Minsky Machines*

Bertram Felgenhauer

September 13, 2023

Abstract

We formalize undecidablity results for Minsky machines. To this end, we also formalize recursive inseparability.

We start by proving that Minsky machines can compute arbitrary primitive recursive and recursive functions. We then show that there is a deterministic Minsky machine with one argument (modeled by assigning the argument to register 0 in the initial configuration) and final states 0 and 1 such that the set of inputs that are accepted in state 0 is recursively inseparable from the set of inputs that are accepted in state 1.

As a corollary, the set of Minsky configurations that reach state 0 but not state 1 is recursively inseparable from the set of Minsky configurations that reach state 1 but not state 0 . In particular both these sets are undecidable.

We do not prove that recursive functions can simulate Minsky machines.

Contents

1 Recursive inseperability 2
1.1 Definition and basic facts 2
1.2 Rice's theorem 3
2 Minsky machines 4
2.1 Deterministic relations 5
2.2 Minsky machine definition 5
2.3 Concrete Minsky machines 8
2.4 Trivial building blocks 9
2.5 Sequential composition 10
2.6 Bounded loop 11
2.7 Copying values 12
2.8 Primitive recursive functions 14

[^0]2.9 Recursively enumerable sets as Minsky machines 16
2.10 Encoding of Minsky machines 20
2.11 Undecidablity results 21

1 Recursive inseperability

```
theory Recursive-Inseparability
    imports Recursion-Theory-I.RecEnSet
begin
```

Two sets A and B are recursively inseparable if there is no computable set that contains A and is disjoint from B. In particular, a set is computable if the set and its complement are recursively inseparable. The terminology was introduced by Smullyan [4]. The underlying idea can be traced back to Rosser, who essentially showed that provable and disprovable sentences are arithmetically inseparable in Peano Arithmetic [3]; see also Kleene's symmetric version of Gödel's incompleteness theorem [1].
Here we formalize recursive inseparability on top of the Recursion-TheoryI AFP entry [2]. Our main result is a version of Rice' theorem that states that the index sets of any two given recursively enumerable sets are recursively inseparable.

1.1 Definition and basic facts

Two sets A and B are recursively inseparable if there are no decidable sets X such that A is a subset of X and X is disjoint from B.

```
definition rec-inseparable where
    rec-inseparable A B\equiv\forallX.A\subseteqX\wedgeB\subseteq-X \longrightarrow वomputable X
```

lemma rec-inseparableI:
$(\bigwedge X . A \subseteq X \Longrightarrow B \subseteq-X \Longrightarrow$ computable $X \Longrightarrow$ False $) \Longrightarrow$ rec-inseparable A
B
unfolding rec-inseparable-def by blast
lemma rec-inseparableD:
rec-inseparable $A>A \subseteq X \Longrightarrow B \subseteq-X \Longrightarrow$ computable $X \Longrightarrow$ False
unfolding rec-inseparable-def by blast

Recursive inseperability is symmetric and enjoys a monotonicity property.

```
lemma rec-inseparable-symmetric:
    rec-inseparable \(A B\) rec-inseparable \(B A\)
    unfolding rec-inseparable-def computable-def by (metis double-compl)
lemma rec-inseparable-mono:
    rec-inseparable \(A B \Longrightarrow A \subseteq A^{\prime} \Longrightarrow B \subseteq B^{\prime} \Longrightarrow\) rec-inseparable \(A^{\prime} B^{\prime}\)
    unfolding rec-inseparable-def by (meson subset-trans)
```

Many-to-one reductions apply to recursive inseparability as well.

```
lemma rec-inseparable-many-reducible:
    assumes total-recursive \(f\) rec-inseparable \(\left(f-{ }^{\prime} A\right)(f-‘ B)\)
    shows rec-inseparable \(A B\)
proof (intro rec-inseparableI)
    fix \(X\) assume \(A \subseteq X B \subseteq-X\) computable \(X\)
    moreover have many-reducible-to \(\left(f-^{\prime} X\right) X\) using assms(1)
        by (auto simp: many-reducible-to-def many-reducible-to-via-def)
    ultimately have computable \(\left(f-{ }^{\prime} X\right)\) and \(\left(f-{ }^{\prime} A\right) \subseteq\left(f-{ }^{\prime} X\right)\) and \(\left(f-{ }^{\prime} B\right)\)
\(\subseteq-\left(f-{ }^{\prime} X\right)\)
        by (auto dest!: m-red-to-comp)
    then show False using assms(2) unfolding rec-inseparable-def by blast
qed
```

Recursive inseparability of A and B holds vacuously if A and B are not disjoint.

```
lemma rec-inseparable-collapse:
    A \cap B \neq \{ \} \Longrightarrow \text { rec-inseparable A B}
    by (auto simp: rec-inseparable-def)
```

Recursive inseparability is intimately connected to non-computability.

```
lemma rec-inseparable-non-computable:
    \(A \cap B=\{ \} \Longrightarrow\) rec-inseparable \(A B \Longrightarrow \neg\) computable \(A\)
    by (auto simp: rec-inseparable-def)
```

lemma computable-rec-inseparable-conv: computable $A \longleftrightarrow \neg$ rec-inseparable $A(-A)$
by (auto simp: computable-def rec-inseparable-def)

1.2 Rice's theorem

We provide a stronger version of Rice's theorem compared to [2]. Unfolding the definition of recursive inseparability, it states that there are no decidable sets X such that

- there is a r.e. set such that all its indices are elements of X; and
- there is a r.e. set such that none of its indices are elements of X.

This is true even if X is not an index set (i.e., if an index of a r.e. set is an element of X, then X contains all indices of that r.e. set), which is a requirement of Rice's theorem in [2].

```
lemma c-pair-inj':
    c-pair x1 y1 = c-pair x2 y2 \longleftrightarrow < x1 = x2 ^ y1 = y2
    by (metis c-fst-of-c-pair c-snd-of-c-pair)
lemma Rice-rec-inseparable:
```

```
rec-inseparable \(\{k\). nat-to-ce-set \(k=\) nat-to-ce-set \(n\}\{k . n a t-\) to-ce-set \(k=\) nat-to-ce-set
\(m\}\)
proof (intro rec-inseparableI, goal-cases)
    case (1 X)
```

Note that \llbracket index-set ? A; ? $A \neq\{ \} ; ? A \neq U N I V \rrbracket \Longrightarrow \neg$ computable ? A is not applicable because X may not be an index set.

```
let?Q}={q. s-ce q q \inX}\times nat-to-ce-set m \cup{q. s-ce q q \in-X}\times nat-to-ce-set
n
    have ?Q \in ce-rels
        using 1(3) ce-set-lm-5 comp2-1[OF s-ce-is-pr id1-1 id1-1] unfolding com-
putable-def
    by (intro ce-union[of ce-rel-to-set - ce-rel-to-set -, folded ce-rel-lm-32 ce-rel-lm-8]
            ce-rel-lm-29 nat-to-ce-set-into-ce) blast+
```



```
    unfolding ce-rel-lm-8 ce-rel-to-set-def by (metis (no-types, lifting) nat-to-ce-set-srj)
    from eqset-imp-iff[OF this, of c-pair q -]
    have nat-to-ce-set (s-ce q q) =(if s-ce q q AX then nat-to-ce-set m else nat-to-ce-set
n)
    by (auto simp: s-lm c-pair-inj' nat-to-ce-set-def fn-to-set-def pr-conv-1-to-2-def)
    then show ?case using 1(1,2)[THEN subsetD, of s-ce q q] by (auto split:
if-splits)
qed
end
```


2 Minsky machines

```
theory Minsky
    imports Recursive-Inseparability Abstract-Rewriting.Abstract-Rewriting Pure-ex.Guess
begin
```

We formalize Minksy machines, and relate them to recursive functions. In our flavor of Minsky machines, a machine has a set of registers and a set of labels, and a program is a set of labeled operations. There are two operations, Inc and Dec; the former takes a register and a label, and the latter takes a register and two labels. When an Inc instruction is executed, the register is incremented and execution continues at the provided label. The Dec instruction checks the register. If it is non-zero, the register and continues execution at the first label. Otherwise, the register remains at zero and execution continues at the second label.
We continue to show that Minksy machines can implement any primitive recursive function. Based on that, we encode recursively enumerable sets as Minsky machines, and finally show that

1. The set of Minsky configurations such that from state 1 , state 0 can be reached, is undecidable;
2. There is a deterministic Minsky machine U such that the set of values x such that $(2, \lambda n$. if $n=0$ then x else 0$)$ reach state 0 is recursively inseparable from those that reach state 1 ; and
3. As a corollary, the set of Minsky configurations that reach state 0 but not state 1 is recursively inseparable from the configurations that reach state 1 but not state 0 .

2.1 Deterministic relations

A relation \rightarrow is deterministic if $t \leftarrow s \rightarrow u^{\prime}$ implies $t=u$. This abstract rewriting notion is useful for talking about deterministic Minsky machines.

```
definition
    deterministic R}\longleftrightarrow\mp@subsup{R}{}{-1}OR\subseteqI
lemma deterministicD:
    deterministic R\Longrightarrow(x,y)\inR\Longrightarrow(x,z)\inR\Longrightarrowy=z
    by (auto simp: deterministic-def)
lemma deterministic-empty [simp]:
    deterministic {}
    by (auto simp: deterministic-def)
lemma deterministic-singleton [simp]:
    deterministic {p}
    by (auto simp: deterministic-def)
lemma deterministic-imp-weak-diamond [intro]:
    deterministic R\Longrightarroww\diamondR
    by (auto simp: weak-diamond-def deterministic-def)
```

lemmas deterministic-imp-CR $=$ deterministic-imp-weak-diamond $[$ THEN weak-diamond-imp-CR]
lemma deterministic-union:
fst' $S \cap$ fst $^{\prime} R=\{ \} \Longrightarrow$ deterministic $S \Longrightarrow$ deterministic $R \Longrightarrow$ deterministic
$(S \cup R)$
by (fastforce simp add: deterministic-def disjoint-iff-not-equal)
lemma deterministic-map:
inj-on $f(f s t ‘ R) \Longrightarrow$ deterministic $R \Longrightarrow$ deterministic (map-prod $f g^{\prime} R$)
by (auto simp add: deterministic-def dest!: inj-onD; force)

2.2 Minsky machine definition

A Minsky operation either decrements a register (testing for zero, with two possible successor states), or increments a register (with one successor state). A Minsky machine is a set of pairs of states and operations.
datatype $(' s, ' v) O p=\operatorname{Dec}(o p-v a r: \quad ' v)^{\prime} s ' s \mid \operatorname{Inc}\left(o p-v a r:{ }^{\prime} v\right)^{\prime} s$
type-synonym $\left({ }^{\prime} s, ' v\right)$ minsky $=\left({ }^{\prime} s \times\left({ }^{\prime} s,{ }^{\prime} v\right)\right.$ Op) set
Semantics: A Minsky machine operates on pairs consisting of a state and an assignment of the registers; in each step, either a register is incremented, or a register is decremented, provided it is non-zero. We write α for assignments; $\alpha[v]$ for the value of the register v in α and $\alpha[v:=n]$ for the update of v to n. Thus, the semantics is as follows:

1. if $\left(s, \operatorname{Inc} v s^{\prime}\right) \in M$ then $(s, \alpha) \rightarrow\left(s^{\prime}, \alpha[v:=\alpha[v]+1]\right)$;
2. if $\left(s, \operatorname{Dec} v s_{n} s_{z}\right) \in M$ and $\alpha[v]>0$ then $(s, \alpha) \rightarrow\left(s_{n}, \alpha[v:=\alpha[v]-1]\right)$; and
3. if $\left(s, \operatorname{Dec} v s_{n} s_{z}\right) \in M$ and $\alpha[v]=0$ then $(s, \alpha) \rightarrow\left(s_{z}, \alpha\right)$.

A state is finite if there is no operation associated with it.
inductive-set step $::\left({ }^{\prime} s, ' v\right)$ minsky $\Rightarrow\left({ }^{\prime} s \times(' v \Rightarrow n a t)\right)$ rel for $M::\left({ }^{\prime} s,{ }^{\prime} v\right)$ minsky where
inc: $\left(s\right.$, Inc $\left.v s^{\prime}\right) \in M \Longrightarrow\left((s, v s),\left(s^{\prime}, \lambda x\right.\right.$. if $x=v$ then Suc $(v s v)$ else vs $\left.\left.x\right)\right) \in$ step M
| decn: $(s$, Dec v sn sz) $) \in M \Longrightarrow$ vs $v=S u c n \Longrightarrow((s, v s),(s n, \lambda x$. if $x=v$ then n else vs $x)) \in$ step M
\mid decz: $(s$, Dec v sn $s z) \in M \Longrightarrow v s v=0 \Longrightarrow((s, v s),(s z, v s)) \in$ step M

```
lemma step-mono:
    \(M \subseteq M^{\prime} \Longrightarrow\) step \(M \subseteq\) step \(M^{\prime}\)
    by (auto elim: step.cases intro: step.intros)
lemmas steps-mono \(=\) rtrancl-mono[OF step-mono]
A Minsky machine has deterministic steps if its defining relation between states and operations is deterministic.
```

```
lemma deterministic-stepI [intro]:
```

lemma deterministic-stepI [intro]:
assumes deterministic M shows deterministic (step M)
assumes deterministic M shows deterministic (step M)
proof -
proof -
\{ fix s vs s1 vs1 s2 vs2
\{ fix s vs s1 vs1 s2 vs2
assume $s:((s, v s),(s 1, v s 1)) \in \operatorname{step} M((s, v s),(s 2, v s 2)) \in$ step M
assume $s:((s, v s),(s 1, v s 1)) \in \operatorname{step} M((s, v s),(s 2, v s 2)) \in$ step M
have $(s 1, v s 1)=(s 2, v s 2)$ using deterministicD $[$ OF assms]
have $(s 1, v s 1)=(s 2, v s 2)$ using deterministicD $[$ OF assms]
by (cases rule: step.cases[OF s(1)]; cases rule: step.cases[OF s(2)]) fastforce+
by (cases rule: step.cases[OF s(1)]; cases rule: step.cases[OF s(2)]) fastforce+
\}
\}
then show ?thesis by (auto simp: deterministic-def)
then show ?thesis by (auto simp: deterministic-def)
qed

```
qed
```

A Minksy machine halts when it reaches a state with no associated operation.

```
lemma NF-stepI [intro]:
    s\not\infst'}M\Longrightarrow(s,vs)\inNF(step M
```

by (auto intro!: no-step elim!: step.cases simp: rev-image-eqI)
Deterministic Minsky machines enjoy unique normal forms.

```
lemmas deterministic-minsky-UN=
    join-NF-imp-eq[OF CR-divergence-imp-join[OF deterministic-imp-CR[OF deter-
ministic-stepI]] NF-stepI NF-stepI]
```

We will rename states and variables.
definition map-minsky where
map-minsky $f g M=$ map-prod $f(\operatorname{map}-O p f g)$ ' M
lemma map-minsky-id:
map-minsky id id $M=M$
by (simp add: map-minsky-def Op.map-id0 map-prod.id)
lemma map-minsky-comp:
map-minsky $f g$ (map-minsky $\left.f^{\prime} g^{\prime} M\right)=$ map-minsky $\left(f \circ f^{\prime}\right)\left(g \circ g^{\prime}\right) M$
unfolding map-minsky-def image-comp Op.map-comp map-prod.comp comp-def[of map-Op - -] ..

When states and variables are renamed, computations carry over from the original machine, provided that variables are renamed injectively.

```
lemma map-step:
    assumes inj g vs \(=v s^{\prime} \circ g((s, v s),(t, w s)) \in\) step \(M\)
    shows \(\left(\left(f s, v s^{\prime}\right),(f t, \lambda x\right.\). if \(x \in\) range \(g\) then ws (inv \(g x)\) else \(\left.\left.v s^{\prime} x\right)\right) \in\) step
(map-minsky \(f g M\) )
    using assms(3)
proof (cases rule: step.cases)
    case (inc v) note \([\operatorname{simp}]=\operatorname{inc}(1)\)
    let ? \(w s^{\prime}=\lambda w\). if \(w=g\) v then Suc \(\left(v s^{\prime}(g v)\right)\) else vs' \(w\)
    have \(\left(\left(f s, v s^{\prime}\right),\left(f t\right.\right.\), ? ws \(\left.\left.s^{\prime}\right)\right) \in\) step (map-minsky \(\left.f g M\right)\)
        using inc(2) step.inc[offsgvft map-minsky fg Mvs'
        by (force simp: map-minsky-def)
    moreover have ( \(\lambda x\). if \(x \in\) range \(g\) then ws (inv \(g x\) ) else \(\left.v s^{\prime} x\right)=\) ? \(w s^{\prime}\)
        using \(\operatorname{assms}(1,2)\) by (auto intro!: ext simp: injD image-def)
    ultimately show ?thesis by auto
next
    case (decn v sz n) note \([\operatorname{simp}]=\operatorname{decn(1)}\)
    let \({ }^{2} w s^{\prime}=\lambda x\). if \(x=g v\) then \(n\) else \(v s^{\prime} x\)
    have \(\left(\left(f s, v s^{\prime}\right),\left(f t, ? w s^{\prime}\right)\right) \in\) step (map-minsky \(\left.f g M\right)\)
        using assms(2) decn(2-) step.decn[offsgvftfsz map-minskyfg Mvs'n]
        by (force simp: map-minsky-def)
    moreover have ( \(\lambda x\). if \(x \in\) range \(g\) then ws (inv \(g x\) ) else \(\left.v s^{\prime} x\right)=\) ? ws \({ }^{\prime}\)
        using \(\operatorname{assms}(1,2)\) by (auto intro!: ext simp: injD image-def)
    ultimately show ?thesis by auto
next
    case \((\operatorname{decz} v s n)\) note \([\operatorname{simp}]=\operatorname{decz}(1)\)
    have \(\left(\left(f s, v s^{\prime}\right),\left(f t, v s^{\prime}\right)\right) \in\) step (map-minsky \(\left.f g M\right)\)
        using \(\operatorname{assms}(2) \operatorname{decz}(2-)\) step.decz[offsgvfsnft map-minsky fg M vs']
```

```
        by (force simp: map-minsky-def)
    moreover have ( }\lambdax\mathrm{ . if }x\in\mathrm{ range }g\mathrm{ then ws (inv g x) else vs' }x\mathrm{ ) = vs'
    using assms(1,2) by (auto intro!: ext simp: injD image-def)
    ultimately show ?thesis by auto
qed
lemma map-steps:
    assumes inj g vs = ws \circg((s,vs),(t,vs')) \in(step M)*
    shows ((fs,ws), (ft,\lambdax. if x\in range g then vs' (inv g x) else ws x)) \in (step
(map-minsky fg M))*
    using assms(3,2)
proof (induct (s,vs) arbitrary: s vs ws rule: converse-rtrancl-induct)
    case base
    then have ( }\lambdax\mathrm{ . if }x\in\mathrm{ range }g\mathrm{ then vs' (inv g x) else ws x) = ws
            using assms(1) by (auto intro!: ext simp: injD image-def)
    then show ?case by auto
next
    case (step y)
    have snd y=(\lambdax. if }x\in\mathrm{ range g then snd y(inv g x) else ws x)}\circg(\mathbf{is}-=\mathrm{ ?ys'
\circ-)
            using assms(1) by auto
            then show ?case using map-step[OF assms(1) step(4), of s fst y snd y M f]
step(1)
            step(3)[OF prod.collapse[symmetric], of ?ys'] by (auto cong: if-cong)
qed
```


2.3 Concrete Minsky machines

The following definition expresses when a Minsky machine M implements a specification P. We adopt the convention that computations always start out in state 1 and end in state 0 , which must be a final state. The specification P relates initial assignments to final assignments.
definition mk-minsky-wit $::($ nat, nat $)$ minsky $\Rightarrow((n a t \Rightarrow n a t) \Rightarrow(n a t \Rightarrow n a t)$
\Rightarrow bool $) \Rightarrow$ bool where
mk-minsky-wit $M P \equiv$ finite $M \wedge$ deterministic $M \wedge 0 \notin f s t$ ' $M \wedge$ $\left(\forall\right.$ vs. $\exists v s^{\prime} .\left((\right.$ Suc $\left.0, v s),\left(0, v s^{\prime}\right)\right) \in(\text { step } M)^{*} \wedge P$ vs vs $)$
abbreviation $m k$-minsky $::(($ nat \Rightarrow nat $) \Rightarrow($ nat \Rightarrow nat $) \Rightarrow$ bool $) \Rightarrow$ bool where $m k$-minsky $P \equiv \exists M$. mk-minsky-wit $M P$
lemmas $m k$-minsky-def $=m k$-minsky-wit-def
lemma mk-minsky-mono:
shows mk-minsky $P \Longrightarrow\left(\bigwedge v s v s^{\prime} . P\right.$ vs vs ${ }^{\prime} \Longrightarrow Q$ vs vs $\left.{ }^{\prime}\right) \Longrightarrow$ mk-minsky Q
unfolding $m k$-minsky-def by meson
lemma $m k$-minsky-sound:
assumes mk-minsky-wit MP $\left((\right.$ Suc $\left.0, v s),\left(0, v s^{\prime}\right)\right) \in(\text { step } M)^{*}$

```
    shows P vs vs'
proof -
    have M: deterministic M 0 &fst' M \bigwedgevs. \existsvs'. ((Suc 0,vs), 0,vs') \in(step
M)*}^P\mathrm{ vs vs'
    using assms(1) by (auto simp: mk-minsky-wit-def)
    obtain vs" where vs'\prime: ((Suc 0, vs), (0,vs')) ) (step M)* P vs vs" using M(3)
by blast
```



```
    by (intro deterministic-minsky-UN[OF - assms(2) vs'"(1)])
    then show ?thesis using vs'(2) by simp
qed
```

Realizability of n-ary functions for $n=1 \ldots 3$. Here we use the convention that the arguments are passed in registers $1 \ldots 3$, and the result is stored in register 0 .
abbreviation $m k$-minsky1 where

```
mk-minsky1 }f\equivmk\mathrm{ -minsky ( \vs vs'.vs' 0 = f (vs 1))
```

abbreviation $m k$-minsky2 where
$m k$-minsky2 $f \equiv m k$-minsky (λ vs $\left.v s^{\prime} . v s^{\prime} 0=f(v s 1)(v s 2)\right)$
abbreviation $m k$-minsky 3 where

```
mk-minsky3 f \equivmk-minsky(\lambdavs vs'.vs'0=f(vs 1)(vs 2)(vs 3))
```


2.4 Trivial building blocks

We can increment and decrement any register.
lemma mk-minsky-inc:
shows mk-minsky (λ vs $v s^{\prime} . v^{\prime}=(\lambda x$. if $x=v$ then Suc (vs v) else vs $x)$)
using step.inc[of Suc 0 ve 0]
by (auto simp: deterministic-def mk-minsky-def intro!: exI $[$ of $-\{(1$, Inc v 0$)\}$:: (nat, nat) minsky])
lemma mk-minsky-dec:
shows mk-minsky (λ vs $v s^{\prime} . v s^{\prime}=(\lambda x$. if $x=v$ then vs $v-1$ else vs $\left.x)\right)$
proof -
let $? M=\{(1$, Dec v00) $::$ (nat, nat) minsky
show ?thesis unfolding $m k$-minsky-def
proof (intro exI[of - ?M] allI conjI, goal-cases)
case (4 vs)
have $[$ simp $]$: vs $v=0 \Longrightarrow(\lambda x$. if $x=v$ then 0 else vs $x)=v s$ by auto show ?case using step.decz[of Suc 0 v 00 ? O] step.decn[of Suc 0 v 0 l ? ? $]$
by (cases vs v) (auto cong: if-cong)
qed auto
qed

2.5 Sequential composition

The following lemma has two useful corollaries (which we prove simultaneously because they share much of the proof structure): First, if P and Q are realizable, then so is $P \circ Q$. Secondly, if we rename variables by an injective function f in a Minksy machine, then the variables outside the range of f remain unchanged.
lemma mk-minsky-seq-map:
assumes mk-minsky P mk-minsky Q inj g
$\bigwedge v s v s^{\prime} v s^{\prime \prime} . P$ vs $v s^{\prime} \Longrightarrow Q v s^{\prime} v s^{\prime \prime} \Longrightarrow R$ vs vs ${ }^{\prime \prime}$
shows mk-minsky $\left(\lambda v s v s^{\prime} . R(v s \circ g)\left(v s^{\prime} \circ g\right) \wedge(\forall x . x \notin\right.$ range $g \longrightarrow v s x=$ $\left.v s^{\prime} x\right)$)
proof -
obtain M where M : finite M deterministic $M 0 \notin f_{s t}$ ' M
$\bigwedge v s . \exists v s^{\prime} .\left((\right.$ Suc 0, vs $\left.), 0, v s^{\prime}\right) \in(\text { step } M)^{*} \wedge P$ vs vs ${ }^{\prime}$
using assms(1) by (auto simp: mk-minsky-def)
obtain N where N : finite N deterministic $N 0 \notin f s t$ ' N
$\bigwedge v s . \exists v s^{\prime} .\left((\right.$ Suc $\left.0, v s), 0, v s^{\prime}\right) \in(\text { step } N)^{*} \wedge Q$ vs vs ${ }^{\prime}$
using assms(2) by (auto simp: mk-minsky-def)
let ?fM $=\lambda$ s. if $s=0$ then 2 else if $s=1$ then 1 else $2 * s+1-\mathrm{M}$: from 1 to 2
let ? $f N=\lambda s .2 * s \quad-\mathrm{N}$: from 2 to 0
let $? M=$ map-minsky $? f M g M \cup$ map-minsky $? f N g N$
show ?thesis unfolding mk-minsky-def
proof (intro exI[of - ?M] conjI allI, goal-cases)
case 1 show ?case using $M(1) N(1)$ by (auto simp: map-minsky-def)
next
case 2 show ?case using $M(2,3) N(2)$ unfolding map-minsky-def
by (intro deterministic-union deterministic-map)
(auto simp: inj-on-def rev-image-eqI Suc-double-not-eq-double split: if-splits)
next
case 3 show ?case using $N(3)$ by (auto simp: rev-image-eqI map-minsky-def split: if-splits)
next
case (4 vs)
obtain $v s M$ where $M^{\prime}:(($ Suc $0, v s \circ g), 0, v s M) \in(\text { step } M)^{*} P(v s \circ g) v s M$
using $M(4)$ by blast
obtain vs N where $N^{\prime}:(($ Suc $0, v s M), 0$, vsN $) \in(\text { step } N)^{*} Q$ vsM vs N using $N(4)$ by blast
note $*=$ subset $D[$ OF steps-mono, of - ?M]
map-steps $\left[O F-M^{\prime}(1)\right.$, of g vs ?fM, simplified $]$
map-steps $\left[O F-N^{\prime}(1)\right.$, of $g-? f N$, simplified $]$
show ?case
using $\operatorname{assms}(3,4) M^{\prime}(2) N^{\prime}(2) r t r a n c l-t r a n s[O F *(1)[O F-*(2)] *(1)[O F-$ *(3)]
by (auto simp: comp-def)
qed
qed

Sequential composition.
lemma mk-minsky-seq:
assumes $m k$-minsky P mk-minsky Q
^vs vs ${ }^{\prime} v s^{\prime \prime} . P$ vs vs' $\Longrightarrow Q$ vs' $v s^{\prime \prime} \Longrightarrow R$ vs vs ${ }^{\prime \prime}$
shows mk-minsky R
using $m k$-minsky-seq-map[OF assms(1,2), of id] assms(3) by simp
lemma $m k$-minsky-seq':
assumes mk-minsky P mk-minsky Q
shows $m k$-minsky ($\lambda v s v^{\prime \prime} .\left(\exists v s^{\prime} . P\right.$ vs $\left.\left.v s^{\prime} \wedge Q v s^{\prime} v s^{\prime \prime}\right)\right)$
by (intro mk-minsky-seq[OF assms]) blast
We can do nothing (besides transitioning from state 1 to state 0).

lemma mk-minsky-nop:

$m k$-minsky ($\lambda v s$ vs'. vs $=v s^{\prime}$)
by (intro mk-minsky-seq[OF mk-minsky-inc mk-minsky-dec]) auto
Renaming variables.

```
lemma \(m k\)-minsky-map:
    assumes \(m k\)-minsky \(P\) inj \(f\)
    shows mk-minsky \(\left(\lambda v s v s^{\prime} . P(v s \circ f)\left(v s^{\prime} \circ f\right) \wedge(\forall x . x \notin\right.\) range \(f \longrightarrow v s x=\)
\(\left.v s^{\prime} x\right)\) )
    using mk-minsky-seq-map[OF assms(1) mk-minsky-nop assms(2)] by simp
lemma inj-shift [simp]:
    fixes \(a b\) :: nat
    assumes \(a<b\)
    shows inj \((\lambda x\). if \(x=0\) then a else \(x+b)\)
    using assms by (auto simp: inj-on-def)
```


2.6 Bounded loop

In the following lemma, P is the specification of a loop body, and Q the specification of the loop itself (a loop invariant). The loop variable is $v . Q$ can be realized provided that

1. P can be realized;
2. P ensures that the loop variable is not changed by the loop body; and
3. Q follows by induction on the loop variable:
(a) $\alpha Q \alpha$ holds when $\alpha[v]=0$; and
(b) $\alpha[v:=n] P \alpha^{\prime}$ and $\alpha^{\prime} Q \alpha^{\prime \prime}$ imply αQ alpha" when $\alpha[v]=n+1$.
lemma $m k$-minsky-loop:
assumes mk-minsky P
$\bigwedge v s v s^{\prime} . P$ vs $v s^{\prime} \Longrightarrow v s^{\prime} v=v s v$
```
    \vs.vs v=0\LongrightarrowQ vs vs
    \ n \text { vs vs' vs''. vs v} = \text { Suc n } \Longrightarrow P ( \lambda x . ~ i f ~ x ~ = ~ v ~ t h e n ~ n ~ e l s e ~ v s ~ x ) v s ^ { \prime } \Longrightarrow Q v s ^ { \prime }
vs'\prime}\LongrightarrowQvsv\mp@subsup{s}{}{\prime\prime
    shows mk-minsky Q
proof -
    obtain M where M: finite M deterministic M 0 #fst' M
    \vs. \existsvs'.
    using assms(1) by (auto simp: mk-minsky-def)
    let ?M = {(1, Dec v 2 0) } \cup map-minsky Suc id M
    show ?thesis unfolding mk-minsky-def
    proof (intro exI[of - ?M] conjI allI, goal-cases)
        case 1 show ?case using M(1) by (auto simp: map-minsky-def)
    next
        case 2 show ?case using M(2,3) unfolding map-minsky-def
            by (intro deterministic-union deterministic-map) (auto simp: rev-image-eqI)
    next
        case 3 show ?case by (auto simp: map-minsky-def)
    next
        case (4 vs) show ?case
        proof (induct vs v arbitrary: vs)
            case 0 then show ?case using assms(3)[of vs] step.decz[of 1 v 2 0 ?M vs]
                by (auto simp: id-def)
    next
            case (Suc n)
            obtain vs' where }\mp@subsup{M}{}{\prime}:((\mathrm{ Suc 0, 秋. if x = v then n else vs x ), 0,vs') }\in(\mathrm{ step
M)*
            P( }\lambdax\mathrm{ . if }x=v\mathrm{ then n else vs }x)v\mp@subsup{s}{}{\prime}\mathrm{ using M(4) by blast
            obtain vs'\prime where D: ((Suc 0,vs'), O,vs'\prime)}\in(\mathrm{ step ?M)* Q vs' vs"
                using Suc(1)[of vs ] assms(2)[OF M'(2)] by auto
            note }*=\mathrm{ subsetD[OF steps-mono, of - ?M]
                r-into-rtrancl[OF decn[of Suc 0 v 2 0 ?M vs n]]
                map-steps[OF - - M'(1), of id - Suc, simplified, OF refl, simplified, folded
numeral-2-eq-2]
            show ?case using rtrancl-trans[OF rtrancl-trans, OF *(2) *(1)[OF - *(3)]
D(1)]
            D(2) Suc(2) assms(4)[OF - M'(2), of vs'] by auto
        qed
    qed
qed
```


2.7 Copying values

We work up to copying values in several steps.

1. Clear a register. This is a loop that decrements the register until it reaches 0.
2. Add a register to another one. This is a loop that decrements one register, and increments the other register, until the first register reaches
3.
4. Add a register to two others. This is the same, except that two registers are incremented.
5. Move a register: set a register to 0 , then add another register to it.
6. Copy a register destructively: clear two registers, then add another register to them.

lemma mk-minsky-zero:

shows mk-minsky ($\lambda v s s^{\prime} . v s^{\prime}=(\lambda x$. if $x=v$ then 0 else vs $\left.x)\right)$
by (intro mk-minsky-loop $[$ where $v=v$, OF - while v[v]--:
mk-minsky-nop]) auto - pass
lemma mk-minsky-add1:
assumes $v \neq w$
shows mk-minsky ($\lambda v s s^{\prime} . v^{\prime}=(\lambda x$. if $x=v$ then 0 else if $x=w$ then vs $v+$ vs w else vs x))
using assms by (intro mk-minsky-loop $[\mathbf{w h e r e} v=v, O F$ - while $\mathrm{v}[\mathrm{v}]--$:

$$
\text { mk-minsky-inc }[\text { of } w]]) \text { auto } \quad-\mathrm{v}[\mathrm{w}]++
$$

lemma mk-minsky-add2:
assumes $u \neq v u \neq w v \neq w$
shows mk-minsky ($\lambda v s v s^{\prime} . v s^{\prime}=$
(λx. if $x=u$ then 0 else if $x=v$ then vs $u+v s v$ else if $x=w$ then $v s u+v s$ w else vs $x)$)
using assms by (intro mk-minsky-loop[where $v=u$, OF mk-minsky-seq' ${ }^{\prime}$ OF while $\mathrm{v}[\mathrm{u}]--$:

$$
\begin{array}{ll}
\text { mk-minsky-inc[of } v] & -\mathrm{v}[\mathrm{v}]++ \\
\text { mk-minsky-inc[of w]]]]) auto } & -\mathrm{v}[\mathrm{w}]++
\end{array}
$$

lemma mk-minsky-copy1:
assumes $v \neq w$
shows mk-minsky (λ vs $v s^{\prime} . v s^{\prime}=(\lambda x$. if $x=v$ then 0 else if $x=w$ then vs v else vs $x)$)
using assms by (intro mk-minsky-seq [OF
mk-minsky-zero $[$ of $w] \quad-\mathrm{v}[\mathrm{w}]:=0$
mk-minsky-add1[of v w]]) auto $-\mathrm{v}[\mathrm{w}]:=\mathrm{v}[\mathrm{w}]+\mathrm{v}[\mathrm{v}], \mathrm{v}[\mathrm{v}]:=0$
lemma mk-minsky-copy2:
assumes $u \neq v u \neq w v \neq w$
shows mk-minsky ($\lambda v s v s^{\prime} . v s^{\prime}=$
(λx. if $x=u$ then 0 else if $x=v$ then vs u else if $x=w$ then vs u else $v s x)$)
using assms by (intro mk-minsky-seq[OF mk-minsky-seq', OF

$$
\text { mk-minsky-zero[of v] } \quad-\mathrm{v}[\mathrm{v}]:=0
$$

mk-minsky-zero[of w]
$-\mathrm{v}[\mathrm{w}]:=0$
mk-minsky-add2[of $u v w]]$) auto $-\mathrm{v}[\mathrm{v}]:=\mathrm{v}[\mathrm{v}]+\mathrm{v}[\mathrm{u}], \mathrm{v}[\mathrm{w}]:=\mathrm{v}[\mathrm{w}]+\mathrm{v}[\mathrm{u}], \mathrm{v}[\mathrm{u}]$ $:=0$

lemma mk-minsky-copy:

assumes $u \neq v u \neq w v \neq w$
shows mk-minsky ($\lambda v s v s^{\prime} . v s^{\prime}=(\lambda x$. if $x=v$ then vs u else if $x=w$ then 0 else vs $x)$)
using assms by (intro mk-minsky-seq[OF

$$
\text { mk-minsky-copy2[of } u v w] \quad-\mathrm{v}[\mathrm{v}]:=\mathrm{v}[\mathrm{u}], \mathrm{v}[\mathrm{w}]:=\mathrm{v}[\mathrm{u}], \mathrm{v}[\mathrm{u}]:=0
$$

$$
\text { mk-minsky-copy1[of } w u]]) \text { auto }-\mathrm{v}[\mathrm{u}]:=\mathrm{v}[\mathrm{w}], \mathrm{v}[\mathrm{w}]:=0
$$

2.8 Primitive recursive functions

Nondestructive apply: compute f on arguments $\alpha[u], \alpha[v], \alpha[w]$, storing the result in $\alpha[t]$ and preserving all other registers below k. This is easy now that we can copy values.

```
lemma mk-minsky-apply3:
    assumes mk-minsky3 \(f t<k u<k v<k w<k\)
    shows mk-minsky ( \(\lambda v s v s^{\prime} . \forall x<k . v s^{\prime} x=(\) if \(x=t\) then \(f(v s u)(v s v)(v s w)\)
else vs \(x\) ))
    using assms(2-)
    by (intro mk-minsky-seq[OF mk-minsky-seq'[OF mk-minsky-seq'], OF
    mk-minsky-copy[of \(u 1+k k]-\mathrm{v}[1+\mathrm{k}]:=\mathrm{v}[\mathrm{u}]\)
    \(m k\)-minsky-copy \([\) of \(v 2+k k]-\mathrm{v}[2+\mathrm{k}]:=\mathrm{v}[\mathrm{v}]\)
    \(m k\)-minsky-copy \([\) of \(w 3+k k]-\mathrm{v}[3+\mathrm{k}]:=\mathrm{v}[\mathrm{w}]\)
    \(m k\)-minsky-map \([O F \operatorname{assms}(1)\), of \(\lambda x\). if \(x=0\) then \(t\) else \(x+k]]\) ) (auto 0 2)
                \(-\mathrm{v}[\mathrm{t}]:=\mathrm{f} \mathrm{v}[1+\mathrm{k}] \mathrm{v}[2+\mathrm{k}] \mathrm{v}[3+\mathrm{k}]\)
```

Composition is just four non-destructive applies.

```
lemma mk-minsky-comp3-3:
    assumes mk-minsky3 f mk-minsky3 g mk-minsky3 h mk-minsky3 \(k\)
    shows mk-minsky3 ( \(\lambda x\) y z.f \(\left(\begin{array}{l}\text { x } x\end{array}\right.\) z \(\left.)(h x y z)(k x y z)\right)\)
    by (rule mk-minsky-seq[OF mk-minsky-seq'[OF mk-minsky-seq], OF
        mk-minsky-apply3[OF \(\operatorname{assms}(2)\), of 471223\(] \quad-\mathrm{v}[4]:=\mathrm{g} \mathrm{v}[1] \mathrm{v}[2] \mathrm{v}[3]\)
        \(m k\)-minsky-apply3[OF \(\operatorname{assms}(3)\), of 57123 3] - \(7[5]:=\mathrm{h} v[1] \mathrm{v}[2] \mathrm{v}[3]\)
        \(m k\)-minsky-apply3[OF \(\operatorname{assms}(4)\), of 67123 3] \(\quad-\mathrm{v}[6]:=\mathrm{k} \mathrm{v}[1] \mathrm{v}[2] \mathrm{v}[3]\)
        \(m k\)-minsky-apply3[OF assms(1), of 0745 6]]) auto - v[0]:=f \(\mathrm{v}[4] \mathrm{v}[5] \mathrm{v}[6]\)
```

Primitive recursion is a non-destructive apply followed by a loop with another non-destructive apply. The key to the proof is the loop invariant, which we can specify as part of composing the various $m k$-minsky-* lemmas.

```
lemma mk-minsky-prim-rec:
    assumes mk-minsky1 g mk-minsky3 \(h\)
    shows mk-minsky2 (PrimRecOp g h)
    by (intro mk-minsky-seq[OF mk-minsky-seq', OF
    \(m k\)-minsky-apply3[OF \(\operatorname{assms}(1)\), of 0422 2] \(\quad-\mathrm{v}[0]:=\mathrm{g} \mathrm{v}[2]\)
    mk-minsky-zero[of 3] - v[3]:=0
    \(m k\)-minsky-loop[where \(v=1\), OF mk-minsky-seq', OF - while v[1]--:
        \(m k\)-minsky-apply3[OF \(\operatorname{assms}(2)\), of 0430 2] \(\quad-\mathrm{v}[0]:=\mathrm{h} \mathrm{v}[3] \mathrm{v}[0] \mathrm{v}[2]\)
        mk-minsky-inc[of 3], - v[3]++
```

```
    of \lambdavs vs'. vs 0 = PrimRecOp gh(vs 3) (vs 2) \longrightarrow vs' 0 = PrimRecOp gh
(vs 3 + vs 1) (vs 2)
    ]]) auto
```

With these building blocks we can easily show that all primitive recursive functions can be realized by a Minsky machine.
lemma mk-minsky-PrimRec:
$f \in \operatorname{PrimRec} 1 \Longrightarrow m k$-minsky1 f
$g \in$ PrimRec2 $\Longrightarrow m k$-minsky2 g
$h \in$ PrimRec3 \Longrightarrow mk-minsky3 h
proof (goal-cases)
have $*:(f \in \operatorname{PrimRec} 1 \longrightarrow m k-m i n s k y 1 f) \wedge(g \in \operatorname{PrimRec2} \longrightarrow m k-m i n s k y 2$ $g) \wedge(h \in$ PrimRec3 $\longrightarrow m k$-minsky3 $h)$
proof (induction rule: PrimRec1-PrimRec2-PrimRec3.induct)
case zero show ?case by (intro mk-minsky-mono[OF mk-minsky-zero]) auto
next
case suc show ?case by (intro mk-minsky-seq[OF mk-minsky-copy1[$\left.\begin{array}{lll}\text { of } & 1 & 0\end{array}\right]$
mk-minsky-inc[of 0]]) auto
next
case id1-1 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy 1 [of 1
0]]) auto
next
case id2-1 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 1 0]]) auto
next
case id2-2 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1[of 2 0]]) auto
next
case id3-1 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1[of 1 0]]) auto
next
case id3-2 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1[of 2 0]]) auto
next
case id3-3 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1[of 3 0]]) auto
next
case (comp1-1 f g) then show ?case using mk-minsky-comp3-3 by fast next
case (comp1-2 fg) then show ?case using mk-minsky-comp3-3 by fast next
case (comp1-3 fg) then show ?case using mk-minsky-comp3-3 by fast next
case (comp2-1 $f g h$) then show ?case using mk-minsky-comp3-3 by fast next
case (comp3-1fghk) then show ?case using mk-minsky-comp3-3 by fast next
case (comp2-2 $f g h$) then show ?case using mk-minsky-comp3-3 by fast next

```
    case (comp2-3 fgh) then show ?case using mk-minsky-comp3-3 by fast
next
    case (comp3-2 fghk) then show ?case using mk-minsky-comp3-3 by fast
next
    case (comp3-3 fghk) then show ?case using mk-minsky-comp3-3 by fast
    next
    case (prim-rec gh) then show ?case using mk-minsky-prim-rec by blast
qed
    { case 1 thus ?case using * by blast next
    case 2 thus ?case using * by blast next
    case 3 thus ?case using * by blast }
qed
```


2.9 Recursively enumerable sets as Minsky machines

The following is the most complicated lemma of this theory: Given two r.e. sets A and B we want to construct a Minsky machine that reaches the final state 0 for input x if $x \in A$ and final state 1 if $x \in B$, and never reaches either of these states if $x \notin A \cup B$. (If $x \in A \cap B$, then either state 0 or state 1 may be reached.) We consider two r.e. sets rather than one because we target recursive inseparability.
For the r.e. set A, there is a primitive recursive function f such that $x \in$ $A \Longleftrightarrow \exists y \cdot f(x, y)=0$. Similarly there is a primitive recursive function g for B such that $x \in B \Longleftrightarrow \exists y . f(x, y)=0$. Our Minsky machine takes x in register 0 and y in register 1 (initially 0) and works as follows.

1. evaluate $f(x, y)$; if the result is 0 , transition to state 0 ; otherwise,
2. evaluate $g(x, y)$; if the result is 0 , transition to state 1 ; otherwise,
3. increment y and start over.
```
lemma ce-set-pair-by-minsky:
    assumes \(A \in\) ce-sets \(B \in\) ce-sets
    obtains \(M\) :: (nat, nat) minsky where
    finite \(M\) deterministic \(M 0 \notin f s t\) ' \(M\) Suc \(0 \notin f s t\) ' \(M\)
    \(\bigwedge x\) vs. vs \(0=x \Longrightarrow\) vs \(1=0 \Longrightarrow x \in A \cup B \Longrightarrow\)
    \(\exists v s^{\prime} .\left((2, v s),\left(0, v s^{\prime}\right)\right) \in(\text { step } M)^{*} \vee\left((2, v s),\left(\right.\right.\) Suc \(\left.\left.0, v s^{\prime}\right)\right) \in(\text { step } M)^{*}\)
    \(\bigwedge x\) vs vs'. vs \(0=x \Longrightarrow\) vs \(1=0 \Longrightarrow\left((2, v s),\left(0, v s^{\prime}\right)\right) \in(\text { step } M)^{*} \Longrightarrow x \in\)
A
    \(\bigwedge x\) vs vs \({ }^{\prime}\). vs \(0=x \Longrightarrow\) vs \(1=0 \Longrightarrow\left((2, v s),\left(\right.\right.\) Suc 0, vs \(\left.\left.{ }^{\prime}\right)\right) \in(\text { step } M)^{*} \Longrightarrow\)
\(x \in B\)
proof -
    obtain \(g\) where \(g: g \in \operatorname{PrimRec2} \wedge x . x \in A \longleftrightarrow(\exists y . g x y=0)\)
    using \(\operatorname{assms}(1)\) by (auto simp: ce-sets-def fn-to-set-def)
    obtain \(h\) where \(h: h \in \operatorname{PrimRec} 2 \wedge x . x \in B \longleftrightarrow(\exists y . h x y=0)\)
    using assms(2) by (auto simp: ce-sets-def fn-to-set-def)
```

```
    have mk-minsky (\lambdavsv\mp@subsup{s}{}{\prime}.v\mp@subsup{s}{}{\prime}0=vs 0 ^vs'1 = vs 1 ^vs'2 = g (vs 0) (vs
1))
    using mk-minsky-seq[OF
    mk-minsky-apply3[OF mk-minsky-PrimRec(2)[OF g(1)], of 2 3 0 1 1 0] - v[2]
:= g v[0] v[1]
        mk-minsky-nop] by auto
                                    _ pass
    then obtain M :: (nat, nat) minsky where M: finite M deterministic M 0 &fst
' M
    \vs. \existsvs'. ((Suc 0,vs), 0,vs') \in(step M)*}
    vs'}0=vs0^v\mp@subsup{s}{}{\prime}1=vs1\wedgev\mp@subsup{s}{}{\prime}2=g(vs 0)(vs 1)
    unfolding mk-minsky-def by blast
    have mk-minsky (\lambdavs v\mp@subsup{s}{}{\prime}.v\mp@subsup{s}{}{\prime}0=vs 0 ^vs'1 = vs 1 + 1 ^ vs' 2 =h(vs 0)
(vs 1))
    using mk-minsky-seq[OF
        mk-minsky-apply3[OF mk-minsky-PrimRec(2)[OF h(1)], of 2 3 0 1 0] - v[2]
:= h v[0] v[1]
        mk-minsky-inc[of 1]] by auto - v[1]:= v[1] + 1
    then obtain N :: (nat, nat) minsky where N: finite N deterministic N 0 &fst
/N
    \vs. \existsvs'. ((Suc 0,vs), 0,vs') \in(step N)*}
    vs'0=vs 0 ^vs'1=vs 1 + 1 ^vs' 2 =h(vs 0) (vs 1)
    unfolding mk-minsky-def by blast
    let ?f = \lambdas. if s=0 then 3 else 2 *s- M: from state 4 to state 3
    let ? g=\lambdas.2*s+5 - N: from state 7 to state 5
    define }X\mathrm{ where }X=\mathrm{ map-minsky ?f id M U map-minsky ?g id N }\cup{(3,Dec 2
70)}\cup{(5, Dec 2 2 1) }
    have MX: map-minsky ?f id M\subseteqX by (auto simp: X-def)
    have NX: map-minsky ?g id N\subseteqX by (auto simp: X-def)
    have DX:(3,Dec 2 7 0) \inX (5, Dec 2 2 1) \inX by (auto simp: X-def)
    have X1: finite X using M(1)N(1) by (auto simp: map-minsky-def X-def)
    have X2: deterministic X unfolding X-def using M(2,3) N(2,3)
    apply (intro deterministic-union)
    by (auto simp: map-minsky-def rev-image-eqI inj-on-def split: if-splits
        intro!: deterministic-map) presburger+
    have X3:0 &fst'X Suc 0 &fst'X using M(3)N(3)
    by (auto simp: X-def map-minsky-def split: if-splits)
    have }\mp@subsup{X}{4}{}:\existsv\mp@subsup{s}{}{\prime}.g(vs0)(vs1)=0\wedge((2,vs),(0,v\mp@subsup{s}{}{\prime}))\in(\mathrm{ step X)*}
    h(vs 0) (vs 1) = 0 ^ ((2,vs), (1, vs')) \in (step X)*}
    g ( v s ~ 0 ) ~ ( v s ~ 1 ) ~ \neq 0 \wedge h ( v s ~ 0 ) ~ ( v s ~ 1 ) ~ = ~ 0 ~ \ v s ' ~ 0 ~ = ~ v s ~ 0 ~ \wedge ~ v s ' ~ 1 ~ = ~ v s ~ 1 ~ + ~ 1 ~
^
            ((2,vs),(2,vs')) \in(step X)+ for vs
    proof -
    guess vs' using M(4)[of vs] by (elim exE conjE) note vs' = this
    have 1:((2,vs),(3,vs'))\in (step X)*
        using subsetD[OF steps-mono[OF MX],OF map-steps[OF - vs'(1), of id vs
?f]l by simp
    show ?thesis
    proof (cases vs' 2)
        case 0 then show ?thesis using decz[OF DX(1),of vs']vs' 1
```

by (auto intro: rtrancl-into-rtrancl)
next
case (Suc n) note Suc ${ }^{\prime}=$ Suc
let ?vs $=\lambda x$. if $x=2$ then n else $v s^{\prime} x$
have 2: $((2, v s),(7, ? v s)) \in(\text { step } X)^{*}$
using 1 decn[OF DX(1), of vs $]$ Suc by (auto intro: rtrancl-into-rtrancl)
guess vs" using $N(4)[o f$?vs $]$ by (elim exE conjE) note $v s^{\prime \prime}=$ this
have 3: $\left((2, v s),\left(5, v s^{\prime \prime}\right)\right) \in(\text { step } X)^{*}$
using 2 subset $D\left[O F\right.$ steps-mono $[O F N X]$, OF map-steps $\left[O F-v s^{\prime \prime}(1)\right.$, of id ?vs ? $g]$] by simp
show ?thesis
proof (cases vs" 2)
case 0 then show ?thesis using $3 \operatorname{decz}\left[\operatorname{OF} D X(2)\right.$, of $\left.v s^{\prime \prime}\right] v s^{\prime \prime}(2-) v s^{\prime}(2-)$
by (auto intro: rtrancl-into-rtrancl)
next
case (Suc m)
let ?vs $=\lambda$. if $x=2$ then m else vs ${ }^{\prime \prime} x$
have $4:((2, v s),(2, ? v s)) \in(\text { step } X)^{+}$using 3 decn $\left[\right.$ OF $D X(2)$, of $\left.v s^{\prime \prime} m\right]$
Suc by auto
then show ?thesis using $v s^{\prime \prime}(2-) v s^{\prime}(2-) S u c S u c^{\prime}$ by (auto intro!: exI[of - ? $v s]$)
qed
qed
qed
have $*:$ vs $1 \leq y \Longrightarrow g($ vs 0$) y=0 \vee h($ vs 0$) y=0 \Longrightarrow$ $\exists v s^{\prime} .\left((2, v s),\left(0, v s^{\prime}\right)\right) \in(\text { step } X)^{*} \vee\left((2, v s),\left(1, v s^{\prime}\right)\right) \in(\text { step } X)^{*}$ for vs y proof (induct vs 1 arbitrary: vs rule: inc-induct, goal-cases base step)
case (base vs) then show ?case using $X_{4}[$ of vs] by auto
next
case (step vs)
guess vs' using X_{4} [of vs] by (elim exE)
then show ?case unfolding ex-disj-distrib using step (4) step(3)[of vs]
by (auto dest!: trancl-into-rtrancl) (meson rtrancl-trans)+
qed
have $* *:((s, v s),(t, w s)) \in(\text { step } X)^{*} \Longrightarrow t \in\{0,1\} \Longrightarrow\left((s, v s),\left(2, w s^{\prime}\right)\right) \in$ $(\text { step } X)^{*} \Longrightarrow$
$\exists y$. if $t=0$ then $g\left(w s^{\prime} 0\right) y=0$ else $h\left(w s^{\prime} 0\right) y=0$ for $s t$ vs $w s^{\prime} w s$
proof (induct arbitrary: ws' rule: converse-rtrancl-induct2)
case refl show ?case using refl(1) NF-not-suc[OF refl(2) NF-stepI] X3 by auto
next
case (step s vs s^{\prime} vs ${ }^{\prime}$)
show ?case using step (5)
proof (cases rule: converse-rtranclE[case-names base' step ${ }^{\prime}$])
case base'
note $* * *=$ deterministic-minsky-UN[OF X2 - - X3]
show ?thesis using X_{4} [of ws']
proof (elim exE disjE conjE, goal-cases)
case (1 vs ${ }^{\prime \prime}$) then show ?case using step (1,2,4) $* * *\left[o f\left(2, w s^{\prime}\right) v s^{\prime \prime} w s\right]$

```
                by (auto simp: base' intro: converse-rtrancl-into-rtrancl)
        next
            case (2 vs'\prime) then show ?case using step(1,2,4) ***[of (2,ws') ws vs'|
                by (auto simp: base' intro: converse-rtrancl-into-rtrancl)
            next
            case (3 vs') then show ?case using step(2) step(3)[of vs'\prime, OF step(4)]
                deterministicD[OF deterministic-stepI[OF X2],OF - step(1)]
                by (auto simp: base' if-bool-eq-conj trancl-unfold-left)
        qed
    next
            case (step' y) then show ?thesis
            by (metis deterministicD[OF deterministic-stepI[OF X2]] step(1) step(3)[OF
step(4)])
    qed
    qed
    show ?thesis
    proof (intro that[of X] X1 X2 X3, goal-cases)
    case (1 x vs) then show ?case using *[of vs] by (auto simp:g(2)h(2))
next
    case (2 x vs vs') then show ?case using **[of 2 vs 0 vs' vs] by (auto simp:
g(2)h(2))
    next
        case (3 x vs vs') then show ?case using **[of 2 vs 1 vs'vs] by (auto simp:
g(2) h(2))
    qed
qed
```

For r.e. sets we obtain the following lemma as a special case (taking $B=\varnothing$, and swapping states 1 and 2).

```
lemma ce-set-by-minsky:
    assumes \(A \in c e\)-sets
    obtains \(M\) :: (nat, nat) minsky where
        finite \(M\) deterministic \(M 0 \notin f s t\) ' \(M\)
    \(\bigwedge x\) vs. vs \(0=x \Longrightarrow\) vs \(1=0 \Longrightarrow x \in A \Longrightarrow \exists s^{\prime}\). \(\left((\right.\) Suc 0, vs \(\left.),\left(0, v s^{\prime}\right)\right) \in\)
(step M)*
    \(\bigwedge x\) vs vs \({ }^{\prime}\).vs \(0=x \Longrightarrow\) vs \(1=0 \Longrightarrow\left((\right.\) Suc 0, vs \(),\left(0\right.\), vs \(\left.\left.^{\prime}\right)\right) \in(\text { step } M)^{*} \Longrightarrow\)
\(x \in A\)
proof -
    guess \(M\) using ce-set-pair-by-minsky[OF assms(1) ce-empty]. note \(M=\) this
    let ?f \(=\lambda\) s. if \(s=1\) then 2 else if \(s=2\) then 1 else \(s-\operatorname{swap}\) states 1 and 2
    have ?f \(\circ\) ? \(f=i d\) by auto
    define \(N\) where \(N=\) map-minsky ?f id \(M\)
    have \(M\)-def: \(M=\) map-minsky ?f id \(N\)
    unfolding \(N\)-def map-minsky-comp 〈?f ○?f \(=\) id〉 map-minsky-id o-id ..
    show ?thesis using \(M(1-3)\)
    proof (intro that \([\) of \(N]\), goal-cases)
    case ( \(4 x\) vs) show ?case using \(M(5)[\) OF \(4(4,5)] 4(6) M(7)[\) OF \(4(4,5)]\)
        map-steps[of id vs vs 2 \(0-M\) ?f] by (auto simp: \(N\)-def)
    next
```

case ($5 \times$ vs vs ${ }^{\prime}$) show ?case
using $M(6)[O F 5(4,5)] 5(6)$ map-steps $[$ of id vs vs $10-N$?f] by (auto simp: M-def)
qed (auto simp: N-def map-minsky-def inj-on-def rev-image-eqI deterministic-map split: if-splits)
qed

2.10 Encoding of Minsky machines

So far, Minsky machines have been sets of pairs of states and operations. We now provide an encoding of Minsky machines as natural numbers, so that we can talk about them as r.e. or computable sets. First we encode operations.
primrec encode-Op :: (nat, nat) $O p \Rightarrow$ nat where

$$
\text { encode-Op }\left(\text { Dec } \begin{array}{l}
\text { s }
\end{array} s^{\prime}\right)=c \text {-pair } 0\left(c \text {-pair } v\left(c \text {-pair ser } s^{\prime}\right)\right)
$$

\mid encode-Op $(\operatorname{Inc} v s)=c$-pair $1(c$-pair $v s)$
definition decode-Op :: nat \Rightarrow (nat, nat) Op where
decode-Op $n=($ if c - fst $n=0$ then Dec $(c$-fst $(c$-snd $n))(c$-fst $(c$-snd $(c$-snd $n)))(c$-snd $(c$-snd $(c$-snd $n)))$ else Inc $(c$-fst $(c$-snd $n))(c$-snd $(c$-snd $n)))$
lemma encode-Op-inv [simp]:
decode-Op (encode-Op $x)=x$
by (cases x) (auto simp: decode-Op-def)
Minsky machines are encoded via lists of pairs of states and operations.
definition encode-minsky $::($ nat $\times($ nat, nat $) O p)$ list \Rightarrow nat where
encode-minsky $M=$ list-to-nat (map (λ x. c-pair $($ fst $x)($ encode-Op $($ snd $x))) M)$
definition decode-minsky :: nat \Rightarrow (nat $\times($ nat, nat) Op) list where
decode-minsky $n=\operatorname{map}(\lambda n .(c-f s t n$, decode-Op $(c$-snd $n)))($ nat-to-list $n)$
lemma encode-minsky-inv [simp]:
decode-minsky (encode-minsky $M)=M$
by (auto simp: encode-minsky-def decode-minsky-def comp-def)
Assignments are stored as lists (starting with register 0).
definition decode-regs :: nat \Rightarrow (nat \Rightarrow nat $)$ where
decode-regs $n=(\lambda i$. let $x s=$ nat-to-list n in if $i<$ length $x s$ then nat-to-list $n!i$ else 0)

The undecidability results talk about Minsky configurations (pairs of Minsky machines and assignments). This means that we do not have to construct any recursive functions that modify Minsky machines (for example in order to initialize variables), keeping the proofs simple.
definition decode-minsky-state $::$ nat $\Rightarrow((n a t, n a t)$ minsky $\times(n a t \Rightarrow n a t))$ where decode-minsky-state $n=($ set $($ decode-minsky $(c$-fst $n)),($ decode-regs $(c$-snd $n)))$

2.11 Undecidablity results

We conclude with some undecidability results. First we show that it is undecidable whether a Minksy machine starting at state 1 terminates in state 0.
definition minsky-reaching-0 where
minsky-reaching-0 $=\left\{n \mid n\right.$ Mvs vs ${ }^{\prime} .(M, v s)=$ decode-minsky-state $n \wedge((S u c$ 0, vs $\left.\left.),\left(0, v s^{\prime}\right)\right) \in(\operatorname{step} M)^{*}\right\}$
lemma minsky-reaching-0-not-computable:
\neg computable minsky-reaching-0
proof -
guess U using ce-set-by-minsky[OF univ-is-ce]. note $U=$ this
obtain us where [simp]: set us $=U$ using finite-list $[O F U(1)]$ by blast
let ?f $=\lambda n$. c-pair (encode-minsky us) (c-cons $n 0$)
have ?f \in PrimRec 1
using comp2-1[OF c-pair-is-pr const-is-pr comp2-1[OF c-cons-is-pr id1-1 const-is-pr]]
by simp
moreover have ?f $x \in$ minsky-reaching- $0 \longleftrightarrow x \in$ univ-ce for x
using $U(4,5)[$ of λi. if $i=0$ then x else 0$]$
by (auto simp: minsky-reaching-0-def decode-minsky-state-def decode-regs-def c-cons-def cong: if-cong)
ultimately have many-reducible-to univ-ce minsky-reaching-0
by (auto simp: many-reducible-to-def many-reducible-to-via-def dest: pr-is-total-rec) then show ?thesis by (rule many-reducible-lm-1)
qed
The remaining results are resursive inseparability results. We start be showing that there is a Minksy machine U with final states 0 and 1 such that it is not possible to recursively separate inputs reaching state 0 from inputs reaching state 1.
lemma rec-inseparable-0not1-1not0:
rec-inseparable $\{p .0 \in$ nat-to-ce-set $p \wedge 1 \notin$ nat-to-ce-set $p\}\{p .0 \notin$ nat-to-ce-set
$p \wedge 1 \in$ nat-to-ce-set $p\}$
proof -
obtain n where n : nat-to-ce-set $n=\{0\}$ using nat-to-ce-set-srj[OF ce-finite[of \{0\}]] by auto
obtain m where m : nat-to-ce-set $m=\{1\}$ using nat-to-ce-set-srj[OF ce-finite[of \{1\}]] by auto
show ?thesis by (rule rec-inseparable-mono[OF Rice-rec-inseparable[of n m]]) (auto simp: $n \mathrm{~m}$)
qed
lemma ce-sets-containing-n-ce:
$\{p . n \in$ nat-to-ce-set $p\} \in$ ce-sets
using ce-set-lm-5[OF univ-is-ce comp2-1 [OF c-pair-is-pr id1-1 const-is-pr[of n]]] by (auto simp: univ-ce-lm-1)

```
lemma rec-inseparable-fixed-minsky-reaching-0-1:
    obtains U :: (nat, nat) minsky where
    finite U deterministic U 0 &fst' U 1 #fst' U
    rec-inseparable {x|x vs'.((2, (\lambdan. if n = 0 then x else 0)),(0,vs'))\in(step
U)*
    {x|xvs'.((2,(\lambdan. if n=0 then x else 0)),(1,vs')) \in(step U)* }
proof -
    guess U using ce-set-pair-by-minsky[OF ce-sets-containing-n-ce ce-sets-containing-n-ce,
of 0 1].
    from this(1-4) this(5-7)[of \lambdan. if n=0 then - else 0]
    show ?thesis by (auto 0 0 intro!: that[of U] rec-inseparable-mono[OF rec-inseparable-0not1-1not0]
        pr-is-total-rec simp: rev-image-eqI cong: if-cong) meson+
qed
```

Consequently, it is impossible to separate Minsky configurations with determistic machines and final states 0 and 1 that reach state 0 from those that reach state 1.
definition minsky-reaching-s where
minsky-reaching-s $s=\left\{m \mid M m\right.$ vs vs ${ }^{\prime} .(M, v s)=$ decode-minsky-state $m \wedge$
deterministic $\left.M \wedge 0 \notin f s t ' M \wedge 1 \notin f s t ' M \wedge\left((2, v s),\left(s, v s^{\prime}\right)\right) \in(\text { step } M)^{*}\right\}$
lemma rec-inseparable-minsky-reaching-0-1: rec-inseparable (minsky-reaching-s 0) (minsky-reaching-s 1)
proof -
guess U using rec-inseparable-fixed-minsky-reaching-0-1 . note $U=$ this
obtain $u s$ where $[s i m p]$: set $u s=U$ using finite-list $[O F U(1)]$ by blast
let ?f $=\lambda n$. c-pair (encode-minsky us) (c-cons $n 0$)
have ?f \in PrimRec1
using comp2-1[OF c-pair-is-pr const-is-pr comp2-1[OF c-cons-is-pr id1-1 const-is-pr]]
by simp
then show ?thesis
using $U(1-4)$ rec-inseparable-many-reducible[of ?f, OF - rec-inseparable-mono[OF $U(5)]]$
by (auto simp: pr-is-total-rec minsky-reaching-s-def decode-minsky-state-def rev-image-eqI
decode-regs-def c-cons-def cong: if-cong)
qed
As a corollary, it is impossible to separate Minsky configurations that reach state 0 but not state 1 from those that reach state 1 but not state 0 .
definition minsky-reaching-s-not-t where
minsky-reaching-s-not-t st $t=\left\{m \mid M m\right.$ vs vs ${ }^{\prime} .(M, v s)=$ decode-minsky-state m \wedge

$$
\left.\left((2, v s),\left(s, v s^{\prime}\right)\right) \in(\text { step } M)^{*} \wedge\left((2, v s),\left(t, v s^{\prime}\right)\right) \notin(\text { step } M)^{*}\right\}
$$

lemma minsky-reaching-s-imp-minsky-reaching-s-not-t:
assumes $s \in\{0,1\} t \in\{0,1\} s \neq t$
shows minsky-reaching-s $s \subseteq$ minsky-reaching-s-not-t s t
proof -

```
have [dest!]: ((2,vs),(0,v\mp@subsup{s}{}{\prime}))\not\in(step M)**V ((2,vs),(1,vs'))\not\in(step M)*
    if deterministic M 0 &fst'M M &fst'M for M :: (nat, nat) minsky and vs
vs
    using deterministic-minsky-UN[OF that(1) - - that(2,3)] by auto
    show ?thesis using assms
    by (auto simp: minsky-reaching-s-def minsky-reaching-s-not-t-def rev-image-eqI)
qed
lemma rec-inseparable-minsky-reaching-0-not-1-1-not-0:
    rec-inseparable (minsky-reaching-s-not-t 0 1) (minsky-reaching-s-not-t 1 0)
    by (intro rec-inseparable-mono[OF rec-inseparable-minsky-reaching-0-1]
    minsky-reaching-s-imp-minsky-reaching-s-not-t) simp-all
end
```


References

[1] S. C. Kleene. Introduction to metamathematics. North-Holland, 1952.
[2] M. Nedzelsky. Recursion theory I. Archive of Formal Proofs, Apr. 2008. http://isa-afp.org/entries/Recursion-Theory-I.html, Formal proof development.
[3] J. B. Rosser. Extensions of some theorems of gödel and church. Journal of Symbolic Logic, 1:87-91, 1936.
[4] R. M. Smullyan. Undecidability and recursive inseparability. Mathematical Logic Quarterly, 4(7-11):143-147, 1958.

[^0]: *This work was supported by FWF (Austrian Science Fund) project P30301.

