Minimal Static Single Assignment Form

Max Wagner Denis Lohner

December 14, 2021

Abstract

This formalization is an extension to [3]. In their work, the au-
thors have shown that Braun et al’s static single assignment (SSA)
construction algorithm [1] produces minimal SSA form for input pro-
grams with a reducible control flow graph (CFG). However Braun et al.
also proposed an extension to their algorithm that they claim produces
minimal SSA form even for irreducible CFGs. In this formalization we
support that claim by giving a mechanized proof.

As the extension of Braun et al’s algorithm aims for removing so-
called redundant strongly connected components (sces) of ¢ functions,
we show that this suffices to guarantee minimality according to Cytron

et al. [2].

Contents
1 Minimality under Irreducible Control Flow 1
1.1 Proof of Lemma 1 from Braunetal. 2
1.2 Proof of Minimality 3

1 Minimality under Irreducible Control Flow

Braun et al. [1] provide an extension to the original construction algorithm to ensure
minimality according to Cytron’s definition even in the case of irreducible control
flow. This extension establishes the property of being redundant-scc-free, i.e. the
resulting graph G contains no subsets inducing a strongly connected subgraph G’
via ¢ functions such that G’ has less than two ¢ arguments in G\ G’. In this section
we will show that a graph with this property is Cytron-minimal.

Our formalization follows the proof sketch given in [1]. We first provide a formal
proof of Lemma 1 from [1] which states that every redundant set of ¢ functions
contains at least one redundant SCC. A redundant set of ¢ functions is a set P of
¢ functions with PU{v} D A, where A is the union over all ¢ functions arguments
contained in P. Le. P references at most one SSA value (v) outside P. A redundant
SCC is a redundant set that is strongly connected according to the is-argument
relation.

Next, we show that a CFG in SSA form without redundant sets of ¢ functions
is Cytron-minimal.

Finally putting those results together, we conclude that the extension to Braun et al’s

algorithm always produces minimal SSA form.

theory Irreducible
imports Formal-SSA. Minimality
begin

context CFG-SSA-Transformed
begin

1.1 Proof of Lemma 1 from Braun et al.

To preserve readability, we won’t distinguish between graph nodes and the ¢ func-
tions contained inside such a node.

The graph induced by the ¢ network contained in the vertex set P. Note that
the edges of this graph are not necessarily a subset of the edges of the input graph.

definition induced-phi-graph g P = {(p,0’). phiArg g ¢ ¢’} N P x P

For the purposes of this section, we define a "redundant set" as a nonempty set
of ¢ functions with at most one ¢ argument outside itself. A redundant SCC is
defined analogously. Note that since any uses of values in a redundant set can be
replaced by uses of its singular argument (without modifying program semantics),
the name is adequate.

definition redundant-set ¢ P = P # {} A P C dom (phi g) A (3v’ € allVars g.
Yo € P.Yo' phidrg g p o' — ¢’ € P U {v'})

definition redundant-scc g P scc = redundant-set g scc A is-scc (induced-phi-graph
g P) scc

We prove an important lemma via condensation graphs of ¢ networks, so the
relevant definitions are introduced here.

definition condensation-nodes ¢ P = scc-of (induced-phi-graph g P) ¢ P
definition condensation-edges g P = ((A(z,y). (scc-of (induced-phi-graph g P) «,
scc-of (induced-phi-graph g P) y)) ¢ (induced-phi-graph g P)) — Id

For a finite P, the condensation graph induced by P is finite and acyclic.
lemma condensation-finite: finite (condensation-edges g P)

The set of edges of the condensation graph, spanning at most all ¢ nodes and
their arguments (both of which are finite sets), is finite itself.

(proof)
auxiliary lemmas for acyclicity

lemma condensation-nodes-edges: (condensation-edges g P) C (condensation-nodes
g P x condensation-nodes g P)

(proof)

lemma condensation-edge-impl-path:
assumes (a, b) € (condensation-edges g P)
assumes (p, € a)

assumes (¢, € b)
shows (¢4, ¢y) € (induced-phi-graph g P)*
(proof)

lemma path-in-condensation-impl-path:
assumes (a, b) € (condensation-edges g P)*
assumes (p, € a)

assumes (pp € b)

shows (¢q, pp) € (induced-phi-graph g P)*
(proof)

lemma condensation-acyclic: acyclic (condensation-edges g P)
{proof)

Since the condensation graph of a set is acyclic and finite, it must have a leaf.

lemma FEz-condensation-leaf:

assumes P # {}

shows Jleaf. leaf € (condensation-nodes g P) N (¥ scc.(leaf, scc) ¢ condensa-
tion-edges g P)

(proof)

lemma scc-in-P:
assumes scc € condensation-nodes g P
shows scc C P

(proof)

lemma redundant-scc-phis:

assumes redundant-set g P scc € condensation-nodes g P x € scc
shows phi g x # None

(proof)

The following lemma will be important for the main proof of this section. If P is
redundant, a leaf in the condensation graph induced by P corresponds to a strongly
connected set with at most one argument, thus a redundant strongly connected set
exists.

Lemma 1. Every redundant set contains a redundant SCC.

lemma 1:
assumes redundant-set g P
shows dscc C P. redundant-scc g P scc

(proof)

1.2 Proof of Minimality

We inductively define the reachable-set of a ¢ function as all ¢ functions reachable
from a given node via an unbroken chain of ¢ argument edges to unnecessary
¢ functions.

inductive-set reachable :: 'g = 'val = 'val set

for g :: ‘g and ¢ :: "val

where refl: unnecessaryPhi g ¢ = ¢ € reachable g

| step: ¢’ € reachable g ¢ = phiArg g ¢’ ¢'' = unnecessaryPhi g ¢ = ¢’
€ reachable g ¢

/

lemma reachable-props:
assumes ¢’ € reachable g ¢
shows (phiArg g)** ¢ ¢’ and unnecessaryPhi g ¢’
(proof)

We call the transitive arguments of a ¢ function not in its reachable-set the
"true arguments" of this ¢ function.

definition [simp]: trueArgs g o = {¢’. ¢’ & reachable g p} N {p’. @' € reachable
g - phidrg g ©" ¢'}

lemma preds-finite: finite (trueArgs g)
(proof)

Any unnecessary ¢ with less than 2 true arguments induces with reachable g ¢
a redundant set itself.

lemma few-preds-redundant:
assumes card (trueArgs g ¢) < 2 unnecessaryPhi g ¢
shows redundant-set g (reachable g ©)

(proof)

lemma phiArg-trancl-same-var:
assumes (phidrg g)™t ¢ n
shows var g p = var gn

(proof)

The following path extension lemma will be used a number of times in the inner
induction of the main proof. Basically, the idea is to extend a path ending in a ¢
argument to the corresponding ¢ function while preserving disjointness to a second
path.

lemma phiArg-disjoint-paths-extend:

assumes var g r = V and var g s = V and r € allVars g and s € allVars g
and V € oldDefs g n and V € oldDefs g m

and g - n—ns—defNode g r and g - m—ms—defNode g s

and set ns N set ms = {}

and phiArg g o, T

obtains ns’

where g - n—nsQns’—defNode g ¢,

and set (butlast (ns@Qns’)) N set ms = {}

(proof)

lemma reachable-same-var:
assumes ¢’ € reachable g ¢
shows var g ¢ = var g ¢’

(proof)

lemma p-node-no-defs:
assumes unnecessaryPhi g ¢ ¢ € allVars g var g ¢ € oldDefs g n
shows defNode g ¢ # n

{(proof)

lemma defNode-differ-auz:
assumes @, € reachable g ¢ ¢ € allVars g s € allVars g s # svar g ¢ = var g s
shows defNode g @5 # defNode g s {proof)

Theorem 1. A graph which does not contain any redundant set is minimal
according to Cytron et al’s definition of minimality.

theorem no-redundant-set-minimal:
assumes no-redundant-set: (3 P. redundant-set g P)
shows cytronMinimal g

(proof)

Together with lemma 1, we thus have that a CFG without redundant SCCs is
cytron-minimal, proving that the property established by Braun et al’s algorithm
suffices.

corollary no-redundant-SCC-minimal:
assumes —(3 P scc. redundant-scc g P scc)
shows cytronMinimal g

(proof)

Finally, to conclude, we’ll show that the above theorem is indeed a stronger
assertion about a graph than the lack of trivial ¢ functions. Intuitively, this is
because a set containing only a trivial ¢ function is a redundant set.

corollary
assumes —(3 P. redundant-set g P)
shows —redundant g

(proof)
end

end

References

[1] M. Braun, S. Buchwald, S. Hack, R. Leila, C. Mallon, and A. Zwinkau.
Simple and efficient construction of static single assignment form. In
R. Jhala and K. Bosschere, editors, Compiler Construction, volume 7791

of Lecture Notes in Computer Science, pages 102-122. Springer Berlin
Heidelberg, 2013.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, Oct. 1991.

S. Ullrich and D. Lohner. Verified construction of static single assignment
form. Archive of Formal Proofs, Feb. 2016. http://isa-afp.org/entries/
Formal SSA.shtml, Formal proof development.

http://isa-afp.org/entries/Formal_SSA.shtml
http://isa-afp.org/entries/Formal_SSA.shtml

	Minimality under Irreducible Control Flow
	Proof of Lemma 1 from Braun et al.
	Proof of Minimality

