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Abstract

We formalize undecidablity results for Minsky machines. To this
end, we also formalize recursive inseparability.

We start by proving that Minsky machines can compute arbitrary
primitive recursive and recursive functions. We then show that there
is a deterministic Minsky machine with one argument (modeled by
assigning the argument to register 0 in the initial configuration) and
final states 0 and 1 such that the set of inputs that are accepted in state
0 is recursively inseparable from the set of inputs that are accepted in
state 1.

As a corollary, the set of Minsky configurations that reach state
0 but not state 1 is recursively inseparable from the set of Minsky
configurations that reach state 1 but not state 0. In particular both
these sets are undecidable.

We do not prove that recursive functions can simulate Minsky ma-
chines.
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1 Recursive inseperability
theory Recursive-Inseparability

imports Recursion−Theory−I .RecEnSet
begin

Two sets A and B are recursively inseparable if there is no computable set
that contains A and is disjoint from B. In particular, a set is computable
if the set and its complement are recursively inseparable. The terminology
was introduced by Smullyan [4]. The underlying idea can be traced back
to Rosser, who essentially showed that provable and disprovable sentences
are arithmetically inseparable in Peano Arithmetic [3]; see also Kleene’s
symmetric version of Gödel’s incompleteness theorem [1].
Here we formalize recursive inseparability on top of the Recursion-Theory-
I AFP entry [2]. Our main result is a version of Rice’ theorem that states
that the index sets of any two given recursively enumerable sets are recur-
sively inseparable.

1.1 Definition and basic facts

Two sets A and B are recursively inseparable if there are no decidable sets
X such that A is a subset of X and X is disjoint from B.
definition rec-inseparable where

rec-inseparable A B ≡ ∀X . A ⊆ X ∧ B ⊆ − X −→ ¬ computable X

lemma rec-inseparableI :
(
∧

X . A ⊆ X =⇒ B ⊆ − X =⇒ computable X =⇒ False) =⇒ rec-inseparable A
B

unfolding rec-inseparable-def by blast

lemma rec-inseparableD:
rec-inseparable A B =⇒ A ⊆ X =⇒ B ⊆ − X =⇒ computable X =⇒ False
unfolding rec-inseparable-def by blast

Recursive inseperability is symmetric and enjoys a monotonicity property.
lemma rec-inseparable-symmetric:

rec-inseparable A B =⇒ rec-inseparable B A
unfolding rec-inseparable-def computable-def by (metis double-compl)

lemma rec-inseparable-mono:
rec-inseparable A B =⇒ A ⊆ A ′ =⇒ B ⊆ B ′ =⇒ rec-inseparable A ′ B ′

unfolding rec-inseparable-def by (meson subset-trans)
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Many-to-one reductions apply to recursive inseparability as well.
lemma rec-inseparable-many-reducible:

assumes total-recursive f rec-inseparable (f −‘ A) (f −‘ B)
shows rec-inseparable A B

proof (intro rec-inseparableI )
fix X assume A ⊆ X B ⊆ − X computable X
moreover have many-reducible-to (f −‘ X) X using assms(1 )

by (auto simp: many-reducible-to-def many-reducible-to-via-def )
ultimately have computable (f −‘ X) and (f −‘ A) ⊆ (f −‘ X) and (f −‘ B)
⊆ − (f −‘ X)

by (auto dest!: m-red-to-comp)
then show False using assms(2 ) unfolding rec-inseparable-def by blast

qed

Recursive inseparability of A and B holds vacuously if A and B are not
disjoint.
lemma rec-inseparable-collapse:

A ∩ B 6= {} =⇒ rec-inseparable A B
by (auto simp: rec-inseparable-def )

Recursive inseparability is intimately connected to non-computability.
lemma rec-inseparable-non-computable:

A ∩ B = {} =⇒ rec-inseparable A B =⇒ ¬ computable A
by (auto simp: rec-inseparable-def )

lemma computable-rec-inseparable-conv:
computable A ←→ ¬ rec-inseparable A (− A)
by (auto simp: computable-def rec-inseparable-def )

1.2 Rice’s theorem

We provide a stronger version of Rice’s theorem compared to [2]. Unfolding
the definition of recursive inseparability, it states that there are no decidable
sets X such that

• there is a r.e. set such that all its indices are elements of X; and

• there is a r.e. set such that none of its indices are elements of X.

This is true even if X is not an index set (i.e., if an index of a r.e. set is
an element of X, then X contains all indices of that r.e. set), which is a
requirement of Rice’s theorem in [2].
lemma c-pair-inj ′:

c-pair x1 y1 = c-pair x2 y2 ←→ x1 = x2 ∧ y1 = y2
by (metis c-fst-of-c-pair c-snd-of-c-pair)

lemma Rice-rec-inseparable:
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rec-inseparable {k. nat-to-ce-set k = nat-to-ce-set n} {k. nat-to-ce-set k = nat-to-ce-set
m}
proof (intro rec-inseparableI , goal-cases)

case (1 X)

Note that [[index-set ?A; ?A 6= {}; ?A 6= UNIV ]] =⇒ ¬ computable ?A is
not applicable because X may not be an index set.
let ?Q = {q. s-ce q q ∈ X} × nat-to-ce-set m ∪ {q. s-ce q q ∈ − X} × nat-to-ce-set

n
have ?Q ∈ ce-rels

using 1 (3 ) ce-set-lm-5 comp2-1 [OF s-ce-is-pr id1-1 id1-1 ] unfolding com-
putable-def

by (intro ce-union[of ce-rel-to-set - ce-rel-to-set -, folded ce-rel-lm-32 ce-rel-lm-8 ]
ce-rel-lm-29 nat-to-ce-set-into-ce) blast+

then obtain q where nat-to-ce-set q = {c-pair q x |q x. (q, x) ∈ ?Q}
unfolding ce-rel-lm-8 ce-rel-to-set-def by (metis (no-types, lifting) nat-to-ce-set-srj)

from eqset-imp-iff [OF this, of c-pair q -]
have nat-to-ce-set (s-ce q q) = (if s-ce q q ∈ X then nat-to-ce-set m else nat-to-ce-set

n)
by (auto simp: s-lm c-pair-inj ′ nat-to-ce-set-def fn-to-set-def pr-conv-1-to-2-def )
then show ?case using 1 (1 ,2 )[THEN subsetD, of s-ce q q] by (auto split:

if-splits)
qed

end

2 Minsky machines
theory Minsky
imports Recursive-Inseparability Abstract−Rewriting.Abstract-Rewriting Pure−ex.Guess

begin

We formalize Minksy machines, and relate them to recursive functions. In
our flavor of Minsky machines, a machine has a set of registers and a set of
labels, and a program is a set of labeled operations. There are two opera-
tions, Inc and Dec; the former takes a register and a label, and the latter
takes a register and two labels. When an Inc instruction is executed, the
register is incremented and execution continues at the provided label. The
Dec instruction checks the register. If it is non-zero, the register and con-
tinues execution at the first label. Otherwise, the register remains at zero
and execution continues at the second label.
We continue to show that Minksy machines can implement any primitive
recursive function. Based on that, we encode recursively enumerable sets as
Minsky machines, and finally show that

1. The set of Minsky configurations such that from state 1, state 0 can
be reached, is undecidable;
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2. There is a deterministic Minsky machine U such that the set of values
x such that (2, λn. if n = 0 then x else 0) reach state 0 is recursively
inseparable from those that reach state 1; and

3. As a corollary, the set of Minsky configurations that reach state 0 but
not state 1 is recursively inseparable from the configurations that reach
state 1 but not state 0.

2.1 Deterministic relations

A relation → is deterministic if t ← s → u′ implies t = u. This abstract
rewriting notion is useful for talking about deterministic Minsky machines.
definition

deterministic R ←→ R−1 O R ⊆ Id

lemma deterministicD:
deterministic R =⇒ (x, y) ∈ R =⇒ (x, z) ∈ R =⇒ y = z
by (auto simp: deterministic-def )

lemma deterministic-empty [simp]:
deterministic {}
by (auto simp: deterministic-def )

lemma deterministic-singleton [simp]:
deterministic {p}
by (auto simp: deterministic-def )

lemma deterministic-imp-weak-diamond [intro]:
deterministic R =⇒ w♦ R
by (auto simp: weak-diamond-def deterministic-def )

lemmas deterministic-imp-CR = deterministic-imp-weak-diamond[THEN weak-diamond-imp-CR]

lemma deterministic-union:
fst ‘ S ∩ fst ‘ R = {} =⇒ deterministic S =⇒ deterministic R =⇒ deterministic

(S ∪ R)
by (fastforce simp add: deterministic-def disjoint-iff-not-equal)

lemma deterministic-map:
inj-on f (fst ‘ R) =⇒ deterministic R =⇒ deterministic (map-prod f g ‘ R)
by (auto simp add: deterministic-def dest!: inj-onD; force)

2.2 Minsky machine definition

A Minsky operation either decrements a register (testing for zero, with two
possible successor states), or increments a register (with one successor state).
A Minsky machine is a set of pairs of states and operations.
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datatype ( ′s, ′v) Op = Dec (op-var : ′v) ′s ′s | Inc (op-var : ′v) ′s

type-synonym ( ′s, ′v) minsky = ( ′s × ( ′s, ′v) Op) set

Semantics: A Minsky machine operates on pairs consisting of a state and an
assignment of the registers; in each step, either a register is incremented, or a
register is decremented, provided it is non-zero. We write α for assignments;
α[v] for the value of the register v in α and α[v := n] for the update of v to
n. Thus, the semantics is as follows:

1. if (s, Inc v s′) ∈M then (s, α)→ (s′, α[v := α[v] + 1]);

2. if (s,Dec v sn sz) ∈M and α[v] > 0 then (s, α)→ (sn, α[v := α[v]−1]);
and

3. if (s,Dec v sn sz) ∈M and α[v] = 0 then (s, α)→ (sz, α).

A state is finite if there is no operation associated with it.
inductive-set step :: ( ′s, ′v) minsky ⇒ ( ′s × ( ′v ⇒ nat)) rel for M :: ( ′s, ′v)
minsky where

inc: (s, Inc v s ′) ∈ M =⇒ ((s, vs), (s ′, λx. if x = v then Suc (vs v) else vs x)) ∈
step M
| decn: (s, Dec v sn sz) ∈ M =⇒ vs v = Suc n =⇒ ((s, vs), (sn, λx. if x = v then
n else vs x)) ∈ step M
| decz: (s, Dec v sn sz) ∈ M =⇒ vs v = 0 =⇒ ((s, vs), (sz, vs)) ∈ step M

lemma step-mono:
M ⊆ M ′ =⇒ step M ⊆ step M ′

by (auto elim: step.cases intro: step.intros)

lemmas steps-mono = rtrancl-mono[OF step-mono]

A Minsky machine has deterministic steps if its defining relation between
states and operations is deterministic.
lemma deterministic-stepI [intro]:

assumes deterministic M shows deterministic (step M )
proof −

{ fix s vs s1 vs1 s2 vs2
assume s: ((s, vs), (s1 , vs1 )) ∈ step M ((s, vs), (s2 , vs2 )) ∈ step M
have (s1 , vs1 ) = (s2 , vs2 ) using deterministicD[OF assms]
by (cases rule: step.cases[OF s(1 )]; cases rule: step.cases[OF s(2 )]) fastforce+

}
then show ?thesis by (auto simp: deterministic-def )

qed

A Minksy machine halts when it reaches a state with no associated operation.
lemma NF-stepI [intro]:

s /∈ fst ‘ M =⇒ (s, vs) ∈ NF (step M )
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by (auto intro!: no-step elim!: step.cases simp: rev-image-eqI )

Deterministic Minsky machines enjoy unique normal forms.
lemmas deterministic-minsky-UN =

join-NF-imp-eq[OF CR-divergence-imp-join[OF deterministic-imp-CR[OF deter-
ministic-stepI ]] NF-stepI NF-stepI ]

We will rename states and variables.
definition map-minsky where

map-minsky f g M = map-prod f (map-Op f g) ‘ M

lemma map-minsky-id:
map-minsky id id M = M
by (simp add: map-minsky-def Op.map-id0 map-prod.id)

lemma map-minsky-comp:
map-minsky f g (map-minsky f ′ g ′ M ) = map-minsky (f ◦ f ′) (g ◦ g ′) M
unfolding map-minsky-def image-comp Op.map-comp map-prod.comp comp-def [of

map-Op - -] ..

When states and variables are renamed, computations carry over from the
original machine, provided that variables are renamed injectively.
lemma map-step:

assumes inj g vs = vs ′ ◦ g ((s, vs), (t, ws)) ∈ step M
shows ((f s, vs ′), (f t, λx. if x ∈ range g then ws (inv g x) else vs ′ x)) ∈ step

(map-minsky f g M )
using assms(3 )

proof (cases rule: step.cases)
case (inc v) note [simp] = inc(1 )
let ?ws ′ = λw. if w = g v then Suc (vs ′ (g v)) else vs ′ w
have ((f s, vs ′), (f t, ?ws ′)) ∈ step (map-minsky f g M )

using inc(2 ) step.inc[of f s g v f t map-minsky f g M vs ′]
by (force simp: map-minsky-def )

moreover have (λx. if x ∈ range g then ws (inv g x) else vs ′ x) = ?ws ′

using assms(1 ,2 ) by (auto intro!: ext simp: injD image-def )
ultimately show ?thesis by auto

next
case (decn v sz n) note [simp] = decn(1 )
let ?ws ′ = λx. if x = g v then n else vs ′ x
have ((f s, vs ′), (f t, ?ws ′)) ∈ step (map-minsky f g M )

using assms(2 ) decn(2−) step.decn[of f s g v f t f sz map-minsky f g M vs ′ n]
by (force simp: map-minsky-def )

moreover have (λx. if x ∈ range g then ws (inv g x) else vs ′ x) = ?ws ′

using assms(1 ,2 ) by (auto intro!: ext simp: injD image-def )
ultimately show ?thesis by auto

next
case (decz v sn) note [simp] = decz(1 )
have ((f s, vs ′), (f t, vs ′)) ∈ step (map-minsky f g M )

using assms(2 ) decz(2−) step.decz[of f s g v f sn f t map-minsky f g M vs ′]
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by (force simp: map-minsky-def )
moreover have (λx. if x ∈ range g then ws (inv g x) else vs ′ x) = vs ′

using assms(1 ,2 ) by (auto intro!: ext simp: injD image-def )
ultimately show ?thesis by auto

qed

lemma map-steps:
assumes inj g vs = ws ◦ g ((s, vs), (t, vs ′)) ∈ (step M )∗

shows ((f s, ws), (f t, λx. if x ∈ range g then vs ′ (inv g x) else ws x)) ∈ (step
(map-minsky f g M ))∗

using assms(3 ,2 )
proof (induct (s, vs) arbitrary: s vs ws rule: converse-rtrancl-induct)

case base
then have (λx. if x ∈ range g then vs ′ (inv g x) else ws x) = ws

using assms(1 ) by (auto intro!: ext simp: injD image-def )
then show ?case by auto

next
case (step y)
have snd y = (λx. if x ∈ range g then snd y (inv g x) else ws x) ◦ g (is - = ?ys ′

◦ -)
using assms(1 ) by auto

then show ?case using map-step[OF assms(1 ) step(4 ), of s fst y snd y M f ]
step(1 )

step(3 )[OF prod.collapse[symmetric], of ?ys ′] by (auto cong: if-cong)
qed

2.3 Concrete Minsky machines

The following definition expresses when a Minsky machine M implements
a specification P . We adopt the convention that computations always start
out in state 1 and end in state 0, which must be a final state. The specifi-
cation P relates initial assignments to final assignments.
definition mk-minsky-wit :: (nat, nat) minsky ⇒ ((nat ⇒ nat) ⇒ (nat ⇒ nat)
⇒ bool) ⇒ bool where

mk-minsky-wit M P ≡ finite M ∧ deterministic M ∧ 0 /∈ fst ‘ M ∧
(∀ vs. ∃ vs ′. ((Suc 0 , vs), (0 , vs ′)) ∈ (step M )∗ ∧ P vs vs ′)

abbreviation mk-minsky :: ((nat ⇒ nat) ⇒ (nat ⇒ nat) ⇒ bool) ⇒ bool where
mk-minsky P ≡ ∃M . mk-minsky-wit M P

lemmas mk-minsky-def = mk-minsky-wit-def

lemma mk-minsky-mono:
shows mk-minsky P =⇒ (

∧
vs vs ′. P vs vs ′ =⇒ Q vs vs ′) =⇒ mk-minsky Q

unfolding mk-minsky-def by meson

lemma mk-minsky-sound:
assumes mk-minsky-wit M P ((Suc 0 , vs), (0 , vs ′)) ∈ (step M )∗
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shows P vs vs ′

proof −
have M : deterministic M 0 /∈ fst ‘ M

∧
vs. ∃ vs ′. ((Suc 0 , vs), 0 , vs ′) ∈ (step

M )∗ ∧ P vs vs ′

using assms(1 ) by (auto simp: mk-minsky-wit-def )
obtain vs ′′ where vs ′′: ((Suc 0 , vs), (0 , vs ′′)) ∈ (step M )∗ P vs vs ′′ using M (3 )

by blast
have (0 :: nat, vs ′) = (0 , vs ′′) using M (1 ,2 )

by (intro deterministic-minsky-UN [OF - assms(2 ) vs ′′(1 )])
then show ?thesis using vs ′′(2 ) by simp

qed

Realizability of n-ary functions for n = 1 . . . 3. Here we use the convention
that the arguments are passed in registers 1 . . . 3, and the result is stored in
register 0.
abbreviation mk-minsky1 where

mk-minsky1 f ≡ mk-minsky (λvs vs ′. vs ′ 0 = f (vs 1 ))

abbreviation mk-minsky2 where
mk-minsky2 f ≡ mk-minsky (λvs vs ′. vs ′ 0 = f (vs 1 ) (vs 2 ))

abbreviation mk-minsky3 where
mk-minsky3 f ≡ mk-minsky (λvs vs ′. vs ′ 0 = f (vs 1 ) (vs 2 ) (vs 3 ))

2.4 Trivial building blocks

We can increment and decrement any register.
lemma mk-minsky-inc:

shows mk-minsky (λvs vs ′. vs ′ = (λx. if x = v then Suc (vs v) else vs x))
using step.inc[of Suc 0 v 0 ]
by (auto simp: deterministic-def mk-minsky-def intro!: exI [of - {(1 , Inc v 0 )} ::

(nat, nat) minsky])

lemma mk-minsky-dec:
shows mk-minsky (λvs vs ′. vs ′ = (λx. if x = v then vs v − 1 else vs x))

proof −
let ?M = {(1 , Dec v 0 0 )} :: (nat, nat) minsky
show ?thesis unfolding mk-minsky-def
proof (intro exI [of - ?M ] allI conjI , goal-cases)

case (4 vs)
have [simp]: vs v = 0 =⇒ (λx. if x = v then 0 else vs x) = vs by auto
show ?case using step.decz[of Suc 0 v 0 0 ?M ] step.decn[of Suc 0 v 0 0 ?M ]

by (cases vs v) (auto cong: if-cong)
qed auto

qed
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2.5 Sequential composition

The following lemma has two useful corollaries (which we prove simultane-
ously because they share much of the proof structure): First, if P and Q are
realizable, then so is P ◦Q. Secondly, if we rename variables by an injective
function f in a Minksy machine, then the variables outside the range of f
remain unchanged.
lemma mk-minsky-seq-map:

assumes mk-minsky P mk-minsky Q inj g∧
vs vs ′ vs ′′. P vs vs ′ =⇒ Q vs ′ vs ′′ =⇒ R vs vs ′′

shows mk-minsky (λvs vs ′. R (vs ◦ g) (vs ′ ◦ g) ∧ (∀ x. x /∈ range g −→ vs x =
vs ′ x))
proof −

obtain M where M : finite M deterministic M 0 /∈ fst ‘ M∧
vs. ∃ vs ′. ((Suc 0 , vs), 0 , vs ′) ∈ (step M )∗ ∧ P vs vs ′

using assms(1 ) by (auto simp: mk-minsky-def )
obtain N where N : finite N deterministic N 0 /∈ fst ‘ N∧

vs. ∃ vs ′. ((Suc 0 , vs), 0 , vs ′) ∈ (step N )∗ ∧ Q vs vs ′

using assms(2 ) by (auto simp: mk-minsky-def )
let ?fM = λs. if s = 0 then 2 else if s = 1 then 1 else 2 ∗ s + 1 — M: from 1

to 2
let ?fN = λs. 2 ∗ s — N: from 2 to 0
let ?M = map-minsky ?fM g M ∪ map-minsky ?fN g N
show ?thesis unfolding mk-minsky-def
proof (intro exI [of - ?M ] conjI allI , goal-cases)

case 1 show ?case using M (1 ) N (1 ) by (auto simp: map-minsky-def )
next

case 2 show ?case using M (2 ,3 ) N (2 ) unfolding map-minsky-def
by (intro deterministic-union deterministic-map)
(auto simp: inj-on-def rev-image-eqI Suc-double-not-eq-double split: if-splits)

next
case 3 show ?case using N (3 ) by (auto simp: rev-image-eqI map-minsky-def

split: if-splits)
next

case (4 vs)
obtain vsM where M ′: ((Suc 0 , vs ◦ g), 0 , vsM ) ∈ (step M )∗ P (vs ◦ g) vsM

using M (4 ) by blast
obtain vsN where N ′: ((Suc 0 , vsM ), 0 , vsN ) ∈ (step N )∗ Q vsM vsN

using N (4 ) by blast
note ∗ = subsetD[OF steps-mono, of - ?M ]

map-steps[OF - - M ′(1 ), of g vs ?fM , simplified]
map-steps[OF - - N ′(1 ), of g - ?fN , simplified]

show ?case
using assms(3 ,4 ) M ′(2 ) N ′(2 ) rtrancl-trans[OF ∗(1 )[OF - ∗(2 )] ∗(1 )[OF -

∗(3 )]]
by (auto simp: comp-def )

qed
qed
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Sequential composition.
lemma mk-minsky-seq:

assumes mk-minsky P mk-minsky Q∧
vs vs ′ vs ′′. P vs vs ′ =⇒ Q vs ′ vs ′′ =⇒ R vs vs ′′

shows mk-minsky R
using mk-minsky-seq-map[OF assms(1 ,2 ), of id] assms(3 ) by simp

lemma mk-minsky-seq ′:
assumes mk-minsky P mk-minsky Q
shows mk-minsky (λvs vs ′′. (∃ vs ′. P vs vs ′ ∧ Q vs ′ vs ′′))
by (intro mk-minsky-seq[OF assms]) blast

We can do nothing (besides transitioning from state 1 to state 0).
lemma mk-minsky-nop:

mk-minsky (λvs vs ′. vs = vs ′)
by (intro mk-minsky-seq[OF mk-minsky-inc mk-minsky-dec]) auto

Renaming variables.
lemma mk-minsky-map:

assumes mk-minsky P inj f
shows mk-minsky (λvs vs ′. P (vs ◦ f ) (vs ′ ◦ f ) ∧ (∀ x. x /∈ range f −→ vs x =

vs ′ x))
using mk-minsky-seq-map[OF assms(1 ) mk-minsky-nop assms(2 )] by simp

lemma inj-shift [simp]:
fixes a b :: nat
assumes a < b
shows inj (λx. if x = 0 then a else x + b)
using assms by (auto simp: inj-on-def )

2.6 Bounded loop

In the following lemma, P is the specification of a loop body, and Q the
specification of the loop itself (a loop invariant). The loop variable is v. Q
can be realized provided that

1. P can be realized;

2. P ensures that the loop variable is not changed by the loop body; and

3. Q follows by induction on the loop variable:

(a) αQα holds when α[v] = 0; and
(b) α[v := n]P α′ and α′Qα′′ imply αQalpha′′ when α[v] = n+ 1.

lemma mk-minsky-loop:
assumes mk-minsky P∧

vs vs ′. P vs vs ′ =⇒ vs ′ v = vs v
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∧
vs. vs v = 0 =⇒ Q vs vs∧
n vs vs ′ vs ′′. vs v = Suc n =⇒ P (λx. if x = v then n else vs x) vs ′ =⇒ Q vs ′

vs ′′ =⇒ Q vs vs ′′

shows mk-minsky Q
proof −

obtain M where M : finite M deterministic M 0 /∈ fst ‘ M∧
vs. ∃ vs ′. ((Suc 0 , vs), 0 , vs ′) ∈ (step M )∗ ∧ P vs vs ′

using assms(1 ) by (auto simp: mk-minsky-def )
let ?M = {(1 , Dec v 2 0 )} ∪ map-minsky Suc id M
show ?thesis unfolding mk-minsky-def
proof (intro exI [of - ?M ] conjI allI , goal-cases)

case 1 show ?case using M (1 ) by (auto simp: map-minsky-def )
next

case 2 show ?case using M (2 ,3 ) unfolding map-minsky-def
by (intro deterministic-union deterministic-map) (auto simp: rev-image-eqI )

next
case 3 show ?case by (auto simp: map-minsky-def )

next
case (4 vs) show ?case
proof (induct vs v arbitrary: vs)

case 0 then show ?case using assms(3 )[of vs] step.decz[of 1 v 2 0 ?M vs]
by (auto simp: id-def )

next
case (Suc n)
obtain vs ′ where M ′: ((Suc 0 , λx. if x = v then n else vs x), 0 , vs ′) ∈ (step

M )∗

P (λx. if x = v then n else vs x) vs ′ using M (4 ) by blast
obtain vs ′′ where D: ((Suc 0 , vs ′), 0 , vs ′′) ∈ (step ?M )∗ Q vs ′ vs ′′

using Suc(1 )[of vs ′] assms(2 )[OF M ′(2 )] by auto
note ∗ = subsetD[OF steps-mono, of - ?M ]

r-into-rtrancl[OF decn[of Suc 0 v 2 0 ?M vs n]]
map-steps[OF - - M ′(1 ), of id - Suc, simplified, OF refl, simplified, folded

numeral-2-eq-2 ]
show ?case using rtrancl-trans[OF rtrancl-trans, OF ∗(2 ) ∗(1 )[OF - ∗(3 )]

D(1 )]
D(2 ) Suc(2 ) assms(4 )[OF - M ′(2 ), of vs ′′] by auto

qed
qed

qed

2.7 Copying values

We work up to copying values in several steps.

1. Clear a register. This is a loop that decrements the register until it
reaches 0.

2. Add a register to another one. This is a loop that decrements one reg-
ister, and increments the other register, until the first register reaches

12



0.

3. Add a register to two others. This is the same, except that two registers
are incremented.

4. Move a register: set a register to 0, then add another register to it.

5. Copy a register destructively: clear two registers, then add another
register to them.

lemma mk-minsky-zero:
shows mk-minsky (λvs vs ′. vs ′ = (λx. if x = v then 0 else vs x))
by (intro mk-minsky-loop[where v = v, OF — while v[v]−−:

mk-minsky-nop]) auto — pass

lemma mk-minsky-add1 :
assumes v 6= w
shows mk-minsky (λvs vs ′. vs ′ = (λx. if x = v then 0 else if x = w then vs v +

vs w else vs x))
using assms by (intro mk-minsky-loop[where v = v, OF — while v[v]−−:

mk-minsky-inc[of w]]) auto — v[w]++

lemma mk-minsky-add2 :
assumes u 6= v u 6= w v 6= w
shows mk-minsky (λvs vs ′. vs ′ =
(λx. if x = u then 0 else if x = v then vs u + vs v else if x = w then vs u + vs

w else vs x))
using assms by (intro mk-minsky-loop[where v = u, OF mk-minsky-seq ′[OF —

while v[u]−−:
mk-minsky-inc[of v] — v[v]++
mk-minsky-inc[of w]]]) auto — v[w]++

lemma mk-minsky-copy1 :
assumes v 6= w
shows mk-minsky (λvs vs ′. vs ′ = (λx. if x = v then 0 else if x = w then vs v else

vs x))
using assms by (intro mk-minsky-seq[OF

mk-minsky-zero[of w] — v[w] := 0
mk-minsky-add1 [of v w]]) auto — v[w] := v[w] + v[v], v[v] := 0

lemma mk-minsky-copy2 :
assumes u 6= v u 6= w v 6= w
shows mk-minsky (λvs vs ′. vs ′ =
(λx. if x = u then 0 else if x = v then vs u else if x = w then vs u else vs x))

using assms by (intro mk-minsky-seq[OF mk-minsky-seq ′, OF
mk-minsky-zero[of v] — v[v] := 0
mk-minsky-zero[of w] — v[w] := 0
mk-minsky-add2 [of u v w]]) auto — v[v] := v[v] + v[u], v[w] := v[w] + v[u], v[u]

:= 0
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lemma mk-minsky-copy:
assumes u 6= v u 6= w v 6= w
shows mk-minsky (λvs vs ′. vs ′ = (λx. if x = v then vs u else if x = w then 0 else

vs x))
using assms by (intro mk-minsky-seq[OF

mk-minsky-copy2 [of u v w] — v[v] := v[u], v[w] := v[u], v[u] := 0
mk-minsky-copy1 [of w u]]) auto — v[u] := v[w], v[w] := 0

2.8 Primitive recursive functions

Nondestructive apply: compute f on arguments α[u], α[v], α[w], storing the
result in α[t] and preserving all other registers below k. This is easy now
that we can copy values.
lemma mk-minsky-apply3 :

assumes mk-minsky3 f t < k u < k v < k w < k
shows mk-minsky (λvs vs ′. ∀ x < k. vs ′ x = (if x = t then f (vs u) (vs v) (vs w)

else vs x))
using assms(2−)
by (intro mk-minsky-seq[OF mk-minsky-seq ′[OF mk-minsky-seq ′], OF

mk-minsky-copy[of u 1 + k k] — v[1+k] := v[u]
mk-minsky-copy[of v 2 + k k] — v[2+k] := v[v]
mk-minsky-copy[of w 3 + k k] — v[3+k] := v[w]
mk-minsky-map[OF assms(1 ), of λx. if x = 0 then t else x + k]]) (auto 0 2 )

— v[t] := f v[1+k] v[2+k] v[3+k]

Composition is just four non-destructive applies.
lemma mk-minsky-comp3-3 :

assumes mk-minsky3 f mk-minsky3 g mk-minsky3 h mk-minsky3 k
shows mk-minsky3 (λx y z. f (g x y z) (h x y z) (k x y z))
by (rule mk-minsky-seq[OF mk-minsky-seq ′[OF mk-minsky-seq ′], OF

mk-minsky-apply3 [OF assms(2 ), of 4 7 1 2 3 ] — v[4] := g v[1] v[2] v[3]
mk-minsky-apply3 [OF assms(3 ), of 5 7 1 2 3 ] — v[5] := h v[1] v[2] v[3]
mk-minsky-apply3 [OF assms(4 ), of 6 7 1 2 3 ] — v[6] := k v[1] v[2] v[3]
mk-minsky-apply3 [OF assms(1 ), of 0 7 4 5 6 ]]) auto — v[0] := f v[4] v[5] v[6]

Primitive recursion is a non-destructive apply followed by a loop with an-
other non-destructive apply. The key to the proof is the loop invariant, which
we can specify as part of composing the various mk-minsky-∗ lemmas.
lemma mk-minsky-prim-rec:

assumes mk-minsky1 g mk-minsky3 h
shows mk-minsky2 (PrimRecOp g h)
by (intro mk-minsky-seq[OF mk-minsky-seq ′, OF

mk-minsky-apply3 [OF assms(1 ), of 0 4 2 2 2 ] — v[0] := g v[2]
mk-minsky-zero[of 3 ] — v[3] := 0
mk-minsky-loop[where v = 1 , OF mk-minsky-seq ′, OF — while v[1]−−:

mk-minsky-apply3 [OF assms(2 ), of 0 4 3 0 2 ] — v[0] := h v[3] v[0] v[2]
mk-minsky-inc[of 3 ], — v[3]++
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of λvs vs ′. vs 0 = PrimRecOp g h (vs 3 ) (vs 2 ) −→ vs ′ 0 = PrimRecOp g h
(vs 3 + vs 1 ) (vs 2 )

]]) auto

With these building blocks we can easily show that all primitive recursive
functions can be realized by a Minsky machine.
lemma mk-minsky-PrimRec:

f ∈ PrimRec1 =⇒ mk-minsky1 f
g ∈ PrimRec2 =⇒ mk-minsky2 g
h ∈ PrimRec3 =⇒ mk-minsky3 h

proof (goal-cases)
have ∗: (f ∈ PrimRec1 −→ mk-minsky1 f ) ∧ (g ∈ PrimRec2 −→ mk-minsky2

g) ∧ (h ∈ PrimRec3 −→ mk-minsky3 h)
proof (induction rule: PrimRec1-PrimRec2-PrimRec3 .induct)

case zero show ?case by (intro mk-minsky-mono[OF mk-minsky-zero]) auto
next

case suc show ?case by (intro mk-minsky-seq[OF mk-minsky-copy1 [of 1 0 ]
mk-minsky-inc[of 0 ]]) auto

next
case id1-1 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 1

0 ]]) auto
next

case id2-1 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 1
0 ]]) auto

next
case id2-2 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 2

0 ]]) auto
next

case id3-1 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 1
0 ]]) auto

next
case id3-2 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 2

0 ]]) auto
next

case id3-3 show ?case by (intro mk-minsky-mono[OF mk-minsky-copy1 [of 3
0 ]]) auto

next
case (comp1-1 f g) then show ?case using mk-minsky-comp3-3 by fast

next
case (comp1-2 f g) then show ?case using mk-minsky-comp3-3 by fast

next
case (comp1-3 f g) then show ?case using mk-minsky-comp3-3 by fast

next
case (comp2-1 f g h) then show ?case using mk-minsky-comp3-3 by fast

next
case (comp3-1 f g h k) then show ?case using mk-minsky-comp3-3 by fast

next
case (comp2-2 f g h) then show ?case using mk-minsky-comp3-3 by fast

next
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case (comp2-3 f g h) then show ?case using mk-minsky-comp3-3 by fast
next

case (comp3-2 f g h k) then show ?case using mk-minsky-comp3-3 by fast
next

case (comp3-3 f g h k) then show ?case using mk-minsky-comp3-3 by fast
next

case (prim-rec g h) then show ?case using mk-minsky-prim-rec by blast
qed
{ case 1 thus ?case using ∗ by blast next

case 2 thus ?case using ∗ by blast next
case 3 thus ?case using ∗ by blast }

qed

2.9 Recursively enumerable sets as Minsky machines

The following is the most complicated lemma of this theory: Given two r.e.
sets A and B we want to construct a Minsky machine that reaches the final
state 0 for input x if x ∈ A and final state 1 if x ∈ B, and never reaches
either of these states if x /∈ A ∪ B. (If x ∈ A ∩ B, then either state 0 or
state 1 may be reached.) We consider two r.e. sets rather than one because
we target recursive inseparability.
For the r.e. set A, there is a primitive recursive function f such that x ∈
A ⇐⇒ ∃y. f(x, y) = 0. Similarly there is a primitive recursive function g
for B such that x ∈ B ⇐⇒ ∃y. f(x, y) = 0. Our Minsky machine takes x
in register 0 and y in register 1 (initially 0) and works as follows.

1. evaluate f(x, y); if the result is 0, transition to state 0; otherwise,

2. evaluate g(x, y); if the result is 0, transition to state 1; otherwise,

3. increment y and start over.

lemma ce-set-pair-by-minsky:
assumes A ∈ ce-sets B ∈ ce-sets
obtains M :: (nat, nat) minsky where

finite M deterministic M 0 /∈ fst ‘ M Suc 0 /∈ fst ‘ M∧
x vs. vs 0 = x =⇒ vs 1 = 0 =⇒ x ∈ A ∪ B =⇒
∃ vs ′. ((2 , vs), (0 , vs ′)) ∈ (step M )∗ ∨ ((2 , vs), (Suc 0 , vs ′)) ∈ (step M )∗∧
x vs vs ′. vs 0 = x =⇒ vs 1 = 0 =⇒ ((2 , vs), (0 , vs ′)) ∈ (step M )∗ =⇒ x ∈

A ∧
x vs vs ′. vs 0 = x =⇒ vs 1 = 0 =⇒ ((2 , vs), (Suc 0 , vs ′)) ∈ (step M )∗ =⇒

x ∈ B
proof −

obtain g where g: g ∈ PrimRec2
∧

x. x ∈ A ←→ (∃ y. g x y = 0 )
using assms(1 ) by (auto simp: ce-sets-def fn-to-set-def )

obtain h where h: h ∈ PrimRec2
∧

x. x ∈ B ←→ (∃ y. h x y = 0 )
using assms(2 ) by (auto simp: ce-sets-def fn-to-set-def )
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have mk-minsky (λvs vs ′. vs ′ 0 = vs 0 ∧ vs ′ 1 = vs 1 ∧ vs ′ 2 = g (vs 0 ) (vs
1 ))

using mk-minsky-seq[OF
mk-minsky-apply3 [OF mk-minsky-PrimRec(2 )[OF g(1 )], of 2 3 0 1 0 ] — v[2]

:= g v[0] v[1]
mk-minsky-nop] by auto — pass

then obtain M :: (nat, nat) minsky where M : finite M deterministic M 0 /∈ fst
‘ M∧

vs. ∃ vs ′. ((Suc 0 , vs), 0 , vs ′) ∈ (step M )∗ ∧
vs ′ 0 = vs 0 ∧ vs ′ 1 = vs 1 ∧ vs ′ 2 = g (vs 0 ) (vs 1 )
unfolding mk-minsky-def by blast

have mk-minsky (λvs vs ′. vs ′ 0 = vs 0 ∧ vs ′ 1 = vs 1 + 1 ∧ vs ′ 2 = h (vs 0 )
(vs 1 ))

using mk-minsky-seq[OF
mk-minsky-apply3 [OF mk-minsky-PrimRec(2 )[OF h(1 )], of 2 3 0 1 0 ] — v[2]

:= h v[0] v[1]
mk-minsky-inc[of 1 ]] by auto — v[1] := v[1] + 1

then obtain N :: (nat, nat) minsky where N : finite N deterministic N 0 /∈ fst
‘ N∧

vs. ∃ vs ′. ((Suc 0 , vs), 0 , vs ′) ∈ (step N )∗ ∧
vs ′ 0 = vs 0 ∧ vs ′ 1 = vs 1 + 1 ∧ vs ′ 2 = h (vs 0 ) (vs 1 )
unfolding mk-minsky-def by blast

let ?f = λs. if s = 0 then 3 else 2 ∗ s — M: from state 4 to state 3
let ?g = λs. 2 ∗ s + 5 — N: from state 7 to state 5
define X where X = map-minsky ?f id M ∪ map-minsky ?g id N ∪ {(3 , Dec 2

7 0 )} ∪ {(5 , Dec 2 2 1 )}
have MX : map-minsky ?f id M ⊆ X by (auto simp: X-def )
have NX : map-minsky ?g id N ⊆ X by (auto simp: X-def )
have DX : (3 , Dec 2 7 0 ) ∈ X (5 , Dec 2 2 1 ) ∈ X by (auto simp: X-def )
have X1 : finite X using M (1 ) N (1 ) by (auto simp: map-minsky-def X-def )
have X2 : deterministic X unfolding X-def using M (2 ,3 ) N (2 ,3 )

apply (intro deterministic-union)
by (auto simp: map-minsky-def rev-image-eqI inj-on-def split: if-splits

intro!: deterministic-map) presburger+
have X3 : 0 /∈ fst ‘ X Suc 0 /∈ fst ‘ X using M (3 ) N (3 )

by (auto simp: X-def map-minsky-def split: if-splits)
have X4 : ∃ vs ′. g (vs 0 ) (vs 1 ) = 0 ∧ ((2 , vs), (0 , vs ′)) ∈ (step X)∗ ∨

h (vs 0 ) (vs 1 ) = 0 ∧ ((2 , vs), (1 , vs ′)) ∈ (step X)∗ ∨
g (vs 0 ) (vs 1 ) 6= 0 ∧ h (vs 0 ) (vs 1 ) 6= 0 ∧ vs ′ 0 = vs 0 ∧ vs ′ 1 = vs 1 + 1

∧
((2 , vs), (2 , vs ′)) ∈ (step X)+ for vs

proof −
guess vs ′ using M (4 )[of vs] by (elim exE conjE) note vs ′ = this
have 1 : ((2 , vs), (3 , vs ′)) ∈ (step X)∗

using subsetD[OF steps-mono[OF MX ], OF map-steps[OF - - vs ′(1 ), of id vs
?f ]] by simp

show ?thesis
proof (cases vs ′ 2 )

case 0 then show ?thesis using decz[OF DX(1 ), of vs ′] vs ′ 1
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by (auto intro: rtrancl-into-rtrancl)
next

case (Suc n) note Suc ′ = Suc
let ?vs = λx. if x = 2 then n else vs ′ x
have 2 : ((2 , vs), (7 , ?vs)) ∈ (step X)∗

using 1 decn[OF DX(1 ), of vs ′] Suc by (auto intro: rtrancl-into-rtrancl)
guess vs ′′ using N (4 )[of ?vs] by (elim exE conjE) note vs ′′ = this
have 3 : ((2 , vs), (5 , vs ′′)) ∈ (step X)∗

using 2 subsetD[OF steps-mono[OF NX ], OF map-steps[OF - - vs ′′(1 ), of
id ?vs ?g]] by simp

show ?thesis
proof (cases vs ′′ 2 )
case 0 then show ?thesis using 3 decz[OF DX(2 ), of vs ′′] vs ′′(2−) vs ′(2−)

by (auto intro: rtrancl-into-rtrancl)
next

case (Suc m)
let ?vs = λx. if x = 2 then m else vs ′′ x
have 4 : ((2 , vs), (2 , ?vs)) ∈ (step X)+ using 3 decn[OF DX(2 ), of vs ′′ m]

Suc by auto
then show ?thesis using vs ′′(2−) vs ′(2−) Suc Suc ′ by (auto intro!: exI [of

- ?vs])
qed

qed
qed
have ∗: vs 1 ≤ y =⇒ g (vs 0 ) y = 0 ∨ h (vs 0 ) y = 0 =⇒
∃ vs ′. ((2 , vs), (0 , vs ′)) ∈ (step X)∗ ∨ ((2 , vs), (1 , vs ′)) ∈ (step X)∗ for vs y

proof (induct vs 1 arbitrary: vs rule: inc-induct, goal-cases base step)
case (base vs) then show ?case using X4 [of vs] by auto

next
case (step vs)
guess vs ′ using X4 [of vs] by (elim exE)
then show ?case unfolding ex-disj-distrib using step(4 ) step(3 )[of vs ′]

by (auto dest!: trancl-into-rtrancl) (meson rtrancl-trans)+
qed
have ∗∗: ((s, vs), (t, ws)) ∈ (step X)∗ =⇒ t ∈ {0 , 1} =⇒ ((s, vs), (2 , ws ′)) ∈

(step X)∗ =⇒
∃ y. if t = 0 then g (ws ′ 0 ) y = 0 else h (ws ′ 0 ) y = 0 for s t vs ws ′ ws

proof (induct arbitrary: ws ′ rule: converse-rtrancl-induct2 )
case refl show ?case using refl(1 ) NF-not-suc[OF refl(2 ) NF-stepI ] X3 by

auto
next

case (step s vs s ′ vs ′)
show ?case using step(5 )
proof (cases rule: converse-rtranclE [case-names base ′ step ′])

case base ′

note ∗∗∗ = deterministic-minsky-UN [OF X2 - - X3 ]
show ?thesis using X4 [of ws ′]
proof (elim exE disjE conjE , goal-cases)

case (1 vs ′′) then show ?case using step(1 ,2 ,4 ) ∗∗∗[of (2 ,ws ′) vs ′′ ws]
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by (auto simp: base ′ intro: converse-rtrancl-into-rtrancl)
next

case (2 vs ′′) then show ?case using step(1 ,2 ,4 ) ∗∗∗[of (2 ,ws ′) ws vs ′′]
by (auto simp: base ′ intro: converse-rtrancl-into-rtrancl)

next
case (3 vs ′′) then show ?case using step(2 ) step(3 )[of vs ′′, OF step(4 )]

deterministicD[OF deterministic-stepI [OF X2 ], OF - step(1 )]
by (auto simp: base ′ if-bool-eq-conj trancl-unfold-left)

qed
next

case (step ′ y) then show ?thesis
by (metis deterministicD[OF deterministic-stepI [OF X2 ]] step(1 ) step(3 )[OF

step(4 )])
qed

qed
show ?thesis
proof (intro that[of X ] X1 X2 X3 , goal-cases)

case (1 x vs) then show ?case using ∗[of vs] by (auto simp: g(2 ) h(2 ))
next

case (2 x vs vs ′) then show ?case using ∗∗[of 2 vs 0 vs ′ vs] by (auto simp:
g(2 ) h(2 ))

next
case (3 x vs vs ′) then show ?case using ∗∗[of 2 vs 1 vs ′ vs] by (auto simp:

g(2 ) h(2 ))
qed

qed

For r.e. sets we obtain the following lemma as a special case (taking B = ∅,
and swapping states 1 and 2).
lemma ce-set-by-minsky:

assumes A ∈ ce-sets
obtains M :: (nat, nat) minsky where

finite M deterministic M 0 /∈ fst ‘ M∧
x vs. vs 0 = x =⇒ vs 1 = 0 =⇒ x ∈ A =⇒ ∃ vs ′. ((Suc 0 , vs), (0 , vs ′)) ∈

(step M )∗∧
x vs vs ′. vs 0 = x =⇒ vs 1 = 0 =⇒ ((Suc 0 , vs), (0 , vs ′)) ∈ (step M )∗ =⇒

x ∈ A
proof −

guess M using ce-set-pair-by-minsky[OF assms(1 ) ce-empty] . note M = this
let ?f = λs. if s = 1 then 2 else if s = 2 then 1 else s — swap states 1 and 2
have ?f ◦ ?f = id by auto
define N where N = map-minsky ?f id M
have M-def : M = map-minsky ?f id N

unfolding N-def map-minsky-comp ‹?f ◦ ?f = id› map-minsky-id o-id ..
show ?thesis using M (1−3 )
proof (intro that[of N ], goal-cases)

case (4 x vs) show ?case using M (5 )[OF 4 (4 ,5 )] 4 (6 ) M (7 )[OF 4 (4 ,5 )]
map-steps[of id vs vs 2 0 - M ?f ] by (auto simp: N-def )

next
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case (5 x vs vs ′) show ?case
using M (6 )[OF 5 (4 ,5 )] 5 (6 ) map-steps[of id vs vs 1 0 - N ?f ] by (auto simp:

M-def )
qed (auto simp: N-def map-minsky-def inj-on-def rev-image-eqI deterministic-map

split: if-splits)
qed

2.10 Encoding of Minsky machines

So far, Minsky machines have been sets of pairs of states and operations.
We now provide an encoding of Minsky machines as natural numbers, so
that we can talk about them as r.e. or computable sets. First we encode
operations.
primrec encode-Op :: (nat, nat) Op ⇒ nat where

encode-Op (Dec v s s ′) = c-pair 0 (c-pair v (c-pair s s ′))
| encode-Op (Inc v s) = c-pair 1 (c-pair v s)

definition decode-Op :: nat ⇒ (nat, nat) Op where
decode-Op n = (if c-fst n = 0
then Dec (c-fst (c-snd n)) (c-fst (c-snd (c-snd n))) (c-snd (c-snd (c-snd n)))
else Inc (c-fst (c-snd n)) (c-snd (c-snd n)))

lemma encode-Op-inv [simp]:
decode-Op (encode-Op x) = x
by (cases x) (auto simp: decode-Op-def )

Minsky machines are encoded via lists of pairs of states and operations.
definition encode-minsky :: (nat × (nat, nat) Op) list ⇒ nat where

encode-minsky M = list-to-nat (map (λx. c-pair (fst x) (encode-Op (snd x))) M )

definition decode-minsky :: nat ⇒ (nat × (nat, nat) Op) list where
decode-minsky n = map (λn. (c-fst n, decode-Op (c-snd n))) (nat-to-list n)

lemma encode-minsky-inv [simp]:
decode-minsky (encode-minsky M ) = M
by (auto simp: encode-minsky-def decode-minsky-def comp-def )

Assignments are stored as lists (starting with register 0).
definition decode-regs :: nat ⇒ (nat ⇒ nat) where

decode-regs n = (λi. let xs = nat-to-list n in if i < length xs then nat-to-list n ! i
else 0 )

The undecidability results talk about Minsky configurations (pairs of Minsky
machines and assignments). This means that we do not have to construct
any recursive functions that modify Minsky machines (for example in order
to initialize variables), keeping the proofs simple.
definition decode-minsky-state :: nat ⇒ ((nat, nat) minsky × (nat ⇒ nat)) where

decode-minsky-state n = (set (decode-minsky (c-fst n)), (decode-regs (c-snd n)))
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2.11 Undecidablity results

We conclude with some undecidability results. First we show that it is
undecidable whether a Minksy machine starting at state 1 terminates in
state 0.
definition minsky-reaching-0 where

minsky-reaching-0 = {n |n M vs vs ′. (M , vs) = decode-minsky-state n ∧ ((Suc
0 , vs), (0 , vs ′)) ∈ (step M )∗}

lemma minsky-reaching-0-not-computable:
¬ computable minsky-reaching-0

proof −
guess U using ce-set-by-minsky[OF univ-is-ce] . note U = this
obtain us where [simp]: set us = U using finite-list[OF U (1 )] by blast
let ?f = λn. c-pair (encode-minsky us) (c-cons n 0 )
have ?f ∈ PrimRec1
using comp2-1 [OF c-pair-is-pr const-is-pr comp2-1 [OF c-cons-is-pr id1-1 const-is-pr ]]

by simp
moreover have ?f x ∈ minsky-reaching-0 ←→ x ∈ univ-ce for x

using U (4 ,5 )[of λi. if i = 0 then x else 0 ]
by (auto simp: minsky-reaching-0-def decode-minsky-state-def decode-regs-def

c-cons-def cong: if-cong)
ultimately have many-reducible-to univ-ce minsky-reaching-0
by (auto simp: many-reducible-to-def many-reducible-to-via-def dest: pr-is-total-rec)

then show ?thesis by (rule many-reducible-lm-1 )
qed

The remaining results are resursive inseparability results. We start be show-
ing that there is a Minksy machine U with final states 0 and 1 such that it
is not possible to recursively separate inputs reaching state 0 from inputs
reaching state 1.
lemma rec-inseparable-0not1-1not0 :

rec-inseparable {p. 0 ∈ nat-to-ce-set p ∧ 1 /∈ nat-to-ce-set p} {p. 0 /∈ nat-to-ce-set
p ∧ 1 ∈ nat-to-ce-set p}
proof −

obtain n where n: nat-to-ce-set n = {0} using nat-to-ce-set-srj[OF ce-finite[of
{0}]] by auto
obtain m where m: nat-to-ce-set m = {1} using nat-to-ce-set-srj[OF ce-finite[of
{1}]] by auto

show ?thesis by (rule rec-inseparable-mono[OF Rice-rec-inseparable[of n m]])
(auto simp: n m)
qed

lemma ce-sets-containing-n-ce:
{p. n ∈ nat-to-ce-set p} ∈ ce-sets
using ce-set-lm-5 [OF univ-is-ce comp2-1 [OF c-pair-is-pr id1-1 const-is-pr [of n]]]
by (auto simp: univ-ce-lm-1 )
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lemma rec-inseparable-fixed-minsky-reaching-0-1 :
obtains U :: (nat, nat) minsky where

finite U deterministic U 0 /∈ fst ‘ U 1 /∈ fst ‘ U
rec-inseparable {x |x vs ′. ((2 , (λn. if n = 0 then x else 0 )), (0 , vs ′)) ∈ (step

U )∗}
{x |x vs ′. ((2 , (λn. if n = 0 then x else 0 )), (1 , vs ′)) ∈ (step U )∗}

proof −
guess U using ce-set-pair-by-minsky[OF ce-sets-containing-n-ce ce-sets-containing-n-ce,

of 0 1 ] .
from this(1−4 ) this(5−7 )[of λn. if n = 0 then - else 0 ]
show ?thesis by (auto 0 0 intro!: that[of U ] rec-inseparable-mono[OF rec-inseparable-0not1-1not0 ]

pr-is-total-rec simp: rev-image-eqI cong: if-cong) meson+
qed

Consequently, it is impossible to separate Minsky configurations with deter-
mistic machines and final states 0 and 1 that reach state 0 from those that
reach state 1.
definition minsky-reaching-s where

minsky-reaching-s s = {m |M m vs vs ′. (M , vs) = decode-minsky-state m ∧
deterministic M ∧ 0 /∈ fst ‘ M ∧ 1 /∈ fst ‘ M ∧ ((2 , vs), (s, vs ′)) ∈ (step M )∗}

lemma rec-inseparable-minsky-reaching-0-1 :
rec-inseparable (minsky-reaching-s 0 ) (minsky-reaching-s 1 )

proof −
guess U using rec-inseparable-fixed-minsky-reaching-0-1 . note U = this
obtain us where [simp]: set us = U using finite-list[OF U (1 )] by blast
let ?f = λn. c-pair (encode-minsky us) (c-cons n 0 )
have ?f ∈ PrimRec1
using comp2-1 [OF c-pair-is-pr const-is-pr comp2-1 [OF c-cons-is-pr id1-1 const-is-pr ]]

by simp
then show ?thesis
using U (1−4 ) rec-inseparable-many-reducible[of ?f , OF - rec-inseparable-mono[OF

U (5 )]]
by (auto simp: pr-is-total-rec minsky-reaching-s-def decode-minsky-state-def

rev-image-eqI
decode-regs-def c-cons-def cong: if-cong)

qed

As a corollary, it is impossible to separate Minsky configurations that reach
state 0 but not state 1 from those that reach state 1 but not state 0.
definition minsky-reaching-s-not-t where

minsky-reaching-s-not-t s t = {m |M m vs vs ′. (M , vs) = decode-minsky-state m
∧

((2 , vs), (s, vs ′)) ∈ (step M )∗ ∧ ((2 , vs), (t, vs ′)) /∈ (step M )∗}

lemma minsky-reaching-s-imp-minsky-reaching-s-not-t:
assumes s ∈ {0 ,1} t ∈ {0 ,1} s 6= t
shows minsky-reaching-s s ⊆ minsky-reaching-s-not-t s t

proof −

22



have [dest!]: ((2 , vs), (0 , vs ′)) /∈ (step M )∗ ∨ ((2 , vs), (1 , vs ′)) /∈ (step M )∗

if deterministic M 0 /∈ fst ‘ M 1 /∈ fst ‘ M for M :: (nat, nat) minsky and vs
vs ′

using deterministic-minsky-UN [OF that(1 ) - - that(2 ,3 )] by auto
show ?thesis using assms
by (auto simp: minsky-reaching-s-def minsky-reaching-s-not-t-def rev-image-eqI )

qed

lemma rec-inseparable-minsky-reaching-0-not-1-1-not-0 :
rec-inseparable (minsky-reaching-s-not-t 0 1 ) (minsky-reaching-s-not-t 1 0 )
by (intro rec-inseparable-mono[OF rec-inseparable-minsky-reaching-0-1 ]

minsky-reaching-s-imp-minsky-reaching-s-not-t) simp-all

end
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