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Abstract

Minkowski’s theorem relates a subset of Rn, the Lebesgue measure,
and the integer lattice Zn: It states that any convex subset of Rn with
volume greater than 2n contains at least one lattice point from Zn\{0},
i. e. a non-zero point with integer coefficients.

A related theorem which directly implies this is Blichfeldt’s theo-
rem, which states that any subset of Rn with a volume greater than 1
contains two different points whose difference vector has integer com-
ponents.

The entry contains a proof of both theorems.
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1 Minkowski’s theorem
theory Minkowskis-Theorem

imports HOL−Analysis.Equivalence-Lebesgue-Henstock-Integration
begin

1.1 Miscellaneous material
lemma bij-betw-UN :

assumes bij-betw f A B
shows (

⋃
n∈A. g (f n)) = (

⋃
n∈B. g n)

using assms by (auto simp: bij-betw-def )

definition of-int-vec where
of-int-vec v = (χ i. of-int (v $ i))

lemma of-int-vec-nth [simp]: of-int-vec v $ n = of-int (v $ n)
by (simp add: of-int-vec-def )

lemma of-int-vec-eq-iff [simp]:
(of-int-vec a :: ( ′a :: ring-char-0 ) ^ ′n) = of-int-vec b ←→ a = b
by (simp add: of-int-vec-def vec-eq-iff )

lemma inj-axis:
assumes c 6= 0
shows inj (λk. axis k c :: ( ′a :: {zero}) ^ ′n)

proof
fix x y :: ′n
assume ∗: axis x c = axis y c
have axis x c $ x = axis x c $ y

by (subst ∗) simp
thus x = y using assms

by (auto simp: axis-def split: if-splits)
qed

lemma compactD:
assumes compact (A :: ′a :: metric-space set) range f ⊆ A
shows ∃ h l. strict-mono (h::nat⇒nat) ∧ (f ◦ h) −−−−→ l
using assms unfolding compact-def by blast

lemma closed-lattice:
fixes A :: (real ^ ′n) set
assumes

∧
v i. v ∈ A =⇒ v $ i ∈ �

shows closed A
proof (rule discrete-imp-closed[OF zero-less-one], safe, goal-cases)

case (1 x y)
have x $ i = y $ i for i
proof −

from 1 and assms have x $ i − y $ i ∈ �
by auto
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then obtain m where m: of-int m = (x $ i − y $ i)
by (elim Ints-cases) auto

hence of-int (abs m) = abs ((x − y) $ i)
by simp

also have . . . ≤ norm (x − y)
by (rule component-le-norm-cart)

also have . . . < of-int 1
using 1 by (simp add: dist-norm norm-minus-commute)

finally have abs m < 1
by (subst (asm) of-int-less-iff )

thus x $ i = y $ i
using m by simp

qed
thus y = x

by (simp add: vec-eq-iff )
qed

1.2 Auxiliary theorems about measure theory
lemma emeasure-lborel-cbox-eq ′:

emeasure lborel (cbox a b) = ennreal (
∏

e∈Basis. max 0 ((b − a) · e))
proof (cases ∀ ba∈Basis. a · ba ≤ b · ba)

case True
hence emeasure lborel (cbox a b) = ennreal (prod ((·) (b − a)) Basis)

unfolding emeasure-lborel-cbox-eq by auto
also have prod ((·) (b − a)) Basis = (

∏
e∈Basis. max 0 ((b − a) · e))

using True by (intro prod.cong refl) (auto simp: max-def inner-simps)
finally show ?thesis .

next
case False
hence emeasure lborel (cbox a b) = ennreal 0

by (auto simp: emeasure-lborel-cbox-eq)
also from False have 0 = (

∏
e∈Basis. max 0 ((b − a) · e))

by (auto simp: max-def inner-simps)
finally show ?thesis .

qed

lemma emeasure-lborel-cbox-cart-eq:
fixes a b :: real ^ ( ′n :: finite)
shows emeasure lborel (cbox a b) = ennreal (

∏
i ∈ UNIV . max 0 ((b − a) $ i))

proof −
have emeasure lborel (cbox a b) = ennreal (

∏
e∈Basis. max 0 ((b − a) · e))

unfolding emeasure-lborel-cbox-eq ′ ..
also have (Basis :: (real ^ ′n) set) = range (λk. axis k 1 )

unfolding Basis-vec-def by auto
also have (

∏
e∈. . . . max 0 ((b − a) · e)) = (

∏
i ∈ UNIV . max 0 ((b − a) $

i))
by (subst prod.reindex) (auto intro!: inj-axis simp: algebra-simps inner-axis)

finally show ?thesis .
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qed

lemma sum-emeasure ′:
assumes [simp]: finite A
assumes [measurable]:

∧
x. x ∈ A =⇒ B x ∈ sets M

assumes
∧

x y. x ∈ A =⇒ y ∈ A =⇒ x 6= y =⇒ emeasure M (B x ∩ B y) = 0
shows (

∑
x∈A. emeasure M (B x)) = emeasure M (

⋃
x∈A. B x)

proof −
define C where C = (

⋃
x∈A.

⋃
y∈(A−{x}). B x ∩ B y)

have C : C ∈ null-sets M
unfolding C-def using assms
by (intro null-sets.finite-UN ) (auto simp: null-sets-def )

hence [measurable]: C ∈ sets M and [simp]: emeasure M C = 0
by (simp-all add: null-sets-def )

have (
⋃

x∈A. B x) = (
⋃

x∈A. B x − C ) ∪ C
by (auto simp: C-def )

also have emeasure M . . . = emeasure M (
⋃

x∈A. B x − C )
by (subst emeasure-Un-null-set) (auto intro!: sets.Un sets.Diff )

also from assms have . . . = (
∑

x∈A. emeasure M (B x − C ))
by (subst sum-emeasure)

(auto simp: disjoint-family-on-def C-def intro!: sets.Diff sets.finite-UN )
also have . . . = (

∑
x∈A. emeasure M (B x))

by (intro sum.cong refl emeasure-Diff-null-set) auto
finally show ?thesis ..

qed

lemma sums-emeasure ′:
assumes [measurable]:

∧
x. B x ∈ sets M

assumes
∧

x y. x 6= y =⇒ emeasure M (B x ∩ B y) = 0
shows (λx. emeasure M (B x)) sums emeasure M (

⋃
x. B x)

proof −
define C where C = (

⋃
x.

⋃
y∈−{x}. B x ∩ B y)

have C : C ∈ null-sets M
unfolding C-def using assms
by (intro null-sets-UN ′) (auto simp: null-sets-def )

hence [measurable]: C ∈ sets M and [simp]: emeasure M C = 0
by (simp-all add: null-sets-def )

have (
⋃

x. B x) = (
⋃

x. B x − C ) ∪ C
by (auto simp: C-def )

also have emeasure M . . . = emeasure M (
⋃

x. B x − C )
by (subst emeasure-Un-null-set) (auto intro!: sets.Un sets.Diff )

also from assms have (λx. emeasure M (B x − C )) sums . . .
by (intro sums-emeasure)

(auto simp: disjoint-family-on-def C-def intro!: sets.Diff sets.finite-UN )
also have (λx. emeasure M (B x − C )) = (λx. emeasure M (B x))

by (intro ext emeasure-Diff-null-set) auto
finally show ?thesis .

qed
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1.3 Blichfeldt’s theorem

Blichfeldt’s theorem states that, given a subset of Rn with n > 0 and a
volume of more than 1, there exist two different points in that set whose
difference vector has integer components.
This will be the key ingredient in proving Minkowski’s theorem.
Note that in the HOL Light version, it is additionally required – both for
Blichfeldt’s theorem and for Minkowski’s theorem – that the set is bounded,
which we do not need.
proposition blichfeldt:

fixes S :: (real ^ ′n) set
assumes [measurable]: S ∈ sets lebesgue
assumes emeasure lebesgue S > 1
obtains x y where x 6= y and x ∈ S and y ∈ S and

∧
i. (x − y) $ i ∈ �

proof −
— We define for each lattice point in Zn the corresponding cell in Rn.
define R :: int ^ ′n ⇒ (real ^ ′n) set

where R = (λa. cbox (of-int-vec a) (of-int-vec (a + 1 )))

— For each lattice point, we can intersect the cell it defines with our set S to
obtain a partitioning of S.

define T :: int ^ ′n ⇒ (real ^ ′n) set
where T = (λa. S ∩ R a)

— We can then translate each such partition into the cell at the origin, i. e. the
unit box R 0.

define T ′ :: int ^ ′n ⇒ (real ^ ′n) set
where T ′ = (λa. (λx. x − of-int-vec a) ‘ T a)

have T ′-altdef : T ′ a = (λx. x + of-int-vec a) −‘ T a for a
unfolding T ′-def by force

— We need to show measurability of all the defined sets.
have [measurable, simp]: R a ∈ sets lebesgue for a

unfolding R-def by simp
have [measurable, simp]: T a ∈ sets lebesgue for a

unfolding T-def by auto
have (λx::real^ ′n. x + of-int-vec a) ∈ lebesgue →M lebesgue for a

using lebesgue-affine-measurable[of λ-. 1 of-int-vec a]
by (auto simp: euclidean-representation add-ac)

from measurable-sets[OF this, of T a a for a]
have [measurable, simp]: T ′ a ∈ sets lebesgue for a

unfolding T ′-altdef by simp

— Obviously, the original set S is the union of all the lattice point cell partitions.
have S-decompose: S = (

⋃
a. T a) unfolding T-def

proof safe
fix x assume x: x ∈ S
define a where a = (χ i. bx $ ic)
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have x ∈ R a
unfolding R-def
by (auto simp: cbox-interval less-eq-vec-def of-int-vec-def a-def )

with x show x ∈ (
⋃

a. S ∩ R a) by auto
qed

— Translating the partitioned subsets does not change their volume.
have emeasure-T ′: emeasure lebesgue (T ′ a) = emeasure lebesgue (T a) for a
proof −

have T ′ a = (λx. 1 ∗R x + (− of-int-vec a)) ‘ T a
by (simp add: T ′-def )

also have emeasure lebesgue . . . = emeasure lebesgue (T a)
by (subst emeasure-lebesgue-affine) auto

finally show ?thesis
by simp

qed

— Each translated partition of S is a subset of the unit cell at the origin.
have T ′-subset: T ′ a ⊆ cbox 0 1 for a

unfolding T ′-def T-def R-def
by (auto simp: algebra-simps cbox-interval of-int-vec-def less-eq-vec-def )

— It is clear that the intersection of two different lattice point cells is a null set.
have R-Int: R a ∩ R b ∈ null-sets lebesgue if a 6= b for a b
proof −

from that obtain i where i: a $ i 6= b $ i
by (auto simp: vec-eq-iff )

have R a ∩ R b = cbox (χ i. max (a $ i) (b $ i)) (χ i. min (a $ i + 1 ) (b $ i
+ 1 ))

unfolding Int-interval-cart R-def interval-cbox
by (simp add: of-int-vec-def max-def min-def if-distrib cong: if-cong)

hence emeasure lebesgue (R a ∩ R b) = emeasure lborel . . .
by simp

also have . . . = ennreal (
∏

i∈UNIV . max 0 (((χ x. real-of-int (min (a $ x +
1 ) (b $ x + 1 ))) −

(χ x. real-of-int (max (a $ x) (b $ x)))) $ i))
(is - = ennreal ?P)
unfolding emeasure-lborel-cbox-cart-eq by simp

also have ?P = 0
using i by (auto simp: max-def intro!: exI [of - i])

finally show ?thesis
by (auto simp: null-sets-def R-def )

qed

— Therefore, the intersection of two lattice point cell partitionings of S is also a
null set.

have T-Int: T a ∩ T b ∈ null-sets lebesgue if a 6= b for a b
proof −

have T a ∩ T b = (R a ∩ R b) ∩ S
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by (auto simp: T-def )
also have . . . ∈ null-sets lebesgue

by (rule null-set-Int2 ) (insert that, auto intro: R-Int assms)
finally show ?thesis .

qed
have emeasure-T-Int: emeasure lebesgue (T a ∩ T b) = 0 if a 6= b for a b

using T-Int[OF that] unfolding null-sets-def by blast

— The set of lattice points Zn is countably infinite, so there exists a bijection
f : N→ Zn. We need this for summing over all lattice points.

define f :: nat ⇒ int ^ ′n where f = from-nat-into UNIV
have countable (UNIV :: (int ^ ′n) set) infinite (UNIV :: (int ^ ′n) set)

using infinite-UNIV-char-0 by simp-all
from bij-betw-from-nat-into [OF this] have f : bij f

by (simp add: f-def )

— Suppose all the translated cell partitions T ′ are disjoint.
{

assume disjoint:
∧

a b. a 6= b =⇒ T ′ a ∩ T ′ b = {}
— We know by assumption that the volume of S is greater than 1.
have 1 < emeasure lebesgue S by fact
also have emeasure lebesgue S = emeasure lebesgue (

⋃
n. T ′ (f n))

proof −
— The sum of the volumes of all the T ′ is precisely the volume of their union,

which is S.
have S = (

⋃
a. T a) by (rule S-decompose)

also have . . . = (
⋃

n. T (f n))
by (rule bij-betw-UN [OF f , symmetric])

also have (λn. emeasure lebesgue (T (f n))) sums emeasure lebesgue . . .
by (intro sums-emeasure ′ emeasure-T-Int) (insert f , auto simp: bij-betw-def

inj-on-def )
also have (λn. emeasure lebesgue (T (f n))) = (λn. emeasure lebesgue (T ′ (f

n)))
by (simp add: emeasure-T ′)

finally have (λn. emeasure lebesgue (T ′ (f n))) sums emeasure lebesgue S .
moreover have (λn. emeasure lebesgue (T ′ (f n))) sums emeasure lebesgue

(
⋃

n. T ′ (f n))
using disjoint by (intro sums-emeasure)

(insert f , auto simp: disjoint-family-on-def bij-betw-def
inj-on-def )

ultimately show ?thesis
by (auto simp: sums-iff )

qed
— On the other hand, all the translated partitions lie in the unit cell cbox 0 1,

so their combined volume cannot be greater than 1.
also have emeasure lebesgue (

⋃
n. T ′ (f n)) ≤ emeasure lebesgue (cbox 0 (1 ::

real ^ ′n))
using T ′-subset by (intro emeasure-mono) auto

also have . . . = 1
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by (simp add: emeasure-lborel-cbox-cart-eq)
— This leads to a contradiction.
finally have False by simp

}
— Therefore, there exists a point that lies in two different translated partitions,

which obviously corresponds two two points in the non-translated partitions whose
difference is the difference between two lattice points and therefore has integer
components.

then obtain a b x where a 6= b x ∈ T ′ a x ∈ T ′ b
by auto

thus ?thesis
by (intro that[of x + of-int-vec a x + of-int-vec b])

(auto simp: T ′-def T-def algebra-simps)
qed

1.4 Minkowski’s theorem

Minkowski’s theorem now states that, given a convex subset of Rn that is
symmetric around the origin and has a volume greater than 2n, that set
must contain a non-zero point with integer coordinates.
theorem minkowski:

fixes B :: (real ^ ′n) set
assumes convex B and symmetric: uminus ‘ B ⊆ B
assumes meas-B [measurable]: B ∈ sets lebesgue
assumes measure-B: emeasure lebesgue B > 2 ^ CARD( ′n)
obtains x where x ∈ B and x 6= 0 and

∧
i. x $ i ∈ �

proof −
— We scale B with 1

2 .
define B ′ where B ′ = (λx. 2 ∗R x) −‘ B
have meas-B ′ [measurable]: B ′ ∈ sets lebesgue

using measurable-sets[OF lebesgue-measurable-scaling[of 2 ] meas-B]
by (simp add: B ′-def )

have B ′-altdef : B ′ = (λx. (1/2 ) ∗R x) ‘ B
unfolding B ′-def by force

— The volume of the scaled set is 2n times smaller than the original set, and
therefore still has a volume greater than 1.

have 1 < ennreal ((1 / 2 ) ^ CARD( ′n)) ∗ emeasure lebesgue B
proof (cases emeasure lebesgue B)

case (real x)
have ennreal (2 ^ CARD( ′n)) = 2 ^ CARD( ′n)

by (subst ennreal-power [symmetric]) auto
also from measure-B and real have . . . < ennreal x by simp
finally have (2 ^ CARD( ′n)) < x

by (subst (asm) ennreal-less-iff ) auto
thus ?thesis

using real by (simp add: ennreal-1 [symmetric] ennreal-mult ′ [symmetric]
ennreal-less-iff field-simps del: ennreal-1 )

qed (simp-all add: ennreal-mult-top)
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also have . . . = emeasure lebesgue B ′

unfolding B ′-altdef using emeasure-lebesgue-affine[of 1/2 0 B] by simp
finally have ∗: emeasure lebesgue B ′ > 1 .

— We apply Blichfeldt’s theorem to get two points whose difference vector has
integer coefficients. It only remains to show that that difference vector is itself a
point in the original set.

obtain x y
where xy: x 6= y x ∈ B ′ y ∈ B ′ ∧i. (x − y) $ i ∈ �
by (erule blichfeldt [OF meas-B ′ ∗])

hence 2 ∗R x ∈ B 2 ∗R y ∈ B by (auto simp: B ′-def )
— Exploiting the symmetric of B, the reflection of 2 ∗R y is also in B.
moreover from this and symmetric have −(2 ∗R y) ∈ B by blast
— Since B is convex, the mid-point between 2 ∗R x and − 2 ∗R y is also in B,

and that point is simply x − y as desired.
ultimately have (1 / 2 ) ∗R 2 ∗R x + (1 / 2 ) ∗R (− 2 ∗R y) ∈ B

using ‹convex B› by (intro convexD) auto
also have (1 / 2 ) ∗R 2 ∗R x + (1 / 2 ) ∗R (− 2 ∗R y) = x − y

by simp
finally show ?thesis using xy

by (intro that[of x − y]) auto
qed

If the set in question is compact, the restriction to the volume can be weak-
ened to “at least 1” from “greater than 1”.
theorem minkowski-compact:

fixes B :: (real ^ ′n) set
assumes convex B and compact B and symmetric: uminus ‘ B ⊆ B
assumes measure-B: emeasure lebesgue B ≥ 2 ^ CARD( ′n)
obtains x where x ∈ B and x 6= 0 and

∧
i. x $ i ∈ �

proof (cases emeasure lebesgue B = 2 ^ CARD( ′n))
— If the volume is greater than 1, we can just apply the theorem from before.
case False
with measure-B have less: emeasure lebesgue B > 2 ^ CARD( ′n)

by simp
from ‹compact B› have meas: B ∈ sets lebesgue

by (intro sets-completionI-sets lborelD borel-closed compact-imp-closed)
from minkowski[OF assms(1 ) symmetric meas less] and that

show ?thesis by blast
next

case True
— If the volume is precisely one, we look at what happens when B is scaled with

a factor of 1 + ε.
define B ′ where B ′ = (λε. (∗R) (1 + ε) ‘ B)
from ‹compact B› have compact ′: compact (B ′ ε) for ε

unfolding B ′-def by (intro compact-scaling)
have B ′-altdef : B ′ ε = (∗R) (inverse (1 + ε)) −‘ B if ε: ε > 0 for ε

using ε unfolding B ′-def by force
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— Since the scaled sets are convex, they are stable under scaling.
have B-scale: a ∗R x ∈ B if x ∈ B a ∈ {0 ..1} for a x
proof −

have ((a + 1 ) / 2 ) ∗R x + (1 − ((a + 1 ) / 2 )) ∗R (−x) ∈ B
using that and ‹convex B› and symmetric by (intro convexD) auto

also have ((a + 1 ) / 2 ) ∗R x + (1 − ((a + 1 ) / 2 )) ∗R (−x) =
(1 + a) ∗R ((1/2 ) ∗R (x + x)) − x

by (simp add: algebra-simps del: scaleR-half-double)
also have . . . = a ∗R x

by (subst scaleR-half-double) (simp add: algebra-simps)
finally show . . . ∈ B .

qed

— This means that B ′ is monotonic.
have B ′-subset: B ′ a ⊆ B ′ b if 0 ≤ a a ≤ b for a b
proof

fix x assume x ∈ B ′ a
then obtain y where x = (1 + a) ∗R y y ∈ B

by (auto simp: B ′-def )
moreover then have (inverse (1 + b) ∗ (1 + a)) ∗R y ∈ B

using that by (intro B-scale) (auto simp: field-simps)
ultimately show x ∈ B ′ b

using that by (force simp: B ′-def )
qed

— We obtain some upper bound on the norm of B.
from ‹compact B› have bounded B

by (rule compact-imp-bounded)
then obtain C where C : norm x ≤ C if x ∈ B for x

unfolding bounded-iff by blast

— We can then bound the distance of any point in a scaled set to the original set.
have setdist-le: setdist {x} B ≤ ε ∗ C if x ∈ B ′ ε and ε ≥ 0 for x ε
proof −

from that obtain y where y: y ∈ B and [simp]: x = (1 + ε) ∗R y
by (auto simp: B ′-def )

from y have setdist {x} B ≤ dist x y
by (intro setdist-le-dist) auto

also from that have dist x y = ε ∗ norm y
by (simp add: dist-norm algebra-simps)

also from y have norm y ≤ C
by (rule C )

finally show setdist {x} B ≤ ε ∗ C
using that by (simp add: mult-left-mono)

qed

— By applying the standard Minkowski theorem to the a scaled set, we can see
that any scaled set contains a non-zero point with integer coordinates.

have ∃ v. v ∈ B ′ ε − {0} ∧ (∀ i. v $ i ∈ �) if ε: ε > 0 for ε
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proof −
from ‹convex B› have convex ′: convex (B ′ ε)

unfolding B ′-def by (rule convex-scaling)
from ‹compact B› have meas: B ′ ε ∈ sets lebesgue unfolding B ′-def

by (intro sets-completionI-sets lborelD borel-closed compact-imp-closed com-
pact-scaling)

from symmetric have symmetric ′: uminus ‘ B ′ ε ⊆ B ′ ε
by (auto simp: B ′-altdef [OF ε])

have 2 ^ CARD( ′n) = ennreal (2 ^ CARD( ′n))
by (subst ennreal-power [symmetric]) auto

hence 1 ∗ emeasure lebesgue B < ennreal ((1 + ε) ^ CARD( ′n)) ∗ emeasure
lebesgue B

using True and ε by (intro ennreal-mult-strict-right-mono) (auto)
also have . . . = emeasure lebesgue (B ′ ε)

using emeasure-lebesgue-affine[of 1+ε 0 B] and ε by (simp add: B ′-def )
finally have measure-B ′: emeasure lebesgue (B ′ ε) > 2 ^ CARD( ′n)

using True by simp

obtain v where v ∈ B ′ ε v 6= 0
∧

i. v $ i ∈ �
by (erule minkowski[OF convex ′ symmetric ′ meas measure-B ′])

thus ?thesis
by blast

qed
hence ∀n. ∃ v. v ∈ B ′ (1/Suc n) − {0} ∧ (∀ i. v $ i ∈ �)

by auto
— In particular, this means we can choose some sequence tending to zero – say
1

n+1 – and always find a lattice point in the scaled set.
hence ∃ v. ∀n. v n ∈ B ′ (1/Suc n) − {0} ∧ (∀ i. v n $ i ∈ �)

by (subst (asm) choice-iff )
then obtain v where v: v n ∈ B ′ (1/Suc n) − {0} v n $ i ∈ � for i n

by blast

— By the Bolzano–Weierstraß theorem, there exists a convergent subsequence of
v.

have ∃ h l. strict-mono (h::nat⇒nat) ∧ (v ◦ h) −−−−→ l
proof (rule compactD)

show compact (B ′ 1 ) by (rule compact ′)
show range v ⊆ B ′ 1

using B ′-subset[of 1/Suc n 1 for n] and v by auto
qed
then obtain h l where h: strict-mono h and l: (v ◦ h) −−−−→ l

by blast

— Since the convergent subsequence tends to l, the distance of the sequence
elements to B tends to the distance of l and B. Furthermore, the distance of the
sequence elements is bounded by (1+ ε)C, which tends to 0, so the distance of l to
B must be 0.

have setdist {l} B ≤ 0
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proof (rule tendsto-le)
show ((λx. setdist {x} B) ◦ (v ◦ h)) −−−−→ setdist {l} B

by (intro continuous-imp-tendsto l continuous-at-setdist)
show (λn. inverse (Suc (h n)) ∗ C ) −−−−→ 0

by (intro tendsto-mult-left-zero filterlim-compose[OF - filterlim-subseq[OF h]]
LIMSEQ-inverse-real-of-nat)

show ∀ F x in sequentially. ((λx. setdist {x} B) ◦ (v ◦ h)) x
≤ inverse (real (Suc (h x))) ∗ C

using setdist-le and v unfolding o-def
by (intro always-eventually allI setdist-le) (auto simp: field-simps)

qed auto
hence setdist {l} B = 0

by (intro antisym setdist-pos-le)
with assms and ‹compact B› have l ∈ B

by (subst (asm) setdist-eq-0-closed) (auto intro: compact-imp-closed)

— It is also easy to see that, since the lattice is a closed set and all sequence
elements lie on it, the limit l also lies on it.

moreover have l ∈ {l. ∀ i. l $ i ∈ �} − {0}
using v by (intro closed-sequentially[OF closed-lattice - l]) auto

ultimately show ?thesis using that by blast
qed

end
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