-theorem-BSI) thus ?thesis by (rule BSI-implies-I) qed

```
theorem unwinding-theorem-IA:

[[ lrbe \rho ur; osc ur ]] \implies IA \rho \vee Tr_{(induceES SES)}

proof –

assume lrbe \rho ur

and osc ur

hence BSIA \rho \vee Tr_{(induceES SES)}

by (rule unwinding-theorem-BSIA)

thus ?thesis

by (rule BSIA-implies-IA)

qed
```

```
theorem unwinding-theorem-R:

[ lrf ur; osc ur ] \implies R \mathcal{V} (Tr_{(induceES SES)})

proof –

assume lrf ur

and osc ur

hence BSD \mathcal{V} Tr_{(induceES SES)}

by (rule unwinding-theorem-BSD)

hence D \mathcal{V} Tr_{(induceES SES)}

by (rule BSD-implies-D)

thus ?thesis

by (rule D-implies-R)

qed
```

 \mathbf{end}

 \mathbf{end}

5.4 Compositionality

We prove the compositionality results from [3].

5.4.1 Auxiliary Definitions & Results

```
theory CompositionBase
imports ../Basics/BSPTaxonomy
begin
```

definition properSeparationOfViews :: $\begin{array}{l} {}^{\prime}e \ ES\text{-rec} \Rightarrow {}^{\prime}e \ V\text{-rec} \Rightarrow {}^{\prime}e \ V\text{-rec} \Rightarrow {}^{\prime}e \ V\text{-rec} \Rightarrow bool \\ \textbf{where} \\ properSeparation Of Views \ ES1 \ ES2 \ V \ V1 \ V2 \equiv \\ V_{\mathcal{V}} \cap E_{ES1} = V_{\mathcal{V}1} \\ \wedge V_{\mathcal{V}} \cap E_{ES2} = V_{\mathcal{V}2} \\ \wedge C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2} \\ \wedge N_{\mathcal{V}1} \cap N_{\mathcal{V}2} = \{\} \\ \textbf{definition} \\ well Behaved Composition :: \\ {}^{\prime}e \ ES\text{-rec} \Rightarrow {}^{\prime}e \ ES\text{-rec} \Rightarrow {}^{\prime}e \ V\text{-rec} \Rightarrow {}^{\prime}e \ V\text{-rec} \Rightarrow bool \\ \textbf{where} \\ well Behaved Composition \ ES1 \ ES2 \ V \ \mathcal{V}1 \ \mathcal{V}2 \equiv \\ (N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap E_{ES1} = \{\}) \\ \vee (\exists \varrho 1. (N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land total \ ES1 \ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \end{array}$

 $\begin{array}{l} \wedge BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \)) \\ \vee (\exists \varrho 2. \ (\ N_{\mathcal{V}2} \cap E_{ES1} = \{\} \wedge total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \\ \wedge BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \)) \\ \vee (\exists \varrho 1 \ \varrho 2 \ \Gamma 1 \ \Gamma 2. \ (\\ \nabla_{\Gamma 1} \subseteq E_{ES1} \wedge \Delta_{\Gamma 1} \subseteq E_{ES1} \wedge \Upsilon_{\Gamma 1} \subseteq E_{ES1} \\ \wedge \nabla_{\Gamma 2} \subseteq E_{ES2} \wedge \Delta_{\Gamma 2} \subseteq E_{ES2} \wedge \Upsilon_{\Gamma 2} \subseteq E_{ES2} \\ \wedge BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \wedge BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \\ \wedge total \ ES1 \ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \wedge total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \\ \wedge \ FCIA \ \varrho 1 \ \Gamma 1 \ \mathcal{V}1 \ Tr_{ES1} \wedge FCIA \ \varrho 2 \ \Gamma 2 \ \mathcal{V}2 \ Tr_{ES2} \\ \wedge V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \subseteq \nabla_{\Gamma 1} \cup \nabla_{\Gamma 2} \\ \wedge C_{\mathcal{V}1} \cap N_{\mathcal{V}2} \subseteq \Upsilon_{\Gamma 1} \wedge C_{\mathcal{V}2} \cap N_{\mathcal{V}1} \subseteq \Upsilon_{\Gamma 2} \\ \wedge N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\} \wedge N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \)) \end{array}$

locale Compositionality = fixes ES1 :: 'e ES-rec and ES2 :: 'e ES-rec and $\mathcal{V} :: 'e V$ -rec and $\mathcal{V}1 :: 'e V$ -rec and $\mathcal{V}2 :: 'e V$ -rec

assumes validES1: ES-valid ES1 and validES2: ES-valid ES2 and composableES1ES2: composable ES1 ES2

and validVC: isViewOn $\mathcal{V}(E_{(ES1 \parallel ES2)})$ and validV1: isViewOn $\mathcal{V}1 E_{ES1}$ and validV2: isViewOn $\mathcal{V}2 E_{ES2}$

and propSepViews: properSeparationOfViews ES1 ES2 V V1 V2

and well-behaved-composition: wellBehavedComposition ES1 ES2 V V1 V2

sublocale Compositionality \subseteq BSPTaxonomyDifferentCorrections ES1 || ES2 \mathcal{V} by (unfold-locales, rule composeES-yields-ES, rule validES1, rule validES2, rule validVC)

context Compositionality **begin**

lemma Vv-is-Vv1-union-Vv2: $V_{\mathcal{V}} = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}$ proof from propSepViews have $V_{\mathcal{V}} \cap E_{ES1} \cup V_{\mathcal{V}} \cap E_{ES2} = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}$ unfolding properSeparationOfViews-def by auto hence $V_{\mathcal{V}} \cap (E_{ES1} \cup E_{ES2}) = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}$ $\mathbf{by} ~ auto$ hence $V_{\mathcal{V}} \cap E_{(ES1 \parallel ES2)} = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}$ by (simp add: composeES-def) with validVC show ?thesis **by** (*simp add: isViewOn-def, auto*) qed lemma disjoint-Nv1-Vv2: $N_{\mathcal{V}1} \cap V_{\mathcal{V}2} = \{\}$ proof from validV1 have $N_{\mathcal{V}1} \subseteq E_{ES1}$ **by** (simp add: isViewOn-def, auto) with propSepViews have $N_{\mathcal{V}1} \cap V_{\mathcal{V}2} = (N_{\mathcal{V}1} \cap E_{ES1} \cap V_{\mathcal{V}}) \cap E_{ES2}$ unfolding properSeparationOfViews-def by auto hence $N_{\mathcal{V}1} \cap V_{\mathcal{V}2} = (N_{\mathcal{V}1} \cap V_{\mathcal{V}} \cap E_{ES1}) \cap E_{ES2}$ by auto moreover from validV1 have $N_{\mathcal{V}1} \cap V_{\mathcal{V}} \cap E_{ES1} = \{\}$ using propSepViews unfolding properSeparationOfViews-def by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute isViewOn-def) ultimately show ?thesis by auto qed lemma disjoint-Nv2-Vv1: $N_{\mathcal{V2}} \cap V_{\mathcal{V1}} = \{\}$ proof from validV2 have $N_{\mathcal{V}2} \subseteq E_{ES2}$ **by** (*simp* add:*isViewOn-def*, auto) with propSepViews have $N_{\mathcal{V}2} \cap V_{\mathcal{V}1} = (N_{\mathcal{V}2} \cap E_{ES2} \cap V_{\mathcal{V}}) \cap E_{ES1}$ unfolding properSeparationOfViews-def by auto hence $N_{\mathcal{V}2} \cap V_{\mathcal{V}1} = (N_{\mathcal{V}2} \cap V_{\mathcal{V}} \cap E_{ES2}) \cap E_{ES1}$ by auto moreover

from valid V2 have $N_{\mathcal{V}2} \cap V_{\mathcal{V}} \cap E_{ES2} = \{\}$ ${\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def$ by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute isViewOn-def) ultimately show ?thesis by auto qed **lemma** merge-property': [[set $t1 \subseteq E_{ES1}$; set $t2 \subseteq E_{ES2}$; $\begin{array}{l} t1 \mid E_{ES2} = t2 \mid E_{ES1}; t1 \mid V_{\mathcal{V}} = []; t2 \mid V_{\mathcal{V}} = []; \\ t1 \mid C_{\mathcal{V}} = []; t2 \mid C_{\mathcal{V}} = [] \end{array}$ $\implies \exists t. (t \upharpoonright E_{ES1} = t1 \land t \upharpoonright E_{ES2} = t2 \land t \upharpoonright V_{\mathcal{V}} = [] \land t \upharpoonright C_{\mathcal{V}} = [] \land set t \subseteq (E_{ES1} \cup E_{ES2}))$ proof assume t1-in-E1star: set t1 \subseteq E_{ES1} and t2-in-E2star: set t2 \subseteq E_{ES2} and t1-t2-synchronized: t1 | $E_{ES2} = t2$ | E_{ES1} and t1Vv-empty: $t1 | V_{\mathcal{V}} = []$ and t2Vv-empty: $t2 | V_{\mathcal{V}} = []$ and t1Cv-empty: t1 \uparrow C_V = [] and t2Cv-empty: $t2 \upharpoonright C_{\mathcal{V}} = []$ from merge-property[OF t1-in-E1star t2-in-E2star t1-t2-synchronized] obtain t where t-is-interleaving: $t \upharpoonright E_{ES1} = t1 \land t \upharpoonright E_{ES2} = t2$ and t-contains-only-events-from-t1-t2: set $t \subseteq set t1 \cup set t2$ unfolding Let-def by auto moreover from t1Vv-empty t2Vv-empty t-contains-only-events-from-t1-t2 have $t \uparrow V_{\mathcal{V}} = []$ ${\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def$ by (metis Int-commute Vv-is-Vv1-union-Vv2 projection-on-union projection-sequence t-is-interleaving) moreover have $t \upharpoonright C_{\mathcal{V}} = []$ proof from t1Cv-empty have $\forall c \in C_{\mathcal{V}}$. $c \notin set t1$ **by** (*simp add: projection-def filter-empty-conv, fast*) moreover from t2Cv-empty have $\forall c \in C_{\mathcal{V}}$. $c \notin set t2$ **by** (simp add: projection-def filter-empty-conv, fast) ultimately have $\forall c \in C_{\mathcal{V}}. \ c \notin (set \ t1 \ \cup \ set \ t2)$ by *auto* with t-contains-only-events-from-t1-t2 have $\forall c \in C_{\mathcal{V}}$. $c \notin set t$ by auto thus ?thesis **by** (*simp add: projection-def, metis filter-empty-conv*) qed moreover from t1-in-E1star t2-in-E2star t-contains-only-events-from-t1-t2 have set $t \subseteq (E_{ES1} \cup E_{ES2})$ by auto ultimately show ?thesis

```
by blast
\mathbf{qed}
lemma Nv1-union-Nv2-subset
of-Nv: N<sub>V1</sub> \cup N<sub>V2</sub> \subseteq N<sub>V</sub>
proof -
 {
   \mathbf{fix}~e
   assume e-in-N1: e \in N_{V1}
   with validV1 have
     e-in-E1: e \in E_{ES1}
     and e-notin-V1: e \notin V_{V1}
     and e-notin-C1: e \notin C_{V1}
     by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def
       VN-disjoint-def, auto)+
   from e-in-E1 e-notin-V1 propSepViews have e \notin V_{\mathcal{V}}
    unfolding properSeparationOfViews-def by auto
   moreover
   from e-in-E1 e-notin-C1 propSepViews have e \notin C_{\mathcal{V}}
    unfolding properSeparationOfViews-def by auto
   moreover
   note e-in-E1 validVC
   ultimately have e \in N_{\mathcal{V}}
     by (simp add: is ViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
        composeES-def, auto)
  }
 moreover {
   fix e
   assume e-in-N2: e \in N_{\mathcal{V2}}
   with validV2 have
     e\text{-}in\text{-}E2\text{:}\ e\in E\text{-}ES\ ES2
     and e-notin-V2: e \notin V_{V2}
     and e-notin-C2: e \notin C_{V2}
     by (simp only: is ViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
       , auto)+
   from e-in-E2 e-notin-V2 propSepViews have e \notin V_{\mathcal{V}}
    unfolding properSeparationOfViews-def by auto
   moreover
   from e-in-E2 e-notin-C2 propSepViews have e \notin C_{\mathcal{V}}
    unfolding properSeparationOfViews-def by auto
   moreover
   note e-in-E2 validVC
   ultimately have e \in N_{\mathcal{V}}
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def
        composeES-def, auto)
  }
 ultimately show ?thesis
   by auto
qed
```

```
\mathbf{end}
```

end theory CompositionSupport imports CompositionBase begin

locale CompositionSupport = fixes ESi :: 'e ES-rec and $\mathcal{V} :: 'e V$ -rec and $\mathcal{V}i :: 'e V$ -rec

assumes validESi: ES-valid ESi

and validVi: is ViewOn $\mathcal{V}i \ E_{ESi}$ and Vv-inter-Ei-is-Vvi: $V_{\mathcal{V}} \cap E_{ESi} = V_{\mathcal{V}i}$ and Cv-inter-Ei-subsetof-Cvi: $C_{\mathcal{V}} \cap E_{ESi} \subseteq C_{\mathcal{V}i}$

context CompositionSupport
begin

lemma *BSD-in-subsystem*: $\llbracket c \in C_{\mathcal{V}}; ((\beta @ [c] @ \alpha) | E_{ESi}) \in Tr_{ESi}; BSD \ \mathcal{V}i \ Tr_{ESi} \rrbracket$ $\begin{array}{l} \Longrightarrow \exists \alpha \text{-}i'. (\ ((\beta \restriction E_{ESi}) @ \alpha \text{-}i') \in Tr_{ESi} \\ \land (\alpha \text{-}i' \restriction V_{\mathcal{V}i}) = (\alpha \restriction V_{\mathcal{V}i}) \land \alpha \text{-}i' \restriction C_{\mathcal{V}i} = [] \) \\ \textbf{proof} \ (induct \ length \ (([c] @ \alpha) \restriction C_{\mathcal{V}i}) \ arbitrary: \ \beta \ c \ \alpha) \end{array}$ case θ let $?L = ([c] @ \alpha) | E_{ESi}$ from $\theta(3)$ have β -E1-c α -E1-in-Tr1: $((\beta \upharpoonright E_{ESi}) @ (([c] @ \alpha) \upharpoonright E_{ESi})) \in Tr_{ESi}$ **by** (simp only: projection-concatenation-commute) moreover have $(?L | V_{\mathcal{V}i}) = (\alpha | V_{\mathcal{V}i})$ proof have $(?L \upharpoonright V_{\mathcal{V}i}) = ([c] @ \alpha) \upharpoonright V_{\mathcal{V}i}$ proof – from validVi have $E_{ESi} \cap V_{Vi} = V_{Vi}$ by (simp add: is ViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def , auto)moreover have $(?L \upharpoonright V_{\mathcal{V}i}) = ([c] @ \alpha) \upharpoonright (E_{ESi} \cap V_{\mathcal{V}i})$ **by** (simp add: projection-def) ultimately show ?thesis by auto \mathbf{qed} moreover

have $([c] @ \alpha) \upharpoonright V_{\mathcal{V}i} = \alpha \upharpoonright V_{\mathcal{V}i}$ proof – have $([c] @ \alpha) \upharpoonright V_{\mathcal{V}i} = ([c] \upharpoonright V_{\mathcal{V}i}) @ (\alpha \upharpoonright V_{\mathcal{V}i})$ **by** (*rule projection-concatenation-commute*) moreover have $([c] \uparrow V_{\mathcal{V}i}) = []$ proof from $\theta(2)$ have $[c] \upharpoonright C_{\mathcal{V}} = [c]$ **by** (simp add: projection-def) moreover have $[c] \upharpoonright C_{\mathcal{V}} \upharpoonright V_{\mathcal{V}i} = []$ proof – from validVi Cv-inter-Ei-subset of-Cvi have $C_{\mathcal{V}} \cap V_{\mathcal{V}i} \subseteq C_{\mathcal{V}i}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto) moreover from $\theta(1)$ have $[c] \uparrow C_{\mathcal{V}i} = []$ by (simp only: projection-concatenation-commute, auto) ultimately have $[c] \uparrow (C_{\mathcal{V}} \cap V_{\mathcal{V}i}) = []$ **by** (*rule projection-on-subset*) thus ?thesis **by** (simp only: projection-def, auto) \mathbf{qed} ultimately show ?thesis by auto qed ultimately show ?thesis by auto qed ultimately show ?thesis by auto \mathbf{qed} moreover have $?L \upharpoonright C_{\mathcal{V}i} = []$ proof – from $\theta(1)$ have $([c] @ \alpha) | C_{\mathcal{V}i} = []$ by auto hence $([c] @ \alpha) \uparrow (C_{\mathcal{V}i} \cap E_{ESi}) = []$ **by** (*rule projection-on-intersection*) hence $([c] @ \alpha) \uparrow (E_{ESi} \cap C_{\mathcal{V}i}) = []$ **by** (*simp only: Int-commute*) thus ?thesisby (simp only: projection-def, auto) \mathbf{qed} ultimately show ?caseby auto \mathbf{next} case (Suc n) from projection-split-last[OF Suc(2)] obtain γ c-i δ

where c-*i*-*i*n- $C\mathcal{V}i$: c- $i \in C_{\mathcal{V}i}$

and $c\alpha$ -is- γc -i δ : $[c] @ \alpha = \gamma @ [c$ -i] @ δ

and δ -no- $C\mathcal{V}i$: $\delta \upharpoonright C_{\mathcal{V}i} = []$ and *n-is-len-* $\gamma\delta$ -*CVi*: $n = length ((\gamma @ \delta) | C_{Vi})$ by auto let $?L1 = ((\beta @ \gamma) | E_{ESi})$ let $?L2 = (\delta \uparrow E_{ESi})$ note c-i-in-CVimoreover have list-with-c-i-in-Tr1: (?L1 @ [c-i] @ ?L2) \in Tr_{ESi} proof from c-i-i- $C\mathcal{V}i$ validVi have [c-i] $\uparrow E_{ESi} = [c$ -i] by (simp only: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto) moreover from $Suc(4) \ c\alpha$ -is- γc -i δ have $((\beta @ \gamma @ [c-i] @ \delta) | E_{ESi}) \in Tr_{ESi}$ by auto hence $(?L1 @ ([c-i] | E_{ESi}) @ ?L2) \in Tr_{ESi}$ by (simp only: projection-def, auto) ultimately show ?thesis by auto \mathbf{qed} moreover have $?L2 \uparrow C_{\mathcal{V}i} = []$ proof – from validVi have $\bigwedge x$. $(x \in E_{ESi} \land x \in C_{Vi}) = (x \in C_{Vi})$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) with δ -no- $C\mathcal{V}i$ show ?thesis **by** (*simp add: projection-def*) \mathbf{qed} moreover note Suc(5)ultimately obtain δ' where δ' -1: (?L1 @ δ') $\in Tr_{ESi}$ and $\delta' - 2$: $\delta' \uparrow V_{\mathcal{V}i} = ?L2 \uparrow V_{\mathcal{V}i}$ and $\delta' - 3$: $\delta' \uparrow C_{\mathcal{V}i} = []$ unfolding BSD-def by blast hence $\delta' - 2'$: $\delta' \uparrow V_{\mathcal{V}i} = \delta \uparrow V_{\mathcal{V}i}$ proof – have $?L2 \upharpoonright V_{\mathcal{V}i} = \delta \upharpoonright V_{\mathcal{V}i}$ proof from validVi have $\bigwedge x$. $(x \in E_{ESi} \land x \in V_{Vi}) = (x \in V_{Vi})$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis **by** (*simp add: projection-def*) qed with δ' -2 show ?thesis by auto

 \mathbf{qed}
show ?case **proof** (cases γ) case Nil with $c\alpha$ -is- γc -i δ have $[c] @ \alpha = [c$ -i] @ δ by *auto* hence δ -is- α : $\delta = \alpha$ by auto from δ' -1 have δ' -1': $((\beta \upharpoonright E_{ESi}) @ \delta') \in Tr_{ESi}$ by (simp only: Nil, auto) moreover note $\delta' - 2'$ moreover note δ' -3 ultimately show ?thesis by (simp only: δ -is- α , auto) \mathbf{next} case (Cons $x \gamma'$) with $c\alpha$ -is- γc -i δ have γ -is- $c\gamma'$: $\gamma = [c] @ \gamma'$ by simp with *n*-is-len- $\gamma\delta$ - $C\mathcal{V}i$ have $n = length (([c] @ \gamma' @ \delta) | C_{\mathcal{V}i})$ by *auto* with δ -no- $C\mathcal{V}i \ \delta'$ -3 have $n = length (([c] @ \gamma' @ \delta') | C_{\mathcal{V}i})$ **by** (*simp only: projection-concatenation-commute*) moreover note Suc(3)moreover have $((\beta @ [c] @ (\gamma' @ \delta')) | E_{ESi}) \in Tr_{ESi}$ proof from δ' -1 validESi have $\delta' = \delta' \upharpoonright E_{ESi}$ proof let ${\it ?L}=(\beta @ \gamma) \restriction E_{ESi} @ \delta'$ from δ' -1 validESi have $\forall e \in set ?L. e \in E_{ESi}$ **by** (*simp add: ES-valid-def traces-contain-events-def*) hence set $\delta' \subseteq E_{ESi}$ by auto thus ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) \mathbf{qed} with δ' -1 have ?L1 @ $\delta' = (\beta @ \gamma @ \delta') | E_{ESi}$ by (simp only: projection-concatenation-commute, auto) with γ -is- $c\gamma' \delta'$ -1 show ?thesis by auto \mathbf{qed} moreover note Suc(5)moreover note $Suc(1)[of \ c \ \gamma' @ \ \delta' \ \beta]$ ultimately obtain α -i' where $\alpha \cdot i' \cdot 1 \colon \beta \upharpoonright E_{ESi} @ \alpha \cdot i' \in Tr_{ESi}$ and $\alpha \cdot i' \cdot 2 \colon \alpha \cdot i' \upharpoonright V_{\mathcal{V}i} = (\gamma' @ \delta') \upharpoonright V_{\mathcal{V}i}$ and $\alpha \cdot i' \cdot 3 \colon \alpha \cdot i' \upharpoonright C_{\mathcal{V}i} = []$ by auto

moreover have $\alpha - i' \upharpoonright V_{\mathcal{V}i} = \alpha \upharpoonright V_{\mathcal{V}i}$ proof have $\alpha \upharpoonright V_{\mathcal{V}i} = (\gamma' @ \delta) \upharpoonright V_{\mathcal{V}i}$ proof – from $c\alpha$ -is- γc -i $\delta \gamma$ -is- $c\gamma'$ have $\alpha \upharpoonright V_{\mathcal{V}i} = (\gamma' @ [c-i] @ \delta) \upharpoonright V_{\mathcal{V}i}$ by simp with $validVi \ c$ -i-in-CVi show ?thesis $\mathbf{by} \ (simp \ only: \ is View On-def \ V-valid-def \ VC-disjoint-def$ $VN\-disjoint\-def\ NC\-disjoint\-def\ projection\-concatenation\-commute$ projection-def, auto) \mathbf{qed} moreover from $\alpha - i' - 2 \delta' - 2'$ have $\alpha - i' \upharpoonright V_{\mathcal{V}i} = (\gamma' @ \delta) \upharpoonright V_{\mathcal{V}i}$ **by** (*simp only: projection-concatenation-commute*) ultimately show ?thesis by auto \mathbf{qed} ultimately show ?thesis by auto \mathbf{qed} \mathbf{qed} **lemma** *BSD-in-subsystem2*: $[\![((\beta @ \alpha) | E_{ESi}) \in \mathit{Tr}_{ESi} ; \mathit{BSD} \ \mathit{Vi} \ \mathit{Tr}_{ESi}]\!]$ $\implies \exists \alpha \cdot i'. (((\beta \restriction E_{ESi}) @ \alpha \cdot i') \in Tr_{ESi} \land (\alpha \cdot i' \restriction V_{\mathcal{V}i}) = (\alpha \restriction V_{\mathcal{V}i}) \land \alpha \cdot i' \restriction C_{\mathcal{V}i} = [])$ **proof** (*induct length* ($\alpha \uparrow C_{\mathcal{V}i}$) *arbitrary*: $\beta \alpha$) $\mathbf{case} \ \theta$ let $?L = \alpha \uparrow E_{ESi}$ from $\theta(2)$ have β -E1- α -E1-in-Tr1: $((\beta \mid E_{ESi}) \otimes ?L) \in Tr_{ESi}$ **by** (simp only: projection-concatenation-commute) moreover have $(?L | V_{\mathcal{V}i}) = (\alpha | V_{\mathcal{V}i})$ proof – from validVi have $E_{ESi} \cap V_{Vi} = V_{Vi}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) moreover have $(?L \upharpoonright V_{\mathcal{V}i}) = \alpha \upharpoonright (E_{ESi} \cap V_{\mathcal{V}i})$ **by** (*simp add: projection-def*) ultimately show ?thesis $\mathbf{by} \ auto$ qed moreover have $?L \upharpoonright C_{\mathcal{V}i} = []$ proof from $\theta(1)$ have $\alpha \uparrow C_{\mathcal{V}i} = []$ by *auto*

110

hence $\alpha \uparrow (C_{\mathcal{V}i} \cap E_{ESi}) = []$

```
by (rule projection-on-intersection)

hence \alpha \mid (E_{ESi} \cap C_{Vi}) = []

by (simp only: Int-commute)

thus ?thesis

by (simp only: projection-def, auto)

qed

ultimately show ?case

by auto
```

\mathbf{next}

case (Suc n)

```
from projection-split-last[OF Suc(2)] obtain \gamma c-i \delta
where c-i-in-CVi: c-i \in C_{\mathcal{V}i}
and \alpha-is-\gammac-i\delta: \alpha = \gamma @ [c-i] @ \delta
and \delta-no-CVi: \delta | C_{\mathcal{V}i} = []
and n-is-len-\gamma\delta-CVi: n = length ((\gamma @ \delta) | C_{\mathcal{V}i})
by auto
```

```
let ?L1 = ((\beta @ \gamma) | E_{ESi})
let ?L2 = (\delta | E_{ESi})
```

```
note c-i-in-C\mathcal{V}i
moreover
have list-with-c-i-in-Tr1: (?L1 @ [c-i] @ ?L2) \in Tr<sub>ESi</sub>
proof -
  from c-i-i-CVi validVi have [c-i] \uparrow E_{ESi} = [c-i]
    by (simp only: is ViewOn-def V-valid-def VC-disjoint-def
      VN-disjoint-def NC-disjoint-def projection-def, auto)
  moreover
  from Suc(3) \alpha-is-\gamma c-i\delta have ((\beta @ \gamma @ [c-i] @ \delta) | E_{ESi}) \in Tr_{ESi}
   by auto
  hence (?L1 @ ([c-i] | E_{ESi}) @ ?L2) \in Tr_{ESi}
   by (simp only: projection-def, auto)
  ultimately show ?thesis
   by auto
\mathbf{qed}
moreover
have ?L2 \uparrow C_{\mathcal{V}i} = []
proof -
  from validVi have \bigwedge x. (x \in E_{ESi} \land x \in C_{Vi}) = (x \in C_{Vi})
    by (simp add: is ViewOn-def V-valid-def VC-disjoint-def
      VN-disjoint-def NC-disjoint-def, auto)
  with \delta-no-C\mathcal{V}i show ?thesis
   by (simp add: projection-def)
qed
moreover note Suc(4)
ultimately obtain \delta'
  where \delta'-1: (?L1 @ \delta') \in Tr_{ESi}
  and \delta' - 2: \delta' \uparrow V_{\mathcal{V}i} = ?L2 \uparrow V_{\mathcal{V}i}
```

and $\delta' - 3$: $\delta' \uparrow C_{\mathcal{V}i} = []$ $\mathbf{unfolding} \ BSD\text{-}def$ **by** blast hence $\delta' - 2'$: $\delta' \uparrow V_{\mathcal{V}i} = \delta \uparrow V_{\mathcal{V}i}$ proof have $?L2 \upharpoonright V_{\mathcal{V}i} = \delta \upharpoonright V_{\mathcal{V}i}$ proof from validVi have $\bigwedge x$. $(x \in E_{ESi} \land x \in V_{Vi}) = (x \in V_{Vi})$ $\mathbf{by} \ (simp \ add: \ is View On-def \ V-valid-def \ \ VC-disjoint-def$ VN-disjoint-def NC-disjoint-def, auto) thus ?thesis**by** (*simp add: projection-def*) \mathbf{qed} with δ' -2 show ?thesis by auto qed

from *n*-is-len- $\gamma\delta$ -CVi δ -no-CVi δ' -3 have $n = length ((\gamma @ \delta') | C_{Vi})$ **by** (*simp add: projection-concatenation-commute*) moreover have $(\beta @ (\gamma @ \delta')) | E_{ESi} \in Tr_{ESi}$ proof – have $\delta' = \delta' \upharpoonright E_{ESi}$ proof – let $?L = (\beta @ \gamma) \uparrow E_{ESi} @ \delta'$ from δ' -1 validESi have $\forall e \in set ?L. e \in E_{ESi}$ by (simp add: ES-valid-def traces-contain-events-def) hence set $\delta' \subseteq E_{ESi}$ $\mathbf{by} \ auto$ thus ?thesis **by** (simp add: list-subset-iff-projection-neutral) \mathbf{qed} with δ' -1 have ?L1 $@ \delta' = (\beta @ \gamma @ \delta') | E_{ESi}$ by (simp only: projection-concatenation-commute, auto) with δ' -1 show ?thesis $\mathbf{by} \ auto$ \mathbf{qed} moreover note Suc(4) $Suc(1)[of \gamma @ \delta' \beta]$ ultimately obtain α -i' where res1: $\beta \mid E_{ESi} @ \alpha \cdot i' \in Tr_{ESi}$ and res2: $\alpha \cdot i' \mid V_{\mathcal{V}i} = (\gamma @ \delta') \mid V_{\mathcal{V}i}$ and res3: $\alpha \cdot i' \mid C_{\mathcal{V}i} = []$ by auto have $\alpha - i' \upharpoonright V_{\mathcal{V}i} = \alpha \upharpoonright V_{\mathcal{V}i}$ proof from *c-i-in-CVi* validVi have $[c-i] \upharpoonright V_{Vi} = []$

```
by (simp add: is ViewOn-def V-valid-def VC-disjoint-def
```

```
\begin{array}{l} VN\text{-}disjoint\text{-}def \ NC\text{-}disjoint\text{-}def \ projection\text{-}def, \ auto)\\ \textbf{with} \ \alpha\text{-}is\text{-}\gamma\text{c-}i\delta \ \delta^{\prime}\text{-}2^{\prime} \ \textbf{have} \ \alpha \ \mid \ V_{\mathcal{V}i} = (\gamma \ @ \ \delta^{\prime}) \ \mid \ V_{\mathcal{V}i}\\ \textbf{by} \ (simp \ only: \ projection\text{-}concatenation\text{-}commute, \ auto)\\ \textbf{with} \ res2 \ \textbf{show} \ ?thesis\\ \textbf{by} \ auto\\ \textbf{qed}\\ \textbf{with} \ res1 \ res3 \ \textbf{show} \ ?case\\ \textbf{by} \ auto\\ \textbf{qed}\\ \textbf{qed} \end{array}
```

 \mathbf{end}

 \mathbf{end}

5.4.2 Generalized Zipping Lemma

theory GeneralizedZippingLemma imports CompositionBase begin

context Compositionality begin

```
lemma generalized-zipping-lemma1: [\![N_{\mathcal{V}1} \cap E_{ES2} = \{\}; N_{\mathcal{V}2} \cap E_{ES1} = \{\}] \implies \forall \tau \text{ lambda t1 t2.} ( ( set <math>\tau \subseteq E_{(ES1 \parallel ES2)} \land set \text{ lambda} \subseteq V_{\mathcal{V}} \land set t1 \subseteq E_{ES1} \land set t2 \subseteq E_{ES2} \land set t2 \subseteq
         \wedge ((\tau \mid E_{ES1}) @ t1) \in Tr_{ES1} \land ((\tau \mid E_{ES2}) @ t2) \in Tr_{ES2} \land (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}}) \land (lambda \mid E_{ES2}) = (t2 \mid V_{\mathcal{V}}) \land (t1 \mid C_{\mathcal{V}1}) = [] \land (t2 \mid C_{\mathcal{V}2}) = []) 
          \longrightarrow (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))))
proof -
        assume Nv1-inter-E2-empty: N_{V1} \cap E_{ES2} = \{\}
                 and Nv2-inter-E1-empty: N_{\mathcal{V2}} \cap E_{ES1} = \{\}
          {
                  fix \tau lambda t1 t2
                 assume \tau-in-Estar: set \tau \subseteq E_{(ES1 \parallel ES2)}
                          and lambda-in-Vystar: set lambda \stackrel{!}{\subseteq} V_{\mathcal{V}}
                            and t1-in-E1star: set t1 \subseteq E_{ES1}
                            and t2-in-E2star: set t2 \subseteq E_{ES2}
                            and \tau-E1-t1-in-Tr1: ((\tau \mid E_{ES1}) \otimes t1) \in Tr_{ES1}
                          and \tau-E2-t2-in-Tr2: ((\tau \mid E_{ES2}) \otimes t2) \in Tr_{ES2}
and lambda-E1-is-t1-Vv: (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}})
                            and lambda-E2-is-t2-Vv: (lambda | E_{ES2}) = (t2 | V_{\mathcal{V}})
                          and t1-no-Cv1: (t1 | C_{\mathcal{V}1}) = []
and t2-no-Cv2: (t2 | C_{\mathcal{V}2}) = []
                       have \llbracket set \tau \subseteq E_{(ES1 \parallel ES2)};
                            set lambda \subseteq V_{\mathcal{V}};
                            set t1 \subseteq E_{ES1};
                            set t2 \subseteq E_{ES2};
```

```
((\tau \mid E_{ES1}) @ t1) \in Tr_{ES1};
((\tau \uparrow E_{ES2}) @ t2) \in Tr_{ES2};
(lambda | E_{ES1}) = (t1 | V_{\mathcal{V}});
(lambda | E_{ES2}) = (t2 | V_{\mathcal{V}});
 \begin{array}{c} (t1 + C_{\mathcal{V}1}) = []; \\ (t2 + C_{\mathcal{V}2}) = [] \end{array} 
\implies (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \upharpoonright V_{\mathcal{V}}) = lambda \land (t \upharpoonright C_{\mathcal{V}}) = []))
proof (induct lambda arbitrary: \tau t1 t2)
  case (Nil \tau t1 t2)
  have (\tau @ []) \in Tr_{(ES1 \parallel ES2)}
    proof -
      have \tau \in Tr_{(ES1 \parallel ES2)}
         proof -
           from Nil(5) validES1 have \tau \upharpoonright E_{ES1} \in Tr_{ES1}
              \mathbf{by}~(simp~add:~ES\text{-}valid\text{-}def~traces\text{-}prefixclosed\text{-}def
                prefixclosed-def prefix-def)
           moreover
           from Nil(6) validES2 have \tau \upharpoonright E_{ES2} \in Tr_{ES2}
              by (simp add: ES-valid-def traces-prefixclosed-def
                prefixclosed-def prefix-def)
           moreover
           note Nil(1)
           ultimately show ?thesis
             by (simp add: composeES-def)
         \mathbf{qed}
       thus ?thesis
         by auto
    \mathbf{qed}
  moreover
  have ([] | V_{V}) = []
    by (simp add: projection-def)
  moreover
  have ([] | C_{V}) = []
    by (simp add: projection-def)
  ultimately show ?case
    \mathbf{by} \ blast
\mathbf{next}
  case (Cons \mathcal{V}' lambda' \tau t1 t2)
  thus ?case
    proof -
       from Cons(3) have v'-in-Vv: \mathcal{V}' \in V_{\mathcal{V}}
         by auto
      have \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2}
          \forall \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2} \\ \forall \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1} 
         using Vv-is-Vv1-union-Vv2 v'-in-Vv propSepViews
         unfolding properSeparationOfViews-def
         by fastforce
       moreover {
         assume v'-in-Vv1-inter-Vv2: \mathcal{V}' \in V_{\mathcal{V}_1} \cap V_{\mathcal{V}_2}
```

114

hence v'-in- $Vv1: V' \in V_{V1}$ and v'-in- $Vv2: V' \in V_{V2}$ by auto with v'-in-Vv propSepViews have v'-in-E1: $\mathcal{V}' \in E_{ES1}$ and v'-in-E2: $\mathcal{V}' \in E_{ES2}$ unfolding properSeparationOfViews-def by auto from Cons(2,4,8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})$ **by** (*simp add: projection-def*) from projection-split-first[OF this] obtain r1 s1 where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1and r1-Vv-empty: r1 | $V_{\mathcal{V}} = []$ by auto with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_V r1] have r1-Vv1-empty: $r1 \upharpoonright V_{\mathcal{V}1} = []$ by auto from Cons(3,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})$ **by** (*simp add: projection-def*) from projection-split-first[OF this] obtain r2 s2 where t2-is-r2-v'-s2: $t2 = r2 @ [\mathcal{V}'] @ s2$ and r2-Vv-empty: r2 \uparrow V_V = [] by auto with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2] have r2-Vv2-empty: $r2 \upharpoonright V_{\mathcal{V}2} = []$ by auto from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 | $C_{\mathcal{V}1} = []$ **by** (*simp add: projection-concatenation-commute*) from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | $C_{V1} = []$ by (simp only: projection-concatenation-commute, auto)

from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set $r1 \subseteq E_{ES1}$ and s1-in-E1star: set $s1 \subseteq E_{ES1}$ by auto from Cons(6) t1-is-r1-v'-s1 have $\tau E1$ -r1-v'-s1-in-Tr1: $\tau \mid E_{ES1} @ r1 @ [\mathcal{V}'] @ s1 \in Tr_{ES1}$ by simp have r1-in-Nv1star: set $r1 \subseteq N_{\mathcal{V}1}$ proof – note r1-in-E1star moreover from r1-Vv1-empty have set $r1 \cap V_{\mathcal{V}1} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover

from r1-Cv1-empty have set r1 \cap C_{V1} = {}

```
by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
       Int-empty-right\ disjoint-eq-subset-Compl
       list-subset-iff-projection-neutral projection-on-union)
   moreover
   note validV1
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
 qed
with Nv1-inter-E2-empty have r1E2-empty: r1 | E_{ES2} = []
 \mathbf{by}~(metis~Int-commute~empty-subset I~projection-on-subset 2~r1-Vv-empty)
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | C_{V2} = []
 by (simp add: projection-concatenation-commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | C_{V2} = []
 by (simp only: projection-concatenation-commute, auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
 and s2-in-E2star: set s2 \subseteq E_{ES2}
 by auto
from Cons(7) t2-is-r2-v'-s2
have \tau E2 - r2 - v' - s2 - in - Tr2: \tau \mid E_{ES2} @ r2 @ [\mathcal{V}'] @ s2 \in Tr_{ES2}
 by simp
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
 proof -
   note r2-in-E2star
   moreover
   from r2-Vv2-empty have set r2 \cap V_{\mathcal{V}2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint\-eq\-subset\-Compl\list\-subset\-iff\-projection\-neutral
       projection-on-union)
   moreover
   from r2-Cv2-empty have set r2 \cap C_{\mathcal{V}2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
      projection-on-union)
   moreover
   note validV2
   ultimately show ?thesis
     \mathbf{by}~(simp~add:~isViewOn-def~V-valid-def~VN-disjoint-def~NC-disjoint-def,~auto)
 qed
with Nv2-inter-E1-empty have r2E1-empty: r2 | E_{ES1} = []
 by (metis Int-commute empty-subset projection-on-subset 2 r2-Vv-empty)
```

let $?tau = \tau @ r1 @ r2 @ [\mathcal{V}']$

from Cons(2) r1-in-E1star r2-in-E2star v'-in-E2 have set ?tau $\subseteq (E_{(ES1 \parallel ES2)})$

by (simp add: composeES-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover note s1-in-E1star s2-in-E2star moreover from Cons(6) r1-in-E1star r2E1-empty v'-in-E1 t1-is-r1-v'-s1 have $((?tau | E_{ES1}) @ s1) \in Tr_{ES1}$ by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral projection-def, auto) moreover from Cons(7) r2-in-E2star r1E2-empty v'-in-E2 t2-is-r2-v'-s2 have $((?tau | E_{ES2}) @ s2) \in Tr_{ES2}$ by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral projection-def, auto) moreover have $lambda' | E_{ES1} = s1 | V_{\mathcal{V}}$ proof from Cons(2,4,8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}']$ @ $(lambda' \upharpoonright E_{ES1})$ **by** (simp add: projection-def) moreover from t1-is-r1-v'-s1 r1-Vv-empty v'-in-Vv1 Vv-is-Vv1-union-Vv2 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1 \upharpoonright V_{\mathcal{V}})$ by (simp only: t1-is-r1-v'-s1 projection-concatenation-commute projection-def, auto) ultimately show ?thesis by auto qed moreover have $lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}$ proof from Cons(3,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}']$ @ $(lambda' \upharpoonright E_{ES2})$ $\mathbf{by}~(simp~add:~projection-def)$ moreover from t2-is-r2-v'-s2 r2-Vv-empty v'-in-Vv2 Vv-is-Vv1-union-Vv2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2 \upharpoonright V_{\mathcal{V}})$ by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute projection-def, auto) ultimately show ?thesis $\mathbf{by} \ auto$ qed moreover **note** s1-Cv1-empty s2-Cv2-empty Cons.hyps(1)[of ?tau s1 s2] ultimately obtain t'where tau-t'-in-Tr: ?tau @ t' \in Tr_(ES1 || ES2) and t'Vv-is-lambda': t' | $V_{\mathcal{V}} = lambda'$ and t'Cv-empty: t' | $C_{\mathcal{V}} = []$ by auto

let $?t = r1 @ r2 @ [\mathcal{V}'] @ t'$

note tau-t'-in-Tr moreover from r1-Vv-empty r2-Vv-empty t'Vv-is-lambda' v'-in-Vv have $?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda$ by (simp add: projection-def) moreover have $?t \upharpoonright C_{\mathcal{V}} = []$ proof from propSepViews have $C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by auto hence $r1 \uparrow C_{\mathcal{V}} = []$ by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star) moreover from propSepViews have $C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}$ unfolding properSeparationOfViews-def by auto hence $r2 \uparrow C_{\mathcal{V}} = []$ by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star) moreover **note** v'-in-Vv VIsViewOnE t'Cv-empty ultimately show ?thesis by (simp add: is ViewOn-def V-valid-def VC-disjoint-def projection-def, auto) qed ultimately have ?thesis $\mathbf{by} \ auto$ moreover { assume v'-in-Vv1-minus-E2: $\mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}$ hence v'-in- $Vv1: \mathcal{V}' \in V_{\mathcal{V}1}$ by auto with v'-in-Vv propSepViews have v'-in-E1: $\mathcal{V}' \in E_{ES1}$ ${\bf unfolding} \ properSeparation Of Views-def$ by auto from v'-in-Vv1-minus-E2 have v'-notin-E2: $\mathcal{V}' \notin E_{ES2}$ by (auto) with valid V2 have v'-notin-Vv2: $\mathcal{V}' \notin V_{\mathcal{V}2}$ **by** (*simp add: isViewOn-def V-valid-def, auto*) from Cons(3) Cons(4) Cons(8) v'-in-E1 have $t1 \uparrow V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \uparrow E_{ES1})$ **by** (*simp add: projection-def*) from projection-split-first[OF this] obtain r1 s1 where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1and r1-Vv-empty: r1 | $V_{\mathcal{V}} = []$ by *auto* with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_V r1] have r1-Vv1-empty: $r1 \mid V_{V1} = []$ by auto

}

from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 | $C_{V1} = []$

by (*simp add: projection-concatenation-commute*)

```
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | C_{V1} = []
 by (simp only: projection-concatenation-commute, auto)
from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1}
 by auto
have r1-in-Nv1star: set r1 \subseteq N_{\mathcal{V}1}
proof –
 {\bf note} \ r1{\textbf -}in{\textbf -}E1star
 moreover
 from r1-Vv1-empty have set r1 \cap V<sub>V1</sub> = {}
   by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
     Int-empty-right disjoint-eq-subset-Compl
     list-subset-iff-projection-neutral projection-on-union)
 moreover
 from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
     {\it Int-empty-right~disjoint-eq-subset-Compl}
     list-subset-iff-projection-neutral projection-on-union)
 moreover
 note validV1
 ultimately show ?thesis
   by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv1-inter-E2-empty have r1E2-empty: r1 | E_{ES2} = []
 by (metis Int-commute empty-subsetI
   projection-on-subset2 r1-Vv1-empty)
let ?tau = \tau @ r1 @ [\mathcal{V}']
from v'-in-E1 Cons(2) r1-in-Nv1star validV1
have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 by (simp only: is ViewÖn-def composeES-def V-valid-def, auto)
moreover
from Cons(3) have set lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 \subseteq E_{ES1}
 by auto
moreover
note Cons(5)
moreover
have ?tau | E_{ES1} @ s1 \in Tr_{ES1}
 by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
   projection-concatenation-commute t1-is-r1-v'-s1)
moreover
```

have ?tau | E_{ES2} @ $t2 \in Tr_{ES2}$ proof –

```
from v'-notin-E2 have [\mathcal{V}'] \upharpoonright E_{ES2} = []
     by (simp add: projection-def)
   with Cons(7) Cons(4) t1-is-r1-v'-s1 v'-notin-E2
     r1-in-Nv1star Nv1-inter-E2-empty r1E2-empty
     show ?thesis
       by (simp only: t1-is-r1-v'-s1 list-subset-iff-projection-neutral
         projection-concatenation-commute, auto)
 qed
moreover
from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv have lambda' \mid E_{ES1} = s1 \mid V_{\mathcal{V}}
 by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 have lambda' \upharpoonright E_{ES2} = t2 \upharpoonright V_{\mathcal{V}}
 by (simp add: projection-def)
moreover
note s1-Cv1-empty Cons(11)
moreover
note Cons.hyps(1)[of ?tau s1 t2]
ultimately obtain t'
 where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'-Vv-is-lambda': t' | V_{\mathcal{V}} = lambda
 and t'-Cv-empty: t' | C_{\mathcal{V}} = [
 by auto
let ?t = r1 @ [\mathcal{V}'] @ t'
```

```
note tau-t'-in-Tr
 moreover
 from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv
 have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
   by (simp add: projection-def)
 moreover
 have ?t \upharpoonright C_{\mathcal{V}} = []
 proof -
   from propSepViews have C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}
     unfolding properSeparationOfViews-def by auto
   hence r1 \mid C_{\mathcal{V}} = []
     by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)
   with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
     by (simp add: is ViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
 \mathbf{qed}
 ultimately have ?thesis
   by auto
}
moreover {
 assume v'-in-Vv2-minus-E1: \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
 hence v'-in-Vv2: \mathcal{V}' \in V_{\mathcal{V2}}
   by auto
 with v'-in-Vv propSepViews
 have v'-in-E2: \mathcal{V}' \in E_{ES2}
   unfolding properSeparationOfViews-def by auto
```

from v'-in-Vv2-minus-E1have v'-notin-E1: $\mathcal{V}' \notin E_{ES1}$ by (auto) with validV1 have v'-notin-Vv1: $\mathcal{V}' \notin V_{\mathcal{V}1}$ by (simp add: is ViewOn-def V-valid-def, auto)

```
from Cons(4) Cons(5) Cons(9) v'-in-E2
have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
 by (simp add: projection-def)
from projection-split-first[OF this] obtain r2 \ s2
 where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
 and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2]
have r2-Vv2-empty: r2 \uparrow V_{\mathcal{V}2} = []
 by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | C_{V2} = []
 by (simp add: projection-concatenation-commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | C_{V2} = []
 by (simp only: projection-concatenation-commute, auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
 by auto
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V2}}
proof -
 note r2-in-E2star
 moreover
 from r2-Vv2-empty have set r2 \cap V_{\mathcal{V2}} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
     disjoint-eq-subset-Compl
     list-subset-iff-projection-neutral projection-on-union)
 moreover
 from r2-Cv2-empty have set r2 \cap C_{\mathcal{V2}} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
     disjoint-eq-subset-Compl
```

 $\label{eq:list-subset-iff-projection-neutral projection-on-union)} \\ \textbf{moreover} \\ \textbf{note validV2} \\ \textbf{ultimately show ?thesis} \\ \textbf{by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)} \\ \textbf{qed} \\ \textbf{with } Nv2\text{-inter-E1-empty have } r2E1\text{-empty: } r2 ~|~ E_{ES1} = [] \\ \end{aligned}$

by (metis Int-commute empty-subsetI projection-on-subset2 r2-Vv2-empty) let $?tau = \tau @ r2 @ [\mathcal{V}']$

from v'-in-E2 Cons(2) r2-in-Nv2star validV2 $\begin{array}{l} \mathbf{have} \ set \ ?tau \subseteq E_{(ES1 \parallel ES2)} \\ \mathbf{by} \ (simp \ only: \ composeES-def \ isViewOn-def \ V-valid-def, \ auto) \end{array}$ moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover **note** Cons(4)moreover from Cons(5) t2-is-r2-v'-s2 have set $s2 \subseteq E_{ES2}$ by auto moreover have ?tau | E_{ES1} @ $t1 \in Tr_{ES1}$ proof from v'-notin-E1 have $[\mathcal{V}'] \upharpoonright E_{ES1} = []$ **by** (simp add: projection-def) with Cons(6) Cons(3) t2-is-r2-v'-s2 v'-notin-E1 r2-in-Nv2star Nv2-inter-E1-empty r2E1-empty show ?thesis by (simp only: t2-is-r2-v'-s2 list-subset-iff-projection-neutral projection-concatenation-commute, auto) qed moreover have $?tau | E_{ES2} @ s2 \in Tr_{ES2}$ by (metis Cons-eq-appendI append-eq-appendI calculation(4) eq-Nil-appendI *list-subset-iff-projection-neutral* Cons.prems(4) Cons.prems(6) $projection-concatenation-commute\ t2-is-r2-v'-s2)$ moreover from Cons(8) v'-notin-E1 have $lambda' | E_{ES1} = t1 | V_{\mathcal{V}}$ **by** (*simp add: projection-def*) moreover from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv have $lambda' \mid E_{ES2} = s2 \mid V_{\mathcal{V}}$ by (simp add: projection-def) moreover **note** Cons(10) s2-Cv2-empty moreover **note** Cons.hyps(1)[of ?tau t1 s2] ultimately obtain t'where tau-t'-in-Tr: ?tau @ t' \in Tr_(ES1 || ES2) and t'-Vv-is-lambda': t' | $V_{\mathcal{V}} = lambda'$ and t'-Cv-empty: $t' \upharpoonright C_{\mathcal{V}} = []$ by auto let $?t = r2 @ [\mathcal{V}'] @ t'$

note tau-t'-in-Tr moreover

```
from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv
             have ?t \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# lambda'
               by (simp add: projection-def)
             moreover
             have ?t \upharpoonright C_{\mathcal{V}} = []
             proof -
               from propSepViews have C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}
                 unfolding properSeparationOfViews-def by auto
               hence r2 \uparrow C_{\mathcal{V}} = []
                 by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
               with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
                 by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
             \mathbf{qed}
             ultimately have ?thesis
               by auto
           }
           ultimately show ?thesis
             by blast
         qed
       \mathbf{qed}
 thus ?thesis
   by auto
\mathbf{qed}
```

```
lemma generalized-zipping-lemma2: [N_{V1} \cap E_{ES2} = \{\}; total ES1 (C_{V1} \cap N_{V2}); BSIA \varrho 1 V1 Tr_{ES1}]
\implies
  \forall \ \tau \ lambda \ t1 \ t2. \ ( \ ( \ set \ \tau \subseteq (E_{ES1} \parallel ES2)) \land set \ lambda \subseteq V_{\mathcal{V}} \land set \ t1 \subseteq E_{ES1} \land set \ t2 \subseteq E_{ES2}
   \wedge ((\tau \mid E_{ES1}) @ t1) \in Tr_{ES1} \land ((\tau \mid E_{ES2}) @ t2) \in Tr_{ES2} \\ \wedge (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}}) \land (lambda \mid E_{ES2}) = (t2 \mid V_{\mathcal{V}}) 
  \wedge (t1 \uparrow C_{\mathcal{V}1}) = [] \land (t2 \uparrow C_{\mathcal{V}2}) = [])
   \longrightarrow (\exists t. ((\tau @ t) \in (Tr_{(ES1 \parallel ES2)}) \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))))
proof -
  assume Nv1-inter-E2-empty: N_{V1} \cap E_{ES2} = \{\}
  assume total-ES1-Cv1-inter-Nv2: total ES1 (C_{\mathcal{V}1} \cap N_{\mathcal{V}2})
  assume BSIA: BSIA \varrho 1 \ V 1 \ Tr_{ES1}
   ł
      fix \tau lambda t1 t2
      assume \tau-in-Estar: set \tau \subseteq E_{(ES1 \parallel ES2)}
         and lambda-in-Vystar: set lambda \subseteq V_{\mathcal{V}}
        and timodatile visital to be tandota = v_V
and t1-in-E1star: set t1 \subseteq E_{ES1}
and t2-in-E2star: set t2 \subseteq E_{ES2}
and \tau-E1-t1-in-Tr1: ((\tau \upharpoonright E_{ES1}) @ t1) \in Tr_{ES1}
and \tau-E2-t2-in-Tr2: ((\tau \upharpoonright E_{ES2}) @ t2) \in Tr_{ES2}
and lambda-E1-is-t1-Vv: (lambda \upharpoonright E_{ES1}) = (t1 \upharpoonright V_V)
         and lambda-E2-is-t2-Vv: (lambda | E_{ES2}) = (t2 | V_V)
         and t1-no-Cv1: (t1 | C_{V1}) = []
         and t2-no-Cv2: (t2 \ | \ C_{V2}) = []
```

have [[set $\tau \subseteq E_{(ES1 \parallel ES2)}$; set lambda $\subseteq V_{\mathcal{V}}$;

```
set t1 \subseteq E_{ES1}; set t2 \subseteq E_{ES2};
((\tau \mid E_{ES1}) @ t1) \in Tr_{ES1}; ((\tau \mid E_{ES2}) @ t2) \in Tr_{ES2};
(lambda | E_{ES1}) = (t1 | V_{\mathcal{V}}); (lambda | E_{ES2}) = (t2 | V_{\mathcal{V}});
(t1 | C_{\mathcal{V}1}) = []; (t2 | C_{\mathcal{V}2}) = []]
\implies (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))
proof (induct lambda arbitrary: \tau t1 t2)
 case (Nil \tau t1 t2)
 have (\tau @ []) \in Tr_{(ES1 \parallel ES2)}
   proof -
     have \tau \in Tr_{(ES1 \parallel ES2)}
        proof -
          from Nil(5) validES1 have \tau \mid E_{ES1} \in Tr_{ES1}
            by (simp add: ES-valid-def traces-prefixclosed-def
              prefixclosed-def prefix-def)
          moreover
          from Nil(6) validES2 have \tau \upharpoonright E_{ES2} \in Tr_{ES2}
            by (simp add: ES-valid-def traces-prefixclosed-def
              prefixclosed-def prefix-def)
          moreover
          note Nil(1)
          ultimately show ?thesis
            by (simp add: composeES-def)
        qed
      thus ?thesis
        by auto
   qed
 moreover
 have ([] | V_{V}) = []
   by (simp add: projection-def)
 moreover
 have ([] | C_{V}) = []
    by (simp add: projection-def)
 ultimately show ?case
   by blast
\mathbf{next}
 case (Cons \mathcal{V}' lambda' \tau t1 t2)
 thus ?case
    proof -
      from Cons(3) have v'-in-Vv: V' \in V_V
        by auto
      have \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \vee \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2} \vee \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
        using propSepViews unfolding properSeparationOfViews-def
        using Vv-is-Vv1-union-Vv2 v'-in-Vv by fastforce
      moreover {
        assume v'-in-Vv1-inter-Vv2: \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2}
hence v'-in-Vv1: \mathcal{V}' \in V_{\mathcal{V}1} and v'-in-Vv2: \mathcal{V}' \in V_{\mathcal{V}2}
          by auto
        with v'-in-Vv propSepViews
        have v'-in-E1: \mathcal{V}' \in E_{ES1} and v'-in-E2: \mathcal{V}' \in E_{ES2}
          unfolding properSeparationOfViews-def by auto
```

have $t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})$ by (simp add: projection-def) from projection-split-first[OF this] obtain r2 s2 where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2and r2-Vv-empty: $r2 \uparrow V_{\mathcal{V}} = []$ by *auto* with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2] have r2-Vv2-empty: $r2 \uparrow V_{\mathcal{V}2} = []$ by auto from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | $C_{V2} = []$ $\mathbf{by}~(simp~add:~projection-concatenation-commute)$ from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | $C_{V2} = []$ by (simp only: projection-concatenation-commute, auto) from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set $r2 \subseteq E_{ES2}$ and s2-in-E2star: set s2 $\subseteq E_{ES2}$ by auto from Cons(7) t2-is-r2-v'-s2 have $\tau E2$ -r2-v'-s2-in-Tr2: τ | E_{ES2} @ r2 @ $[\mathcal{V}']$ @ $s2 \in Tr_{ES2}$ by simp have r2-in-Nv2star: set $r2 \subseteq N_{\mathcal{V}2}$ proof note r2-in-E2star moreover from r2-Vv2-empty have set $r2 \cap V_{\mathcal{V}2} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover from r2-Cv2-empty have set $r2 \cap C_{\mathcal{V}2} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover note validV2 ultimately show ?thesis by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto) \mathbf{qed} have r2E1-in-Nv2-inter-C1-star: set $(r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ proof -

have set $(r2 | E_{ES1}) = set r2 \cap E_{ES1}$ by (simp add: projection-def, auto)

from Cons(3,5,9) v'-in-E2

with r2-in-Nv2star have set $(r2 \uparrow E_{ES1}) \subseteq (E_{ES1} \cap N_{\mathcal{V2}})$

```
by auto

moreover

from validV1 propSepViews

have E_{ES1} \cap N_{V2} = N_{V2} \cap C_{V1}

unfolding properSeparationOfViews-def isViewOn-def V-valid-def

using disjoint-Nv2-Vv1 by blast

ultimately show ?thesis

by auto

qed
```

note *outerCons-prems* = *Cons.prems*

```
have set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}}) \Longrightarrow
  \exists t1'. (set t1' \subseteq E_{ES1})
  \wedge ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1} 
 \wedge t1' | V_{V1} = t1 | V_{V1} 
 \wedge t1' | C_{V1} = [] ) 
proof (induct r2 \mid E_{ES1} arbitrary: r2 rule: rev-induct)
  \mathbf{case} \ \textit{Nil thus} \ \textit{?case}
    by (metis append-self-conv outerCons-prems(9)
       outerCons-prems(3) outerCons-prems(5) projection-concatenation-commute)
\mathbf{next}
  case (snoc \ x \ xs)
  have xs-is-xsE1: xs = xs | E_{ES1}
     proof –
       from snoc(2) have set (xs @ [x]) \subseteq E_{ES1}
         by (simp add: projection-def, auto)
       hence set xs \subseteq E_{ES1}
         by auto
       thus ?thesis
         \mathbf{by}~(simp~add:~list\text{-subset-iff-projection-neutral})
    \mathbf{qed}
  moreover
  have set (xs | E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})
    proof –
       have set (r2 | E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
         by (metis Int-commute snoc.prems)
       with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
         by simp
       hence set xs \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})
         by auto
       with xs-is-xsE1 show ?thesis
         by auto
    \mathbf{qed}
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t1"
    where t1''-in-E1star: set t1'' \subseteq E_{ES1}
    and \tau-xs-E1-t1''-in-Tr1: ((\tau @ xs) | E_{ES1}) @ t1'' \in Tr_{ES1}
and t1''Vv1-is-t1Vv1: t1'' | V_{V1} = t1 | V_{V1}
```

```
and t1^{\prime\prime}Cv1-empty: t1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []
  by auto
have x-in-Cv1-inter-Nv2: x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}
  proof -
    from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
     by simp
    thus ?thesis
     by auto
  qed
hence x-in-Cv1: x \in C_{\mathcal{V}1}
 by auto
moreover
note \tau-xs-E1-t1 "-in-Tr1 t1 "Cv1-empty
moreover
have Adm: (Adm \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
  proof -
    from \tau-xs-E1-t1 ''-in-Tr1 validES1
    have \tau-xsE1-in-Tr1: ((\tau @ xs) | E_{ES1}) \in Tr_{ES1}
     by (simp add: ES-valid-def traces-prefixclosed-def
        prefixclosed-def prefix-def)
    with x-in-Cv1-inter-Nv2 total-ES1-Cv1-inter-Nv2
    have \tau-xsE1-x-in-Tr1: ((\tau @ xs) | E_{ES1}) @ [x] \in Tr<sub>ES1</sub>
     by (simp only: total-def)
    moreover
    have ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) = ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) \dots
    ultimately show ?thesis
      by (simp add: Adm-def, auto)
  \mathbf{qed}
moreover note BSIA
ultimately obtain t1'
 where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1}
and res2: t1' | V_{V1} = t1'' | V_{V1}
and res3: t1' | C_{V1} = []
  by (simp only: BSIA-def, blast)
have set t1' \subseteq E_{ES1}
  proof -
    from res1 validES1
    have set (((\tau @ xs) | E_{ES1}) @ [x] @ t1') \subseteq E_{ES1}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
    thus ?thesis
     \mathbf{by} \ auto
 \mathbf{qed}
moreover
have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
 proof -
    from res1 xs-is-xsE1 have ((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
     by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
     by (simp only: snoc(2) projection-concatenation-commute)
  qed
```

moreover from t1''Vv1-is-t1Vv1 res2 have $t1' | V_{V1} = t1 | V_{V1}$ by auto moreover note res3 ultimately show ?case by auto qed from this[OF r2E1-in-Nv2-inter-C1-star] obtain t1'where t1'-in-E1star: set $t1' \subseteq E_{ES1}$ and $\tau r2E1$ -t1'-in-Tr1: $((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}$ and t1'-Vv1-is-t1-Vv1: $t1' | V_{V1} = t1 | V_{V1}$ and t1'-Cv1-empty: $t1' | C_{V1} = []$ by auto

```
have t1' | V_{V1} = V' \# (lambda' | E_{ES1})

proof –

from projection-intersection-neutral[OF Cons(4), of V_{V}]

propSepViews

have t1 | V_{V} = t1 | V_{V1}

unfolding properSeparationOfViews-def

by (simp only: Int-commute)

with Cons(8) t1'-Vv1-is-t1-Vv1 v'-in-E1 show ?thesis

by (simp add: projection-def)

qed

from projection-split-first[OF this] obtain r1' s1'

where t1'-is-r1'-v'-s1': t1' = r1' @ [V'] @ s1'

and r1'-Vv1-empty: r1' | V_{V1} = []

by auto
```

```
from t1'-is-r1'-v'-s1' t1'-Cv1-empty
have r1'-Cv1-empty: r1' | C_{V1} = []
by (simp add: projection-concatenation-commute)
from t1'-is-r1'-v'-s1' t1'-Cv1-empty
have s1'-Cv1-empty: s1' | C_{V1} = []
by (simp only: projection-concatenation-commute, auto)
from t1'-in-E1star t1'-is-r1'-v'-s1'
have r1'-in-E1star: set r1' \subseteq E_{ES1}
by auto
```

with propSepViews r1'-Vv1-empty have r1'-Vv-empty: r1' | $V_{\mathcal{V}} = []$ unfolding properSeparationOfViews-def by (metis projection-on-subset2 subset-iff-psubset-eq)

have r1'-in-Nv1star: set $r1' \subseteq N_{V1}$ proof – note r1'-in-E1star moreover

```
from r1'-Vv1-empty have set r1' \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   from r1'-Cv1-empty have set r1' \cap C_{\mathcal{V}1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   note validV1
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
 qed
with Nv1-inter-E2-empty have r1'E2-empty: r1' \uparrow E_{ES2} = []
 by (metis Int-commute empty-subsetI
   projection-on-subset2 r1'-Vv1-empty)
let ?tau = \tau @ r2 @ r1' @ [\mathcal{V}']
from Cons(2) r2-in-E2star r1'-in-E1star v'-in-E2
have set ?tau \subseteq (E_{(ES1 \parallel ES2)})
 by (simp add: composeES-def, auto)
moreover
from Cons(3) have set lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from t1'-in-E1star t1'-is-r1'-v'-s1'
have set s1' \subseteq E_{ES1}
 by simp
moreover
{\bf note} \ s2{\textbf -}in{\textbf -}E2star
moreover
from \tau r 2 E 1 - t1' - in - Tr1 t1' - is - r1' - v' - s1' v' - in - E1
have ?tau | E_{ES1} @ s1' \in Tr_{ES1}
 proof -
   from v'-in-E1 r1'-in-E1star
   have (\tau @ r2 @ r1' @ [\mathcal{V}']) | E_{ES1} = (\tau @ r2) | E_{ES1} @ r1' @ [\mathcal{V}']
     \mathbf{by}~(simp~only:~projection\mbox{-}concatenation\mbox{-}commute
       list-subset-iff-projection-neutral projection-def, auto)
   with \tau r 2E1-t1'-in-Tr1 t1'-is-r1'-v'-s1' v'-in-E1 show ?thesis
     by simp
 qed
moreover
from r2-in-E2star v'-in-E2 r1 'E2-empty \tauE2-r2-v'-s2-in-Tr2
have ?tau \mid E_{ES2} @ s2 \in Tr_{ES2}
 by (simp only: list-subset-iff-projection-neutral
   projection-concatenation-commute projection-def, auto)
moreover
have lambda' | E_{ES1} = s1' | V_{\mathcal{V}}
proof -
```

from Cons(2,4,8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES1})$ **by** (*simp add: projection-def*) moreover from t1'-is-r1'-v'-s1' r1'-Vv1-empty r1'-in-E1star v'-in-Vv1 propSepViews have $t1' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1' \upharpoonright V_{\mathcal{V}})$ proof have $r1' \upharpoonright V_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2 r1'-Vv1-empty r1'-in-E1star subset-iff-psubset-eq) with t1'-is-r1'-v'-s1' v'-in-Vv1 Vv-is-Vv1-union-Vv2 show ?thesis by (simp only: t1'-is-r1'-v'-s1' projection-concatenation-commute projection-def, auto) qed moreover have $t1 \uparrow V_{\mathcal{V}} = t1' \uparrow V_{\mathcal{V}}$ using propSepViews unfolding properSeparationOfViews-def by (metis Int-commute outerCons-prems(3) $projection\-intersection\-neutral$ t1'-Vv1-is-t1-Vv1 t1'-in-E1star) ultimately show ?thesis $\mathbf{by} \ auto$ \mathbf{qed} moreover have $lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}$ proof from Cons(3,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})$ **by** (*simp add: projection-def*) moreover from t2-is-r2-v'-s2 r2-Vv-empty v'-in-Vv2 Vv-is-Vv1-union-Vv2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2 \upharpoonright V_{\mathcal{V}})$ $\mathbf{by} \ (simp \ only: \ t2-is-r2-v'-s2 \ projection-concatenation-commute \ projection-def, \ auto)$ ultimately show ?thesis by auto qed moreover note s1'-Cv1-empty s2-Cv2-empty Cons.hyps[of ?tau s1' s2] ultimately obtain t'where tau-t'-in-Tr: ?tau @ t' \in Tr_(ES1 || ES2) and t'Vv-is-lambda': t' | $V_{\mathcal{V}} = lambda'$ and t'Cv-empty: $t' \upharpoonright C_{\mathcal{V}} = []$ by auto let $?t = r2 @ r1' @ [\mathcal{V}'] @ t'$

note tau-t'-in-Trmoreover from r2-Vv-empty r1'-Vv-empty t'Vv-is-lambda' v'-in-Vv have $?t \mid V_{\mathcal{V}} = \mathcal{V}' \ \# \ lambda'$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from $VIsViewOnE \ r2$ -Cv2-empty t'Cv-empty r1'-Cv1-empty v'-in-Vv

```
have ?t \upharpoonright C_{\mathcal{V}} = []
 proof -
   from VIsViewOnE v'-in-Vv have [\mathcal{V}'] \upharpoonright C_{\mathcal{V}} = []
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
   moreover
   from r2-in-E2star r2-Cv2-empty propSepViews
   have r2 \mid C_{\mathcal{V}} = []
     unfolding properSeparationOfViews-def
     using projection-on-subset2 by auto
   moreover
   from r1'-in-E1star r1'-Cv1-empty propSepViews
   have r1' \uparrow C_{\mathcal{V}} = []
     unfolding properSeparationOfViews-def
     using projection-on-subset2 by auto
   moreover
   note t'Cv-empty
   ultimately show ?thesis
     by (simp only: projection-concatenation-commute, auto)
 qed
 ultimately have ?thesis
   \mathbf{by} ~ auto
}
moreover {
 assume v'-in-Vv1-minus-E2: \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}
 hence v'-in-Vv1: V' \in V_{V1}
   by auto
 with v'-in-Vv propSepViews have v'-in-E1: \mathcal{V}' \in E_{ES1}
   unfolding properSeparationOfViews-def by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: \mathcal{V}' \notin E_{ES2}
   by (auto)
 with valid V2 have v'-notin-Vv2: \mathcal{V}' \notin V_{\mathcal{V}2}
   by (simp add: isViewOn-def V-valid-def, auto)
 from Cons(3) Cons(4) Cons(8) v'-in-E1
 have t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r1 s1
   where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1
   and r1-Vv-empty: r1 | V_{\mathcal{V}} = []
   by auto
 with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_V r1]
 have r1-Vv1-empty: r1 | V_{\mathcal{V}1} = []
   by auto
```

from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: $r1 \upharpoonright C_{V1} = []$ by (simp add: projection-concatenation-commute)

from *t1-is-r1-v'-s1* Cons(10)

have s1-Cv1-empty: s1 \uparrow CV1 = [] by (simp only: projection-concatenation-commute, auto) **from** Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1} by auto have r1-in-Nv1star: set $r1 \subseteq N_{\mathcal{V}1}$ proof **note** r1-in-E1star moreover from r1-Vv1-empty have set r1 \cap V_{V1} = {} by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right disjoint-eq-subset-Compl *list-subset-iff-projection-neutral projection-on-union*) moreover from r1-Cv1-empty have set $r1 \cap C_{\mathcal{V}1} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right disjoint-eq-subset-Compl *list-subset-iff-projection-neutral projection-on-union*) moreover note validV1 ultimately show ?thesis by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto) qed with Nv1-inter-E2-empty have r1E2-empty: r1 | $E_{ES2} = []$ by (metis Int-commute empty-subset projection-on-subset 2 r1-Vv1-empty)

let $?tau = \tau @ r1 @ [\mathcal{V}']$

from v'-in-E1 Cons(2) r1-in-Nv1star validV1 have set ?tau $\subseteq E_{(ES1 \parallel ES2)}$ by (simp only: compose ES-def is ViewOn-def V-valid-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover from Cons(4) t1-is-r1-v'-s1 have set $s1 \subseteq E_{ES1}$ by auto moreover **note** Cons(5)moreover have $?tau | E_{ES1} @ s1 \in Tr_{ES1}$ by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)projection-concatenation-commute t1-is-r1-v'-s1) moreover have ?tau | E_{ES2} @ $t2 \in Tr_{ES2}$ proof from v'-notin-E2 have $[\mathcal{V}'] \upharpoonright E_{ES2} = []$

by (simp add: projection-def) with Cons(7) Cons(4) t1-is-r1-v'-s1 v'-notin-E2 r1-in-Nv1star Nv1-inter-E2-empty r1E2-empty show ?thesis by (simp only: t1-is-r1-v'-s1 list-subset-iff-projection-neutral projection-concatenation-commute, auto) qed moreover from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv have $lambda' | E_{ES1} = s1 | V_{\mathcal{V}}$ **by** (simp add: projection-def) moreover from Cons(9) v'-notin-E2 have $lambda' \upharpoonright E_{ES2} = t2 \upharpoonright V_{\mathcal{V}}$ **by** (*simp add: projection-def*) moreover **note** *s1-Cv1-empty* Cons(11) moreover **note** Cons.hyps(1)[of ?tau s1 t2] ultimately obtain t'where $\tau r 1 v' t'$ -in-Tr: ?tau @ $t' \in Tr_{(ES1 \parallel ES2)}$ and t'-Vv-is-lambda': t' | $V_{\mathcal{V}} = lambda'$ and t'-Cv-empty: t' | $C_{\mathcal{V}} = []$ by auto let $?t = r1 @ [\mathcal{V}'] @ t'$ note $\tau r 1 v' t'$ -in-Tr moreover from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv have $?t \mid V_{\mathcal{V}} = \mathcal{V}' \# \ lambda'$ **by** (*simp add: projection-def*) moreover have $?t \upharpoonright C_{\mathcal{V}} = []$ proof have $r1 \uparrow C_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star) with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis by (simp add: is ViewOn-def V-valid-def VC-disjoint-def projection-def, auto) \mathbf{qed} ultimately have ?thesis by auto } moreover { assume v'-in-Vv2-minus-E1: $\mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}$ hence v'-in-Vv2: $\mathcal{V}' \in V_{\mathcal{V}2}$ by *auto* with v'-in-Vv propSepViews have v'-in-E2: $\mathcal{V}' \in E_{ES2}$ unfolding properSeparationOfViews-def by auto

from v'-in-Vv2-minus-E1

```
have v'-notin-E1: \mathcal{V}' \notin E_{ES1}
 by (auto)
with validV1
have v'-notin-Vv1: \mathcal{V}' \notin V_{\mathcal{V}1}
 by (simp add: isViewOn-def V-valid-def VC-disjoint-def
    VN-disjoint-def NC-disjoint-def, auto)
from Cons(3) Cons(5) Cons(9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
 by (simp add: projection-def)
from projection-split-first[OF this] obtain r2 s2
 where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
 and r2-Vv-empty: r2 \uparrow V<sub>V</sub> = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2]
have r2-Vv2-empty: r2 \uparrow V<sub>V2</sub> = []
 by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | C_{V2} = []
 by (simp add: projection-concatenation-commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | C_{V2} = []
 \mathbf{by}~(simp~only:~projection-concatenation-commute,~auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
 by auto
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
proof -
 note r2-in-E2star
 moreover
 from r2-Vv2-empty have set r2 \cap V_{\mathcal{V}2} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
 moreover
 from r2-Cv2-empty have set r2 \cap C_{\mathcal{V}2} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
 moreover
 note validV2
 ultimately show ?thesis
   \mathbf{by}~(simp~add:~isViewOn-def~V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed
have r2E1-in-Nv2-inter-C1-star: set (r2 | E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})
proof -
 have set (r2 | E_{ES1}) = set r2 \cap E_{ES1}
   by (simp add: projection-def, auto)
  with r2-in-Nv2star have set (r2 | E_{ES1}) \subseteq (E_{ES1} \cap N_{\mathcal{V2}})
```

```
by auto
```

```
moreover

from validV1 propSepViews disjoint-Nv2-Vv1 have E_{ES1} \cap N_{V2} = N_{V2} \cap C_{V1}

unfolding properSeparationOfViews-def

by (simp \ add: \ isViewOn-def \ V-valid-def \ VC-disjoint-def

VN-disjoint-def \ NC-disjoint-def, \ auto)

ultimately show ?thesis

by auto

qed
```

note *outerCons-prems* = *Cons.prems*

```
have set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1}) \Longrightarrow \exists t1'. (set t1' \subseteq E_{ES1})
  \wedge ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
   \wedge t1' | V_{\mathcal{V}1} = t1 | V_{\mathcal{V}1} 
  \wedge t1' | C_{\mathcal{V}1} = [] ) 
proof (induct r2 \upharpoonright E_{ES1} arbitrary: r2 rule: rev-induct)
  \mathbf{case} \ \textit{Nil thus} \ \textit{?case}
     by (metis append-self-conv outerCons-prems(9) outerCons-prems(3)
        outerCons-prems(5) projection-concatenation-commute)
\mathbf{next}
  case (snoc \ x \ xs)
  have xs-is-xsE1: xs = xs \uparrow E_{ES1}
  proof -
     from snoc(2) have set (xs @ [x]) \subseteq E_{ES1}
        by (simp add: projection-def, auto)
     hence set xs \subseteq E_{ES1}
       by auto
     thus ?thesis
        by (simp add: list-subset-iff-projection-neutral)
  \mathbf{qed}
  moreover
  have set (xs \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})
  proof -
     have set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
       by (metis Int-commute snoc.prems)
     with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
       by simp
     hence set xs \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})
       by auto
     with xs-is-xsE1 show ?thesis
       by auto
  \mathbf{qed}
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t1"
     where t1''-in-E1star: set t1'' \subseteq E_{ES1}
    and \tau-xs-E1-t1 "-in-Tr1: ((\tau \otimes xs) \upharpoonright E_{ES1}) \otimes t1" \in Tr<sub>ES1</sub>
and t1"Vv1-is-t1Vv1: t1" \upharpoonright V_{V1} = t1 \upharpoonright V_{V1}
and t1"Cv1-empty: t1" \upharpoonright C_{V1} = []
```

by auto

```
have x-in-Cv1-inter-Nv2: x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}
proof -
  from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
   by simp
  thus ?thesis
    by auto
\mathbf{qed}
hence x-in-Cv1: x \in C_{\mathcal{V}1}
 by auto
moreover
note \tau-xs-E1-t1 ''-in-Tr1 t1 ''Cv1-empty
moreover
have Adm: (Adm \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
proof -
  from \tau-xs-E1-t1 ''-in-Tr1 validES1
  have \tau-xsE1-in-Tr1: ((\tau @ xs) | E_{ES1}) \in Tr_{ES1}
   by (simp add: ES-valid-def traces-prefixclosed-def
     prefixclosed-def prefix-def)
  with x-in-Cv1-inter-Nv2 total-ES1-Cv1-inter-Nv2
  have \tau-xsE1-x-in-Tr1: ((\tau @ xs) | E_{ES1}) @ [x] \in Tr<sub>ES1</sub>
    by (simp only: total-def)
  moreover
  have ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) = ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) \dots
  ultimately show ?thesis
    by (simp add: Adm-def, auto)
\mathbf{qed}
moreover note BSIA
ultimately obtain t1'
 where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1}
and res2: t1' | V_{V1} = t1'' | V_{V1}
and res3: t1' | C_{V1} = []
 by (simp only: BSIA-def, blast)
have set t1' \subseteq E_{ES1}
proof -
  from res1 validES1 have set (((\tau @ xs) | E_{ES1}) @ [x] @ t1') \subseteq E_{ES1}
   by (simp add: ES-valid-def traces-contain-events-def, auto)
  thus ?thesis
   by auto
\mathbf{qed}
moreover
have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
proof -
  from res1 xs-is-xsE1 have ((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
   by (simp only: projection-concatenation-commute, auto)
  thus ?thesis
    by (simp only: snoc(2) projection-concatenation-commute)
qed
moreover
from t1''Vv1-is-t1Vv1 res2 have t1' \mid V_{V1} = t1 \mid V_{V1}
```

```
by auto

moreover

note res3

ultimately show ?case

by auto

qed

from this[OF r2E1-in-Nv2-inter-C1-star] obtain t1'

where t1'-in-E1star: set t1' \subseteq E_{ES1}

and \tau r2E1-t1'-in-Tr1: ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}

and t1'-Vv1-is-t1-Vv1: t1' | V_{V1} = t1 | V_{V1}

and t1'-Cv1-empty: t1' | C_{V1} = []

by auto
```

```
let ?tau = \tau @ r2 @ [\mathcal{V}']
```

from v'-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau $\subseteq E_{(ES1 \parallel ES2)}$ **by** (simp only: composeES-def isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover from Cons(5) t2-is-r2-v'-s2 have set $s2 \subseteq E_{ES2}$ by auto moreover note t1'-in-E1star moreover have $?tau | E_{ES2} @ s2 \in Tr_{ES2}$ by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6) $projection-concatenation-commute\ t2-is-r2-v'-s2)$ moreover from $\tau r2E1$ -t1'-in-Tr1 v'-notin-E1 have ?tau | $E_{ES1} @$ t1' \in Tr_{ES1} by (simp add: projection-def) moreover from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv have $lambda' \mid E_{ES2} = s2 \mid V_{\mathcal{V}}$ by (simp add: projection-def) moreover from Cons(10) v'-notin-E1 t1'-Vv1-is-t1-Vv1 have $lambda' \upharpoonright E_{ES1} = t1' \upharpoonright V_V$ proof have $t1' \upharpoonright V_{\mathcal{V}} = t1' \upharpoonright V_{\mathcal{V}1}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: projection-def, metis Int-commute projection-def projection-intersection-neutral t1'-in-E1star) moreover have $t1 \upharpoonright V_{\mathcal{V}} = t1 \upharpoonright V_{\mathcal{V}1}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: projection-def, metis Int-commute projection-def

```
projection-intersection-neutral \ Cons(4))
           moreover
           note Cons(8) v'-notin-E1 t1'-Vv1-is-t1-Vv1
           ultimately show ?thesis
             by (simp add: projection-def)
         qed
         moreover
         note s2-Cv2-empty t1'-Cv1-empty
         moreover
         note Cons.hyps(1)[of ?tau t1' s2]
         ultimately obtain t^\prime
           where \tau r 2v't'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
           and t'-Vv-is-lambda': t' | V_{\mathcal{V}} = lambda'
           and t'-Cv-empty: t' \upharpoonright C_{\mathcal{V}} = []
           by auto
         let ?t = r2 @ [\mathcal{V}'] @ t'
         note \tau r 2v't'-in-Tr
         moreover
         from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv
         have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
           by (simp add: projection-def)
         moreover
         have ?t \upharpoonright C_{\mathcal{V}} = []
         proof -
           have r2 \uparrow C_{\mathcal{V}} = []
           proof –
             from propSepViews have C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}
               unfolding properSeparationOfViews-def by auto
             from projection-on-subset[OF < C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V2}} r2-Cv2-empty]
             have r2 \upharpoonright (E_{ES2} \cap C_{\mathcal{V}}) = []
               by (simp only: Int-commute)
             with projection-intersection-neutral [OF r2-in-E2star, of C_{\mathcal{V}}] show ?thesis
               by simp
           qed
           with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
             by (simp add: isViewOn-def V-valid-def VC-disjoint-def
               VN-disjoint-def NC-disjoint-def projection-def, auto)
         \mathbf{qed}
         ultimately have ?thesis
           by auto
       }
       ultimately show ?thesis
         by blast
     qed
   qed
thus ?thesis
 by auto
```

 \mathbf{qed}

}

lemma generalized-zipping-lemma3: $[\![N_{V2} \cap E_{ES1} = \{\}; total ES2 (C_{V2} \cap N_{V1}); BSIA \varrho 2 V2 Tr_{ES2}]\!]$ $\forall \tau \text{ lambda t1 t2.} ((\text{ set } \tau \subseteq E_{(ES1 \parallel ES2)} \land \text{ set lambda} \subseteq V_{\mathcal{V}} \land \text{ set t1} \subseteq E_{ES1} \land \text{ set t2} \subseteq E_{ES2}$ $\wedge ((\tau \upharpoonright E_{ES1}) @ t1) \in Tr_{ES1} \land ((\tau \upharpoonright E_{ES2}) @ t2) \in Tr_{ES2} \\ \wedge (lambda \upharpoonright E_{ES1}) = (t1 \upharpoonright V_{\mathcal{V}}) \land (lambda \upharpoonright E_{ES2}) = (t2 \upharpoonright V_{\mathcal{V}})$ $\wedge (t1 + C_{V1}) = [] \wedge (t2 + C_{V2}) = [])$ $\longrightarrow (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))))$ proof – assume Nv2-inter-E1-empty: $N_{\mathcal{V2}} \cap E_{ES1} = \{\}$ assume total-ES2-Cv2-inter-Nv1: total ES2 $(C_{\mathcal{V2}} \cap N_{\mathcal{V1}})$ assume BSIA: BSIA $\varrho 2 \ V 2 \ Tr_{ES2}$ ł fix τ lambda t1 t2 assume τ -in-Estar: set $\tau \subseteq E_{(ES1 \parallel ES2)}$ and lambda-in-Vystar: set lambda $\subseteq V_{\mathcal{V}}$ and t1-in-E1star: set $t1 \subseteq E_{ES1}$ and t2-in-E2star: set $t2 \subseteq E_{ES2}$ and τ -E1-t1-in-Tr1: $((\tau \mid E_{ES1}) \otimes t1) \in Tr_{ES1}$ and τ -E2-t2-in-Tr2: $((\tau \uparrow E_{ES2}) @ t2) \in Tr_{ES2}$ and lambda-E1-is-t1-Vv: $(lambda | E_{ES1}) = (t1 | V_{\mathcal{V}})$ and lambda-E2-is-t2-Vv: (lambda | E_{ES2}) = (t2 | V_V) and *t1-no-Cv1*: $(t1 | C_{V1}) = []$ and t2-no-Cv2: $(t2 | C_{V2}) = []$ have $\llbracket set \tau \subseteq E_{(ES1 \parallel ES2)};$ set lambda $\subseteq V_{\mathcal{V}}$; set $t1 \subseteq E_{ES1}^{-}$; set $t2 \subseteq E_{ES2}$; $((\tau \restriction E_{ES1}) \ \textcircled{@} \ t1) \in Tr_{ES1};$ $((\tau \restriction E_{ES2}) @ t2) \in Tr_{ES2};$ $(lambda | E_{ES1}) = (t1 | V_{\mathcal{V}});$ $(lambda | E_{ES2}) = (t2 | V_{\mathcal{V}});$ $(t1 \uparrow C_{\mathcal{V}1}) = [];$ $(t2 \uparrow C_{\mathcal{V}2}) = []]$ $\implies (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))$ **proof** (*induct lambda arbitrary*: τ *t1 t2*) case (Nil τ t1 t2) have $(\tau @ []) \in Tr_{(ES1 \parallel ES2)}$ proof have $\tau \in Tr_{(ES1 \parallel ES2)}$ proof from Nil(5) validES1 have $\tau \upharpoonright E_{ES1} \in Tr_{ES1}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) moreover from Nil(6) validES2 have $\tau \upharpoonright E_{ES2} \in Tr_{ES2}$ by (simp add: ES-valid-def traces-prefixclosed-def

prefixclosed-def prefix-def) moreover note Nil(1)ultimately show *?thesis* **by** (*simp add: composeES-def*) qed thus ?thesis by auto \mathbf{qed} moreover have $([] | V_{V}) = []$ **by** (simp add: projection-def) moreover have $([] \uparrow C_{\mathcal{V}}) = []$ by (simp add: projection-def) ultimately show ?case **by** blast \mathbf{next} **case** (Cons \mathcal{V}' lambda' τ t1 t2) thus ?caseproof from Cons(3) have v'-in- $Vv: V' \in V_{\mathcal{V}}$ by auto have $\mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2}$ $\forall \ \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2} \\ \forall \ \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}$ using propSepViews unfolding properSeparationOfViews-def by (metis Diff-iff Int-commute Int-iff Un-iff Vv-is-Vv1-union-Vv2 v'-in-Vv) moreover { assume v'-in-Vv1-inter-Vv2: $V' \in V_{V1} \cap V_{V2}$ hence v'-in-Vv2: $V' \in V_{V2}$ and v'-in-Vv1: $V' \in V_{V1}$ by auto with v'-in-Vvhave v'-in-E2: $\mathcal{V}' \in E_{ES2}$ and v'-in-E1: $\mathcal{V}' \in E_{ES1}$ using propSepViews unfolding properSeparationOfViews-def by auto from Cons(2,4,8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})$

by (simp add: projection-def) from projection-split-first[OF this] obtain r1 s1 where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1 and r1-Vv-empty: r1 | $V_{\mathcal{V}} = []$ by auto with Vv-is-Vv1-union-Vv2 projection-on-subset[of $V_{\mathcal{V}1} \ V_{\mathcal{V}} \ r1]$ have r1-Vv1-empty: r1 | $V_{\mathcal{V}1} = []$ by auto

from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: $r1 \downarrow C_{V1} = []$ by (simp add: projection-concatenation-commute)

```
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | C_{V1} = []
 \mathbf{by}~(simp~only:~projection-concatenation-commute,~auto)
from Cons(4) t1-is-r1-v'-s1
have r1-in-E1star: set r1 \subseteq E<sub>ES1</sub> and s1-in-E1star: set s1 \subseteq E<sub>ES1</sub>
 by auto
from Cons(6) t1-is-r1-v'-s1
have \tau E1-r1-v'-s1-in-Tr1: \tau \upharpoonright E_{ES1} @ r1 @ [\mathcal{V}'] @ s1 \in Tr_{ES1}
 by simp
have r1-in-Nv1star: set r1 \subseteq N_{V1}
 proof -
   note r1-in-E1star
   moreover
   from r1-Vv1-empty have set r1 \cap V_{\mathcal{V}1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   from r1-Cv1-empty have set r1 \cap C<sub>V1</sub> = {}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
   moreover
   note validV1
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def
        VN-disjoint-def NC-disjoint-def, auto)
 qed
have r1E2-in-Nv1-inter-C2-star: set (r1 | E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
 proof -
   have set (r1 | E_{ES2}) = set r1 \cap E_{ES2}
     by (simp add: projection-def, auto)
    with r1-in-Nv1star have set (r1 | E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})
     by auto
   moreover
    from validV2 disjoint-Nv1-Vv2
   have E_{ES2} \cap N_{\mathcal{V}1} = N_{\mathcal{V}1} \cap C_{\mathcal{V}2}
     {\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def
```

```
by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
```

```
qed
```

note *outerCons-prems* = *Cons.prems*

have set $(r1 | E_{ES2}) \subseteq (N_{V1} \cap C_{V2}) \Longrightarrow$

```
\exists \ t\mathcal{2}\,'. ( set t\mathcal{2}\,'\subseteq E_{ES2}
  \wedge \; ((\tau @ r1) | E_{ES2}) @ t2' \in \mathit{Tr}_{ES2}
  \wedge t2' \upharpoonright V_{\mathcal{V}2} = t2 \upharpoonright V_{\mathcal{V}2}
  \wedge t\mathcal{2}' \upharpoonright C_{\mathcal{V}\mathcal{2}} = [] )
proof (induct r1 | E_{ES2} arbitrary: r1 rule: rev-induct)
  case Nil thus ?case
    by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
       outerCons-prems(6) projection-concatenation-commute)
\mathbf{next}
  case (snoc \ x \ xs)
  have xs-is-xsE2: xs = xs \uparrow E_{ES2}
    proof –
       from snoc(2) have set (xs @ [x]) \subseteq E_{ES2}
         by (simp add: projection-def, auto)
       hence set xs \subseteq E_{ES2}
         by auto
       thus ?thesis
         by (simp add: list-subset-iff-projection-neutral)
    \mathbf{qed}
  moreover
  have set (xs | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    proof -
       have set (r1 | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
         by (metis Int-commute snoc.prems)
       with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
         by simp
       hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
         by auto
       with xs-is-xsE2 show ?thesis
         by auto
    \mathbf{qed}
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t2''
    where t2''-in-E2star: set t2'' \subseteq E_{ES2}
    and \tau-xs-E2-t2''-in-Tr2: ((\tau \ @xs) | E_{ES2}) \ @t2'' \in Tr_{ES2}
and t2''Vv2-is-t2Vv2: t2'' | V_{V2} = t2 | V_{V2}
    and t2^{\prime\prime}Cv2-empty: t2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []
    by auto
  have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V2}} \cap N_{\mathcal{V1}}
    proof -
       from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
         by simp
       thus ?thesis
         by auto
    qed
  hence x-in-Cv2: x \in C_{\mathcal{V2}}
    by auto
  moreover
  note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
```

moreover have Adm: (Adm $\mathcal{V2}$ $\varrho 2$ Tr_{ES2} (($\tau @ xs$) | E_{ES2}) x) proof from τ -xs-E2-t2 ''-in-Tr2 validES2 have τ -xsE2-in-Tr2: ((τ @ xs) | E_{ES2}) \in Tr_{ES2} by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) with x-in-Cv2-inter-Nv1 total-ES2-Cv2-inter-Nv1 have τ -xsE2-x-in-Tr2: (($\tau @ xs$) | E_{ES2}) @ [x] \in Tr_{ES2} **by** (*simp only: total-def*) moreover have $((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V 2) = ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V 2) \dots$ ultimately show ?thesis by (simp add: Adm-def, auto) \mathbf{qed} moreover note BSIA ultimately obtain t2'where res1: (($\tau @ xs$) | E_{ES2}) @ [x] @ t2' $\in Tr_{ES2}$ and res2: $t2' \upharpoonright V_{\mathcal{V}2} = t2'' \upharpoonright V_{\mathcal{V}2}$ and res3: $t2' \upharpoonright C_{\mathcal{V}2} = []$ by (simp only: BSIA-def, blast) have set $t2' \subseteq E_{ES2}$ proof **from** res1 validES2 have set ((($\tau @ xs$) | E_{ES2}) @ [x] @ t2') $\subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) thus ?thesis by auto \mathbf{qed} moreover have $((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}$ proof – from res1 xs-is-xsE2 have $((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute, auto) thus ?thesis **by** (*simp only: snoc*(2) *projection-concatenation-commute*) qed moreover from t2''Vv2-is-t2Vv2 res2 have $t2' \upharpoonright V_{V2} = t2 \upharpoonright V_{V2}$ by auto moreover note res3 ultimately show ?case by auto \mathbf{qed} from this [OF r1E2-in-Nv1-inter-C2-star] obtain t2' where t2'-in-E2star: set $t2' \subseteq E_{ES2}$ and $\tau r_{1}E_{2}-t_{2}'-in-Tr_{2}: ((\tau @ r_{1}) | E_{ES_{2}}) @ t_{2}' \in Tr_{ES_{2}}$ and t2'-Vv2-is-t2-Vv2: $t2' \upharpoonright V_{V2} = t2 \upharpoonright V_{V2}$ and t2'-Cv2-empty: $t2' \upharpoonright C_{V2} = []$ by auto

```
have t2' \upharpoonright V_{V2} = V' \# (lambda' \upharpoonright E_{ES2})
 proof -
   from projection-intersection-neutral [OF Cons(5), of V_{\mathcal{V}}]
   have t2 \uparrow V_{\mathcal{V}} = t2 \uparrow V_{\mathcal{V}2}
     using propSepViews unfolding properSeparationOfViews-def
     by (simp only: Int-commute)
   with Cons(9) t2'-Vv2-is-t2-Vv2 v'-in-E2 show ?thesis
     by (simp add: projection-def)
 qed
from projection-split-first[OF this] obtain r2' s2'
 where t2'-is-r2'-v'-s2': t2' = r2' @ [V'] @ s2'
 and r2'-Vv2-empty: r2' \upharpoonright V_{\mathcal{V2}} = []
 by auto
from t2'-is-r2'-v'-s2' t2'-Cv2-empty
have r2'-Cv2-empty: r2' \upharpoonright C_{V2} = []
 by (simp add: projection-concatenation-commute)
from t2'-is-r2'-v'-s2' t2'-Cv2-empty
have s2'-Cv2-empty: s2' \uparrow C_{V2} = []
 by (simp only: projection-concatenation-commute, auto)
from t2'-in-E2star t2'-is-r2'-v'-s2'
have r2'-in-E2star: set r2' \subseteq E_{ES2}
 by auto
with r2'-Vv2-empty
have r2'-Vv-empty: r2' \upharpoonright V_{\mathcal{V}} = []
 {\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def
 by (metis projection-on-subset2 subset-iff-psubset-eq)
have r2'-in-Nv2star: set r2' \subseteq N_{V2}
 proof -
   note r2'-in-E2star
   moreover
   from r2'-Vv2-empty have set r2' \cap V_{\mathcal{V}2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   from r2'-Cv2-empty have set r2' \cap C_{\mathcal{V2}} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   note validV2
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
 qed
```
```
with Nv2-inter-E1-empty have r2'E1-empty: r2' | E<sub>ES1</sub> = []
by (metis Int-commute empty-subsetI projection-on-subset2 r2'-Vv2-empty)
```

let $?tau = \tau @ r1 @ r2' @ [\mathcal{V}']$

from Cons(2) r1-in-E1star r2'-in-E2star v'-in-E1 have set $?tau \subseteq (E_{(ES1 \parallel ES2)})$ by (simp add: composeES-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover note s1-in-E1star moreover from t2'-in-E2star t2'-is-r2'-v'-s2' have set $s2' \subseteq E_{ES2}$ by simp moreover from r1-in-E1star v'-in-E1 r2'E1-empty τ E1-r1-v'-s1-in-Tr1 have $?tau | E_{ES1} @ s1 \in Tr_{ES1}$ by (simp only: list-subset-iff-projection-neutral projection-concatenation-commute projection-def, auto) moreover from $\tau r1E2$ -t2'-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2 have $?tau | E_{ES2} @ s2' \in Tr_{ES2}$ proof from v'-in-E2 r2'-in-E2star have $(\tau @ r1 @ r2' @ [\mathcal{V}']) | E_{ES2} = (\tau @ r1) | E_{ES2} @ r2' @ [\mathcal{V}']$ **by** (simp only: projection-concatenation-commute list-subset-iff-projection-neutral projection-def, auto) with $\tau r 1 E 2$ -t 2'-in-Tr 2 t 2'-is-r 2'-v'-s 2' v'-in-E 2 show ?thesis by simp qed moreover have $lambda' \mid E_{ES1} = s1 \mid V_{\mathcal{V}}$ proof from Cons(3,4,8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES1})$ **by** (*simp add: projection-def*) moreover from t1-is-r1-v'-s1 r1-Vv-empty v'-in-Vv1 Vv-is-Vv1-union-Vv2 have $t1 \mid V_{\mathcal{V}} = [\mathcal{V}'] @ (s1 \mid V_{\mathcal{V}})$ by (simp only: t1-is-r1-v'-s1 projection-concatenation-commute projection-def, auto) ultimately show ?thesis by auto qed moreover have $lambda' \mid E_{ES2} = s2' \mid V_{\mathcal{V}}$ proof – from Cons(4,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})$ **by** (*simp add: projection-def*) moreover from t2'-is-r2'-v'-s2' r2'-Vv2-empty r2'-in-E2star v'-in-Vv2 propSepViews

have $t\mathcal{Z}' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s\mathcal{Z}' \upharpoonright V_{\mathcal{V}})$ proof have $r2' \upharpoonright V_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2 r2'-Vv2-empty r2'-in-E2star subset-iff-psubset-eq) with t2'-is-r2'-v'-s2' v'-in-Vv2 Vv-is-Vv1-union-Vv2 show ?thesis by (simp only: t2'-is-r2'-v'-s2' projection-concatenation-commute projection-def, auto) qed moreover have $t2 \uparrow V_{\mathcal{V}} = t2' \uparrow V_{\mathcal{V}}$ ${\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def$ **by** (*metis* Int-commute outerCons-prems(4) $projection\-intersection\-neutral$ t2'-Vv2-is-t2-Vv2 t2'-in-E2star) ultimately show ?thesis by auto \mathbf{qed} moreover note s1-Cv1-empty s2'-Cv2-empty Cons.hyps[of ?tau s1 s2'] ultimately obtain t'where tau-t'-in-Tr: ?tau @ t' \in Tr_(ES1 || ES2) and t'Vv-is-lambda': t' | $V_{\mathcal{V}} = lambda'$ and t'Cv-empty: t' | $C_{\mathcal{V}} = []$ by auto let $?t = r1 @ r2' @ [\mathcal{V}'] @ t'$ note tau-t'-in-Tr moreover from r1-Vv-empty r2'-Vv-empty t'Vv-is-lambda' v'-in-Vv have $?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from VIsViewOnE r1-Cv1-empty t'Cv-empty r2'-Cv2-empty v'-in-Vv have $?t \mid C_{\mathcal{V}} = []$ proof from VIsViewOnE v'-in-Vv have $[\mathcal{V}'] \upharpoonright C_{\mathcal{V}} = []$ by (simp add: is ViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto) moreover from r1-in-E1star r1-Cv1-empty have $r1 \mid C_{\mathcal{V}} = []$ using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def **by** *auto* moreover from r2'-in-E2star r2'-Cv2-empty have $r2' \uparrow C_{\mathcal{V}} = []$ using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def by auto

```
moreover
   note t'Cv-empty
   \textbf{ultimately show}~?thesis
     by (simp only: projection-concatenation-commute, auto)
 qed
 ultimately have ?thesis
   by auto
}
moreover {
 assume v'-in-Vv1-minus-E2: \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}
 hence v'-in-Vv1: \mathcal{V}' \in V_{\mathcal{V}1}
   by auto
 with v'-in-Vv have v'-in-E1: \mathcal{V}' \in E_{ES1}
   using propSepViews unfolding properSeparationOfViews-def
   by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: \mathcal{V}' \notin E_{ES2}
   by (auto)
 with valid V2 have v'-notin-Vv2: \mathcal{V}' \notin V_{\mathcal{V}2}
   by (simp add: isViewOn-def V-valid-def VC-disjoint-def
     VN-disjoint-def NC-disjoint-def, auto)
 from Cons(3) Cons(4) Cons(8) v'-in-E1
```

have $t1 \ | \ V_{\mathcal{V}} = \mathcal{V}' \ \# (lambda' | E_{ES1})$ by (simp add: projection-def) from projection-split-first[OF this] obtain r1 s1 where t1-is-r1-v'-s1: $t1 = r1 \ @ [\mathcal{V}'] \ @ s1$ and r1-Vv-empty: $r1 \ | \ V_{\mathcal{V}} = []$ by auto with Vv-is-Vv1-union-Vv2 projection-on-subset[of $V_{\mathcal{V}1} \ V_{\mathcal{V}} \ r1]$ have r1-Vv1-empty: $r1 \ | \ V_{\mathcal{V}1} = []$ by auto

- from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: $r1 \upharpoonright C_{V1} = []$ by (simp add: projection-concatenation-commute)
- from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: $s1 | C_{V1} = []$ by (simp only: projection-concatenation-commute, auto)
- from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set $r1 \subseteq E_{ES1}$ by auto

have r1-in-Nv1star: set $r1 \subseteq N_{V1}$ proof – note r1-in-E1star moreover from r1-Vv1-empty have set $r1 \cap V_{V1} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover from r1-Cv1-empty have set $r1 \cap C_{V1} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover note validV1 ultimately show ?thesis by (simp add:isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) qed have r1E2-in-Nv1-inter-C2-star: set $(r1 | E_{ES2}) \subseteq (N_{V1} \cap C_{V2})$ proof -

proof have set (r1 | E_{ES2}) = set r1 ∩ E_{ES2}
by (simp add: projection-def, auto)
with r1-in-Nv1star have set (r1 | E_{ES2}) ⊆ (E_{ES2} ∩ N_{V1})
by auto
moreover
from validV2 disjoint-Nv1-Vv2
have $E_{ES2} ∩ N_{V1} = N_{V1} ∩ C_{V2}$ using propSepViews unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def, auto)
ultimately show ?thesis
by auto
qed

 $\mathbf{note} \ outerCons\text{-}prems = \ Cons.prems$

have set $(r1 | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2}) \Longrightarrow$ $\exists t2'. (set t2' \subseteq E_{ES2}) \land ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}$ $\land t2' | V_{\mathcal{V}2} = t2 | V_{\mathcal{V}2}$ $\land t2' | C_{\mathcal{V}2} = [])$ **proof** (induct $r1 | E_{ES2}$ arbitrary: r1 rule: rev-induct) case Nil thus ?case by (metis append-self-conv outerCons-prems(10) outerCons-prems(4) outerCons-prems(6) projection-concatenation-commute) \mathbf{next} case $(snoc \ x \ xs)$ have xs-is-xsE2: $xs = xs \uparrow E_{ES2}$ proof from snoc(2) have set $(xs @ [x]) \subseteq E_{ES2}$ by (simp add: projection-def, auto) hence set $xs \subseteq E_{ES2}$ by auto thus ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) qed

```
moreover
have set (xs | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
proof -
  have set (r1 \upharpoonright E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    by (metis Int-commute snoc.prems)
  with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
   by simp
  hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    by auto
  with xs-is-xsE2 show ?thesis
    by auto
\mathbf{qed}
moreover
note snoc.hyps(1)[of xs]
ultimately obtain t2"
  where t2''-in-E2star: set t2'' \subseteq E_{ES2}
 and \tau-xs-E2-t2''-in-Tr2: ((\tau @ xs) | E_{ES2}) @ t2'' \in Tr_{ES2}
and t2''Vv2-is-t2Vv2: t2'' | V_{V2} = t2 | V_{V2}
 and t2''Cv2-empty: t2'' \upharpoonright C_{\mathcal{V}2} = []
 by auto
have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V2}} \cap N_{\mathcal{V1}}
proof –
  from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    by simp
  thus ?thesis
    by auto
\mathbf{qed}
hence x-in-Cv2: x \in C_{\mathcal{V2}}
 by auto
moreover
note \tau-xs-E2-t2 "-in-Tr2 t2 "Cv2-empty
moreover
proof –
  from \tau-xs-E2-t2''-in-Tr2 validES2
  have \tau-xsE2-in-Tr2: ((\tau @ xs) | E_{ES2}) \in Tr<sub>ES2</sub>
    by (simp add: ES-valid-def traces-prefixclosed-def
      prefixclosed-def prefix-def)
  with x-in-Cv2-inter-Nv1 total-ES2-Cv2-inter-Nv1
  have \tau-xsE2-x-in-Tr2: ((\tau @ xs) | E_{ES2}) @ [x] \in Tr<sub>ES2</sub>
    by (simp only: total-def)
  moreover
  have ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V 2) = ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V 2) \dots
  ultimately show ?thesis
    by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain t2'
 where res1: ((\tau @ xs) | E_{ES2}) @ [x] @ t2' \in Tr_{ES2}
and res2: t2' | V_{V2} = t2'' | V_{V2}
and res3: t2' | C_{V2} = []
```

by (simp only: BSIA-def, blast) have set $t2' \subseteq E_{ES2}$ proof from res1 validES2 have set ((($\tau @ xs) | E_{ES2}$) @ [x] @ t2') $\subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) thus ?thesis by auto \mathbf{qed} moreover have $((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}$ proof from res1 xs-is-xsE2 have $((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute, auto) thus ?thesis **by** (simp only: snoc(2) projection-concatenation-commute) qed moreover from t2''Vv2-is-t2Vv2 res2 have $t2' \upharpoonright V_{V2} = t2 \upharpoonright V_{V2}$ by auto moreover note res3 ultimately show ?case by auto qed from this[OF r1E2-in-Nv1-inter-C2-star] obtain t2' where t2'-in-E2star: set $t2' \subseteq E_{ES2}$ and $\tau r1E2$ -t2'-in-Tr2: $((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}$ and t2'-Vv2-is-t2-Vv2: $t2' | V_{V2} = t2 | V_{V2}$ and t2'-Cv2-empty: $t2' \upharpoonright C_{V2} = []$ by auto let $?tau = \tau @ r1 @ [\mathcal{V}']$ from v'-in-E1 Cons(2) r1-in-Nv1star validV1 have set ?tau $\subseteq E_{(ES1 \parallel ES2)}$ **by** (*simp only: composeES-def isViewOn-def V-valid-def* VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover from Cons(4) t1-is-r1-v'-s1 have set $s1 \subseteq E_{ES1}$ by auto moreover note t2'-in-E2star moreover have $?tau | E_{ES1} @ s1 \in Tr_{ES1}$ by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI

list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)

```
projection-concatenation-commute t1-is-r1-v'-s1) moreover
```

from *τr1E2-t2'-in-Tr2 v'-notin-E2* have $?tau | E_{ES2} @ t2' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv have $lambda' | E_{ES1} = s1 | V_{\mathcal{V}}$ **by** (*simp add: projection-def*) moreover from Cons(11) v'-notin-E2 t2'-Vv2-is-t2-Vv2 have $lambda' \upharpoonright E_{ES2} = t2' \upharpoonright V_{\mathcal{V}}$ proof have $t2' \upharpoonright V_{\mathcal{V}} = t2' \upharpoonright V_{\mathcal{V}2}$ ${\bf using} \ propSepViews \ {\bf unfolding} \ properSeparation OfViews-def$ $\mathbf{by}\ (simp\ add:\ projection-def,\ metis\ Int-commute$ projection-def projection-intersection-neutral t2'-in-E2star) moreover have $t2 \uparrow V_{\mathcal{V}} = t2 \uparrow V_{\mathcal{V}2}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: projection-def, metis Int-commute projection-def projection-intersection-neutral Cons(5))moreover note Cons(9) v'-notin-E2 t2'-Vv2-is-t2-Vv2 ultimately show ?thesis **by** (*simp add: projection-def*) qed moreover note s1-Cv1-empty t2'-Cv2-empty moreover **note** Cons.hyps(1)[of ?tau s1 t2'] ultimately obtain t'where tau-t'-in-Tr: ?tau @ t' \in Tr_(ES1 || ES2) and t'-Vv-is-lambda': t' | $V_{\mathcal{V}} = lambda'$ and t'-Cv-empty: $t' \upharpoonright C_{\mathcal{V}} = []$ by auto let $?t = r1 @ [\mathcal{V}'] @ t'$

note tau-t'-in-Trmoreover from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vvhave $?t | V_{\mathcal{V}} = \mathcal{V}' \# lambda'$ by (simp add: projection-def) moreover have $?t | C_{\mathcal{V}} = []$ proof – have $r1 | C_{\mathcal{V}} = []$ proof – from propSepViews have $E_{ES1} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by auto

```
from projection-on-subset[OF \langle E_{ES1} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}1} \rangle r1-Cv1-empty]
     have r1 \upharpoonright (E_{ES1} \cap C_{\mathcal{V}}) = []
       by (simp only: Int-commute)
     with projection-intersection-neutral [OF r1-in-E1star, of C_{\mathcal{V}}] show ?thesis
       by simp
   qed
   with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
     by (simp add: is ViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def projection-def, auto)
 qed
 ultimately have ?thesis
   \mathbf{by} \ auto
}
moreover {
 assume v'-in-Vv2-minus-E1: \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
 hence v'-in-Vv2: \mathcal{V}' \in V_{\mathcal{V}2}
   by auto
 with v'-in-Vv have v'-in-E2: \mathcal{V}' \in E_{ES2}
   using propSepViews unfolding properSeparationOfViews-def
   by auto
 from v'-in-Vv2-minus-E1 have v'-notin-E1: \mathcal{V}' \notin E_{ES1}
   by (auto)
 with valid V1 have v'-notin-Vv1: \mathcal{V}' \notin V_{\mathcal{V}1}
   by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 from Cons(4) Cons(5) Cons(9) v'-in-E2 have t2 \uparrow V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \uparrow E_{ES2})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r2 s2
   where t2-is-r2-v'-s2: t2 = r2 @ [\mathcal{V}'] @ s2
   and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
   by auto
 with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2]
 have r2-Vv2-empty: r2 | V_{\mathcal{V2}} = []
   by auto
 from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | C_{V2} = []
   by (simp add: projection-concatenation-commute)
 from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | C_{V2} = []
   \mathbf{by}~(simp~only:~projection-concatenation-commute,~auto)
 from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
   by auto
 have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
 proof -
   note r2-in-E2star
   moreover
```

from r2-Vv2-empty have set $r2 \cap V_{\mathcal{V2}} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl~list-subset-iff-projection-neutralprojection-on-union) moreover from r2-Cv2-empty have set $r2 \cap C_{V2} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover note validV2ultimately show ?thesis by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) qed with Nv2-inter-E1-empty have r2E1-empty: r2 | $E_{ES1} = []$ by (metis Int-commute empty-subset projection-on-subset 2 r2-Vv2-empty) let $?tau = \tau @ r2 @ [\mathcal{V}']$ from v'-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau $\subseteq E_{(ES1 \parallel ES2)}$ by (simp only: composeES-def isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover **note** Cons(4)moreover from Cons(5) t2-is-r2-v'-s2 have set $s2 \subseteq E_{ES2}$ by auto moreover have $?tau | E_{ES1} @ t1 \in Tr_{ES1}$ proof from v'-notin-E1 have $[\mathcal{V}'] \uparrow E_{ES1} = []$ by (simp add: projection-def) with Cons(6) Cons(3) t2-is-r2-v'-s2 v'-notin-E1 r2-in-Nv2star Nv2-inter-E1-empty r2E1-empty show ?thesis by (simp only: t2-is-r2-v'-s2 list-subset-iff-projection-neutral projection-concatenation-commute, auto) ged moreover have $?tau | E_{ES2} @ s2 \in Tr_{ES2}$ by (metis Cons-eq-appendI append-eq-appendI calculation(4) eq-Nil-appendI list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)projection-concatenation-commute t2-is-r2-v'-s2) moreover from Cons(8) v'-notin-E1 have $lambda' | E_{ES1} = t1 | V_V$ **by** (*simp add: projection-def*) moreover

153

```
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv
          have lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}
            by (simp add: projection-def)
          moreover
          note Cons(10) s2-Cv2-empty
          moreover
          note Cons.hyps(1)[of ?tau t1 s2]
           ultimately obtain t'
            where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
            and t'-Vv-is-lambda': t' | V_{\mathcal{V}} = lambda'
            and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
            by auto
          let ?t = r2 @ [\mathcal{V}'] @ t'
          note tau-t'-in-Tr
          moreover
          from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv
            have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
            by (simp add: projection-def)
          moreover
          have ?t \mid C_{\mathcal{V}} = []
          proof -
            have r2 \uparrow C_{\mathcal{V}} = []
              using propSepViews unfolding properSeparationOfViews-def
              by (metis projection-on-subset2)
                r2-Cv2-empty r2-in-E2star)
            with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
              by (simp add: isViewOn-def V-valid-def
                 VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
          qed
          ultimately have ?thesis
            by auto
         }
         ultimately show ?thesis
          by blast
       qed
     \mathbf{qed}
thus ?thesis
```

lemma generalized-zipping-lemma4:

}

qed

by auto

 $\begin{bmatrix} \nabla_{\Gamma 1} \subseteq E_{ES1}; \Delta_{\Gamma 1} \subseteq E_{ES1}; \Upsilon_{\Gamma 1} \subseteq E_{ES1}; \nabla_{\Gamma 2} \subseteq E_{ES2}; \Delta_{\Gamma 2} \subseteq E_{ES2}; \Upsilon_{\Gamma 2} \subseteq E_{ES2}; \\ BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1}; \ BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2}; \ total \ ES1 \ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}); \ total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}); \\ BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1}; \ BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2}; \ total \ ES1 \ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}); \ total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}); \\ BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1}; \ \mathcal{V}1 \ \mathcal{V}2 \ \mathcal{V}2$ FCIA $\varrho 1 \ \Gamma 1 \ V 1 \ Tr_{ES1}$; FCIA $\varrho 2 \ \Gamma 2 \ V 2 \ Tr_{ES2}$; $V_{V1} \cap V_{V2} \subseteq \nabla_{\Gamma 1} \cup \nabla_{\Gamma 2}$; $\begin{array}{l} C_{\mathcal{V}I} \cap N_{\mathcal{V}2} \subseteq \Upsilon_{\Gamma I}; \ C_{\mathcal{V}2} \cap N_{\mathcal{V}I} \subseteq \Upsilon_{\Gamma 2}; \\ N_{\mathcal{V}I} \cap \Delta_{\Gamma I} \cap E_{ES2} = \{\}; \ N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \] \Longrightarrow \\ \forall \ \tau \ lambda \ t1 \ t2. \ (\ (set \ \tau \subseteq (E_{(ES1 \parallel ES2)}) \land set \ lambda \subseteq V_{\mathcal{V}} \ \land set \ t1 \subseteq E_{ES1} \end{cases}$

 $\wedge set \ t2 \subseteq E_{ES2} \land ((\tau \upharpoonright E_{ES1}) \ @ \ t1) \in Tr_{ES1} \land ((\tau \upharpoonright E_{ES2}) \ @ \ t2) \in Tr_{ES2}$ $\wedge (lambda | E_{ES1}) = (t1 | V_{\mathcal{V}}) \wedge (lambda | E_{ES2}) = (t2 | V_{\mathcal{V}})$ $\wedge (t1 \uparrow C_{\mathcal{V}1}) = [] \land (t2 \uparrow C_{\mathcal{V}2}) = [])$ $\longrightarrow (\exists t. ((\tau @ t) \in (Tr_{(ES1 \parallel ES2)}) \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))))$ proof assume Nabla1-subset of-E1: $\nabla_{\Gamma 1} \subseteq E_{ES1}$ and Delta1-subset of-E1: $\Delta_{\Gamma 1} \subseteq E_{ES1}$ and Upsilon1-subset of-E1: $\Upsilon_{\Gamma 1} \subseteq E_{ES1}$ and Nabla2-subset of-E2: $\nabla_{\Gamma 2} \subseteq E_{ES2}$ and *Delta2-subsetof-E2*: $\Delta_{\Gamma 2} \subseteq E_{ES2}$ and Upsilon2-subset of-E2: $\Upsilon_{\Gamma 2} \subseteq E_{ES2}$ and BSIA1: BSIA $\varrho 1 \ V 1 \ Tr_{ES1}$ and BSIA2: BSIA $\varrho 2 \ V 2 \ Tr_{ES2}$ and ES1-total-Cv1-inter-Nv2: total ES1 $(C_{\mathcal{V}1} \cap N_{\mathcal{V}2})$ and ES2-total-Cv2-inter-Nv1: total ES2 $(C_{\mathcal{V2}} \cap N_{\mathcal{V1}})$ and FCIA1: FCIA $\varrho 1 \ \Gamma 1 \ V 1 \ Tr_{ES1}$ and FCIA2: FCIA ϱ 2 Γ 2 V2 Tr_{ES2} and Vv1-inter-Vv2-subset of-Nabla1-union-Nabla2: $V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \subseteq \nabla_{\Gamma1} \cup \nabla_{\Gamma2}$ and Cv1-inter-Nv2-subset of-Upsilon1: $C_{\mathcal{V}1} \cap N_{\mathcal{V}2} \subseteq \Upsilon_{\Gamma1}$ and Cv2-inter-Nv1-subset of-Upsilon2: $C_{\mathcal{V}2} \cap N_{\mathcal{V}1} \subseteq \Upsilon_{\Gamma 2}$ and disjoint-Nv1-inter-Delta1-inter-E2: $N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\}$ and disjoint-Nv2-inter-Delta2-inter-E1: $N_{\mathcal{V2}} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\}$ { fix τ lambda t1 t2 have \llbracket set $\tau \subseteq (E_{(ES1 \parallel ES2)});$ set lambda $\subseteq V_{\mathcal{V}}$; set $t1 \subseteq E_{ES1}$; set $t2 \subseteq E_{ES2};$ $((\tau \mid E_{ES1}) \ \textcircled{@} \ t1) \in Tr_{ES1};$ $((\tau \mid E_{ES2}) @ t2) \in Tr_{ES2};$ $(lambda | E_{ES1}) = (t1 | V_{\mathcal{V}});$ $(lambda | E_{ES2}) = (t2 | V_{\mathcal{V}});$ $(t1 \uparrow C_{\mathcal{V}1}) = [];$ $(t2 \uparrow C_{\mathcal{V}2}) = []]$ $\implies (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \upharpoonright V_{\mathcal{V}}) = lambda \land (t \upharpoonright C_{\mathcal{V}}) = []))$ **proof** (induct lambda arbitrary: τ t1 t2) case (Nil τ t1 t2) have $(\tau @ []) \in Tr_{(ES1 \parallel ES2)}$ proof have $\tau \in Tr_{(ES1 \parallel ES2)}$ proof from Nil(5) validES1 have $\tau \upharpoonright E_{ES1} \in Tr_{ES1}$ **by** (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) moreover from Nil(6) validES2 have $\tau \upharpoonright E_{ES2} \in Tr_{ES2}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) moreover

155

note Nil(1)ultimately show *?thesis* **by** (*simp add: composeES-def*) qed thus ?thesis by auto qed moreover have $([] \uparrow V_{\mathcal{V}}) = []$ **by** (*simp add: projection-def*) moreover have $([] \uparrow C_{\mathcal{V}}) = []$ by (simp add: projection-def) ultimately show ?case **by** blast \mathbf{next} case (Cons \mathcal{V}' lambda' τ t1 t2) thus ?case proof from Cons(3) have v'-in- $Vv: \mathcal{V}' \in V_{\mathcal{V}}$ by auto have $\mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cap \nabla_{\Gamma 1}$ $\vee \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cap \nabla_{\Gamma2}$ $\begin{array}{l} \forall \ \mathcal{V}' \in \ V_{\mathcal{V}1} - E_{ES2} \\ \forall \ \mathcal{V}' \in \ V_{\mathcal{V}2} - E_{ES1} \end{array}$ proof let $?S = V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cup (V_{\mathcal{V}1} - V_{\mathcal{V}2}) \cup (V_{\mathcal{V}2} - V_{\mathcal{V}1})$ have $V_{\mathcal{V}1} \cup V_{\mathcal{V}2} = ?S$ by auto moreover have $V_{\mathcal{V}1} - V_{\mathcal{V}2} = V_{\mathcal{V}1} - E_{ES2}$ and $V_{\mathcal{V}2} - V_{\mathcal{V}1} = V_{\mathcal{V}2} - E_{ES1}$ using propSepViews unfolding properSeparationOfViews-def by auto moreover note Vv1-inter-Vv2-subsetof-Nabla1-union-Nabla2 Vv-is-Vv1-union-Vv2 v'-in-Vv ultimately show ?thesis by auto \mathbf{qed} moreover { assume v'-in-Vv1-inter-Vv2-inter-Nabla1: $\mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cap \nabla_{\Gamma1}$ hence v'-in- $Vv1: V' \in V_{V1}$ and v'-in- $Vv2: V' \in V_{V2}$ and v'-in-Nabla2: $\mathcal{V}' \in \nabla_{\Gamma 1}$ by auto with v'-in-Vv have v'-in-E1: $\mathcal{V}' \in E_{ES1}$ and v'-in-E2: $\mathcal{V}' \in E_{ES2}$ using propSepViews unfolding properSeparationOfViews-def by auto

from Cons(3-4) Cons(8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})$

by (*simp add: projection-def*) from projection-split-first[OF this] obtain r1 s1 where t1-is-r1-v'-s1: $t1 = r1 @ [\mathcal{V}'] @ s1$ and r1-Vv-empty: r1 | $V_{\mathcal{V}} = []$ by *auto* with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_V r1] have r1-Vv1-empty: $r1 \uparrow V_{V1} = []$ by auto from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 | $C_{V1} = []$ **by** (simp add: projection-concatenation-commute) from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | $C_{V1} = []$ by (simp only: projection-concatenation-commute, auto) from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1} and s1-in-E1star: set s1 \subseteq E_{ES1} by auto have r1-in-Nv1star: set $r1 \subseteq N_{V1}$ proof note r1-in-E1star moreover from r1-Vv1-empty have set r1 \cap V_{V1} = {} by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover from r1-Cv1-empty have set $r1 \cap C_{\mathcal{V}1} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover note validV1 ultimately show ?thesis by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) qed have r1E2-in-Nv1-inter-C2-star: set $(r1 \uparrow E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})$ proof have set $(r1 | E_{ES2}) = set r1 \cap E_{ES2}$ **by** (*simp add: projection-def, auto*) with r1-in-Nv1star have set $(r1 \uparrow E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})$ by auto moreover from validV2 disjoint-Nv1-Vv2 have $E_{ES2} \cap N_{\mathcal{V}1} = N_{\mathcal{V}1} \cap C_{\mathcal{V}2}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis

by auto qed with Cv2-inter-Nv1-subset of-Upsilon2 have r1E2-in-Nv1-inter-C2-Upsilon2-star: set $(r1 | E_{ES2}) \subseteq (N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2})$ by auto

note *outerCons-prems* = *Cons.prems*

```
have set (r1 | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2}) \Longrightarrow

\exists t2'. (set t2' \subseteq E_{ES2}) \land ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
   \wedge \begin{array}{l} t2' \mid V_{\mathcal{V2}} = \begin{array}{l} t2 \mid V_{\mathcal{V2}} \\ \wedge \begin{array}{l} t2' \mid C_{\mathcal{V2}} = \end{array} \right) 
\textbf{proof} \ (\textit{induct} \ r1 \ | \ E_{ES2} \ arbitrary: \ r1 \ rule: \ rev\text{-induct})
  case Nil thus ?case
     by (metis append-self-conv outerCons-prems(10)
        outerCons-prems(4) outerCons-prems(6) projection-concatenation-commute)
\mathbf{next}
  case (snoc \ x \ xs)
  have xs-is-xsE2: xs = xs | E_{ES2}
     proof -
        from snoc(2) have set (xs @ [x]) \subseteq E_{ES2}
           \mathbf{by}~(simp~add:~projection-def,~auto)
        hence set xs \subseteq E_{ES2}
          by auto
        thus ?thesis
           by (simp add: list-subset-iff-projection-neutral)
     qed
   moreover
  have set (xs | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
     proof -
        have set (r1 | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          by (metis Int-commute snoc.prems)
        with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}_1} \cap C_{\mathcal{V}_2})
          by simp
        hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          by auto
        with xs-is-xsE2 show ?thesis
          by auto
     qed
   moreover
  note snoc.hyps(1)[of xs]
   ultimately obtain t2"
     where t2''-in-E2star: set t2'' \subseteq E_{ES2}
     and \tau-xs-E2-t2''-in-Tr2: ((\tau @ xs) | E_{ES2}) @ t2'' \in Tr_{ES2}
and t2''Vv2-is-t2Vv2: t2'' | V_{V2} = t2 | V_{V2}
     and t2^{\prime\prime}Cv2\text{-}empty: t2^{\prime\prime} \upharpoonright C_{\mathcal{V}\mathcal{Z}} = []
     by auto
  have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V2}} \cap N_{\mathcal{V1}}
```

proof –

```
from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}_1} \cap C_{\mathcal{V}_2})
     by simp
    thus ?thesis
     by auto
  \mathbf{qed}
hence x-in-Cv2: x \in C_{\mathcal{V2}}
 by auto
moreover
note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
moreover
have Adm: (Adm \mathcal{V2} \ \varrho 2 \ Tr_{ES2} ((\tau \ @ xs) | E_{ES2}) x)
 proof -
    from \tau-xs-E2-t2 ''-in-Tr2 validES2
    have \tau-xsE2-in-Tr2: ((\tau @ xs) | E_{ES2}) \in Tr<sub>ES2</sub>
     by (simp add: ES-valid-def traces-prefixclosed-def
       prefixclosed-def prefix-def)
    with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
    have \tau-xsE2-x-in-Tr2: ((\tau @ xs) | E_{ES2}) @ [x] \in Tr<sub>ES2</sub>
     by (simp only: total-def)
    moreover
    have ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V2) = ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V2) \dots
    ultimately show ?thesis
     by (simp add: Adm-def, auto)
  \mathbf{qed}
moreover note BSIA2
ultimately obtain t2'
 where res1: ((\tau @ xs) | E_{ES2}) @ [x] @ t2' \in Tr_{ES2}
and res2: t2' | V_{V2} = t2'' | V_{V2}
and res3: t2' | C_{V2} = []
 by (simp only: BSIA-def, blast)
have set t2' \subseteq E_{ES2}
  proof -
    from res1 validES2 have set (((\tau @ xs) | E_{ES2}) @ [x] @ t2') \subseteq E_{ES2}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
    thus ?thesis
      by auto
 qed
moreover
have ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
  proof -
    from res1 xs-is-xsE2 have ((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}
     by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
     by (simp only: snoc(2) projection-concatenation-commute)
 \mathbf{qed}
moreover
from t2''Vv2-is-t2Vv2 res2 have t2' \upharpoonright V_{\mathcal{V}2} = t2 \upharpoonright V_{\mathcal{V}2}
 by auto
moreover
note res3
ultimately show ?case
```

```
by auto
\mathbf{qed}
from this [OF r1E2-in-Nv1-inter-C2-star] obtain t2'
  where t2'-in-E2star: set t2' \subseteq E_{ES2}
 and \tau r1E2-t2'-in-Tr2: ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
and t2'-Vv2-is-t2-Vv2: t2' | V_{V2} = t2 | V_{V2}
 and t2'-Cv2-empty: t2' \upharpoonright C_{\mathcal{V}2} = []
 by auto
have t2' \upharpoonright V_{\mathcal{V}2} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
 proof -
   from projection-intersection-neutral[OF Cons(5), of V_{\mathcal{V}}]
   have t2 \upharpoonright V_{\mathcal{V}} = t2 \upharpoonright V_{\mathcal{V}2}
     using propSepViews unfolding properSeparationOfViews-def
     by (simp only: Int-commute)
   with Cons(9) t2'-Vv2-is-t2-Vv2 v'-in-E2 show ?thesis
     by (simp add: projection-def)
 qed
from projection-split-first[OF this] obtain r2' s2'
  where t2'-is-r2'-v'-s2': t2' = r2' @ [V'] @ s2'
 and r2'-Vv2-empty: r2' \upharpoonright V_{\mathcal{V}2} = []
 by auto
from t2'-is-r2'-v'-s2' t2'-Cv2-empty have r2'-Cv2-empty: r2' | C_{V2} = []
 by (simp add: projection-concatenation-commute)
from t2'-is-r2'-v'-s2' t2'-Cv2-empty have s2'-Cv2-empty: s2' \upharpoonright C_{\mathcal{V2}} = []
 by (simp only: projection-concatenation-commute, auto)
from t2'-in-E2star t2'-is-r2'-v'-s2' have r2'-in-E2star: set r2' \subseteq E_{ES2}
 by auto
have r2'-in-Nv2star: set r2' \subseteq N_{V2}
 proof -
   note r2'-in-E2star
   moreover
   from r2'-Vv2-empty have set r2' \cap V_{V2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   from r2'-Cv2-empty have set r2' \cap C_{V2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   note validV2
    ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 qed
```

have r2'E1-in-Nv2-inter-C1-star: set $(r2' | E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ proof have set $(r2' | E_{ES1}) = set r2' \cap E_{ES1}$ **by** (*simp add: projection-def, auto*) with r2'-in-Nv2star have set $(r2' | E_{ES1}) \subseteq (E_{ES1} \cap N_{V2})$ by auto moreover from validV1 disjoint-Nv2-Vv1 have $E_{ES1} \cap N_{\mathcal{V2}} = N_{\mathcal{V2}} \cap C_{\mathcal{V1}}$ ${\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis by auto qed with Cv1-inter-Nv2-subset of-Upsilon1 have r2'E1-in-Nv2-inter-Cv1-Upsilon1-star: set $(r2' | E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})$ by auto have set $(r2' \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \Longrightarrow$ $\exists s1'q1'$. ($\begin{array}{l} set \ s1 \ ' \subseteq \ E_{ES1} \ \land \ set \ q1 \ ' \subseteq \ C_{\mathcal{V}1} \ \cap \ \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \ \cap \ \Delta_{\Gamma1} \\ \land \ (\tau \ | \ E_{ES1}) \ @ \ r1 \ @ \ q1 \ ' @ \ [\mathcal{V}'] \ @ \ s1 \ ' \in \ Tr_{ES1} \end{array}$ $\begin{array}{l} \wedge q1' \mid (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = r2' \mid E_{ES1} \\ \wedge s1' \mid V_{\mathcal{V}1} = s1 \mid V_{\mathcal{V}1} \end{array}$ $\land s1' \upharpoonright C_{\mathcal{V}1} = [])$ **proof** (induct $r2' \upharpoonright E_{ES1}$ arbitrary: r2' rule: rev-induct) $\mathbf{case}~Nil$ ${\bf note} \ s1{\textbf -}in{\textbf -}E1star$ moreover have set $[] \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}$ by *auto* moreover **from** *outerCons-prems*(5) *t1-is-r1-v'-s1* have $\tau \upharpoonright E_{ES1} @ r1 @ [] @ [\mathcal{V}'] @ s1 \in Tr_{ES1}$ by auto moreover from Nil have [] $\uparrow (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = r2' \uparrow E_{ES1}$ **by** (*simp add: projection-def*) moreover have $s1 \uparrow V_{\mathcal{V}1} = s1 \uparrow V_{\mathcal{V}1}$. moreover note *s1-Cv1-empty* ultimately show ?case by blast

next

```
case (snoc \ x \ xs)
```

```
have xs-is-xsE1: xs = xs \uparrow E_{ES1}
  proof –
    from snoc(2) have set (xs @ [x]) \subseteq E_{ES1}
      by (simp add: projection-def, auto)
    thus ?thesis
      by (simp add: list-subset-iff-projection-neutral)
  qed
moreover
have set (xs | E_{ES1}) \subseteq N_{\mathcal{V2}} \cap C_{\mathcal{V1}} \cap \Upsilon_{\Gamma1}
  proof -
    from snoc(2-3) have set (xs @ [x]) \subseteq N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
      by simp
    with xs-is-xsE1 show ?thesis
      by auto
  qed
moreover
note snoc.hyps(1)[of xs]
ultimately obtain s1^{\prime\prime} q1^{\prime\prime}
  where s1''-in-E1star: set s1'' \subseteq E_{ES1}
  and q1''-in-C1-inter-Upsilon1-inter-Delta1: set q1'' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  and \tau E1-r1-q1''-v'-s1''-in-Tr1: (\tau \uparrow E_{ES1} @ r1 @ q1'') @ [\mathcal{V}'] @ s1'' \in Tr_{ES1}
  and q1''C1-\hat{U}psilon1-is-xsE1: q1'' \uparrow (\overline{C_{V1}} \cap \Upsilon_{\Gamma 1}) = xs \uparrow E_{ES1}
  and s1''V1-is-s1V1: s1'' \upharpoonright V_{V1} = s1 \upharpoonright V_{V1}
  and s1''C1-empty: s1'' \upharpoonright C_{V1} = []
  by auto
have x-in-Cv1-inter-Upsilon1: x \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
  and x-in-Cv1-inter-Nv2: x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}
  proof -
    from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})
      by simp
    thus x \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
      and x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}
      by auto
  qed
with validV1 have x-in-E1: x \in E_{ES1}
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
note x-in-Cv1-inter-Upsilon1
moreover
from v'-in-Vv1-inter-Vv2-inter-Nabla1 have \mathcal{V}' \in V_{\mathcal{V}1} \cap \nabla_{\Gamma1}
 by auto
moreover
note \tau E1-r1-q1 "-v'-s1 "-in-Tr1 s1 "C1-empty
moreover
have Adm: (Adm \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} \ (\tau \uparrow E_{ES1} @ r1 @ q1'') x)
  proof -
    from \tau E1-r1-q1 ''-v'-s1 ''-in-Tr1 validES1
    have (\tau \upharpoonright E_{ES1} @ r1 @ q1'') \in Tr_{ES1}
by (simp add: ES-valid-def traces-prefixclosed-def
        prefixclosed-def prefix-def)
```

```
with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
     have (\tau \mid E_{ES1} \otimes r1 \otimes q1'') \otimes [x] \in Tr_{ES1}
       by (simp only: total-def)
     moreover
     have (\tau \mid E_{ES1} @ r1 @ q1'') \mid (\varrho 1 \ V1) = (\tau \mid E_{ES1} @ r1 @ q1'') \mid (\varrho 1 \ V1) \dots
     ultimately show ?thesis
       by (simp only: Adm-def, blast)
  qed
moreover
note FCIA1
ultimately
obtain s1' \gamma'
  where res1: (set \gamma') \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
  and res2: ((\tau \mid E_{ES1} @ r1 @ q1'') @ [x] @ \gamma' @ [\mathcal{V}'] @ s1') \in Tr_{ES1}
  and res3: (s1' | V_{\mathcal{V}1}) = (s1'' | V_{\mathcal{V}1})
  and res4: s1' \upharpoonright C_{V1} = []
  unfolding FCIA-def
  by blast
let ?q1' = q1'' @ [x] @ \gamma'
from res2 validES1 have set s1 ' \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from res1 x-in-Cv1-inter-Upsilon1 q1"-in-C1-inter-Upsilon1-inter-Delta1
have set ?q1' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  by auto
moreover
from res2 have \tau \upharpoonright E_{ES1} @ r1 @ ?q1' @ [\mathcal{V}'] @ s1' \in Tr_{ES1}
  by auto
moreover
have ?q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = r2' \upharpoonright E_{ES1}
  proof -
     from validV1 res1 have \gamma' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = []
       proof -
          from res1 have \gamma' = \gamma' \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
            by (simp only: list-subset-iff-projection-neutral)
          hence \gamma' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \gamma' \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}) \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})
            by simp
          hence \gamma' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \gamma' \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})
            by (simp only: projection-def, auto)
          moreover
          from validV1 have N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} = \{\}
            \mathbf{by} \ (simp \ add: \ is View On-def \ V-valid-def
               VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
          ultimately show ?thesis
            by (simp add: projection-def)
       qed
     hence ?q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = (q1'' @ [x]) \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})
       by (simp only: projection-concatenation-commute, auto)
     with q1"C1-Upsilon1-is-xsE1 x-in-Cv1-inter-Upsilon1
     have ?q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = (xs \upharpoonright E_{ES1}) @ [x]
```

by (simp only: projection-concatenation-commute projection-def, auto) with xs-is- $xsE1 \ snoc(2)$ show ?thesis by simp qed moreover from res3 s1 "V1-is-s1V1 have s1' | $V_{V1} = s1$ | V_{V1} by simp moreover note res4 ultimately show ?case by blast \mathbf{qed} from this[OF r2'E1-in-Nv2-inter-Cv1-Upsilon1-star] obtain s1' q1' where s1'-in-E1star: set $s1' \subseteq E_{ES1}$ and q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1: set $q1' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}$ and $\tau E1$ -r1-q1'-v'-s1'-in-Tr1: ($\tau \upharpoonright E_{ES1}$) @ r1 @ q1' @ [\mathcal{V} '] @ s1' \in Tr_{ES1} and q1'Cv1-inter-Upsilon1-is-r2'E1: $q1' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma1}) = r2' \upharpoonright E_{ES1}$ and s1'Vv1-is-s1-Vv1: $s1' \mid V_{V1} = s1 \mid V_{V1}$ and s1'Cv1-empty: $s1' | C_{V1} = []$ by auto from q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1 validV1 have q1'-in-E1star: set $q1' \subseteq E_{ES1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) have r2'Cv-empty: $r2' \mid C_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2) r2'-Cv2-empty r2'-in-E2star) from validES1 τ E1-r1-q1'-v'-s1'-in-Tr1 have q1'-in-E1star: set $q1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover note r2'-in-E2star moreover have q1'E2-is-r2'E1: $q1' | E_{ES2} = r2' | E_{ES1}$ proof from q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1 have $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) = q1'$ by (simp add: list-subset-iff-projection-neutral) hence $(q1' | (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1})) | E_{ES2} = q1' | E_{ES2}$ by simp hence $q1' \upharpoonright ((C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}) \cap E_{ES2}) = q1' \upharpoonright E_{ES2}$ **by** (*simp add: projection-def*) hence $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap E_{ES2}) = q1' \upharpoonright E_{ES2}$ by (simp only: Int-Un-distrib2 disjoint-Nv1-inter-Delta1-inter-E2, auto) moreover from q1 'Cv1-inter-Upsilon1-is-r2 'E1

have $(q1' | (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})) | E_{ES2} = (r2' | E_{ES1}) | E_{ES2}$ by simp hence $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap E_{ES2}) = (r2' \upharpoonright E_{ES2}) \upharpoonright E_{ES1}$ **by** (*simp add: projection-def conj-commute*) with r2'-in-E2star have $q1' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma1} \cap E_{ES2}) = r2' \upharpoonright E_{ES1}$ **by** (*simp only: list-subset-iff-projection-neutral*) ultimately show ?thesis by auto qed moreover have $q1' \upharpoonright V_{\mathcal{V}} = []$ proof – from q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1 have $q1' = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ **by** (*simp add: list-subset-iff-projection-neutral*) moreover from q1'-in-E1star have $q1' = q1' \upharpoonright E_{ES1}$ **by** (*simp add: list-subset-iff-projection-neutral*) ultimately have $q1' = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright E_{ES1}$ by simp hence $q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}}$ by simp hence $q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright (V_{\mathcal{V}} \cap E_{ES1})$ by (simp add: Int-commute projection-def) hence $q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright ((C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap V_{\mathcal{V}1})$ using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: projection-def*) hence $q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright (V_{\mathcal{V}1} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup V_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ by (simp add: Int-Un-distrib2, metis Int-assoc Int-commute Int-left-commute Un-commute) with validV1 show ?thesis by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def) \mathbf{qed} moreover have $r2' \upharpoonright V_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral r2'-Vv2-empty r2'-in-E2star) moreover have q1'Cv-empty: $q1' \uparrow C_{\mathcal{V}} = []$ proof from q1'-in-E1star have foo: $q1' = q1' \upharpoonright E_{ES1}$ **by** (*simp add: list-subset-iff-projection-neutral*) hence $q1' \upharpoonright C_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})$ by (metis Int-commute list-subset-iff-projection-neutral projection-intersection-neutral) moreover from propSepViews have $C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by auto from projection-subset-elim[OF $\langle C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1} \rangle$, of q1] have $q1' \upharpoonright C_{\mathcal{V}1} \upharpoonright C_{\mathcal{V}} \upharpoonright E_{ES1} = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})$ using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: projection-def*)

hence $q1' \upharpoonright E_{ES1} \upharpoonright C_{\mathcal{V}1} \upharpoonright C_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})$ **by** (*simp add: projection-commute*) with foo have $q1' \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}}) = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})$ **by** (*simp add: projection-def*) moreover from q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1 have $q1' \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}}) = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}})$ **by** (*simp add: list-subset-iff-projection-neutral*) moreover have $(C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap (C_{\mathcal{V}1} \cap C_{\mathcal{V}})$ $= (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup C_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap C_{\mathcal{V}}$ by fast hence $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}})$ $= q1' | (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup C_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) | C_{\mathcal{V}1}$ **by** (*simp add: projection-sequence*) moreover ${\bf from} ~validV1$ have $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup C_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright C_{\mathcal{V}1}$ $= q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \upharpoonright C_{\mathcal{V}}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute) moreover from q1 'Cv1-inter-Upsilon1-is-r2 'E1 have $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) \upharpoonright C_{\mathcal{V}} = r2' \upharpoonright E_{ES1} \upharpoonright C_{\mathcal{V}}$ by simp with projection-on-intersection[OF r2'Cv-empty] have $q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \upharpoonright C_{\mathcal{V}} = []$ **by** (*simp add: Int-commute projection-def*) ultimately show ?thesis $\mathbf{by} \ auto$ qed moreover note r2'Cv-empty merge-property'[of q1' r2'] ultimately obtain q'where q'E1-is-q1': $q' \upharpoonright E_{ES1} = q1'$ and q'E2-is-r2': $q' \uparrow E_{ES2} = r2'$ and q'V-empty: $q' \uparrow V_{\mathcal{V}} = []$ and q'C-empty: $q' \upharpoonright C_{\mathcal{V}} = [$ and q'-in-E1-union-E2-star: set $q' \subseteq (E_{ES1} \cup E_{ES2})$ unfolding Let-def by auto let $?tau = \tau @ r1 @ q' @ [\mathcal{V}']$ from Cons(2) r1-in-E1star q'-in-E1-union-E2-star v'-in-E1 have set $?tau \subseteq (E_{(ES1 \parallel ES2)})$ **by** (simp add: composeES-def, auto) moreover

from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover

note s1'-in-E1star

moreover from t2'-in-E2star t2'-is-r2'-v'-s2' have set $s2' \subseteq E_{ES2}$ by simp moreover from q'E1-is-q1' r1-in-E1star v'-in-E1 q1'-in-E1star τE1-r1-q1'-v'-s1'-in-Tr1 have $?tau | E_{ES1} @ s1' \in Tr_{ES1}$ **by** (simp only: list-subset-iff-projection-neutral projection-concatenation-commute projection-def, auto) moreover from *\tau r1E2-t2'-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2 q'E2-is-r2'* have $?tau | E_{ES2} @ s2' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover have $lambda' \upharpoonright E_{ES1} = s1' \upharpoonright V_{\mathcal{V}}$ proof from Cons(3-4) Cons(8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES1})$ **by** (*simp add: projection-def*) moreover from t1-is-r1-v'-s1 r1-Vv-empty v'-in-Vv1 Vv-is-Vv1-union-Vv2 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1 \upharpoonright V_{\mathcal{V}})$ by (simp only: t1-is-r1-v'-s1 projection-concatenation-commute projection-def, auto) moreover have $s1 \upharpoonright V_{\mathcal{V}} = s1' \upharpoonright V_{\mathcal{V}}$ using propSepViews unfolding properSeparationOfViews-def $\mathbf{by} \ (metis \ Int-commute \ \ projection-intersection-neutral$ s1'Vv1-is-s1-Vv1 s1'-in-E1star s1-in-E1star) ultimately show ?thesis by auto qed moreover have $lambda' \upharpoonright E_{ES2} = s2' \upharpoonright V_{\mathcal{V}}$ proof – from Cons(3,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}']$ @ $(lambda' \upharpoonright E_{ES2})$ **by** (*simp add: projection-def*) moreover from t2'-is-r2'-v'-s2' r2'-Vv2-empty r2'-in-E2star v'-in-Vv2 propSepViews have $t\mathcal{Z}' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s\mathcal{Z}' \upharpoonright V_{\mathcal{V}})$ proof have $r2' \upharpoonright V_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2 r2'-Vv2-empty r2'-in-E2star subset-iff-psubset-eq) with t2'-is-r2'-v'-s2' v'-in-Vv2 Vv-is-Vv1-union-Vv2 show ?thesis by (simp only: t2'-is-r2'-v'-s2'projection-concatenation-commute projection-def, auto) qed moreover have $t2 \downarrow V_{\mathcal{V}} = t2' \downarrow V_{\mathcal{V}}$ using propSepViews unfolding properSeparationOfViews-def by (metis Int-commute outerCons-prems(4))

 $projection\textit{-intersection-neutral } t2' - Vv2\textit{-is-t2-}Vv2 \ t2'\textit{-in-}E2star)$

```
ultimately show ?thesis
by auto
qed
moreover
note s1'Cv1-empty s2'-Cv2-empty Cons.hyps[of ?tau s1' s2']
ultimately obtain t'
where \tau-r1-q'-v'-t'-in-Tr: ?tau @ t' \in Tr<sub>(ES1 || ES2)</sub>
and t'Vv-is-lambda': t' | V<sub>V</sub> = lambda'
and t'Cv-empty: t' | C<sub>V</sub> = []
by auto
```

let $?t = r1 @ q' @ [\mathcal{V}'] @ t'$

note τ -r1-q'-v'-t'-in-Tr moreover from r1-Vv-empty q'V-empty t'Vv-is-lambda' v'-in-Vv have $?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'$ $\mathbf{by}(\textit{simp only: projection-concatenation-commute projection-def, auto})$ moreover from VIsViewOnE r1-Cv1-empty t'Cv-empty q'C-empty v'-in-Vv have $?t \uparrow C_{\mathcal{V}} = []$ proof from VIsViewOnE v'-in-Vv have $[\mathcal{V}'] \mid C_{\mathcal{V}} = []$ **by** (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto) moreover from r1-in-E1star r1-Cv1-empty have $r1 \uparrow C_{\mathcal{V}} = []$ **using** propSepViews projection-on-subset2 unfolding properSeparationOfViews-def by auto moreover **note** t'Cv-empty q'C-empty ultimately show *?thesis* by (simp only: projection-concatenation-commute, auto) qed ultimately have ?thesis by auto } moreover { assume v'-in-Vv1-inter-Vv2-inter-Nabla2: $\mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cap \nabla_{\Gamma 2}$ hence v'-in-Vv1: $\mathcal{V}' \in V_{\mathcal{V}1}$ and v'-in-Vv2: $\mathcal{V}' \in \overset{r_1}{V_{\mathcal{V}2}}$ and v'-in-Nabla2: $\mathcal{V}' \in \nabla_{\Gamma \mathcal{Z}}$ by auto with v'-in-Vv propSepViews have v'-in-E1: $\mathcal{V}' \in E_{ES1}$ and v'-in-E2: $\mathcal{V}' \in E_{ES2}$ unfolding properSeparationOfViews-def by auto from Cons(3,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})$ **by** (*simp add: projection-def*) from projection-split-first[OF this] obtain r2 s2

where t2-is-r2-v'-s2: $t2 = r2 @ [\mathcal{V}'] @ s2$

and r2-Vv-empty: $r2 \uparrow V_{\mathcal{V}} = []$ by *auto* with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2] have r2-Vv2-empty: r2 | $V_{\mathcal{V2}} = []$ by auto from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | $C_{V2} = []$ **by** (simp add: projection-concatenation-commute) from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | $C_{V2} = []$ $\mathbf{by}~(simp~only:~projection-concatenation-commute,~auto)$ from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set $r2 \subseteq E_{ES2}$ and s2-in-E2star: set $s2 \subseteq E_{ES2}$ by auto have r2-in-Nv2star: set $r2 \subseteq N_{\mathcal{V}2}$ proof note r2-in-E2star moreover from r2-Vv2-empty have set $r2 \cap V_{\mathcal{V}2} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 $disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral}$ projection-on-union) moreover from r2-Cv2-empty have set $r2 \cap C_{\mathcal{V2}} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover note validV2ultimately show ?thesis $\mathbf{by} \ (simp \ add: \ is View On-def \ V-valid-def$ VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) qed have r2E1-in-Nv2-inter-C1-star: set $(r2 | E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})$ proof have set $(r2 | E_{ES1}) = set r2 \cap E_{ES1}$ **by** (*simp add: projection-def, auto*) with r2-in-Nv2star have set $(r2 | E_{ES1}) \subseteq (E_{ES1} \cap N_{\mathcal{V2}})$ by auto moreover from validV1 disjoint-Nv2-Vv1 propSepViews have $E_{ES1} \cap N_{\mathcal{V2}} = N_{\mathcal{V2}} \cap C_{\mathcal{V1}}$ ${\bf unfolding} \ properSeparation Of Views-def$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis by auto qed with Cv1-inter-Nv2-subsetof-Upsilon1

have r2E1-in-Nv2-inter-C1-Upsilon1-star: set $(r2 | E_{ES1}) \subseteq (N_{V2} \cap C_{V1} \cap \Upsilon_{\Gamma1})$ by auto

note *outerCons-prems* = *Cons.prems* have set $(r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}}) \Longrightarrow$ $\exists t1'. (set t1' \subseteq E_{ES1})$ $\wedge ((\tau @ r2) | E_{ESI}) @ t1' \in Tr_{ES1}$ $\wedge t1' | V_{\mathcal{V}I} = t1 | V_{\mathcal{V}I}$ $\wedge t1' | C_{\mathcal{V}I} = [])$ **proof** (induct $r2 \upharpoonright E_{ES1}$ arbitrary: r2 rule: rev-induct) case Nil thus ?case by (metis append-self-conv outerCons-prems(9) outerCons-prems(3) outerCons-prems(5) projection-concatenation-commute) \mathbf{next} case $(snoc \ x \ xs)$ have xs-is-xsE1: $xs = xs | E_{ES1}$ proof – from snoc(2) have set $(xs @ [x]) \subseteq E_{ES1}$ by (simp add: projection-def, auto) hence set $xs \subseteq E_{ES1}$ by auto thus ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) qed moreover have set $(xs | E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})$ proof have set $(r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ by (metis Int-commute snoc.prems) with snoc(2) have set $(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ by simp hence set $xs \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})$ by *auto* with *xs-is-xsE1* show ?thesis by auto qed moreover **note** *snoc.hyps*(1)[*of xs*] ultimately obtain t1" where t1''-in-E1star: set $t1'' \subseteq E_{ES1}$ and τ -xs-E1-t1 "-in-Tr1: $((\tau @ xs) \uparrow E_{ES1}) @ t1 " \in Tr_{ES1}$ and t1''Vv1-is-t1Vv1: $t1'' \upharpoonright V_{V1} = t1 \upharpoonright V_{V1}$ and t1''Cv1-empty: $t1'' \upharpoonright C_{V1} = []$ by auto have x-in-Cv1-inter-Nv2: $x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}$ proof from snoc(2-3) have set $(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ by simp thus ?thesis

```
by auto
   \mathbf{qed}
 hence x-in-Cv1: x \in C_{\mathcal{V}1}
   by auto
  moreover
 note \tau-xs-E1-t1 "-in-Tr1 t1 "Cv1-empty
 moreover
 have Adm: (Adm \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
   proof -
     from \tau-xs-E1-t1 ''-in-Tr1 validES1
     have \tau-xsE1-in-Tr1: ((\tau @ xs) \uparrow E_{ES1}) \in Tr_{ES1}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
     with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
     have \tau-xsE1-x-in-Tr1: ((\tau @ xs) | E_{ES1}) @ [x] \in Tr<sub>ES1</sub>
       by (simp only: total-def)
     moreover
     have ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) = ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) \dots
     ultimately show ?thesis
       by (simp add: Adm-def, auto)
   \mathbf{qed}
  moreover note BSIA1
  ultimately obtain t1 '
   where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1}
   and res2: t1' | V_{V1} = t1'' | V_{V1}
and res3: t1' | C_{V1} = []
   by (simp only: BSIA-def, blast)
 have set t1' \subseteq E_{ES1}
   proof -
     from res1 validES1 have set (((\tau @ xs) | E_{ES1}) @ [x] @ t1') \subseteq E_{ES1}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
     thus ?thesis
       by auto
   qed
 moreover
 have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
   proof -
     from res1 xs-is-xsE1 have ((\tau \mid E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
       by (simp only: projection-concatenation-commute, auto)
     thus ?thesis
       by (simp only: snoc(2) projection-concatenation-commute)
   qed
 moreover
 from t1''Vv1-is-t1Vv1 res2 have t1' \upharpoonright V_{V1} = t1 \upharpoonright V_{V1}
   by auto
 moreover
 note res3
 ultimately show ?case
   by auto
qed
from this[OF r2E1-in-Nv2-inter-C1-star] obtain t1'
```

```
where t1'-in-E1star: set t1' \subseteq E_{ES1}
 and \tau r2E1-t1'-in-Tr1: ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
 and t1'-Vv1-is-t1-Vv1: t1' \upharpoonright V_{\mathcal{V}1} = t1 \upharpoonright V_{\mathcal{V}1}
 and t1'-Cv1-empty: t1' \upharpoonright C_{\mathcal{V}1} = []
 by auto
have t1' \upharpoonright V_{\mathcal{V}1} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
 proof -
   from projection-intersection-neutral[OF Cons(4), of V_{\mathcal{V}}] propSepViews
   have t1 \upharpoonright V_{\mathcal{V}} = t1 \upharpoonright V_{\mathcal{V}1}
     unfolding properSeparationOfViews-def
     by (simp only: Int-commute)
   with Cons(8) t1'-Vv1-is-t1-Vv1 v'-in-E1 show ?thesis
     by (simp add: projection-def)
 qed
from projection-split-first[OF this] obtain r1' s1'
 where t1'-is-r1'-v'-s1': t1' = r1' @ [V'] @ s1'
 and r1'-Vv1-empty: r1' \upharpoonright V_{\mathcal{V}1} = []
 by auto
from t1'-is-r1'-v'-s1' t1'-Cv1-empty have r1'-Cv1-empty: r1' | C_{V1} = []
 by (simp add: projection-concatenation-commute)
from t1'-is-r1'-v'-s1' t1'-Cv1-empty have s1'-Cv1-empty: s1' \mid C_{V1} = []
 by (simp only: projection-concatenation-commute, auto)
from t1'-in-E1star t1'-is-r1'-v'-s1' have r1'-in-E1star: set r1' \subseteq E_{ES1}
 by auto
have r1'-in-Nv1star: set r1' \subseteq N_{V1}
 proof -
   note r1'-in-E1star
   moreover
   from r1'-Vv1-empty have set r1' \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   from r1'-Cv1-empty have set r1' \cap C_{\mathcal{V}1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint\-eq\-subset\-Compl\list\-subset\-iff\-projection\-neutral
       projection-on-union)
   moreover
   note validV1
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 qed
have r1'E2-in-Nv1-inter-C2-star: set (r1' | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
 proof -
```

have set (r1 ' | E_{ES2}) = set r1 ' \cap E_{ES2}

by (simp add: projection-def, auto) with r1'-in-Nv1star have set $(r1' \upharpoonright E_{ES2}) \subseteq (E_{ES2} \cap N_{\mathcal{V}1})$ by auto moreover from validV2 propSepViews disjoint-Nv1-Vv2 have $E_{ES2} \cap N_{\mathcal{V}1} = N_{\mathcal{V}1} \cap C_{\mathcal{V}2}$ unfolding properSeparationOfViews-def by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis $\mathbf{by} \ auto$ \mathbf{qed} with Cv2-inter-Nv1-subset of-Upsilon2 have r1'E2-in-Nv1-inter-Cv2-Upsilon2-star: set $(r1' | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})$ by auto have set $(r1' | E_{ES2}) \subseteq (N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2}) \Longrightarrow$ $\exists s2' q2'.$ ($\begin{array}{l} set \ s2 \ ' \subseteq \ E_{ES2} \land set \ q2 \ ' \subseteq \ C_{\mathcal{V}2} \cap \ \Upsilon_{\Gamma2} \cup \ N_{\mathcal{V}2} \cap \ \Delta_{\Gamma2} \\ \land \ (\tau \ 1 \ E_{ES2}) \ @ \ r2 \ @ \ q2 \ ' @ \ [\mathcal{V}'] \ @ \ s2 \ ' \in \ Tr_{ES2} \end{array}$ $\wedge q \mathcal{Z}' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = r \mathcal{I}' \upharpoonright E_{ES\mathcal{Z}}$ $\wedge s2' \mid V_{\mathcal{V}2} = s2 \mid V_{\mathcal{V}2}$ $\wedge s2' \uparrow C_{\mathcal{V2}} = [])$ **proof** (induct $r1' | E_{ES2}$ arbitrary: r1' rule: rev-induct) case Nil note s2-in-E2star moreover have set $[] \subseteq C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cup N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}$ by auto moreover **from** *outerCons-prems*(6) *t2-is-r2-v'-s2* have $\tau \upharpoonright E_{ES2} @ r2 @ [] @ [\mathcal{V}'] @ s2 \in Tr_{ES2}$ by *auto* moreover from Nil have [] $\uparrow (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = r1' \uparrow E_{ES2}$ **by** (*simp add: projection-def*) moreover have $s_{2} | V_{V_{2}} = s_{2} | V_{V_{2}}$. moreover note s2-Cv2-empty ultimately show ?case $\mathbf{by} \ blast$ \mathbf{next} case $(snoc \ x \ xs)$

have xs-is-xsE2: $xs = xs \upharpoonright E_{ES2}$ proof – from snoc(2) have $set (xs @ [x]) \subseteq E_{ES2}$ by $(simp \ add: \ projection-def, \ auto)$

```
thus ?thesis
       by (simp add: list-subset-iff-projection-neutral)
  qed
moreover
have set (xs | E_{ES2}) \subseteq N_{\mathcal{V}1} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
  proof -
     from snoc(2-3) have set (xs @ [x]) \subseteq N_{\mathcal{V}1} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
       by simp
     with xs-is-xsE2 show ?thesis
       by auto
  qed
moreover
note snoc.hyps(1)[of xs]
ultimately obtain s2^{\prime\prime} q2^{\prime\prime}
  where s2''-in-E2star: set s2'' \subseteq E_{ES2}
  and q2''-in-C2-inter-Upsilon2-inter-Delta2: set q2'' \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
  and \tau E2 \cdot r2 \cdot q2'' \cdot v' \cdot s2'' \cdot in \cdot Tr2: (\tau \upharpoonright E_{ES2} @ r2 @ q2'') @ [\mathcal{V}] @ s2'' \in Tr_{ES2}
and q2''C2 \cdot Upsilon2 \cdot is \cdot ssE2: q2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = xs \upharpoonright E_{ES2}
and s2''V2 \cdot is \cdot s2V2: s2'' \upharpoonright V_{\mathcal{V}2} = s2 \upharpoonright V_{\mathcal{V}2}
  and s2''C2-empty: s2'' \uparrow C_{\mathcal{V2}} = []
  by auto
have x-in-Cv2-inter-Upsilon2: x \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma 2}
  and x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V2}} \cap N_{\mathcal{V1}}
  proof -
     from snoc(2-3) have set (xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})
       by simp
     thus x \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}
       and x \in C_{\mathcal{V2}} \cap N_{\mathcal{V1}}
       by auto
  qed
with validV2 have x-in-E2: x \in E_{ES2}
  by (simp add:isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
note x-in-Cv2-inter-Upsilon2
moreover
from v'-in-Vv1-inter-Vv2-inter-Nabla2 have \mathcal{V}' \in V_{\mathcal{V}2} \cap \nabla_{\Gamma 2}
  by auto
moreover
note \tau E2-r2-q2"-v'-s2"-in-Tr2 s2"C2-empty
moreover
have Adm: (Adm V2 \varrho2 Tr_{ES2} (\tau † E_{ES2} @ r2 @ q2 ^{\prime\prime}) x)
  proof -
     from \tau E2-r2-q2''-v'-s2''-in-Tr2 validES2
     have (\tau \mid E_{ES2} @ r2 @ q2'') \in Tr_{ES2}
       by (simp add: ES-valid-def traces-prefixclosed-def
          prefixclosed-def prefix-def)
     with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
     have (\tau \mid E_{ES2} @ r2 @ q2'') @ [x] \in Tr_{ES2}
       by (simp only: total-def)
     moreover
```

```
have (\tau \mid E_{ES2} @ r2 @ q2'') \mid (\varrho 2 \ V2) = (\tau \mid E_{ES2} @ r2 @ q2'') \mid (\varrho 2 \ V2) \dots
     ultimately show ?thesis
       by (simp only: Adm-def, blast)
  qed
moreover
note FCIA2
ultimately
obtain s2' \gamma'
  where res1: (set \gamma') \subseteq (N_{\mathcal{V2}} \cap \Delta_{\Gamma2})
  and res2: ((\tau \mid E_{ES2} \otimes r2 \otimes q2'') \otimes [x] \otimes \gamma' \otimes [\mathcal{V}'] \otimes s2') \in Tr_{ES2}
  and res3: (s2' | V_{V2}) = (s2'' | V_{V2})
and res4: s2' | C_{V2} = []
  unfolding FCIA-def
  by blast
let ?q2' = q2'' @ [x] @ \gamma'
from res2 validES2 have set s2' \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from res1 x-in-Cv2-inter-Upsilon2 q2"-in-C2-inter-Upsilon2-inter-Delta2
have set ?q2' \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
  by auto
moreover
from res2 have \tau \upharpoonright E_{ES2} @ r2 @ ?q2' @ [\mathcal{V}'] @ s2' \in Tr_{ES2}
  by auto
moreover
have ?q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = r1' \upharpoonright E_{ES2}
  proof -
     from valid V2 res1 have \gamma' \upharpoonright (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}) = []
       proof –
          from res1 have \gamma' = \gamma' \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
             \mathbf{by} \ (simp \ only: \ list-subset-iff-projection-neutral)
          hence \gamma' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \gamma' \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})
             by simp
          hence \gamma' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \gamma' \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})
             by (simp only: projection-def, auto)
          moreover
          from validV2 have N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} = \{\}
             by (simp add:isViewOn-def V-valid-def
                VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
          ultimately show ?thesis
             by (simp add: projection-def)
        qed
     hence ?q\mathcal{Z}' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = (q\mathcal{Z}'' @ [x]) \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}})
       by (simp only: projection-concatenation-commute, auto)
     with q2"C2-Upsilon2-is-xsE2 x-in-Cv2-inter-Upsilon2
     have ?q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = (xs \upharpoonright E_{ES2}) @ [x]
       by (simp only: projection-concatenation-commute projection-def, auto)
     with xs-is-xsE2 \ snoc(2) show ?thesis
       \mathbf{by} \ simp
   \mathbf{qed}
```

moreover from res3 s2 "V2-is-s2V2 have s2' | $V_{\mathcal{V2}} = s2$ | $V_{\mathcal{V2}}$ by simp moreover note res4 ultimately show ?case by blast \mathbf{qed} from this[OF r1 'E2-in-Nv1-inter-Cv2-Upsilon2-star] obtain s2 ' q2 ' where s2'-in-E2star: set $s2' \subseteq E_{ES2}$ and q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2: set $q2' \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ and $\tau E2 - r2 - q2' - v' - s2' - in - Tr2$: $(\tau \restriction E_{ES2}) @ r2 @ q2' @ [\mathcal{V}'] @ s2' \in Tr_{ES2}$ and q2'Cv2-inter-Upsilon2-is-r1'E2: q2' | $(C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = r1'$ | E_{ES2} and s2'Vv2-is-s2-Vv2: $s2' \upharpoonright V_{\mathcal{V}2} = s2 \upharpoonright V_{\mathcal{V}2}$ and s2'Cv2-empty: $s2' \mid C_{V2} = []$ by auto from q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2 validV2 have q2'-in-E2star: set $q2' \subseteq E_{ES2}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) have r1'Cv-empty: $r1' \upharpoonright C_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2) r1'-Cv1-empty r1'-in-E1star) from validES2 τ E2-r2-q2'-v'-s2'-in-Tr2 have q2'-in-E2star: set $q2' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover note r1'-in-E1star moreover have q2'E1-is-r1'E2: $q2' | E_{ES1} = r1' | E_{ES2}$ proof from q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2 have $q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) = q2'$ **by** (*simp add: list-subset-iff-projection-neutral*) hence $(q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})) \upharpoonright E_{ES1} = q2' \upharpoonright E_{ES1}$ by simp hence $q2' \upharpoonright ((C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \cap E_{ES1}) = q2' \upharpoonright E_{ES1}$ **by** (*simp add: projection-def*) hence $q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap E_{ES1}) = q2' \upharpoonright E_{ES1}$ by (simp only: Int-Un-distrib2 disjoint-Nv2-inter-Delta2-inter-E1, auto) moreover from q2'Cv2-inter-Upsilon2-is-r1'E2 have $(q2' | (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})) | E_{ES1} = (r1' | E_{ES2}) | E_{ES1}$ by simp hence $q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap E_{ES1}) = (r1' \upharpoonright E_{ES1}) \upharpoonright E_{ES2}$ **by** (simp add: projection-def conj-commute)

with r1'-in-E1star have $q2' \upharpoonright (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2} \cap E_{ES1}) = r1' \upharpoonright E_{ES2}$ $\mathbf{by}~(simp~only:~list-subset-iff-projection-neutral)$ ultimately show ?thesis by auto qed moreover have $q2' \upharpoonright V_{\mathcal{V}} = []$ proof - ${\bf from} ~~q2\,'\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\text{-}union\text{-}Nv2\text{-}inter\text{-}Delta2$ have $q2' = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ **by** (simp add: list-subset-iff-projection-neutral) moreover from q2'-in-E2star have $q2' = q2' \upharpoonright E_{ES2}$ **by** (simp add: list-subset-iff-projection-neutral) ultimately have $q2' = q2' \uparrow (C_{V2} \cap \Upsilon_{\Gamma2} \cup N_{V2} \cap \Delta_{\Gamma2}) \uparrow E_{ES2}$ by simp hence $q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}$ by simp hence $q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright (V_{\mathcal{V}} \cap E_{ES2})$ **by** (*simp add: Int-commute projection-def*) ${\bf with} \ propSepViews$ have $q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright ((C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \cap V_{\mathcal{V}2})$ unfolding properSeparationOfViews-def **by** (*simp add: projection-def*) hence $q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright (V_{\mathcal{V}2} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup V_{\mathcal{V}2} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ by (simp add: Int-Un-distrib2, metis Int-assoc Int-commute Int-left-commute Un-commute) with validV2 show ?thesis by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def) qed moreover have $r1' \upharpoonright V_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral r1'-Vv1-empty r1'-in-E1star) moreover have q2'Cv-empty: $q2' \upharpoonright C_{\mathcal{V}} = []$ proof from q2'-in-E2star have foo: $q2' = q2' \upharpoonright E_{ES2}$ **by** (*simp add: list-subset-iff-projection-neutral*) hence $q2' \upharpoonright C_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}} \cap E_{ES2})$ $\mathbf{by} \ (metis \ Int-commute \ list-subset-iff-projection-neutral$ projection-intersection-neutral) moreover from propSepViews have $C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}$ unfolding properSeparationOfViews-def by auto **from** projection-subset-elim[OF $\langle C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V2}} \rangle$, of q2'] have $q2' \upharpoonright C_{\mathcal{V}2} \upharpoonright C_{\mathcal{V}} \upharpoonright E_{ES2} = q2' \upharpoonright (C_{\mathcal{V}} \cap E_{ES2})$ **by** (*simp add: projection-def*) hence $q2' \upharpoonright E_{ES2} \upharpoonright C_{\mathcal{V}2} \upharpoonright C_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}} \cap E_{ES2})$ **by** (*simp add: projection-commute*)

with foo have $q2' \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}}) = q2' \upharpoonright (C_{\mathcal{V}} \cap E_{ES2})$ **by** (*simp add: projection-def*) moreover from q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2 have $q2' \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}}) = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}) \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}})$ **by** (*simp add: list-subset-iff-projection-neutral*) moreover have $(C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}) \cap (C_{\mathcal{V}2} \cap C_{\mathcal{V}})$ $= (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cup C_{\mathcal{V}\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \cap C_{\mathcal{V}}$ by fast hence $q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}) \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}})$ $= q2' | (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup C_{\mathcal{V}2} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) | C_{\mathcal{V}}$ **by** (*simp add: projection-sequence*) moreover from validV2 have $q\mathcal{Z}' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cup C_{\mathcal{V}\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \upharpoonright C_{\mathcal{V}}$ $= q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) \upharpoonright C_{\mathcal{V}}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute) moreover from q2'Cv2-inter-Upsilon2-is-r1'E2 have $q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) \upharpoonright C_{\mathcal{V}} = r1' \upharpoonright E_{ES2} \upharpoonright C_{\mathcal{V}}$ by simp with projection-on-intersection[OF r1'Cv-empty] have $q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) \upharpoonright C_{\mathcal{V}} = []$ **by** (*simp add: Int-commute projection-def*) ultimately show ?thesis by auto qed moreover **note** r1 'Cv-empty merge-property'[of r1 ' q2'] ultimately obtain q'where q'E2-is-q2': $q' \mid E_{ES2} = q2'$ and q'E1-is-r1': $q' \mid E_{ES1} = r1'$ and q'V-empty: $q' \mid V_{\mathcal{V}} = []$ and q'C-empty: $q' \mid C_{\mathcal{V}} = []$ and q'-in-E1-union-E2-star: set $q' \subseteq (E_{ES1} \cup E_{ES2})$ unfolding Let-def by auto let $?tau = \tau @ r2 @ q' @ [\mathcal{V}']$ from Cons(2) r2-in-E2star q'-in-E1-union-E2-star v'-in-E2 have set $?tau \subseteq (E_{(ES1 \parallel ES2)})$ by (simp add: composeES-def, auto)

by (simp add: composeES-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover from t1'-in-E1star t1'-is-r1'-v'-s1' have set $s1' \subseteq E_{ES1}$ by simp moreover note s2'-in-E2star moreover from *\tau r2E1-t1'-in-Tr1 t1'-is-r1'-v'-s1' v'-in-E1 q'E1-is-r1'* have $?tau | E_{ES1} @ s1' \in Tr_{ES1}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from q'E2-is-q2'r2-in-E2star v'-in-E2 q2'-in-E2star $\tau E2$ -r2-q2'-v'-s2'-in-Tr2 have $?tau | E_{ES2} @ s2' \in Tr_{ES2}$ by (simp only: list-subset-iff-projection-neutral projection-concatenation-commute projection-def, auto) moreover have $lambda' \upharpoonright E_{ES1} = s1' \upharpoonright V_{\mathcal{V}}$ proof from Cons(2,4,8) v'-in-E1 have $t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES1})$ **by** (*simp add: projection-def*) moreover from t1'-is-r1'-v'-s1' r1'-Vv1-empty r1'-in-E1star v'-in-Vv1 propSepViews have $t1' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1' \upharpoonright V_{\mathcal{V}})$ proof have $r1' \upharpoonright V_{\mathcal{V}} = []$ using propSepViews unfolding properSeparationOfViews-def by (metis projection-on-subset2 r1'-Vv1-empty r1'-in-E1star subset-iff-psubset-eq) with t1'-is-r1'-v'-s1' v'-in-Vv1 Vv-is-Vv1-union-Vv2 show ?thesis by (simp only: t1'-is-r1'-v'-s1' projection-concatenation-commute projection-def, auto) qed moreover have $t1 \upharpoonright V_{\mathcal{V}} = t1' \upharpoonright V_{\mathcal{V}}$ ${\bf using} \ propSepViews \ {\bf unfolding} \ properSeparationOfViews-def$ **by** (*metis Int-commute outerCons-prems*(3)) projection-intersection-neutral t1'-Vv1-is-t1-Vv1 t1'-in-E1star) ultimately show ?thesis by auto qed moreover have $lambda' \upharpoonright E_{ES2} = s2' \upharpoonright V_{\mathcal{V}}$ proof from Cons(3,5,9) v'-in-E2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})$ **by** (*simp add: projection-def*) moreover from t2-is-r2-v'-s2 r2-Vv-empty v'-in-Vv2 Vv-is-Vv1-union-Vv2 have $t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2 \upharpoonright V_{\mathcal{V}})$ by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute projection-def, auto) moreover have $s2 \uparrow V_{\mathcal{V}} = s2' \uparrow V_{\mathcal{V}}$ using propSepViews unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral s2'Vv2-is-s2-Vv2 s2'-in-E2star s2-in-E2star) ultimately show ?thesis by auto

```
\mathbf{qed}
moreover
note s1'-Cv1-empty s2'Cv2-empty Cons.hyps[of ?tau s1' s2']
ultimately obtain t'
 where \tau-r2-q'-v'-t'-in-Tr: ?tau @ t' \in Tr<sub>(ES1 || ES2)</sub>
 and t'Vv-is-lambda': t' \upharpoonright V_{\mathcal{V}} = lambda'
 and t'Cv-empty: t' \upharpoonright C_{\mathcal{V}} = []
 by auto
let ?t = r2 @ q' @ [\mathcal{V}'] @ t'
note \tau-r2-q'-v'-t'-in-Tr
moreover
from r2-Vv-empty q'V-empty t'Vv-is-lambda' v'-in-Vv
have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
 \mathbf{by}(simp \ only: \ projection-concatenation-commute \ projection-def, \ auto)
moreover
from VIsViewOnE r2-Cv2-empty t'Cv-empty q'C-empty v'-in-Vv
have ?t \uparrow C_{\mathcal{V}} = []
 proof -
   from VIsViewOnE v'-in-Vv have [\mathcal{V}'] \upharpoonright C_{\mathcal{V}} = []
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
   moreover
   from r2-in-E2star r2-Cv2-empty
   have r2 \uparrow C_{\mathcal{V}} = []
     using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def
     by auto
   moreover
   note t'Cv-empty q'C-empty
   ultimately show ?thesis
     by (simp only: projection-concatenation-commute, auto)
 qed
ultimately have ?thesis
 by auto
}
moreover
ł
 assume v'-in-Vv1-minus-E2: \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}
 hence v'-in-Vv1: \mathcal{V}' \in V_{\mathcal{V}1}
   by auto
 with v'-in-Vv have v'-in-E1: V' \in E_{ES1}
   using propSepViews unfolding properSeparationOfViews-def
   by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: \mathcal{V}' \notin E_{ES2}
   by auto
 with valid V2 have v'-notin-Vv2: \mathcal{V}' \notin V_{\mathcal{V}2}
   by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 from Cons(3-4) Cons(8) v'-in-E1 have t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
```
by (*simp add: projection-def*) from projection-split-first[OF this] obtain r1 s1 where t1-is-r1-v'-s1: $t1 = r1 @ [\mathcal{V}'] @ s1$ and r1-Vv-empty: r1 | $V_{\mathcal{V}} = []$ by *auto* with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_V r1] have r1-Vv1-empty: $r1 \uparrow V_{V1} = []$ by auto from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 | $C_{V1} = []$ **by** (*simp add: projection-concatenation-commute*) from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | $C_{V1} = []$ by (simp only: projection-concatenation-commute, auto) from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set $r1 \subseteq E_{ES1}$ by auto have r1-in-Nv1star: set $r1 \subseteq N_{\mathcal{V}1}$ proof note r1-in-E1star moreover from r1-Vv1-empty have set r1 \cap V_{V1} = {} by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover from r1-Cv1-empty have set $r1 \cap C_{\mathcal{V}1} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 $disjoint\-eq\-subset\-Compl\list\-subset\-iff\-projection\-neutral$ projection-on-union) moreover note validV1 ultimately show ?thesis **by** (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) qed have r1E2-in-Nv1-inter-C2-star: set $(r1 | E_{ES2}) \subseteq (N_{V1} \cap C_{V2})$ proof have set $(r1 | E_{ES2}) = set r1 \cap E_{ES2}$ **by** (simp add: projection-def, auto) with r1-in-Nv1star have set $(r1 | E_{ES2}) \subseteq (E_{ES2} \cap N_{\mathcal{V}1})$ by auto moreover from validV2 disjoint-Nv1-Vv2 have $E_{ES2} \cap N_{\mathcal{V}1} = N_{\mathcal{V}1} \cap C_{\mathcal{V}2}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis $\mathbf{by} \ auto$

qed with Cv2-inter-Nv1-subsetof-Upsilon2have r1E2-in-Nv1-inter-C2-Upsilon2-star: set $(r1 | E_{ES2}) \subseteq (N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2})$ by auto note outerCons-prems = Cons.prems

```
have set (r1 \upharpoonright E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2}) \Longrightarrow
   \begin{array}{l} \exists t 2': (set t 2' \subseteq E_{ES2}) \subseteq (N \mathcal{V}_1 + C \mathcal{V}_2) \\ \exists t 2': (set t 2' \subseteq E_{ES2}) \\ \land ((\tau @ r1) \upharpoonright E_{ES2}) @ t 2' \in Tr_{ES2} \\ \land t 2' \upharpoonright V \mathcal{V}_2 = t 2 \upharpoonright V \mathcal{V}_2 \\ \land t 2' \upharpoonright C \mathcal{V}_2 = []) \\ \land t 2' \upharpoonright C \mathcal{V}_2 = []) \\ \end{array} 
proof (induct r1 | E_{ES2} arbitrary: r1 rule: rev-induct)
  case Nil thus ?case
     by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
        outerCons-prems(6) projection-concatenation-commute)
next
  case (snoc \ x \ xs)
  have xs-is-xsE2: xs = xs | E_{ES2}
     proof –
        from snoc(2) have set (xs @ [x]) \subseteq E_{ES2}
          by (simp add: projection-def, auto)
        hence set xs \subseteq (E_{ES2})
          by auto
        thus ?thesis
           by (simp add: list-subset-iff-projection-neutral)
     qed
  moreover
  have set (xs | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
     proof -
        have set (r1 | E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          by (metis Int-commute snoc.prems)
        with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          by simp
        hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          by auto
        with xs-is-xsE2 show ?thesis
          by auto
     qed
  moreover
  note snoc.hyps(1)[of xs]
   ultimately obtain t2^{\prime}
     where t\hat{z}''-in-E2star: set t\hat{z}'' \subseteq E_{ES2}
     and \tau-xs-E2-t2''-in-Tr2: ((\tau @ xs) | E_{ES2}) @ t2'' \in Tr_{ES2}
and t2''Vv2-is-t2Vv2: t2'' | V_{V2} = t2 | V_{V2}
     and t2''Cv2-empty: t2'' \upharpoonright C_{\mathcal{V}2} = []
     by auto
  have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V2}} \cap N_{\mathcal{V1}}
     proof -
```

from snoc(2-3) have set $(xs @ [x]) \subseteq (N_{V1} \cap C_{V2})$

```
by simp
   thus ?thesis
     by auto
 qed
hence x-in-Cv2: x \in C_{\mathcal{V2}}
 by auto
moreover
note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
moreover
have Adm: (Adm \mathcal{V2} \varrho 2 Tr_{ES2} ((\tau @ xs) | E_{ES2}) x)
 proof –
   from \tau-xs-E2-t2''-in-Tr2 validES2
   have \tau-xsE2-in-Tr2: ((\tau @ xs) | E_{ES2}) \in Tr<sub>ES2</sub>
     by (simp add: ES-valid-def traces-prefixclosed-def
       prefixclosed-def prefix-def)
   with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
   have \tau-xsE2-x-in-Tr2: ((\tau @ xs) | E_{ES2}) @ [x] \in Tr<sub>ES2</sub>
     by (simp only: total-def)
   moreover
   have ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V 2) = ((\tau @ xs) | E_{ES2}) | (\varrho 2 \ V 2) \dots
   ultimately show ?thesis
     by (simp add: Adm-def, auto)
 \mathbf{qed}
moreover note BSIA2
ultimately obtain t2
 where res1: ((\tau @ xs) | E_{ES2}) @ [x] @ t2' \in Tr_{ES2}
and res2: t2' | V_{V2} = t2'' | V_{V2}
and res3: t2' | C_{V2} = []
 by (simp only: BSIA-def, blast)
have set t2' \subseteq E_{ES2}
 proof –
   from res1 validES2 have set (((\tau @ xs) | E_{ES2}) @ [x] @ t2') \subseteq E_{ES2}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
   thus ?thesis
     by auto
 qed
moreover
have ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
 proof -
   from res1 xs-is-xsE2 have ((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}
     \mathbf{by} \ (simp \ only: \ projection-concatenation-commute, \ auto)
   thus ?thesis
     by (simp only: snoc(2) projection-concatenation-commute)
 \mathbf{qed}
moreover
from t2''Vv2-is-t2Vv2 res2 have t2' \upharpoonright V_{\mathcal{V}2} = t2 \upharpoonright V_{\mathcal{V}2}
 by auto
moreover
note res3
ultimately show ?case
 by auto
```

qed from this[OF r1E2-in-Nv1-inter-C2-star] obtain t2' where t2'-in-E2star: set $t2' \subseteq E_{ES2}$ and $\tau r 1 E 2$ -t 2 '-i n-T r 2: $((\tau @ r 1) | E_{ES2}) @ t 2$ ' $\in T r_{ES2}$ and t2'-Vv2-is-t2-Vv2: $t2' \upharpoonright V_{\mathcal{V}2} = t2 \upharpoonright V_{\mathcal{V}2}$ and t2'-Cv2-empty: $t2' \upharpoonright C_{\mathcal{V2}} = []$ by auto let $?tau = \tau @ r1 @ [\mathcal{V}']$ from v'-in-E1 Cons(2) r1-in-Nv1star validV1 have set ?tau $\subseteq E_{(ES1 \parallel ES2)}$ by (simp only: isViewOn-def composeES-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover from Cons(4) t1-is-r1-v'-s1 have set $s1 \subseteq E_{ES1}$ by auto moreover note t2'-in-E2star moreover have $?tau | E_{ES1} @ s1 \in Tr_{ES1}$ by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI *list-subset-iff-projection-neutral Cons.prems*(3) Cons.prems(5) projection-concatenation-commute t1-is-r1-v'-s1) moreover from $\tau r_{1}E_{2}-t_{2}'-in$ -Tr2 v'-notin-E2 have ?tau | $E_{ES2} @ t_{2}' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv have $lambda' \mid E_{ES1} = s1 \mid V_V$ by (simp add: projection-def) moreover from Cons(9) v'-notin-E2 t2'-Vv2-is-t2-Vv2 have $lambda' \upharpoonright E_{ES2} = t2' \upharpoonright V_{\mathcal{V}}$ proof have $t2' \mid V_{\mathcal{V}} = t2' \mid V_{\mathcal{V}2}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: projection-def, metis Int-commute projection-def projection-intersection-neutral t2'-in-E2star) moreover have $t2 \uparrow V_{\mathcal{V}} = t2 \uparrow V_{\mathcal{V}2}$ using propSepViews unfolding properSeparationOfViews-def **by** (simp add: projection-def, metis Int-commute $projection-def \ projection-intersection-neutral \ Cons(5))$ moreover note Cons(9) v'-notin-E2 t2'-Vv2-is-t2-Vv2 ultimately show *?thesis* **by** (*simp add: projection-def*) \mathbf{qed} moreover **note** s1-Cv1-empty t2'-Cv2-empty moreover

```
note Cons.hyps(1)[of ?tau s1 t2']
ultimately obtain t'
 where \tau r 1 v' t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'-Vv-is-lambda': t' | V_{\mathcal{V}} = lambda'
 and t'-Cv-empty: t' \uparrow C_{\mathcal{V}} = []
 by auto
let ?t = r1 @ [\mathcal{V}'] @ t'
note \tau r 1 v' t'-in-Tr
moreover
from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# \ lambda'
 by (simp add: projection-def)
moreover
have ?t \mid C_{\mathcal{V}} = []
 proof -
   have r1 \uparrow C_{\mathcal{V}} = []
   proof -
     from propSepViews have E_{ES1} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}1}
       unfolding properSeparationOfViews-def by auto
       from projection-on-subset[OF \langle E_{ES1} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}1} \rangle r1-Cv1-empty]
       have r1 \uparrow (E_{ES1} \cap C_{\mathcal{V}}) = []
         by (simp only: Int-commute)
       with projection-intersection-neutral [OF r1-in-E1star, of C_{\mathcal{V}}] show ?thesis
         by simp
     qed
    with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
 qed
ultimately have ?thesis
 by auto
}
moreover
{
 assume v'-in-Vv2-minus-E1: \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
 hence v'-in-Vv2: \mathcal{V}' \in V_{\mathcal{V}2}
   by auto
 with v'-in-Vv propSepViews have v'-in-E2: \mathcal{V}' \in E_{ES2}
   unfolding properSeparationOfViews-def
   by auto
 from v'-in-Vv2-minus-E1 have v'-notin-E1: \mathcal{V}' \notin E_{ES1}
   by auto
 with valid V1 have v'-notin-Vv1: \mathcal{V}' \notin V_{\mathcal{V}_1}
   by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 from Cons(3) Cons(5) Cons(9) v'-in-E2 have t2 \uparrow V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \uparrow E_{ES2})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r2 s2
   where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
```

and r2-Vv-empty: r2 | $V_{\mathcal{V}} = []$ by auto with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_V r2] have r2-Vv2-empty: r2 | $V_{\mathcal{V2}} = []$ by auto from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 | $C_{V2} = []$ **by** (simp add: projection-concatenation-commute) from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 | $C_{V2} = []$ by (simp only: projection-concatenation-commute, auto) from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set $r2 \subseteq E_{ES2}$ by auto have r2-in-Nv2star: set $r2 \subseteq N_{\mathcal{V}2}$ proof note r2-in-E2star moreover from r2-Vv2-empty have set $r2 \cap V_{\mathcal{V}2} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 $disjoint\-eq\-subset\-Compl\list\-subset\-iff\-projection\-neutral$ projection-on-union) moreover from r2-Cv2-empty have set $r2 \cap C_{\mathcal{V2}} = \{\}$ by (metis Compl-Diff-eq Diff-cancel Un-upper2 disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union) moreover note validV2ultimately show ?thesis by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) qed have r2E1-in-Nv2-inter-C1-star: set $(r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ proof have set $(r2 | E_{ES1}) = set r2 \cap E_{ES1}$ **by** (*simp add: projection-def, auto*) with r2-in-Nv2star have set $(r2 | E_{ES1}) \subseteq (E_{ES1} \cap N_{\mathcal{V2}})$ by auto moreover from validV1 propSepViews disjoint-Nv2-Vv1 have $E_{ES1} \cap N_{\mathcal{V2}} = N_{\mathcal{V2}} \cap C_{\mathcal{V1}}$ unfolding properSeparationOfViews-def by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis by auto \mathbf{qed} with Cv1-inter-Nv2-subset of-Upsilon1 have r2E1-in-Nv2-inter-C1-Upsilon1-star: set $(r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})$ by auto

note *outerCons-prems* = *Cons.prems*

have set $(r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1}) \Longrightarrow \exists t1'. (set t1' \subseteq E_{ES1})$ $\wedge ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}$ $\begin{array}{c} \wedge (t' \cup t'') & E_{\mathcal{V}1} \\ \wedge t1' \uparrow V_{\mathcal{V}1} = t1 \uparrow V_{\mathcal{V}1} \\ \wedge t1' \uparrow C_{\mathcal{V}1} = [] \end{array}$ **proof** (induct $r2 \upharpoonright E_{ES1}$ arbitrary: r2 rule: rev-induct) case Nil thus ?case $\mathbf{by} \; (\textit{metis append-self-conv outerCons-prems}(9) \; outerCons-prems(3)$ outerCons-prems(5) projection-concatenation-commute) next case $(snoc \ x \ xs)$ have xs-is-xsE1: $xs = xs | E_{ES1}$ proof from snoc(2) have set $(xs @ [x]) \subseteq E_{ES1}$ by (simp add: projection-def, auto) hence set $xs \subseteq E_{ES1}$ by auto thus ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) qed moreover have set $(xs | E_{ES1}) \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})$ proof have set $(r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ **by** (*metis Int-commute snoc.prems*) with snoc(2) have set $(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ by simp hence set $xs \subseteq (N_{\mathcal{V2}} \cap C_{\mathcal{V1}})$ by auto with *xs-is-xsE1* show ?thesis by auto qed moreover **note** snoc.hyps(1)[of xs]ultimately obtain t1" where t1''-in-E1star: set $t1'' \subseteq E_{ES1}$ and τ -xs-E1-t1 "-in-Tr1: $((\tau @ xs) \uparrow E_{ES1}) @ t1 " \in Tr_{ES1}$ and t1''Vv1-is-t1Vv1: $t1'' \upharpoonright V_{\mathcal{V}1} = t1 \upharpoonright V_{\mathcal{V}1}$ and $t1^{\prime\prime}Cv1$ -empty: $t1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ by auto have x-in-Cv1-inter-Nv2: $x \in C_{V1} \cap N_{V2}$ proof from snoc(2-3) have set $(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$ by simp thus ?thesis $\mathbf{by} \ auto$

qed hence x-in-Cv1: $x \in C_{\mathcal{V}1}$ by auto moreover note τ -xs-E1-t1 "-in-Tr1 t1 "Cv1-empty moreover have Adm: (Adm $\mathcal{V}1 \ \varrho 1 \ Tr_{ES1}$ (($\tau @ xs$) | E_{ES1}) x) proof from τ -xs-E1-t1 ''-in-Tr1 validES1 have τ -xsE1-in-Tr1: (($\tau @ xs$) | E_{ES1}) $\in Tr_{ES1}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2 have τ -xsE1-x-in-Tr1: (($\tau @ xs$) | E_{ES1}) @ [x] \in Tr_{ES1} **by** (*simp only: total-def*) moreover have $((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) = ((\tau @ xs) | E_{ES1}) | (\varrho 1 \ V 1) \dots$ ultimately show ?thesis by (simp add: Adm-def, auto) qed moreover note BSIA1 ultimately obtain t1 where res1: $((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1}$ and res2: $t1' \upharpoonright V_{V1} = t1'' \upharpoonright V_{V1}$ and res3: $t1' \upharpoonright C_{V1} = []$ by (simp only: BSIA-def, blast) have set $t1' \subseteq E_{ES1}$ proof from res1 validES1 have set ((($\tau @ xs) | E_{ES1}$) @ [x] @ t1') $\subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) thus ?thesis by auto \mathbf{qed} moreover have $((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}$ proof from res1 xs-is-xsE1 have $((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}$ by (simp only: projection-concatenation-commute, auto) thus ?thesis **by** (simp only: snoc(2) projection-concatenation-commute) \mathbf{qed} moreover from t1''Vv1-is-t1Vv1 res2 have $t1' \mid V_{V1} = t1 \mid V_{V1}$ by *auto* moreover note res3 ultimately show ?case by auto \mathbf{qed} from this[OF r2E1-in-Nv2-inter-C1-star] obtain t1' where t1'-in-E1star: set $t1' \subseteq E_{ES1}$

and $\tau r 2 E 1 - t1' - in - Tr 1: ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}$ and t1' - Vv1 - is - t1 - Vv1: $t1' \upharpoonright V_{\mathcal{V}1} = t1 \upharpoonright V_{\mathcal{V}1}$ and t1'-Cv1-empty: $t1' | C_{V1} = []$ by auto let $?tau = \tau @ r2 @ [\mathcal{V}']$ from v'-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau $\subseteq E_{(ES1 \parallel ES2)}$ by (simp only: composeES-def isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) moreover from Cons(3) have set $lambda' \subseteq V_{\mathcal{V}}$ by auto moreover from Cons(5) t2-is-r2-v'-s2 have set $s2 \subseteq E_{ES2}$ by auto moreover note t1'-in-E1star moreover have $?tau | E_{ES2} @ s2 \in Tr_{ES2}$ by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6) $projection-concatenation-commute\ t2-is-r2-v'-s2)$ moreover from $\tau r 2E1 - t1' - in - Tr1 v' - notin - E1$ have $2tau \mid E_{ES1} @ t1' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv have $lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}$ $\mathbf{by}~(simp~add:~projection\text{-}def)$ moreover from Cons(10) v'-notin-E1 t1'-Vv1-is-t1-Vv1 have $lambda' | E_{ES1} = t1' | V_{\mathcal{V}}$ proof have $t1' \mid V_{\mathcal{V}} = t1' \mid V_{\mathcal{V}1}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: projection-def, metis Int-commute projection-def projection-intersection-neutral t1'-in-E1star) moreover have $t1 \mid V_{\mathcal{V}} = t1 \mid V_{\mathcal{V}1}$ using propSepViews unfolding properSeparationOfViews-def by (simp add: projection-def, metis Int-commute $projection-def \ projection-intersection-neutral \ Cons(4))$ moreover note Cons(8) v'-notin-E1 t1'-Vv1-is-t1-Vv1 ultimately show ?thesis **by** (*simp add: projection-def*) qed moreover note s2-Cv2-empty t1'-Cv1-empty moreover **note** Cons.hyps(1)[of ?tau t1' s2]

```
ultimately obtain t'
                      where \tau r 2v't'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
                     and t'-Vv-is-lambda': t' | V_{\mathcal{V}} = lambda'
                     and t'-Cv-empty: t' \upharpoonright C_{\mathcal{V}} = []
                     by auto
                   let ?t = r2 @ [\mathcal{V}'] @ t'
                   note \tau r 2v't'-in-Tr
                   moreover
                   from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# \ lambda'
                     by (simp add: projection-def)
                   moreover
                   have ?t \mid C_{\mathcal{V}} = []
                   proof -
                     have r2 \uparrow C_{\mathcal{V}} = []
                      proof -
                        from propSepViews have E_{ES2} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}2}
                           unfolding properSeparationOfViews-def by auto
                        from projection-on-subset[OF \langle E_{ES2} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V2}} \rangle r2-Cv2-empty]
                        have r2 \upharpoonright (E_{ES2} \cap C_{\mathcal{V}}) = []
                           by (simp only: Int-commute)
                        with projection-intersection-neutral [OF r2-in-E2star, of C_{\mathcal{V}}] show ?thesis
                           by simp
                      qed
                      with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
                        by (simp add: isViewOn-def V-valid-def
                            VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
                   \mathbf{qed}
                   ultimately have ?thesis
                      \mathbf{by} \ auto
                }
                ultimately show ?thesis
                   by blast
           qed
        qed
  thus ?thesis
     by auto
lemma generalized-zipping-lemma:
 \forall \tau \ lambda \ t1 \ t2. \ ( \ (set \ \tau \subseteq E_{(ES1} \parallel ES2) \\ \land \ set \ lambda \ \subseteq \ V_{\mathcal{V}} \land set \ t1 \subseteq E_{ES1} \land set \ t2 \subseteq E_{ES2} \\ \land \ ((\tau \upharpoonright E_{ES1}) @ \ t1) \in Tr_{ES1} \land ((\tau \upharpoonright E_{ES2}) @ \ t2) \in Tr_{ES2} \\ \land \ (lambda \upharpoonright E_{ES1}) = (t1 \upharpoonright V_{\mathcal{V}}) \land (lambda \upharpoonright E_{ES2}) = (t2 \upharpoonright V_{\mathcal{V}}) \\ \land \ (t1 \upharpoonright C_{\mathcal{V}1}) = [] \land (t2 \upharpoonright C_{\mathcal{V}2}) = []) 
   \longrightarrow (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))))
proof –
  note well-behaved-composition
```

}

 \mathbf{qed}

moreover { assume $N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap E_{ES1} = \{\}$ with generalized-zipping-lemma1 have ?thesis by auto } moreover { assume $\exists \varrho 1. N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land total ES1 (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \land BSIA \varrho 1 \mathcal{V}1 Tr_{ES1}$ then obtain $\varrho 1$ where $N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land total ES1 \ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \land BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1}$ by auto with generalized-zipping-lemma2[of o1] have ?thesis by auto } moreover { **assume** $\exists \ \varrho 2. \ N_{\mathcal{V}2} \cap E_{ES1} = \{\} \land \ total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \land BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2}$ then obtain $\varrho 2$ where $N_{\mathcal{V}2} \cap E_{ES1} = \{\} \land total ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \land BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2}$ by auto with generalized-zipping-lemma3[of $\varrho 2$] have ?thesis by auto } moreover { assume $\exists \ \varrho 1 \ \varrho 2 \ \Gamma 1 \ \Gamma 2$. ($\nabla_{\Gamma 1} \subseteq E_{ES1} \land \Delta_{\Gamma 1} \subseteq E_{ES1} \land \Upsilon_{\Gamma 1} \subseteq E_{ES1}$ $\begin{array}{l} \wedge \nabla_{\Gamma \mathcal{Q}} \subseteq E_{ES2} \wedge \Delta_{\Gamma \mathcal{Q}} \subseteq E_{ES2} \wedge \Upsilon_{\Gamma \mathcal{Q}} \subseteq E_{ES2} \\ \wedge BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \wedge BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \end{array}$ $\wedge \text{ total ES1 } (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \wedge \text{ total ES2 } (C_{\mathcal{V}2} \cap N_{\mathcal{V}1})$ $\wedge FCIA \ \varrho 1 \ \Gamma 1 \ V 1 \ Tr_{ES1} \land FCIA \ \varrho 2 \ \Gamma 2 \ V 2 \ Tr_{ES2} \\ \wedge V_{V1} \cap V_{V2} \subseteq \nabla_{\Gamma 1} \cup \nabla_{\Gamma 2} \\ \wedge C_{V1} \cap N_{V2} \subseteq \Upsilon_{\Gamma 1} \land C_{V2} \cap N_{V1} \subseteq \Upsilon_{\Gamma 2}$ $\wedge N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \wedge N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\})$ then obtain $\varrho_1 \ \varrho_2 \ \Gamma_1 \ \Gamma_2$ where $\nabla_{\Gamma1} \subseteq E_{ES1} \wedge \Delta_{\Gamma1} \subseteq E_{ES1} \wedge \Upsilon_{\Gamma1} \subseteq E_{ES1}$ $\wedge \text{ total } \stackrel{LS1}{ES1} (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \wedge \text{ total } ES2 (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \\ \wedge \text{ FCIA } \varrho_1 \Gamma_1 \mathcal{V}_1 \text{ } Tr_{ES1} \wedge \text{ FCIA } \varrho_2 \Gamma_2 \mathcal{V}_2 \text{ } Tr_{ES2}$ $\begin{array}{l} \wedge V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \subseteq \nabla_{\Gamma 1} \cup \nabla_{\Gamma 2} \\ \wedge C_{\mathcal{V}1} \cap N_{\mathcal{V}2} \subseteq \Upsilon_{\Gamma 1} \wedge C_{\mathcal{V}2} \cap N_{\mathcal{V}1} \subseteq \Upsilon_{\Gamma 2} \\ \wedge N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\} \wedge N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \end{array}$ by auto with generalized-zipping-lemma4 [of $\Gamma 1 \ \Gamma 2 \ \varrho 1 \ \varrho 2$] have ?thesis by auto } ultimately show ?thesis unfolding wellBehavedComposition-def **by** blast \mathbf{qed}

end

 \mathbf{end}

5.4.3 Compositionality Results

theory CompositionalityResults imports GeneralizedZippingLemma CompositionSupport begin

context Compositionality **begin**

theorem compositionality-BSD: $[\![BSD \ \mathcal{V}1 \ Tr_{ES1}; BSD \ \mathcal{V}2 \ Tr_{ES2}]\!] \Longrightarrow BSD \ \mathcal{V} \ Tr_{(ES1 \ || \ ES2)}$ proof assume BSD-Tr1-v1: $BSD V1 Tr_{ES1}$ assume BSD-Tr2-v2: BSD V2 Tr_{ES2} { fix $\alpha \beta c$ assume *c-in-Cv*: $c \in C_{\mathcal{V}}$ assume $\beta c \alpha$ -in-Tr: $(\beta \ @ [c] @ \alpha) \in Tr_{(ES1 \parallel ES2)}$ assume α -contains-no-c: $\alpha \mid C_{\mathcal{V}} = []$ interpret CSES1: CompositionSupport ES1 V V1 using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: CompositionSupport-def validES1 validV1*) interpret CSES2: CompositionSupport ES2 V V2 using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: CompositionSupport-def validES2 validV2*) from $\beta c \alpha$ -in-Tr have $\beta c\alpha$ -E1-in-Tr1: $((\beta @ [c] @ \alpha) | E_{ES1}) \in Tr_{ES1}$ and $\beta c \alpha$ -E2-in-Tr2: (($\beta @ [c] @ \alpha$) | E_{ES2}) $\in Tr_{ES2}$ **by** (*auto*, *simp* add: *composeES-def*)+ from composeES-yields-ES validES1 validES2 have ES-valid (ES1 || ES2) by auto with $\beta c \alpha$ -in-Tr have set $\beta \subseteq E_{(ES1 \parallel ES2)}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $(\alpha \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover have $(\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright V_{\mathcal{V}} = (\alpha \upharpoonright V_{\mathcal{V}})$ **by** (*simp add: projection-def*) moreover **from** $CSES1.BSD-in-subsystem[OF c-in-Cv <math>\beta c\alpha$ -E1-in-Tr1 BSD-Tr1-v1] **obtain** $\alpha 1'$ where $\alpha 1' - 1$: $((\beta \uparrow E_{ES1}) @ \alpha 1') \in Tr_{ES1}$ and $\alpha 1' - 2$: $(\alpha 1' | V_{\mathcal{V}1}) = (\alpha | V_{\mathcal{V}1})$ and $\alpha 1' | C_{\mathcal{V}1} = []$ by auto moreover from $\alpha 1' - 1$ validES1 have $\alpha 1' - in - E1$: set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto)

moreover from $\alpha 1' - 2$ propSepViews have $((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1}) = (\alpha 1' \uparrow V_{\mathcal{V}})$ proof – have $((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1}) = \alpha \uparrow (V_{\mathcal{V}} \cap E_{ES1})$ $\mathbf{by} \ (simp \ only: \ projection-def, \ auto)$ with propSepViews have $((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1}) = (\alpha \uparrow V_{\mathcal{V}1})$ unfolding properSeparationOfViews-def by auto moreover from $\alpha 1' - 2$ have $(\alpha 1' | V_{\mathcal{V}1}) = (\alpha 1' | V_{\mathcal{V}})$ proof from $\alpha 1'$ -in-E1 have $\alpha 1' \upharpoonright E_{ES1} = \alpha 1'$ $\mathbf{by}~(simp~add:~list-subset-iff-projection-neutral)$ hence $(\alpha 1' | E_{ES1}) | V_{\mathcal{V}} = \alpha 1' | V_{\mathcal{V}}$ by simp with Vv-is-Vv1-union-Vv2 have $(\alpha 1' | E_{ES1}) | (V_{V1} \cup V_{V2}) = \alpha 1' | V_V$ by simp hence $\alpha 1' \upharpoonright (E_{ES1} \cap (V_{\mathcal{V}1} \cup V_{\mathcal{V}2})) = \alpha 1' \upharpoonright V_{\mathcal{V}}$ **by** (simp only: projection-def, auto) hence $\alpha 1' \upharpoonright (E_{ES1} \cap V_{\mathcal{V}1} \cup E_{ES1} \cap V_{\mathcal{V}2}) = \alpha 1' \upharpoonright V_{\mathcal{V}}$ **by** (*simp add*: *Int-Un-distrib*) moreover from validV1 have $E_{ES1} \cap V_{V1} = V_{V1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\alpha 1' \upharpoonright (V_{\mathcal{V}1} \cup E_{ES1} \cap V_{\mathcal{V}2}) = \alpha 1' \upharpoonright V_{\mathcal{V}}$ by simp moreover have $E_{ES1} \cap V_{\mathcal{V2}} \subseteq V_{\mathcal{V1}}$ proof from propSepViews Vv-is-Vv1-union-Vv2 have $(V_{\mathcal{V}1} \cup V_{\mathcal{V}2}) \cap E_{ES1} = V_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by simp hence $(V_{\mathcal{V}1} \cap E_{ES1} \cup V_{\mathcal{V}2} \cap E_{ES1}) = V_{\mathcal{V}1}$ by auto with validV1 have $(V_{\mathcal{V}1} \cup V_{\mathcal{V}2} \cap E_{ES1}) = V_{\mathcal{V}1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis by auto \mathbf{qed} ultimately show ?thesis **by** (*simp add*: *Un-absorb2*) qed moreover note $\alpha 1'-2$ ultimately show ?thesis by auto qed moreover **from** $CSES2.BSD-in-subsystem[OF c-in-Cv <math>\beta c\alpha$ -E2-in-Tr2 BSD-Tr2-v2] obtain $\alpha 2'$ where $\alpha 2' \cdot 1$: $((\beta \mid E_{ES2}) @ \alpha 2') \in Tr_{ES2}$ and $\alpha 2' \cdot 2$: $(\alpha 2' \mid V_{V2}) = (\alpha \mid V_{V2})$ and $\alpha 2' \upharpoonright C_{\mathcal{V}2} = []$

by auto moreover from $\alpha 2'$ -1 validES2 have $\alpha 2'$ -in-E2: set $\alpha 2' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\alpha 2' - 2$ propSepViews have $((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2}) = (\alpha 2' \uparrow V_{\mathcal{V}})$ proof have $((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2}) = \alpha \uparrow (V_{\mathcal{V}} \cap E_{ES2})$ **by** (*simp only: projection-def, auto*) with propSepViews have $((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2}) = (\alpha \uparrow V_{\mathcal{V}2})$ unfolding properSeparationOfViews-def by auto moreover from $\alpha 2' - 2$ have $(\alpha 2' \upharpoonright V_{\mathcal{V}2}) = (\alpha 2' \upharpoonright V_{\mathcal{V}})$ proof from $\alpha 2'$ -in-E2 have $\alpha 2' \upharpoonright E_{ES2} = \alpha 2'$ **by** (*simp add: list-subset-iff-projection-neutral*) hence $(\alpha 2' | E_{ES2}) | V_{\mathcal{V}} = \alpha 2' | V_{\mathcal{V}}$ by simp with Vv-is-Vv1-union-Vv2 have $(\alpha 2' | E_{ES2}) | (V_{V2} \cup V_{V1}) = \alpha 2' | V_V$ **by** (*simp add: Un-commute*) hence $\alpha \mathcal{Z}' \upharpoonright (E_{ES2} \cap (V_{\mathcal{V}2} \cup V_{\mathcal{V}1})) = \alpha \mathcal{Z}' \upharpoonright V_{\mathcal{V}}$ $\mathbf{by} \ (simp \ only: \ projection-def, \ auto)$ hence $\alpha 2' \upharpoonright (E_{ES2} \cap V_{\mathcal{V}2} \cup E_{ES2} \cap V_{\mathcal{V}1}) = \alpha 2' \upharpoonright V_{\mathcal{V}}$ by (simp add: Int-Un-distrib) moreover from valid V2 have $E_{ES2} \cap V_{V2} = V_{V2}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\alpha 2' \upharpoonright (V_{\mathcal{V}2} \cup E_{ES2} \cap V_{\mathcal{V}1}) = \alpha 2' \upharpoonright V_{\mathcal{V}1}$ by simp moreover have $E_{ES2} \cap V_{\mathcal{V}1} \subseteq V_{\mathcal{V}2}$ proof from propSepViews Vv-is-Vv1-union-Vv2 have $(V_{V2} \cup V_{V1}) \cap E_{ES2} = V_{V2}$ $unfolding \ properSeparationOfViews-def \ by \ (simp \ add: \ Un-commute)$ hence $(V_{\mathcal{V}2} \cap E_{ES2} \cup V_{\mathcal{V}1} \cap E_{ES2}) = V_{\mathcal{V}2}$ by auto with validV2 have $(V_{\mathcal{V2}} \cup V_{\mathcal{V1}} \cap E_{ES2}) = V_{\mathcal{V2}}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis by auto \mathbf{qed} ultimately show ?thesis by (simp add: Un-absorb2) qed moreover note $\alpha 2' - 2$ ultimately show ?thesis by auto qed moreover note generalized-zipping-lemma ultimately have $\exists \alpha'$. $((\beta @ \alpha') \in (Tr_{(ES1 \parallel ES2)}) \land (\alpha' \upharpoonright V_{\mathcal{V}} = (\alpha \upharpoonright V_{\mathcal{V}})) \land \alpha' \upharpoonright C_{\mathcal{V}} = [])$

```
by blast
  }
  thus ?thesis
    unfolding BSD-def
    by auto
qed
theorem compositionality-BSI:
[\![BSD \ V1 \ Tr_{ES1}; BSD \ V2 \ Tr_{ES2}; BSI \ V1 \ Tr_{ES1}; BSI \ V2 \ Tr_{ES2}]
     \implies BSI \ \mathcal{V} \ Tr_{(ES1 \parallel ES2)}
proof -
  assume BSD1: BSD V1 Tr_{ES1}
      and BSD2: BSD V2 Tr_{ES2}
      and BSI1: BSI V1 \ Tr_{ES1}
      and BSI2: BSI V2 \ Tr_{ES2}
  {
    fix \alpha \beta c
    assume c-in-Cv: c \in C_{\mathcal{V}}
    assume \beta \alpha-in-Tr: (\beta @ \alpha) \in Tr_{(ES1 \parallel ES2)}
    assume \alpha-no-Cv: \alpha \uparrow C_{\mathcal{V}} = []
    from \beta \alpha-in-Tr
     have \beta \alpha-E1-in-Tr1: ((\beta @ \alpha) | E_{ES1}) \in Tr_{ES1}
       and \beta \alpha-E2-in-Tr2: ((\beta @ \alpha) | E_{ES2}) \in Tr_{ES2}
       by (simp add: composeES-def)+
    interpret CSES1: CompositionSupport ES1 V V1
       using propSepViews unfolding properSeparationOfViews-def
       \mathbf{by} \ (simp \ add: \ CompositionSupport-def \ validES1 \ validV1 \ )
     interpret CSES2: CompositionSupport ES2 V V2
       using propSepViews unfolding properSeparationOfViews-def
       by (simp add: CompositionSupport-def validES2 validV2)
     from CSES1.BSD-in-subsystem2[OF \beta\alpha-E1-in-Tr1 BSD1] obtain \alpha1'
       where \beta E1 \alpha 1'-in-Tr1: \beta \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}
       and \alpha 1'Cv1-empty: \alpha 1' \upharpoonright C_{\mathcal{V}1} = []
       by auto
     from CSES2.BSD-in-subsystem2[OF \beta\alpha-E2-in-Tr2 BSD2] obtain \alpha2'
       where \beta E2\alpha 2'-in-Tr2: \beta \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
and \alpha 2' Vv2-is-\alpha Vv2: \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}
       and \alpha 2'Cv2-empty: \alpha 2' \upharpoonright C_{\mathcal{V}2} = []
       by auto
      \begin{array}{l} \mathbf{have} \exists \ \alpha 1 \ ''. \ (set \ \alpha 1 \ '' \subseteq E_{ES1} \land ((\beta \ @ \ [c]) \upharpoonright E_{ES1}) \ @ \ \alpha 1 \ '' \in Tr_{ES1} \\ \land \ \alpha 1 \ '' \upharpoonright V_{\mathcal{V}1} = \alpha \upharpoonright V_{\mathcal{V}1} \land \alpha 1 \ '' \upharpoonright C_{\mathcal{V}1} = []) \end{array} 
       proof cases
          assume cE1-empty: [c] | E_{ES1} = []
```

from $\beta E1 \alpha 1'$ -in-Tr1 validES1 have set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from cE1-empty $\beta E1 \alpha 1'$ -in-Tr1 have (($\beta @ [c]$) | E_{ES1}) @ $\alpha 1' \in Tr_{ES1}$ by (simp only: projection-concatenation-commute, auto) moreover **note** $\alpha 1' Vv1$ -is- $\alpha Vv1 \alpha 1' Cv1$ -empty ultimately show ?thesis by *auto* \mathbf{next} assume cE1-not-empty: $[c] \uparrow E_{ES1} \neq []$ hence *c*-*in*-*E1*: $c \in E_{ES1}$ by (simp only: projection-def, auto, split if-split-asm, auto) from c-in-Cv c-in-E1 propSepViews have $c \in C_{V1}$ unfolding properSeparationOfViews-def by auto moreover note $\beta E1 \alpha 1'$ -in-Tr1 $\alpha 1'Cv1$ -empty BSI1 ultimately obtain $\alpha 1^{\prime\prime}$ where $\beta E1c\alpha 1''$ -*in*-Tr1: $(\beta \mid E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1}$ and $\alpha 1''Vv1$ -*is*- $\alpha 1'Vv1$: $\alpha 1'' \mid V_{V1} = \alpha 1' \mid V_{V1}$ and $\alpha 1^{\prime\prime}Cv1\text{-empty: } \alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ unfolding BSI-def by blast from validES1 $\beta E1c\alpha 1$ ''-in-Tr1 have set $\alpha 1$ '' $\subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\beta E1c\alpha 1$ ''-in-Tr1 c-in-E1 have $((\beta @ [c]) | E_{ES1}) @ \alpha 1$ '' $\in Tr_{ES1}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from $\alpha 1'' Vv1$ -is- $\alpha 1' Vv1 \alpha 1' Vv1$ -is- $\alpha Vv1$ have $\alpha 1'' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}$ by auto moreover **note** $\alpha 1^{\prime\prime}Cv1$ -empty ultimately show ?thesis by auto \mathbf{qed} then obtain $\alpha 1^{\,\prime\prime}$ where $\alpha 1^{\prime\prime}$ -in-E1star: set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ and $\beta c E1 \alpha 1''$ -in-Tr1: $((\beta @ [c]) | E_{ES1}) @ \alpha 1'' \in Tr_{ES1}$ and $\alpha 1''Vv1$ -is- $\alpha Vv1$: $\alpha 1'' | V_{V1} = \alpha | V_{V1}$ and $\alpha 1^{\prime\prime}Cv1$ -empty: $\alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ $\mathbf{by} \ auto$ $\begin{array}{l} \mathbf{have} \exists \ \alpha \mathcal{Z}^{\,\prime\prime}. \ (set \ \alpha \mathcal{Z}^{\,\prime\prime} \subseteq E_{ES2} \\ \land \ ((\beta @ \ [c]) \ 1 \ E_{ES2}) \ @ \ \alpha \mathcal{Z}^{\,\prime\prime} \in \ Tr_{ES2} \end{array}$ $\wedge \alpha 2'' \uparrow V_{\mathcal{V}2} = \alpha \uparrow V_{\mathcal{V}2}$ $\wedge \alpha 2'' \uparrow C_{\mathcal{V}2} = [])$ proof cases assume cE2-empty: $[c] \uparrow E_{ES2} = []$

196

from $\beta E2\alpha 2'$ -in-Tr2 validES2 have set $\alpha 2' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from cE2-empty $\beta E2\alpha 2'$ -in-Tr2 have $((\beta @ [c]) | E_{ES2}) @ \alpha 2' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute, auto) moreover note $\alpha 2' Vv2$ -is- $\alpha Vv2 \ \alpha 2' Cv2$ -empty ultimately show ?thesis by *auto* \mathbf{next} assume cE2-not-empty: $[c] \uparrow E_{ES2} \neq []$ hence *c-in-E2*: $c \in E_{ES2}$ by (simp only: projection-def, auto, split if-split-asm, auto) from c-in-Cv c-in-E2 propSepViews have $c \in C_{V2}$ unfolding properSeparationOfViews-def by auto moreover note $\beta E2\alpha 2'$ -in-Tr2 $\alpha 2'Cv2$ -empty BSI2 ultimately obtain $\alpha 2^{\prime\prime}$ where $\beta E2c\alpha 2''$ -*in*-Tr2: $(\beta \mid E_{ES2}) @ [c] @ \alpha 2'' \in Tr_{ES2}$ and $\alpha 2''Vv2$ -*is*- $\alpha 2'Vv2$: $\alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}$ and $\alpha 2^{\prime\prime} Cv2\text{-empty: } \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ unfolding BSI-def by blast from validES2 $\beta E2c\alpha 2$ ''-in-Tr2 have set $\alpha 2$ '' $\subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\beta E2c\alpha 2''$ -in-Tr2 c-in-E2 have $((\beta @ [c]) | E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from $\alpha 2^{\prime\prime} Vv2$ -is- $\alpha 2^{\prime} Vv2 \alpha 2^{\prime} Vv2$ -is- $\alpha Vv2$ have $\alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}$ by auto moreover **note** $\alpha 2^{\prime\prime} Cv2$ -empty ultimately show ?thesis by auto qed then obtain $\alpha 2^{\,\prime\prime}$ where $\alpha 2^{\prime\prime}$ -in-E2star: set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ and $\beta c E 2 \alpha 2^{\prime \prime} - in - Tr 2$: $((\beta @ [c]) \uparrow E_{ES2}) @ \alpha 2^{\prime \prime} \in Tr_{ES2}$ and $\alpha 2^{\prime \prime} Vv 2 - is - \alpha Vv 2$: $\alpha 2^{\prime \prime} \uparrow V_{V2} = \alpha \uparrow V_{V2}$ and $\alpha 2^{\prime\prime} Cv2$ -empty: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ by auto

from VIsViewOnE c-in-Cv $\beta \alpha$ -in-Tr have set $(\beta @ [c]) \subseteq E_{(ES1 \parallel ES2)}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def composeES-def, auto) moreover

have set $(\alpha \uparrow V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}$

 $\mathbf{by} \ (simp \ add: \ projection-def, \ auto)$ moreover note $\alpha 1^{\prime\prime}$ -in-E1star $\alpha 2^{\prime\prime}$ -in-E2star $\beta cE1 \alpha 1^{\prime\prime}$ -in-Tr1 $\beta cE2 \alpha 2^{\prime\prime}$ -in-Tr2 moreover have $(\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1} = \alpha 1'' \uparrow V_{\mathcal{V}}$ proof from $\alpha 1^{\prime\prime} Vv1$ -is- $\alpha Vv1 \ propSepViews$ have $\alpha \uparrow (V_{\mathcal{V}} \cap E_{ES1}) = \alpha 1^{\prime\prime} \uparrow (E_{ES1} \cap V_{\mathcal{V}})$ unfolding properSeparationOfViews-def by (simp add: Int-commute) hence $\alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \alpha 1^{\prime\prime} \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}}$ **by** (simp add: projection-def) with $\alpha 1''$ -in-E1star show ?thesis **by** (simp add: list-subset-iff-projection-neutral) \mathbf{qed} moreover have $(\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2} = \alpha 2^{\prime\prime} \uparrow V_{\mathcal{V}}$ proof – from $\alpha 2^{\prime\prime} Vv2$ -is- $\alpha Vv2$ propSepViews have $\alpha \uparrow (V_{\mathcal{V}} \cap E_{ES2}) = \alpha 2^{\prime\prime} \uparrow (E_{ES2} \cap V_{\mathcal{V}})$ unfolding properSeparationOfViews-def by (simp add: Int-commute) hence $\alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \alpha 2^{\prime\prime} \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}$ **by** (*simp add: projection-def*) with $\alpha 2''$ -in-E2star show ?thesis by (simp add: list-subset-iff-projection-neutral) \mathbf{qed} moreover note $\alpha 1''Cv1$ -empty $\alpha 2''Cv2$ -empty generalized-zipping-lemma ultimately have $\exists \alpha'$. ($\beta @ [c]$) $@ \alpha' \in Tr_{(ES1 \parallel ES2)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []$ **by** blast } thus ?thesis unfolding BSI-def by auto qed **theorem** compositionality-BSIA: BSD V1 Tr_{ES1}; BSD V2 Tr_{ES2}; BSIA Q1 V1 Tr_{ES1}; BSIA Q2 V2 Tr_{ES2}; $(\varrho 1 \ \mathcal{V}1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}; \ (\varrho 2 \ \mathcal{V}2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2}]$ $\implies BSIA \ \varrho \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})$ proof – assume BSD1: BSD $V1 Tr_{ES1}$ and BSD2: BSD V2 Tr_{ES2} and BSIA1: BSIA $\varrho 1$ V1 Tr_{ES1} and BSIA2: BSIA ϱ 2 V2 Tr_{ES2} and $\varrho 1v1$ -subset- ϱv -inter-E1: $(\varrho 1 \ V1) \subseteq (\varrho \ V) \cap E_{ES1}$ and $\varrho 2v2$ -subset- ϱv -inter-E2: $(\varrho 2 \ V2) \subseteq (\varrho \ V) \cap E_{ES2}$ { fix $\alpha \beta c$ assume *c*-in-Cv: $c \in C_{\mathcal{V}}$ assume $\beta \alpha$ -in-Tr: $(\beta @ \alpha) \in Tr_{(ES1 \parallel ES2)}$ assume α -no-Cv: $\alpha \upharpoonright C_{\mathcal{V}} = []$ assume $Adm: (Adm \ \mathcal{V} \ \varrho \ Tr_{(ES1 \parallel ES2)} \ \beta \ c)$

then obtain γ where $\gamma \varrho v$ -is- $\beta \varrho v$: $\gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})$ and γc -in-Tr: $(\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}$ unfolding Adm-def $\mathbf{by} ~ auto$ from $\beta \alpha$ -in-Tr have $\beta \alpha$ -E1-in-Tr1: (($\beta @ \alpha$) | E_{ES1}) \in Tr_{ES1} and $\beta \alpha$ -E2-in-Tr2: (($\beta @ \alpha$) | E_{ES2}) \in Tr_{ES2} **by** (*simp add: composeES-def*)+ interpret CSES1: CompositionSupport ES1 V V1 using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: CompositionSupport-def validES1 validV1*) interpret CSES2: CompositionSupport ES2 V V2using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: CompositionSupport-def validES2 validV2*) from CSES1.BSD-in-subsystem2[OF $\beta\alpha$ -E1-in-Tr1 BSD1] obtain α 1' where $\beta E1 \alpha 1'$ -in-Tr1: $\beta \mid E_{ES1} @ \alpha 1' \in Tr_{ES1}$ and $\alpha 1' Vv1 - is - \alpha Vv1 : \alpha 1' | V_{V1} = \alpha | V_{V1}$ and $\alpha 1'Cv1$ -empty: $\alpha 1' \upharpoonright C_{\mathcal{V}1} = []$ by auto from CSES2.BSD-in-subsystem2[OF $\beta\alpha$ -E2-in-Tr2 BSD2] obtain α 2' where $\beta E2\alpha 2'$ -in-Tr2: $\beta \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}$ and $\alpha 2' Vv2$ -is- $\alpha Vv2$: $\alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}$ and $\alpha 2'Cv2$ -empty: $\alpha 2' \upharpoonright C_{V2} = []$ by auto $\begin{aligned} \mathbf{have} &\exists \ \alpha 1^{\,\prime\prime}.\ (set \ \alpha 1^{\,\prime\prime} \subseteq E_{ES1} \\ &\land ((\beta @ [c]) \upharpoonright E_{ES1}) @ \ \alpha 1^{\,\prime\prime} \in Tr_{ES1} \\ &\land \alpha 1^{\,\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha \upharpoonright V_{\mathcal{V}1} \\ &\land \alpha 1^{\,\prime\prime} \upharpoonright C_{\mathcal{V}1} = []) \end{aligned}$ proof cases assume cE1-empty: $[c] \uparrow E_{ES1} = []$ from $\beta E1 \alpha 1'$ -in-Tr1 validES1 have set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from cE1-empty $\beta E1 \alpha 1'$ -in-Tr1 have $((\beta @ [c]) | E_{ES1}) @ \alpha 1' \in Tr_{ES1}$ **by** (*simp only: projection-concatenation-commute, auto*) moreover **note** $\alpha 1' Vv1$ -is- $\alpha Vv1 \alpha 1' Cv1$ -empty ultimately show ?thesis by *auto* \mathbf{next} assume cE1-not-empty: $[c] \upharpoonright E_{ES1} \neq []$ hence *c*-in-E1: $c \in E_{ES1}$ by (simp only: projection-def, auto, split if-split-asm, auto)

from c-in-Cv c-in-E1 propSepViews have $c \in C_{V1}$ unfolding properSeparationOfViews-def by auto moreover note $\beta E1 \alpha 1'$ -in-Tr1 $\alpha 1'Cv1$ -empty moreover have $(Adm \ \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} \ (\beta \mid E_{ES1}) \ c)$ proof from c-in-E1 γ c-in-Tr have $(\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}$ **by** (simp add: projection-def composeES-def) moreover have $\gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)$ proof - $\mathbf{from} \ \gamma \varrho v \text{-} is \text{-} \beta \varrho v \ \mathbf{have} \ \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})$ **by** (*metis projection-commute*) with $\rho_{1v_1-subset-\rho_v-inter-E_1}$ have $\gamma \upharpoonright (\rho_1 \ V_1) = \beta \upharpoonright (\rho_1 \ V_1)$ by (metis Int-subset-iff $\gamma \rho v$ -is- $\beta \rho v$ projection-subset-elim) thus ?thesis by (metis projection-commute) qed ultimately show ?thesis unfolding Adm-def by auto \mathbf{qed} moreover note BSIA1 ultimately obtain $\alpha 1^{\prime\prime}$ where $\beta E1c\alpha 1''$ -*in*-Tr1: $(\beta \mid E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1}$ and $\alpha 1''Vv1$ -*is*- $\alpha 1'Vv1$: $\alpha 1'' \mid V_{V1} = \alpha 1' \mid V_{V1}$ and $\alpha 1^{\prime\prime}Cv1$ -empty: $\alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ unfolding BSIA-def by blast from validES1 $\beta E1c\alpha 1''$ -in-Tr1 have set $\alpha 1'' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\beta E1c\alpha 1$ ''-in-Tr1 c-in-E1 have $((\beta @ [c]) | E_{ES1}) @ \alpha 1$ '' $\in Tr_{ES1}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from $\alpha 1^{\prime\prime} Vv1$ -is- $\alpha 1^{\prime} Vv1 \alpha 1^{\prime} Vv1$ -is- $\alpha Vv1$ have $\alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha \upharpoonright V_{\mathcal{V}1}$ by auto moreover **note** $\alpha 1$ "Cv1-empty ultimately show ?thesis by auto \mathbf{qed} then obtain $\alpha 1^{\prime\prime}$ where $\alpha 1^{\prime\prime}$ -in-E1star: set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ and $\beta c E1 \alpha 1''$ -in-Tr1: $((\beta @ [c]) | E_{ES1}) @ \alpha 1'' \in Tr_{ES1}$ and $\alpha 1''Vv1$ -is- $\alpha Vv1$: $\alpha 1'' | V_{V1} = \alpha | V_{V1}$ and $\alpha 1''Cv1$ -empty: $\alpha 1'' | C_{V1} = []$ by auto

```
have \exists \alpha 2^{\prime\prime}. (set \alpha 2^{\prime\prime} \subseteq E_{ES2}
   \wedge ((\beta @ [c]) | E_{ES2}) @ \alpha 2'' \in Tr_{ES2} 
 \wedge \alpha 2'' | V_{\mathcal{V}2} = \alpha | V_{\mathcal{V}2} 
  \wedge \alpha \mathcal{2}'' \upharpoonright C_{\mathcal{V}\mathcal{2}} = [])
  proof cases
     assume cE2-empty: [c] \uparrow E_{ES2} = []
     from \beta E2\alpha 2'-in-Tr2 validES2 have set \alpha 2' \subseteq E_{ES2}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
     moreover
     from cE2-empty \beta E2\alpha 2'-in-Tr2 have ((\beta @ [c]) | E_{ES2}) @ \alpha 2' \in Tr_{ES2}
       by (simp only: projection-concatenation-commute, auto)
     moreover
     note \alpha 2' Vv2-is-\alpha Vv2 \alpha 2' Cv2-empty
     ultimately show ?thesis
       by auto
  \mathbf{next}
     assume cE2-not-empty: [c] | E_{ES2} \neq []
     hence c-in-E2: c \in E_{ES2}
       by (simp only: projection-def, auto, split if-split-asm, auto)
     from c-in-Cv c-in-E2 propSepViews have c \in C_{V2}
       unfolding properSeparationOfViews-def by auto
     moreover
     note \beta E2\alpha 2'-in-Tr2 \alpha 2'Cv2-empty
     moreover
     have (Adm \ \mathcal{V2} \ \varrho 2 \ Tr_{ES2} \ (\beta \ | \ E_{ES2}) \ c)
       proof -
          from c-in-E2 \gamma c-in-Tr have (\gamma \mid E_{ES2}) @ [c] \in Tr_{ES2}
            by (simp add: projection-def composeES-def)
          moreover
          have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2)
            proof –
               from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
                 by (metis projection-commute)
               with \varrho 2v2-subset-\varrho v-inter-E2 have \gamma \downarrow (\varrho 2 \ V2) = \beta \downarrow (\varrho 2 \ V2)
                 by (metis Int-subset-iff \gamma \rho v-is-\beta \rho v projection-subset-elim)
               thus ?thesis
                 by (metis projection-commute)
            \mathbf{qed}
         ultimately show ?thesis unfolding Adm-def
            by auto
       \mathbf{qed}
     moreover
     note BSIA2
     ultimately obtain \alpha 2^{\prime\prime}
       where \beta E2c\alpha 2''-in-Tr2: (\beta \mid E_{ES2}) @ [c] @ \alpha 2'' \in Tr_{ES2}
and \alpha 2''Vv2-is-\alpha 2'Vv2: \alpha 2'' \mid V_{V2} = \alpha 2' \mid V_{V2}
       and \alpha 2^{\prime\prime} Cv2-empty: \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []
       unfolding BSIA-def
       by blast
```

from validES2 $\beta E2c\alpha 2''$ -in-Tr2 have set $\alpha 2'' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\beta E2c\alpha 2''$ -in-Tr2 c-in-E2 have $((\beta @ [c]) | E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover from $\alpha 2^{\prime\prime} Vv2$ -is- $\alpha 2^{\prime} Vv2 \alpha 2^{\prime} Vv2$ -is- $\alpha Vv2$ have $\alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}$ by auto moreover note $\alpha 2^{\prime\prime}Cv2$ -empty ultimately show ?thesis by auto qed then obtain $\alpha 2^{\prime\prime}$ where $\alpha 2^{\prime\prime}$ -in-E2star: set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ and $\beta c E 2 \alpha 2''$ -in-Tr2: (($\beta @ [c]$) | \tilde{E}_{ES2}) @ $\alpha 2'' \in Tr_{ES2}$ and $\alpha 2^{\prime\prime} Vv2$ -is- $\alpha Vv2$: $\alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}$ and $\alpha 2^{\prime\prime} Cv2$ -empty: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ by auto from VIsViewOnE c-in-Cv $\beta \alpha$ -in-Tr have set $(\beta @ [c]) \subseteq E_{(ES1 \parallel ES2)}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def composeES-def, auto) moreover have set $(\alpha \mid V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover note $\alpha 1^{\prime\prime}$ -in-E1star $\alpha 2^{\prime\prime}$ -in-E2star $\beta c E1 \alpha 1^{\prime\prime}$ -in-Tr1 $\beta c E2 \alpha 2^{\prime\prime}$ -in-Tr2 moreover have $(\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright E_{ES1} = \alpha 1'' \upharpoonright V_{\mathcal{V}}$ proof from $\alpha 1'' Vv1$ -is- $\alpha Vv1 propSepViews$ have $\alpha \upharpoonright (V_{\mathcal{V}} \cap E_{ES1}) = \alpha 1'' \upharpoonright (E_{ES1} \cap V_{\mathcal{V}})$ **unfolding** properSeparationOfViews-def **by** (simp add: Int-commute) **hence** $\alpha \mid V_{\mathcal{V}} \mid E_{ES1} = \alpha 1'' \mid E_{ES1} \mid V_{\mathcal{V}}$ **by** (*simp add: projection-def*) with $\alpha 1''$ -in-E1star show ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) \mathbf{qed} moreover have $(\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2} = \alpha 2^{\prime\prime} \uparrow V_{\mathcal{V}}$ proof – **from** $\alpha 2^{\prime\prime} Vv2$ -is- $\alpha Vv2 \ propSepViews$ have $\alpha \upharpoonright (V_{\mathcal{V}} \cap E_{ES2}) = \alpha 2^{\prime\prime} \upharpoonright (E_{ES2} \cap V_{\mathcal{V}})$ unfolding properSeparationOfViews-def by (simp add: Int-commute) hence $\alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \alpha 2^{\prime\prime} \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}$ by (simp add: projection-def) with $\alpha 2$ ''-in-E2star show ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) qed moreover

note $\alpha 1^{\prime\prime}Cv1$ -empty $\alpha 2^{\prime\prime}Cv2$ -empty generalized-zipping-lemma ultimately have $\exists \alpha'. (\beta @ [c]) @ \alpha' \in Tr_{(ES1 \parallel ES2)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []$ by blast } thus ?thesis unfolding BSIA-def by auto

 \mathbf{qed}

theorem compositionality-FCD: $\llbracket BSD \ \mathcal{V}1 \ Tr_{ES1}; BSD \ \mathcal{V}2 \ Tr_{ES2};$ $\begin{array}{l} \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma1}; \ \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma2}; \\ \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}; \ \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}; \end{array}$ $(\Delta_{\Gamma 1} \cap N_{\mathcal{V}1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V}2}) \subseteq \Delta_{\Gamma};$ $N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\}; N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\};$ $\overrightarrow{FCD} \ \Gamma 1 \ \overrightarrow{\mathcal{V}1} \ Tr_{ES1}; \ \overrightarrow{FCD} \ \Gamma 2 \ \overrightarrow{\mathcal{V}2} \ Tr_{ES2} \]$ $\implies FCD \ \Gamma \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})$ proof assume BSD1: BSD $V1 Tr_{ES1}$ and BSD2: BSD $V2 Tr_{ES2}$ and Nabla-inter-E1-subset-Nabla1: $\nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma1}$ and Nabla-inter-E2-subset-Nabla2: $\nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma2}$ and Upsilon-inter-E1-subset-Upsilon1: $\Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}$ and Upsilon-inter-E2-subset-Upsilon2: $\Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}$ and Delta1-N1-Delta2-N2-subset-Delta: ($\Delta_{\Gamma 1} \cap N_{V1} \cup \Delta_{\Gamma 2} \cap N_{V2}$) $\subseteq \Delta_{\Gamma}$ and N1-Delta1-E2-disjoint: $N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\}$ and N2-Delta2-E1-disjoint: $N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\}$ and FCD1: FCD $\Gamma 1 \ V1 \ Tr_{ES1}$ and FCD2: FCD $\Gamma 2 \ V 2 \ Tr_{ES2}$ { fix $\alpha \beta c v'$ assume *c-in-Cv-inter-Upsilon*: $c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})$ and v'-in-Vv-inter-Nabla: $v' \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})$ and $\beta cv' \alpha$ -in-Tr: $(\beta @ [c,v'] @ \alpha) \in Tr_{(ES1 \parallel ES2)}$ and αCv -empty: $\alpha \mid C_{\mathcal{V}} = []$ from $\beta cv' \alpha$ -in-Tr have $\beta cv' \alpha$ -E1-in-Tr1: ((($\beta @ [c,v']) @ \alpha$) | E_{ES1}) $\in Tr_{ES1}$ and $\beta cv' \alpha$ -E2-in-Tr2: ((($\beta @ [c,v']) @ \alpha$) | E_{ES2}) $\in Tr_{ES2}$ **by** (*simp add: composeES-def*)+ interpret CSES1: CompositionSupport ES1 V V1 ${\bf using} \ propSep \ Views \ {\bf unfolding} \ properSeparation Of Views-def$ **by** (*simp add: CompositionSupport-def validES1 validV1*) interpret CSES2: CompositionSupport ES2 V V2using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: CompositionSupport-def validES2 validV2*) from CSES1.BSD-in-subsystem2[OF $\beta cv' \alpha$ -E1-in-Tr1 BSD1] obtain $\alpha 1'$

where $\beta cv' E1 \alpha 1'$ -in-Tr1: $(\beta @ [c,v']) \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}$ and $\alpha 1' Vv1$ -is- $\alpha Vv1$: $\alpha 1' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}$ and $\alpha 1'Cv1$ -empty: $\alpha 1' \upharpoonright C_{\mathcal{V}1} = []$ by auto from CSES2.BSD-in-subsystem2[OF $\beta cv' \alpha$ -E2-in-Tr2 BSD2] obtain $\alpha 2'$ where $\beta cv' E2\alpha 2'$ -in-Tr2: $(\beta @ [c,v']) \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}$ and $\alpha 2' Vv2$ -is- $\alpha Vv2$: $\alpha 2' \upharpoonright V_{V2} = \alpha \upharpoonright V_{V2}$ and $\alpha 2'Cv2$ -empty: $\alpha 2' \upharpoonright C_{\mathcal{V}2} = []$ by auto from c-in-Cv-inter-Upsilon v'-in-Vv-inter-Nabla validV1 have $c \notin E_{ES1} \lor (c \in E_{ES1} \land v' \notin E_{ES1}) \lor (c \in E_{ES1} \land v' \in E_{ES1})$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def) moreover { assume *c*-notin-E1: $c \notin E_{ES1}$ have set $[] \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ by auto moreover from $\beta cv' E1 \alpha 1' - in - Tr1 \ c - not in - E1$ have $(\beta \mid E_{ES1}) @ [] @ ([v'] \mid E_{ES1}) @ \alpha 1' \in Tr_{ES1}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover have $\alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \dots$ moreover **note** *α1* ′*Cv1-empty* **ultimately have** $\exists \alpha 1'' \delta 1''$. set $\delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ $\land (\beta \mid E_{ES1}) @ \delta 1'' @ ([v'] \mid E_{ES1}) @ \alpha 1'' \in Tr_{ES1}$ $\land \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} \land \alpha 1'' \mid C_{\mathcal{V}1} = []$ $\mathbf{by} \ blast$ } moreover { assume *c*-*in*-*E*1: $c \in E_{ES1}$ and v'-notin-E1: $v' \notin E_{ES1}$ from c-in-E1 c-in-Cv-inter-Upsilon propSepViews Upsilon-inter-E1-subset-Upsilon1 have c-in-Cv1-Upsilon1: $c \in (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1})$ unfolding properSeparationOfViews-def by auto hence *c*-in- $Cv1: c \in C_{V1}$ by auto moreover from $\beta cv'E1\alpha 1'$ -in-Tr1 c-in-E1 v'-notin-E1 have $(\beta \mid E_{ES1}) @ [c] @ \alpha 1' \in Tr_{ES1}$ $\mathbf{by} \ (simp \ only: \ projection-concatenation-commute \ projection-def, \ auto)$ moreover **note** $\alpha 1'Cv1$ -empty BSD1 ultimately obtain $\alpha 1^{\prime\prime}$ where first: $(\beta \mid E_{ES1}) @ \alpha 1'' \in Tr_{ES1}$ and second: $\alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$ and third: $\alpha 1'' \upharpoonright C_{\mathcal{V}1} = []$ unfolding BSD-def

```
by blast
```

```
have set [] \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
     by auto
   moreover
   from first v'-notin-E1 have (\beta \upharpoonright E_{ES1}) @ [] @ ([v'] \upharpoonright E_{ES1}) @ \alpha 1'' \in Tr_{ES1}
     by (simp add: projection-def)
   moreover
   note second third
   ultimately
  have \exists \alpha 1^{\prime\prime} \delta 1^{\prime\prime}. set \delta 1^{\prime\prime} \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
      \begin{array}{c} \wedge (\beta \mid E_{ES1}) @ \delta1^{\prime\prime} @ ([v] \mid E_{ES1}) @ \alpha1^{\prime\prime} \in Tr_{ES1} \\ \wedge \alpha1^{\prime\prime} \mid V_{\mathcal{V}1} = \alpha1^{\prime} \mid V_{\mathcal{V}1} \wedge \alpha1^{\prime\prime} \mid C_{\mathcal{V}1} = [] \end{array} 
     \mathbf{by} \ blast
}
moreover {
  assume c-in-E1: c \in E_{ES1}
  and v'-in-E1: v' \in E_{ES1}
  {\bf from} \ c\text{-}in\text{-}E1 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
      Upsilon\-inter\-E1\-subset\-Upsilon1
  have c-in-Cv1-Upsilon1: c \in (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})
     unfolding properSeparationOfViews-def by auto
   moreover
   from v'-in-E1 v'-in-Vv-inter-Nabla propSepViews Nabla-inter-E1-subset-Nabla1
   have v'-in-Vv1-inter-Nabla1: v' \in (V_{\mathcal{V}1} \cap \nabla_{\Gamma 1})
     unfolding properSeparationOfViews-def by auto
   moreover
   from \beta cv' E1 \alpha 1'-in-Tr1 c-in-E1 v'-in-E1 have (\beta \mid E_{ES1}) @ [c,v'] @ \alpha 1' \in Tr_{ES1}
     by (simp add: projection-def)
   moreover
   note \alpha 1'Cv1-empty FCD1
   ultimately obtain \alpha 1^{\,\prime\prime} \, \delta 1^{\,\prime\prime}
     where first: set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
and second: (\beta \mid E_{ES1}) @ \delta 1'' @ [v'] @ <math>\alpha 1'' \in Tr_{ES1}
and third: \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1}
     and fourth: \alpha 1'' \uparrow \dot{C}_{\mathcal{V}1} = []
     unfolding FCD-def
     by blast
   from second v'-in-E1 have (\beta \upharpoonright E_{ES1}) @ \delta1'' @ ([v'] \upharpoonright E_{ES1}) @ \alpha1'' \in Tr_{ES1}
     by (simp add: projection-def)
   with first third fourth
   have \exists \alpha 1'' \delta 1''. set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
     \wedge (\beta \restriction E_{ES1}) @ \delta1'' @ ([v'] \restriction E_{ES1}) @ \alpha1'' \in Tr_{ES1}
     \wedge \alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1} \wedge \alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []
     unfolding FCD-def
     \mathbf{by} \ blast
}
ultimately obtain \alpha 1^{\,\prime\prime} \, \delta 1^{\,\prime\prime}
   where \delta 1''-in-Nv1-Delta1-star: set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
  and \beta E1\delta1''vE1\alpha1''-in-Tr1: (\beta \upharpoonright E_{ES1}) @ \delta1''' @ ([v'] \upharpoonright E_{ES1}) @ \alpha1'' \in Tr_{ES1}
```

and $\alpha 1^{\prime\prime} Vv1$ -is- $\alpha 1^{\prime} Vv1$: $\alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1}$ and $\alpha 1^{\prime\prime}Cv1$ -empty: $\alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ **by** blast with validV1 have $\delta 1^{\prime\prime}$ -in-E1-star: set $\delta 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) from c-in-Cv-inter-Upsilon v'-in-Vv-inter-Nabla validV2 have $c \notin E_{ES2} \lor (c \in E_{ES2} \land v' \notin E_{ES2}) \lor (c \in E_{ES2} \land v' \in E_{ES2})$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def) moreover { assume *c*-notin-E2: $c \notin E_{ES2}$ have set $[] \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}})$ by *auto* moreover from $\beta cv' E2 \alpha 2'$ -in-Tr2 c-notin-E2 have $(\beta \mid E_{ES2}) @ [] @ ([v'] \mid E_{ES2}) @ \alpha 2' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover have $\alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}$.. moreover **note** $\alpha 2'Cv2$ -empty **ultimately have** $\exists \alpha 2'' \delta 2''$. set $\delta 2'' \subseteq (N_{V2} \cap \Delta_{\Gamma2})$ $\land (\beta \mid E_{ES2}) @ \delta 2'' @ ([v'] \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ $\land \alpha 2'' \mid V_{V2} = \alpha 2' \mid V_{V2} \land \alpha 2'' \mid C_{V2} = []$ by blast } moreover { assume *c-in-E2*: $c \in E_{ES2}$ and v'-notin-E2: $v' \notin E_{ES2}$ from c-in-E2 c-in-Cv-inter-Upsilon propSepViews Upsilon-inter-E2-subset-Upsilon2 have c-in-Cv2-Upsilon2: $c \in (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2})$ unfolding properSeparationOfViews-def by auto hence *c-in-Cv2*: $c \in C_{\mathcal{V2}}$ by auto moreover from $\beta cv' E2\alpha 2'$ -in-Tr2 c-in-E2 v'-notin-E2 have $(\beta \mid E_{ES2}) @ [c] @ \alpha 2' \in Tr_{ES2}$ by (simp only: projection-concatenation-commute projection-def, auto) moreover note $\alpha 2'Cv2$ -empty BSD2 ultimately obtain $\alpha 2^{\prime\prime}$ where first: $(\beta \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ and second: $\alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}$ and third: $\alpha 2^{\prime\prime} \uparrow C_{\mathcal{V}2} = []$ unfolding BSD-def by blast have set $[] \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}})$ by *auto* moreover

from first v'-notin-E2 have $(\beta \mid E_{ES2}) @ [] @ ([v'] \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover note second third ultimately have $\exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}$. set $\delta 2^{\prime\prime} \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})$ $\begin{array}{c} \wedge \ (\beta \ | \ E_{ES2}) \ @ \ \delta 2^{\,\prime\prime} \ @ \ ([v] \ | \ E_{ES2}) \ @ \ \alpha 2^{\,\prime\prime} \in \ Tr_{ES2} \\ \wedge \ \alpha 2^{\,\prime\prime} \ | \ V_{\mathcal{V}2} = \alpha 2^{\,\prime} \ | \ V_{\mathcal{V}2} \wedge \ \alpha 2^{\,\prime\prime} \ | \ C_{\mathcal{V}2} = [] \end{array}$ **by** blast } moreover { assume c-in-E2: $c \in E_{ES2}$ and v'-in-E2: $v' \in E_{ES2}$ from c-in-E2 c-in-Cv-inter-Upsilon propSepViews Upsilon-inter-E2-subset-Upsilon2 have c-in-Cv2-Upsilon2: $c \in (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})$ unfolding properSeparationOfViews-def by auto moreover from v'-in-E2 v'-in-Vv-inter-Nabla propSepViews Nabla-inter-E2-subset-Nabla2 have v'-in-Vv2-inter-Nabla2: $v' \in (V_{\mathcal{V2}} \cap \nabla_{\Gamma2})$ unfolding properSeparationOfViews-def by auto moreover from $\beta cv' E2\alpha 2'$ -in-Tr2 c-in-E2 v'-in-E2 have $(\beta \upharpoonright E_{ES2}) @ [c,v'] @ \alpha 2' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover note $\alpha 2'Cv2$ -empty FCD2 ultimately obtain $\alpha 2^{\prime\prime} \delta 2^{\prime\prime}$ where first: set $\delta 2^{\prime\prime} \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})$ and second: $(\beta \mid E_{ES2}) @ \delta 2'' @ [v'] @ \alpha 2'' \in Tr_{ES2}$ and third: $\alpha 2'' \mid V_{V2} = \alpha 2' \mid V_{V2}$ and fourth: $\alpha 2''' \mid C_{V2} = []$ unfolding FCD-def by blast from second v'-in-E2 have $(\beta \mid E_{ES2}) @ \delta 2'' @ ([v'] \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ **by** (*simp add: projection-def*) with first third fourth have $\exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}$. set $\delta 2^{\prime\prime} \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ $\wedge (\beta \restriction E_{ES2}) @ \delta2'' @ ([v'] \restriction E_{ES2}) @ \alpha2'' \in Tr_{ES2}$ $\wedge \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2} \wedge \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ unfolding FCD-def **by** blast } ultimately obtain $\alpha 2^{\prime\prime} \, \delta 2^{\prime\prime}$ where $\delta 2''$ -in-Nv2-Delta2-star: set $\delta 2'' \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ and $\beta E_2 \delta 2'' \nu E_2 \alpha 2''$ -in-Tr2: $(\beta \mid E_{ES2}) @ \delta 2'' @ ([v'] \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2}$ and $\alpha 2'' \nu \nu 2$ -is- $\alpha 2' \nu 2$: $\alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}$ and $\alpha 2^{\prime\prime} Cv2$ -empty: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ **by** blast with validV2 have $\delta 2^{\prime\prime}$ -in-E2-star: set $\delta 2^{\prime\prime} \subseteq E_{ES2}$ by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)

from δ1"-in-Nv1-Delta1-star N1-Delta1-E2-disjoint have $\delta 1^{\prime\prime} E_{2}$ -empty: $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = []$ proof from $\delta 1^{\prime\prime}$ -in-Nv1-Delta1-star have $\delta 1^{\prime\prime} = \delta 1^{\prime\prime} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ **by** (*simp only: list-subset-iff-projection-neutral*) hence $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 1^{\prime\prime} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright E_{ES2}$ by simp moreover have $\delta 1^{\prime\prime} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}) \upharpoonright E_{ES2} = \delta 1^{\prime\prime} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2})$ **by** (*simp only: projection-def, auto*) with N1-Delta1-E2-disjoint have $\delta 1'' \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}) \upharpoonright E_{ES2} = []$ **by** (*simp add: projection-def*) ultimately show *?thesis* by simp qed moreover from $\delta 2''$ -in-Nv2-Delta2-star N2-Delta2-E1-disjoint have $\delta 2''E1$ -empty: $\delta 2'' \upharpoonright E_{ES1} = []$ proof from $\delta 2^{\prime\prime}$ -in-Nv2-Delta2-star have $\delta 2^{\prime\prime} = \delta 2^{\prime\prime} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ by (simp only: list-subset-iff-projection-neutral) hence $\delta \mathcal{Z}'' \upharpoonright E_{ES1} = \delta \mathcal{Z}'' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \upharpoonright E_{ES1}$ by simp moreover have $\delta \mathcal{Z}'' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \upharpoonright E_{ES1} = \delta \mathcal{Z}'' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}} \cap E_{ES1})$ **by** (simp only: projection-def, auto) with N2-Delta2-E1-disjoint have $\delta 2^{\prime\prime} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}) \upharpoonright E_{ES1} = []$ **by** (simp add: projection-def) ultimately show ?thesis by simp \mathbf{qed} moreover note $\beta E1\delta 1''vE1\alpha 1''$ -in-Tr1 $\beta E2\delta 2''vE2\alpha 2''$ -in-Tr2 $\delta 1''$ -in-E1-star $\delta 2''$ -in-E2-star ultimately have $\beta \delta 1^{\prime\prime} \delta 2^{\prime\prime} v^{\prime} E 1 \alpha 1^{\prime\prime} - in - Tr 1$: $(\beta @ \delta 1^{\prime\prime} @ \delta 2^{\prime\prime} @ [v']) | E_{ES1} @ \alpha 1^{\prime\prime} \in Tr_{ES1}$ and $\beta \delta 1^{\prime\prime} \delta 2^{\prime\prime} v^{\prime} E 2 \alpha 2^{\prime\prime} - in - Tr 2$: $(\beta @ \delta 1^{\prime\prime} @ \delta 2^{\prime\prime} @ [v']) | E_{ES2} @ \alpha 2^{\prime\prime} \in Tr_{ES2}$ by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto, simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto) have set $(\beta @ \delta 1'' @ \delta 2'' @ [v']) \subseteq E_{(ES1 \parallel ES2)}$ proof from $\beta cv' \alpha$ -in-Tr have set $\beta \subseteq E_{(ES1 \parallel ES2)}$ **by** (*simp add: composeES-def*) moreover **note** $\delta 1^{\prime\prime}$ -in-E1-star $\delta 2^{\prime\prime}$ -in-E2-star moreover from v'-in-Vv-inter-Nabla VIsViewOnE have $v' \in E_{(ES1 \parallel ES2)}$ by (simp add:is ViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately show ?thesis

by (simp add: composeES-def, auto)

 \mathbf{qed} moreover have set $(\alpha \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover from $\beta E1\delta1''vE1\alpha1''$ -in-Tr1 validES1 have $\alpha1''$ -in-E1-star: set $\alpha1'' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\beta E2\delta 2''vE2\alpha 2''$ -in-Tr2 validES2 have $\alpha 2''$ -in-E2-star: set $\alpha 2'' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover note $\beta \delta 1^{\prime\prime} \delta 2^{\prime\prime} v^{\prime} E 1 \alpha 1^{\prime\prime} - in$ -Tr $1^{\prime} \beta \delta 1^{\prime\prime} \delta 2^{\prime\prime} v^{\prime} E 2 \alpha 2^{\prime\prime} - in$ -Tr 2^{\prime} moreover have $(\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1} = \alpha 1'' \uparrow V_{\mathcal{V}}$ proof – from $\alpha 1''Vv1$ -is- $\alpha 1'Vv1 \alpha 1'Vv1$ -is- $\alpha Vv1$ propSepViews have $\alpha \upharpoonright (V_{\mathcal{V}} \cap E_{ES1}) = \alpha 1 '' \upharpoonright (E_{ES1} \cap V_{\mathcal{V}})$ unfolding properSeparationOfViews-def by (simp add: Int-commute) hence $\alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \alpha 1'' \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}}$ **by** (*simp add: projection-def*) with $\alpha 1''$ -in-E1-star show ?thesis **by** (simp add: list-subset-iff-projection-neutral) \mathbf{qed} moreover have $(\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2} = \alpha 2^{\prime\prime} \uparrow V_{\mathcal{V}}$ proof from $\alpha 2'' Vv2 - is - \alpha 2' Vv2 \alpha 2' Vv2 - is - \alpha Vv2 propSepViews$ have $\alpha \upharpoonright (V_{\mathcal{V}} \cap E_{ES2}) = \alpha 2^{\prime\prime} \upharpoonright (E_{ES2} \cap V_{\mathcal{V}})$ unfolding properSeparationOfViews-def by (simp add: Int-commute) hence $\alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \alpha 2'' \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}$ by (simp add: projection-def) with $\alpha 2''$ -in-E2-star show ?thesis **by** (*simp add: list-subset-iff-projection-neutral*) \mathbf{qed} moreover **note** $\alpha 1^{\prime\prime}Cv1$ -empty $\alpha 2^{\prime\prime}Cv2$ -empty generalized-zipping-lemma ultimately obtain twhere first: $(\beta @ \delta 1'' @ \delta 2'' @ [v']) @ t \in Tr_{(ES1 \parallel ES2)}$ and second: $t \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}$ and third: $t \mid C_{\mathcal{V}} = []$ by blast from δ1 "-in-Nv1-Delta1-star δ2"-in-Nv2-Delta2-star have set $(\delta 1^{\prime\prime} \otimes \delta 2^{\prime\prime}) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})$ proof have set $(\delta 1^{\prime\prime} \otimes \delta 2^{\prime\prime}) \subseteq \Delta_{\Gamma}$ proof from δ1^{''}-in-Nv1-Delta1-star δ2^{''}-in-Nv2-Delta2-star have set $(\delta 1^{\prime\prime} \otimes \delta 2^{\prime\prime}) \subseteq \Delta_{\Gamma 1} \cap N_{\mathcal{V} 1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V} 2}$ by *auto* with Delta1-N1-Delta2-N2-subset-Delta show ?thesis by auto

```
\mathbf{qed}
          moreover
          have set (\delta 1^{\prime\prime} \otimes \delta 2^{\prime\prime}) \subseteq N_{\mathcal{V}}
            proof -
               from δ1"-in-Nv1-Delta1-star δ2"-in-Nv2-Delta2-star
               have set (\delta 1^{\prime\prime} \otimes \delta 2^{\prime\prime}) \subseteq (N_{\mathcal{V}1} \cup N_{\mathcal{V}2})
                  by auto
               with Nv1-union-Nv2-subset of-Nv show ?thesis
                  by auto
             qed
          ultimately show ?thesis
            by auto
       qed
     moreover
     from first have \beta @ (\delta 1'' @ \delta 2'') @ [v'] @ t \in Tr_{(ES1 \parallel ES2)}
       by auto
     moreover
     \mathbf{note}\ second\ third
     ultimately have \exists \alpha' \exists \gamma' (set \gamma) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
       \wedge ((\beta @ \gamma' @ [v'] @ \alpha') \in Tr_{(ES1 \parallel ES2)})
       \wedge (\alpha' \upharpoonright V_{\mathcal{V}}) = (\alpha \upharpoonright V_{\mathcal{V}})
       \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
       by blast
  }
  thus ?thesis
     unfolding FCD-def
     by auto
qed
```

```
theorem compositionality-FCI:
[ BSD V1 Tr<sub>ES1</sub>; BSD V2 Tr<sub>ES2</sub>; BSIA Q1 V1 Tr<sub>ES1</sub>; BSIA Q2 V2 Tr<sub>ES2</sub>;
    total ES1 (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}); total ES2 (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2});
    \begin{array}{c} \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}; \ \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma 2}; \\ \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}; \ \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}; \\ (\ \Delta_{\Gamma 1} \cap N_{\mathcal{V}1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V}2}) \subseteq \Delta_{\Gamma}; \end{array} 
    (N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1})
    \begin{array}{c} \vee ( \stackrel{N}{\mathcal{V}_{2}} \cap \stackrel{D}{\Delta}_{\Gamma 2} \cap \stackrel{D}{E}_{ES1} = \{ \} \land \stackrel{N}{\mathcal{N}_{\mathcal{V}1}} \cap \stackrel{D}{\Delta}_{\Gamma 1} \cap \stackrel{D}{E}_{ES2} \subseteq \Upsilon_{\Gamma 2} ) \\ FCI \Gamma 1 \mathcal{V}1 \operatorname{Tr}_{ES1}; FCI \Gamma 2 \mathcal{V}2 \operatorname{Tr}_{ES2} ] \end{array} 
    \implies FCI \ \Gamma \ \mathcal{V} \ (\widetilde{Tr}_{(ES1 \parallel ES2)})
proof –
   assume BSD1: BSD \mathcal{V}1 Tr<sub>ES1</sub>
        and BSD2: BSD V2 Tr_{ES2}
        and BSIA1: BSIA \varrho 1 \ V 1 \ Tr_{ES1}
        and BSIA2: BSIA \varrho2 V2 Tr_{ES2}
        and total-ES1-C1-inter-Upsilon1: total ES1 (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})
        and total-ES2-C2-inter-Upsilon2: total ES2 (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2})
       and Nabla-inter-E1-subset-Nabla1: \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma1}
and Nabla-inter-E2-subset-Nabla2: \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma2}
       and Upsilon-inter-E1-subset-Upsilon1: \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}
and Upsilon-inter-E2-subset-Upsilon2: \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}
        and Delta1-N1-Delta2-N2-subset-Delta: (\Delta_{\Gamma 1} \cap N_{V1} \cup \Delta_{\Gamma 2} \cap N_{V2}) \subseteq \Delta_{\Gamma}
```

```
and very-long-asm: (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1})
  \vee (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \land N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2})
  and FCI1: FCI \Gamma 1 \mathcal{V} 1 Tr_{ES1}
  and FCI2: FCI \Gamma 2 \ V 2 \ Tr_{ES2}
{
  fix \alpha \beta c v'
  assume c-in-Cv-inter-Upsilon: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
     and v'-in-Vv-inter-Nabla: v' \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
     and \beta v' \alpha-in-Tr: (\beta @ [v'] @ \alpha) \in Tr_{(ES1 \parallel ES2)}
     and \alpha Cv-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
  from \beta v' \alpha-in-Tr
  have \beta v' \alpha-E1-in-Tr1: (((\beta @ [v']) @ \alpha) | E_{ES1}) \in Tr_{ES1}
     and \beta v' \alpha-E2-in-Tr2: (((\beta @ [v']) @ \alpha) | E_{ES2}) \in Tr_{ES2}
     by (simp add: composeES-def)+
  interpret CSES1: CompositionSupport ES1 V V1
     using propSepViews unfolding properSeparationOfViews-def
     by (simp add: CompositionSupport-def validES1 validV1)
  interpret CSES2: CompositionSupport ES2 V V2
     using propSepViews unfolding properSeparationOfViews-def
     by (simp add: CompositionSupport-def validES2 validV2)
  from CSES1.BSD-in-subsystem2[OF \ \beta v'\alpha-E1-in-Tr1 \ BSD1] obtain \alpha 1'
     where \beta v' E1 \alpha 1'-in-Tr1: (\beta @ [v']) \uparrow E_{ES1} @ \alpha 1' \in Tr_{ES1}
     and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}
     and \alpha 1'Cv1-empty: \alpha 1' \upharpoonright C_{\mathcal{V}1} = []
     by auto
  from CSES2.BSD-in-subsystem2[OF \beta v' \alpha-E2-in-Tr2 BSD2] obtain \alpha 2'
     where \beta v' E2 \alpha 2' - in-Tr2: (\beta @ [v']) | E_{ES2} @ \alpha 2' \in Tr_{ES2}
and \alpha 2' Vv2 - is - \alpha Vv2: \alpha 2' | V_{V2} = \alpha | V_{V2}
     and \alpha 2'Cv2-empty: \alpha 2' \upharpoonright C_{V2} = []
    by auto
  note very-long-asm
  moreover {
     assume Nv1-inter-Delta1-inter-E2-empty: N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\}
       and Nv2-inter-Delta2-inter-E1-subset of-Upsilon1: N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}
     let ?ALPHA2''-DELTA2'' = \exists \alpha 2'' \delta 2''. (
       \begin{array}{l} set \ \alpha 2^{\prime\prime} \subseteq E_{ES2} \land set \ \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \\ \land \beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \mid E_{ES2} @ \alpha 2^{\prime\prime} \in Tr_{ES2} \\ \land \alpha 2^{\prime\prime} \mid V_{\mathcal{V}2} = \alpha 2^{\prime} \mid V_{\mathcal{V}2} \land \alpha 2^{\prime\prime} \mid C_{\mathcal{V}2} = []) \end{array}
     from c-in-Cv-inter-Upsilon v'-in-Vv-inter-Nabla validV2
     have c \notin E_{ES2} \lor (c \in E_{ES2} \land v' \notin E_{ES2}) \lor (c \in E_{ES2} \land v' \in E_{ES2})
       by (simp add: isViewOn-def V-valid-def
           VC-disjoint-def VN-disjoint-def NC-disjoint-def)
     moreover {
```

assume *c*-notin-E2: $c \notin E_{ES2}$

from validES2 $\beta v' E2\alpha 2'$ -in-Tr2 have set $\alpha 2' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}$ by auto moreover from $\beta v' E2 \alpha 2'$ -in-Tr2 c-notin-E2 have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}$ **by** (simp add: projection-def) moreover have $\alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}$.. moreover **note** $\alpha 2'Cv2$ -empty ultimately have ?ALPHA2"-DELTA2" **by** blast } moreover { assume *c-in-E2*: $c \in E_{ES2}$ and v'-notin-E2: $v' \notin E_{ES2}$ ${\bf from} \ c\text{-}in\text{-}E2 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews$ $Upsilon\-inter\-E2\-subset\-Upsilon2$ have c-in-Cv2-inter-Upsilon2: $c \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ unfolding properSeparationOfViews-def by auto hence $c \in C_{\mathcal{V2}}$ by auto moreover from $\beta v' E2 \alpha 2'$ -in-Tr2 v'-notin-E2 have $\beta \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover note $\alpha 2'Cv2$ -empty moreover have $(Adm \ \mathcal{V2} \ \varrho 2 \ Tr_{ES2} \ (\beta \ | \ E_{ES2}) \ c)$ proof from validES2 $\beta v'E2\alpha 2'$ -in-Tr2 v'-notin-E2 have $\beta \mid E_{ES2} \in Tr_{ES2}$ by (simp add: ES-valid-def traces-prefixclosed-def *prefixclosed-def prefix-def projection-concatenation-commute*) with total-ES2-C2-inter-Upsilon2 c-in-Cv2-inter-Upsilon2 have $\beta \uparrow E_{ES2} @ [c] \in Tr_{ES2}$ **by** (*simp add: total-def*) thus ?thesis unfolding Adm-def by blast qed moreover note BSIA2 ultimately obtain $\alpha 2^{\prime\prime}$ where one: $\beta \upharpoonright E_{ES2} @ [c] @ \alpha 2'' \in Tr_{ES2}$ and two: $\alpha 2'' \upharpoonright V_{V2} = \alpha 2' \upharpoonright V_{V2}$ and three: $\alpha 2'' \upharpoonright C_{V2} = []$

```
unfolding BSIA-def
    by blast
  from one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
   by auto
  moreover
  from one c-in-E2 v'-notin-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note two three
  ultimately have ?ALPHA2"-DELTA2"
    by blast
}
moreover {
  assume c-in-E2: c \in E_{ES2}
    and v'-in-E2: v' \in E_{ES2}
  {\bf from} \ c\text{-}in\text{-}E2 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
    Upsilon\-inter-E2\-subset\-Upsilon2
  have c-in-Cv2-inter-Upsilon2: c \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E2 propSepViews v'-in-Vv-inter-Nabla Nabla-inter-E2-subset-Nabla2
  have v' \in V_{\mathcal{V}2} \cap Nabla \ \Gamma 2
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E2 \beta v'E2\alpha 2'-in-Tr2 have \beta \upharpoonright E_{ES2} @ [v'] @ \alpha 2' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note \alpha 2'Cv2-empty FCI2
  ultimately obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
    where one: set \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
and two: \beta \mid E_{ES2} @ [c] @ \delta 2^{\prime\prime} @ [v'] @ \alpha 2^{\prime\prime} \in Tr_{ES2}
    and three: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
    and four: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
    unfolding FCI-def
    by blast
  from two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  note one
  moreover
  from two c-in-E2 v'-in-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note three four
```

ultimately have ?ALPHA2"-DELTA2" **by** blast } ultimately obtain $\alpha 2^{\prime\prime} \delta 2^{\prime\prime}$ where $\alpha 2^{\prime\prime}$ -in-E2star: set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ and $\delta 2^{\prime\prime}$ -in-N2-inter-Delta2star: set $\delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ and $\beta E2$ -cE2- $\delta 2$ ''-v'E2- $\alpha 2$ ''-in-Tr2: $\begin{array}{l} \beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \delta 2^{\prime \prime} @ [v'] \mid E_{ES2} @ \alpha 2^{\prime \prime} \in \ Tr_{ES2} \\ \text{and} \ \alpha 2^{\prime \prime} Vv2\text{-}is\text{-}\alpha 2^{\prime} Vv2\text{:} \ \alpha 2^{\prime \prime} \mid V_{\mathcal{V}2} = \alpha 2^{\prime} \mid V_{\mathcal{V}2} \end{array}$ and $\alpha 2^{\prime\prime} Cv2$ -empty: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ $\mathbf{by} \ blast$ from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset-Upsilon1 propSepViews have cE1-in-Cv1-inter-Upsilon1: set $([c] \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$ unfolding properSeparationOfViews-def by (simp add: projection-def, auto) from δ2"-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 propSepViews disjoint-Nv2-Vv1 have $\delta 2'' E1$ -in-Cv1-inter-Upsilon1star: set $(\delta 2'' \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}$ proof from $\delta 2''$ -in-N2-inter-Delta2star have eq: $\delta \mathcal{Z}'' \upharpoonright E_{ES1} = \delta \mathcal{Z}'' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}} \cap E_{ES1})$ by (metis Int-commute Int-left-commute Int-lower1 Int-lower2 projection-intersection-neutral subset-trans) from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 propSepViews disjoint-Nv2-Vv1 have $N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}} \cap E_{ES1} \subseteq C_{\mathcal{V}\mathcal{I}} \cap \Upsilon_{\Gamma\mathcal{I}}$ unfolding properSeparationOfViews-def by (simp add: is ViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis by (subst eq, simp only: projection-def, auto) qed have $c\delta \mathcal{Z}''E1$ -in-Cv1-inter-Upsilon1star: set $((c \# \delta \mathcal{Z}') | E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$ proof from cE1-in-Cv1-inter-Upsilon1 &2"E1-in-Cv1-inter-Upsilon1star have set $(([c] @ \delta 2'') | E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}$ by (simp only: projection-concatenation-commute, auto) thus ?thesis by auto \mathbf{qed}

$$\begin{split} \mathbf{have} &\exists \ \alpha 1^{\prime\prime} \,\delta 1^{\prime\prime}. \ set \ \alpha 1^{\prime\prime} \subseteq E_{ES1} \\ &\land set \ \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \\ [v'] &\models E_{ES1} @ \ \alpha 1^{\prime\prime} \in Tr_{ES1} \\ &\land \alpha 1^{\prime\prime} \mid V_{\mathcal{V}1} = \alpha 1^{\prime} \mid V_{\mathcal{V}1} \land \alpha 1^{\prime\prime} \mid C_{\mathcal{V}1} = [] \\ &\land \delta 1^{\prime\prime} \mid E_{ES2} = \delta 2^{\prime\prime} \mid E_{ES1} \\ \\ \mathbf{proof} \ cases \end{split}$$

assume v'-in-E1: $v' \in E_{ES1}$ with Nabla-inter-E1-subset-Nabla1 propSepViews v'-in-Vv-inter-Nabla have v'-in-Vv1-inter-Nabla1: $v' \in V_{\mathcal{V}1} \cap Nabla \Gamma1$ unfolding properSeparationOfViews-def by auto have $\llbracket (\beta @ [v']) | E_{ES1} @ \alpha 1' \in Tr_{ES1};$ $\alpha 1' \upharpoonright C_{\mathcal{V}1} = []; set ((c \# \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1};$ $\begin{array}{l} a_{1} + c_{V1} & a_{1}, \ \text{set} \ (c_{1}'' \subseteq N_{V2} \cap \Delta_{\Gamma2} \]\\ c \in C_{V} \cap \Upsilon_{\Gamma} \ ; \ \text{set} \ \delta 2'' \subseteq N_{V2} \cap \Delta_{\Gamma2} \]\\ \Longrightarrow \exists \ \alpha 1'' \delta 1''. \ (\text{set} \ \alpha 1'' \subseteq E_{ES1} \land \text{set} \ \delta 1'' \subseteq N_{V1} \cap \Delta_{\Gamma1} \end{array}$ $\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}} \cap N_{V_{2}} \cap \Delta_{\Gamma_{2}})$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}} \cap N_{V_{2}} \cap \Delta_{\Gamma_{2}})$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap N_{V_{2}} \cap \Delta_{\Gamma_{2}})$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_{1}}))$ $(\bigcup_{V_{1}} (1 \cap Y_{\Gamma_{1}}) \cap (1 \cap Y_{\Gamma_$ **proof** (induct length (($c \# \delta 2''$) | E_{ES1}) arbitrary: $\beta \alpha 1' c \delta 2''$) case θ from 0(2) validES1 have set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by auto moreover have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}$ proof note $\theta(2)$ moreover from $\theta(1)$ have $c \notin E_{ES1}$ **by** (*simp add: projection-def, auto*) ultimately show ?thesis by (simp add: projection-concatenation-commute projection-def) qed moreover have $\alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$.. moreover note $\theta(3)$ moreover from $\theta(1)$ have $[] \uparrow (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \delta \mathcal{Z}'' \uparrow E_{ES1}$ by (simp add: projection-def, split if-split-asm, auto) ultimately show ?case by blast \mathbf{next} case (Suc n) from projection-split-last[OF Suc(2)] obtain μ c' ν where c'-in-E1: $c' \in E_{ES1}$ and $c\delta 2''$ -is- $\mu c'\nu$: $c \# \delta 2'' = \mu @ [c'] @ \nu$ and $\nu E1$ -empty: $\nu \upharpoonright E_{ES1} = []$ and *n*-is-length- $\mu\nu E1$: $n = length ((\mu @ \nu) \uparrow E_{ES1})$ by blast from Suc(5) c'-in-E1 $c\delta 2$ ''-is- $\mu c'\nu$

have set $(\mu \upharpoonright E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$

by (simp only: $c\delta 2''$ -is- $\mu c'\nu$ projection-concatenation-commute projection-def, auto) hence c'-in-Cv1-inter-Upsilon1: $c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}$ by auto hence c'-in- $Cv1: c' \in C_{\mathcal{V}1}$ and c'-in- $Upsilon1: c' \in \Upsilon_{\Gamma1}$ by auto with validV1 have c'-in-E1: $c' \in E_{ES1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) $\mathbf{show}~? case$ **proof** (cases μ) case Nil with $c\delta 2''$ -is- $\mu c'\nu$ have c-is-c': c = c' and $\delta 2''$ -is- ν : $\delta 2'' = \nu$ by *auto* with c'-in-Cv1-inter-Upsilon1 have $c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$ by simp moreover **note** v'-in-Vv1-inter-Nabla1 moreover from v'-in-E1 Suc(3) have $(\beta \upharpoonright E_{ES1}) @ [v'] @ \alpha 1' \in Tr_{ES1}$ by (simp add: projection-concatenation-commute projection-def) moreover note Suc(4) FCI1 ultimately obtain $\alpha 1^{\prime\prime} \gamma$ where one: set $\gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}$ and two: $\beta \upharpoonright E_{ES1} @ [c] @ \gamma @ [v'] @ <math>\alpha 1'' \in Tr_{ES1}$ and three: $\alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$ and four: $\alpha 1'' \upharpoonright C_{\mathcal{V}1} = []$ unfolding FCI-def by blast

let ?DELTA1'' = $\nu \upharpoonright E_{ES1} @ \gamma$

from two validES1 have set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from one $\nu E1$ -empty have set ?DELTA1'' $\subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by auto moreover have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ proof from c-is-c' c'-in-E1 have $[c] = [c] \upharpoonright E_{ES1}$ **by** (*simp add: projection-def*) moreover from v'-in-E1 have $[v'] = [v'] \upharpoonright E_{ES1}$ **by** (*simp add: projection-def*) moreover note $\nu E1$ -empty two ultimately show ?thesis
```
by auto
    qed
  moreover
  note three four
  moreover
  have ?DELTA1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \delta 2'' \upharpoonright E_{ES1}
     proof -
       have \gamma \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = []
          proof -
            from validV1 have N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \{\}
               by (simp add: isViewOn-def V-valid-def
                  VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
            with projection-intersection-neutral [OF one, of C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}]
            show ?thesis
               by (simp add: projection-def)
          qed
       with \delta 2^{\prime\prime}-is-\nu \nu E1-empty show ?thesis
         by (simp add: projection-concatenation-commute)
    qed
  ultimately show ?thesis
     by blast
\mathbf{next}
  case (Cons x xs)
  with c\delta 2''-is-\mu c'\nu have \mu-is-c-xs: \mu = [c] @ xs
     and \delta 2^{\prime\prime} - is - xs - c^{\prime} - \nu: \delta 2^{\prime\prime} = xs @ [c^{\prime}] @ \nu
     by auto
  with n-is-length-\mu\nu E1 have n = length ((c \# (xs @ \nu)) | E_{ES1})
     by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) | E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
     proof -
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
         by auto
       from Suc(5) c\delta 2''-is-\mu c'\nu \mu-is-c-xs \nu E1-empty
       \mathbf{show}~? thesis
         by (subst res, simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
             set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \ \delta 2''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
    by auto
  moreover note Suc(1)[of \ c \ xs \ @ \ \nu \ \beta \ \alpha 1']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES1}
    and two: set \gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta \in Tr_{ES1}
and four: \delta \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
```

and five: $\delta \upharpoonright C_{\mathcal{V}1} = []$ and six: $\gamma \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = (xs @ \nu) \upharpoonright E_{ES1}$ by blast

let <code>?BETA = β | E_{ES1} @ [c] | E_{ES1} @ γ </code>

```
note c'-in-Cv1-inter-Upsilon1 v'-in-Vv1-inter-Nabla1

moreover

from three v'-in-E1 have ?BETA @ [v'] @ \delta \in Tr_{ES1}

by (simp add: projection-def)

moreover

note five FCI1

ultimately obtain \alpha 1'' \delta'

where fci-one: set \delta' \subseteq N_{V1} \cap \Delta_{\Gamma1}

and fci-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha 1'' \in Tr_{ES1}

and fci-three: \alpha 1'' \mid V_{V1} = \delta \mid V_{V1}

and fci-four: \alpha 1'' \mid C_{V1} = []

unfolding FCI-def

by blast

let ?DELTA1'' = \gamma @ [c'] @ \delta'
```

```
from fci-two validES1 have set \alpha 1^{\prime\prime} \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  proof -
     from Suc(\gamma) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
     have c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
       by auto
     with two fci-one show ?thesis
       by auto
  \mathbf{qed}
moreover
from fci-two v'-in-E1
have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
  by (simp add: projection-def)
moreover
from fci-three four have \alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1}
  by simp
moreover
note fci-four
moreover
have ?DELTA1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \upharpoonright E_{ES1}
  proof -
     have \delta' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = []
       proof -
          from fci-one have \forall e \in set \ \delta'. \ e \in N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
            by auto
          with validV1 have \forall e \in set \ \delta'. e \notin C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
            by (simp add: isViewOn-def V-valid-def
```

```
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                         thus ?thesis
                            by (simp add: projection-def)
                      qed
                    with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu \nu E1-empty six
                    show ?thesis
                       by (simp only: projection-concatenation-commute projection-def, auto)
                qed
              ultimately show ?thesis
                 by blast
           \mathbf{qed}
  \mathbf{qed}
   from this [OF βv'E1α1'-in-Tr1 α1'Cv1-empty cδ2''E1-in-Cv1-inter-Upsilon1star
     c-in-Cv-inter-Upsilon \delta 2''-in-N2-inter-Delta2star]
   obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
     where one: set \alpha 1^{\prime\prime} \subseteq E_{ES1}
     and two: set \delta 1'' \subseteq \overline{N_{\mathcal{V}1}} \cap \Delta_{\Gamma 1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1'' @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1}
\land \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \land \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
     and four: \delta I'' \upharpoonright (C_{\mathcal{V}I} \cap \Upsilon_{\Gamma I}) = \delta \mathcal{Z}'' \upharpoonright E_{ESI}
     by blast
   note one two three
   moreover
   have \delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 2^{\prime\prime} \upharpoonright E_{ES1}
     proof -
        from projection-intersection-neutral[OF two, of E_{ES2}]
            Nv1-inter-Delta1-inter-E2-empty validV2
        have \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES2})
           by (simp only: Int-Un-distrib2, auto)
        moreover
        from validV2
        have C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES2} = C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
           by (simp add: isViewOn-def V-valid-def
              VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
        ultimately have \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma 1} \cap N_{V2} \cap \Delta_{\Gamma 2})
           by simp
        hence \delta I'' \upharpoonright E_{ES2} = \delta I'' \upharpoonright (C_{\mathcal{V}I} \cap \Upsilon_{\Gamma I}) \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})
           by (simp add: projection-def)
        with four have \delta 1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright E_{ES1} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
           by simp
        hence \delta I'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright E_{ES1}
           by (simp only: projection-commute)
        with \delta 2''-in-N2-inter-Delta2star show ?thesis
           by (simp only: list-subset-iff-projection-neutral)
     qed
   ultimately show ?thesis
        by blast
next
  assume v'-notin-E1: v' \notin E_{ES1}
    have \llbracket (\beta @ [v']) | E_{ES1} @ \alpha 1' \in Tr_{ES1};
```

```
\begin{array}{l} \alpha 1 \ ' \mid C_{\mathcal{V}1} = \llbracket ; \ set \ ((c \ \# \ \delta 2 \ '') \mid E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} ; \ set \ \delta 2 \ '' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \rrbracket \end{array}
                 \implies \exists \ \alpha 1^{\,\prime\prime} \ \delta 1^{\,\prime\prime}. \ (set \ \alpha 1^{\,\prime\prime} \subseteq E_{ES1} \land set \ \delta 1^{\,\prime\prime} \subseteq N_{\mathcal{V}1}
                     \cap \Delta_{\Gamma 1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
                                                                                                \wedge \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1} 
proof (induct length ((c \# \delta 2'') | E_{ES1}) arbitrary: \beta \alpha 1' c \delta 2'')
                    \mathbf{case}~\boldsymbol{\theta}
                   from 0(2) validES1 have set \alpha 1' \subseteq E_{ES1}
                      by (simp add: ES-valid-def traces-contain-events-def, auto)
                   moreover
                   have set [] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
                      by auto
                   moreover
                   have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
                      proof -
                        note \theta(2)
                         moreover
                         from \theta(1) have c \notin E_{ES1}
                           by (simp add: projection-def, auto)
                         ultimately show ?thesis
                           by (simp add: projection-concatenation-commute projection-def)
                      qed
                   moreover
                   have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}.
                   moreover
                   note \theta(3)
                   moreover
                   from \theta(1) have [] \uparrow E_{ES2} = \delta 2'' \uparrow E_{ES1}
                      by (simp add: projection-def, split if-split-asm, auto)
                   ultimately show ?case
                      by blast
                 \mathbf{next}
                   case (Suc n)
                   from projection-split-last[OF Suc(2)] obtain \mu c' \nu
                      where c'-in-E1: c' \in E_{ES1}
and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu
                      and \nu E1-empty: \nu \uparrow E_{ES1} = []
                      and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) | E_{ES1})
                      \mathbf{by} \ blast
                   from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu
                   have set (\mu \upharpoonright E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
                      by (simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
                         projection-def, auto)
                   hence c'-in-Cv1-inter-Upsilon1: c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
                      by auto
                   hence c'-in-Cv1: c' \in C_{V1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma1}
                      by auto
```

```
with validV1 have c'-in-E1: c' \in E_{ES1}
 by (simp add: isViewOn-def V-valid-def
    VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
show ?case
  proof (cases \mu)
    \mathbf{case}~\mathit{Nil}
    with c\delta 2''-is-\mu c'\nu have c-is-c': c = c'
      and \delta 2^{\prime\prime} - is - \nu: \delta 2^{\prime\prime} = \nu
      by auto
    with c'-in-Cv1-inter-Upsilon1 have c \in C_{V1}
      by simp
    moreover
    from v'-notin-E1 Suc(3) have (\beta \mid E_{ES1}) @ \alpha 1' \in Tr_{ES1}
      by (simp add: projection-concatenation-commute projection-def)
    moreover
    note Suc(4)
    moreover
    have Adm V1 \varrho1 Tr<sub>ES1</sub> (\beta | E<sub>ES1</sub>) c
      proof -
        have \beta \upharpoonright E_{ES1} @ [c] \in Tr_{ES1}
          proof –
            from c-is-c' c'-in-Cv1-inter-Upsilon1
            have c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
              by simp
            moreover
            from validES1 Suc(3)
            have (\beta \mid E_{ES1}) \in Tr_{ES1}
              by (simp only: ES-valid-def traces-prefixclosed-def
                 projection\-concatenation\-commute
                 prefixclosed-def prefix-def, auto)
            moreover
            note total-ES1-C1-inter-Upsilon1
            ultimately show ?thesis
              unfolding total-def
              by blast
          qed
        thus ?thesis
          unfolding Adm-def
          \mathbf{by} \ blast
      \mathbf{qed}
    moreover
    note BSIA1
    ultimately obtain \alpha 1^{\prime\prime}
      where one: (\beta \mid E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1}
and two: \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1}
and three: \alpha 1'' \mid C_{\mathcal{V}1} = []
      unfolding BSIA-def
      by blast
```

let ?DELTA1'' = $\nu \uparrow E_{ES1}$

from one validES1 have set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\nu E1$ -empty have set ?DELTA1'' $\subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by simp moreover from c-is-c' c'-in-E1 one v'-notin-E1 vE1-empty have $(\beta \mid E_{ES1}) @ [c] \mid E_{ES1} @ ?DELTA1'' @ [v'] \mid E_{ES1} @ \alpha1'' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover note two three moreover from $\nu E1$ -empty $\delta 2''$ -is- ν have ?DELTA1'' | $E_{ES2} = \delta 2''$ | E_{ES1} **by** (*simp add: projection-def*) ultimately show ?thesis **by** blast \mathbf{next} **case** (Cons x xs) with $c\delta 2^{\prime\prime}$ -is- $\mu c^{\prime}\nu$ have μ -is-c-xs: $\mu = [c] @$ xs and $\delta 2''$ -is-xs-c'- ν : $\delta 2'' = xs @ [c'] @ \nu$ by auto with *n*-is-length- $\mu\nu E1$ have $n = length ((c \# (xs @ \nu)) \uparrow E_{ES1})$ by auto moreover note Suc(3,4)moreover have set $((c \# (xs @ \nu)) | E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$ proof – have res: $c \# (xs @ \nu) = [c] @ (xs @ \nu)$ by auto from $Suc(5) \ c\delta 2''$ -is- $\mu c'\nu \ \mu$ -is-c-xs $\nu E1$ -empty show ?thesis by (subst res, simp only: $c\delta 2''$ -is- $\mu c'\nu$ projection-concatenation-commute set-append, auto) qed moreover note Suc(6)moreover from $Suc(7) \ \delta 2''$ -is-xs-c'- ν have set (xs @ ν) $\subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ by auto **moreover note** $Suc(1)[of \ c \ xs \ @ \ \nu \ \beta \ \alpha 1']$ ultimately obtain $\delta \gamma$ where one: set $\delta \subseteq E_{ES1}$ and two: set $\gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ and three: $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta \in Tr_{ES1}$ and four: $\delta \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$ and five: $\delta \upharpoonright C_{\mathcal{V}1} = []$ and six: $\gamma \upharpoonright E_{ES2} = (xs @ \nu) \upharpoonright E_{ES1}$ by blast

let $?BETA = \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma$ from c'-in-Cv1-inter-Upsilon1 have $c' \in C_{\mathcal{V}1}$ by auto moreover from three v'-notin-E1 have ?BETA @ $\delta \in Tr_{ES1}$ by (simp add: projection-def) moreover note five moreover have $Adm \ V1 \ \varrho1 \ Tr_{ES1}$?BETA c' proof have $?BETA @ [c'] \in Tr_{ES1}$ proof from validES1 three have $?BETA \in Tr_{ES1}$ by (simp only: ES-valid-def traces-prefixclosed-def $projection\-concatenation\-commute$ prefixclosed-def prefix-def, auto) moreover note c'-in-Cv1-inter-Upsilon1 total-ES1-C1-inter-Upsilon1 ultimately show ?thesis unfolding total-def by blast qed thus ?thesis unfolding Adm-def by blast \mathbf{qed} moreover note BSIA1 ultimately obtain $\alpha 1^{\prime\prime}$ where bsia-one: ?BETA @ [c'] @ $\alpha 1'' \in Tr_{ES1}$ and bsia-two: $\alpha 1'' \upharpoonright V_{\mathcal{V}1} = \delta \upharpoonright V_{\mathcal{V}1}$ and bsia-three: $\alpha 1'' \upharpoonright C_{\mathcal{V}1} = []$ unfolding BSIA-def by blast

let $?DELTA1'' = \gamma @ [c']$

from bsia-one validES1 have set $\alpha 1'' \subseteq E_{ES1}$ by (simp add:isViewOn-def ES-valid-def traces-contain-events-def, auto) moreover have set ?DELTA1'' $\subseteq N_{V1} \cap \Delta_{\Gamma1} \cup C_{V1} \cap \Upsilon_{\Gamma1} \cap N_{V2} \cap \Delta_{\Gamma2}$ proof – from Suc(7) c'-in-Cv1-inter-Upsilon1 $\delta 2''$ -is-xs-c'- ν have $c' \in C_{V1} \cap \Upsilon_{\Gamma1} \cap N_{V2} \cap \Delta_{\Gamma2}$ by auto with two show ?thesis by auto qed

```
moreover
                 from bsia-one v'-notin-E1
                  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
                    by (simp add: projection-def)
                  moreover
                  from bsia-two four have \alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1}
                    by simp
                  moreover
                 {\bf note} \ bsia-three
                  moreover
                 have ?DELTA1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright E_{ES1}
                    proof -
                       from validV2 Suc(7) \delta 2''-is-xs-c'-\nu
                       have c' \in E_{ES2}
                          by (simp add: isViewOn-def V-valid-def
                              VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                       with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu \nuE1-empty six
                       show ?thesis
                          by (simp only: projection-concatenation-commute projection-def, auto)
                    qed
                  ultimately show ?thesis
                    by blast
              \mathbf{qed}
        qed
     from this [OF \beta v'E1\alpha 1'-in-Tr1 \alpha 1'Cv1-empty c\delta 2''E1-in-Cv1-inter-Upsilon1star
        c-in-Cv-inter-Upsilon \ \delta 2 ''-in-N2-inter-Delta2star]
     show ?thesis
        by blast
  qed
then obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
  where \alpha 1^{\prime\prime}-in-E1star: set \alpha 1^{\prime\prime} \subseteq E_{ES1}
and \delta 1^{\prime\prime}-in-N1-inter-Delta1star: set \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  and \beta E1-cE1-\delta1 ''-v'E1-\alpha1 ''-in-Tr1:
  \begin{array}{l} \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1^{\prime\prime} @ [v'] \upharpoonright E_{ES1} @ \alpha 1^{\prime\prime} \in \mathit{Tr}_{ES1} \\ \text{and} \ \alpha 1^{\prime\prime} \mathit{Vv1}\text{-}\mathit{is}\text{-}\alpha 1^{\prime} \mathit{Vv1}\text{:} \ \alpha 1^{\prime\prime} \upharpoonright \mathit{V}_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright \mathit{V}_{\mathcal{V}1} \end{array}
  and \alpha 1^{\prime\prime}Cv1-empty: \alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []
  and \delta 1^{\prime\prime} E2-is-\delta 2^{\prime\prime} E1: \delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 2^{\prime\prime} \upharpoonright E_{ES1}
  by blast
from \beta E1 - cE1 - \delta1'' - v'E1 - \alpha1'' - in - Tr1 \beta E2 - cE2 - \delta2'' - v'E2 - \alpha2'' - in - Tr2
  validES1 \ validES2
have \delta 1^{\prime\prime}-in-E1star: set \delta 1^{\prime\prime} \subseteq E_{ES1} and \delta 2^{\prime\prime}-in-E2star: set \delta 2^{\prime\prime} \subseteq E_{ES2}
  by (simp-all add: ES-valid-def traces-contain-events-def, auto)
with \delta 1'' E2-is-\delta 2'' E1 merge-property[of \delta 1'' E_{ES1} \delta 2'' E_{ES2}] obtain \delta'
  where \delta' E1-is-\delta 1'': \delta' \upharpoonright E_{ES1} = \delta 1
  and \delta' E2-is-\delta 2'': \delta' \upharpoonright E_{ES2} = \delta 2''
  and \delta'-contains-only-\delta 1'' - \delta 2''-events: set \delta' \subseteq set \delta 1'' \cup set \delta 2''
  unfolding Let-def
  by auto
```

```
let ?TAU = \beta @ [c] @ \delta' @ [v']
let ?LAMBDA = \alpha \mid V_{\mathcal{V}}
```

let $?T2 = \alpha 2''$ have $?TAU \in Tr_{(ES1 \parallel ES2)}$ proof from $\beta E1$ -cE1- $\delta1''$ -v'E1- $\alpha1''$ -in- $Tr1 \ \delta'E1$ -is- $\delta1'' validES1$ have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in Tr_{ES1}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) hence $(\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES1} \in Tr_{ES1}$ **by** (*simp add: projection-def, auto*) moreover from $\beta E2$ -cE2- $\delta 2$ ''-v'E2- $\alpha 2$ ''-in-Tr2 $\delta'E2$ -is- $\delta 2$ '' validES2have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) hence $(\beta @ [c] @ \delta' @ [v']) | E_{ES2} \in Tr_{ES2}$ **by** (*simp add: projection-def, auto*) moreover from $\beta v' \alpha$ -in-Tr c-in-Cv-inter-Upsilon VIsViewOnE δ' -contains-only- $\delta 1''$ - $\delta 2''$ -events $\delta 1''$ -in-E1star $\delta 2''$ -in-E2star have set $(\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES1} \cup E_{ES2}$ unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def by auto ultimately show ?thesis unfolding composeES-def by auto \mathbf{qed} hence set $?TAU \subseteq E_{(ES1 \parallel ES2)}$ unfolding composeES-def by auto moreover have set $?LAMBDA \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover **note** $\alpha 1^{\prime\prime}$ *-in-E1star* $\alpha 2^{\prime\prime}$ *-in-E2star* moreover from $\beta E1$ -cE1- $\delta1''$ -v'E1- $\alpha1''$ -in- $Tr1 \ \delta'E1$ -is- $\delta1''$ have $?TAU | E_{ES1} @ ?T1 \in Tr_{ES1}$ by (simp only: projection-concatenation-commute, auto) moreover from $\beta E2$ -cE2- $\delta 2$ ''-v'E2- $\alpha 2$ ''-in- $Tr2 \delta'E2$ -is- $\delta 2$ '' have $?TAU | E_{ES2} @ ?T2 \in Tr_{ES2}$ by (simp only: projection-concatenation-commute, auto) moreover have $?LAMBDA | E_{ES1} = ?T1 | V_{\mathcal{V}}$ proof **from** propSepViews **have** ?LAMBDA | $E_{ES1} = \alpha \mid V_{V1}$ **unfolding** properSeparationOfViews-def **by** (simp add: projection-sequence) moreover

let $?T1 = \alpha 1''$

```
from \alpha 1''-in-E1star propSepViews
      have ?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}
        unfolding properSeparationOfViews-def
        by (metis Int-commute projection-intersection-neutral)
      moreover
      note \alpha 1'Vv1-is-\alpha Vv1 \alpha 1''Vv1-is-\alpha 1'Vv1
      ultimately show ?thesis
        by simp
    \mathbf{qed}
  moreover
  have ?LAMBDA | E_{ES2} = ?T2 | V_V
    proof -
      {\bf from} \ propSepViews
      have ?LAMBDA | E_{ES2} = \alpha | V_{V2}
        unfolding properSeparationOfViews-def by (simp add: projection-sequence)
      moreover
      from \alpha 2^{\prime\prime}-in-E2star propSepViews
      have ?T2 \upharpoonright V_{\mathcal{V}} = ?T2 \upharpoonright V_{\mathcal{V}2}
        unfolding properSeparationOfViews-def
        by (metis Int-commute projection-intersection-neutral)
      moreover
      note \alpha 2' Vv2-is-\alpha Vv2 \ \alpha 2'' Vv2-is-\alpha 2' Vv2
      ultimately show ?thesis
        by simp
    qed
  moreover
  note \alpha 1^{\prime\prime}Cv1-empty \alpha 2^{\prime\prime}Cv2-empty generalized-zipping-lemma
  ultimately obtain t
    where ?TAU @ t \in Tr_{(ES1 \parallel ES2)}
    and t \uparrow V_{\mathcal{V}} = ?LAMBDA
    and t \uparrow C_{\mathcal{V}} = []
    by blast
  moreover
  have set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}
    proof -
      from \delta'-contains-only-\delta 1''-\delta 2''-events
        \delta 1 ''-in-N1-inter-Delta1star \delta 2 ''-in-N2-inter-Delta2star
      have set \delta' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
        by auto
      with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv
      show ?thesis
        by auto
    \mathbf{qed}
    ultimately
    have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
                 \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
    by (simp only: append-assoc, blast)
moreover {
```

assume Nv2-inter-Delta2-inter-E1-empty: $N_{\mathcal{V2}} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\}$ and Nv1-inter-Delta1-inter-E2-subset of-Upsilon2: $N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}$

}

```
let ?ALPHA1''-DELTA1'' = \exists \alpha 1'' \delta 1''. (
  set \alpha 1^{\prime\prime} \subseteq E_{ES1} \land set \ \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
   \begin{array}{c} \wedge \ \beta \ | \ E_{ES1} @ [c] \ | \ E_{ES1} @ \delta1'' @ [v'] \ | \ E_{ES1} @ \alpha1'' \in \ Tr_{ES1} \\ \wedge \ \alpha1'' \ | \ V_{\mathcal{V}1} = \alpha1' \ | \ V_{\mathcal{V}1} \wedge \alpha1'' \ | \ C_{\mathcal{V}1} = [] \end{array} 
from c-in-Cv-inter-Upsilon v'-in-Vv-inter-Nabla validV1
have c \notin E_{ES1} \lor (c \in E_{ES1} \land v' \notin E_{ES1}) \lor (c \in E_{ES1} \land v' \in E_{ES1})
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
  assume c-notin-E1: c \notin E_{ES1}
  from validES1 \beta v'E1\alpha 1'-in-Tr1 have set \alpha 1' \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by auto
  moreover
  from \beta v' E1 \alpha 1'-in-Tr1 c-notin-E1
  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \dots
  moreover
  note \alpha 1'Cv1-empty
  ultimately have ?ALPHA1''-DELTA1''
     by blast
}
moreover {
  assume c-in-E1: c \in E_{ES1}
    and v'-notin-E1: v' \notin E_{ES1}
  {\bf from} \ c\text{-}in\text{-}E1 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
     Upsilon-inter-E1-subset-Upsilon1
  have c-in-Cv1-inter-Upsilon1: c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
     unfolding properSeparationOfViews-def by auto
  hence c \in C_{\mathcal{V}_1}
    by auto
  moreover
  from \beta v' E1 \alpha 1'-in-Tr1 v'-notin-E1 have \beta \uparrow E_{ES1} @ \alpha 1' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note \alpha 1'Cv1-empty
  moreover
  have (Adm \ \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} \ (\beta \ | \ E_{ES1}) \ c)
    proof -
       from validES1 \ \beta v'E1\alpha 1'-in-Tr1 v'-notin-E1 have \beta \restriction E_{ES1} \in Tr_{ES1}
         by (simp add: ES-valid-def traces-prefixclosed-def
           prefixclosed-def prefix-def projection-concatenation-commute)
       with total-ES1-C1-inter-Upsilon1 c-in-Cv1-inter-Upsilon1
       have \beta \upharpoonright E_{ES1} @ [c] \in Tr_{ES1}
         by (simp \ add: \ total-def)
```

```
thus ?thesis
         unfolding Adm-def
         by blast
    qed
  moreover
  note BSIA1
  ultimately obtain \alpha 1^{\prime\prime}
    where one: \beta \upharpoonright E_{ES1} @ [c] @ \alpha 1'' \in Tr_{ES1}
and two: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
and three: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
    unfolding BSIA-def
    by blast
  from one validES1 have set \alpha 1^{\prime\prime} \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by auto
  moreover
  from one c-in-E1 v'-notin-E1
  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note two three
  ultimately have ?ALPHA1"-DELTA1"
    by blast
}
moreover {
  assume c-in-E1: c \in E_{ES1}
    and v'-in-E1: v' \in E_{ES1}
  from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
     Upsilon\-inter\-E1\-subset\-Upsilon1
  have c-in-Cv1-inter-Upsilon1: c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E1 propSepViews v'-in-Vv-inter-Nabla Nabla-inter-E1-subset-Nabla1
  have v' \in V_{\mathcal{V}1} \cap Nabla \ \Gamma 1
   unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E1 \beta v'E1\alpha 1'-in-Tr1 have \beta \upharpoonright E_{ES1} @ [v'] @ \alpha 1' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note \alpha 1'Cv1-empty FCI1
 ultimately obtain \alpha 1'' \delta 1''

where one: set \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}

and two: \beta \upharpoonright E_{ES1} @ [c] @ \delta 1'' @ [v'] @ <math>\alpha 1'' \in Tr_{ES1}

and three: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}

and four: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []

unfolding ECL def
    unfolding FCI-def
    by blast
```

from two validES1 have set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover note one moreover from two c-in-E1 v'-in-E1 have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ by (simp add: projection-def) moreover note three four ultimately have ?ALPHA1"-DELTA1" **bv** blast } ultimately obtain $\alpha 1^{\prime\prime} \delta 1^{\prime\prime}$ where $\alpha 1^{\prime\prime}$ -in-E1star: set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ and $\delta 1^{\prime\prime}$ -in-N1-inter-Delta1star:set $\delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ and $\beta E1$ -cE1- $\delta1$ ''-v'E1- $\alpha1$ ''-in-Tr1: $\begin{array}{l} \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1^{\prime\prime} @ [v'] \upharpoonright E_{ES1} @ \alpha1^{\prime\prime} \in \mathit{Tr}_{ES1} \\ \textbf{and} \ \alpha1^{\prime\prime} \mathit{Vv1}\text{-}\mathit{is}\text{-}\alpha1^{\prime} \mathit{Vv1}\text{:} \ \alpha1^{\prime\prime} \upharpoonright \mathit{V}_{\mathcal{V}1} = \alpha1^{\prime} \upharpoonright \mathit{V}_{\mathcal{V}1} \end{array}$ and $\alpha 1^{\prime\prime}Cv1$ -empty: $\alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ by blast ${\bf from} \ c-in-Cv-inter-Upsilon \ Upsilon-inter-E2-subset-Upsilon2 \ propSepViews$ have cE2-in-Cv2-inter-Upsilon2: set $([c] \upharpoonright E_{ES2}) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ unfolding properSeparationOfViews-def by (simp add: projection-def, auto) from δ1"-in-N1-inter-Delta1star Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2 propSepViews disjoint-Nv1-Vv2 have $\delta 1'' E2$ -in-Cv2-inter-Upsilon2star: set $(\delta 1'' \upharpoonright E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ proof from $\delta 1''$ -in-N1-inter-Delta1star have eq: $\delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (N_{V1} \cap \Delta_{\Gamma 1} \cap E_{ES2})$ by (metis Int-commute Int-left-commute Int-lower2 Int-lower1 projection-intersection-neutral subset-trans) from validV2 Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2 propSepViews disjoint-Nv1-Vv2 have $N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ unfolding properSeparationOfViews-def $\mathbf{by} \ (simp \ add: \ is View On-def \ V-valid-def \ VC-disjoint-def$ VN-disjoint-def NC-disjoint-def, auto) thus ?thesis **by** (subst eq, simp only: projection-def, auto) qed have $c\delta 1'' E2$ -in-Cv2-inter-Upsilon2star: set $((c \# \delta 1'') | E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma2}$ proof from cE2-in-Cv2-inter-Upsilon2 61"E2-in-Cv2-inter-Upsilon2star have set $(([c] @ \delta 1'') | E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}$ by (simp only: projection-concatenation-commute, auto) thus ?thesis by auto qed

have $\exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}$. set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ proof cases assume v'-in-E2: $v' \in E_{ES2}$ with Nabla-inter-E2-subset-Nabla2 propSepViews v'-in-Vv-inter-Nablahave v'-in-Vv2-inter-Nabla2: $v' \in V_{\mathcal{V}2} \cap$ Nabla $\Gamma 2$ unfolding properSeparationOfViews-def by auto have $\llbracket (\beta @ [v']) | E_{ES2} @ \alpha 2' \in Tr_{ES2};$ $\begin{array}{l} \alpha 2' \mid C_{\mathcal{V}2} = []; \ set \ ((c \ \# \ \delta 1'') \mid E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} ; \ set \ \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}]] \\ \Longrightarrow \exists \ \alpha 2'' \ \delta 2''. \ (set \ \alpha 2'' \subseteq E_{ES2} \land set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \end{array}$ $\cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ $\begin{array}{c} \wedge \beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \delta 2^{\prime \prime} @ [v'] \mid E_{ES2} @ \alpha 2^{\prime \prime} \in Tr_{ES2} \\ \wedge \alpha 2^{\prime \prime} \mid V_{\mathcal{V}2} = \alpha 2^{\prime} \mid V_{\mathcal{V}2} \wedge \alpha 2^{\prime \prime} \mid C_{\mathcal{V}2} = [] \\ \wedge \delta 2^{\prime \prime} \mid (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1^{\prime \prime} \mid E_{ES2} \end{array}$ **proof** (induct length (($c \# \delta 1''$) $\uparrow E_{ES2}$) arbitrary: $\beta \alpha 2' c \delta 1''$) case θ from 0(2) validES2 have set $\alpha 2' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ by auto moreover have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}$ proof note $\theta(2)$ moreover from $\theta(1)$ have $c \notin E_{ES2}$ by (simp add: projection-def, auto) ultimately show ?thesis by (simp add: projection-concatenation-commute projection-def) qed moreover have $\alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}$.. moreover note $\theta(3)$ moreover from $\theta(1)$ have [] $\uparrow (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1'' \uparrow E_{ES2}$ by (simp add: projection-def, split if-split-asm, auto) ultimately show ?case by blast \mathbf{next} case (Suc n)

from projection-split-last[OF Suc(2)] obtain μ c' ν where c'-in-E2: $c' \in E_{ES2}$ and $c\delta 1''$ -is- $\mu c'\nu$: $c \# \delta 1'' = \mu @ [c'] @ \nu$ and $\nu E2$ -empty: $\nu \upharpoonright E_{ES2} = []$ and *n*-is-length- $\mu\nu E2$: $n = length ((\mu @ \nu) | E_{ES2})$ by blast from Suc(5) c'-in-E2 c δ 1''-is- μ c' ν have set $(\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by (simp only: $c\delta 1''$ -is- $\mu c'\nu$ projection-concatenation-commute projection-def, auto) hence c'-in-Cv2-inter-Upsilon2: $c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ by auto hence c'-in-Cv2: $c' \in C_{\mathcal{V}2}$ and c'-in-Upsilon2: $c' \in \Upsilon_{\Gamma 2}$ by auto with validV2 have c'-in-E2: $c' \in E_{ES2}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) $\mathbf{show}~? case$ **proof** (cases μ) case Nil with $c\delta 1^{\prime\prime}$ -is- $\mu c^{\prime}\nu$ have c-is-c': $c = c^{\prime}$ and $\delta 1^{\prime\prime}$ -is- ν : $\delta 1^{\prime\prime} = \nu$ by auto with c'-in-Cv2-inter-Upsilon2 have $c \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by simp moreover note v'-in-Vv2-inter-Nabla2 moreover from v'-in-E2 Suc(3) have $(\beta \upharpoonright E_{ES2}) @ [v'] @ \alpha 2' \in Tr_{ES2}$ **by** (*simp add: projection-concatenation-commute projection-def*) moreover note Suc(4) FCI2 ultimately obtain $\alpha 2^{\prime\prime} \gamma$ where one: set $\gamma \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}$ and two: $\beta \upharpoonright E_{ES2} @ [c] @ \gamma @ [v'] @ \alpha 2'' \in Tr_{ES2}$ and three: $\alpha 2'' \upharpoonright V_{V2} = \alpha 2' \upharpoonright V_{V2}$ and four: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ unfolding FCI-def by blast

let ?DELTA2'' = $\nu \restriction E_{ES2} @ \gamma$

from two validES2 have set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from one $\nu E2$ -empty have set ?DELTA2'' $\subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ by auto moreover have $\beta \mid E_{ES2} @ [c] \mid E_{ES2} @ ?DELTA2'' @ [v'] \mid E_{ES2} @ \alpha 2'' \in Tr_{ES2}$

```
proof –
      from c-is-c' c'-in-E2 have [c] = [c] \uparrow E_{ES2}
        by (simp add: projection-def)
      moreover
      from v'-in-E2 have [v'] = [v'] \upharpoonright E_{ES2}
        by (simp add: projection-def)
      moreover
      note \nu E2-empty two
      ultimately show ?thesis
        by auto
    qed
 moreover
 note three four
 moreover
 have ?DELTA2'' \upharpoonright (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}) = \delta1'' \upharpoonright E_{ES2}
    proof -
      have \gamma \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []
        proof -
          from validV2 have N_{\mathcal{V2}} \cap \Delta_{\Gamma \mathcal{2}} \cap (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma \mathcal{2}}) = \{\}
            by (simp add: isViewOn-def V-valid-def
               VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
          with projection-intersection-neutral[OF one, of C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}]
          \mathbf{show}~? thesis
            by (simp add: projection-def)
        qed
      with \delta 1^{\prime\prime}-is-\nu \nu E2-empty show ?thesis
        by (simp add: projection-concatenation-commute)
   \mathbf{qed}
  ultimately show ?thesis
   by blast
\mathbf{next}
  case (Cons x xs)
 with c\delta 1''-is-\mu c'\nu have \mu-is-c-xs: \mu = [c] @ xs
    and \delta 1^{\prime\prime}-is-xs-c'-\nu: \delta 1^{\prime\prime} = xs @ [c'] @ \nu
    by auto
 with n-is-length-\mu\nu E2 have n = length ((c \# (xs @ \nu)) | E_{ES2})
    by auto
 moreover
 note Suc(3,4)
 moreover
 have set ((c \# (xs @ \nu)) | E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
   proof –
      have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
        by auto
      from Suc(5) \ c\delta 1''-is-\mu c'\nu \ \mu-is-c-xs \nu E2-empty
      show ?thesis
        by (subst res, simp only: c\delta 1''-is-\mu c'\nu
          projection-concatenation-commute set-append, auto)
    qed
 moreover
 note Suc(6)
```

```
moreover

from Suc(7) \ \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}

by auto

moreover note Suc(1)[of \ c \ xs @ \nu \ \beta \ \alpha 2']

ultimately obtain \delta \gamma

where one: set \delta \subseteq E_{ES2}

and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}

and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma @ [v'] \upharpoonright E_{ES2} @ \delta \in Tr_{ES2}

and four: \delta \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}

and five: \delta \upharpoonright C_{\mathcal{V}2} = []

and six: \gamma \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = (xs @ \nu) \upharpoonright E_{ES2}

by blast
```

let <code>?BETA = β | E_{ES2} @ [c] | E_{ES2} @ γ </code>

```
note c'-in-Cv2-inter-Upsilon2 v'-in-Vv2-inter-Nabla2
moreover
from three v'-in-E2 have ?BETA @ [v'] @ \delta \in Tr_{ES2}
  by (simp add: projection-def)
moreover
note five FCI2
ultimately obtain \alpha 2^{\prime\prime} \delta^{\prime}
  where fci-one: set \delta' \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
  and fci-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha 2'' \in Tr_{ES2}
  and fci-three: \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \delta \upharpoonright V_{\mathcal{V}2}
and fci-four: \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []
  unfolding FCI-def
  by blast
let ?DELTA2'' = \gamma @ [c'] @ \delta'
from fci-two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  proof -
    from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
    have c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
       by auto
     with two fci-one show ?thesis
       by auto
  qed
moreover
from fci-two v'-in-E2
have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
  by (simp add: projection-def)
moreover
from fci-three four have \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2}
  by simp
moreover
```

```
note fci-four
```

moreover have $?DELTA2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \delta1'' \upharpoonright E_{ES2}$ proof have $\delta' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []$ proof from fci-one have $\forall e \in set \ \delta'. \ e \in N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ by auto with valid V2 have $\forall e \in set \ \delta'. e \notin C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis **by** (*simp add: projection-def*) qed with c'-in-E2 c'-in-Cv2-inter-Upsilon2 $\delta 1''$ -is-xs-c'- $\nu \nu$ E2-empty six show ?thesis by (simp only: projection-concatenation-commute projection-def, auto) aed ultimately show ?thesis by blast \mathbf{qed} \mathbf{qed} from this [OF $\beta v' E2\alpha 2'$ -in-Tr2 $\alpha 2'Cv2$ -empty $c\delta 1'' E2$ -in-Cv2-inter-Upsilon2star c-in-Cv-inter-Upsilon $\delta 1$ ''-in-N1-inter-Delta1star] obtain $\alpha 2^{\prime\prime} \, \delta 2^{\prime\prime}$ where one: set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ and two: set $\delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ and three: $\beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \mid E_{ES2} @ \alpha 2^{\prime\prime} \in Tr_{ES2}$ $\land \alpha 2^{\prime\prime} \mid V_{\mathcal{V}2} = \alpha 2^{\prime} \mid V_{\mathcal{V}2} \land \alpha 2^{\prime\prime} \mid C_{\mathcal{V}2} = []$ and four: $\delta 2^{\prime\prime} \mid (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1^{\prime\prime} \mid E_{ES2}$ by blast note one two three moreover have $\delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 1^{\prime\prime} \upharpoonright E_{ES2}$ proof from projection-intersection-neutral[OF two, of E_{ES1}] Nv2-inter-Delta2-inter-E1-empty validV1 have $\delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES1})$ by (simp only: Int-Un-distrib2, auto) moreover from validV1have $C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}} \cap E_{ES\mathcal{I}} = C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{V2} \cap \Upsilon_{\Gamma2} \cap N_{V1} \cap \Delta_{\Gamma1})$ by simp hence $\delta \mathcal{Z}'' \upharpoonright E_{ES1} = \delta \mathcal{Z}'' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) \upharpoonright (N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}})$ **by** (*simp add: projection-def*) with four have $\delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ by simp hence $\delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 1^{\prime\prime} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright E_{ES2}$ **by** (*simp only: projection-commute*)

```
with \delta 1''-in-N1-inter-Delta1star show ?thesis
             by (simp only: list-subset-iff-projection-neutral)
      qed
   ultimately show ?thesis
          by blast
\mathbf{next}
   assume v'-notin-E2: v' \notin E_{ES2}
   have
       \begin{bmatrix} (\beta @ [v']) | E_{ES2} @ \alpha 2' \in Tr_{ES2} ; \alpha 2' | C_{\mathcal{V}2} = []; \\ set ((c \# \delta 1'') | E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} ; c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} ; \\ \end{bmatrix} 
             set \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
      \implies \exists \alpha 2^{\prime\prime} \overline{\delta} 2^{\prime\prime}.
       \begin{array}{l} (set \ \alpha 2^{\prime\prime} \subseteq E_{ES2} \land set \ \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \land \beta \upharpoonright E_{ES2} @ \ [c] \upharpoonright E_{ES2} @ \ \delta 2^{\prime\prime} @ \ [v'] \upharpoonright E_{ES2} @ \ \alpha 2^{\prime\prime} \in Tr_{ES2} \\ \land \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2} \land \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = [] \\ \land \delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 1^{\prime\prime} \upharpoonright E_{ES2} \\ \end{array} 
      proof (induct length ((c \# \delta 1'') | E_{ES2}) arbitrary: \beta \alpha 2' c \delta 1'')
           \mathbf{case}~\boldsymbol{\theta}
          from 0(2) validES2 have set \alpha 2' \subseteq E_{ES2}
             by (simp add: ES-valid-def traces-contain-events-def, auto)
          moreover
          have set [] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
             by auto
          moreover
          have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
             proof -
                note \theta(2)
                moreover
                from \theta(1) have c \notin E_{ES2}
                    by (simp add: projection-def, auto)
                 ultimately show ?thesis
                    by (simp add: projection-concatenation-commute projection-def)
             qed
          moreover
          have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}...
          moreover
          note \theta(3)
          moreover
          from \theta(1) have [] \uparrow E_{ES1} = \delta 1^{\prime\prime} \uparrow E_{ES2}
             by (simp add: projection-def, split if-split-asm, auto)
          ultimately show ?case
             by blast
      \mathbf{next}
          case (Suc n)
          from projection-split-last[OF Suc(2)] obtain \mu c' \nu
             where c'-in-E2: c' \in E_{ES2}
and c\delta 1''-is-\mu c'\nu: c \# \delta 1'' = \mu @ [c'] @ \nu
             and \nu E2-empty: \nu \uparrow E_{ES2} = []
             and n-is-length-\mu\nu E2: \vec{n} = length ((\mu @ \nu) | E_{ES2})
```

by blast

from Suc(5) c'-in-E2 $c\delta 1$ ''-is- $\mu c'\nu$ have set $(\mu \upharpoonright E_{ES2} \otimes [c']) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ by (simp only: $c\delta 1''$ -is- $\mu c'\nu$ projection-concatenation-commute projection-def, auto) hence c'-in-Cv2-inter-Upsilon2: $c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ by auto hence c'-in-Cv2: $c' \in C_{\mathcal{V}2}$ and c'-in-Upsilon2: $c' \in \Upsilon_{\Gamma 2}$ by auto with validV2 have c'-in-E2: $c' \in E_{ES2}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) show ?case **proof** (cases μ) case Nil with $c\delta 1^{\prime\prime}$ -is- $\mu c^{\prime}\nu$ have c-is- c^{\prime} : $c = c^{\prime}$ and $\delta 1^{\prime\prime}$ -is- ν : $\delta 1^{\prime\prime} = \nu$ by auto with c'-in-Cv2-inter-Upsilon2 have $c \in C_{\mathcal{V2}}$ by simp moreover from v'-notin-E2 Suc(3) have $(\beta \mid E_{ES2}) @ \alpha 2' \in Tr_{ES2}$ by (simp add: projection-concatenation-commute projection-def) moreover note Suc(4)moreover have Adm V2 ϱ 2 Tr_{ES2} (β | E_{ES2}) c proof have $\beta \upharpoonright E_{ES2} @ [c] \in Tr_{ES2}$ proof from *c-is-c'* c'-*in-Cv2-inter-Upsilon2* have $c \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by simp moreover from validES2 Suc(3) have $(\beta \upharpoonright E_{ES2}) \in Tr_{ES2}$ by (simp only: ES-valid-def traces-prefixclosed-def projection-concatenation-commuteprefixclosed-def prefix-def, auto) moreover note total-ES2-C2-inter-Upsilon2 ultimately show ?thesis unfolding total-def by blast \mathbf{qed} thus ?thesisunfolding Adm-def by blast qed moreover note BSIA2 ultimately obtain $\alpha 2^{\,\prime\prime}$ where one: $(\beta \mid E_{ES2}) @ [c] @ \alpha 2'' \in Tr_{ES2}$ and two: $\alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}$ and three: $\alpha 2'' \mid C_{\mathcal{V}2} = []$

```
unfolding BSIA-def
     by blast
  let ?DELTA2'' = \nu \uparrow E_{ES2}
  from one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  from \nu E2-empty
  have set ?DELTA2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
    by simp
  moreover
  from c-is-c' c'-in-E2 one v'-notin-E2 \nuE2-empty
  have (\beta \upharpoonright E_{ES2}) @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note two three
  moreover
  from \nu E2-empty \delta 1''-is-\nu have ?DELTA2'' | E_{ES1} = \delta 1'' | E_{ES2}
     by (simp add: projection-def)
  ultimately show ?thesis
    by blast
\mathbf{next}
  case (Cons x xs)
   with c\delta 1^{\prime\prime} - is - \mu c'\nu have \mu - is - c - xs: \mu = [c] @ xs
and \delta 1^{\prime\prime} - is - xs - c' - \nu: \delta 1^{\prime\prime} = xs @ [c'] @ \nu
     by auto
  with n-is-length-\mu\nu E2 have n = length ((c \# (xs @ \nu)) | E_{ES2})
     by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES2}) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}
    proof –
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
         by auto
       from Suc(5) \ c\delta 1''-is-\mu c'\nu \ \mu-is-c-xs \nu E2-empty
       show ?thesis
         by (subst res, simp only: c\delta 1''-is-\mu c'\nu projection-concatenation-commute
            set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \ \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by auto
  moreover note Suc(1)[of \ c \ xs \ @ \ \nu \ \beta \ \alpha 2']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES2}
    and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma @ [v'] \upharpoonright E_{ES2} @ \delta \in Tr_{ES2}
```

```
and four: \delta \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
and five: \delta \upharpoonright C_{\mathcal{V}2} = []
and six: \gamma \upharpoonright E_{ES1} = (xs @ \nu) \upharpoonright E_{ES2}
by blast
```

let ?BETA = $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma$

```
from c'-in-Cv2-inter-Upsilon2 have c' \in C_{\mathcal{V2}}
 by auto
moreover
from three v'-notin-E2 have ?BETA @ \delta \in Tr_{ES2}
 by (simp add: projection-def)
moreover
note five
moreover
have Adm V2 \ \varrho2 \ Tr_{ES2} \ ?BETA \ c'
  proof -
   have ?BETA @ [c'] \in Tr_{ES2}
     proof -
       from validES2 three have ?BETA \in Tr_{ES2}
         by (simp only: ES-valid-def traces-prefixclosed-def
           projection-concatenation-commute prefixclosed-def prefix-def, auto)
       moreover
       note c'-in-Cv2-inter-Upsilon2 total-ES2-C2-inter-Upsilon2
       ultimately show ?thesis
         unfolding total-def
         by blast
      \mathbf{qed}
   thus ?thesis
      unfolding Adm-def
     \mathbf{by} \ blast
 qed
moreover
note BSIA2
ultimately obtain \alpha 2^{\prime\prime}
  where bsia-one: ?BETA @ [c'] @ \alpha 2'' \in Tr_{ES2}
 and bsia-two: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \delta \upharpoonright V_{\mathcal{V}2}
and bsia-three: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
  unfolding BSIA-def
  by blast
```

let $?DELTA2'' = \gamma @ [c']$

from bsia-one validES2 have set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set ?DELTA2'' $\subseteq N_{V2} \cap \Delta_{\Gamma2} \cup C_{V2} \cap \Upsilon_{\Gamma2} \cap N_{V1} \cap \Delta_{\Gamma1}$ proof – from Suc(7) c'-in-Cv2-inter-Upsilon2 $\delta 1^{\prime\prime}$ -is-xs-c'- ν have $c' \in C_{V2} \cap \Upsilon_{\Gamma2} \cap N_{V1} \cap \Delta_{\Gamma1}$ by auto

```
with two show ?thesis
                       by auto
                  \mathbf{qed}
                moreover
                from bsia-one v'-notin-E2
                have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
                  by (simp add: projection-def)
                moreover
                from bsia-two four have \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2}
                  by simp
                moreover
                note bsia-three
                moreover
                have ?DELTA2'' \upharpoonright E_{ES1} = \delta1'' \upharpoonright E_{ES2}
                  proof -
                     from validV1 Suc(7) \delta 1''-is-xs-c'-\nu have c' \in E_{ES1}
                        by (simp add: isViewOn-def V-valid-def
                           VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                     with c'-in-E2 c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu \nuE2-empty six
                     show ?thesis
                        \mathbf{by} (simp only: projection-concatenation-commute
                          projection-def, auto)
                  \mathbf{qed}
                ultimately show ?thesis
                  by blast
             qed
        qed
     from this [OF \beta v' E 2 \alpha 2'-in-Tr2 \alpha 2' C v 2-empty c \delta 1'' E 2-in-Cv2-inter-Upsilon2star
        c-in-Cv-inter-Upsilon \ \delta 1 ''-in-N1-inter-Delta1star]
     show ?thesis
       by blast
  \mathbf{qed}
then obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
  where \alpha 2^{\prime\prime}-in-E2star: set \alpha 2^{\prime\prime} \subseteq E_{ES2}
and \delta 2^{\prime\prime}-in-N2-inter-Delta2star:set \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  and \beta E2-cE2-\delta 2 ''-v'E2-\alpha 2 ''-in-Tr2:
  \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2^{\prime \prime} @ [v'] \upharpoonright E_{ES2} @ \alpha 2^{\prime \prime} \in Tr_{ES2}
  and \alpha 2'' V v 2 \cdot i s - \alpha 2' V v 2 \cdot \alpha 2'' \uparrow V_{\mathcal{V}2} = \alpha 2' \uparrow V_{\mathcal{V}2}
  and \alpha 2^{\prime\prime} Cv2-empty: \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []
  and \delta 2''E1-is-\delta 1''E2: \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2}
  by blast
from \beta E2 - cE2 - \delta 2^{\prime\prime} - v^{\prime}E2 - \alpha 2^{\prime\prime} - in - Tr2 \beta E1 - cE1 - \delta 1^{\prime\prime} - v^{\prime}E1 - \alpha 1^{\prime\prime} - in - Tr1
  validES2 validES1
have \delta 2''-in-E2star: set \delta 2'' \subseteq E_{ES2} and \delta 1''-in-E1star: set \delta 1'' \subseteq E_{ES1}
  by (simp-all add: ES-valid-def traces-contain-events-def, auto)
with \delta 2'' E1-is-\delta 1'' E2 merge-property[of \delta 2'' E_{ES2} \delta 1'' E_{ES1}] obtain \delta'
  where \delta' E2-is-\delta 2'': \delta' \uparrow E_{ES2} = \delta 2
  and \delta' E1-is-\delta 1'': \delta' \upharpoonright E_{ES1} = \delta 1''
  and \delta'-contains-only-\delta 2''-\delta 1''-events: set \delta' \subseteq set \delta 2'' \cup set \delta 1''
  unfolding Let-def
  \mathbf{by} \ auto
```

```
let ?TAU = \beta @ [c] @ \delta' @ [v']
let ?LAMBDA = \alpha \mid V_{\mathcal{V}}
let ?T2 = \alpha 2''
let ?T1 = \alpha 1''
have ?TAU \in Tr_{(ES1 \parallel ES2)}
   proof -
     from \beta E2-cE2-\delta 2 ''-v'E2-\alpha 2 ''-in-Tr2 \delta'E2-is-\delta 2 '' validES2
     have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
    hence (\beta @ [c] @ \delta' @ [v']) | E_{ES2} \in Tr_{ES2}
       by (simp add: projection-def, auto)
     moreover
    from \beta E1-cE1-\delta1''-v'E1-\alpha1''-in-Tr1 \ \delta'E1-is-\delta1'' validES1
     have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in Tr_{ES1}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) | E_{ES1} \in Tr_{ES1}
       by (simp add: projection-def, auto)
     moreover
     from \beta v' \alpha-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE \delta'-contains-only-\delta 2''-\delta 1''-events
       \delta 2 ''-in-E2star \delta 1 ''-in-E1star
    have set (\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES2} \cup E_{ES1}
       unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def
         VN-disjoint-def NC-disjoint-def
       by auto
     ultimately show ?thesis
       unfolding composeES-def
       by auto
   qed
 hence set ?TAU \subseteq E_{(ES1 \parallel ES2)}
   unfolding composeES-def
   by auto
 moreover
 have set ?LAMBDA \subseteq V_{\mathcal{V}}
   by (simp add: projection-def, auto)
 moreover
 note α2''-in-E2star α1''-in-E1star
 moreover
 from \beta E2 - cE2 - \delta 2^{\prime\prime} - v^{\prime}E2 - \alpha 2^{\prime\prime} - in - Tr2 \delta^{\prime}E2 - is - \delta 2^{\prime\prime}
have ?TAU | E_{ES2} @ ?T2 \in Tr_{ES2}
   by (simp only: projection-concatenation-commute, auto)
 moreover
 from \beta E1-cE1-\delta1''-v'E1-\alpha1''-in-Tr1 \delta'E1-is-\delta1''
 have ?TAU | E_{ES1} @ ?T1 \in Tr_{ES1}
   by (simp only: projection-concatenation-commute, auto)
 moreover
 have ?LAMBDA | E_{ES2} = ?T2 | V_{\mathcal{V}}
   proof –
```

from propSepViews have $?LAMBDA | E_{ES2} = \alpha | V_{V2}$ unfolding properSeparationOfViews-def by (simp only: projection-sequence) moreover **from** $\alpha 2^{\prime\prime}$ *-in-E2star* propSepViews have $?T2 | V_{V} = ?T2 | V_{V2}$ unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral) moreover note $\alpha 2' Vv2$ -is- $\alpha Vv2 \ \alpha 2'' Vv2$ -is- $\alpha 2' Vv2$ ultimately show ?thesis $\mathbf{by} \ simp$ \mathbf{qed} moreover have $?LAMBDA | E_{ES1} = ?T1 | V_V$ proof from propSepViews have $?LAMBDA | E_{ES1} = \alpha | V_{V1}$ unfolding properSeparationOfViews-def by (simp add: projection-sequence) moreover **from** $\alpha 1$ ''-in-E1star propSepViews have $?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral) moreover note $\alpha 1' Vv1$ -is- $\alpha Vv1 \alpha 1'' Vv1$ -is- $\alpha 1' Vv1$ ultimately show ?thesis by simp qed moreover note $\alpha 2^{\prime\prime}Cv2$ -empty $\alpha 1^{\prime\prime}Cv1$ -empty generalized-zipping-lemma ultimately obtain twhere $?TAU @ t \in Tr_{(ES1 \parallel ES2)}$ and $t \downarrow V_{\mathcal{V}} = ?LAMBDA$ and $t \upharpoonright C_{\mathcal{V}} = []$ by blast moreover have set $\delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}$ proof from δ' -contains-only- $\delta 2''$ - $\delta 1''$ -events $\delta 2''$ -in-N2-inter-Delta2star δ 1''-in-N1-inter-Delta1star have set $\delta' \subseteq N_{\mathcal{V}_{\mathcal{I}}} \cap \Delta_{\Gamma_{\mathcal{I}}} \cup N_{\mathcal{V}_{\mathcal{I}}} \cap \Delta_{\Gamma_{\mathcal{I}}}$ by auto with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subset of-Nv show ?thesis by auto qed ultimately have $\exists \alpha' \gamma'$. (set $\gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$ **by** (*simp only: append-assoc, blast*) ultimately have $\exists \alpha' \gamma'$. (set $\gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$

}

```
by blast
}
thus ?thesis
unfolding FCI-def
by blast
qed
```

theorem compositionality-FCIA: $[[BSD V1 Tr_{ES1}; BSD V2 Tr_{ES2}; BSIA \ \varrho 1 \ V1 \ Tr_{ES1}; BSIA \ \varrho 2 \ V2 \ Tr_{ES2};;$ $(\varrho 1 \ \mathcal{V}1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}; (\varrho 2 \ \mathcal{V}2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2};$ total ES1 $(C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$; total ES2 $(C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$; $\begin{array}{l} \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}; \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma 2}; \\ \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}; \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}; \end{array}$ $(\Delta_{\Gamma 1} \cap N_{\mathcal{V}1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V}2}) \subseteq \Delta_{\Gamma};$ $(N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1})$ $\vee (N_{\mathcal{V2}} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \land N_{\mathcal{V1}} \cap \Delta_{\Gamma 1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}) ;$ $FCIA \ \varrho 1 \ \Gamma 1 \ V 1 \ Tr_{ES1}; \ FCIA \ \varrho 2 \ \Gamma 2 \ V 2 \ Tr_{ES2} \]$ \implies FCIA $\varrho \ \Gamma \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})$ proof assume BSD1: BSD $V1 Tr_{ES1}$ and BSD2: BSD $V2 Tr_{ES2}$ and BSIA1: BSIA $\varrho 1 \ V 1 \ Tr_{ES1}$ and BSIA2: BSIA $\varrho 2 \ V 2 \ Tr_{ES2}$ and $\varrho 1v1$ -subset- ϱv -inter-E1: $(\varrho 1 \ V1) \subseteq (\varrho \ V) \cap E_{ES1}$ and $\varrho 2v2$ -subset- ϱv -inter-E2: $(\varrho 2 \ V2) \subseteq (\varrho \ V) \cap E_{ES2}$ and total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2: total ES1 $(C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ and total-ES2-C2-inter-Upsilon2-inter-N1-inter-Delta1: total ES2 $(C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V1}} \cap \Delta_{\Gamma1})$ and Nabla-inter-E1-subset-Nabla1: $\nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}$ and Nabla-inter-E2-subset-Nabla2: $\nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma2}$ and Upsilon-inter-E1-subset-Upsilon1: $\Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}$ and Upsilon-inter-E2-subset-Upsilon2: $\Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}$ and Delta1-N1-Delta2-N2-subset-Delta: $(\Delta_{\Gamma1} \cap N_{V1} \cup \Delta_{\Gamma2} \cap N_{V2}) \subseteq \Delta_{\Gamma}$ and very-long-asm: $(N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1})$ $\lor (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \land N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2})$ and $F\tilde{CIA1}$: $\tilde{FCIA} \ \varrho \tilde{1} \ \Gamma 1 \ V \tilde{1} \ Tr_{ES1}$ and FCIA2: FCIA $\varrho 2 \Gamma 2 \mathcal{V} 2 Tr_{ES2}$

{

fix $\alpha \beta c v'$ assume c-in-Cv-inter-Upsilon: $c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})$ and v'-in-Vv-inter-Nabla: $v' \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})$ and $\beta v' \alpha$ -in-Tr: $(\beta @ [v'] @ \alpha) \in Tr_{(ES1 \parallel ES2)}$ and αCv -empty: $\alpha \uparrow C_{\mathcal{V}} = []$ and Adm: Adm $\mathcal{V} \varrho (Tr_{(ES1 \parallel ES2)}) \beta c$

```
interpret CSES1: CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1)
```

interpret CSES2: CompositionSupport ES2 V V2 using propSepViews unfolding properSeparationOfViews-def **by** (*simp add: CompositionSupport-def validES2 validV2*) from $\beta v' \alpha$ -in-Tr have $\beta v' \alpha$ -E1-in-Tr1: ((($\beta @ [v']) @ \alpha$) | E_{ES1}) $\in Tr_{ES1}$ and $\beta v' \alpha$ -E2-in-Tr2: ((($\beta @ [v']) @ \alpha$) | E_{ES2}) $\in Tr_{ES2}$ **by** (*simp add: composeES-def*)+ from CSES1.BSD-in-subsystem2[OF $\beta v' \alpha$ -E1-in-Tr1 BSD1] obtain $\alpha 1'$ where $\beta v' E1 \alpha 1' - in - Tr1$: $(\beta @ [v']) | E_{ES1} @ \alpha 1' \in Tr_{ES1}$ and $\alpha 1' Vv1$ -is- $\alpha Vv1$: $\alpha 1' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}$ and $\alpha 1'Cv1$ -empty: $\alpha 1' \upharpoonright C_{\mathcal{V}1} = []$ by auto from CSES2.BSD-in-subsystem2[OF $\beta v' \alpha$ -E2-in-Tr2 BSD2] obtain $\alpha 2'$ where $\beta v' E2\alpha 2'$ -in-Tr2: $(\beta @ [v']) \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}$ and $\alpha 2' Vv2$ -is- $\alpha Vv2$: $\alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}$ and $\alpha 2'Cv2$ -empty: $\alpha 2' \upharpoonright C_{\mathcal{V}2} = []$ by auto note very-long-asm moreover { assume Nv1-inter-Delta1-inter-E2-empty: $N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\}$ and Nv2-inter-Delta2-inter-E1-subset of-Upsilon1: $N_{\mathcal{V2}} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}$ let $?ALPHA2''-DELTA2'' = \exists \alpha 2'' \delta 2''.$ ($\begin{array}{l} set \ \alpha 2^{\prime\prime} \subseteq E_{ES2} \land set \ \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \\ \land \beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \ \delta 2^{\prime\prime} @ [v'] \mid E_{ES2} @ \ \alpha 2^{\prime\prime} \in Tr_{ES2} \\ \land \alpha 2^{\prime\prime} \mid V_{\mathcal{V}2} = \alpha 2^{\prime} \mid V_{\mathcal{V}2} \land \alpha 2^{\prime\prime} \mid C_{\mathcal{V}2} = []) \end{array}$ from c-in-Cv-inter-Upsilon v'-in-Vv-inter-Nabla validV2 have $c \notin E_{ES2} \lor (c \in E_{ES2} \land v' \notin E_{ES2}) \lor (c \in E_{ES2} \land v' \in E_{ES2})$ by (simp add: V-valid-def is ViewOn-def VC-disjoint-def VN-disjoint-def NC-disjoint-def) moreover { assume *c*-notin-E2: $c \notin E_{ES2}$ from validES2 $\beta v' E2\alpha 2'$ -in-Tr2 have set $\alpha 2' \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by auto moreover from $\beta v' E2\alpha 2'$ -in-Tr2 c-notin-E2 have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}$ by (simp add: projection-def) moreover have $\alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}$.. moreover note $\alpha 2'Cv2$ -empty

```
ultimately have ?ALPHA2"-DELTA2"
    by blast
}
moreover {
  assume c-in-E2: c \in E_{ES2}
    and v'-notin-E2: v' \notin E_{ES2}
  from c-in-E2 c-in-Cv-inter-Upsilon propSepViews
    Upsilon-inter-E2-subset-Upsilon2
  have c-in-Cv2-inter-Upsilon2: c \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
    unfolding properSeparationOfViews-def by auto
  hence c \in C_{\mathcal{V2}}
    by auto
  moreover
  from \beta v' E2\alpha 2'-in-Tr2 v'-notin-E2 have \beta \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note \alpha 2'Cv2-empty
  moreover
  have Adm \mathcal{V2} \varrho 2 Tr_{ES2} (\beta \mid E_{ES2}) c
  proof -
    from Adm obtain \gamma
       where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})
       and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
       unfolding Adm-def
      by auto
    from c-in-E2 \gamma c-in-Tr have (\gamma \mid E_{ES2}) @ [c] \in Tr_{ES2}
       by (simp add: projection-def composeES-def)
    moreover
    have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2)
    proof -
       from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
         by (metis projection-commute)
       with \rho 2v2-subset-\rho v-inter-E2 have \gamma \uparrow (\rho 2 \ V 2) = \beta \uparrow (\rho 2 \ V 2)
         by (metis Int-subset-iff \gamma \rho v-is-\beta \rho v projection-subset-elim)
       thus ?thesis
         by (metis projection-commute)
    qed
    ultimately show ?thesis unfolding Adm-def
       by auto
  qed
  moreover
  note BSIA2
  ultimately obtain \alpha 2^{\prime\prime}
    where one: \beta \upharpoonright E_{ES2} @ [c] @ \alpha 2'' \in Tr_{ES2}
and two: \alpha 2'' \upharpoonright V_{V2} = \alpha 2' \upharpoonright V_{V2}
    and three: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
    unfolding BSIA-def
    by blast
```

from one validES2 have set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$

by (*simp add: ES-valid-def traces-contain-events-def, auto*) moreover have set $[] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}$ by auto moreover from one c-in-E2 v'-notin-E2 have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover ${\bf note} \ two \ three$ ultimately have ?ALPHA2"-DELTA2" **by** blast } moreover { assume *c-in-E2*: $c \in E_{ES2}$ and v'-in-E2: $v' \in E_{ES2}$ from c-in-E2 c-in-Cv-inter-Upsilon propSepViews Upsilon-inter-E2-subset-Upsilon2have c-in-Cv2-inter-Upsilon2: $c \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ unfolding properSeparationOfViews-def by auto moreover $\mathbf{from} \ v'\text{-}in\text{-}E2 \ propSepViews \ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla \ Nabla\text{-}inter\text{-}E2\text{-}subset\text{-}Nabla2$ have $v' \in V_{\mathcal{V}\mathcal{Z}} \cap Nabla \ \Gamma\mathcal{Z}$ unfolding properSeparationOfViews-def by auto moreover from v'-in-E2 $\beta v'E2\alpha 2'$ -in-Tr2 have $\beta \upharpoonright E_{ES2} @ [v'] @ \alpha 2' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover note $\alpha 2'Cv2$ -empty moreover have Adm $\mathcal{V2}$ $\varrho 2$ Tr_{ES2} ($\beta \uparrow E_{ES2}$) c proof – from Adm obtain γ where $\gamma \varrho v$ -is- $\beta \varrho v$: $\gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})$ and γc -in-Tr: $(\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}$ unfolding Adm-def $\mathbf{by} \ auto$ from c-in-E2 γ c-in-Tr have $(\gamma \mid E_{ES2}) @ [c] \in Tr_{ES2}$ **by** (*simp add: projection-def composeES-def*) moreover have $\gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2)$ proof from $\gamma \varrho v$ -is- $\beta \varrho v$ have $\gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})$ **by** (*metis projection-commute*) with $\varrho 2v2$ -subset- ϱv -inter-E2 have $\gamma \downarrow (\varrho 2 \ V2) = \beta \downarrow (\varrho 2 \ V2)$ by (metis Int-subset-iff $\gamma \rho v$ -is- $\beta \rho v$ projection-subset-elim) thus ?thesis by (metis projection-commute) qed ultimately show ?thesis unfolding Adm-def

by auto \mathbf{qed} moreover note FCIA2 ultimately obtain $\alpha 2^{\prime\prime} \, \delta 2^{\prime\prime}$ where one: set $\delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ and two: $\beta \mid E_{ES2} @ [c] @ \delta 2^{\prime\prime} @ [v'] @ \alpha 2^{\prime\prime} \in Tr_{ES2}$ and three: $\alpha 2'' \upharpoonright V_{V2} = \alpha 2' \upharpoonright V_{V2}$ and four: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ ${\bf unfolding} \ {\it FCIA-def}$ by blast from two validES2 have set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover note one moreover from two c-in-E2 v'-in-E2 have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}$ **by** (*simp add: projection-def*) moreover note three four ultimately have ?ALPHA2"-DELTA2" by blast } ultimately obtain $\alpha 2^{\prime\prime} \delta 2^{\prime\prime}$ where $\alpha 2^{\prime\prime}$ -in-E2star: set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ and $\delta 2^{\prime\prime}$ -in-N2-inter-Delta2star: set $\delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ and $\beta E2$ -cE2- $\delta 2$ ''-v'E2- $\alpha 2$ ''-in-Tr2: $\begin{array}{c} \beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \mid E_{ES2} @ \alpha 2^{\prime\prime} \in \operatorname{Tr}_{ES2} \\ \text{and} \ \alpha 2^{\prime\prime} Vv2\text{-}is\text{-}\alpha 2^{\prime} Vv2\text{:} \ \alpha 2^{\prime\prime} \mid V_{\mathcal{V}2} = \alpha 2^{\prime} \mid V_{\mathcal{V}2} \end{array}$ and $\alpha 2^{\prime\prime} Cv2$ -empty: $\alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []$ by blast from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset-Upsilon1 propSepViews have cE1-in-Cv1-inter-Upsilon1: set $([c] | E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}$ unfolding properSeparationOfViews-def by (simp add: projection-def, auto) from δ2"-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 propSepViews disjoint-Nv2-Vv1 have $\delta 2'' E1$ -in-Cv1-inter-Upsilon1star: set $(\delta 2'' \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}$ proof from $\delta 2''$ -in-N2-inter-Delta2star have eq: $\delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 2^{\prime\prime} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1})$ by (metis Int-commute Int-left-commute Int-lower1 Int-lower2 projection-intersection-neutral subset-trans) from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 propSepViews disjoint-Nv2-Vv1 have $N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}$

unfolding *properSeparationOfViews-def* **by** (*simp add: isViewOn-def V-valid-def*

```
VC\text{-}disjoint\text{-}def \ VN\text{-}disjoint\text{-}def \ NC\text{-}disjoint\text{-}def, \ auto)
thus ?thesis
by (subst eq, simp only: projection-def, auto)
qed
have c\delta 2''E1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1star: set ((c \# \delta 2'') | E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
proof -
from cE1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1 \ \delta 2''E1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1star
have set (([c] @ \delta 2'') | E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
by (simp only: projection-concatenation-commute, auto)
thus ?thesis
by auto
```

 \mathbf{qed}

have

 $\exists \ \alpha 1^{\prime\prime} \ \delta 1^{\prime\prime}. \ set \ \alpha 1^{\prime\prime} \subseteq E_{ES1} \land set \ \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ $\begin{array}{c} \wedge \beta \mid E_{ES1} @ [c] \mid E_{ES1} @ \delta 1'' @ [v'] \mid E_{ES1} @ \alpha 1'' \in Tr_{ES1} \\ \wedge \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} \wedge \alpha 1'' \mid C_{\mathcal{V}1} = [] \end{array}$ $\wedge \ \delta 1 \, ^{\prime\prime} \mid \ E_{ES2} = \delta 2 \, ^{\prime\prime} \mid \ E_{ES1}$ **proof** cases assume v'-in-E1: $v' \in E_{ES1}$ with Nabla-inter-E1-subset-Nabla1 propSepViews v'-in-Vv-inter-Nabla have v'-in-Vv1-inter-Nabla1: $v' \in V_{\mathcal{V}1} \cap Nabla \Gamma1$ unfolding properSeparationOfViews-def by auto have $\llbracket (\beta @ [v']) | E_{ES1} @ \alpha 1' \in Tr_{ES1};$ $\begin{array}{l} \alpha 1' \upharpoonright C_{\mathcal{V}1} = []; \ set \ ((c \ \# \ \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}; \ set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2}; \end{array}$ $\begin{array}{l} Adm \ \mathcal{V} \ \varrho \ (Tr_{(ES1 \parallel ES2)}) \ \beta \ c \] \\ \Longrightarrow \exists \ \alpha 1^{\prime\prime} \ \delta 1^{\prime\prime}. \end{array}$ $\begin{array}{l} \overbrace{(set \ \alpha 1'' \subseteq E_{ES1} \ \land set \ \delta 1'' \subseteq N_{\mathcal{V}1} \ \cap \ \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \ \cap \ \Upsilon_{\Gamma1} \ \cap \ N_{\mathcal{V}2} \ \cap \ \Delta_{\Gamma2}} \\ \land \ \beta \ \mid E_{ES1} \ @ \ [c] \ \mid E_{ES1} \ @ \ \delta 1'' \ @ \ [v'] \ \mid E_{ES1} \ @ \ \alpha 1'' \in Tr_{ES1} \\ \land \ \alpha 1'' \ \mid \ V_{\mathcal{V}1} \ = \ \alpha 1' \ \mid V_{\mathcal{V}1} \ \land \ \alpha 1'' \ \mid C_{\mathcal{V}1} = \ [] \\ \land \ \delta 1''' \ \mid \ (C_{\mathcal{V}1} \ \cap \ \Upsilon_{\Gamma1}) \ = \ \delta 2'' \ \mid E_{ES1} \\ \end{array}$ **proof** (induct length (($c \# \delta 2''$) | E_{ES1}) arbitrary: $\beta \alpha 1' c \delta 2''$) case θ from $\theta(2)$ validES1 have set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}$ **bv** auto moreover have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}$ proof note $\theta(2)$ moreover from $\theta(1)$ have $c \notin E_{ES1}$ by (simp add: projection-def, auto) $\mathbf{ultimately\ show}\ ?thesis$ $\mathbf{by} \ (simp \ add: \ projection-concatenation-commute \ projection-def)$

```
\mathbf{qed}
  moreover
  have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \dots
  moreover
  note \theta(3)
  moreover
  from \theta(1) have [] \uparrow (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \delta \mathcal{Z}'' \uparrow E_{ES1}
    by (simp add: projection-def, split if-split-asm, auto)
  ultimately show ?case
    by blast
\mathbf{next}
  \mathbf{case}~(Suc~n)
  from projection-split-last[OF Suc(2)] obtain \mu c' \nu
    where c'-in-E1: c' \in E_{ES1}
and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu
    and \nu E1-empty: \nu \upharpoonright E_{ES1} = []
    and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) | E_{ES1})
    by blast
  from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu have set (\mu \uparrow E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
    by (simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
      projection-def, auto)
  hence c'-in-Cv1-inter-Upsilon1: c' \in C_{V1} \cap \Upsilon_{\Gamma1}
    by auto
  hence c'-in-Cv1: c' \in C_{V1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma1}
    by auto
  with validV1 have c'-in-E1: c' \in E_{ES1}
    by (simp add: isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
  \mathbf{show}~? case
    proof (cases \mu)
      case Nil
      with c\delta 2''-is-\mu c'\nu have c-is-c': c = c' and \delta 2''-is-\nu: \delta 2'' = \nu
        by auto
      with c'-in-Cv1-inter-Upsilon1 have c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
        by simp
      moreover
      note v'-in-Vv1-inter-Nabla1
      moreover
      from v'-in-E1 Suc(3) have (\beta \upharpoonright E_{ES1}) @ [v'] @ \alpha 1' \in Tr_{ES1}
        by (simp add: projection-concatenation-commute projection-def)
      moreover
      note Suc(4)
      moreover
      have Adm V1 \varrho1 Tr<sub>ES1</sub> (\beta | E<sub>ES1</sub>) c
        proof -
           from Suc(8) obtain \gamma
             where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})
             and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
             unfolding Adm-def
```

by auto

from c-is-c' c'-in-E1 γ c-in-Tr have $(\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}$ **by** (simp add: projection-def composeES-def) moreover have $\gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)$ proof from $\gamma \varrho v$ -is- $\beta \varrho v$ have $\gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})$ **by** (*metis projection-commute*) with $\rho_{1v_1-subset-\rho_v-inter-E1}$ have $\gamma \upharpoonright (\rho_1 \ V_1) = \beta \upharpoonright (\rho_1 \ V_1)$ by (metis Int-subset-iff $\gamma \varrho v$ -is- $\beta \varrho v$ projection-subset-elim) thus ?thesis**by** (*metis projection-commute*) qed ultimately show ?thesis unfolding Adm-def by auto qed moreover note FCIA1 ultimately obtain $\alpha 1^{\prime\prime} \gamma$ where one: set $\gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}$ and two: $\beta \upharpoonright E_{ES1} @ [c] @ \gamma @ [v'] @ \alpha 1'' \in Tr_{ES1}$ and three: $\alpha 1'' \upharpoonright V_{V1} = \alpha 1' \upharpoonright V_{V1}$ and four: $\alpha 1'' \upharpoonright C_{\mathcal{V}1} = []$ unfolding FCIA-def by blast

let ?DELTA1'' = $\nu \upharpoonright E_{ES1} @ \gamma$

from two validES1 have set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ $\mathbf{by}~(simp~add:~ES\mbox{-}valid\mbox{-}def~traces\mbox{-}contain\mbox{-}events\mbox{-}def,~auto)$ moreover from one $\nu E1$ -empty have set ?DELTA1'' $\subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by auto moreover have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ proof – from c-is-c' c'-in-E1 have $[c] = [c] \upharpoonright E_{ES1}$ **by** (*simp add: projection-def*) moreover from v'-in-E1 have $[v'] = [v'] \upharpoonright E_{ES1}$ **by** (*simp add: projection-def*) moreover note $\nu E1$ -empty two ultimately show ?thesis by auto qed moreover note three four moreover

```
have ?DELTA1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \delta 2'' \upharpoonright E_{ES1}
     proof -
       have \gamma \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = []
         proof -
            from validV1 have N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \{\}
              by (simp add: isViewOn-def V-valid-def
                 VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
            with projection-intersection-neutral [OF one, of C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}]
            show ?thesis
              by (simp add: projection-def)
         qed
       with \delta 2''-is-\nu \nu E1-empty show ?thesis
         by (simp add: projection-concatenation-commute)
    qed
  ultimately show ?thesis
    by blast
\mathbf{next}
  case (Cons x xs)
  with c\delta 2^{\prime\prime}-is-\mu c^{\prime}\nu
  have \mu-is-c-xs: \mu = [c] @ xs and \delta 2''-is-xs-c'-\nu: \delta 2'' = xs @ [c'] @ \nu
    by auto
  with n-is-length-\mu\nu E1 have n = length ((c \# (xs @ \nu)) | E_{ES1})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
     proof -
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
         by auto
       from Suc(5) \ c\delta 2''-is-\mu c'\nu \ \mu-is-c-xs \nu E1-empty
       \mathbf{show}~? thesis
         by (subst res, simp only: c\delta 2''-is-\mu c'\nu
            projection-concatenation-commute set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \ \delta 2''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
    by auto
  moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 1']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES1}
     and two: set \gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
     and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta \in Tr_{ES1}
     and four: \delta \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
     and five: \delta \upharpoonright C_{\mathcal{V}1} = []
     and six: \gamma \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = (xs @ \nu) \upharpoonright E_{ES1}
     by blast
```

let $?BETA = \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma$ **note** c'-in-Cv1-inter-Upsilon1 v'-in-Vv1-inter-Nabla1 moreover from three v'-in-E1 have ?BETA @ [v'] @ $\delta \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover note five moreover have $Adm \ V1 \ \varrho1 \ Tr_{ES1}$?BETA c' proof have $?BETA @ [c'] \in Tr_{ES1}$ proof from Suc(7) c'-in-Cv1-inter-Upsilon1 $\delta 2''$ -is-xs-c'- ν have $c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V2}} \cap \Delta_{\Gamma2}$ by auto moreover from validES1 three have $?BETA \in Tr_{ES1}$ by (unfold ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def, auto) moreover ${\bf note} \ total {-} ES1{-} C1{-} inter{-} Upsilon1{-} inter{-} N2{-} inter{-} Delta2$ ultimately show ?thesis unfolding total-def by blast qed thus ?thesis unfolding Adm-def by blast \mathbf{qed} moreover note FCIA1 ultimately obtain $\alpha 1^{\prime\prime} \delta^{\prime}$ where fcia-one: set $\delta' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ and fcia-two: ?BETA @ [c'] @ δ' @ [v'] @ $\alpha 1'' \in Tr_{ES1}$ and fcia-three: $\alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \delta \upharpoonright V_{\mathcal{V}1}$ and fcia-four: $\alpha 1'' \upharpoonright C_{\mathcal{V}1} = []$ unfolding FCIA-def by blast let ?DELTA1'' = $\gamma @ [c'] @ \delta'$ **from** fcia-two validES1 **have** set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set ?DELTA1'' $\subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ proof from Suc(7) c'-in-Cv1-inter-Upsilon1 $\delta 2''$ -is-xs-c'- ν have $c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by auto with two fcia-one show ?thesis

 $\mathbf{by} \ auto$

 \mathbf{qed} moreover from fcia-two v'-in-E1 have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover from fcia-three four have $\alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$ by simp moreover note fcia-four moreover have $?DELTA1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \delta 2'' \upharpoonright E_{ES1}$ proof – have $\delta' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = []$ proof from fcia-one have $\forall e \in set \ \delta'. \ e \in N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}$ by auto with validV1 have $\forall e \in set \ \delta'. e \notin C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis **by** (simp add: projection-def) \mathbf{qed} with c'-in-E1 c'-in-Cv1-inter-Upsilon1 $\delta 2''$ -is-xs-c'- $\nu \nu$ E1-empty six show ?thesis by (simp only: projection-concatenation-commute projection-def, auto) qed ultimately show ?thesis by blast \mathbf{qed} \mathbf{qed} from this[OF βv'E1α1'-in-Tr1 α1'Cv1-empty cδ2''E1-in-Cv1-inter-Upsilon1star *c-in-Cv-inter-Upsilon* $\delta 2''$ -*in-N2-inter-Delta2star* Adm] **obtain** $\alpha 1^{\prime\prime} \delta 1^{\prime\prime}$ where one: set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ and two: set $\delta 1'' \subseteq \overline{N_{\mathcal{V}I}} \cap \Delta_{\Gamma I} \cup C_{\mathcal{V}I} \cap \Upsilon_{\Gamma I} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}$ and three: $\beta \upharpoonright E_{ESI} @ [c] \upharpoonright E_{ESI} @ \delta 1'' @ [v'] \upharpoonright E_{ESI} @ \alpha 1'' \in Tr_{ESI}$ $\land \alpha 1'' \upharpoonright V_{\mathcal{V}I} = \alpha 1' \upharpoonright V_{\mathcal{V}I} \land \alpha 1'' \upharpoonright C_{\mathcal{V}I} = []$ and four: $\delta 1'' \upharpoonright (C_{\mathcal{V}I} \cap \Upsilon_{\Gamma I}) = \delta 2'' \upharpoonright E_{ESI}$ by blast note one two three moreover have $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 2^{\prime\prime} \upharpoonright E_{ES1}$ proof from projection-intersection-neutral[OF two, of E_{ES2}] Nv1-inter-Delta1-inter-E2-empty validV2 have $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 1^{\prime\prime} \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma 1} \cap N_{V2} \cap \Delta_{\Gamma 2} \cap E_{ES2})$ by (simp only: Int-Un-distrib2, auto) moreover from validV2 have $C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES2} = C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$
by (simp add: is ViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma1} \cap N_{V2} \cap \Delta_{\Gamma2})$ by simp hence $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 1^{\prime\prime} \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ **by** (*simp add: projection-def*) with four have $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 2^{\prime\prime} \upharpoonright E_{ES1} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})$ by simp hence $\delta I'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright E_{ES1}$ **by** (*simp only: projection-commute*) with $\delta 2$ ''-in-N2-inter-Delta2star show ?thesis **by** (*simp only: list-subset-iff-projection-neutral*) \mathbf{qed} ultimately show ?thesis by blast \mathbf{next} assume v'-notin-E1: $v' \notin E_{ES1}$ have $\llbracket (\beta @ [v']) | E_{ES1} @ \alpha 1' \in Tr_{ES1};$ $\begin{array}{l} \alpha 1' \mid C_{\mathcal{V}1} = []; \ set \ ((c \ \# \ \delta 2'') \mid E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}; \ set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2}; \end{array}$ $\begin{array}{l} Adm \ \mathcal{V} \ \varrho \ (Tr_{(ES1 \parallel ES2)}) \ \beta \ c \] \\ \Longrightarrow \ \exists \ \alpha 1^{\prime\prime} \ \delta 1^{\prime\prime}. \ (set \ \alpha 1^{\prime\prime} \subseteq E_{ES1} \ \land \ set \ \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \end{array}$ $\begin{array}{c} \cap \Delta_{\Gamma 1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \\ \wedge \beta \mid E_{ES1} @ [c] \mid E_{ES1} @ \delta 1'' @ [v'] \mid E_{ES1} @ \alpha 1'' \in Tr_{ES1} \end{array}$ $\wedge \alpha 1^{\prime\prime} | V_{\mathcal{V}1} = \alpha 1^{\prime} | V_{\mathcal{V}1} \wedge \alpha 1^{\prime\prime} | C_{\mathcal{V}1} = []$ $\wedge \ \delta 1^{\,\prime\prime} \mid E_{ES2} = \delta 2^{\,\prime\prime} \mid E_{ES1}$ **proof** (induct length (($c \# \delta 2''$) | E_{ES1}) arbitrary: $\beta \alpha 1' c \delta 2''$) case θ from $\theta(2)$ validES1 have set $\alpha 1' \subseteq E_{ES1}$ **by** (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by auto moreover have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}$ proof note $\theta(2)$ moreover from $\theta(1)$ have $c \notin E_{ES1}$ by (simp add: projection-def, auto) ultimately show *?thesis* by (simp add: projection-concatenation-commute projection-def) qed moreover have $\alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$. moreover note $\theta(3)$ moreover from $\theta(1)$ have [] $\uparrow E_{ES2} = \delta 2^{\prime\prime} \uparrow E_{ES1}$ by (simp add: projection-def, split if-split-asm, auto)

```
ultimately show ?case
    by blast
\mathbf{next}
  case (Suc n)
  from projection-split-last[OF Suc(2)] obtain \mu c' \nu
    where c'-in-E1: c' \in E_{ES1}
and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu
and \nu E1-empty: \nu \upharpoonright E_{ES1} = []
    and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) | E_{ES1})
    by blast
  from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu have set (\mu \upharpoonright E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
    by (simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute projection-def, auto)
  hence c'-in-Cv1-inter-Upsilon1: c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
    by auto
  hence c'-in-Cv1: c' \in C_{V1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma1}
    by auto
  with validV1 have c'-in-E1: c' \in E_{ES1}
    by (simp add:isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
  show ?case
    proof (cases \mu)
       case Nil
       with c\delta 2''-is-\mu c'\nu have c-is-c': c = c' and \delta 2''-is-\nu: \delta 2'' = \nu
         by auto
       with c'-in-Cv1-inter-Upsilon1 have c \in C_{\mathcal{V}1}
         by simp
       moreover
       from v'-notin-E1 Suc(3) have (\beta \mid E_{ES1}) @ \alpha 1' \in Tr_{ES1}
         by (simp add: projection-concatenation-commute projection-def)
       moreover
       note Suc(4)
       moreover
       have Adm \mathcal{V}1 \ \varrho 1 \ Tr_{ES1} \ (\beta \uparrow E_{ES1}) \ c
          proof -
           from Suc(8) obtain \gamma
              where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})
              and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
              unfolding Adm-def
             by auto
           from c-is-c' c'-in-E1 \gamma c-in-Tr have (\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}
             by (simp add: projection-def composeES-def)
           moreover
           have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)
           proof -
              from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})
                by (metis projection-commute)
              with \rho_1 v_1-subset-\rho_v-inter-E1 have \gamma \uparrow (\rho_1 \ V_1) = \beta \uparrow (\rho_1 \ V_1)
                by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
```

```
thus ?thesis

by (metis projection-commute)

qed

ultimately show ?thesis unfolding Adm-def

by auto

qed

moreover

note BSIA1

ultimately obtain \alpha 1''

where one: (\beta \mid E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1}

and two: \alpha 1'' \mid V_{V1} = \alpha 1' \mid V_{V1}

and three: \alpha 1'' \mid C_{V1} = []

unfolding BSIA-def

by blast

let ?DELTA1'' = \nu \mid E_{ES1}

from one validES1 have set \alpha 1'' \subseteq E_{ES1}

by (sime a dd, ES which def transport of the control)
```

by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\nu E1$ -empty have set ?DELTA1'' $\subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ by simp moreover from c-is-c' c'-in-E1 one v'-notin-E1 vE1-empty have $(\beta \upharpoonright E_{ES1}) @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ by (simp add: projection-def) moreover $\mathbf{note} \ two \ three$ moreover from $\nu E1$ -empty $\delta 2''$ -is- ν have ?DELTA1'' | $E_{ES2} = \delta 2''$ | E_{ES1} **by** (*simp add: projection-def*) ultimately show ?thesis by blast \mathbf{next} **case** (Cons x xs) with $c\delta 2^{\prime\prime}$ -is- $\mu c^{\prime}\nu$ have μ -is-c-xs: $\mu = [c] @$ xs and $\delta 2''$ -is-xs-c'- ν : $\delta 2'' = xs @ [c'] @ \nu$ by auto with *n*-is-length- $\mu\nu E1$ have $n = length ((c \# (xs @ \nu)) | E_{ES1})$ by auto moreover note Suc(3,4)moreover have set $((c \# (xs @ \nu)) \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}$ proof have res: $c \# (xs @ \nu) = [c] @ (xs @ \nu)$ by auto from $Suc(5) \ c\delta 2''$ -is- $\mu c'\nu \ \mu$ -is-c-xs $\nu E1$ -empty

```
show ?thesis
```

```
by (subst res, simp only: cd2''-is-\mu c'\nu projection-concatenation-commute
```

```
set-append, auto)

qed

moreover

note Suc(6)

moreover

from Suc(7) \ \delta 2''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}

by auto

moreover note Suc(8) \ Suc(1)[of c xs @ \nu \ \beta \ \alpha 1']

ultimately obtain \delta \gamma

where one: set \delta \subseteq E_{ES1}

and two: set \gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}

and three: \beta \mid E_{ES1} @ [c] \mid E_{ES1} @ \gamma @ [v'] \mid E_{ES1} @ \delta \in Tr_{ES1}

and four: \delta \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1}

and five: \delta \mid C_{\mathcal{V}1} = []

and six: \gamma \mid E_{ES2} = (xs @ \nu) \mid E_{ES1}
```

let $?BETA = \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma$

```
from c'-in-Cv1-inter-Upsilon1 have c' \in C_{V1}
 by auto
moreover
from three v'-notin-E1 have ?BETA @ \delta \in Tr_{ES1}
 by (simp add: projection-def)
moreover
note five
moreover
have Adm V1 \varrho1 Tr<sub>ES1</sub> ?BETA c'
 proof -
   have ?BETA @ [c'] \in Tr_{ES1}
     proof -
       from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
       have c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
        by auto
       moreover
       from validES1 three have ?BETA \in Tr_{ES1}
         by (unfold ES-valid-def traces-prefixclosed-def
          prefixclosed-def prefix-def, auto)
       moreover
       note total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2
       ultimately show ?thesis
        unfolding total-def
        by blast
     \mathbf{qed}
   thus ?thesis
     unfolding Adm-def
     by blast
 qed
moreover
note BSIA1
ultimately obtain \alpha 1^{\prime\prime}
```

```
where bsia-one: ?BETA @ [c'] @ \alpha 1'' \in Tr_{ES1}
                 and bsia-two: \alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \delta \upharpoonright V_{\mathcal{V}1}
                 and bsia-three: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
                 unfolding BSIA-def
                 by blast
               let ?DELTA1'' = \gamma @ [c']
               from bsia-one validES1 have set \alpha 1^{\prime\prime} \subseteq E_{ES1}
                by (simp add: ES-valid-def traces-contain-events-def, auto)
               moreover
              have set ?DELTA1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
                proof –
                   from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
                   have c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
                     by auto
                   with two show ?thesis
                     by auto
                 qed
               moreover
               from bsia-one v'-notin-E1
               have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
                 by (simp add: projection-def)
              moreover
               from bsia-two four have \alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1}
                 by simp
              moreover
               note bsia-three
               moreover
              have ?DELTA1'' | E_{ES2} = \delta 2'' | E_{ES1}
                 proof -
                   from validV2 Suc(7) \delta 2''-is-xs-c'-\nu have c' \in E_{ES2}
                      by (simp add: isViewOn-def V-valid-def
                         VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                   with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu \nu E1-empty six
                   show ?thesis
                      by (simp only: projection-concatenation-commute projection-def, auto)
                 qed
               ultimately show ?thesis
                by blast
            \mathbf{qed}
       qed
     from this[OF βv'E1α1'-in-Tr1 α1'Cv1-empty cδ2''E1-in-Cv1-inter-Upsilon1star
       c-in-Cv-inter-Upsilon \ \delta 2''-in-N2-inter-Delta2star \ Adm]
    show ?thesis
       by blast
  qed
then obtain \alpha 1^{\,\prime\prime} \, \delta 1^{\,\prime\prime}
 where \alpha 1^{\prime\prime}-in-E1star: set \alpha 1^{\prime\prime} \subseteq E_{ES1}
and \delta 1^{\prime\prime}-in-N1-inter-Delta1star:set \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  and \beta E1-cE1-\delta1''-v'E1-\alpha1''-in-Tr1:
    \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1^{\prime\prime} @ [v'] \upharpoonright E_{ES1} @ \alpha1^{\prime\prime} \in \mathit{Tr}_{ES1}
```

and $\alpha 1^{\prime\prime} Vv1$ -is- $\alpha 1^{\prime} Vv1$: $\alpha 1^{\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1}$ and $\alpha 1^{\prime\prime}Cv1$ -empty: $\alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ and $\delta 1^{\prime\prime} E2$ -is- $\delta 2^{\prime\prime} E1$: $\delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 2^{\prime\prime} \upharpoonright E_{ES1}$ by blast from $\beta E1 - cE1 - \delta 1^{\prime\prime} - v^{\prime}E1 - \alpha 1^{\prime\prime} - in - Tr1 \beta E2 - cE2 - \delta 2^{\prime\prime} - v^{\prime}E2 - \alpha 2^{\prime\prime} - in - Tr2 validES1$ validES2have $\delta 1^{\prime\prime}$ -in-E1star: set $\delta 1^{\prime\prime} \subseteq E_{ES1}$ and $\delta 2^{\prime\prime}$ -in-E2star: set $\delta 2^{\prime\prime} \subseteq E_{ES2}$ by (simp-all add: ES-valid-def traces-contain-events-def, auto) with $\delta 1'' E2$ -is- $\delta 2'' E1$ merge-property[of $\delta 1'' E_{ES1} \delta 2'' E_{ES2}$] obtain δ' where $\delta' E1$ -is- $\delta 1''$: $\delta' \upharpoonright E_{ES1} = \delta 1''$ and $\delta' E2$ -is- $\delta 2''$: $\delta' \upharpoonright E_{ES2} = \delta 2''$ and δ' -contains-only- $\delta 1'' - \delta 2''$ -events: set $\delta' \subseteq$ set $\delta 1'' \cup$ set $\delta 2''$ unfolding Let-def by auto let $?TAU = \beta @ [c] @ \delta' @ [v']$ let $?LAMBDA = \alpha \mid V_{\mathcal{V}}$ let $?T1 = \alpha 1''$ let $?T2 = \alpha 2''$ have $?TAU \in Tr_{(ES1 \parallel ES2)}$ proof from $\beta E1$ -cE1- $\delta1''$ -v'E1- $\alpha1''$ -in- $Tr1 \delta'E1$ -is- $\delta1'' validES1$ have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in Tr_{ES1}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) hence $(\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES1} \in Tr_{ES1}$ by (simp add: projection-def, auto) moreover from $\beta E2$ -cE2- $\delta 2''$ -v'E2- $\alpha 2''$ -in- $Tr2 \ \delta'E2$ -is- $\delta 2'' \ validES2$ have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) hence $(\beta @ [c] @ \delta' @ [v']) | E_{ES2} \in Tr_{ES2}$ **by** (*simp add: projection-def, auto*) moreover from $\beta v' \alpha$ -in-Tr c-in-Cv-inter-Upsilon VIsViewOnE δ' -contains-only- $\delta 1''$ - $\delta 2''$ -events $\delta 1^{\prime\prime}$ -in-E1star $\delta 2^{\prime\prime}$ -in-E2star have set $(\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES1} \cup E_{ES2}$ unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def by auto ultimately show ?thesis unfolding composeES-def by auto qed hence set $?TAU \subseteq E_{(ES1 \parallel ES2)}$ unfolding composeES-def by *auto* moreover

have set $?LAMBDA \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover **note** $\alpha 1^{\prime\prime}$ -in-E1star $\alpha 2^{\prime\prime}$ -in-E2star moreover from $\beta E1$ -cE1- $\delta1''$ -v'E1- $\alpha1''$ -in- $Tr1 \delta'E1$ -is- $\delta1''$ have $?TAU | E_{ES1} @ ?T1 \in Tr_{ES1}$ by (simp only: projection-concatenation-commute, auto) moreover from $\beta E2$ -cE2- $\delta 2$ ''-v'E2- $\alpha 2$ ''-in-Tr2 $\delta'E2$ -is- $\delta 2$ '' have $?TAU | E_{ES2} @ ?T2 \in Tr_{ES2}$ by (simp only: projection-concatenation-commute, auto) moreover have $?LAMBDA | E_{ES1} = ?T1 | V_{\mathcal{V}}$ proof from propSepViews have ?LAMBDA | $E_{ES1} = \alpha \mid V_{V1}$ **unfolding** properSeparationOfViews-def **by** (simp only: projection-sequence) moreover **from** $\alpha 1''$ -in-E1star propSepViews have $?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral) moreover note $\alpha 1'Vv1$ -is- $\alpha Vv1 \alpha 1''Vv1$ -is- $\alpha 1'Vv1$ ultimately show ?thesis by simp qed moreover have $?LAMBDA | E_{ES2} = ?T2 | V_{\mathcal{V}}$ proof from *propSepViews* have ?LAMBDA | $E_{ES2} = \alpha \mid V_{V2}$ unfolding properSeparationOfViews-def by (simp only: projection-sequence) moreover from $\alpha 2^{\prime\prime}$ -in-E2star propSepViews have $?T2 \mid V_{\mathcal{V}} = ?T2 \mid V_{\mathcal{V}2}$ unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral) moreover note $\alpha 2' Vv2$ -is- $\alpha Vv2 \ \alpha 2'' Vv2$ -is- $\alpha 2' Vv2$ ultimately show ?thesis by simp qed moreover note $\alpha 1''Cv1$ -empty $\alpha 2''Cv2$ -empty generalized-zipping-lemma ultimately obtain twhere $?TAU @ t \in Tr_{(ES1 \parallel ES2)}$ and $t \uparrow V_{\mathcal{V}} = ?LAMBDA$ and $t \upharpoonright C_{\mathcal{V}} = []$ by blast moreover have set $\delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}$ proof from δ' -contains-only- $\delta 1''$ - $\delta 2''$ -events $\delta 1''$ -in-N1-inter-Delta1star

 $\delta 2''$ -in-N2-inter-Delta2star have set $\delta' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}$ **by** *auto* with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv show ?thesis by auto qed ultimately have $\exists \alpha' \gamma'$. (set $\gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$ **by** (simp only: append-assoc, blast) } moreover { assume Nv2-inter-Delta2-inter-E1-empty: $N_{\mathcal{V2}} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\}$ and Nv1-inter-Delta1-inter-E2-subset of-Upsilon2: $N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}$ let $?ALPHA1''-DELTA1'' = \exists \alpha 1'' \delta 1''.$ ($\begin{array}{l} set \ \alpha 1^{\prime\prime} \subseteq E_{ES1} \ \land \ set \ \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \ \cap \ \Delta_{\Gamma1} \\ \land \ \beta \ \upharpoonright \ E_{ES1} \ @ \ [c] \ \upharpoonright \ E_{ES1} \ @ \ \delta 1^{\prime\prime} \ @ \ [v'] \ \upharpoonright \ E_{ES1} \ @ \ \alpha 1^{\prime\prime} \in \ Tr_{ES1} \\ \land \ \alpha 1^{\prime\prime} \ \upharpoonright \ V_{\mathcal{V}1} = \alpha 1^{\prime} \ \upharpoonright \ V_{\mathcal{V}1} \land \alpha 1^{\prime\prime} \ \upharpoonright \ C_{\mathcal{V}1} = []) \end{array}$ from c-in-Cv-inter-Upsilon v'-in-Vv-inter-Nabla validV1 have $c \notin E_{ES1} \lor (c \in E_{ES1} \land v' \notin E_{ES1}) \lor (c \in E_{ES1} \land v' \in E_{ES1})$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def) moreover { assume *c*-notin-E1: $c \notin E_{ES1}$ from validES1 $\beta v' E1 \alpha 1'$ -in-Tr1 have set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}$ by auto moreover from $\beta v' E1 \alpha 1'$ -in-Tr1 c-notin-E1 have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover have $\alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$. moreover **note** $\alpha 1'Cv1$ -empty ultimately have ?ALPHA1"-DELTA1" **by** blast } moreover { assume *c-in-E1*: $c \in E_{ES1}$ and v'-notin-E1: $v' \notin E_{ES1}$ from c-in-E1 c-in-Cv-inter-Upsilon propSepViews Upsilon-inter-E1-subset-Upsilon1 have c-in-Cv1-inter-Upsilon1: $c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}$ unfolding properSeparationOfViews-def by auto hence $c \in C_{\mathcal{V}_1}$

by auto moreover from $\beta v' E1 \alpha 1'$ -in-Tr1 v'-notin-E1 have $\beta \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover **note** $\alpha 1'Cv1$ -empty moreover have Adm V1 ϱ 1 Tr_{ES1} ($\beta \mid E_{ES1}$) c proof from Adm obtain γ where $\gamma \varrho v$ -is- $\beta \varrho v$: $\gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})$ and γc -in-Tr: $(\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}$ unfolding Adm-def by auto from c-in-E1 γ c-in-Tr have $(\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}$ **by** (*simp add: projection-def composeES-def*) moreover have $\gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)$ proof – from $\gamma \varrho v$ -is- $\beta \varrho v$ have $\gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \mathcal{V})$ **by** (*metis projection-commute*) with $\rho_1 v_1$ -subset- ρ_v -inter-E1 have $\gamma \upharpoonright (\rho_1 \ V_1) = \beta \upharpoonright (\rho_1 \ V_1)$ by (metis Int-subset-iff $\gamma \rho v$ -is- $\beta \rho v$ projection-subset-elim) thus ?thesis by (metis projection-commute) \mathbf{qed} ultimately show ?thesis unfolding Adm-def by auto qed moreover note BSIA1 ultimately obtain $\alpha 1^{\prime\prime}$ where one: $\beta \upharpoonright E_{ES1} @ [c] @ \alpha 1'' \in Tr_{ES1}$ and two: $\alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$ and three: $\alpha 1'' \upharpoonright C_{\mathcal{V}1} = []$ unfolding BSIA-def by blast from one validES1 have set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $[] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}$ by auto moreover from one c-in-E1 v'-notin-E1 have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover note two three ultimately have *?ALPHA1''-DELTA1''* by blast

}

```
moreover {
  assume c-in-E1: c \in E_{ES1}
    and v'-in-E1: v' \in E_{ES1}
  from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
    Upsilon-inter-E1-subset-Upsilon1
  have c-in-Cv1-inter-Upsilon1: c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E1 propSepViews v'-in-Vv-inter-Nabla
    Nabla-inter-E1-subset-Nabla1
  have v' \in V_{\mathcal{V}1} \cap Nabla \ \Gamma 1
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E1 \beta v'E1\alpha 1'-in-Tr1 have \beta \upharpoonright E_{ES1} @ [v'] @ \alpha 1' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note \alpha 1'Cv1-empty
  moreover
  have Adm V1 \varrho1 Tr<sub>ES1</sub> (\beta \mid E_{ES1}) c
  proof -
    from Adm obtain \gamma
       where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})
       and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
       unfolding Adm-def
       by auto
    from c-in-E1 \gammac-in-Tr have (\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}
       by (simp add: projection-def composeES-def)
    moreover
    have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)
    proof -
       from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})
         by (metis projection-commute)
       with \varrho 1v1-subset-\varrho v-inter-E1 have \gamma \upharpoonright (\varrho 1 \ V 1) = \beta \upharpoonright (\varrho 1 \ V 1)
         by (metis Int-subset-iff \gamma \rho v-is-\beta \rho v projection-subset-elim)
       thus ?thesis
         by (metis projection-commute)
    qed
    ultimately show ?thesis unfolding Adm-def
       by auto
  qed
  moreover
  note FCIA1
  ultimately obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
    where one: set \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    and two: \beta \upharpoonright E_{ES1} @ [c] @ \delta1'' @ [v'] @ \alpha1'' \in Tr_{ES1}
    and three: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
    and four: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
    unfolding FCIA-def
    by blast
```

from two validES1 have set $\alpha 1^{\prime\prime} \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover note one moreover from two c-in-E1 v'-in-E1 have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover $\mathbf{note} \ \mathit{three} \ \mathit{four}$ ultimately have ?ALPHA1"-DELTA1" $\mathbf{by} \ blast$ } ultimately obtain $\alpha 1^{\prime\prime} \delta 1^{\prime\prime}$ where $\alpha 1''$ -in-E1star: set $\alpha 1'' \subseteq E_{ES1}$ and $\delta 1^{"}$ -in-N1-inter-Delta1star:set $\delta 1^{"} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ and $\beta E1$ -cE1- $\delta1$ ''-v'E1- $\alpha1$ ''-in-Tr1: $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}$ and $\alpha 1''Vv1$ -is- $\alpha 1'Vv1$: $\alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}$ and $\alpha 1^{\prime\prime}Cv1$ -empty: $\alpha 1^{\prime\prime} \upharpoonright C_{\mathcal{V}1} = []$ by blast from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset-Upsilon2 propSepViews have cE2-in-Cv2-inter-Upsilon2: set ([c] | E_{ES2}) $\subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ unfolding properSeparationOfViews-def by (simp add: projection-def, auto) from δ1"-in-N1-inter-Delta1star Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2 propSepViews disjoint-Nv1-Vv2 have $\delta 1'' E2$ -in-Cv2-inter-Upsilon2star: set $(\delta 1'' \upharpoonright E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma2}$ proof – **from** δ1 ''-in-N1-inter-Delta1star have eq: $\delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (N_{V1} \cap \Delta_{\Gamma 1} \cap E_{ES2})$ by (metis Int-commute Int-left-commute Int-lower2 Int-lower1 projection-intersection-neutral subset-trans) from validV2 Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2 propSepViews disjoint-Nv1-Vv2 have $N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}$ unfolding properSeparationOfViews-def by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis by (subst eq, simp only: projection-def, auto) qed have $c\delta 1'' E2$ -in-Cv2-inter-Upsilon2star: set $((c \# \delta 1'') | E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma2}$ proof from cE2-in-Cv2-inter-Upsilon2 $\delta 1$ "E2-in-Cv2-inter-Upsilon2star have set $(([c] @ \delta 1'') | E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}$ by (simp only: projection-concatenation-commute, auto)

thus ?thesis

by auto qed

```
have \exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}. set \alpha 2^{\prime\prime} \subseteq E_{ES2}
  proof cases
      assume v'-in-E2: v' \in E_{ES2}
      with Nabla-inter-E2-subset-Nabla2 propSepViews v'-in-Vv-inter-Nabla
      have v'-in-Vv2-inter-Nabla2: v' \in V_{\mathcal{V2}} \cap Nabla \ \Gamma 2
         unfolding properSeparationOfViews-def by auto
      have \llbracket (\beta @ [v']) | E_{ES2} @ \alpha 2' \in Tr_{ES2};
         \begin{array}{l} \alpha 2' \upharpoonright C_{\mathcal{V}2} = []; \ set \ ((c \ \# \ \delta 1 \ '') \upharpoonright E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} ; \ set \ \delta 1 \ '' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}; \end{array}
         Adm \ \mathcal{V} \ \varrho \ (Tr_{(ES1 \parallel ES2)}) \ \beta \ c \ ]
         \implies \exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}.
        \begin{array}{l} (set \ \alpha 2^{\prime\prime} \subseteq E_{ES2} \land set \ \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \land \beta \ 1 \ E_{ES2} \ @ \ [c] \ 1 \ E_{ES2} \ @ \ \delta 2^{\prime\prime} \ @ \ [v'] \ 1 \ E_{ES2} \ @ \ \alpha 2^{\prime\prime} \in Tr_{ES2} \\ \land \alpha 2^{\prime\prime} \ 1 \ \mathcal{V}_{\mathcal{V}2} = \alpha 2^{\prime} \ 1 \ \mathcal{V}_{\mathcal{V}2} \land \alpha 2^{\prime\prime} \ 1 \ \mathcal{C}_{\mathcal{V}2} = \ [] \\ \land \delta 2^{\prime\prime} \ 1 \ (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1^{\prime\prime} \ 1 \ E_{ES2} \\ \end{array} 
         proof (induct length ((c \# \delta 1'') | E_{ES2}) arbitrary: \beta \alpha 2' c \delta 1'')
            case \theta
            from 0(2) validES2 have set \alpha 2' \subseteq E_{ES2}
                by (simp add: ES-valid-def traces-contain-events-def, auto)
            moreover
            have set [] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
               by auto
            moreover
            have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
                proof -
                   note \theta(2)
                   moreover
                   from \theta(1) have c \notin E_{ES2}
                      by (simp add: projection-def, auto)
                    ultimately show ?thesis
                       by (simp add: projection-concatenation-commute projection-def)
                qed
            moreover
            have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}...
            moreover
            note \theta(3)
            moreover
            from \theta(1) have [] \uparrow (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \delta 1'' \uparrow E_{ES2}
               by (simp add: projection-def, split if-split-asm, auto)
             ultimately show ?case
               by blast
         \mathbf{next}
```

case (Suc n)

from projection-split-last[OF Suc(2)] obtain $\mu c' \nu$ where c'-in-E2: $c' \in E_{ES2}$ and $c\delta 1''$ -is- $\mu c'\nu$: $c \# \delta 1'' = \mu @ [c'] @ \nu$ and $\nu E2$ -empty: $\nu \upharpoonright E_{ES2} = []$ and *n*-is-length- $\mu\nu E2$: $n = length ((\mu @ \nu) \uparrow E_{ES2})$ by blast from Suc(5) c'-in-E2 c $\delta 1$ ''-is- $\mu c'\nu$ have set $(\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}$ by (simp only: $c\delta 1''$ -is- $\mu c'\nu$ projection-concatenation-commute projection-def, auto) hence c'-in-Cv2-inter-Upsilon2: $c' \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by auto hence c'-in-Cv2: $c' \in C_{\mathcal{V}2}$ and c'-in-Upsilon2: $c' \in \Upsilon_{\Gamma 2}$ by auto with validV2 have c'-in-E2: $c' \in E_{ES2}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) show ?case **proof** (cases μ) case Nil with $c\delta 1^{\prime\prime}$ -is- $\mu c^{\prime}\nu$ have c-is- c^{\prime} : $c = c^{\prime}$ and $\delta 1^{\prime\prime}$ -is- ν : $\delta 1^{\prime\prime} = \nu$ bv auto with c'-in-Cv2-inter-Upsilon2 have $c \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by simp moreover note v'-in-Vv2-inter-Nabla2 moreover from v'-in-E2 Suc(3) have $(\beta \upharpoonright E_{ES2}) @ [v'] @ \alpha 2' \in Tr_{ES2}$ by (simp add: projection-concatenation-commute projection-def) moreover note Suc(4)moreover have Adm $\mathcal{V2}$ $\varrho 2$ Tr_{ES2} ($\beta \mid E_{ES2}$) c proof from Suc(8) obtain γ where $\gamma \varrho v$ -is- $\beta \varrho v$: $\gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})$ and γc -in-Tr: $(\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}$ unfolding Adm-def by auto from c-is-c' c'-in-E2 γ c-in-Tr have $(\gamma \mid E_{ES2}) \otimes [c] \in Tr_{ES2}$ **by** (*simp add: projection-def composeES-def*) moreover have $\gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2)$ proof from $\gamma \varrho v$ -is- $\beta \varrho v$ have $\gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})$ **by** (*metis projection-commute*) with $\rho 2v2$ -subset- ρv -inter-E2 have $\gamma \uparrow (\rho 2 \ V 2) = \beta \uparrow (\rho 2 \ V 2)$ by (metis Int-subset-iff $\gamma \varrho v$ -is- $\beta \varrho v$ projection-subset-elim)

```
thus ?thesis

by (metis projection-commute)

qed

ultimately show ?thesis unfolding Adm-def

by auto

qed

moreover

note FCIA2

ultimately obtain \alpha 2'' \gamma

where one: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2}

and two: \beta \mid E_{ES2} @ [c] @ \gamma @ [v'] @ <math>\alpha 2'' \in Tr_{ES2}

and three: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}

and four: \alpha 2'' \mid C_{\mathcal{V}2} = []

unfolding FCIA-def

by blast
```

let ?DELTA2'' = $\nu \upharpoonright E_{ES2} @ \gamma$

```
from two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
  \mathbf{by}~(simp~add:~ES\text{-}valid\text{-}def~traces\text{-}contain\text{-}events\text{-}def,~auto)
moreover
from one \nu E2-empty
have set ?DELTA2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  by auto
moreover
have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
  proof -
    from c-is-c' c'-in-E2 have [c] = [c] \uparrow E_{ES2}
      by (simp add: projection-def)
    moreover
    from v'-in-E2 have [v'] = [v'] \upharpoonright E_{ES2}
      by (simp add: projection-def)
    moreover
    note \nu E2-empty two
    ultimately show ?thesis
       by auto
  qed
moreover
note three four
moreover
have ?DELTA2'' \upharpoonright (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}) = \delta1'' \upharpoonright E_{ES2}
  proof –
    have \gamma \uparrow (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []
      proof -
         from valid V2 have N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \{\}
            by (simp add: isViewOn-def V-valid-def
               VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
         with projection-intersection-neutral [OF one, of C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}]
         show ?thesis
           by (simp add: projection-def)
       qed
```

```
with \delta 1^{\prime\prime}-is-\nu \nu E2-empty show ?thesis
          by (simp add: projection-concatenation-commute)
     qed
   ultimately show ?thesis
     by blast
\mathbf{next}
  case (Cons x xs)
   with c\delta 1^{\prime\prime}-is-\mu c^{\prime}\nu
  have \mu-is-c-xs: \mu = [c] @ xs and \delta 1''-is-xs-c'-\nu: \delta 1'' = xs @ [c'] @ \nu
    by auto
  with n-is-length-\mu\nu E2 have n = length ((c \# (xs @ \nu)) \uparrow E_{ES2})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) | E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
     proof -
        have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
          by auto
        from Suc(5) \ c\delta 1''-is-\mu c'\nu \ \mu-is-c-xs \nu E2-empty
        \mathbf{show}~? thesis
          by (subst res, simp only: c\delta 1''-is-\mu c'\nu
             projection-concatenation-commute set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \ \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
     by auto
   moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 2']
   ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES2}
     and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma @ [v'] \upharpoonright E_{ES2} @ \delta \in Tr_{ES2}
     and four: \delta \upharpoonright V_{\mathcal{V}\mathcal{Z}} = \alpha \mathcal{Z}' \upharpoonright V_{\mathcal{V}\mathcal{Z}}
     and five: \delta \upharpoonright C_{\mathcal{V}\mathcal{Q}} = []
     and six: \gamma \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = (xs @ \nu) \upharpoonright E_{ES\mathcal{Z}}
     by blast
```

let $?BETA = \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma$

note c'-in-Cv2-inter- $Upsilon2 \ v'$ -in-Vv2-inter-Nabla2moreover from three v'-in-E2 have $?BETA @ [v'] @ <math>\delta \in Tr_{ES2}$ by (simp add: projection-def) moreover note five moreover have $Adm \ V2 \ \varrho2 \ Tr_{ES2} \ ?BETA \ c'$ proof -

```
have ?BETA @ [c'] \in Tr_{ES2}
       proof -
         from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
         have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
           by auto
         moreover
         from validES2 three have ?BETA \in Tr_{ES2}
           by (unfold ES-valid-def traces-prefixclosed-def
              prefixclosed-def prefix-def, auto)
         moreover
         {\bf note} \ total - ES2 - C2 - inter - Upsilon2 - inter - N1 - inter - Delta1
         ultimately show ?thesis
            unfolding total-def
           by blast
      qed
    thus ?thesis
       unfolding Adm-def
       \mathbf{by} \ blast
  qed
moreover
note FCIA2
ultimately obtain \alpha 2^{\prime\prime} \delta^{\prime}
  where fcia-one: set \delta' \subseteq N_{\mathcal{VZ}} \cap \Delta_{\GammaZ}
  and fcia-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha 2'' \in Tr_{ES2}
  and fcia-three: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \delta \upharpoonright V_{\mathcal{V}2}
and fcia-four: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
  unfolding FCIA-def
  by blast
let ?DELTA2'' = \gamma @ [c'] @ \delta'
from fcia-two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2'' \subseteq N_{\mathcal{V2}} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V2}} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V1}} \cap \Delta_{\Gamma 1}
  proof -
     from Suc(7) c'-in-Cv2-inter-Upsilon2 δ1''-is-xs-c'-ν
    have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
      by auto
     with two fcia-one show ?thesis
      by auto
  qed
moreover
from fcia-two v'-in-E2
have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha2'' \in Tr_{ES2}
  by (simp add: projection-def)
moreover
from fcia-three four have \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
 by simp
moreover
note fcia-four
moreover
```

have $?DELTA2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \delta1'' \upharpoonright E_{ES2}$ proof have $\delta' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []$ proof from fcia-one have $\forall e \in set \delta'. e \in N_{\mathcal{V}} \cap \Delta_{\Gamma}$ by auto with valid V2 have $\forall e \in set \ \delta'. e \notin C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}$ by (simp add:isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) thus ?thesis **by** (*simp add: projection-def*) \mathbf{qed} with c'-in-E2 c'-in-Cv2-inter-Upsilon2 $\delta 1''$ -is-xs-c'- $\nu \nu$ E2-empty six show ?thesis by (simp only: projection-concatenation-commute projection-def, auto) qed ultimately show ?thesis by blast qed \mathbf{qed} from this [OF $\beta v' E2\alpha 2'$ -in-Tr2 $\alpha 2' Cv2$ -empty $c\delta1^{\,\prime\prime}E2\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2star\ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon\ \delta1^{\,\prime\prime}\text{-}in\text{-}N1\text{-}inter\text{-}Delta1star\ Adm]$ obtain $\alpha 2^{\prime\prime} \, \delta 2^{\prime\prime}$ where one: set $\alpha 2^{\prime\prime} \subseteq E_{ES2}$ and two: set $\delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ and three: $\beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \delta 2'' @ [v'] \mid E_{ES2} @ \alpha 2'' \in Tr_{ES2}$ $\land \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2} \land \alpha 2'' \mid C_{\mathcal{V}2} = []$ and four: $\delta 2'' \mid (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1'' \mid E_{ES2}$ by blast note one two three moreover have $\delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 1^{\prime\prime} \upharpoonright E_{ES2}$ proof **from** projection-intersection-neutral[OF two, of E_{ES1}] Nv2-inter-Delta2-inter-E1-empty validV1 have $\delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES1})$ by (simp only: Int-Un-distrib2, auto) moreover from validV1 have $C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES1} = C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{V2} \cap \Upsilon_{\Gamma2} \cap N_{V1} \cap \Delta_{\Gamma1})$ $\mathbf{by} \ simp$ hence $\delta \mathcal{Z}'' \upharpoonright E_{ES1} = \delta \mathcal{Z}'' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) \upharpoonright (N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}})$ **by** (*simp add: projection-def*) with four have $\delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})$ by simp hence $\delta \mathcal{Z}^{\prime\prime} \upharpoonright E_{ES1} = \delta \mathcal{I}^{\prime\prime} \upharpoonright (N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}) \upharpoonright E_{ES2}$ by (simp only: projection-commute) with $\delta 1''$ -in-N1-inter-Delta1star show ?thesis

```
by (simp only: list-subset-iff-projection-neutral)
      \mathbf{qed}
   ultimately show ?thesis
         by blast
\mathbf{next}
  assume v'-notin-E2: v' \notin E_{ES2}
    have \llbracket (\beta @ [v']) | E_{ES2} @ \alpha 2' \in Tr_{ES2};
     \begin{array}{l} \alpha 2' \mid C_{\mathcal{V}2} = []; \ set \ ((c \ \# \ \delta 1'') \mid E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}; \ set \ \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}; \end{array}
      Adm \ \mathcal{V} \ \varrho \ (Tr_{(ES1 \parallel ES2)}) \ \beta \ c \ ]
      \implies \exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}.
       \begin{array}{c} \overbrace{(set \ \alpha 2'' \subseteq E_{ES2} \land set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \land \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2} \\ \land \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2} \land \alpha 2'' \upharpoonright C_{\mathcal{V}2} = [] \\ \land \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2} ) \end{array} 
      proof (induct length ((c \# \delta 1'') \upharpoonright E_{ES2}) arbitrary: \beta \alpha 2' c \delta 1'')
           case \theta
         from 0(2) validES2 have set \alpha 2' \subseteq E_{ES2}
            by (simp add: ES-valid-def traces-contain-events-def, auto)
         moreover
         have set [] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
            by auto
         moreover
         have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
            proof -
               note \theta(2)
                moreover
                from \theta(1) have c \notin E_{ES2}
                   by (simp add: projection-def, auto)
                ultimately show ?thesis
                   by (simp add: projection-concatenation-commute projection-def)
            \mathbf{qed}
         moreover
         have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}...
         moreover
         note \theta(3)
         moreover
         from \theta(1) have [] \uparrow E_{ES1} = \delta 1'' \uparrow E_{ES2}
            by (simp add: projection-def, split if-split-asm, auto)
         ultimately show ?case
            by blast
      \mathbf{next}
         case (Suc n)
         from projection-split-last[OF Suc(2)] obtain \mu c' \nu
            where c'-in-E2: c' \in E_{ES2}
and c\delta 1''-is-\mu c'\nu: c \# \delta 1'' = \mu @ [c'] @ \nu
            and \nu E2-empty: \nu \upharpoonright E_{ES2} = []
            and n-is-length-\mu\nu E2: n = length ((\mu @ \nu) | E_{ES2})
            by blast
```

from Suc(5) c'-in-E2 $c\delta 1''$ -is- $\mu c'\nu$ have set $(\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by (simp only: $c\delta 1$ ''-is- $\mu c'\nu$ projection-concatenation-commute projection-def, auto) hence c'-in-Cv2-inter-Upsilon2: $c' \in C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}$ by auto hence c'-in-Cv2: $c' \in C_{\mathcal{V2}}$ and c'-in-Upsilon2: $c' \in \Upsilon_{\Gamma2}$ by auto with validV2 have c'-in-E2: $c' \in E_{ES2}$ by (simp add:isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) show ?case **proof** (cases μ) case Nil with $c\delta 1^{\prime\prime}$ -is- $\mu c^{\prime}\nu$ have c-is- c^{\prime} : $c = c^{\prime}$ and $\delta 1^{\prime\prime}$ -is- ν : $\delta 1^{\prime\prime} = \nu$ by auto with c'-in-Cv2-inter-Upsilon2 have $c \in C_{\mathcal{V2}}$ by simp moreover from v'-notin-E2 Suc(3) have $(\beta \mid E_{ES2}) @ \alpha 2' \in Tr_{ES2}$ $\mathbf{by} \ (simp \ add: \ projection-concatenation-commute \ projection-def)$ moreover note Suc(4)moreover have Adm V2 ϱ 2 Tr_{ES2} ($\beta \uparrow E_{ES2}$) c proof from Suc(8) obtain γ where $\gamma \varrho v$ -is- $\beta \varrho v$: $\gamma \uparrow (\varrho \mathcal{V}) = \beta \uparrow (\varrho \mathcal{V})$ and γc -in-Tr: $(\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}$ unfolding Adm-def by *auto* from c-is-c' c'-in-E2 γ c-in-Tr have $(\gamma \mid E_{ES2}) @ [c] \in Tr_{ES2}$ **by** (*simp add: projection-def composeES-def*) moreover have $\gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2)$ proof – from $\gamma \varrho v$ -is- $\beta \varrho v$ have $\gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})$ by (metis projection-commute) with *Q2v2-subset-pv-inter-E2* have $\gamma \downarrow (\rho 2 \ \mathcal{V} 2) = \beta \downarrow (\rho 2 \ \mathcal{V} 2)$ by (metis Int-subset-iff $\gamma \rho v$ -is- $\beta \rho v$ projection-subset-elim) thus ?thesis by (metis projection-commute) qed ultimately show ?thesis unfolding Adm-def by auto \mathbf{qed} moreover note BSIA2 ultimately obtain $\alpha 2^{\prime\prime}$ where one: $(\beta \mid E_{ES2}) @ [c] @ \alpha 2'' \in Tr_{ES2}$

```
and two: \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2}
    and three: \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []
    unfolding BSIA-def
    by blast
  let ?DELTA2'' = \nu \uparrow E_{ES2}
  from one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  from \nu E2-empty
  have set ?DELTA2'' \subseteq N_{\mathcal{V2}} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V2}} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V1}} \cap \Delta_{\Gamma 1}
    by simp
  moreover
  from c-is-c' c'-in-E2 one v'-notin-E2 \nuE2-empty
  have (\beta \upharpoonright E_{ES2}) @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note two three
  moreover
  from \nu E2-empty \delta 1''-is-\nu have ?DELTA2'' | E_{ES1} = \delta 1'' | E_{ES2}
    by (simp add: projection-def)
  ultimately show ?thesis
    by blast
\mathbf{next}
  case (Cons x xs)
   with c\delta 1''-is-\mu c'\nu have \mu-is-c-xs: \mu = [c] @ xs
     and \delta 1^{\prime\prime} - is - xs - c^{\prime} - \nu: \delta 1^{\prime\prime} = xs @ [c^{\prime}] @ \nu
    by auto
  with n-is-length-\mu\nu E2 have n = length ((c \# (xs @ \nu)) | E_{ES2})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES2}) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}
    proof –
      have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
        by auto
      from Suc(5) \ c\delta 1 ''-is-\mu c' \nu \ \mu-is-c-xs \nu E2-empty
      show ?thesis
        by (subst res, simp only: c\delta 1''-is-\mu c'\nu
           projection-concatenation-commute set-append, auto)
    \mathbf{qed}
  moreover
  note Suc(6)
  moreover
  from Suc(7) \ \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by auto
  moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 2']
  ultimately obtain \delta \gamma
    where one: set \delta \subseteq E_{ES2}
```

```
and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
and three: \beta \mid E_{ES2} @ [c] \mid E_{ES2} @ \gamma @ [v'] \mid E_{ES2} @ \delta \in Tr_{ES2}
and four: \delta \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
and five: \delta \mid C_{\mathcal{V}2} = []
and six: \gamma \mid E_{ES1} = (xs @ \nu) \mid E_{ES2}
by blast
```

let $?BETA = \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma$

```
from c'-in-Cv2-inter-Upsilon2 have c' \in C_{\mathcal{V2}}
 by auto
moreover
from three v'-notin-E2 have ?BETA @ \delta \in Tr_{ES2}
 by (simp add: projection-def)
moreover
note five
moreover
have Adm V2 \ \varrho2 \ Tr_{ES2} \ ?BETA \ c'
  proof -
    have ?BETA @ [c'] \in Tr_{ES2}
      proof -
        from Suc(γ) c'-in-Cv2-inter-Upsilon2 δ1''-is-xs-c'-ν
        have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
          by auto
        moreover
        from validES2 three have ?BETA \in Tr_{ES2}
          by (unfold ES-valid-def traces-prefixclosed-def
            prefixclosed-def prefix-def, auto)
        moreover
        {\bf note} \ total - ES2 - C2 - inter - Upsilon2 - inter - N1 - inter - Delta1
        ultimately show ?thesis
          unfolding total-def
          by blast
     qed
    thus ?thesis
      unfolding Adm-def
      by blast
 qed
moreover
note BSIA2
ultimately obtain \alpha 2^{\prime\prime}
  where bsia-one: ?BETA @ [c'] @ \alpha 2'' \in Tr_{ES2}
  and bsia-two: \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \delta \upharpoonright V_{\mathcal{V}2}
  and bsia-three: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
  unfolding BSIA-def
  by blast
let ?DELTA2'' = \gamma @ [c']
```

```
, L J
```

```
from bsia-one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
by (simp add: ES-valid-def traces-contain-events-def, auto)
```

```
moreover
                have set ?DELTA2" \subseteq N_{\mathcal{V2}} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V1}} \cap \Delta_{\Gamma1}
                   proof -
                      from Suc(7) c'-in-Cv2-inter-Upsilon2 δ1''-is-xs-c'-ν
                      have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
                        by auto
                      with two show ?thesis
                        by auto
                   \mathbf{qed}
                moreover
                from bsia-one v'-notin-E2
                have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
                   by (simp add: projection-def)
                moreover
                from bsia-two four have \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2}
                   by simp
                moreover
                note bsia-three
                moreover
                have ?DELTA2'' \upharpoonright E_{ES1} = \delta1'' \upharpoonright E_{ES2}
                   proof –
                     from validV1 Suc(7) \delta 1''-is-xs-c'-\nu have c' \in E_{ES1}
                         \mathbf{by}~(simp~add:~isViewOn-def~V-valid-def
                            VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                      with c'-in-E2 c'-in-Cv2-inter-Upsilon2 δ1''-is-xs-c'-ν νE2-empty six
                      show ?thesis
                         by (simp only: projection-concatenation-commute projection-def, auto)
                   qed
                ultimately show ?thesis
                   by blast
              qed
        qed
     from this [OF \beta v' E 2 \alpha 2'-in-Tr2 \alpha 2' C v 2-empty c \delta 1'' E 2-in-Cv2-inter-Upsilon2star
        c-in-Cv-inter-Upsilon \delta 1 ''-in-N1-inter-Delta1star Adm]
     show ?thesis
        by blast
  qed
then obtain \alpha 2^{\,\prime\prime} \, \delta 2^{\,\prime\prime}
  where \alpha 2^{\prime\prime}-in-E2star: set \alpha 2^{\prime\prime} \subseteq E_{ES2}
and \delta 2^{\prime\prime}-in-N2-inter-Delta2star: set \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  and \beta E2-cE2-\delta 2 ''-v'E2-\alpha 2 ''-in-Tr2:
  \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta2^{\prime\prime} @ [v'] \upharpoonright E_{ES2} @ \alpha2^{\prime\prime} \in Tr_{ES2}
  and \alpha 2'' V v 2 - is - \alpha 2' V v 2: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
  and \alpha 2^{\prime\prime} Cv2-empty: \alpha 2^{\prime\prime} \uparrow C_{\mathcal{V}2} = []
  and \delta 2^{\prime\prime} E1-is-\delta 1^{\prime\prime} E2: \delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 1^{\prime\prime} \upharpoonright E_{ES2}
  by blast
from \beta E2 - cE2 - \delta 2^{\prime\prime} - v^{\prime}E2 - \alpha 2^{\prime\prime} - in - Tr2 \beta E1 - cE1 - \delta 1^{\prime\prime} - v^{\prime}E1 - \alpha 1^{\prime\prime} - in - Tr1
  validES2 validES1
have \delta 2''-in-E2star: set \delta 2'' \subseteq E_{ES2} and \delta 1''-in-E1star: set \delta 1'' \subseteq E_{ES1}
  by (simp-all add: ES-valid-def traces-contain-events-def, auto)
```

```
with \delta 2'' E1-is-\delta 1'' E2 merge-property[of \delta 2'' E_{ES2} \delta 1'' E_{ES1}] obtain \delta'
```

where $\delta' E2$ -is- $\delta 2''$: $\delta' \upharpoonright E_{ES2} = \delta 2''$ and $\delta' E1$ -is- $\delta 1''$: $\delta' \upharpoonright E_{ES1} = \delta 1''$ and δ' -contains-only- $\delta 2''$ - $\delta 1''$ -events: set $\delta' \subseteq$ set $\delta 2'' \cup$ set $\delta 1''$ unfolding Let-def by auto let $?TAU = \beta @ [c] @ \delta' @ [v']$ let $?LAMBDA = \alpha \mid V_{\mathcal{V}}$ let $?T2 = \alpha 2''$ let $?T1 = \alpha 1''$ have $?TAU \in Tr_{(ES1 \parallel ES2)}$ proof from $\beta E2$ -cE2- $\delta 2$ ''-v'E2- $\alpha 2$ ''-in-Tr2 $\delta'E2$ -is- $\delta 2$ '' validES2have $\beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) hence $(\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES2} \in Tr_{ES2}$ **by** (*simp add: projection-def, auto*) moreover from $\beta E1$ -cE1- $\delta1''$ -v'E1- $\alpha1''$ -in- $Tr1 \ \delta'E1$ -is- $\delta1'' \ validES1$ have $\beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in Tr_{ES1}$ by (simp add: ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def) hence $(\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES1} \in Tr_{ES1}$ **by** (*simp add: projection-def, auto*) moreover from $\beta v' \alpha$ -in-Tr c-in-Cv-inter-Upsilon VIsViewOnE δ' -contains-only- $\delta 2''$ - $\delta 1''$ -events $\delta 2''$ -in-E2star $\delta 1''$ -in-E1star have set $(\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES2} \cup E_{ES1}$ unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def by auto ultimately show ?thesis unfolding composeES-def by auto qed hence set $?TAU \subseteq E_{(ES1 \parallel ES2)}$ unfolding composeES-def by *auto* moreover have set $?LAMBDA \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover **note** $\alpha 2^{\prime\prime}$ -in-E2star $\alpha 1^{\prime\prime}$ -in-E1star moreover from $\beta E2 - cE2 - \delta 2^{\prime\prime} - v^{\prime}E2 - \alpha 2^{\prime\prime} - in - Tr2 \delta^{\prime}E2 - is - \delta 2^{\prime\prime}$ have $?TAU \mid E_{ES2} @ ?T2 \in Tr_{ES2}$ by (simp only: projection-concatenation-commute, auto) moreover from $\beta E1$ -cE1- $\delta1''$ -v'E1- $\alpha1''$ -in- $Tr1 \delta'E1$ -is- $\delta1''$

have $?TAU | E_{ES1} @ ?T1 \in Tr_{ES1}$ by (simp only: projection-concatenation-commute, auto) moreover have $?LAMBDA | E_{ES2} = ?T2 | V_{\mathcal{V}}$ proof from *propSepViews* have ?LAMBDA $\uparrow E_{ES2} = \alpha \uparrow V_{V2}$ **unfolding** properSeparationOfViews-def **by** (simp only: projection-sequence) moreover from $\alpha 2''$ -in-E2star propSepViews have $?T2 \mid V_{\mathcal{V}} = ?T2 \mid V_{\mathcal{V}2}$ unfolding properSeparationOfViews-def **by** (*metis Int-commute projection-intersection-neutral*) moreover note $\alpha 2' Vv2$ -is- $\alpha Vv2 \ \alpha 2'' Vv2$ -is- $\alpha 2' Vv2$ ultimately show ?thesis by simp qed moreover have $?LAMBDA | E_{ES1} = ?T1 | V_{\mathcal{V}}$ proof from propSepViews have $?LAMBDA | E_{ES1} = \alpha | V_{V1}$ ${\bf unfolding} \ properSeparation Of Views-def \ {\bf by} \ (simp \ only: \ projection-sequence)$ moreover from $\alpha 1''$ -in-E1star propSepViews have $?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}$ unfolding properSeparationOfViews-def by (metis Int-commute projection-intersection-neutral) moreover note $\alpha 1'Vv1$ -is- $\alpha Vv1 \alpha 1''Vv1$ -is- $\alpha 1'Vv1$ ultimately show ?thesis by simp qed moreover **note** $\alpha 2''Cv2$ -empty $\alpha 1''Cv1$ -empty generalized-zipping-lemma ultimately obtain twhere $?TAU @ t \in Tr_{(ES1 \parallel ES2)}$ and $t \downarrow V_{\mathcal{V}} = ?LAMBDA$ and $t \uparrow C_{\mathcal{V}} = []$ by blast moreover have set $\delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}$ proof from δ' -contains-only- $\delta 2''$ - $\delta 1''$ -events $\delta 2^{\prime\prime}$ -in-N2-inter-Delta2star $\delta 1^{\prime\prime}$ -in-N1-inter-Delta1star have set $\delta' \subseteq N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \cup N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}$ by auto with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv show ?thesis by auto qed ultimately have $\exists \alpha' \gamma'$. (set $\gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}$ $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$ **by** (simp only: append-assoc, blast) }

ultimately have $\exists \alpha' \gamma'$. (set $\gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \land \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}$

 $\wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])$ by blast } thus ?thesis unfolding FCIA-def by blast qed **theorem** compositionality-R: $\llbracket R \ \mathcal{V}1 \ Tr_{ES1}; \ R \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket \Longrightarrow R \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})$ proof assume $R1: R \mathcal{V}1 \ Tr_{ES1}$ and R2: $R V2 Tr_{ES2}$ { fix τ' assume τ' -in-Tr: $\tau' \in Tr_{(ES1 \parallel ES2)}$ hence $\tau' E1$ -in-Tr1: $\tau' \mid E_{ES1} \in Tr_{ES1}$ and $\tau' E2$ -in-Tr2: $\tau' \mid E_{ES2} \in Tr_{ES2}$ unfolding composeES-def by auto with R1 R2 obtain $\tau 1' \tau 2'$ where $\tau 1'$ -in-Tr1: $\tau 1' \in Tr_{ES1}$ and $\tau 1'Cv1$ -empty: $\tau 1' | C_{V1} = []$ and $\tau 1'Vv1$ -is- τ' -E1-Vv1: $\tau 1' | V_{V1} = \tau' | E_{ES1} | V_{V1}$ and $\tau 2'$ -in-Tr2: $\tau 2' \in Tr_{ES2}$ and $\tau 2'Cv2$ -empty: $\tau 2' \upharpoonright C_{V2} = []$ and $\tau 2'Vv2$ -is- τ' -E2-Vv2: $\tau 2' \upharpoonright V_{V2} = \tau' \upharpoonright E_{ES2} \upharpoonright V_{V2}$ unfolding *R*-def by blast have set [] $\subseteq E_{(ES1 \parallel ES2)}$ by auto moreover have set $(\tau' \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover from validES1 $\tau 1'$ -in-Tr1 have $\tau 1'$ -in-E1: set $\tau 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover from validES2 $\tau 2'$ -in-Tr2 have $\tau 2'$ -in-E2: set $\tau 2' \subseteq E_{ES2}$ **by** (simp add: ES-valid-def traces-contain-events-def, auto) moreover from $\tau 1'$ -in-Tr1 have [] | $E_{ES1} @ \tau 1' \in Tr_{ES1}$ **by** (*simp add: projection-def*) moreover from $\tau 2'$ -in-Tr2 have [] $\uparrow E_{ES2} @ \tau 2' \in Tr_{ES2}$ by (simp add: projection-def) moreover have $\tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \tau 1' \upharpoonright V_{\mathcal{V}}$ proof –

from projection-intersection-neutral[OF $\tau 1'$ -in-E1, of $V_{\mathcal{V}}$] propSepViews have $\tau 1' \upharpoonright V_{\mathcal{V}} = \tau 1' \upharpoonright V_{\mathcal{V}1}$ unfolding properSeparationOfViews-def **by** (*simp add*: *Int-commute*) moreover from propSepViews have $\tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \tau' \upharpoonright V_{\mathcal{V}1}$ unfolding properSeparationOfViews-def **by** (simp add: projection-sequence) moreover { have $\tau' \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}1} = \tau' \upharpoonright (E_{ES1} \cap V_{\mathcal{V}1})$ **by** (*simp add: projection-def*) moreover from validV1 have $E_{ES1} \cap V_{V1} = V_{V1}$ by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\tau' \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}1} = \tau' \upharpoonright V_{\mathcal{V}1}$ $\mathbf{by} \ simp$ } moreover **note** *τ*1 'Vv1-is-*τ*'-E1-Vv1 ultimately show ?thesis $\mathbf{by} \ simp$ \mathbf{qed} moreover have $\tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \tau 2' \upharpoonright V_{\mathcal{V}}$ proof from projection-intersection-neutral[OF $\tau 2'$ -in-E2, of $V_{\mathcal{V}}$] propSepViews have $\tau 2' \upharpoonright V_{\mathcal{V}} = \tau 2' \upharpoonright V_{\mathcal{V}2}$ unfolding properSeparationOfViews-def **by** (simp add: Int-commute) moreover from propSepViews have $\tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \tau' \upharpoonright V_{\mathcal{V}2}$ unfolding properSeparationOfViews-def **by** (simp add: projection-sequence) moreover { have $\tau' \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}2} = \tau' \upharpoonright (E_{ES2} \cap V_{\mathcal{V}2})$ **by** (simp add: projection-def) moreover from valid V2 have $E_{ES2} \cap V_{V2} = V_{V2}$ by (simp add:isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto) ultimately have $\tau' \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}2} = \tau' \upharpoonright V_{\mathcal{V}2}$ $\mathbf{by} \ simp$ } moreover note $\tau 2' Vv2$ -is- τ' -E2-Vv2 ultimately show ?thesis by simp qed moreover **note** $\tau 1'Cv1$ -empty $\tau 2'Cv2$ -empty generalized-zipping-lemma ultimately have $\exists t$. [] @ $t \in Tr_{(ES1 \parallel ES2)} \land t \uparrow V_{\mathcal{V}} = \tau' \uparrow V_{\mathcal{V}} \land t \uparrow C_{\mathcal{V}} = []$

```
by blast
 }
 thus ?thesis
   unfolding R-def
   by auto
qed
```

 \mathbf{end}

locale CompositionalityStrictBSPs = Compositionality +

assumes NV-inter-E1-is-NV1: $N_V \cap E_{ES1} = N_{V1}$ and $N\mathcal{V}$ -inter-E2-is- $N\mathcal{V}2$: $N_{\mathcal{V}} \cap E_{ES2} = N_{\mathcal{V}2}$

sublocale CompositionalityStrictBSPs \subseteq Compositionality by (unfold-locales)

 ${\bf context} \ \ CompositionalityStrictBSPs$ begin

theorem compositionality-SR: $[SR \ \mathcal{V}1 \ Tr_{ES1}; SR \ \mathcal{V}2 \ Tr_{ES2}] \Longrightarrow SR \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})$ proof assume $SR \ V1 \ Tr_{ES1}$ and $SR \ V2 \ Tr_{ES2}$ { let $\mathcal{V}_1' = \{ V = V_{\mathcal{V}_1} \cup N_{\mathcal{V}_1}, N = \{ \}, C = C_{\mathcal{V}_1} \}$ let $\mathcal{V}_2' = (V = V_{\mathcal{V}2} \cup N_{\mathcal{V}2}, N = \{\}, C = C_{\mathcal{V}2})$ let $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})$

from validV1 have \mathcal{V}_1 'IsViewOnE₁: isViewOn $\mathcal{?V}_1$ ' E_{ES1} unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from valid V2 have \mathcal{V}_2' Is ViewOnE₂: is ViewOn \mathcal{V}_2' E_{ES2} unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from VIsViewOnE have \mathcal{V}' IsViewOnE: isViewOn ? $\mathcal{V}' E_{(ES1||ES2)}$ unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

 $\mathbf{from} \ propSepViews \ \ N\mathcal{V}\text{-}inter\text{-}E1\text{-}is\text{-}N\mathcal{V}1$ have $V_{\mathcal{PV}'} \cap E_{ES1} = V_{\mathcal{PV}_1'}$ unfolding properSeparationOfViews-def by auto from propSepViews NV-inter-E2-is-NV2 have $V_{?\mathcal{V}'} \cap E_{ES2} = V_{?\mathcal{V}_2'}$ unfolding properSeparationOfViews-def by auto **from** *propSepViews* have $C_{\mathcal{V}'} \cap E_{ES1} \subseteq C_{\mathcal{V}_1}'$ unfolding properSeparationOfViews-def by auto from propSepViews have $C_{\mathcal{PV}'} \cap E_{ES2} \subseteq C_{\mathcal{PV}_2'}$ unfolding properSeparationOfViews-def by auto have $N_{\mathcal{V}_1} \cap N_{\mathcal{V}_2} = \{\}$

by auto

have $wbc1: N_{\mathcal{V}1'} \cap E_{ES1} = \{\} \land N_{\mathcal{V}2'} \cap E_{ES2} = \{\}$ by *auto*

from $\langle SR \ V1 \ Tr_{ES1} \rangle$ have $R \ ?V_1' \ Tr_{ES1}$ ${\bf using} \ valid ES1 \ valid V1 \ BSPT a xonomy Different Corrections. SR-implies-R-for-modified-view and the second state of the second state$ ${\bf unfolding} \ BSPT axonomy Different Corrections-def \ {\bf by} \ auto$ from $\langle SR \ V2 \ Tr_{ES2} \rangle$ have $R \ ?V_2' \ Tr_{ES2}$ using validES2 validV2 BSPTaxonomyDifferentCorrections.SR-implies-R-for-modified-view unfolding BSPTaxonomyDifferentCorrections-def by auto **from** validES1 validES2 composableES1ES2 \mathcal{V}' IsViewOnE \mathcal{V}_1 'IsViewOnE₁ \mathcal{V}_2 'IsViewOnE₂ $properSeparation-\mathcal{V}_1\mathcal{V}_2 \ wbc1$ have Compositionality ES1 ES2 $\mathcal{V}' \mathcal{V}_1' \mathcal{V}_2'$ unfolding Compositionality-def $\mathbf{by}~(simp~add:~properSeparationOfViews-def~wellBehavedComposition-def)$ with $\langle R ? \mathcal{V}_1 ' Tr_{ES1} \rangle \langle R ? \mathcal{V}_2 ' Tr_{ES2} \rangle$ have $R ? \mathcal{V} ' Tr_{(ES1||ES2)}$ using Compositionality.compositionality-R by blastfrom validES1 validES2 composeES-yields-ES validVC have BSPTaxonomyDifferentCorrections (ES1||ES2) Vunfolding BSPTaxonomyDifferentCorrections-def by auto with $\langle R ? \mathcal{V}' Tr_{(ES1 \parallel ES2)} \rangle$ have $SR \ \mathcal{V} Tr_{(ES1 \parallel ES2)}$ using BSPTaxonomyDifferentCorrections.R-implies-SR-for-modified-view by auto ł

thus ?thesis by auto qed

theorem compositionality-SD: $\begin{bmatrix} SD \ \mathcal{V}1 \ Tr_{ES1}; \ SD \ \mathcal{V}2 \ Tr_{ES2} \end{bmatrix} \implies SD \ \mathcal{V} \ (Tr_{(ES1} \parallel ES2))$ proof – assume $SD \ \mathcal{V}1 \ Tr_{ES1}$ and $SD \ \mathcal{V}2 \ Tr_{ES2}$ { let $?\mathcal{V}_1'=(V = V_{\mathcal{V}1} \cup N_{\mathcal{V}1}, N = \{\}, \ C = C_{\mathcal{V}1})$ let $?\mathcal{V}_2'=(V = V_{\mathcal{V}2} \cup N_{\mathcal{V}2}, N = \{\}, \ C = C_{\mathcal{V}2} \)$ let $?\mathcal{V}'=(V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, \ C = C_{\mathcal{V}2} \)$

from validV1 have \mathcal{V}_1 'Is $ViewOnE_1$: is ViewOn \mathcal{V}_1 ' E_{ES1} unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from validV2 have \mathcal{V}_2 'Is $ViewOnE_2$: is ViewOn \mathcal{V}_2 ' E_{ES2} unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from VIs ViewOnE have \mathcal{V} 'Is ViewOnE: is ViewOn $\mathcal{V}' E_{(ES1||ES2)}$

unfolding is View On-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV1have $V_{?V'} \cap E_{ES1} = V_{?V_1}$ ' unfolding properSeparationOfViews-def by auto from propSepViews NV-inter-E2-is-NV2have $V_{?V'} \cap E_{ES2} = V_{?V_2}$ ' unfolding properSeparationOfViews-def by auto from propSepViews have $C_{?V'} \cap E_{ES1} \subseteq C_{?V_1}$ ' unfolding properSeparationOfViews-def by auto from propSepViews have $C_{?V'} \cap E_{ES2} \subseteq C_{?V_2}$ ' unfolding properSeparationOfViews-def by auto have $N_{?V_1'} \cap N_{?V_2'} = \{\}$ by auto

$$\begin{array}{l} \textbf{note } \textit{properSeparation-}\mathcal{V}_{1}\mathcal{V}_{2} = \langle V_{\mathcal{P}\mathcal{V}'} \cap E_{ES1} = V_{\mathcal{P}\mathcal{V}_{1}} \rangle \langle V_{\mathcal{P}\mathcal{V}'} \cap E_{ES2} = V_{\mathcal{P}\mathcal{V}_{2}} \rangle \\ \langle C_{\mathcal{P}\mathcal{V}'} \cap E_{ES1} \subseteq C_{\mathcal{P}\mathcal{V}_{1}} \rangle \langle C_{\mathcal{P}\mathcal{V}'} \cap E_{ES2} \subseteq C_{\mathcal{P}\mathcal{V}_{2}} \rangle \langle N_{\mathcal{P}\mathcal{V}_{1}'} \cap N_{\mathcal{P}\mathcal{V}_{2}'} = \{\} \end{array}$$

have wbc1: $N_{\mathcal{V}_1'} \cap E_{ES1} = \{\} \land N_{\mathcal{V}_2'} \cap E_{ES2} = \{\}$ by auto

from validES1 validES2 composableES1ES2 V'IsViewOnE V₁'IsViewOnE₁ V₂'IsViewOnE₂
properSeparation-V₁V₂ wbc1
have Compositionality ES1 ES2 ?V' ?V₁' ?V₂'
unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with (BSD ?V₁' Tr_{ES1} (BSD ?V₂' Tr_{ES2}) have BSD ?V' Tr_(ES1||ES2)
using Compositionality.compositionality-BSD by blast

 $\begin{array}{ll} \mbox{from } validES1 \; validES2 \; composeES-yields-ES \; validVC \\ \mbox{have } BSPTaxonomyDifferentCorrections \; (ES1 \| ES2) \; \mathcal{V} \\ \mbox{unfolding } BSPTaxonomyDifferentCorrections-def \; by \; auto \\ \mbox{with } \langle BSD \; \mathcal{V}' \; Tr_{(ES1 \| ES2)} \rangle \; \mbox{have } SD \; \mathcal{V} \; Tr_{(ES1 \| ES2)} \\ \mbox{using } BSPTaxonomyDifferentCorrections.BSD-implies-SD-for-modified-view \; by \; auto \\ \mbox{} \\ \\ \mbox{} \\ \mbox$

qed

 $\begin{array}{l} \textbf{theorem compositionality-SI:} \\ \llbracket SD \ \mathcal{V}1 \ Tr_{ES1}; \ SD \ \mathcal{V}2 \ Tr_{ES2}; \ SI \ \mathcal{V}1 \ Tr_{ES1}; \ SI \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket \\ \implies SI \ \mathcal{V} \ (Tr_{(ES1 \ \parallel \ ES2)}) \\ \textbf{proof} \ - \end{array}$

 $\begin{array}{l} \textbf{assume SD $\mathcal{V}1$ Tr_{ES1}}\\ \textbf{and SD $\mathcal{V}2$ Tr_{ES2}}\\ \textbf{and SI $\mathcal{V}1$ Tr_{ES1}}\\ \textbf{and SI $\mathcal{V}2$ Tr_{ES2}}\\ \textbf{\{} \end{array}$

from validV1 have \mathcal{V}_1 'Is $ViewOnE_1$: is ViewOn \mathcal{V}_1 ' E_{ES1} unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from validV2 have \mathcal{V}_2 'Is $ViewOnE_2$: is ViewOn \mathcal{V}_2 ' E_{ES2} unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from VIs ViewOnE have \mathcal{V} 'Is ViewOnE: is ViewOn $\mathcal{V}' E_{(ES1||ES2)}$

unfolding is View On-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews $N\mathcal{V}$ -inter-E1-is- $N\mathcal{V}1$ have $V_{\mathcal{V}'} \cap E_{ES1} = V_{\mathcal{V}_1'}$ unfolding properSeparationOfViews-def by auto from propSepViews $N\mathcal{V}$ -inter-E2-is- $N\mathcal{V}2$ have $V_{\mathcal{V}'} \cap E_{ES2} = V_{\mathcal{V}_2'}$ unfolding properSeparationOfViews-def by auto from propSepViews have $C_{\mathcal{V}'} \cap E_{ES1} \subseteq C_{\mathcal{V}_1'}$ unfolding properSeparationOfViews-def by auto from propSepViews have $C_{\mathcal{V}'} \cap E_{ES2} \subseteq C_{\mathcal{V}_2'}$ unfolding properSeparationOfViews-def by auto have $N_{\mathcal{V}_1'} \cap N_{\mathcal{V}_2'} = \{\}$ by auto

 $\begin{array}{l} \textbf{note} \ properSeparation-\mathcal{V}_{1}\mathcal{V}_{2} = \langle V_{\mathcal{V}'} \cap E_{ES1} = V_{\mathcal{V}_{1}'} \rangle \ \langle V_{\mathcal{V}'} \cap E_{ES2} = V_{\mathcal{V}_{2}'} \rangle \\ \langle C_{\mathcal{V}'} \cap E_{ES1} \subseteq C_{\mathcal{V}_{1}'} \rangle \ \langle C_{\mathcal{V}'} \cap E_{ES2} \subseteq C_{\mathcal{V}_{2}'} \rangle \ \langle N_{\mathcal{V}_{1}'} \cap N_{\mathcal{V}_{2}'} = \{\} \rangle \end{array}$

have $wbc1: N_{\mathcal{V}_1'} \cap E_{ES1} = \{\} \land N_{\mathcal{V}_2'} \cap E_{ES2} = \{\}$ by *auto*

from $\langle SI \ V2 \ Tr_{ES2} \rangle$ have $BSI \ ?V_2' \ Tr_{ES2}$

using validES2 validV2 BSPTaxonomyDifferentCorrections.SI-implies-BSI-for-modified-view unfolding BSPTaxonomyDifferentCorrections-def by auto from validES1 validES2 composableES1ES2 V'IsViewOnE V₁'IsViewOnE₁ V₂'IsViewOnE₂ properSeparation-V₁V₂ wbc1
have Compositionality ES1 ES2 ?V' ?V₁' ?V₂' unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def)
with ⟨BSD ?V₁' Tr_{ES1}⟩ ⟨BSD ?V₂' Tr_{ES2}⟩ ⟨BSI ?V₁' Tr_{ES1}⟩ ⟨BSI ?V₂' Tr_{ES2}⟩
have BSI ?V' Tr(ES1||ES2)
using Compositionality.compositionality-BSI by blast
from validES1 validES2 composeES-yields-ES validVC
have BSPTaxonomyDifferentCorrections (ES1||ES2) V
unfolding BSPTaxonomyDifferentCorrections-def by auto

using BSPTaxonomyDifferentCorrections.BSI-implies-SI-for-modified-view by auto } thus ?thesis by auto

 \mathbf{qed}

theorem compositionality-SIA: $[SD \ V1 \ Tr_{ES1}; \ SD \ V2 \ Tr_{ES2}; \ SIA \ \varrho1 \ V1 \ Tr_{ES1}; \ SIA \ \varrho2 \ V2 \ Tr_{ES2};$ $(\varrho 1 \ \mathcal{V}1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}; (\varrho 2 \ \mathcal{V}2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2}]$ $\implies SIA \ \varrho \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})$ proof assume SD $\mathcal{V}1$ Tr_{ES1} and SD V2 Tr_{ES2} and SIA $\varrho 1 \ V 1 \ Tr_{ES1}$ and SIA $\varrho 2 \ V 2 \ Tr_{ES2}$ and $(\varrho 1 \ \mathcal{V} 1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}$ and $(\varrho 2 \ \mathcal{V} 2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2}^{-1}$ { let $\mathcal{V}_{1}' = \{ V = V_{\mathcal{V}_{1}} \cup N_{\mathcal{V}_{1}}, N = \{ \}, C = C_{\mathcal{V}_{1}} \}$ let $\mathcal{V}_{2}' = (V = V_{\mathcal{V}_{2}} \cup N_{\mathcal{V}_{2}}, N = \{\}, C = C_{\mathcal{V}_{2}})$ let $\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})$ $\textbf{let } ? \varrho 1'::'a \textit{ Rho } = \lambda \mathcal{V}. \textit{ if } \mathcal{V} = ? \mathcal{V}_1 ' \textit{ then } \varrho 1 \textit{ V1 } \textit{ else } \{\}$ let $?\varrho 2'::'a Rho = \lambda \mathcal{V}$. if $\mathcal{V} = ?\mathcal{V}_2'$ then $\varrho 2 \mathcal{V} 2$ else {} let $?\varrho'::'a \ Rho = \lambda \mathcal{V}'.$ if $\mathcal{V}' = ?\mathcal{V}'$ then $\varrho \ \mathcal{V}$ else {} have $(?\varrho 1' ? \mathcal{V}_1') = (\varrho 1 \ \mathcal{V} 1)$ by simp have $(?\varrho 2' ? \mathcal{V}_2') = (\varrho 2 \ \mathcal{V}2)$ by simp have $(? \varrho' ? \mathcal{V}') = (\varrho \ \mathcal{V})$ by simp

with $\langle BSI ? \mathcal{V}' Tr_{(ES1 \parallel ES2)} \rangle$ have $SI \ \mathcal{V} Tr_{(ES1 \parallel ES2)}$

from validV1 have \mathcal{V}_1 'Is $ViewOnE_1$: is ViewOn \mathcal{V}_1 ' E_{ES1} unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from validV2 have \mathcal{V}_2 'Is $ViewOnE_2$: is ViewOn \mathcal{V}_2 ' E_{ES2}

unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto from VIsViewOnE have \mathcal{V}' IsViewOnE: isViewOn $\mathcal{P}' E_{(ES1||ES2)}$

unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

 $\mathbf{from} \ propSepViews \ \ N\mathcal{V}\text{-}inter\text{-}E1\text{-}is\text{-}N\mathcal{V}1$ have $V_{\mathcal{PV}'} \cap E_{ES1} = V_{\mathcal{PV}_1'}$ unfolding properSeparationOfViews-def by auto from propSepViews NV-inter-E2-is-NV2 have $V_{\mathcal{P}\mathcal{V}'} \cap E_{ES2} = V_{\mathcal{P}\mathcal{V}_2'}$ unfolding properSeparationOfViews-def by auto from propSepViews have $C_{\mathcal{P}}' \cap E_{ES1} \subseteq C_{\mathcal{P}}''$ unfolding properSeparationOfViews-def by auto **from** *propSepViews* have $C_{\mathcal{P}}' \cap E_{ES2} \subseteq C_{\mathcal{P}}'$ unfolding properSeparationOfViews-def by auto have $N_{\mathcal{P}\mathcal{V}_1} \cap N_{\mathcal{P}\mathcal{V}_2} = \{\}$ by auto

- **note** properSeparation- $\mathcal{V}_1\mathcal{V}_2 = \langle V_{\mathcal{V}'} \cap E_{ES1} = V_{\mathcal{V}_1'} \rangle \langle V_{\mathcal{V}'} \cap E_{ES2} = V_{\mathcal{V}_2'} \rangle$ $\langle C_{\mathcal{P}\mathcal{V}'} \cap E_{ES1} \subseteq C_{\mathcal{P}\mathcal{V}_1} \rangle \langle C_{\mathcal{P}\mathcal{V}'} \cap E_{ES2} \subseteq C_{\mathcal{P}\mathcal{V}_2} \rangle \langle N_{\mathcal{P}\mathcal{V}_1} \cap N_{\mathcal{P}\mathcal{V}_2} \rangle = \{\}\rangle$
- have $wbc1: N_{\mathcal{V}_{1'}} \cap E_{ES1} = \{\} \land N_{\mathcal{V}_{2'}} \cap E_{ES2} = \{\}$ by auto
- from $\langle SD \ V1 \ Tr_{ES1} \rangle$ have $BSD \ \mathcal{V}_1' \ Tr_{ES1}$ $using \ validES1 \ validV1 \ BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view$ unfolding BSPTaxonomyDifferentCorrections-def by auto from $\langle SD \ V2 \ Tr_{ES2} \rangle$ have $BSD \ \mathcal{V}_2' \ Tr_{ES2}$

 ${\bf using} \ validES2 \ validV2 \ BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view$ unfolding BSPTaxonomyDifferentCorrections-def by auto

- from $\langle SIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \rangle \langle (? \varrho 1' \ ? \mathcal{V}_1') = (\varrho 1 \ \mathcal{V}1) \rangle$ have $BSIA \ ? \varrho 1' \ ? \mathcal{V}_1' \ Tr_{ES1}$ using validES1 validV1 BSPTaxonomyDifferentCorrections.SIA-implies-BSIA-for-modified-view unfolding BSPTaxonomyDifferentCorrections-def by fastforce
- from $\langle SIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \rangle \langle (? \varrho 2' \ ? \mathcal{V}_2') = (\varrho 2 \ \mathcal{V}2) \rangle$ have $BSIA \ ? \varrho 2' \ ? \mathcal{V}_2' \ Tr_{ES2}$ using validES2 validV2 BSPTaxonomyDifferentCorrections.SIA-implies-BSIA-for-modified-view **unfolding** BSPTaxonomyDifferentCorrections-def **by** fastforce
- **from** validES1 validES2 composableES1ES2 V'IsViewOnE V_1' IsViewOnE₁ V_2' IsViewOnE₂ $properSeparation-V_1V_2$ wbc1 have Compositionality ES1 ES2 $\mathcal{V}' \mathcal{V}_1' \mathcal{V}_2'$ unfolding Compositionality-def

by (*simp add: properSeparationOfViews-def wellBehavedComposition-def*)

- $\mathbf{from} \ \langle (\varrho 1 \ \mathcal{V}1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1} \rangle \ \langle (?\varrho 1' \ ?\mathcal{V}_1') = (\varrho 1 \ \mathcal{V}1) \rangle \ \langle (?\varrho' \ ?\mathcal{V}') = (\varrho \ \mathcal{V}) \rangle$ have $?\varrho 1' ?\mathcal{V}_1' \subseteq ?\varrho' ?\mathcal{V}' \cap E_{ES1}$
- by *auto*
- $\begin{array}{l} \mathbf{from} \ \langle (\varrho 2 \ \mathcal{V} 2) \subseteq (\varrho \ \mathcal{V}) \ \cap \ E_{ES2} \rangle \ \langle (? \varrho 2' \ ? \mathcal{V}_2') = (\varrho 2 \ \mathcal{V} 2) \rangle \ \langle (? \varrho' \ ? \mathcal{V}') = (\varrho \ \mathcal{V}) \rangle \\ \mathbf{have} \ ? \varrho 2' \ ? \mathcal{V}_2' \ \subseteq \ ? \varrho' \ ? \mathcal{V}' \ \cap \ E_{ES2} \end{array}$

from *(Compositionality ES1 ES2 ?V' ?V*₁*' ?V*₂*') (BSD ?V*₁*' Tr*_{ES1}*) (BSD ?V*₂*' Tr*_{ES2}*)* $\langle BSIA ? \varrho 1' ? \mathcal{V}_1' Tr_{ES1} \rangle \langle BSIA ? \varrho 2' ? \mathcal{V}_2' Tr_{ES2} \rangle$

by auto

```
\begin{array}{l} \langle ?\varrho 1' \ \mathcal{W}_1' \subseteq \ ?\varrho' \ \mathcal{W}' \cap E_{ES1} \rangle \langle ?\varrho 2' \ \mathcal{W}_2' \subseteq \ ?\varrho' \ \mathcal{W}' \cap E_{ES2} \rangle \\ \textbf{have } BSIA \ ?\varrho' \ \mathcal{W}' \ Tr_{(ES1 \parallel ES2)} \\ \textbf{using } Compositionality.compositionality-BSIA \textbf{ by } fastforce \\ \textbf{from } validES1 \ validES2 \ composeES-yields-ES \ validVC \\ \textbf{have } BSPTaxonomyDifferentCorrections \ (ES1 \parallel ES2) \ \mathcal{V} \\ \textbf{unfolding } BSPTaxonomyDifferentCorrections-def \ \textbf{by } auto \\ \textbf{with } \langle BSIA \ ?\varrho' \ \mathcal{W}' \ Tr_{(ES1 \parallel ES2)} \rangle \ \langle (?\varrho' \ \mathcal{V}') = (\varrho \ \mathcal{V}) \rangle \ \textbf{have } SIA \ \varrho \ \mathcal{V} \ Tr_{(ES1 \parallel ES2)} \\ \textbf{using } BSPTaxonomyDifferentCorrections.BSIA-implies-SIA-for-modified-view \ \textbf{by } fastforce \\ \end{array}
```

Acknowledgments

This work was partially funded by the DFG (German Research Foundation) under the projects FM-SecEng (MA 3326/1-2, MA 3326/1-3) and RSCP (MA 3326/4-3).

References

- S. Grewe, H. Mantel, M. Tasch, R. Gay, and H. Sudbrock. I-MAKS A Framework for Information-Flow Security in Isabelle/HOL. Technical Report TUD-CS-2018-0056, TU Darmstadt, 2018.
- H. Mantel. Possibilistic Definitions of Security An Assembly Kit. In Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW), pages 185–199, 2000.
- [3] H. Mantel. A Uniform Framework for the Formal Specification and Verification of Information Flow Security. PhD thesis, Saarland University, Saarbrücken, Germany, 2003.