
Minimal Static Single Assignment Form

Max Wagner Denis Lohner

March 17, 2025

Abstract
This formalization is an extension to [3]. In their work, the au-

thors have shown that Braun et al.’s static single assignment (SSA)
construction algorithm [1] produces minimal SSA form for input pro-
grams with a reducible control flow graph (CFG). However Braun et al.
also proposed an extension to their algorithm that they claim produces
minimal SSA form even for irreducible CFGs. In this formalization we
support that claim by giving a mechanized proof.

As the extension of Braun et al.’s algorithm aims for removing so-
called redundant strongly connected components (sccs) of φ functions,
we show that this suffices to guarantee minimality according to Cytron
et al. [2].

Contents
1 Minimality under Irreducible Control Flow 1

1.1 Proof of Lemma 1 from Braun et al. 2
1.2 Proof of Minimality . 7

1 Minimality under Irreducible Control Flow
Braun et al. [1] provide an extension to the original construction algorithm to ensure
minimality according to Cytron’s definition even in the case of irreducible control
flow. This extension establishes the property of being redundant-scc-free, i.e. the
resulting graph G contains no subsets inducing a strongly connected subgraph G′

via φ functions such that G′ has less than two φ arguments in G\G′. In this section
we will show that a graph with this property is Cytron-minimal.

Our formalization follows the proof sketch given in [1]. We first provide a formal
proof of Lemma 1 from [1] which states that every redundant set of φ functions
contains at least one redundant SCC. A redundant set of φ functions is a set P of
φ functions with P ∪{v} ⊇ A, where A is the union over all φ functions arguments
contained in P . I.e. P references at most one SSA value (v) outside P . A redundant
SCC is a redundant set that is strongly connected according to the is-argument
relation.

Next, we show that a CFG in SSA form without redundant sets of φ functions
is Cytron-minimal.

1

Finally putting those results together, we conclude that the extension to Braun et al.’s
algorithm always produces minimal SSA form.

theory Irreducible
imports Formal-SSA.Minimality

begin

context CFG-SSA-Transformed
begin

1.1 Proof of Lemma 1 from Braun et al.
To preserve readability, we won’t distinguish between graph nodes and the φ func-
tions contained inside such a node.

The graph induced by the φ network contained in the vertex set P. Note that
the edges of this graph are not necessarily a subset of the edges of the input graph.

definition induced-phi-graph g P ≡ {(ϕ,ϕ ′). phiArg g ϕ ϕ ′} ∩ P × P

For the purposes of this section, we define a "redundant set" as a nonempty set
of φ functions with at most one φ argument outside itself. A redundant SCC is
defined analogously. Note that since any uses of values in a redundant set can be
replaced by uses of its singular argument (without modifying program semantics),
the name is adequate.

definition redundant-set g P ≡ P 6= {} ∧ P ⊆ dom (phi g) ∧ (∃ v ′ ∈ allVars g.
∀ϕ ∈ P. ∀ϕ ′. phiArg g ϕ ϕ ′ −→ ϕ ′ ∈ P ∪ {v ′})
definition redundant-scc g P scc ≡ redundant-set g scc ∧ is-scc (induced-phi-graph
g P) scc

We prove an important lemma via condensation graphs of φ networks, so the
relevant definitions are introduced here.

definition condensation-nodes g P ≡ scc-of (induced-phi-graph g P) ‘ P
definition condensation-edges g P ≡ ((λ(x,y). (scc-of (induced-phi-graph g P) x,
scc-of (induced-phi-graph g P) y)) ‘ (induced-phi-graph g P)) − Id

For a finite P, the condensation graph induced by P is finite and acyclic.

lemma condensation-finite: finite (condensation-edges g P)

The set of edges of the condensation graph, spanning at most all φ nodes and
their arguments (both of which are finite sets), is finite itself.

proof −
let ?phiEdges={(a,b). phiArg g a b}
have finite ?phiEdges
proof −

let ?phiDomRan=(dom (phi g) ×
⋃

(set ‘ (ran (phi g))))
from phi-finite
have finite ?phiDomRan by (simp add: imageE phi-finite map-dom-ran-finite)
have ?phiEdges ⊆ ?phiDomRan
apply (rule subst[of ∀ a ∈ ?phiEdges. a ∈ ?phiDomRan])
apply (simp-all add: subset-eq[symmetric] phiArg-def)

2

by (auto simp: ran-def)
with ‹finite ?phiDomRan›
show finite ?phiEdges by (rule Finite-Set.rev-finite-subset)

qed
hence

∧
f . finite (f ‘ (?phiEdges ∩ (P × P))) by auto

thus finite (condensation-edges g P) unfolding condensation-edges-def induced-phi-graph-def
by auto
qed

auxiliary lemmas for acyclicity
lemma condensation-nodes-edges: (condensation-edges g P) ⊆ (condensation-nodes
g P × condensation-nodes g P)
unfolding condensation-edges-def condensation-nodes-def induced-phi-graph-def
by auto

lemma condensation-edge-impl-path:
assumes (a, b) ∈ (condensation-edges g P)
assumes (ϕa ∈ a)
assumes (ϕb ∈ b)
shows (ϕa, ϕb) ∈ (induced-phi-graph g P)∗

unfolding condensation-edges-def
proof −

from assms(1)
obtain x y where x-y-props:
(x, y) ∈ (induced-phi-graph g P)
a = scc-of (induced-phi-graph g P) x
b = scc-of (induced-phi-graph g P) y

unfolding condensation-edges-def by auto
hence x ∈ a y ∈ b by auto

All that’s left is to combine these paths.
with assms(2) x-y-props(2)
have (ϕa, x) ∈ (induced-phi-graph g P)∗ by (meson is-scc-connected scc-of-is-scc)
moreover with assms(3) x-y-props(3) ‹y ∈ b›
have (y, ϕb) ∈ (induced-phi-graph g P)∗ by (meson is-scc-connected scc-of-is-scc)
ultimately
show (ϕa, ϕb) ∈ (induced-phi-graph g P)∗ using x-y-props(1) by auto

qed

lemma path-in-condensation-impl-path:
assumes (a, b) ∈ (condensation-edges g P)+

assumes (ϕa ∈ a)
assumes (ϕb ∈ b)
shows (ϕa, ϕb) ∈ (induced-phi-graph g P)∗

using assms
proof (induction arbitrary: ϕb rule:trancl-induct)

fix y z ϕb

assume (y, z) ∈ condensation-edges g P

3

hence is-scc (induced-phi-graph g P) y unfolding condensation-edges-def by
auto

hence ∃ϕy. ϕy ∈ y using scc-non-empty ′ by auto
then obtain ϕy where ϕy-in-y: ϕy ∈ y by auto

assume ϕb-elem: ϕb ∈ z
assume

∧
ϕb. ϕa ∈ a =⇒ ϕb ∈ y =⇒ (ϕa, ϕb) ∈ (induced-phi-graph g P)∗

with assms(2) ϕy-in-y
have ϕa-to-ϕy: (ϕa, ϕy) ∈ (induced-phi-graph g P)∗ using condensation-edge-impl-path

by auto

from ϕb-elem ϕy-in-y ‹(y, z) ∈ condensation-edges g P›
have (ϕy, ϕb) ∈ (induced-phi-graph g P)∗ using condensation-edge-impl-path by

auto
with ϕa-to-ϕy

show (ϕa, ϕb) ∈ (induced-phi-graph g P)∗ by auto
qed (auto intro:condensation-edge-impl-path)

lemma condensation-acyclic: acyclic (condensation-edges g P)
proof (rule acyclicI , rule allI , rule ccontr , simp)

fix x

Assume there is a cycle in the condensation graph.
assume cyclic: (x, x) ∈ (condensation-edges g P)+

have nonrefl: (x, x) /∈ (condensation-edges g P) unfolding condensation-edges-def
by auto

Then there must be a second SCC b on this path.
from this cyclic
obtain b where b-on-path: (x, b) ∈ (condensation-edges g P) (b, x) ∈ (condensation-edges

g P)+

by (meson converse-tranclE)

hence x ∈ (condensation-nodes g P) b ∈ (condensation-nodes g P) using con-
densation-nodes-edges by auto

hence nodes-are-scc: is-scc (induced-phi-graph g P) x is-scc (induced-phi-graph g
P) b

using scc-of-is-scc unfolding induced-phi-graph-def condensation-nodes-def by
auto

However, the existence of this path means all nodes in b and x are mutually
reachable.

have ∃ϕx. ϕx ∈ x ∃ϕb. ϕb ∈ b using nodes-are-scc scc-non-empty ′ ex-in-conv
by auto

then obtain ϕx ϕb where ϕxb-elem: ϕx ∈ x ϕb ∈ b by metis
with nodes-are-scc(1) b-on-path path-in-condensation-impl-path condensation-edge-impl-path

ϕxb-elem(2)
have ϕb ∈ x

4

by − (rule is-scc-closed)
This however means x and b must be the same SCC, which is a contradiction

to the nonreflexivity of condensation-edges.
with nodes-are-scc ϕxb-elem
have x = b using is-scc-unique[of induced-phi-graph g P] by simp
hence (x, x) ∈ (condensation-edges g P) using b-on-path by simp
with nonrefl
show False by simp

qed
Since the condensation graph of a set is acyclic and finite, it must have a leaf.

lemma Ex-condensation-leaf :
assumes P 6= {}
shows ∃ leaf . leaf ∈ (condensation-nodes g P) ∧ (∀ scc.(leaf , scc) /∈ condensa-
tion-edges g P)
proof −

from assms obtain x where x ∈ condensation-nodes g P unfolding condensa-
tion-nodes-def by auto

show ?thesis
proof (rule wfE-min)

from condensation-finite condensation-acyclic
show wf ((condensation-edges g P)−1) by (rule finite-acyclic-wf-converse)

next
fix leaf
assume leaf-node: leaf ∈ condensation-nodes g P
moreover

assume leaf-is-leaf : scc /∈ condensation-nodes g P if (scc, leaf) ∈ (condensation-edges
g P)−1 for scc

ultimately
have leaf ∈ condensation-nodes g P ∧ (∀ scc. (leaf , scc) /∈ condensation-edges

g P) using condensation-nodes-edges by blast
thus ∃ leaf . leaf ∈ condensation-nodes g P ∧ (∀ scc. (leaf , scc) /∈ condensa-

tion-edges g P) by blast
qed fact

qed

lemma scc-in-P:
assumes scc ∈ condensation-nodes g P
shows scc ⊆ P
proof −

have scc ⊆ P if y-props: scc = scc-of (induced-phi-graph g P) n n ∈ P for n
proof −

from y-props
show scc ⊆ P
proof (clarsimp simp:y-props(1); case-tac n = x)

fix x
assume different: n 6= x
assume x ∈ scc-of (induced-phi-graph g P) n

5

hence (n, x) ∈ (induced-phi-graph g P)∗ by (metis is-scc-connected scc-of-is-scc
node-in-scc-of-node)

with different
have (n, x) ∈ (induced-phi-graph g P)+ by (metis rtranclD)

then obtain z where step: (z, x) ∈ (induced-phi-graph g P) by (meson
tranclE)

from step
show x ∈ P unfolding induced-phi-graph-def by auto

qed simp
qed
from this assms(1) have x ∈ P if x-node: x ∈ scc for x
apply −
apply (rule imageE [of scc scc-of (induced-phi-graph g P)])
using condensation-nodes-def x-node by blast+

thus ?thesis by clarify
qed

lemma redundant-scc-phis:
assumes redundant-set g P scc ∈ condensation-nodes g P x ∈ scc
shows phi g x 6= None
using assms by (meson domIff redundant-set-def scc-in-P subsetCE)

The following lemma will be important for the main proof of this section. If P is
redundant, a leaf in the condensation graph induced by P corresponds to a strongly
connected set with at most one argument, thus a redundant strongly connected set
exists.

Lemma 1. Every redundant set contains a redundant SCC.

lemma 1 :
assumes redundant-set g P
shows ∃ scc ⊆ P. redundant-scc g P scc
proof −

from assms Ex-condensation-leaf [of P g]
obtain leaf where leaf-props: leaf ∈ (condensation-nodes g P) ∀ scc. (leaf , scc)

/∈ condensation-edges g P
unfolding redundant-set-def by auto

hence is-scc (induced-phi-graph g P) leaf unfolding condensation-nodes-def by
auto

moreover
hence leaf 6= {} by (rule scc-non-empty ′)
moreover
have leaf ⊆ dom (phi g)

apply (subst subset-eq, rule ballI)
using redundant-scc-phis leaf-props(1) assms(1) by auto

moreover
from assms
obtain pred where pred-props: pred ∈ allVars g ∀ϕ∈P. ∀ϕ ′. phiArg g ϕ ϕ ′ −→

ϕ ′ ∈ P ∪ {pred} unfolding redundant-set-def by auto
{

6

Any argument of a φ function in the leaf SCC which is not in the leaf SCC
itself must be the unique argument of P

fix ϕ ϕ ′

consider (in-P) ϕ ′ /∈ leaf ∧ ϕ ′ ∈ P | (neither) ϕ ′ /∈ leaf ∧ ϕ ′ /∈ P ∪ {pred} |
ϕ ′ /∈ leaf ∧ ϕ ′ ∈ {pred} | ϕ ′ ∈ leaf by auto

hence ϕ ′ ∈ leaf ∪ {pred} if ϕ ∈ leaf and phiArg g ϕ ϕ ′

proof cases
case in-P — In this case leaf wasn’t really a leaf, a contradiction
moreover
from in-P that leaf-props(1) scc-in-P[of leaf g P]
have (ϕ, ϕ ′) ∈ induced-phi-graph g P unfolding induced-phi-graph-def by

auto
ultimately

have (leaf , scc-of (induced-phi-graph g P) ϕ ′) ∈ condensation-edges g P
unfolding condensation-edges-def

using leaf-props(1) that ‹is-scc (induced-phi-graph g P) leaf ›
apply −
apply clarsimp
apply (rule conjI)
prefer 2
apply auto[1]

unfolding condensation-nodes-def
by (metis (no-types, lifting) is-scc-unique node-in-scc-of-node pair-imageI

scc-of-is-scc)
with leaf-props(2)
show ?thesis by auto

next
case neither — In which case P itself wasn’t redundant, a contradiction
with that leaf-props pred-props
have ¬redundant-set g P unfolding redundant-set-def

by (meson rev-subsetD scc-in-P)
with assms
show ?thesis by auto

qed auto — the other cases are trivial
}
with pred-props(1)
have ∃ v ′∈allVars g. ∀ϕ∈leaf . ∀ϕ ′. phiArg g ϕ ϕ ′ −→ ϕ ′ ∈ leaf ∪ {v ′} by auto
ultimately
have redundant-scc g P leaf unfolding redundant-scc-def redundant-set-def by

auto
thus ?thesis using leaf-props(1) scc-in-P by meson

qed

1.2 Proof of Minimality
We inductively define the reachable-set of a φ function as all φ functions reachable
from a given node via an unbroken chain of φ argument edges to unnecessary
φ functions.

7

inductive-set reachable :: ′g ⇒ ′val ⇒ ′val set
for g :: ′g and ϕ :: ′val
where refl: unnecessaryPhi g ϕ =⇒ ϕ ∈ reachable g ϕ
| step: ϕ ′ ∈ reachable g ϕ =⇒ phiArg g ϕ ′ ϕ ′′ =⇒ unnecessaryPhi g ϕ ′′ =⇒ ϕ ′′

∈ reachable g ϕ

lemma reachable-props:
assumes ϕ ′ ∈ reachable g ϕ
shows (phiArg g)∗∗ ϕ ϕ ′ and unnecessaryPhi g ϕ ′

using assms
by (induction ϕ ′ rule: reachable.induct) auto

We call the transitive arguments of a φ function not in its reachable-set the
"true arguments" of this φ function.
definition [simp]: trueArgs g ϕ ≡ {ϕ ′. ϕ ′ /∈ reachable g ϕ} ∩ {ϕ ′. ∃ϕ ′′ ∈ reachable
g ϕ. phiArg g ϕ ′′ ϕ ′}

lemma preds-finite: finite (trueArgs g ϕ)
proof (rule ccontr)

assume infinite (trueArgs g ϕ)
hence a: infinite {ϕ ′. ∃ϕ ′′ ∈ reachable g ϕ. phiArg g ϕ ′′ ϕ ′} by auto
have phiarg-set: {ϕ ′. ∃ϕ. phiArg g ϕ ϕ ′} =

⋃
(set ‘{b. ∃ a. phi g a = Some b})

unfolding phiArg-def by auto

If the true arguments of a φ function are infinite in number, there must be an
infinite number of φ functions. . .

have infinite {ϕ ′. ∃ϕ. phiArg g ϕ ϕ ′}
by (rule infinite-super [of {ϕ ′. ∃ϕ ′′ ∈ reachable g ϕ. phiArg g ϕ ′′ ϕ ′}]) (auto

simp: a)
with phiarg-set
have infinite (ran (phi g)) unfolding ran-def phiArg-def by clarsimp

Which cannot be.
thus False by (simp add:phi-finite map-dom-ran-finite)

qed

Any unnecessary φ with less than 2 true arguments induces with reachable g ϕ
a redundant set itself.
lemma few-preds-redundant:
assumes card (trueArgs g ϕ) < 2 unnecessaryPhi g ϕ
shows redundant-set g (reachable g ϕ)
unfolding redundant-set-def
proof (intro conjI)

from assms
show reachable g ϕ 6= {}

using empty-iff reachable.intros(1) by auto
next

from assms(2)

8

show reachable g ϕ ⊆ dom (phi g)
by (metis domIff reachable.cases subsetI unnecessaryPhi-def)

next
from assms(1)
consider (single) card (trueArgs g ϕ) = 1 | (empty) card (trueArgs g ϕ) = 0 by

force
thus ∃ pred∈allVars g. ∀ϕ ′∈reachable g ϕ. ∀ϕ ′′. phiArg g ϕ ′ ϕ ′′ −→ ϕ ′′ ∈ reach-

able g ϕ ∪ {pred}
proof cases

case single
then obtain pred where pred-prop: trueArgs g ϕ = {pred} using card-eq-1-singleton

by blast
hence pred ∈ allVars g by (auto intro: Int-Collect phiArg-in-allVars)
moreover
from pred-prop
have ∀ϕ ′∈reachable g ϕ. ∀ϕ ′′. phiArg g ϕ ′ ϕ ′′ −→ ϕ ′′ ∈ reachable g ϕ ∪ {pred}

by auto
ultimately
show ?thesis by auto

next
case empty
from allDefs-in-allVars[of - g defNode g ϕ] assms

have phi-var : ϕ ∈ allVars g unfolding unnecessaryPhi-def phiDefs-def allDefs-def
defNode-def phi-def trueArgs-def

by (clarsimp simp: domIff phis-in-αn)
from empty assms(1)
have no-preds: trueArgs g ϕ = {} by (subst card-0-eq[OF preds-finite, sym-

metric]) auto
show ?thesis
proof (rule bexI , rule ballI , rule allI , rule impI)

fix ϕ ′ ϕ ′′

assume phis-props: ϕ ′ ∈ reachable g ϕ phiArg g ϕ ′ ϕ ′′

with no-preds
have ϕ ′′ ∈ reachable g ϕ
unfolding trueArgs-def
proof −

from phis-props
have ϕ ′′ ∈ {ϕ ′. ∃ϕ ′′∈reachable g ϕ. phiArg g ϕ ′′ ϕ ′} by auto
with phis-props no-preds
show ϕ ′′ ∈ reachable g ϕ unfolding trueArgs-def by auto

qed
thus ϕ ′′ ∈ reachable g ϕ ∪ {ϕ} by simp

qed (auto simp: phi-var)
qed

qed

lemma phiArg-trancl-same-var :
assumes (phiArg g)++ ϕ n

9

shows var g ϕ = var g n
using assms
apply (induction rule: tranclp-induct)

apply (rule phiArg-same-var [symmetric])
apply simp

using phiArg-same-var by auto

The following path extension lemma will be used a number of times in the inner
induction of the main proof. Basically, the idea is to extend a path ending in a φ
argument to the corresponding φ function while preserving disjointness to a second
path.

lemma phiArg-disjoint-paths-extend:
assumes var g r = V and var g s = V and r ∈ allVars g and s ∈ allVars g
and V ∈ oldDefs g n and V ∈ oldDefs g m
and g ` n−ns→defNode g r and g ` m−ms→defNode g s
and set ns ∩ set ms = {}
and phiArg g ϕr r
obtains ns ′

where g ` n−ns@ns ′→defNode g ϕr

and set (butlast (ns@ns ′)) ∩ set ms = {}
proof (cases r = ϕr)

case (True)

If the node to extend the path to is already the endpoint, the lemma is trivial.

with assms(7 ,8 ,9) in-set-butlastD
have g ` n−ns@[]→defNode g ϕr set (butlast (ns@[])) ∩ set ms = {}

by simp-all fastforce
with that show ?thesis .

next
case False

It suffices to obtain any path from r to ϕr. However, since we’ll need the
corresponding predecessor of ϕr later, we must do this as follows:

from assms(10)
have ϕr ∈ allVars g unfolding phiArg-def

by (metis allDefs-in-allVars phiDefs-in-allDefs phi-def phi-phiDefs phis-in-αn)
with assms(10)
obtain rs ′ predϕr where rs ′-props: g ` defNode g r−rs ′→ predϕr old.EntryPath

g rs ′ r ∈ phiUses g predϕr predϕr ∈ set (old.predecessors g (defNode g ϕr))
by (rule phiArg-path-ex ′)

define rs where rs = rs ′@[defNode g ϕr]
from rs ′-props(2 ,1) old.EntryPath-distinct old.path2-hd
have rs ′-loopfree: defNode g r /∈ set (tl rs ′) by (simp add: Misc.distinct-hd-tl)

from False assms have defNode g ϕr 6= defNode g r
apply −
apply (rule phiArg-distinct-nodes)

apply (auto intro:phiArg-in-allVars)[2]

10

unfolding phiArg-def by (metis allDefs-in-allVars phiDefs-in-allDefs phi-def
phi-phiDefs phis-in-αn)

from rs ′-props
have rs-props: g ` defNode g r−rs→ defNode g ϕr length rs > 1 defNode g r /∈

set (tl rs)
apply (subgoal-tac defNode g r = hd rs ′)
prefer 2 using rs ′-props(1)

apply (rule old.path2-hd)
using old.path2-snoc old.path2-def rs ′-props(1) rs-def rs ′-loopfree ‹defNode g

ϕr 6= defNode g r› by auto

show thesis
proof (cases set (butlast rs) ∩ set ms = {})

case inter-empty: True

If the intersection of these is empty, tl rs is already the extension we’re looking
for

show thesis
proof (rule that)

show set (butlast (ns @ tl rs)) ∩ set ms = {}
proof (rule ccontr , simp only: ex-in-conv[symmetric])

assume ∃ x. x ∈ set (butlast (ns @ tl rs)) ∩ set ms
then obtain x where x-props: x ∈ set (butlast (ns @ tl rs)) x ∈ set ms by

auto
with rs-props(2)

consider (in-ns) x ∈ set ns | (in-rs) x ∈ set (butlast (tl rs)) by (metis
Un-iff butlast-append in-set-butlastD set-append)

thus False
apply (cases)
using x-props(2) assms(9)
apply (simp add: disjoint-elem)

by (metis x-props(2) inter-empty in-set-tlD List.butlast-tl disjoint-iff-not-equal)
qed

qed (auto intro:assms(7) rs-props(1) old.path2-app)
next

case inter-ex: False

If the intersection is nonempty, there must be a first point of intersection i.

from inter-ex assms(7 ,8) rs-props
obtain i ri where ri-props: g ` defNode g r−ri→i i ∈ set ms ∀n ∈ set (butlast

ri). n /∈ set ms prefix ri rs
apply −
apply (rule old.path2-split-first-prop[of g defNode g r rs defNode g ϕr, where

P=λm. m ∈ set ms])
apply blast

apply (metis disjoint-iff-not-equal in-set-butlastD)
by blast

with assms(8) old.path2-prefix-ex

11

obtain ms ′ where ms ′-props: g ` m −ms ′→ i prefix ms ′ ms i /∈ set (butlast
ms ′) by blast

We proceed by case distinction:

• if i = defNode g ϕr, the path ri is already the path extension we’re looking
for

• Otherwise, the fact that i is on the path from φ argument to the φ itself leads
to a contradiction. However, we still need to distinguish the cases of whether
m = i

consider (ri-is-valid) i = defNode g ϕr | (m-i-same) i 6= defNode g ϕr m = i
| (m-i-differ) i 6= defNode g ϕr m 6= i by auto

thus thesis
proof (cases)

case ri-is-valid

ri is a valid path extension.

with assms(7) ri-props(1)
have g ` n −ns@(tl ri)→ defNode g ϕr by auto

moreover
have set (butlast (ns@(tl ri))) ∩ set ms = {}
proof (rule ccontr)

assume contr : set (butlast (ns @ tl ri)) ∩ set ms 6= {}
from this
obtain x where x-props: x ∈ set (butlast (ns @ tl ri)) x ∈ set ms by auto
with assms(9) have x /∈ set ns by auto
with x-props ‹g ` n−ns @ tl ri→defNode g ϕr› ‹defNode g ϕr 6= defNode g

r› assms(7)
have x ∈ set (butlast (tl ri))
by (metis Un-iff append-Nil2 butlast-append old.path2-last set-append)

with x-props(2) ri-props(3)
show False by (metis FormalSSA-Misc.in-set-tlD List.butlast-tl)

qed
ultimately
show thesis by (rule that)

next
case m-i-same

If m = i, we have, with m, a variable definition on the path from a φ function
to its argument. This constitutes a contradiction to the conventional property.

note rs ′-props(1) rs ′-loopfree
moreover have r ∈ allDefs g (defNode g r) by (simp add: assms(3))

moreover from rs ′-props(3) have r ∈ allUses g predϕr unfolding allUses-def
by simp

moreover

12

from rs-props(1) m-i-same rs-def ri-props(1 ,2 ,4) ‹defNode g ϕr 6= defNode g
r› assms(7 ,9)

have m ∈ set (tl rs ′)
by (metis disjoint-elem hd-append in-hd-or-tl-conv in-prefix list.sel(1) old.path2-hd

old.path2-last old.path2-last-in-ns prefix-snoc)

moreover
from assms(6) obtain def m where def m ∈ allDefs g m var g def m = V

unfolding oldDefs-def using defs-in-allDefs by blast

ultimately
have var g def m 6= var g r by − (rule conventional, simp-all)
with ‹var g def m = V › assms(1)
have False by simp
thus ?thesis by simp

next
case m-i-differ

If m 6= i, i constitutes a proper path convergence point.
have old.pathsConverge g m ms ′ n (ns @ tl ri) i
proof (rule old.pathsConvergeI)

show 1 < length ms ′ using m-i-differ ms ′-props old.path2-nontriv by blast
next

show 1 < length (ns @ tl ri)
using ri-props old.path2-nontriv assms(9) by (metis assms(7) disjoint-elem

old.path2-app old.path2-hd-in-ns)
next

show set (butlast ms ′) ∩ set (butlast (ns @ tl ri)) = {}
proof (rule ccontr)

assume set (butlast ms ′) ∩ set (butlast (ns @ tl ri)) 6= {}
then obtain i ′ where i ′-props: i ′ ∈ set (butlast ms ′) i ′ ∈ set (butlast (ns

@ tl ri)) by auto
with ms ′-props(2)
have i ′-not-in-ms: i ′ ∈ set (butlast ms) by (metis in-set-butlast-appendI

prefixE)

with assms(9)
show False
proof (cases i ′ /∈ set ns)

case True
with i ′-props(2)
have i ′ ∈ set (butlast (tl ri))
by (metis Un-iff butlast-append in-set-butlastD set-append)

hence i ′ ∈ set (butlast ri) by (simp add:in-set-tlD List.butlast-tl)
with i ′-not-in-ms ri-props(3)
show False by (auto dest:in-set-butlastD)

qed (meson disjoint-elem in-set-butlastD)
qed

qed (auto intro: assms(7) ri-props(1) old.path2-app ms ′-props(1))

13

At this intersection of paths we can find a φ function.

from this assms(6 ,5)
have necessaryPhi g V i by (rule necessaryPhiI)

Before we can conclude that there is indeed a φ at i, we have to prove a couple
of technicalities. . .

moreover
from m-i-differ ri-props(1 ,4) rs-def old.path2-last prefix-snoc
have ri-rs ′-prefix: prefix ri rs ′ by fastforce
then obtain rs ′-rest where rs ′-rest-prop: rs ′ = ri@rs ′-rest using prefixE by

auto
from old.path2-last[OF ri-props(1)] last-snoc[of - i] obtain tmp where ri =

tmp@[i]
apply (subgoal-tac ri 6= [])
prefer 2
using ri-props(1) apply (simp add: old.path2-not-Nil)

apply (rule-tac that)
using append-butlast-last-id[symmetric] by auto

with rs ′-rest-prop have rs ′-rest-def : rs ′ = tmp@i#rs ′-rest by auto
with rs ′-props(1) have g ` i −i#rs ′-rest→ predϕr

by (simp add:old.path2-split)
moreover
note ‹var g r = V › [simp]
from rs ′-props(3)
have r ∈ allUses g predϕr unfolding allUses-def by simp

moreover
from ‹defNode g r /∈ set (tl rs ′)› rs ′-rest-def
have defNode g r /∈ set rs ′-rest by auto
with ‹g ` i −i#rs ′-rest→ predϕr›
have

∧
x. x ∈ set rs ′-rest =⇒ r /∈ allDefs g x

by (metis defNode-eq list.distinct(1) list.sel(3) list.set-cases old.path2-cases
old.path2-in-αn)

moreover
from assms(7 ,9) ‹g ` i −i#rs ′-rest→ predϕr› ri-props(2)
have r /∈ defs g i

by (metis defNode-eq defs-in-allDefs disjoint-elem old.path2-hd-in-αn old.path2-last-in-ns)
ultimately

The convergence property gives us that there is a φ in the last node fulfilling
necessaryPhi on a path to a use of r without a definition of r. Thus i bears a
φ function for the value of r.

have ∃ y. phis g (i, r) = Some y
by (rule convergence-prop [where g=g and n=i and v=r and ns=i#rs ′-rest,

simplified])
moreover

from ‹g ` n−ns→defNode g r› have defNode g r ∈ set ns by auto

14

with ‹set ns ∩ set ms = {}› ‹i ∈ set ms› have i 6= defNode g r by auto
moreover

from ms ′-props(1) have i ∈ set (αn g) by auto
moreover

have defNode g r ∈ set (αn g) by (simp add: assms(3))
However, we now have two definitions of r : one in i, and one in defNode g

r, which we know to be distinct. This is a contradiction to the allDefs-disjoint-
property.

ultimately have False
using allDefs-disjoint [where g=g and n=i and m=defNode g r]
unfolding allDefs-def phiDefs-def
apply clarsimp
apply (erule-tac c=r in equalityCE)
using phi-def phis-phi by auto

thus ?thesis by simp
qed

qed
qed

lemma reachable-same-var :
assumes ϕ ′ ∈ reachable g ϕ
shows var g ϕ = var g ϕ ′

using assms by (metis Nitpick.rtranclp-unfold phiArg-trancl-same-var reachable-props(1))

lemma ϕ-node-no-defs:
assumes unnecessaryPhi g ϕ ϕ ∈ allVars g var g ϕ ∈ oldDefs g n
shows defNode g ϕ 6= n
using assms simpleDefs-phiDefs-var-disjoint defNode(1) not-None-eq phi-phiDefs

unfolding unnecessaryPhi-def by auto

lemma defNode-differ-aux:
assumes ϕs ∈ reachable g ϕ ϕ ∈ allVars g s ∈ allVars g ϕs 6= s var g ϕ = var g s
shows defNode g ϕs 6= defNode g s unfolding reachable-def
proof (rule ccontr)

assume ¬ defNode g ϕs 6= defNode g s
hence eq: defNode g ϕs = defNode g s by simp
from assms(1)
have vars-eq: var g ϕ = var g ϕs

apply −
apply (cases ϕ = ϕs)
apply simp
apply (rule phiArg-trancl-same-var)
apply (drule reachable-props)
unfolding reachable-def by (meson IntD1 mem-Collect-eq rtranclpD)

15

have ϕs-in-allVars: ϕs ∈ allVars g unfolding reachable-def
proof (cases ϕ = ϕs)

case False
with assms(1)
obtain ϕ ′ where phiArg g ϕ ′ ϕs by (metis rtranclp.cases reachable-props(1))
thus ϕs ∈ allVars g by (rule phiArg-in-allVars)

next
case eq: True
with assms(2)
show ϕs ∈ allVars g by (subst eq[symmetric])

qed

from eq ϕs-in-allVars assms(3 ,4)
have var g ϕs 6= var g s by − (rule defNode-var-disjoint)
with vars-eq assms(5)
show False by auto

qed

Theorem 1. A graph which does not contain any redundant set is minimal
according to Cytron et al.’s definition of minimality.
theorem no-redundant-set-minimal:
assumes no-redundant-set: ¬(∃P. redundant-set g P)
shows cytronMinimal g
proof (rule ccontr)

assume ¬cytronMinimal g

Assume the graph is not Cytron-minimal. Thus there is a φ function which
does not sit at the convergence point of multiple liveness intervals.

then obtain ϕ where ϕ-props: unnecessaryPhi g ϕ ϕ ∈ allVars g ϕ ∈ reachable
g ϕ

using cytronMinimal-def unnecessaryPhi-def reachable-def unnecessaryPhi-def
reachable.intros by auto

We consider the reachable-set of ϕ. If ϕ has less than two true arguments, we
know it to be a redundant set, a contradiction. Otherwise, we know there to be at
least two paths from different definitions leading into the reachable-set of ϕ.

consider (nontrivial) card (trueArgs g ϕ) ≥ 2 | (trivial) card (trueArgs g ϕ) <
2 using linorder-not-le by auto

thus False
proof cases

case trivial

If there are less than 2 true arguments of this set, the set is trivially redundant
(see few-preds-redundant).

from this ϕ-props(1)
have redundant-set g (reachable g ϕ) by (rule few-preds-redundant)
with no-redundant-set
show False by simp

next
case nontrivial

16

If there are two or more necessary arguments, there must be disjoint paths from
Defs to two of these φ functions.

then obtain r s ϕr ϕs where assign-nodes-props:
r 6= s ϕr ∈ reachable g ϕ ϕs ∈ reachable g ϕ
¬ unnecessaryPhi g r ¬ unnecessaryPhi g s
r ∈ {n. (phiArg g)∗∗ ϕ n} s ∈ {n. (phiArg g)∗∗ ϕ n}
phiArg g ϕr r phiArg g ϕs s

apply simp
apply (rule set-take-two[OF nontrivial])
apply simp
by (meson reachable.intros(2) reachable-props(1) rtranclp-tranclp-tranclp tran-

clp.r-into-trancl tranclp-into-rtranclp)
moreover from assign-nodes-props
have ϕ-r-s-uneq: ϕ 6= r ϕ 6= s using ϕ-props by auto
moreover
from assign-nodes-props this
have r-s-in-tranclp: (phiArg g)++ ϕ r (phiArg g)++ ϕ s
by (meson mem-Collect-eq rtranclpD) (meson assign-nodes-props(7) ϕ-r-s-uneq(2)

mem-Collect-eq rtranclpD)
from this
obtain V where V-props: var g r = V var g s = V var g ϕ = V by (metis

phiArg-trancl-same-var)
moreover
from r-s-in-tranclp
have r-s-allVars: r ∈ allVars g s ∈ allVars g by (metis phiArg-in-allVars

tranclp.cases)+
moreover
from V-props defNode-var-disjoint r-s-allVars assign-nodes-props(1)
have r-s-defNode-distinct: defNode g r 6= defNode g s by auto
ultimately
obtain n ns m ms where r-s-path-props: V ∈ oldDefs g n g ` n−ns→defNode

g r V ∈ oldDefs g m g ` m−ms→defNode g s
set ns ∩ set ms = {} by (auto intro: ununnecessaryPhis-disjoint-paths[of g r

s])

have n-m-distinct: n 6= m
proof (rule ccontr)

assume n-m: ¬ n 6= m
with r-s-path-props(2) old.path2-hd-in-ns
have n ∈ set ns by blast
moreover
from n-m r-s-path-props(4) old.path2-hd-in-ns
have n ∈ set ms by blast
ultimately
show False using r-s-path-props(5) by auto

qed

These paths can be extended into paths reaching φ functions in our set.

from V-props r-s-allVars r-s-path-props assign-nodes-props

17

obtain rs where rs-props: g ` n −ns@rs→ defNode g ϕr set (butlast (ns@rs))
∩ set ms = {}

using phiArg-disjoint-paths-extend by blast
(In fact, we can prove that set (ns @ rs) ∩ set ms = {}, which we need for the

next path extension.)
have defNode g ϕr /∈ set ms
proof (rule ccontr)

assume ϕr-in-ms: ¬ defNode g ϕr /∈ set ms
from this r-s-path-props(4)
obtain ms ′ where ms ′-props: g ` m −ms ′→ defNode g ϕr prefix ms ′ ms by

−(rule old.path2-prefix-ex[of g m ms defNode g s defNode g ϕr], auto)

have old.pathsConverge g n (ns@rs) m ms ′ (defNode g ϕr)
proof (rule old.pathsConvergeI)

show set (butlast (ns @ rs)) ∩ set (butlast ms ′) = {}
proof (rule ccontr)

assume set (butlast (ns @ rs)) ∩ set (butlast ms ′) 6= {}
then obtain c where c-props: c ∈ set (butlast (ns@rs)) c ∈ set (butlast

ms ′) by auto
from this(2) ms ′-props(2)
have c ∈ set ms by (simp add: in-prefix in-set-butlastD)
with c-props(1) rs-props(2)
show False by auto

qed
next

have m-n-ϕr-differ : n 6= defNode g ϕr m 6= defNode g ϕr

using assign-nodes-props(2 ,3 ,4 ,5) V-props r-s-path-props ϕr-in-ms
apply fastforce

using V-props(1) ϕr-in-ms assign-nodes-props(8) old.path2-in-αn phiArg-def
phiArg-same-var r-s-path-props(3 ,4) simpleDefs-phiDefs-var-disjoint

by auto
with ms ′-props(1)
show 1 < length ms ′ using old.path2-nontriv by simp
from m-n-ϕr-differ rs-props(1)
show 1 < length (ns@rs) using old.path2-nontriv by blast

qed (auto intro: rs-props set-mono-prefix ms ′-props)
with V-props r-s-path-props

have necessaryPhi ′ g ϕr unfolding necessaryPhi-def using assign-nodes-props(8)
phiArg-same-var by auto

with reachable-props(2)[OF assign-nodes-props(2)]
show False unfolding unnecessaryPhi-def by simp

qed

with rs-props
have aux: set ms ∩ set (ns @ rs) = {}

by (metis disjoint-iff-not-equal not-in-butlast old.path2-last)

have ϕr-V : var g ϕr = V
using V-props(1) assign-nodes-props(8) phiArg-same-var by auto

18

have ϕr-allVars: ϕr ∈ allVars g
by (meson phiArg-def assign-nodes-props(8) allDefs-in-allVars old.path2-tl-in-αn

phiDefs-in-allDefs phi-phiDefs rs-props)

from V-props(2) ϕr-V r-s-allVars(2) ϕr-allVars r-s-path-props(3) r-s-path-props(1)
r-s-path-props(4) rs-props(1) aux assign-nodes-props(9)

obtain ss where ss-props: g ` m −ms@ss→ defNode g ϕs set (butlast (ms@ss))
∩ set (butlast (ns@rs)) = {}

by (rule phiArg-disjoint-paths-extend) (metis disjoint-iff-not-equal in-set-butlastD)

define pm where pm = ms@ss
define pn where pn = ns@rs

have ind-props: g ` m −pm→ defNode g ϕs g ` n −pn→ defNode g ϕr set
(butlast pm) ∩ set (butlast pn) = {}

using rs-props(1) ss-props pm-def pn-def by auto
The following case will occur twice in the induction, with swapped identifiers,

so we’re proving it outside. Basically, if the paths pm and pn intersect, the first
such intersection point must be a φ function in reachable g ϕ, yielding the path
convergence we seek.

have path-crossing-yields-convergence:
∃ϕz ∈ reachable g ϕ. ∃ns ms. old.pathsConverge g n ns m ms (defNode g ϕz)
if ϕr ∈ reachable g ϕ and ϕs ∈ reachable g ϕ and g ` n −pn→ defNode g ϕr

and g ` m −pm→ defNode g ϕs and set (butlast pm) ∩ set (butlast pn) =
{}

and set pm ∩ set pn 6= {}
for ϕr ϕs pm pn

proof −
from that(6) split-list-first-propE
obtain pm1 nz pm2 where nz-props: nz ∈ set pn pm = pm1 @ nz # pm2

∀n ∈ set pm1 . n /∈ set pn

by (auto intro: split-list-first-propE)

with that(3 ,4)
obtain pn

′ where pn
′-props: g ` n−pn

′→nz g ` m−pm1@[nz]→nz prefix
pn

′ pn nz /∈ set (butlast pn
′)

by (meson old.path2-prefix-ex old.path2-split(1))

from V-props(3) reachable-same-var [OF that(1)] reachable-same-var [OF
that(2)]

have phis-V : var g ϕr = V var g ϕs = V by simp-all
from reachable-props(1) that(1 ,2) ϕ-props(2) phiArg-in-allVars
have phis-allVars: ϕr ∈ allVars g ϕs ∈ allVars g by (metis rtranclp.cases)+

Various inequalities for proving paths aren’t trivial.
have n 6= defNode g ϕr m 6= defNode g ϕr

using ϕ-node-no-defs phis-V (1) phis-allVars(1) r-s-path-props(1 ,3) reach-
able-props(2) that(1) by blast+

19

from ϕ-node-no-defs reachable-props(2) that(2) r-s-path-props(1 ,3) phis-V (2)
that phis-allVars

have m 6= defNode g ϕs n 6= defNode g ϕs by blast+
With this scenario, since set (butlast pn) ∩ set (butlast pm) = {}, one of the

paths pn and pm must end somewhere within the other, however this means the
φ function in that node must either be ϕ or ϕr

from assms nz-props
consider (pn-ends-in-pm) nz = defNode g ϕs | (pm-ends-in-pn) nz = defNode

g ϕr

proof (cases nz = last pn)
case True
with ‹g ` n −pn→ defNode g ϕr›
have nz = defNode g ϕr using old.path2-last by auto
with that(2) show ?thesis.

next
case False
from nz-props(2)
have nz ∈ set pm by simp
with False nz-props(1) ‹set (butlast pm) ∩ set (butlast pn) = {}› ‹g ` m

−pm→ defNode g ϕs›
have nz = defNode g ϕs by (metis disjoint-elem not-in-butlast old.path2-last)
with that(1) show ?thesis.

qed

thus ∃ϕz ∈ reachable g ϕ. ∃ns ms. old.pathsConverge g n ns m ms (defNode
g ϕz)

proof (cases)
case pn-ends-in-pm

have old.pathsConverge g n pn
′ m pm (defNode g ϕs)

proof (rule old.pathsConvergeI)
from pn-ends-in-pm pn

′-props(1) show g ` n−pn
′→defNode g ϕs by simp

from ‹n 6= defNode g ϕs› pn-ends-in-pm pn
′-props(1) old.path2-nontriv

show 1 < length pn
′ by auto

from that(4) show g ` m −pm→ defNode g ϕs.
with ‹m 6= defNode g ϕs› old.path2-nontriv show 1 < length pm by simp
from that pn

′-props(3) show set (butlast pn
′) ∩ set (butlast pm) = {}

by (meson butlast-prefix disjointI disjoint-elem in-prefix)
qed
with that(1 ,2 ,3) show ?thesis by (auto intro:reachable.intros(2))

next
case pm-ends-in-pn

have old.pathsConverge g n pn
′ m (pm1@[nz]) (defNode g ϕr)

proof (rule old.pathsConvergeI)
from pm-ends-in-pn pn

′-props(1 ,2) show g ` n−pn
′→defNode g ϕr g `

m−pm1 @ [nz]→defNode g ϕr by simp-all
with ‹n 6= defNode g ϕr› ‹m 6= defNode g ϕr› show 1 < length pn

′ 1 <
length (pm1 @ [nz])

using old.path2-nontriv[of g m pm1 @ [nz]] old.path2-nontriv[of g n] by

20

simp-all
from nz-props pn

′-props(3) show set (butlast pn
′) ∩ set (butlast (pm1 @

[nz])) = {}
using butlast-snoc disjointI in-prefix in-set-butlastD by fastforce

qed
with that(1) show ?thesis by (auto intro:reachable.intros)

qed
qed

Since the reachable-set was built starting at a single φ, these paths must at
some point converge within reachable g ϕ.

from assign-nodes-props(3 ,2) ind-props V-props(3) ϕr-V ϕr-allVars
have ∃ϕz ∈ reachable g ϕ. ∃ns ms. old.pathsConverge g n ns m ms (defNode

g ϕz)
proof (induction arbitrary: pm pn rule: reachable.induct)

case refl

In the induction basis, we know that ϕ = ϕs, and a path to ϕr must be obtained
– for this we need a second induction.

from refl.prems refl.hyps show ?case
proof (induction arbitrary: pm pn rule: reachable.induct)

case refl

The first case, in which ϕr = ϕs = ϕ, is trivial – ϕ suffices.

have old.pathsConverge g n pn m pm (defNode g ϕ)
proof (rule old.pathsConvergeI)

show 1 < length pn 1 < length pm

using refl V-props simpleDefs-phiDefs-var-disjoint unfolding unneces-
saryPhi-def

by (metis domD domIff old.path2-hd-in-αn old.path2-nontriv phi-phiDefs
r-s-path-props(1) r-s-path-props(3))+

show g ` n−pn→defNode g ϕ g ` m−pm→defNode g ϕ set (butlast pn)
∩ set (butlast pm) = {}

using refl by auto
qed
with ‹ϕ ∈ reachable g ϕ› show ?case by auto

next
case (step ϕ ′ ϕr)

In this case we have that ϕ = ϕs and need to acquire a path going to ϕr,
however with the aux. lemma we have, we still need that pn and pm are disjoint.

thus ?case
proof (cases set pn ∩ set pm = {})

case paths-cross: False
with step reachable.intros
show ?thesis using path-crossing-yields-convergence[of ϕr ϕ pn pm] by

(metis disjointI disjoint-elem)
next

case True

21

If the paths are intersection-free, we can apply our path extension lemma to
obtain the path needed.

from step(9 ,8 ,10) ‹ϕ ∈ allVars g› r-s-path-props(1 ,3) step(6 ,5) True
step(2)

obtain ns where g ` n −pn@ns→ defNode g ϕ ′ set (butlast (pn@ns)) ∩
set pm = {} by (rule phiArg-disjoint-paths-extend)

from this(2) have set (butlast pm) ∩ set (butlast (pn @ ns)) = {}
using in-set-butlastD by fastforce

moreover
from phiArg-same-var step.hyps(2) step.prems(5) have var g ϕ ′ = V

by auto
moreover
have ϕ ′ ∈ allVars g

by (metis ϕ-props(2) phiArg-in-allVars reachable.cases step.hyps(1))
ultimately

show ∃ϕz∈reachable g ϕ. ∃ns ms. old.pathsConverge g n ns m ms (defNode
g ϕz)

using step.prems(1) ϕ-props V-props ‹g ` n −pn@ns→ defNode g ϕ ′›
by −(rule step.IH ; blast)

qed
qed

next
case (step ϕ ′ ϕs)

With the induction basis handled, we can finally move on to the induction
proper.

show ?thesis
proof (cases set pm ∩ set pn = {})

case True
have ϕs-V : var g ϕs = V using step(1 ,2 ,3 ,9) reachable-same-var by (simp

add: phiArg-same-var)
from step(2) have ϕs-allVars: ϕs ∈ allVars g by (rule phiArg-in-allVars)

obtain pm
′ where tmp: g ` m −pm@pm

′→ defNode g ϕ ′ set (butlast
(pm@pm

′)) ∩ set (butlast pn) = {}
by (rule phiArg-disjoint-paths-extend[of g ϕs V ϕr m n pm pn ϕ ′])
(metis ϕs-V ϕs-allVars step r-s-path-props(1 ,3) True disjoint-iff-not-equal

in-set-butlastD)+

from step(5) this(1) step(7) this(2) step(9) step(10) step(11)
show ?thesis by (rule step.IH [of pm@pm

′ pn])
next

case paths-cross: False
with step reachable.intros
show ?thesis using path-crossing-yields-convergence[of ϕr ϕs pn pm] by

blast
qed

qed

22

then obtain ϕz ns ms where ϕz ∈ reachable g ϕ and old.pathsConverge g n
ns m ms (defNode g ϕz)

by blast
moreover

with reachable-props have var g ϕz = V by (metis V-props(3) phiArg-trancl-same-var
rtranclpD)

ultimately have necessaryPhi ′ g ϕz using r-s-path-props
unfolding necessaryPhi-def by blast

moreover with ‹ϕz ∈ reachable g ϕ› have unnecessaryPhi g ϕz by −(rule
reachable-props)

ultimately show False unfolding unnecessaryPhi-def by blast
qed

qed

Together with lemma 1, we thus have that a CFG without redundant SCCs is
cytron-minimal, proving that the property established by Braun et al.’s algorithm
suffices.

corollary no-redundant-SCC-minimal:
assumes ¬(∃P scc. redundant-scc g P scc)
shows cytronMinimal g
using assms 1 no-redundant-set-minimal by blast

Finally, to conclude, we’ll show that the above theorem is indeed a stronger
assertion about a graph than the lack of trivial φ functions. Intuitively, this is
because a set containing only a trivial φ function is a redundant set.

corollary
assumes ¬(∃P. redundant-set g P)
shows ¬redundant g
proof −

have redundant g =⇒ ∃P. redundant-set g P
proof −

assume redundant g
then obtain ϕ where phi g ϕ 6= None trivial g ϕ
unfolding redundant-def redundant-set-def dom-def phiArg-def trivial-def isTriv-

ialPhi-def
by (clarsimp split: option.splits) fastforce

hence redundant-set g {ϕ}
unfolding redundant-set-def dom-def phiArg-def trivial-def isTrivialPhi-def
by auto

thus ?thesis by auto
qed
with assms show ?thesis by auto

qed

end

end

23

References
[1] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau.

Simple and efficient construction of static single assignment form. In
R. Jhala and K. Bosschere, editors, Compiler Construction, volume 7791
of Lecture Notes in Computer Science, pages 102–122. Springer Berlin
Heidelberg, 2013.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1991.

[3] S. Ullrich and D. Lohner. Verified construction of static single assignment
form. Archive of Formal Proofs, Feb. 2016. http://isa-afp.org/entries/
Formal_SSA.shtml, Formal proof development.

24

http://isa-afp.org/entries/Formal_SSA.shtml
http://isa-afp.org/entries/Formal_SSA.shtml

	Minimality under Irreducible Control Flow
	Proof of Lemma 1 from Braun et al.
	Proof of Minimality

