Minkowski’s Theorem

Manuel Eberl

August 16, 2018

Abstract

Minkowski’s theorem relates a subset of \(\mathbb{R}^n \), the Lebesgue measure, and the integer lattice \(\mathbb{Z}^n \): It states that any convex subset of \(\mathbb{R}^n \) with volume greater than \(2^n \) contains at least one lattice point from \(\mathbb{Z}^n \setminus \{0\} \), i.e. a non-zero point with integer coefficients.

A related theorem which directly implies this is Blichfeldt’s theorem, which states that any subset of \(\mathbb{R}^n \) with a volume greater than 1 contains two different points whose difference vector has integer components.

The entry contains a proof of both theorems.

Contents

1 Minkowski’s theorem 2
 1.1 Miscellaneous material 2
 1.2 Auxiliary theorems about measure theory 2
 1.3 Blichfeldt’s theorem 3
 1.4 Minkowski’s theorem 3
1 Minkowski’s theorem

theory Minkowskis-Theorem
 imports HOL−Analysis.Analysis
begin

1.1 Miscellaneous material

lemma bij-betw-UN:
 assumes bij-betw f A B
 shows \((\bigcup_{n\in A. \ g \ (f \ n))} = (\bigcup_{n\in B. \ g \ n})\)
⟨proof⟩

definition of-int-vec where
 of-int-vec v = (\chi \ i. \ of-int \ (v \ $ i))

lemma of-int-vec-nth [simp]: of-int-vec v $ n = of-int \ (v \ $ n)
⟨proof⟩

lemma of-int-vec-eq-iff [simp]:
 (of-int-vec a :: ('a :: ring-char-0) ^ 'n) = of-int-vec b \iff a = b
⟨proof⟩

lemma inj-axis:
 assumes c \neq 0
 shows inj \((\lambda\ k. \ axis\ k\ c :: ('a :: \{zero\}) ^ 'n)\)
⟨proof⟩

lemma compactD:
 assumes compact \((\cdot A :: ('a :: metric-space set) range f \subseteq A)\)
 shows \exists h l. strict-mono \((h :: nat \Rightarrow nat) \land (f \circ h) \longrightarrow l)\)
⟨proof⟩

lemma closed-lattice:
 fixes A :: ('real ^ 'n) set
 assumes \((\forall\ i. \ v \in A \Longrightarrow v \$ i \in \mathbb{Z})\)
 shows closed A
⟨proof⟩

1.2 Auxiliary theorems about measure theory

lemma emeasure-lborel-cbox-eq':
 emeasure lborel \((cbox\ a\ b) = ennreal \((\Pi e\in Basis. \ max \ 0 \ ((b - a) \cdot e))\)
⟨proof⟩

lemma emeasure-lborel-cbox-cart-eq:
 fixes a b :: real ^ ('n :: finite)
 shows emeasure lborel \((cbox\ a\ b) = ennreal \((\Pi i\in UNIV. \ max \ 0 \ ((b - a) \$ i))\)
⟨proof⟩

lemma sum-emeasure':
assumes [simp]: finite A
assumes [measurable]: \(\forall x. x \in A \Rightarrow B x \in \text{sets } M \)
assumes \(\forall x, y. x \in A \rightarrow y \in A \rightarrow x \neq y \rightarrow \text{emeasure } M (B x \cap B y) = 0 \)
shows \(\left(\sum_{x \in A. \text{emeasure } M (B x)} \right) = \text{emeasure } M (\bigcup_{x \in A. B x}) \)
⟨proof⟩

lemma sums-emeasure':
assumes [measurable]: \(\forall x. B x \in \text{sets } M \)
assumes \(\forall x, y. x \neq y \Rightarrow \text{emeasure } M (B x \cap B y) = 0 \)
shows \((\lambda x. \text{emeasure } M (B x)) \text{ sums } \text{emeasure } M (\bigcup x. B x) \)
⟨proof⟩

1.3 Blichfeldt’s theorem

Blichfeldt’s theorem states that, given a subset of \(\mathbb{R}^n \) with \(n > 0 \) and a volume of more than 1, there exist two different points in that set whose difference vector has integer components.

This will be the key ingredient in proving Minkowski’s theorem.

Note that in the HOL Light version, it is additionally required – both for Blichfeldt’s theorem and for Minkowski’s theorem – that the set is bounded, which we do not need.

proposition blichfeldt:
fixes \(S :: (\text{real} ^{\sim} 'n) \text{ set} \)
assumes [measurable]: \(S \in \text{sets lebesgue} \)
assumes \(\text{emeasure lebesgue } S > 1 \)
obtains \(x, y \) where \(x \neq y \text{ and } x \in S \text{ and } y \in S \text{ and } \forall i. (x - y) \# i \in \mathbb{Z} \)
⟨proof⟩

1.4 Minkowski’s theorem

Minkowski’s theorem now states that, given a convex subset of \(\mathbb{R}^n \) that is symmetric around the origin and has a volume greater than \(2^n \), that set must contain a non-zero point with integer coordinates.

theorem minkowski:
fixes \(B :: (\text{real} ^{\sim} 'n) \text{ set} \)
assumes convex \(B \) and symmetric: uminus \(B \subseteq B \)
assumes meas-B [measurable]: \(B \in \text{sets lebesgue} \)
assumes measure-B: \(\text{emeasure lebesgue } B > 2 ^{\# \text{CARD}'n} \)
obtains \(x \) where \(x \in B \text{ and } x \neq 0 \text{ and } \forall i. x \# i \in \mathbb{Z} \)
⟨proof⟩

If the set in question is compact, the restriction to the volume can be weakened to “at least 1” from “greater than 1”.

theorem minkowski-compact:
fixes \(B :: (\text{real} ^{\sim} 'n) \text{ set} \)
assumes convex B and compact B and symmetric, \(B \subseteq B \)
assumes measure-B: \(\text{emasure lebesgue} \geq 2^\text{CARD}(n) \)
obtains \(x \) where \(x \in B \) and \(x \neq 0 \) and \(\land i. x \not\in \mathbb{Z} \)
(proof)

end

References

 https://web.math.rochester.edu/people/faculty/edummit/docs/