# Menger's Theorem 

Christoph Dittmann<br>isabelle@christoph-d.de

September 13, 2023

We present a formalization of Menger's Theorem for directed and undirected graphs in Isabelle/HOL. This well-known result shows that if two non-adjacent distinct vertices $u, v$ in a directed graph have no separator smaller than $n$, then there exist $n$ internally vertex-disjoint paths from $u$ to $v$.

The version for undirected graphs follows immediately because undirected graphs are a special case of directed graphs.

## Contents

1 Introduction ..... 3
2 Relation to Min-Cut Max-Flow ..... 3
3 Helpers ..... 3
4 Graphs ..... 4
4.1 Walks ..... 5
4.2 Paths ..... 6
4.3 The Set of All Paths ..... 6
4.4 Edges of Walks ..... 8
4.5 The First Edge of a Walk ..... 11
4.6 Distance ..... 12
4.7 Subgraphs ..... 12
4.8 Two Distinguished Distinct Non-adjacent Vertices. ..... 14
4.9 Undirected Graphs ..... 14
5 Separations ..... 15
6 Internally Vertex-Disjoint Paths ..... 16
6.1 Basic Properties ..... 16
6.2 Second Vertices ..... 17
7 One More Path ..... 18
7.1 Characterizing the New Path ..... 19
7.2 The Last Vertex of the New Path ..... 19
7.3 Removing the Last Vertex ..... 20
7.4 A New Path Following the Other Paths ..... 21
8 Induction of Menger's Theorem ..... 22
8.1 No Small Separations ..... 22
8.2 Choosing Paths Avoiding new_last ..... 23
8.3 Finding a Path Avoiding $Q$ ..... 24
8.4 Decomposing $P_{k}$ ..... 25
9 The case $y=$ new_last ..... 27
10 The case $y \neq$ new_last ..... 31
11 Menger's Theorem ..... 35
11.1 Menger's Theorem ..... 37
11.2 Self-contained Statement of the Main Theorem ..... 39
Bibliography ..... 41

## 1 Introduction

Given two non-adjacent distinct vertices $u, v$ in a finite directed graph, a $u$-v-separator is a set of vertices $S$ with $u \notin S, v \notin S$ such that every $u$ - v-path visits a vertex of $S$. Two $u$ - $v$-paths are internally vertex-disjoint if their intersection is exactly $\{u, v\}$.

A famous classical result of graph theory relates the size of a minimum separator to the maximal number of internally vertex-disjoint paths.

Theorem 1 (Menger [Men27]) Let $u, v$ be two non-adjacent distinct vertices. Then the size of a minimum $u$-v-separator equals the maximal number of pairwise internally vertexdisjoint $u$-v-paths.

This theorem has many proofs, but as far as the author is aware, there was no formalized proof. We follow a proof given by William McCuaig, who calls it "A simple proof of Menger's theorem" [McC84]. His proof is roughly one page in length. Our formalization is significantly longer than that because we had to fill in a lot of details.

Most of the work goes into showing the following theorem, which proves one direction of Theorem 1.

Theorem 2 Let $u, v$ be two non-adjacent distinct vertices. If every $u$-v-separator has size at least $n$, then there exists $n$ pairwise internally vertex-disjoint $u$-v-paths.

Compared to this, the other direction of Theorem 1 is easy because the existence of $n$ internally vertex-disjoint paths implies that every separator needs to cut at least these paths, so every separator needs to have size at least $n$.

## 2 Relation to Min-Cut Max-Flow

Another famous result of graph theory is the Min-Cut Max-Flow Theorem, stating that the size of a minimum $u$ - $v$-cut equals the value of a maximum $u$ - $v$-flow. There exists a formalization of a very general version of this theorem for countable graphs in the Archive of Formal Proofs, written by Andreas Lochbihler [Loc16].

Technically, our version of Menger's Theorem should follow from Lochbihler's very general result. However, the author was of the opinion that a fresh formalization of Menger's Theorem was warranted given the complexity of the Min-Cut Max-Flow formalization. Our formalization is about a sixth of the size of the Min-Cut Max-Flow formalization (not counting comments). It may also be easier to grasp by readers who are unfamiliar with the intricacies of countable networks.

Let us also note that the Min-Cut Max-Flow Theorem considers edge cuts whereas Menger's Theorem works with vertex cuts. This is a minor difference because one can be reduced to the other, but it makes Menger's Theorem not a trivial corollary of the Min-Cut Max-Flow formalization.

## 3 Helpers

## theory Helpers imports Main begin

First, we will prove a few lemmas unrelated to graphs or Menger's Theorem. These lemmas will simplify some of the other proof steps.

If two finite sets have different cardinality, then there exists an element in the larger set that is not in the smaller set.

```
lemma card-finite-less-ex:
    assumes finite- \(A\) : finite \(A\)
        and finite- \(B\) : finite \(B\)
        and card- \(A B\) : card \(A<\operatorname{card} B\)
    shows \(\exists b \in B . b \notin A\)
proof-
    have \(\operatorname{card}(B-A)>0\) using finite- \(A\) finite- \(B\) card- \(A B\)
        by (meson Diff-eq-empty-iff card-eq-0-iff card-mono finite-Diff gr0I leD)
    then show ?thesis using finite- \(B\)
        by (metis Diff-eq-empty-iff card-0-eq finite-Diff neq-iff subsetI)
qed
```

The cardinality of the union of two disjoint finite sets is the sum of their cardinalities even if we intersect everything with a fixed set $X$.

```
lemma card-intersect-sum-disjoint:
    assumes finite \(B\) finite \(C A=B \cup C B \cap C=\{ \}\)
        shows \(\operatorname{card}(A \cap X)=\operatorname{card}(B \cap X)+\operatorname{card}(C \cap X)\)
    by (metis (no-types, lifting) Un-Diff-Int assms card-Un-disjoint finite-Int inf.commute
        inf-sup-distrib2 sup-eq-bot-iff)
```

If $x$ is in a list $x s$ but is not its last element, then it is also in butlast $x s$.
lemma set-butlast: $\llbracket x \in$ set $x s ; x \neq$ last $x s \rrbracket \Longrightarrow x \in$ set (butlast $x s$ )
by (metis butlast.simps(2) in-set-butlast-appendI last.simps last-appendR
list.set-intros(1) split-list-first)

If a property $P$ is satisfiable and if we have a weight measure mapping into the natural numbers, then there exists an element of minimum weight satisfying $P$ because the natural numbers are well-ordered.

```
lemma arg-min-ex:
    fixes \(P\) :: ' \(a \Rightarrow\) bool and weight \(::{ }^{\prime} a \Rightarrow\) nat
    assumes \(\exists x\). \(P x\)
    obtains \(x\) where \(P x \wedge y . P y \Longrightarrow\) weight \(x \leq\) weight \(y\)
proof (cases \(\exists x . P x \wedge\) weight \(x=0\) )
    case True then show ?thesis using that by auto
next
    case False then show ?thesis
        using that ex-least-nat-le[of \(\lambda n . \exists x . P x \wedge\) weight \(x=n]\) assms by (metis not-le-imp-less)
qed
end
```


## 4 Graphs

theory Graph imports Main begin

Let us now define digraphs, graphs, walks, paths, and related concepts.
${ }^{\prime} a$ is the vertex type.
type-synonym 'a Edge $={ }^{\prime} a \times{ }^{\prime} a$
type-synonym ' $a$ Walk $=$ 'a list
record ' $a$ Graph $=$
verts :: 'a set ( $V_{1}$ )
arcs :: 'a Edge set ( $E_{1}$ )
abbreviation is-arc :: (' $a$, ' $b$ ) Graph-scheme $\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infixl $\rightarrow 160$ ) where $v \rightarrow{ }_{G} w \equiv(v, w) \in E_{G}$

We consider directed and undirected finite graphs. Our graphs do not have multi-edges.
locale Digraph $=$
fixes $G::($ ('a, 'b) Graph-scheme (structure)
assumes finite-vertex-set: finite $V$ and valid-edge-set: $E \subseteq V \times V$
context Digraph begin
lemma finite-edge-set [simp]: finite $E$ using finite-vertex-set valid-edge-set
by (simp add: finite-subset)
lemma edges-are-in- $V$ : assumes $v \rightarrow w$ shows $v \in V w \in V$
using assms valid-edge-set by blast+

### 4.1 Walks

A walk is sequence of vertices connected by edges.
inductive walk :: 'a Walk $\Rightarrow$ bool where
Nil [simp]: walk []
| Singleton [simp]: $v \in V \Longrightarrow$ walk $[v]$
$\mid$ Cons: $v \rightarrow w \Longrightarrow$ walk $(w \# v s) \Longrightarrow$ walk $(v \# w \# v s)$
Show a few composition/decomposition lemmas for walks. These will greatly simplify the proofs that follow.
lemma walk-2 [simp]: $v \rightarrow w \Longrightarrow$ walk $[v, w]$ by (simp add: edges-are-in-V(2) walk.intros(3))
lemma walk-comp: 【walk xs; walk ys; xs =Nil $\vee y s=N i l \vee$ last $x s \rightarrow h d y s \rrbracket \Longrightarrow$ walk (xs @ys)
by (induct rule: walk.induct, simp-all add: walk.intros(3))
(metis list.exhaust-sel walk.intros(2) walk.intros(3))
lemma walk-tl: walk $x s \Longrightarrow$ walk (tl xs) by (induct rule: walk.induct) simp-all
lemma walk-drop: walk $x s \Longrightarrow$ walk (drop $n$ xs) by (induct $n$, simp) (metis drop-Suc tl-drop walk-tl)
lemma walk-take: walk $x s \Longrightarrow$ walk (take $n$ xs)
by (induct arbitrary: $n$ rule: walk.induct)
(simp, metis Digraph.walk.simps Digraph-axioms take-Cons' take-eq-Nil,
metis Digraph.walk.simps Digraph-axioms edges-are-in-V(1) take-Cons')
lemma walk-decomp: assumes walk (xs @ ys) shows walk xs walk ys
using assms append-eq-conv-conj[of xs ys xs @ ys] walk-take walk-drop by metis+
lemma walk-in- $V$ : walk $x s \Longrightarrow$ set $x s \subseteq V$ by (induct rule: walk.induct; simp add: edges-are-in- $V$ )
lemma walk-first-edge: walk $(v \# w \# x s) \Longrightarrow v \rightarrow w$ using walk.cases by fastforce
lemma walk-first-edge': $\llbracket$ walk $(v \# x s) ; x s \neq N i l \rrbracket \Longrightarrow v \rightarrow h d x s$
using walk－first－edge by（metis list．exhaust－sel）
lemma walk－middle－edge：walk（xs＠$v \# w \# y s) \Longrightarrow v \rightarrow w$
by（induct $x s$＠$v$ \＃$w$ \＃ys arbitrary：xs rule：walk．induct，simp，simp）
（metis list．sel $(1,3)$ self－append－conv2 tl－append2）
lemma walk－last－edge：【walk（xs＠ys）；xs $\neq N i l ; y s \neq N i l \rrbracket \Longrightarrow$ last $x s \rightarrow h d$ ys
using walk－middle－edge［of butlast xs last xs hd ys tl ys］
by（metis Cons－eq－appendI append－butlast－last－id append－eq－append－conv2 list．exhaust－sel self－append－conv）

## 4．2 Paths

A path is a walk without repeated vertices．This is simple enough，so most of the above lemmas transfer directly to paths．
abbreviation path ：：＇a Walk $\Rightarrow$ bool where path $x s \equiv$ walk $x s \wedge$ distinct $x s$
lemma path－singleton $[$ simp $]: v \in V \Longrightarrow$ path $[v]$ by simp
lemma path－2［simp］：$\llbracket v \rightarrow w ; v \neq w \rrbracket \Longrightarrow$ path $[v, w]$ by simp
lemma path－cons：【path xs；xs $\neq N i l ; v \rightarrow h d x s ; v \notin$ set $x s \rrbracket \Longrightarrow$ path（ $v \# x s$ ）
by（metis distinct．simps（2）list．exhaust－sel walk．Cons）
lemma path－comp：【walk xs；walk ys；xs＝Nil $\vee y s=N i l \vee l a s t x s \rightarrow h d y s ; \operatorname{distinct}(x s @ y s) \rrbracket$
$\Longrightarrow$ path（xs＠ys）using walk－comp by blast
lemma path－tl：path $x s \Longrightarrow$ path（ $t l x s$ ）by（simp add：distinct－tl walk－tl）
lemma path－drop：path $x s \Longrightarrow$ path（drop $n x s$ ）by（simp add：walk－drop）
lemma path－take：path $x s \Longrightarrow$ path（take $n$ xs）by（simp add：walk－take）
lemma path－decomp：assumes path（xs＠ys）shows path xs path ys
using walk－decomp assms distinct－append by blast＋
lemma path－decomp＇：path（xs＠$x \# y s) \Longrightarrow$ path（xs＠$[x]$ ）
by（metis Singleton distinct．simps（2）distinct1－rotate edges－are－in－V（1）list．discI list．sel（1） not－distinct－conv－prefix path－decomp（1）rotate1．simps（2）walk－comp walk－decomp（2） walk－first－edge＇walk－last－edge）
lemma path－in－$V$ ：path $x s \Longrightarrow$ set $x s \subseteq V$ by（simp add：walk－in－$V$ ）
lemma path－length：path $x s \Longrightarrow$ length $x s \leq$ card $V$
by（metis card－mono distinct－card finite－vertex－set path－in－V）
lemma path－first－edge：path $(v \# w \# x s) \Longrightarrow v \rightarrow w$ using walk－first－edge by blast
lemma path－first－edge＇：$\llbracket$ path $(v \# x s) ; x s \neq N i l \rrbracket \Longrightarrow v \rightarrow h d x s$ using walk－first－edge＇by blast
lemma path－middle－edge：path（ $x s @ v \# w \# y s$ ）$\Longrightarrow v \rightarrow w$ using walk－middle－edge by blast
lemma path－first－vertex：path $(x \# x s) \Longrightarrow x \notin$ set xs by simp
lemma path－disjoint：【 path（xs＠ys）；xs $\neq$ Nil；$x \in$ set $x s \rrbracket \Longrightarrow x \notin$ set ys by auto

## 4．3 The Set of All Paths

definition all－paths where all－paths $\equiv\{x s \mid x s$ ．path xs $\}$
Because paths have no repeated vertices，every graph has at most finitely many distinct paths．This will be useful later to easily derive that any set of paths is finite．
lemma finitely－many－paths：finite all－paths proof－
have all－paths $\subseteq\{x s$ ．set $x s \subseteq V \wedge$ length $x s \leq$ card $V\}$ unfolding all－paths－def using path－length by（simp add：Collect－mono path－in－V）
thus ？thesis using finite－lists－length－le［OF finite－vertex－set］walk－in－$V$ infinite－super by blast qed
end－context Digraph

We introduce shorthand notation for a path connecting two vertices.
definition path-from-to :: (' $a,{ }^{\prime} b$ ) Graph-scheme $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ Walk $\Rightarrow{ }^{\prime} a \Rightarrow$ bool (- $\rightarrow-\sim 1-[71,71,71]$ 70) where path-from-to $G v x s w \equiv$ Digraph.path $G x s \wedge x s \neq$ Nil $\wedge h d x s=v \wedge$ last $x s=w$

## context Digraph begin

lemma path-from-toI [intro]: 【 path $x s ; x s \neq N i l ; h d x s=v$; last $x s=w \rrbracket \Longrightarrow v \leadsto x s \leadsto w$ and path-from-toE [dest]: v $\leadsto x s \leadsto w \Longrightarrow$ path $x s \wedge x s \neq$ Nil $\wedge h d x s=v \wedge$ last $x s=w$ unfolding path-from-to-def by blast+
lemma path-from-to-ends: $v \leadsto(x s @ w \# y s) \leadsto w \Longrightarrow y s=$ Nil
by (metis path-from-toE distinct.simps(2) last.simps last-appendR last-in-set list.discI path-decomp(2))
lemma path-from-to-combine:
assumes $v \leadsto\left(x s\right.$ @ $\left.x \# x s^{\prime}\right) \leadsto w v^{\prime} \leadsto\left(y s\right.$ @ $\left.x \# y s^{\prime}\right) \leadsto w^{\prime}$ set $x s \cap$ set $y s^{\prime}=\{ \}$
shows $v \leadsto\left(x s\right.$ @ $\left.x \# y s^{\prime}\right) \leadsto w^{\prime}$
proof
show path (xs @ x \# ys')
by (metis path-from-toE assms (1,2,3) disjoint-insert(1) distinct-append list.sel(1) list.set(2) list.simps(3) path-decomp(2) walk-comp walk-decomp(1) walk-last-edge)
show $h d\left(x s @ x \# y s^{\prime}\right)=v$ by (metis path-from-toE assms(1) hd-append list.sel(1))
show last ( $x s$ @ $x \# y s^{\prime}$ ) $=w^{\prime}$ using assms(2) by auto
qed $\operatorname{simp}$
lemma path-from-to-first: $v \leadsto x s \leadsto w \Longrightarrow v \notin$ set ( $t l x s$ )
by (metis path-from-toE list.collapse path-first-vertex)
lemma path-from-to-first ${ }^{\prime}: v \leadsto\left(x s @ x \# x s^{\prime}\right) \leadsto w \Longrightarrow v \notin$ set $x s^{\prime}$
by (metis path-from-toE append-eq-append-conv2 distinct.simps(2) hd-append list.exhaust-sel list.sel(3) list.set-sel(1,2) list.simps(3) path-disjoint self-append-conv)
lemma path-from-to-last: $v \leadsto x s \leadsto w \Longrightarrow w \notin$ set (butlast $x s$ )
by (metis path-from-toE append-butlast-last-id distinct-append not-distinct-conv-prefix)
lemma path-from-to-last ${ }^{\prime}: v \leadsto\left(x s @ x \# x s^{\prime}\right) \leadsto w \Longrightarrow w \notin$ set $x s$
by (metis path-from-toE bex-empty last-appendR last-in-set list.set(1) list.simps(3) path-disjoint)
Every walk contains a path connecting the same vertices.
lemma walk-to-path:
assumes walk xs xs $\neq$ Nil hd $x s=v$ last $x s=w$
shows $\exists y s . v \leadsto y s \leadsto w \wedge$ set $y s \subseteq$ set $x s$
proof-
We prove this by removing loops from $x s$ until $x s$ is a path. We want to perform induction over length $x s$, but $x s$ in set $y s \subseteq$ set $x s$ should not be part of the induction hypothesis. To accomplish this, we hide set $x s$ behind a definition for this specific part of the goal.
define target-set where target-set $\equiv$ set $x s$
hence set $x s \subseteq$ target-set by simp
thus $\exists y s . v \leadsto y s \leadsto w \wedge$ set $y s \subseteq$ target-set
using assms proof (induct length xs arbitrary: xs rule: infinite-descent0)

```
case (smaller n)
```

then obtain $x s$ where
xs: $n=$ length $x s$ walk xs $x s \neq$ Nil hd $x s=v$ last $x s=w$ set $x s \subseteq$ target-set and hyp: $\neg(\exists y s . v \leadsto y s \leadsto w \wedge$ set $y s \subseteq$ target-set) by blast

If $x s$ is not a path, then $x s$ is not distinct and we can decompose it.
then obtain ys rest $u$
where xs-decomp: $u \in$ set ys distinct ys xs $=y s$ @ $u \#$ rest
using not-distinct-conv-prefix by (metis path-from-toI)
$u$ appears in $y s$, so we have a loop in $x s$ starting from an occurrence of $u$ in $y s$ ending in the vertex $u$ in $u \#$ rest. We define $z s$ as $x s$ without this loop.

```
    obtain ys' ys-suffix where
    ys-decomp:ys = ys' @ u# ys-suffix by (meson split-list xs-decomp(1))
    define zs where zs \equivys' @ u # rest
    have walk zs unfolding zs-def using xs(2) xs-decomp(3) ys-decomp
        by (metis walk-decomp list.sel(1) list.simps(3) walk-comp walk-last-edge)
    moreover have length zs < n unfolding zs-def by (simp add:xs(1) xs-decomp(3) ys-decomp)
    moreover have hd zs=v unfolding zs-def
        by (metis append-is-Nil-conv hd-append list.sel(1) xs(4) xs-decomp(3) ys-decomp)
    moreover have last zs = w unfolding zs-def using xs(5) xs-decomp(3) by auto
    moreover have set zs\subseteqtarget-set unfolding zs-def using xs(6) xs-decomp(3) ys-decomp by
auto
            ultimately show ?case using zs-def hyp by blast
    qed simp
qed
```


### 4.4 Edges of Walks

The set of edges on a walk. Note that this is empty for walks of length 0 or 1 .
definition edges-of-walk :: 'a Walk $\Rightarrow$ 'a Edge set where
edges-of-walk $x s=\{(v, w) \mid v w x s$-pre xs-post. $x s=x s$-pre @ $v \# w \# x s$-post $\}$
lemma edges-of-walkE: $(v, w) \in$ edges-of-walk $x s \Longrightarrow \exists x s$-pre xs-post. $x s=x s$-pre $@ v \# w \#$ xs-post unfolding edges-of-walk-def by blast
lemma edges-of-walk-in-E: walk xs $\Longrightarrow$ edges-of-walk xs $\subseteq E$
unfolding edges-of-walk-def using walk-middle-edge by auto
lemma edges-of-walk-finite: walk $x s \Longrightarrow$ finite (edges-of-walk xs)
using edges-of-walk-in-E finite-edge-set finite-subset by blast
lemma edges-of-walk-empty: edges-of-walk []$=\{ \}$ edges-of-walk $[v]=\{ \}$
unfolding edges-of-walk-def by simp-all
lemma edges-of-walk-2: edges-of-walk $[v, w]=\{(v, w)\}$ proof
\{
fix $v^{\prime} w^{\prime}$ assume $\left(v^{\prime}, w^{\prime}\right) \in$ edges-of-walk $[v, w]$
then obtain $x s$-pre $x s$-post where $x s$-decomp: $[v, w]=x s$-pre @ $v^{\prime} \# w^{\prime} \# x s$-post using edges-of-walkE[of $\left.v^{\prime} w^{\prime}[v, w]\right]$ by blast

```
            then have xs-pre = Nil
            by (metis Nil-is-append-conv butlast.simps(2) butlast-append list.discI)
```



```
    }
    then show edges-of-walk [v,w]\subseteq{(v,w)} by (simp add: subrelI)
    show {(v,w)}\subseteqedges-of-walk [v,w] unfolding edges-of-walk-def by blast
qed
lemma edges-of-walk-edge: \llbracket walk xs; (v,w) \in edges-of-walk xs \rrbracket\Longrightarrowv->w
    using edges-of-walkE walk-middle-edge by fastforce
lemma edges-of-walk-middle [simp]: (v,w)\inedges-of-walk (xs @ v # w # xs')
    unfolding edges-of-walk-def by blast
lemma edges-of-comp1: edges-of-walk xs \subseteqedges-of-walk (xs @ ys)
    unfolding edges-of-walk-def by force
lemma edges-of-comp2: edges-of-walk ys \subseteqedges-of-walk (xs @ ys) proof-
    {
        fix vw assume (v,w)\in edges-of-walk ys
        then have \existsys-pre ys-post.ys = ys-pre @ v#w# ys-post by (meson edges-of-walkE)
        then have (v,w)\inedges-of-walk (xs @ ys)
            by (metis (mono-tags, lifting) append.assoc edges-of-walk-def mem-Collect-eq)
    }
    then show ?thesis by (simp add: subrelI)
qed
lemma walk-edges-decomp-simple:
    edges-of-walk (v#w# xs) = {(v,w)}\cup edges-of-walk (w # xs) (is ?A = ?B)
proof
    have edges-of-walk (w # xs)\subseteq?A using edges-of-comp2[of w # xs [v]] by simp
    moreover have (v,w)\in?A by (metis append-eq-Cons-conv edges-of-walk-middle)
    ultimately show ?B \subseteq?A by blast
    {
        fix }\mp@subsup{v}{}{\prime}\mp@subsup{w}{}{\prime}\mathrm{ assume ( }\mp@subsup{v}{}{\prime},\mp@subsup{w}{}{\prime})\in?
        then obtain xs-pre xs-post where xs-decomp:v # w # xs=xs-pre @ v' # w' # xs-post
            using edges-of-walkE by blast
        have ( }\mp@subsup{v}{}{\prime},\mp@subsup{w}{}{\prime})\in?B\mathrm{ proof (cases)
            assume xs-pre = Nil then show ?thesis using xs-decomp by auto
        next
            assume xs-pre }\not=\mathrm{ Nil then show ?thesis
            by (metis Cons-eq-append-conv UnI2 edges-of-walk-middle xs-decomp)
        qed
    }
    then show ?A\subseteq?B by auto
qed
lemma walk-edges-decomp:
    edges-of-walk (xs @ x # xs') = edges-of-walk (xs @ [x]) \cup edges-of-walk (x # xs')
proof (induct xs)
    case (Cons v xs)
    show ?case proof (cases)
        assume xs = Nil
```

then show ?thesis using edges-of-walk-2 walk-edges-decomp-simple by auto
next
assume $x s \neq$ Nil
then obtain $w$ xs-post where $x s=w \#$ xs-post using list.exhaust-sel by blast
then show ?thesis using Cons.hyps walk-edges-decomp-simple by auto
qed
qed (simp add: edges-of-walk-empty(2))
lemma walk-edges-decomp ${ }^{\prime}$ :
edges-of-walk $\left(x s @ v \# w \# x s^{\prime}\right)=$ edges-of-walk $(x s @[v]) \cup\{(v, w)\} \cup$ edges-of-walk $\left(w \# x s^{\prime}\right)$ using walk-edges-decomp walk-edges-decomp-simple by (metis sup.assoc)
lemma walk-edges-vertices: assumes $(v, w) \in$ edges-of-walk xs shows $v \in$ set xs $w \in$ set xs using assms edges-of-walkE by force+
lemma walk-edges-subset:
assumes edges-subsets: edges-of-walk $x s \subseteq e d g e s-o f-w a l k$ ys and non-trivial: tl $x s \neq$ Nil
shows set $x s \subseteq$ set ys
proof
fix $v$ assume $v \in$ set $x s$
then obtain $x s$-pre $x s$-post where
$x s$-decomp: $x s=x s$-pre @ $v \#$ xs-post by (meson split-list)
show $v \in$ set ys proof (cases)
assume $x s$-pre $=$ Nil
then have $x s$-post $\neq$ Nil using $x s$-decomp non-trivial by auto
then have $x s=x s$-pre @ $v \# h d x s$-post $\# t l$ xs-post by (simp add: xs-decomp)
then have $(v, h d x s$-post $) \in$ edges-of-walk xs using edges-of-walk-def by auto
then show ?thesis using walk-edges-vertices(1) edges-subsets by fastforce
next
assume $x s$-pre $\neq$ Nil
then have $x s=$ butlast $x s$-pre @ last xs-pre $\# v \#$ xs-post by (simp add: xs-decomp)
then have (last xs-pre, v) $\in$ edges-of-walk xs using edges-of-walk-def by auto
then show ?thesis using walk-edges-vertices(2) edges-subsets by fastforce
qed
qed
A path has no repeated vertices, so if we split a path at an edge we find that the two pieces do not contain this edge any more.
lemma path-edges:
assumes path $x s(v, w) \in$ edges-of-walk xs
shows $\exists$ xs-pre xs-post. xs $=x s$-pre @ $v \# w \#$ xs-post
$\wedge(v, w) \notin$ edges-of-walk (xs-pre @ [v])
$\wedge(v, w) \notin$ edges-of-walk ( $w \#$ xs-post $)$
proof-
obtain $x s$-pre $x s$-post where
$x s$-decomp: $x s=x s$-pre @ $v \# w \#$ xs-post by (meson assms(2) edges-of-walkE)
then have $(v, w) \notin$ edges-of-walk (xs-pre @ $[v]$ ) using assms(1) edges-of-walkE
by (metis path-from-to-ends list.discI path-decomp' path-from-toI snoc-eq-iff-butlast)
moreover have $(v, w) \notin$ edges-of-walk ( $w \#$ xs-post) using assms(1)
by (metis edges-of-walkE in-set-conv-decomp path-decomp(2) path-first-vertex xs-decomp)

```
    ultimately show ?thesis using xs-decomp by blast
qed
lemma path-edges-remove-prefix:
    assumes path (xs @ x # xs')
    shows edges-of-walk (xs @ [x]) = edges-of-walk (xs @ x # xs') - edges-of-walk (x # xs')
proof-
    {
        fix v w assume *: (v,w) \inedges-of-walk (xs @ [x])
        then have 1:(v,w)\inedges-of-walk (xs@ @ # xs')
            using walk-edges-decomp[of xs x xs'] by force
        moreover have (v,w) & edges-of-walk (x # xs') proof
            assume contra: (v,w) \in edges-of-walk ( }x#\mathrm{ # xs')
            then have w\in set (x# xs') by (meson walk-edges-vertices(2))
            moreover have }w\not=x\mathrm{ using assms contra * 1
                by (metis path-decomp(2) UnE edges-of-walkE edges-of-walk-edge list.set-intros(1)
                    path-2 path-disjoint path-first-vertex self-append-conv2 set-append walk-edges-vertices(1))
            moreover have w\in set (xs @ [x]) by (meson * walk-edges-vertices(2))
            ultimately show False using assms by auto
        qed
        ultimately have (v,w)\inedges-of-walk (xs @ x # xs') - edges-of-walk (x # xs') by blast
    }
    then show ?thesis using walk-edges-decomp[of xs x xs'] by auto
qed
```


### 4.5 The First Edge of a Walk

In the proof of Menger's Theorem, we will often talk about the first edge of a path. Let us define this concept.
fun first-edge-of-walk where
first-edge-of-walk $(v \# w \# x s)=(v, w)$
| first-edge-of-walk $[v]=$ undefined
| first-edge-of-walk [] = undefined
lemma first-edge-in-edges: tl $x s \neq N i l \Longrightarrow$ first-edge-of-walk $x s \in$ edges-of-walk $x s$
unfolding edges-of-walk-def by (induct rule: first-edge-of-walk.induct) auto
lemma first-edge-hd-tl: 【v $v x s \leadsto w ; t l x s \neq N i l \rrbracket \Longrightarrow$ first-edge-of-walk $x s=(v, h d(t l x s))$
by (induct xs rule: first-edge-of-walk.induct) auto
lemma first-edge-first:
assumes $v \leadsto x s \leadsto w\left(v, w^{\prime}\right) \in$ edges-of-walk $x s$
shows first-edge-of-walk xs $=\left(v, w^{\prime}\right)$
using assms proof (induct rule: first-edge-of-walk.induct)
case ( $1 v w x s$ )
then show? case
by (metis path-decomp(1) append-self-conv2 edges-of-walkE first-edge-of-walk.simps(1)
hd-append hd-in-set not-distinct-conv-prefix path-from-toE)
next
case (2 v)
then show ?case using path-edges by fastforce
qed blast

### 4.6 Distance

The distance between two vertices is the minimum length of a path. Note that this is not a symmetric function because we are on digraphs.

```
definition distance :: ' \(a \neq{ }^{\prime} a \Rightarrow\) nat where
    distance \(v w \equiv \operatorname{Min}\{\) length \(x s \mid x s . v \leadsto x s \sim w\}\)
```

The Min operator applies only to finite sets, so let us prove that this is the case.
lemma distance-lengths-finite: finite \{length $x s \mid x s . v \leadsto x s \sim w$ \} proof -
have $\{$ length $x s \mid x s . v \leadsto x s \sim w\} \subseteq\{n \mid n . n \leq$ card $V\}$ using path-length by blast
then show ?thesis using finite-Collect-le-nat by (meson finite-subset)
qed
If we have a concrete path from $v$ to $w$, then the length of this path bounds the distance from $v$ to $w$
lemma distance-upper-bound: $v \leadsto x s \leadsto w \Longrightarrow$ distance $v w \leq$ length $x s$
unfolding distance-def using Min-le[OF distance-lengths-finite] by blast
Another characterization of distance: If we have a concrete minimal path from $v$ to $w$, this defines the distance.

```
lemma distance-witness:
    assumes \(x s: v \leadsto x s \leadsto w\)
        and xs-min: \(\bigwedge x s^{\prime} . v \leadsto x s^{\prime} \leadsto w \Longrightarrow\) length \(x s \leq\) length \(x s^{\prime}\)
    shows distance \(v w=\) length \(x s\)
proof-
    have \(\bigwedge d . d \in\{\) length \(x s \mid x s . v \leadsto x s \leadsto w\} \Longrightarrow\) length \(x s \leq d\) using \(x s-m i n\) by blast
    then show ?thesis unfolding distance-def using Min-eqI
        by (metis (mono-tags, lifting) distance-lengths-finite xs mem-Collect-eq)
qed
```


### 4.7 Subgraphs

We only need one kind of subgraph: The subgraph obtained by removing a single vertex.

```
definition remove-vertex :: ' \(a \Rightarrow\left({ }^{\prime} a\right.\), ' \(b\) ) Graph-scheme where
    remove-vertex \(x \equiv G \\) verts \(:=V-\{x\}\), arcs \(:=\operatorname{Restr} E(V-\{x\}) \mid\)
```

lemma remove-vertex- $V$ : $V_{\text {remove-vertex } x}=V-\{x\}$ unfolding remove-vertex-def by auto
lemma remove-vertex- $V^{\prime}: V_{\text {remove-vertex } x} \subseteq V$ unfolding remove-vertex-def by auto
lemma remove-vertex- $E$ : $E_{\text {remove-vertex } x}=\operatorname{Restr} E(V-\{x\})$ unfolding remove-vertex-def by simp
lemma remove-vertex- $E^{\prime}: v \rightarrow_{\text {remove-vertex } x} w \Longrightarrow v \rightarrow w$ by (simp add: remove-vertex- $E$ )
lemma remove-vertex- $E^{\prime \prime}: \llbracket v \rightarrow w ; v \neq x ; w \neq x \rrbracket \Longrightarrow v \rightarrow_{\text {remove-vertex } x} w$
by (simp add: edges-are-in- $V$ remove-vertex- $E$ )
Of course, this is still a digraph.
lemma remove-vertex-Digraph: Digraph (remove-vertex v) proof
let ? $V=V_{\text {remove-vertex } v}$ let $? E=E_{\text {remove-vertex } v}$

```
    show finite ?V unfolding remove-vertex-def using finite-vertex-set by simp
    show ? \(E \subseteq\) ? \(V \times ? V\) proof
    fix \(e\) assume \(e \in\) ? \(E\)
    then have \(e \in(V-\{v\}) \times(V-\{v\})\) by (metis Int-iff remove-vertex- \(E\) )
    then show \(e \in\) ? \(V \times\) ? \(V\) using remove-vertex \(-V\) by auto
    qed
    have \(\bigwedge x y . \llbracket(x, y) \in ? E ;(x, y) \notin E \rrbracket \Longrightarrow(y, x) \in ? E\) unfolding remove-vertex-def by simp
qed
```

We are also going to need a few lemmas about how walks and paths behave when we remove a vertex.
First, if we remove a vertex that is not on a walk $x s$, then $x s$ is still a walk after removing this vertex.

```
lemma remove-vertex-walk:
    assumes walk xs \(x \notin\) set xs
    shows Digraph.walk (remove-vertex x) xs
proof-
    interpret \(H\) : Digraph remove-vertex \(x\) using remove-vertex-Digraph by blast
    show ?thesis using assms proof (induct rule: walk.induct)
        case (Singleton \(v\) )
        then have \(v \in V-\{x\}\) by simp
        then show? case using remove-vertex- \(V\) by simp
    next
        case (Cons \(v w\) vs)
        then have \(v \rightarrow_{\text {remove-vertex } x} w\) using remove-vertex- \(E^{\prime \prime}\) by auto
        then show ?case
            by (meson Cons.hyps(3) Cons.prems(1) H.Cons assms(2) list.set-intros(2))
    qed \(\operatorname{simp}\)
qed
```

The same holds for paths.
lemma remove-vertex-path-from-to:
$\llbracket v \leadsto x s \leadsto w ; x \in V ; x \notin$ set $x s \rrbracket \Longrightarrow v \leadsto x s \leadsto$ remove-vertex $x w$
using path-from-to-def remove-vertex-walk by fastforce
Conversely, if something was a walk or a path in the subgraph, then it is also a walk or a path in the supergraph.

```
lemma remove-vertex-walk-add:
    assumes Digraph.walk (remove-vertex x) xs
    shows walk xs
proof-
    interpret H: Digraph remove-vertex \(x\) using remove-vertex-Digraph by blast
    show ?thesis using assms proof (induct rule: H.walk.induct)
        case (Singleton \(v\) )
        then show ?case by (meson Digraph.Singleton Digraph-axioms remove-vertex- \(V^{\prime}\) subsetD)
    next
        case (Cons \(v w\) vs)
        then show ?case by (meson Digraph.Cons Digraph-axioms remove-vertex- \(E^{\prime}\) )
    qed \(\operatorname{simp}\)
qed
```

```
lemma remove-vertex-path-from-to-add: v}\leadstoxs~~remove-vertex x w\Longrightarrowv~xs~~
    using path-from-to-def remove-vertex-walk-add by fastforce
end - context Digraph
```


### 4.8 Two Distinguished Distinct Non-adjacent Vertices.

The setup for Menger's Theorem requires two distinguished distinct non-adjacent vertices $v 0$ and $v 1$. Let us pin down this concept with the following locale.

```
locale v0-v1-Digraph \(=\) Digraph +
    fixes \(v 0\) v1 : : 'a
    assumes \(v 0-V: v 0 \in V\) and \(v 1-V: v 1 \in V\)
        and v0-nonadj-v1: \(\neg v 0 \rightarrow v 1\)
        and \(v 0-n e q-v 1: v 0 \neq v 1\)
```

The only lemma we need about v0-v1-Digraph for now is that it is closed under removing a vertex that is not $v 0$ or $v 1$.
lemma (in v0-v1-Digraph) remove-vertices-v0-v1-Digraph:
assumes $v \neq v 0 v \neq v 1$
shows v0-v1-Digraph (remove-vertex v) v0 v1
proof (rule v0-v1-Digraph.intro)
show v0-v1-Digraph-axioms (remove-vertex v) v0 v1
using assms v0-nonadj-v1 v0-neq-v1 v0-V v1-V remove-vertex- $V$ remove-vertex- $E^{\prime}$
by unfold-locales blast+
qed (simp add: remove-vertex-Digraph)

### 4.9 Undirected Graphs

We represent undirecteded graphs as a special case of digraphs where every undirected edge is represented as an edge in both directions. We also exclude loops because loops are uncommon in undirected graphs.
As we will explain in the next paragraph, all of this has no bearing on the validity of Menger's Theorem for undirected graphs.

```
locale Graph = Digraph +
    assumes undirected: v->w=w->v
        and no-loops: }\negv->
```

We observe that this makes Digraph a sublocale of Graph, meaning that every theorem we prove for digraphs automatically holds for undirected graphs, although it may not make sense because for example "connectedness" (if we were to define it) would need different definitions for directed and undirected graphs.
Fortunately, the notions of "separator" and "internally vertex-disjoint paths" on directed graphs are the same for undirected graphs. So Menger's Theorem, when we eventually prove it in the Digraph locale, will apply automatically to the Graph locale without any additional work.
For this reason we will not use the Graph locale again in this proof development and it exists merely to show that undirected graphs are covered as a special case by our definitions.
end

## 5 Separations

```
theory Separations imports Helpers Graph begin
locale Separation = v0-v1-Digraph }
    fixes }S\mathrm{ :: 'a set
    assumes }S\mathrm{ -V:S}\subseteq
        and v0-notin-S:v0}\not\in
        and v1-notin-S: v1 &S
        and S-separates: \xs.v0~xs~v1\Longrightarrow set xs \capS\not={}
lemma (in Separation) finite-S [simp]: finite S using S-V finite-subset finite-vertex-set by auto
lemma (in v0-v1-Digraph) subgraph-separation-extend:
    assumes v\not=v0 v\not=v1v\inV
        and Separation (remove-vertex v) v0 v1 S
    shows Separation G v0 v1 (insert v S)
proof (rule Separation.intro)
    interpret G: Separation remove-vertex v v0 v1 S using assms(4).
    show v0-v1-Digraph G v0 v1 using v0-v1-Digraph-axioms .
    show Separation-axioms G v0 v1 (insert v S) proof
        show insert v S\subseteqV by (meson G.S-V assms(3) insert-subsetI remove-vertex-V' subset-trans)
        show v0 & insert vS using G.v0-notin-S assms(1) by blast
        show v1 \not\in insert vS using G.v1-notin-S assms(2) by blast
    next
        fix xs assume v0 }~xs~v
        show set xs \cap insert vS}={}{\mathrm{ proof (cases)
            assume v}\not\in\mathrm{ set xs
            then have v0 }\negxs~->\mathrm{ remove-vertex v v1
            using remove-vertex-path-from-to \langlev0 \leadstoxs~ v1> assms(3) by blast
            then show ?thesis by (simp add: G.S-separates)
        qed simp
    qed
qed
lemma (in v0-v1-Digraph) subgraph-separation-min-size:
    assumes v\not=v0 v\not=v1 v\inV
        and no-small-separation: \S. Separation G v0 v1 S \Longrightarrowc card S \geq Suc n
        and Separation (remove-vertex v) v0 v1 S
    shows card S\geqn
    using subgraph-separation-extend
    by (metis Separation.finite-S Suc-leD assms card-insert-disjoint insert-absorb not-less-eq-eq)
    lemma (in v0-v1-Digraph) path-exists-if-no-separation:
    assumes S\subseteqVv0\not\inSv1\not\inS\negSeparation G v0 v1 S
    shows \existsxs.v0}~xs~v1^\mathrm{ set xs }\capS={
    by (meson assms Separation.intro Separation-axioms.intro v0-v1-Digraph-axioms)
end
```


## 6 Internally Vertex-Disjoint Paths

## theory DisjointPaths imports Separations begin

Menger's Theorem talks about internally vertex-disjoint $v 0-v 1$-paths. Let us define this concept.
locale DisjointPaths $=$ v0-v1-Digraph +
fixes paths :: 'a Walk set
assumes paths:
$\bigwedge x s . x s \in$ paths $\Longrightarrow v 0 \sim x s \sim v 1$
and paths-disjoint: $\bigwedge x s$ ys $v$.
$\llbracket x s \in$ paths $; y s \in$ paths $; x s \neq y s ; v \in$ set $x s ; v \in$ set $y s \rrbracket \Longrightarrow v=v 0 \vee v=v 1$

### 6.1 Basic Properties

The empty set of paths trivially satisfies the conditions.
lemma (in v0-v1-Digraph) DisjointPaths-empty: DisjointPaths G v0 v1 \{\}
by (simp add: DisjointPaths.intro DisjointPaths-axioms-def v0-v1-Digraph-axioms)
Re-adding a deleted vertex is fine.
lemma (in v0-v1-Digraph) DisjointPaths-supergraph:
assumes DisjointPaths (remove-vertex v) v0 v1 paths
shows DisjointPaths G v0 v1 paths
proof
interpret $H$ : DisjointPaths remove-vertex v v0 v1 paths using assms.
show $\bigwedge x s$. xs $\in$ paths $\Longrightarrow v 0 \leadsto x s \leadsto v 1$ using remove-vertex-path-from-to-add H.paths by blast
show $\bigwedge x s$ ys $v . \llbracket x s \in$ paths; ys $\in$ paths $; x s \neq y s ; v \in$ set $x s ; v \in$ set $y s \rrbracket \Longrightarrow v=v 0 \vee v=v 1$ by (meson DisjointPaths.paths-disjoint H.DisjointPaths-axioms)
qed
context DisjointPaths begin
lemma paths-in-all-paths: paths $\subseteq$ all-paths unfolding all-paths-def using paths by blast
lemma finite-paths: finite paths
using finitely-many-paths infinite-super paths-in-all-paths by blast
lemma paths-edge-finite: finite $(\bigcup$ (edges-of-walk'paths)) proof-
have $\bigcup$ (edges-of-walk'paths $) \subseteq E$ using edges-of-walk-in-E paths by fastforce
then show ?thesis by (meson finite-edge-set finite-subset)
qed
lemma paths-tl-notnil: $x s \in$ paths $\Longrightarrow t l x s \neq$ Nil
by (metis path-from-toE hd-Cons-tl last-ConsL paths v0-neq-v1)
lemma paths-second-in- $V: x s \in$ paths $\Longrightarrow h d(t l x s) \in V$
by (metis paths edges-are-in-V(2) list.exhaust-sel path-from-toE paths-tl-notnil walk-first-edge')
lemma paths-second-not-v0: xs $\in$ paths $\Longrightarrow h d(t l x s) \neq v 0$
by (metis distinct.simps(2) hd-in-set list.exhaust-sel path-from-to-def paths paths-tl-notnil)
lemma paths-second-not-v1: xs $\in$ paths $\Longrightarrow h d(t l x s) \neq v 1$
using paths paths-tl-notnil v0-nonadj-v1 walk-first-edge' by fastforce
lemma paths-second-disjoint: $\llbracket x s \in$ paths; ys $\in$ paths; $x s \neq y s \rrbracket \Longrightarrow h d(t l x s) \neq h d(t l y s)$
by (metis paths-disjoint Nil-tl hd-in-set list.set-sel(2)
paths-second-not-v0 paths-second-not-v1 paths-tl-notnil)

```
lemma paths-edge-disjoint:
    assumes \(x s \in\) paths \(y s \in\) paths \(x s \neq y s\)
    shows edges-of-walk xs \(\cap\) edges-of-walk ys \(=\{ \}\)
proof (rule ccontr)
    assume edges-of-walk \(x s \cap\) edges-of-walk ys \(\neq\{ \}\)
    then obtain \(v w\) where \(v\)-w: \((v, w) \in\) edges-of-walk \(x s(v, w) \in\) edges-of-walk ys by auto
    then have \(v \in\) set xs \(w \in\) set xs \(v \in\) set ys \(w \in\) set ys by (meson walk-edges-vertices) +
    then have \(v=v 0 \vee v=v 1 w=v 0 \vee w=v 1\) using assms paths-disjoint by blast+
    then show False using \(v\)-w(1) assms(1) v0-nonadj-v1 edges-of-walk-edge path-edges
        by (metis distinct-length-2-or-more path-decomp(2) path-from-to-def path-from-to-ends paths)
qed
```

Specify the conditions for adding a new disjoint path to the set of disjoint paths.

```
lemma DisjointPaths-extend:
    assumes P-path:v0~P~v1
            and P-disjoint: \bigwedgexs v.\llbracketxs\in paths;xs \not=P;v\in set xs;v\in set P\rrbracket\Longrightarrow \ v=v0\veev=v1
    shows DisjointPaths G v0 v1 (insert P paths)
proof
    fix xs ys v
    assume xs \in insert P paths ys \in insert P paths xs \not= ys v\in set xs v\in set ys
    then show v=v0\veev=v1
        by (metis DisjointPaths.paths-disjoint DisjointPaths-axioms P-disjoint insert-iff)
next
    show \xs. xs \in insert P paths \Longrightarrowv0 }\leadstoxs~v
        using P-path paths by blast
qed
lemma DisjointPaths-reduce:
    assumes paths'}\subseteq\subseteq\mathrm{ paths
    shows DisjointPaths G v0 v1 paths'
proof
    fix xs assume xs \in paths' then show v0 ~xs~v1 using assms paths by blast
next
    fix xs ys v assume xs\in paths' ys \in paths' }xs\not=ysv\in set xs v\in set y
    then show v=v0\veev=v1 by (meson assms paths-disjoint subsetCE)
qed
```


### 6.2 Second Vertices

Let us now define the set of second vertices of the paths. We are going to need this in order to find a path avoiding the old paths on its first edge.
definition second-vertex where second-vertex $\equiv \lambda x s::$ ' $a$ Walk. hd (tl xs)
definition second-vertices where second-vertices $\equiv$ second-vertex' paths
lemma second-vertex-inj: inj-on second-vertex paths
unfolding second-vertex-def using paths-second-disjoint by (meson inj-onI)
lemma second-vertices-card: card second-vertices $=$ card paths unfolding second-vertices-def using finite-paths card-image second-vertex-inj by blast
lemma second-vertices-in- $V$ : second-vertices $\subseteq V$
unfolding second-vertex-def second-vertices-def using paths-second-in- $V$ by blast
lemma v0-v1-notin-second-vertices: v0 $\ddagger$ second-vertices v1 $\notin$ second-vertices
unfolding second-vertices-def second-vertex-def
using paths-second-not-v0 paths-second-not-v1 by blast+
lemma second-vertices-new-path: $h d(t l x s) \notin$ second-vertices $\Longrightarrow x s \notin$ paths
by (metis image-iff second-vertex-def second-vertices-def)
lemma second-vertices-first-edge:
$\llbracket x s \in$ paths; first-edge-of-walk $x s=(v, w) \rrbracket \Longrightarrow w \in$ second-vertices
unfolding second-vertices-def second-vertex-def
using first-edge-hd-tl paths paths-tl-notnil by fastforce
If we have no small separations, then the set of second vertices is not a separator and we can find a path avoiding this set.
lemma disjoint-paths-new-path:
assumes no-small-separations: $\bigwedge$ S. Separation $G v 0$ v1 $S \Longrightarrow$ card $S \geq$ Suc (card paths)
shows $\exists P$-new. v0 $\sim P$-new $\leadsto v 1 \wedge$ set $P$-new $\cap$ second-vertices $=\{ \}$
proof-
have $\neg$ Separation $G v 0$ v1 second-vertices
using no-small-separations second-vertices-card by force
then show ?thesis by (simp add: path-exists-if-no-separation second-vertices-in-V v0-v1-notin-second-vertices)
qed
We need the following predicate to find the first vertex on a new path that hits one of the other paths. We add the condition $x=v 1$ to cover the case paths $=\{ \}$.
definition hitting-paths where
hitting-paths $\equiv \lambda x . x \neq v 0 \wedge((\exists x s \in$ paths. $x \in$ set $x s) \vee x=v 1)$
end - DisjointPaths

## 7 One More Path

Let us define a set of disjoint paths with one more path. Except for the first and last vertex, the new path must be disjoint from all other paths. The first vertex must be $v 0$ and the last vertex must be on some other path. In the ideal case, the last vertex will be $v 1$, in which case we are already done because we have found a new disjoint path between $v 0$ and $v 1$.

```
locale DisjointPathsPlusOne \(=\) DisjointPaths +
    fixes \(P\)-new :: ' \(a\) Walk
    assumes \(P\)-new:
        \(v 0 \leadsto P\)-new \(\leadsto\) (last \(P\)-new)
    and \(t l-P-n e w\) :
```

```
    tl P-new \(\neq\) Nil
    \(h d(t l P\)-new \() \notin\) second-vertices
    and last-P-new:
    hitting-paths (last P-new)
    \(\bigwedge v . v \in \operatorname{set}(\) butlast \(P\)-new) \(\Longrightarrow \neg\) hitting-paths \(v\)
begin
```


### 7.1 Characterizing the New Path

lemma P-new-hd-disjoint: $\bigwedge x s . x s \in$ paths $\Longrightarrow h d(t l P$-new $) \neq h d(t l x s)$
using $t l-P$-new(2) unfolding second-vertices-def second-vertex-def by blast
lemma $P$-new-new: $P$-new $\notin$ paths using $P$-new-hd-disjoint by auto
definition paths-with-new where paths-with-new $\equiv$ insert $P$-new paths
lemma card-paths-with-new: card paths-with-new $=$ Suc (card paths)
unfolding paths-with-new-def using P-new-new by (simp add: finite-paths)
lemma paths-with-new-no-Nil: Nil $\notin$ paths-with-new
using $P$-new paths-tl-notnil paths-with-new-def by fastforce
lemma paths-with-new-path: xs $\in$ paths-with-new $\Longrightarrow$ path $x s$ using $P$-new paths paths-with-new-def by auto
lemma paths-with-new-start-in-v0: xs $\in$ paths-with-new $\Longrightarrow h d x s=v 0$
using $P$-new paths paths-with-new-def by auto

### 7.2 The Last Vertex of the New Path

McCuaig in [McC84] calls the last vertex of $P$-new by the name $x$. However, this name is somewhat confusing because it is so short and it will be visible in most places from now on, so let us give this vertex the more descriptive name of new-last.

```
definition new-pre where new-pre \(\equiv\) butlast \(P\)-new
definition new-last where new-last \(\equiv\) last \(P\)-new
lemma \(P\)-new-decomp: \(P\)-new = new-pre @ [new-last]
    by (metis new-pre-def append-butlast-last-id list.sel(2) tl-P-new(1) new-last-def)
lemma new-pre-not-Nil: new-pre \(\neq\) Nil using \(P\)-new(1) hitting-paths-def
    by (metis P-new-decomp list.sel(3) self-append-conv2 tl-P-new(1))
lemma new-pre-hitting: \(x^{\prime} \in\) set new-pre \(\Longrightarrow \neg\) hitting-paths \(x^{\prime}\)
    by (simp add: new-pre-def last-P-new(2))
lemma \(P\)-hit: hitting-paths new-last
    by (simp add: last-P-new(1) new-last-def)
lemma new-last-neq-v0: new-last \(\neq v 0\) using hitting-paths-def \(P\)-hit by force
lemma new-last-in- \(V\) : new-last \(\in V\) using \(P\)-new new-last-def path-in- \(V\) by fastforce
```

```
lemma new-last-to-v1: \(\exists R\). new-last \(\leadsto R \leadsto\) remove-vertex v0 v1
proof (cases)
    assume new-last \(=v 1\)
    then have new-last \(\leadsto[v 1] \leadsto\) remove-vertex v0 v1
        by (metis last.simps list.sel(1) list.set(1) list.simps(15) list.simps(3) path-from-to-def
            path-singleton remove-vertex-path-from-to singletonD v0-V v0-neq-v1 v1-V)
    then show ?thesis by blast
next
    assume new-last \(\neq v 1\)
    then obtain \(x s\) where \(x s: x s \in\) paths new-last \(\in\) set xs
        using hitting-paths-def last-P-new(1) new-last-def by auto
    then obtain \(x s\)-pre \(x s\)-post where \(x s\)-decomp: xs \(=x s\)-pre @ new-last \(\#\) xs-post
        by (meson split-list)
    then have new-last \(\leadsto(\) new-last \(\#\) xs-post \() \leadsto v 1\) using \(\langle x s \in\) paths \(\rangle\)
        by (metis paths last-appendR list.sel(1) list.simps(3) path-decomp(2) path-from-to-def)
    then have new-last \(\leadsto(\) new-last \(\#\) xs-post \() \leadsto\) remove-vertex v0 \(v 1\)
        using remove-vertex-path-from-to
        by (metis paths Set.set-insert xs-decomp xs(1) disjoint-insert(1) distinct-append hd-append
            hitting-paths-def last-P-new(1) list.set-sel(1) path-from-to-def v0-V new-last-def)
    then show ?thesis by blast
qed
lemma paths-plus-one-disjoint:
    assumes \(x s \in\) paths-with-new \(y s \in\) paths-with-new \(x s \neq y s v \in\) set \(x s v \in\) set ys
    shows \(v=v 0 \vee v=v 1 \vee v=\) new-last
proof-
    have \(x s \in\) paths \(\vee y s \in\) paths using \(\operatorname{assms}(1,2,3)\) paths-with-new-def by auto
    then have hitting-paths \(v \vee v=v 0\) using \(\operatorname{assms}(1,2,4,5)\) unfolding hitting-paths-def by blast
    then show ?thesis using assms last-P-new(2) set-butlast paths-disjoint
        by (metis insert-iff paths-with-new-def new-last-def)
qed
```

If the new path is disjoint, we are happy.
lemma $P$-new-solves-if-disjoint:
new-last $=v 1 \Longrightarrow \exists$ paths $^{\prime}$. DisjointPaths G v0 v1 paths ${ }^{\prime} \wedge$ card paths ${ }^{\prime}=$ Suc (card paths)
using DisjointPaths-extend P-new(1) paths-plus-one-disjoint card-paths-with-new unfolding paths-with-new-def new-last-def by blast

### 7.3 Removing the Last Vertex

definition $H$-x where $H-x \equiv$ remove-vertex new-last
lemma $H$-x-Digraph: Digraph H-x unfolding $H$-x-def using remove-vertex-Digraph .
lemma $H$ - $x$-v0-v1-Digraph: new-last $\neq v 1 \Longrightarrow$ v0-v1-Digraph $H-x$ v0 v1 unfolding $H$-x-def using remove-vertices-v0-v1-Digraph hitting-paths-def P-hit by (simp add: H-x-def)

### 7.4 A New Path Following the Other Paths

The following lemma is one of the most complicated technical lemmas in the proof of Menger's Theorem.
Suppose we have a non-trivial path whose edges are all in the edge set of path-with-new and whose first edge equals the first edge of some $P \in$ path-with-new. Also suppose that the path does not contain $v 1$ or new-last. Then it follows by induction that this path is an initial segment of $P$.
Note that McCuaig does not mention this statement at all in his proof because it looks so obvious.

```
lemma new-path-follows-old-paths:
    assumes xs:v0 ~xs~ w tl xs \not= Nil v1 & set xs new-last & set xs
```



```
        and edges-subset: edges-of-walk xs \subseteq U(edges-of-walk'paths-with-new)
    shows edges-of-walk xs \subseteqedges-of-walk P
using xs P(2) edges-subset proof (induct length xs arbitrary: xs w)
    case 0
    then show ?case using xs(1) by auto
next
    case (Suc n xs w)
    have n\not=0 using Suc.hyps(2) Suc.prems(1,2)
        by (metis path-from-toE Nitpick.size-list-simp(2) Suc-inject length-0-conv)
    show ?case proof (cases)
        assume n= Suc 0
        then obtain vw where v-w:xs=[v,w]
            by (metis (full-types) Suc.hyps(2) length-0-conv length-Suc-conv)
        then have v=v0 using Suc.prems(1) by auto
        moreover have w=hd (tl P) using Suc.prems(5) v-w by auto
        moreover have edges-of-walk xs ={(v,w)} using v-w edges-of-walk-2 by simp
        moreover have (v0, hd (tl P)) \in edges-of-walk P using P tl-P-new(1) P-new paths
            by (metis first-edge-hd-tl first-edge-in-edges insert-iff paths-tl-notnil paths-with-new-def)
        ultimately show?thesis by auto
    next
        assume n\not= Suc 0
        obtain xs' }x\mathrm{ where xs': xs =xs' @ [x]
            by (metis path-from-toE Suc.prems(1) append-butlast-last-id)
        then have n= length xs' using xs' using Suc.hyps(2) by auto
        moreover have xs'-path: v0 \leadstox\mp@subsup{s}{}{\prime}\leadstolast xs'
            using xs' Suc.prems(1) <tl xs \not= Nil` walk-decomp(1)
            by (metis distinct-append hd-append list.sel(3) path-from-to-def self-append-conv2)
        moreover have tl xs' }=\square]\mathrm{ using <n # Suc 0>
            by (metis path-from-toE Nitpick.size-list-simp(2) calculation(1,2))
            moreover have v1 & set xs' using xs' Suc.prems(3) by auto
            moreover have new-last # set xs' using xs' Suc.prems(4) by auto
            moreover have hd (tl xs') = hd (tl P)
            using xs' <tl xs' # []> Suc.prems(5) calculation(2) by auto
        moreover have edges-of-walk xs' \subseteq U (edges-of-walk'paths-with-new)
            using xs' Suc.prems(6) edges-of-comp1 by blast
        ultimately have xs'-edges: edges-of-walk xs'}\subseteq\mathrm{ edges-of-walk P using Suc.hyps(1) by blast
        moreover have edges-of-walk xs = edges-of-walk xs'}\cup{(last xs',x)
```

```
            using xs' using walk-edges-decomp'[of butlast xs' last xs' x Nil] xs'-path
            by (metis path-from-toE Un-empty-right append-assoc append-butlast-last-id butlast.simps(2)
                edges-of-walk-empty(2) last-ConsL last-ConsR list.distinct(1))
    moreover have (last xs',},x)\in\mathrm{ edges-of-walk P proof (rule ccontr)
    assume contra: (last xs', x) & edges-of-walk P
    have xs-last-edge:(last xs', x) \in edges-of-walk xs
        using xs' calculation(2) by blast
    then obtain }\mp@subsup{P}{}{\prime}\mathrm{ where
        P': P' 
        using Suc.prems(6) by auto
    then have P}\not=\mp@subsup{P}{}{\prime}\mathrm{ using contra by blast
    moreover have last xs' \in set P using xs-last-edge xs'-edges <tl xs' }=[]> x\mp@subsup{s}{}{\prime}-path
        by (metis path-from-toE last-in-set subsetCE walk-edges-subset)
    moreover have last xs' \in set P' using P'(2) by (meson walk-edges-vertices(1))
    ultimately have last x\mp@subsup{s}{}{\prime}=v0\vee last x\mp@subsup{s}{}{\prime}=v1\vee last x\mp@subsup{s}{}{\prime}= new-last
        using paths-plus-one-disjoint P}\mp@subsup{P}{}{\prime}(1)P\mathrm{ paths-with-new-def by auto
    then show False using Suc.prems(3)<new-last & set xs'\rangle\langletl xs' \not= []> xs' xs'-path
                by (metis path-from-toE butlast-snoc in-set-butlastD last-in-set last-tl path-from-to-first)
    qed
    ultimately show ?thesis by simp
    qed
qed
end - locale DisjointPathsPlusOne
end
```


## 8 Induction of Menger's Theorem

theory MengerInduction imports Separations DisjointPaths begin

### 8.1 No Small Separations

In this section we set up the general structure of the proof of Menger's Theorem. The proof is based on induction over sep-size (called $n$ in McCuaig's proof), the minimum size of a separator.
locale NoSmallSeparationsInduct $=v 0$-v1-Digraph +
fixes sep-size :: nat

- The size of a minimum separator.
assumes no-small-separations: $\wedge$ S. Separation $G$ v0 v1 $S \Longrightarrow$ card $S \geq$ Suc sep-size
- The induction hypothesis.
and no-small-separations-hyp: $\bigwedge G^{\prime}::\left(\begin{array}{l}(~\end{array}\right.$, 'b) Graph-scheme.
$\left(\wedge S\right.$. Separation $G^{\prime}$ vo v1 $S \Longrightarrow$ card $S \geq$ sep-size)
$\Longrightarrow$ v0-v1-Digraph $G^{\prime} v 0 v 1$
$\Longrightarrow \exists$ paths. DisjointPaths $G^{\prime}$ v0 v1 paths $\wedge$ card paths $=$ sep-size
Next, we want to combine this with DisjointPathsPlusOne.
If a minimum separator has size at least Suc sep-size, then it follows immediately from the induction hypothesis that we have sep-size many disjoint paths. We then observe that
second-vertices of these paths is not a separator because card second-vertices $=$ sep-size. So there exists a new path from $v 0$ to $v 1$ whose second vertex is not in second-vertices.
If this path is disjoint from the other paths, we have found Suc sep-size many disjoint paths, so assume it is not disjoint. Then there exist a vertex $x$ on the new path that is not $v 0$ or $v 1$ such that new-last hits one of the other paths. Let $P$-new be the initial segment of the new path up to $x$. We call $x$, the last vertex of $P$-new, now new-last.
We then assume that paths and $P$-new have been chosen in such a way that distance new-last $v 1$ is minimal.
First, we define a locale that expresses that we have no small separators (with the corresponding induction hypothesis) as well as sep-size many internally vertex-disjoint paths (with sep-size $\neq 0$ because the other case is trivial) and also one additional path that starts in $v 1$, whose second vertex is not among second-vertices and whose last vertex is new-last.
We will add the assumption new-last $\neq v 1$ soon.

```
locale ProofStepInduct =
    NoSmallSeparationsInduct G v0 v1 sep-size + DisjointPathsPlusOne G v0 v1 paths P-new
    for G (structure) and v0 v1 paths P-new sep-size +
    assumes sep-size-not0: sep-size }=
        and paths-sep-size: card paths = sep-size
```

    lemma (in ProofStepInduct) hitting-paths-v1: hitting-paths v1
    unfolding hitting-paths-def using paths v0-neq-v1 by force
    
### 8.2 Choosing Paths Avoiding new_last

Let us now consider only the non-trivial case that new-last $\neq v 1$.

```
locale ProofStepInduct-NonTrivial = ProofStepInduct +
    assumes new-last-neq-v1: new-last f= v1
begin
```

The next step is the observation that in the graph remove-vertex new-last, which we called $H$-x, there are also sep-size many internally vertex-disjoint paths, again by the induction hypothesis.
lemma $Q$-exists: $\exists Q$. DisjointPaths $H$-x v0 v1 $Q \wedge$ card $Q=$ sep-size
proof-
have $\wedge S$. Separation $H$-x v0 v1 $S \Longrightarrow$ card $S \geq$ sep-size
using subgraph-separation-min-size paths walk-in-V P-hit new-last-neq-v1 no-small-separations by (metis $H$-x-def new-last-in-V new-last-neq-v0)
then show ?thesis using $H$-x-v0-v1-Digraph new-last-neq-v1 by (meson no-small-separations-hyp) qed

We want to choose these paths in a clever way, too. Our goal is to choose these paths such that the number of edges in $\bigcup$ (edges-of-walk' $Q) \cap(E-\bigcup$ (edges-of-walk' paths-with-new)) is minimal.
definition $B$ where $B \equiv E-\bigcup$ (edges-of-walk 'paths-with-new)
definition $Q$-weight where $Q$-weight $\equiv \lambda Q$.card $(\cup($ edges-of-walk' $Q) \cap B)$
definition $Q$-good where $Q$-good $\equiv \lambda Q$. DisjointPaths $H$-x v0 v1 $Q \wedge$ card $Q=$ sep-size $\wedge$ $\left(\forall Q^{\prime}\right.$. DisjointPaths $H$-x v0 v1 $Q^{\prime} \wedge$ card $Q^{\prime}=$ sep-size $\longrightarrow Q$-weight $Q \leq Q$-weight $\left.Q^{\prime}\right)$
definition $Q$ where $Q \equiv S O M E Q . Q$-good $Q$
It is easy to show that such a $Q$ exists.
lemma $Q$ : DisjointPaths $H$-x v0 v1 $Q$ card $Q=$ sep-size
and $Q$-min: $\bigwedge Q^{\prime}$. DisjointPaths $H$-x v0 v1 $Q^{\prime} \wedge$ card $Q^{\prime}=$ sep-size $\Longrightarrow Q$-weight $Q \leq Q$-weight $Q^{\prime}$
proof-
obtain $Q^{\prime}$ where DisjointPaths $H-x$ v0 v1 $Q^{\prime}$ card $Q^{\prime}=$ sep-size
$\bigwedge Q^{\prime \prime}$. DisjointPaths $H$-x v0 v1 $Q^{\prime \prime} \wedge$ card $Q^{\prime \prime}=$ sep-size $\Longrightarrow Q$-weight $Q^{\prime} \leq Q$-weight $Q^{\prime \prime}$
using arg-min-ex[of $\lambda Q$. DisjointPaths $H-x v 0 v 1 Q \wedge$ card $Q=$ sep-size $Q$-weight] new-last-neq-v1 $Q$-exists by metis
then have $Q$-good $Q^{\prime}$ unfolding $Q$-good-def by blast
then show DisjointPaths $H-x$ v0 v1 $Q$ card $Q=$ sep-size
$\bigwedge Q^{\prime}$. DisjointPaths $H$-x v0 v1 $Q^{\prime} \wedge$ card $Q^{\prime}=$ sep-size $\Longrightarrow Q$-weight $Q \leq Q$-weight $Q^{\prime}$ using someI[ of $Q$-good] by (simp-all add: $Q$-def $Q$-good-def)
qed
sublocale $Q$ : DisjointPaths $H-x$ v0 v1 $Q$ using $Q(1)$.

### 8.3 Finding a Path Avoiding $Q$

Because $Q$ contains only sep-size many paths, we have card $Q$.second-vertices $=$ sep-size. So there exists a path $P-k$ among the Suc sep-size many paths in paths-with-new such that the second vertex of $P-k$ is not among $Q$.second-vertices.

```
definition P-k where
    P-k\equivSOME P-k. P-k \in paths-with-new ^ hd (tl P-k)}\not\inQ.second-vertice
lemma P-k:P-k\in paths-with-new hd (tl P-k) }\not=Q.second-vertices proof
    obtain y where y\in insert (hd (tl P-new)) second-vertices y }\not\inQ.second-vertices proof -
        have hd (tl P-new) & second-vertices using P-new-decomp tl-P-new(2) by simp
        moreover have card second-vertices = card Q.second-vertices using Q(2) paths-sep-size
            using Q.second-vertices-card second-vertices-card by (simp add: new-last-neq-v1)
        ultimately have card (insert (hd (tl P-new)) second-vertices) = Suc (card Q.second-vertices)
            using finite-paths second-vertices-def by auto
        then show ?thesis
            using that card-finite-less-ex
        by (metis Q.finite-paths Q.second-vertices-def Zero-not-Suc card.infinite finite-imageI lessI)
    qed
    then have \existsP-k. P-k { paths-with-new }\wedgehd(tlP-k)\not\inQ.second-vertice
        by (metis (mono-tags, lifting) image-iff insertCI insertE paths-with-new-def second-vertex-def
            second-vertices-def)
    then show P-k\in paths-with-new hd (tl P-k)}\not\inQ.second-vertice
        using someI[of \lambdaP-k. P-k\in paths-with-new }\wedge hd (tl P-k)\not\inQ.second-vertices] P-k-def by aut
qed
lemma path-P-k[simp]: path P-k by (simp add: P-k(1) paths-with-new-path)
lemma hd-P-k-v0 [simp]: hd P-k =v0 by (simp add: P-k(1) paths-with-new-start-in-v0)
```

```
definition hitting-Q-or-new-last where
    hitting-Q-or-new-last }\equiv\lambday.y\not=v0\wedge(y=new-last \vee (\existsQ-hit \inQ.y f set Q-hit)
```

$P-k$ hits a vertex in $Q$ or it hits new-last because it either ends in $v 1$ or in new-last.

```
lemma P-k-hits-Q: \existsy\in set P-k. hitting-Q-or-new-last y proof (cases)
    assume P-k\not=P-new
    then have v1\in set P-k
        by (metis P-k(1) insertE last-in-set path-from-toE paths paths-with-new-def)
    moreover have \existsQ-witness. Q-witness }\inQ\mathrm{ using Q(2) sep-size-not0 finite.simps by fastforce
    ultimately show ?thesis
        using Q.paths path-from-toE hitting-Q-or-new-last-def v0-neq-v1 by fastforce
qed (metis P-new new-last-neq-v0 hitting-Q-or-new-last-def last-in-set path-from-toE new-last-def)
end - locale ProofStepInduct-NonTrivial
```


### 8.4 Decomposing $P_{k}$

Having established with the previous lemma that $P-k$ hits $Q$ or new-last, let $y$ be the first such vertex on $P-k$. Then we can split $P-k$ at this vertex.
locale ProofStepInduct-NonTrivial-P-k-pre $=$ ProofStepInduct-NonTrivial +
fixes $P$ - $k$-pre y $P$ - $k$-post
assumes $P$ - $k$-decomp: $P$ - $k=P$-k-pre @ $y \# P$ - $k$-post
and $y$ : hitting- $Q$-or-new-last $y$ and $y$-min: $\bigwedge y^{\prime} . y^{\prime} \in$ set $P$-k-pre $\Longrightarrow \neg$ hitting-Q-or-new-last $y^{\prime}$

We can always go from ProofStepInduct-NonTrivial to ProofStepInduct-NonTrivial-P-k-pre.
lemma (in ProofStepInduct-NonTrivial) ProofStepInduct-NonTrivial-P-k-pre-exists:
shows $\exists P$ - $k$-pre y $P$ - $k$-post.
ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths $P$-new sep-size $P$-k-pre y $P$ - $k$-post proof-
obtain y $P$-k-pre $P$ - $k$-post where
$P$-k $=P$-k-pre @ $y \# P$-k-post hitting-Q-or-new-last $y$
$\bigwedge y^{\prime} . y^{\prime} \in$ set $P$-k-pre $\Longrightarrow \neg$ hitting-Q-or-new-last $y^{\prime}$
using $P$ - $k$-hits- $Q$ split-list-first-prop[of $P$ - $k$ hitting- $Q$-or-new-last] by blast
then have ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths $P$-new sep-size $P$ - $k$-pre y $P$-k-post by unfold-locales
then show ?thesis by blast
qed
context ProofStepInduct-NonTrivial-P-k-pre begin
lemma $y$-neq-v0: $y \neq v 0$ using hitting- $Q$-or-new-last-def $y$ by auto
lemma $P$-k-pre-not-Nil: $P$-k-pre $\neq$ Nil
using $P$-k-decomp hd-P-k-v0 hitting-Q-or-new-last-def $y$ by auto
lemma second-P-k-pre-not-in- $Q: h d(t l(P$ - $k$-pre @ $[y])) \notin Q$.second-vertices using $P$ - $k$ (2) $P$-k-decomp $P$-k-pre-not-Nil
by (metis append-eq-append-conv2 append-self-conv hd-append2 list.sel(1) tl-append2)
definition $H$ where $H \equiv$ remove-vertex v0
sublocale $H$ : Digraph $H$ unfolding $H$-def using remove-vertex-Digraph .
lemma $y$-eq-v1-implies- $P$ - $k$-neq- $P$-new: assumes $y=v 1$ shows $P-k \neq P$-new proof assume contra: $P-k=P-n e w$
have $v 0 \leadsto($ new-pre @ [new-last]) $\rightarrow$ new-last using $P$-new (1) $P$-new-decomp new-last-def by auto
then have $v 0 \leadsto P-k \leadsto$ new-last using $P$-new-decomp contra by auto
moreover have $P$ - $k=P$ - $k$-pre @ v1 \# $P$ - $k$-post using $P$ - $k$-decomp assms(1) by blast
ultimately have $* *$ : v0 $\leadsto(P$-k-pre @ v1 \# P-k-post $) \leadsto$ new-last by simp
then have $v 1 \in$ set $P$-new by (metis assms contra $P$ - $k$-decomp in-set-conv-decomp)
then have new-last $=v 1$
using hitting-paths-v1 assms last-P-new(2) set-butlast new-last-def by fastforce
then show False using new-last-neq-v1 by blast
qed
If $y=v 1$, then we are done.

```
lemma \(y\)-eq-v1-solves:
    assumes \(y=v 1\)
    shows \(\exists\) paths. DisjointPaths Gv0 v1 paths \(\wedge\) card paths \(=\) Suc sep-size
proof -
    have \(P\) - \(k \neq P\)-new using \(y\)-eq-v1-implies- \(P\) - \(k\)-neq- \(P\)-new assms by blast
    then have \(P\) - \(k=P\) - \(k\)-pre @ \([y]\)
        using \(P\)-k(1) \(P\) - \(k\)-decomp paths assms paths-with-new-def by fastforce
    then have \(v 0 \leadsto(P-k\)-pre @ \([y]) \leadsto v 1\)
        using paths \(P-k(1)\langle P-k \neq P\)-new \(\rangle\) by (simp add: paths-with-new-def)
    moreover have new-last \(\notin\) set \(P\) - \(k\)-pre
        using hitting-Q-or-new-last-def y-min new-last-neq-v0 by auto
    ultimately have \(v 0 \leadsto(P\) - \(k\)-pre @ \([y]) \leadsto H\)-x v1 using remove-vertex-path-from-to
        by (simp add: \(H\) - \(x\)-def assms new-last-in- \(V\) new-last-neq-v1)
    moreover \{
        fix \(x s v\) assume \(x s \in Q v \in\) set \(x s v \in \operatorname{set}(P-k\)-pre @ \([y]) v \neq v 0 v \neq v 1\)
        then have \(v \in\) set \(P\) - \(k\)-pre using assms by simp
        then have \(\neg\) hitting- \(Q\)-or-new-last \(v\) using \(y\)-min by blast
        then have False using \(\langle v \in\) set \(x s\rangle\langle x s \in Q\rangle\) hitting- \(Q\)-or-new-last-def \(\langle v \neq v 0\rangle\) by auto
    \}
    ultimately have DisjointPaths H-x v0 v1 (insert (P-k-pre @ [y]) Q)
        using Q.DisjointPaths-extend by blast
    then have DisjointPaths Gv0v1 (insert (P-k-pre @ [y]) Q)
        using DisjointPaths-supergraph \(H\)-x-def new-last-in-V new-last-neq-v0 new-last-neq-v1 by auto
    moreover have card (insert \((P\)-k-pre @ \([y]) Q\) ) \(=\) Suc sep-size proof-
        have \(P\)-k-pre @ \([y] \notin Q\)
            by (metis \(P\) - \(k\) (2) Q.second-vertices-def \(\langle P-k=P\) - \(k\)-pre @ [y]〉image-iff second-vertex-def)
            then show ?thesis by (simp add: \(Q\) (2) Q.finite-paths)
    qed
    ultimately show ?thesis by blast
    qed
end - locale ProofStepInduct-NonTrivial-P-k-pre
end
```


## 9 The case $y=$ new_last

## theory $Y$-eq-new-last imports MengerInduction begin

We may assume $y \neq v 1$ now because $\llbracket$ ProofStepInduct-NonTrivial-P-k-pre ?G ?v0.0 ?v1.0 ?paths ?P-new ?sep-size ?P-k-pre ? y ?P-k-post; ? y $=$ ? v1.0】 $\Longrightarrow \exists$ paths. DisjointPaths ?G ?v0.0 ?v1.0 paths $\wedge$ card paths $=$ Suc ?sep-size shows that $y=v 1$ already gives us Suc sep-size many disjoint paths.
We also assume that we have chosen the previous paths optimally in the sense that the distance from new-last to $v 1$ is minimal.

```
locale ProofStepInduct-y-eq-new-last \(=\) ProofStepInduct-NonTrivial-P-k-pre +
    assumes \(y\)-neq-v1: \(y \neq v 1\) and \(y\)-eq-new-last: \(y=\) new-last
        and optimal-paths: \(\bigwedge\) paths \({ }^{\prime} P\)-new'.
            ProofStepInduct G v0 v1 paths' \(P\)-new' sep-size
            \(\Longrightarrow H\).distance (last \(P\)-new) v1 \(\leq H\).distance (last \(P\)-new') v1
begin
```

Let $R$ be a shortest path from new-last to $v 1$.
definition $R$ where $R \equiv$
SOME $R$. new-last $\leadsto R \sim_{H} v 1 \wedge\left(\forall R^{\prime}\right.$. new-last $\leadsto R^{\prime} \leadsto H^{\prime} v 1 \longrightarrow$ length $R \leq$ length $\left.R^{\prime}\right)$
lemma $R$ : new-last $\leadsto R \leadsto H^{\prime}$ v1 $\bigwedge R^{\prime}$. new-last $\leadsto R^{\prime} \leadsto H$ v1 $\Longrightarrow$ length $R \leq$ length $R^{\prime}$ proof-
obtain $R^{\prime}$ where
$R^{\prime}:$ new-last $\leadsto R^{\prime} \leadsto_{H}$ v1 $\bigwedge R^{\prime \prime}$. new-last $\leadsto R^{\prime \prime} \leadsto H$ v1 $\Longrightarrow$ length $R^{\prime} \leq$ length $R^{\prime \prime}$
using arg-min-ex[OF new-last-to-v1] unfolding $H$-def by blast
then show new-last $\leadsto R \leadsto H^{\prime}$ v1 $\wedge R^{\prime}$. new-last $\leadsto R^{\prime} \leadsto H^{\prime} v 1 \Longrightarrow$ length $R \leq$ length $R^{\prime}$
using someI[of $\lambda R$. new-last $\leadsto R \leadsto{ }^{\prime}$ v1 $\wedge\left(\forall R^{\prime}\right.$. new-last $\leadsto R^{\prime} \leadsto H v 1 \longrightarrow$ length $R \leq$ length
$R^{\prime}$ )]
$R$-def by auto
qed
lemma v1-in- $Q: \exists Q$-hit $\in Q$. v1 $\in$ set $Q$-hit proof-
obtain $x s$ where $x s \in Q$ using $Q(2)$ sep-size-not0 by fastforce
then show ?thesis using $Q$.paths last-in-set by blast
qed
lemma $R$-hits- $Q: \exists z \in$ set $R$. Q.hitting-paths $z$ proof-
have $v 1 \in$ set $R$ using $R(1)$ last-in-set by (metis path-from-to-def)
then show ?thesis unfolding $Q$.hitting-paths-def using $v 0-n e q-v 1$ by auto
qed
lemma $R$-decomp-exists:
obtains $R$-pre z R-post
where $R=R$-pre @ $z \# R$-post
and Q.hitting-paths $z$
and $\wedge z^{\prime} . z^{\prime} \in$ set $R$-pre $\Longrightarrow \neg$ Q.hitting-paths $z^{\prime}$
using $R$-hits- $Q$ split-list-first-prop[of $R$ Q.hitting-paths] by blast

We open an anonymous context in order to hide all but the final lemma. This also gives us the decomposition of $R$ whose existence we established above.

```
context fixes R-pre z R-post
    assumes R-decomp: R=R-pre @ z# R-post
        and z:Q.hitting-paths z
        and z-min: }\bigwedge\mp@subsup{z}{}{\prime}.\mp@subsup{z}{}{\prime}\in\mathrm{ set R-pre }\Longrightarrow\negQ.hitting-paths z'
begin
    private lemma z-neq-v0:z\not=v0 using z Q.hitting-paths-def by auto
    private lemma z-neq-new-last: z\not= new-last proof
        assume z = new-last
        then obtain Q-hit where Q-hit: Q-hit }\inQ\mathrm{ new-last }\in\mathrm{ set }Q\mathrm{ -hit
            using z Q.hitting-paths-def y-eq-new-last y-neq-v1 by auto
        then have Q.path Q-hit by (meson Q.paths path-from-to-def)
        then have set Q-hit \subseteqV - {new-last} using Q.walk-in-V H-x-def remove-vertex-V by simp
        then show False using Q-hit(2) by blast
    qed
    private lemma R-pre-neq-Nil: R-pre }\not=\mathrm{ Nil using z-neq-new-last R-decomp R(1) by auto
    private lemma z-closer-than-new-last: H.distance z v1 < H.distance new-last v1 proof-
        have H.distance new-last v1 = length R using H.distance-witness R by auto
        moreover have z}\leadsto(z#R\mathrm{ -post })~H\mathrm{ v1 using R-decomp R(1)
            by (metis H.walk-decomp(2) distinct-append last-appendR list.sel(1)
            list.simps(3) path-from-to-def)
        moreover have length R > length (z # R-post)
            unfolding }R\mathrm{ -decomp using R-pre-neq-Nil by simp
        ultimately show ?thesis using H.distance-upper-bound by fastforce
    qed
    private definition }\mp@subsup{R}{}{\prime}\mathrm{ -walk where }\mp@subsup{R}{}{\prime}\mathrm{ -walk =P-k-pre @ R-pre @ [z]
    private lemma }\mp@subsup{R}{}{\prime}\mathrm{ -walk-not-Nil: R'-walk }\not=N\mathrm{ Nil using }\mp@subsup{R}{}{\prime}\mathrm{ -walk-def R(1) by simp
    private lemma }\mp@subsup{R}{}{\prime}\mathrm{ -walk-no-Q: }\llbracketv\in\mathrm{ set }\mp@subsup{R}{}{\prime}\mathrm{ -walk; v}\not=z\rrbracket\Longrightarrow\negQ.hitting-paths v proof
        fix v}\mathrm{ assume v}\in\mathrm{ set R'-walk v}\not=
        moreover have v\in set P-k-pre \Longrightarrow\negQ.hitting-paths v
            using Q.hitting-paths-def hitting-Q-or-new-last-def y-min v1-in-Q by auto
        moreover have v}\in\mathrm{ set R-pre }\Longrightarrow\negQ.hitting-paths v using z-min by simp
        ultimately show }\neg\mathrm{ Q.hitting-paths v unfolding }\mp@subsup{R}{}{\prime}\mathrm{ -walk-def using }\mp@subsup{R}{}{\prime}\mathrm{ -walk-def by auto
    qed
```

The original proof goes like this: "Let $z$ be the first vertex of $R$ on some path in $Q$. Then the distance in $H$ from $z$ to $v 1$ is less than the distance from new-last to $v 1$. This contradicts the choice of paths and P-new."

It does not say exactly why it contradicts the choice of paths and $P$-new. It seems we can choose $Q$ together with $R^{\prime}$-walk as our new paths plus extrapath. But this seems to be wrong because we cannot show that $R^{\prime}$-walk is a path: $P$-k-pre and $R$-pre could intersect.
So we use $\llbracket$ walk ? $x s ;$ ? $x s \neq[] ; h d$ ? $x s=? v ;$ last ? $x s=? w \rrbracket \Longrightarrow \exists y s$. ? $v \leadsto y s \sim$ ? $w \wedge$ set ys $\subseteq$ set ?xs to transform $R^{\prime}$-walk into a path $R^{\prime}$.

## private definition $R^{\prime}$ where

$$
R^{\prime} \equiv S O M E R^{\prime} . h d\left(t l R^{\prime}-w a l k\right) \leadsto R^{\prime} \leadsto z \wedge \text { set } R^{\prime} \subseteq \text { set }\left(t l R^{\prime} \text {-walk }\right)
$$

private lemma $R^{\prime}: h d\left(t l R^{\prime}-w a l k\right) \leadsto R^{\prime} \leadsto z$ set $R^{\prime} \subseteq$ set $\left(t l R^{\prime}\right.$-walk) proof-
have $t l R^{\prime}$-walk $\neq$ Nil by (simp add: P-k-pre-not-Nil $R^{\prime}$-walk-def)
moreover have last $R^{\prime}$-walk $=z$ unfolding $R^{\prime}$-walk-def by simp
moreover have walk ( $t l R^{\prime}$-walk) by (metis (no-types, lifting) path-from-toE walk-tl $H$-def $P$ - $k$-decomp $R^{\prime}$-walk-def $R(1)$
$R$-decomp path-P-k y-eq-new-last hd-append list.sel(1) list.simps(3) path-decomp'
remove-vertex-path-from-to-add walk-comp walk-decomp(1) walk-last-edge)
ultimately obtain $R^{\prime \prime}$ where $h d\left(t l R^{\prime}-\right.$ walk $) \leadsto R^{\prime \prime} \leadsto z$ set $R^{\prime \prime} \subseteq$ set $\left(t l R^{\prime}\right.$-walk) using walk-to-path [of tl $R^{\prime}$-walk hd (tl $R^{\prime}$-walk) z] last-tl by force
then show $h d\left(t l R^{\prime}\right.$-walk $) \leadsto R^{\prime} \leadsto z$ set $R^{\prime} \subseteq$ set $\left(t l R^{\prime}\right.$-walk) unfolding $R^{\prime}$-def using someI[of $\lambda R^{\prime}$. hd (tl $R^{\prime}$-walk $) \leadsto R^{\prime} \leadsto z \wedge$ set $R^{\prime} \subseteq$ set $\left(t l R^{\prime}\right.$-walk $\left.)\right]$ by auto
qed
private lemma $h d-R^{\prime}: h d R^{\prime}=h d(t l P-k)$ proof-
have $h d\left(t l R^{\prime}-w a l k\right)=h d(t l P-k)$ proof (cases) assume $t l P$-k-pre $=$ Nil
then show ?thesis unfolding $R^{\prime}$-walk-def using $P$ - $k$-decomp $R(1) P$ - $k$-pre-not-Nil $y$-eq-new-last by (metis H.path-from-toE $R$-decomp hd-append list.sel(1) tl-append2)
next
assume $t l P$ - $k$-pre $\neq$ Nil
then show ?thesis unfolding $R^{\prime}$-walk-def using $P$ - $k$-pre-not-Nil by (simp add: $P$-k-decomp)
qed
then show ?thesis using $R^{\prime}(1)$ by auto
qed
private lemma $R^{\prime}-n o-Q: \llbracket v \in$ set $R^{\prime} ; v \neq z \rrbracket \Longrightarrow \neg Q$.hitting-paths $v$ using $R^{\prime}$-walk-no- $Q$ by (meson $R^{\prime}$ (2) $R^{\prime}$-walk-not-Nil list.set-sel(2) subsetCE)
private lemma $v 0-R^{\prime}$-path: $v 0 \leadsto\left(v 0 \# R^{\prime}\right) \leadsto z$ proof-
have $v 0 \rightarrow h d R^{\prime}$ using $h d-R^{\prime} h d-P-k-v 0$
by (metis Nil-is-append-conv $P$ - $k$-decomp $P$ - $k$-pre-not-Nil path-P-k list.distinct(1) list.exhaust-sel path-first-edge' tl-append2)
moreover have $v 0 \notin$ set $R^{\prime}$ proof -
have $v 0 \notin$ set $R$ using $R(1) H$-def H.path-in- $V$ remove-vertex- $V$
by (simp add: path-from-to-def subset-Diff-insert)
then have v0 $\notin$ set $R$-pre using $R$-decomp by simp
moreover have $v 0 \notin$ set ( $t l P$ - $k$-pre) using hd-P-k-v0 path-P-k path-first-vertex by (metis $P$-k-decomp P-k-pre-not-Nil hd-append list.exhaust-sel path-decomp(1))
ultimately show ?thesis using $R^{\prime}(2)$ unfolding $R^{\prime}$-walk-def
using $P$-k-pre-not-Nil z-neq-v0 by auto
qed
ultimately show ?thesis using path-cons
by (metis $R^{\prime}(1)$ last.simps list.sel(1) list.simps(3) path-from-to-def)
qed
private corollary $z$-last- $R^{\prime}: z=$ last $\left(v 0 \# R^{\prime}\right)$ using $v 0-R^{\prime}$-path by auto
private lemma $z$-eq-v1-solves:
assumes $z=v 1$
shows $\exists$ paths. DisjointPaths Gv0 v1 paths $\wedge$ card paths $=$ Suc sep-size
proof -

```
    interpret Q': DisjointPaths G v0 v1 Q
        using DisjointPaths-supergraph H-x-def Q.DisjointPaths-axioms by auto
    have v0 ~(v0 # R')}\leadstov1\mathrm{ using assms v0-R'-path by auto
    moreover {
        fix xs v assume xs \inQ xs \not=v0# # R'v\in set xs v\in set (v0# R')
        then have v=v0\veev=v1 using R''-no-Q Q.hitting-paths-def }\langlez=v1\rangle\mathrm{ by auto
    }
    ultimately have DisjointPaths G v0 v1 (insert (v0 # R') Q)
        using Q'.DisjointPaths-extend by blast
    moreover have card (insert (v0 # R')Q)= Suc sep-size
        by (simp add: P-k(2) Q(2) Q.finite-paths Q.second-vertices-new-path hd-R')
    ultimately show ?thesis by blast
qed
private lemma z-neq-v1-solves:
    assumes z}\not=v
    shows \exists paths. DisjointPaths G v0 v1 paths ^ card paths = Suc sep-size
    proof
    have ProofStepInduct G v0 v1 Q (v0 # R') sep-size proof (rule ProofStepInduct.intro)
        show DisjointPathsPlusOne G v0 v1 Q (v0 # R') proof (rule DisjointPathsPlusOne.intro)
            show DisjointPaths G v0 v1 Q
                using DisjointPaths-supergraph H-x-def Q.DisjointPaths-axioms by auto
            show DisjointPathsPlusOne-axioms G v0 v1 Q (v0 # R') proof
                show v0 }~(v0# # R')~ last (v0 # R') using v0-R'-path by blas
                show tl (v0 # R') = [] using R'(1) by auto
                show hd (tl (v0# R')) #Q.second-vertices using hd-R' P-k(2) by auto
                show Q.hitting-paths (last (v0 # R')) using zz-last-R' by auto
            next
                fix v assume v\in set (butlast (v0# R'))
                then show }\negQ.hitting-paths v using R'-no-Q path-from-to-last[OF v0-R'-path
                    by (metis Q.hitting-paths-def in-set-butlastD set-ConsD)
            qed
        qed
        show ProofStepInduct-axioms Q sep-size using sep-size-not0 Q(2) by unfold-locales
    qed (insert NoSmallSeparationsInduct-axioms)
    then have H.distance (last P-new) v1\leqH.distance (last (v0# # R')) v1
        using H-def optimal-paths[of Q v0 # R] by blast
    then have False using z-last-R' new-last-def z-closer-than-new-last by simp
    then show ?thesis by blast
    qed
    corollary with-optimal-paths-solves':
    shows \exists paths. DisjointPaths G v0 v1 paths ^card paths = Suc sep-size
    using optimal-paths z-eq-v1-solves z-neq-v1-solves by blast
end - anonymous context
corollary with-optimal-paths-solves:
    \exists paths. DisjointPaths G v0 v1 paths ^ card paths = Suc sep-size
    using optimal-paths with-optimal-paths-solves' }R\mathrm{ -decomp-exists by blast
end - locale ProofStepInduct-y-eq-new-last
end
```


## 10 The case $y \neq$ new_last

theory $Y$-neq-new-last imports MengerInduction begin
Let us now consider the case that $y \neq v 1 \wedge y \neq n e w$-last. Our goal is to show that this is inconsistent: The following locale will be unsatisfiable, proving that $y=v 1 \vee y=$ new-last holds.
locale ProofStepInduct-y-neq-new-last $=$ ProofStepInduct-NonTrivial-P-k-pre + assumes $y$-neq-v1: $y \neq v 1$ and $y$-neq-new-last: $y \neq$ new-last
begin
lemma $Q$-hit-exists: obtains $Q$-hit $Q$-hit-pre $Q$-hit-post where
$Q$-hit $\in Q y \in$ set $Q$-hit $Q$-hit $=Q$-hit-pre @ $y \# Q$-hit-post
proof-
obtain $Q$-hit where $Q$-hit $\in Q y \in$ set $Q$-hit using hitting-Q-or-new-last-def y y-neq-v1 y-neq-new-last by auto
then show ?thesis using that by (meson split-list)
qed
We open an anonymous context because we do not want to export any lemmas except the final lemma proving the contradiction. This is also an easy way to get the decomposition of $Q$-hit, whose existence we have established above.

```
context
    fixes Q-hit Q-hit-pre Q-hit-post
    assumes Q-hit: Q-hit }\inQy\in\mathrm{ set Q-hit
        and Q-hit-decomp: Q-hit =Q-hit-pre @ y # Q-hit-post
begin
    private lemma Q-hit-v0-v1:v0 }~Q-hit~H-x v1 using Q.paths Q-hit(1) by blas
    private lemma Q-hit-vertices: set Q-hit }\subseteqV-{new-last 
        using Q.walk-in-V H-x-def path-from-to-def remove-vertex-V Q-hit-v0-v1 by fastforce
    private lemma Q-hit-pre-not-Nil: Q-hit-pre # Nil
        using Q-hit-v0-v1 y-neq-v0 unfolding Q-hit-decomp by auto
    private lemma tl-Q-hit-pre: tl (Q-hit-pre @ [y]) =N Nil using Q-hit-pre-not-Nil by simp
    private lemma Q-hit-pre-edges: edges-of-walk (Q-hit-pre @ [y]) \capB\not={} proof
        assume edges-of-walk (Q-hit-pre @ [y]) \cap B={}
        moreover have edges-of-walk (Q-hit-pre @ [y])\subseteqE
            by (metis Q.paths H-x-def Q-hit(1) Q-hit-decomp edges-of-walk-in-E path-decomp'
            path-from-to-def remove-vertex-walk-add)
        ultimately have Q-hit-pre-edges:
            edges-of-walk (Q-hit-pre @ [y])\subseteq\bigcup(edges-of-walk'paths-with-new)
            unfolding B-def by blast
        then have *: first-edge-of-walk (Q-hit-pre @ [y]) \in\bigcup(edges-of-walk'paths-with-new)
            using tl-Q-hit-pre first-edge-in-edges by blast
        define }\mp@subsup{v}{}{\prime}\mathrm{ where }\mp@subsup{v}{}{\prime}\equivhd(tl (Q-hit-pre @ [y])
        then have }\mp@subsup{v}{}{\prime}:(v0,\mp@subsup{v}{}{\prime})=\mathrm{ first-edge-of-walk (Q-hit-pre @ [y])
            using first-edge-hd-tl Q-hit-pre-not-Nil tl-Q-hit-pre
```

by (metis Q.path-from-toE Q-hit-decomp Q-hit-v0-v1 first-edge-of-walk.simps(1) $h d$-Cons-tl hd-append snoc-eq-iff-butlast)
then obtain $P-i$ where
$P-i: P-i \in$ paths-with-new $\left(v 0, v^{\prime}\right) \in$ edges-of-walk $P-i$ using $*$ by auto
then have $P$-i-first: first-edge-of-walk $P-i=\left(v 0, v^{\prime}\right)$
using first-edge-first paths-with-new-def paths $P$-new by (metis insert-iff)
moreover have first-edge-of-walk $P-k=(v 0, h d(t l P-k))$
by (metis $P$ - $k$-decomp $P$-k-pre-not-Nil append-is-Nil-conv first-edge-of-walk.simps(1) $h d-P-k$-v0 list.distinct(1) list.exhaust-sel tl-append2)
ultimately have $P-i \neq P-k$
by (metis Q.first-edge-first P-k(2) Q.second-vertices-first-edge $Q$-hit(1) Q-hit-decomp Q-hit-v0-v1 Un-iff $v^{\prime}$ tl-Q-hit-pre first-edge-in-edges walk-edges-decomp)

Then $P-k$ and $P-i$ intersect in $y$, which is not one of $v 0$, $v 1$, or new-last. So we get a contradiction because these two paths should be disjoint on all other vertices.

```
moreover have \(v 1 \notin \operatorname{set}(Q\)-hit-pre @ \([y])\)
    using \(Q\)-hit-v0-v1 Q-hit-decomp y-neq-v1 by (simp add: Q.path-from-to-last')
moreover have new-last \(\notin\) set (Q-hit-pre @ \([y]\) ) proof-
    have new-last \(\notin\) set \(Q\)-hit-pre using \(Q\)-hit-decomp \(Q\)-hit-vertices by auto
    then show ?thesis using \(y\)-neq-new-last by auto
qed
moreover have \(h d(t l(Q\)-hit-pre @ \([y]))=h d(t l P-i)\) proof -
    have \(h d(t l P-i)=v^{\prime}\) using \(P\) - \(i\)-first \(P-i(1) t l-P\)-new \((1)\)
        by (metis Pair-inject first-edge-of-walk.simps(1) insert-iff list.collapse
            paths-tl-notnil paths-with-new-def tl-Nil)
    then show ?thesis using \(v^{\prime}\)-def by simp
qed
moreover have \(v 0 \leadsto(Q\)-hit-pre @ \([y]) \leadsto y\)
    by (metis Q.path-decomp \({ }^{\prime} H\)-x-def \(Q\)-hit-decomp \(Q\)-hit-v0-v1 Q-hit-pre-not-Nil
        hd-append2 path-from-to-def remove-vertex-walk-add snoc-eq-iff-butlast)
ultimately have edges-of-walk (Q-hit-pre @ [y]) \(\subseteq\) edges-of-walk P-i
    using new-path-follows-old-paths tl-Q-hit-pre \(P\)-i(1) \(Q\)-hit-pre-edges by blast
from walk-edges-subset \([O F\) this \(]\) have \(y \in\) set \(P\) - \(i\) by (simp add: tl-Q-hit-pre)
moreover have \(y \in\) set \(P-k\) using \(P-k\)-decomp by auto
ultimately show False
    using \(y\)-neq-v0 \(y\)-neq-v1 \(y\)-neq-new-last \(\langle P-i \neq P\) - \(k\rangle\)
        paths-plus-one-disjoint[OF P-i(1), of P-k y] P-k(1) P-new-decomp by auto
qed
private lemma \(P\)-k-pre-edges: edges-of-walk ( \(P\) - \(k\)-pre @ \([y]\) ) \(\cap B=\{ \}\) proof-
    have edges-of-walk (P-k-pre @ [y]) \(\subseteq(\) (edges-of-walk'paths-with-new)
    proof (cases)
        assume \(P-k=P\)-new
        then have edges-of-walk ( \(P\)-k-pre @ \([y]\) ) \(\subseteq\) edges-of-walk \(P\)-new
            using \(P\) - \(k\)-decomp edges-of-comp1 by force
        then show ?thesis unfolding paths-with-new-def by blast
    next
        assume \(P-k \neq P\)-new
        then have \(P-k \in\) paths using \(P-k(1)\) paths-with-new-def by blast
        then have edges-of-walk (P-k-pre @ [y]) \(\subseteq \bigcup\) (edges-of-walk'paths)
```

```
        using edges-of-comp1[of P-k-pre @ [y]] P-k-decomp by auto
        then show ?thesis unfolding paths-with-new-def by blast
    qed
    then show ?thesis unfolding B-def by blast
qed
private definition Q-hit' where Q-hit' \equivP-k-pre @ y # Q-hit-post
private lemma Q-hit'-v0-v1:v0 }->Q-hi\mp@subsup{t}{}{\prime}\leadstov1 proof -
    {
        fix v}\mathrm{ assume v}\in\mathrm{ set P-k-pre
        then have }\neg\mathrm{ Q.hitting-paths v using Q.paths Q-hit(1) y-min
                by (metis Q.hitting-paths-def hitting-Q-or-new-last-def last-in-set path-from-to-def)
        moreover have v0 & set Q-hit-post using Q.path-from-to-first' Q-hit-v0-v1
            unfolding Q-hit-decomp by blast
        ultimately have v\not\in set Q-hit-post unfolding Q.hitting-paths-def
        using Q-hit(1) Q-hit-decomp by auto
    }
    then have set P-k-pre \cap set Q-hit-post = {} by blast
    then show ?thesis unfolding Q-hit'-def using path-from-to-combine
        by (metis H-x-def P-k-decomp P-k-pre-not-Nil Q-hit-decomp Q-hit-v0-v1 append-is-Nil-conv
            hd-P-k-v0 path-P-k path-from-toI remove-vertex-path-from-to-add)
qed
private lemma Q-hit'-v0-v1-H-x:v0 }~Q-hi\mp@subsup{t}{}{\prime}\leadstoH-x v1 proof -
    have new-last & set P-k-pre using new-last-neq-v0 hitting-Q-or-new-last-def y-min by auto
    moreover have new-last & set Q-hit-post using Q-hit-vertices unfolding Q-hit-decomp by auto
    ultimately have new-last }\not\in\mathrm{ set Q-hit' using y-neq-new-last Q-hit'-def by auto
    then show ?thesis using remove-vertex-path-from-to[OF Q-hit'-v0-v1] H-x-def new-last-in-V
by simp
    qed
private definition }\mp@subsup{Q}{}{\prime}\mathrm{ where }\mp@subsup{Q}{}{\prime}\equiv\mathrm{ insert Q-hit' (Q - {Q-hit })
private lemma Q-hit-edges-disjoint:
    U(edges-of-walk'(Q - {Q-hit })) \cap edges-of-walk Q-hit = {}
    using DiffD1 Q.paths-edge-disjoint Q-hit(1) by fastforce
private lemma Q-hit'-notin-Q-minus-Q-hit: Q-hit' }\not=Q-{Q-hit} proof
    have hd (tl Q-hit') }\not=Q.second-vertices using P-k(2) P-k-decomp
        by (metis P-k-pre-not-Nil Q-hit'-def append-eq-append-conv2 append-self-conv hd-append2
            list.sel(1) tl-append2)
    then show ?thesis using Q.second-vertices-new-path[of Q-hit] by blast
qed
private lemma Q-weight-smaller: Q-weight }\mp@subsup{Q}{}{\prime}<Q\mathrm{ -weight Q proof-
    define Q-edges where Q-edges }\equiv\bigcup(\mathrm{ edges-of-walk' }Q)\cap
    define }\mp@subsup{Q}{}{\prime}\mathrm{ -edges where }\mp@subsup{Q}{}{\prime}\mathrm{ -edges }\equiv\bigcup(edges-of-walk' ' Q')\cap
    {
        fix vw assume *: (v,w) \in Q'-edges (v,w)\not\inQ-edges
        then have v-w-in-B:(v,w)\inB unfolding Q'-edges-def by blast
```

```
    obtain Q'-v-w-witness where Q '-v-w-witness:
        Q'-v-w-witness }\in\mp@subsup{Q}{}{\prime}(v,w)\in\mathrm{ edges-of-walk }\mp@subsup{Q}{}{\prime}-v-w\mathrm{ -witness
        using *(1) unfolding Q'-edges-def by blast
    have Q'-v-w-witness }=Q\mathrm{ -hit' proof
    assume Q'-v-w-witness = Q-hit'
    then have edges-of-walk Q'-v-w-witness =
            edges-of-walk (P-k-pre @ [y])\cup edges-of-walk (y # Q-hit-post)
        unfolding Q-hit'-def using walk-edges-decomp[of P-k-pre y Q-hit-post] by simp
    moreover have (v,w)\not\in edges-of-walk (P-k-pre @ [y])
        using P-k-pre-edges v-w-in-B by blast
    moreover have (v,w)\not\in edges-of-walk (y # Q-hit-post) proof
        assume (v,w) \inedges-of-walk (y # Q-hit-post)
        then have (v,w)\in edges-of-walk Q-hit
            unfolding Q-hit-decomp by (metis UnCI walk-edges-decomp)
        then show False using *(2) v-w-in-B Q-hit(1) unfolding Q-edges-def by blast
    qed
    ultimately show False using Q'-v-w-witness(2) by blast
    qed
```




```
}
moreover have }\existse\inQ\mathrm{ -edges. e }\not\in\mp@subsup{Q}{}{\prime}\mathrm{ -edges proof-
    obtain vw where v-w:(v,w)\in edges-of-walk (Q-hit-pre @ [y]) \capB
        using Q-hit-pre-edges by auto
    then have v-w-in-Q-hit: (v,w)\in edges-of-walk Q-hit \capB unfolding Q-hit-decomp
        by (metis Int-iff UnCI walk-edges-decomp)
    then have (v,w) &Q-edges unfolding Q-edges-def using Q-hit(1) by blast
    moreover have (v,w)\not\inQ'-edges proof
        assume (v,w) \in Q'-edges
        then have (v,w)\in edges-of-walk Q-hit' unfolding }\mp@subsup{Q}{}{\prime}\mathrm{ -edges-def }\mp@subsup{Q}{}{\prime}\mathrm{ -def
        using IntD1 v-w-in-Q-hit Q-hit-edges-disjoint by auto
        then have (v,w)\inedges-of-walk (y # Q-hit-post) unfolding Q-hit'-def
        using v-w P-k-pre-edges
        by (metis (no-types, lifting) IntD2 UnE disjoint-iff-not-equal walk-edges-decomp)
        then show False using v-w Q-hit(1) Q.paths Q-hit-decomp
        by (metis DiffE Q.path-edges-remove-prefix IntD1 path-from-to-def)
    qed
    ultimately show ?thesis by blast
qed
moreover have finite Q-edges unfolding Q-edges-def B-def by simp
moreover have finite Q'-edges unfolding Q'-edges-def B-def by simp
ultimately have card }\mp@subsup{Q}{}{\prime}\mathrm{ -edges < card Q-edges by (metis card-seteq not-le subrelI)
then have card ( U(edges-of-walk ' }Q\mathrm{ ' ) }B)<\mathrm{ card ( }(\cup(\mathrm{ edges-of-walk' }Q)\capB
    unfolding Q-edges-def Q'-edges-def by blast
    then show ?thesis unfolding Q-weight-def by blast
qed
private lemma DisjointPaths-Q': DisjointPaths H-x v0 v1 Q' proof-
    interpret Q-reduced: DisjointPaths H-x v0 v1 Q - {Q-hit}
        using Q.DisjointPaths-reduce[of Q - {Q-hit}] by blast
    {
```

```
    fix xs v
    assume xs:xs }\inQ-{Q-hit
        and v:v\in set xs v\in set Q-hit' v\not=v0v\not=v1
    have v}\not\in\mathrm{ set P-k-pre proof
        assume v\in set P-k-pre
        then have \neghitting-Q-or-new-last v using y-min by blast
        moreover have v\not= new-last using v(2) calculation hitting-Q-or-new-last-def v(3) by auto
        ultimately show False unfolding hitting-Q-or-new-last-def using v(1,3) xs by blast
    qed
    moreover have v}\not=
        by (metis DiffE Q.paths-disjoint Q-hit y-neq-v0 y-neq-v1 insert-iff v(1) xs)
        moreover have v\not\in set Q-hit-post proof
            assume v\in set Q-hit-post
        then have v\in set Q-hit unfolding Q-hit-decomp by simp
        then show False using Q.paths-disjoint[of Q-hit xs] xs Q-hit(1) v by blast
        qed
        ultimately have False using v(2) unfolding Q-hit'-def by simp
    }
    then show ?thesis using Q-reduced.DisjointPaths-extend Q-hit'-v0-v1-H-x
        unfolding Q'-def by blast
    qed
    private lemma card-Q': card Q' = sep-size proof-
    have Suc (card (Q - {Q-hit})) = card Q
        using Q-hit(1) Q.finite-paths by (meson card-Suc-Diff1)
    then show ?thesis using Q(2) Q.finite-paths Q-hit'-notin-Q-minus-Q-hit
        unfolding Q'-def by simp
    qed
    lemma contradiction': False using Q-weight-smaller DisjointPaths- Q' card-Q' Q-min
    using Suc-leI not-less-eq-eq by blast
end - anonymous context
corollary contradiction: False using Q-hit-exists contradiction' by blast
end - locale ProofStepInduct-y-neq-new-last
end
```


## 11 Menger's Theorem

```
theory Menger imports \(Y\)-eq-new-last \(Y\)-neq-new-last begin
In this section, we combine the cases and finally prove Menger's Theorem.
locale ProofStepInductOptimalPaths \(=\) ProofStepInduct + assumes optimal-paths:
\(\bigwedge\) paths \({ }^{\prime}\) P-new'. ProofStepInduct \(G\) v0 v1 paths \({ }^{\prime}\) P-new' sep-size
\(\Longrightarrow\) Digraph.distance (remove-vertex v0) (last P-new) v1
\(\leq\) Digraph.distance (remove-vertex v0) (last P-new') v1
begin
lemma one-more-paths-exists-trivial:
```

new-last $=v 1 \Longrightarrow \exists$ paths. DisjointPaths $G$ v0 v1 paths $\wedge$ card paths $=$ Suc sep-size using $P$-new-solves-if-disjoint paths-sep-size by blast
lemma one-more-paths-exists-nontrivial:
assumes new-last $\neq v 1$
shows $\exists$ paths. DisjointPaths G v0 v1 paths $\wedge$ card paths $=$ Suc sep-size
proof-
interpret ProofStepInduct-NonTrivial G v0 v1 paths P-new sep-size using assms new-last-def by unfold-locales simp
obtain $P$ - $k$-pre y $P$ - $k$-post where
ProofStepInduct-NonTrivial-P-k-pre $G$ v0 v1 paths $P$-new sep-size $P$ - $k$-pre y $P$ - $k$-post using ProofStepInduct-NonTrivial-P-k-pre-exists by blast
then interpret ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths P-new sep-size $P$ - $k$-pre $y$
$P$-k-post .
\{
assume $y \neq v 1 \quad y=$ new-last
then interpret ProofStepInduct-y-eq-new-last Gv0 v1 paths $P$-new sep-size $P$ - $k$-pre y $P$ - $k$-post
using optimal-paths[folded H-def] by unfold-locales
have ?thesis using with-optimal-paths-solves by blast
\} moreover \{
assume $y \neq v 1 y \neq$ new-last
then interpret ProofStepInduct-y-neq-new-last G v0 v1 paths $P$-new sep-size $P$ - $k$-pre y $P$-k-post
by unfold-locales
have ?thesis using contradiction by blast
\}
ultimately show ?thesis using $y$-eq-v1-solves by blast
qed
corollary one-more-paths-exists:
shows $\exists$ paths. DisjointPaths G v0 v1 paths $\wedge$ card paths $=$ Suc sep-size
using one-more-paths-exists-trivial one-more-paths-exists-nontrivial by blast
end
lemma (in ProofStepInduct) one-more-paths-exists:
$\exists$ paths. DisjointPaths G v0 v1 paths $\wedge$ card paths $=$ Suc sep-size
proof-
define paths-weight where paths-weight $\equiv$
$\lambda($ paths' $::$ ' $a$ Walk set, $P$-new'). Digraph.distance (remove-vertex v0) (last P-new') v1
define paths-good where paths-good $\equiv$
$\lambda\left(\right.$ paths ${ }^{\prime}, P$-new' $)$. ProofStepInduct G v0 v1 paths ${ }^{\prime} P$-new' sep-size
have $\exists$ paths ${ }^{\prime} P$-new ${ }^{\prime}$. paths-good (paths ${ }^{\prime}, P$-new')
unfolding paths-good-def using ProofStepInduct-axioms by auto
then obtain $P^{\prime}$ where
$P^{\prime}:$ paths-good $P^{\prime} \bigwedge P^{\prime \prime}$. paths-good $P^{\prime \prime} \Longrightarrow$ paths-weight $P^{\prime} \leq$ paths-weight $P^{\prime \prime}$
using arg-min-ex[of paths-good paths-weight] by blast
then obtain paths ${ }^{\prime} P$-new ${ }^{\prime}$ where $P^{\prime}$-decomp: $P^{\prime}=\left(\right.$ paths ${ }^{\prime}, P$-new' $)$ by (meson surj-pair)
have optimal-paths-good: ProofStepInduct G v0 v1 paths' P-new' sep-size
using $P^{\prime}(1) P^{\prime}$-decomp unfolding paths-good-def by auto
have $\bigwedge$ paths ${ }^{\prime \prime} P$-new ${ }^{\prime \prime}$. paths-good (paths ${ }^{\prime \prime}, P$-new ${ }^{\prime \prime}$ )
$\Longrightarrow$ paths-weight $P^{\prime} \leq$ paths-weight (paths ${ }^{\prime \prime}, P$-new') by (simp add: $\left.P^{\prime}(2)\right)$
then have optimal-paths-min: $\bigwedge$ paths ${ }^{\prime \prime}$ P-new". ProofStepInduct G v0 v1 paths " P-new" sep-size
$\Longrightarrow$ Digraph.distance (remove-vertex v0) (last P-new') v1
$\leq$ Digraph.distance (remove-vertex v0) (last P-new ${ }^{\prime \prime}$ ) v1
unfolding paths-good-def paths-weight-def by (simp add: $P^{\prime}$-decomp)
interpret $G$ : ProofStepInductOptimalPaths $G$ v0 v1 paths ${ }^{\prime}$ P-new' sep-size
using optimal-paths-good optimal-paths-min
by (simp add: ProofStepInductOptimalPaths.intro ProofStepInductOptimalPaths-axioms.intro)
show ?thesis using G.one-more-paths-exists by blast
qed

### 11.1 Menger's Theorem

theorem (in v0-v1-Digraph) menger:
assumes $\bigwedge S$. Separation $G$ v0 v1 $S \Longrightarrow$ card $S \geq n$
shows $\exists$ paths. DisjointPaths $G$ v0 v1 paths $\wedge$ card paths $=n$
using assms v0-v1-Digraph-axioms proof (induct $n$ arbitrary: $G$ )
case ( $0 G$ )
then show ?case using v0-v1-Digraph.DisjointPaths-empty[of $G$ ] card.empty by blast
next
case (Suc n G)
interpret $G$ : v0-v1-Digraph G v0 v1 using Suc(3).
have $\wedge S$. Separation $G$ v0 v1 $S \Longrightarrow n \leq$ card $S$ using Suc.prems Suc-leD by blast
then obtain paths where P: DisjointPaths G v0 v1 paths card paths $=n$ using $\operatorname{Suc}(1,3)$ by
blast
interpret $G$ : DisjointPaths $G$ v0 v1 paths using $P(1)$.
obtain $P$-new where
$P$-new: $v 0 \leadsto P$-new $\leadsto G$ v1 set $P$-new $\cap G$.second-vertices $=\{ \}$
using G.disjoint-paths-new-path $P$ (2) Suc.prems(1) by blast
have $P$-new-new: $P$-new $\notin$ paths
by (metis G.paths-tl-notnil G.second-vertex-def G.second-vertices-def G.path-from-toE IntI
$P$-new empty-iff image-eqI list.set-sel(1) list.set-sel(2))
have G.hitting-paths v1 unfolding G.hitting-paths-def using v0-neq-v1 by blast
then have $\exists x \in$ set $P$-new. G.hitting-paths $x$ using $P$-new(1) by fastforce
then obtain new-pre $x$ new-post where
$P$-new-decomp: $P$-new $=$ new-pre $@ x \#$ new-post
and $x$ : G.hitting-paths $x$
$\bigwedge y . y \in$ set new-pre $\Longrightarrow \neg G$.hitting-paths $y$
by (metis split-list-first-prop)
have 1: DisjointPathsPlusOne G v0 v1 paths (new-pre @ $[x]$ ) proof
show $v 0 \leadsto($ new-pre @ $[x]) \leadsto G$ last (new-pre @ $[x]$ ) using $P$-new (1)
by (metis G.path-decomp' $P$-new-decomp append-is-Nil-conv hd-append2 list.distinct(1)
list.sel(1) path-from-to-def self-append-conv2)
then show $t l$ (new-pre @ $[x]) \neq[]$
by (metis DisjointPaths.hitting-paths-def G.DisjointPaths-axioms G.path-from-toE
butlast.simps(1) butlast-snoc list.distinct(1) list.sel(1) self-append-conv2
tl-append2 $x(1)$ )

```
    have new-pre \(\neq\) Nil using G.hitting-paths-def \(P\)-new(1) P-new-decomp x(1) by auto
    then have \(h d(t l(n e w-p r e ~ @[x]))=h d(t l\) P-new) by (simp add: P-new-decomp hd-append)
    then show \(h d(t l\) (new-pre @ \([x])) \notin G\).second-vertices
        by (metis \(P\)-new(2) P-new-decomp 〈new-pre \(\neq[]\rangle\) append-is-Nil-conv disjoint-iff-not-equal
        list.distinct(1) list.set-sel(1) list.set-sel(2) tl-append2)
    show G.hitting-paths (last (new-pre @ \([x])\) ) using \(x(1)\) by auto
    show \(\bigwedge v . v \in \operatorname{set}(\) butlast (new-pre @ \([x])) \Longrightarrow \neg\) G.hitting-paths \(v\) by (simp add: x(2))
qed
have 2: NoSmallSeparationsInduct \(G v 0 v 1 n\)
    by (simp add: G.v0-v1-Digraph-axioms NoSmallSeparationsInduct.intro
        NoSmallSeparationsInduct-axioms-def Suc.hyps Suc.prems(1))
```

qed

```
```

show ?case proof (rule ccontr)

```
show ?case proof (rule ccontr)
    assume not-case: \(\neg\) ?case
    assume not-case: \(\neg\) ?case
    have \(x \neq v 1\) proof
    have \(x \neq v 1\) proof
        assume \(x=v 1\)
        assume \(x=v 1\)
        define paths' where paths \({ }^{\prime}=\) insert \(P\)-new paths
        define paths' where paths \({ }^{\prime}=\) insert \(P\)-new paths
        \{
        \{
            fix \(x s v\)
            fix \(x s v\)
            assume \(*\) : xs \(\in\) paths \(v \in\) set \(x s ~ v \in\) set \(P\)-new \(v \neq v 0 v \neq v 1\)
            assume \(*\) : xs \(\in\) paths \(v \in\) set \(x s ~ v \in\) set \(P\)-new \(v \neq v 0 v \neq v 1\)
            have \(v \in\) set new-pre
            have \(v \in\) set new-pre
                by (metis \(*(3,5)\) G.path-from-to-ends G.path-from-toE P-new(1) P-new-decomp
                by (metis \(*(3,5)\) G.path-from-to-ends G.path-from-toE P-new(1) P-new-decomp
                    \(\langle x=v 1\rangle\) butlast-snoc set-butlast)
                    \(\langle x=v 1\rangle\) butlast-snoc set-butlast)
            then have False using \(*(1,2,4)\) G.hitting-paths-def \(x(2)\) by auto
            then have False using \(*(1,2,4)\) G.hitting-paths-def \(x(2)\) by auto
        \}
        \}
        then have DisjointPaths \(G\) v0 v1 paths' unfolding paths'-def
        then have DisjointPaths \(G\) v0 v1 paths' unfolding paths'-def
            using G.DisjointPaths-extend P-new(1) by blast
            using G.DisjointPaths-extend P-new(1) by blast
        moreover have card paths \({ }^{\prime}=\) Suc \(n\)
        moreover have card paths \({ }^{\prime}=\) Suc \(n\)
            using \(P\)-new-new by (simp add: G.finite-paths \(P\) (2) paths'-def)
            using \(P\)-new-new by (simp add: G.finite-paths \(P\) (2) paths'-def)
        ultimately show False using not-case by blast
        ultimately show False using not-case by blast
    qed
    qed
    have ProofStepInduct-axioms paths \(n\) proof
    have ProofStepInduct-axioms paths \(n\) proof
        show \(n \neq 0\)
        show \(n \neq 0\)
            using G.DisjointPaths-extend G.finite-paths \(P(2)\)-new(1) not-case card-insert-disjoint
            using G.DisjointPaths-extend G.finite-paths \(P(2)\)-new(1) not-case card-insert-disjoint
            by fastforce
            by fastforce
    qed (insert \(P(2)\) )
    qed (insert \(P(2)\) )
    then have ProofStepInduct G v0 v1 paths (new-pre @ \([x]\) ) \(n\)
    then have ProofStepInduct G v0 v1 paths (new-pre @ \([x]\) ) \(n\)
        using 12 by (simp add: ProofStepInduct.intro)
        using 12 by (simp add: ProofStepInduct.intro)
    then show False using ProofStepInduct.one-more-paths-exists not-case by metis
    then show False using ProofStepInduct.one-more-paths-exists not-case by metis
    qed
```

    qed
    ```

The previous theorem was the difficult direction of Menger's Theorem. Let us now prove the other direction: If we have \(n\) disjoint paths, than every separator must contain at least \(n\) vertices. This direction is rather trivial because every separator needs to separate at least the \(n\) paths, so we do not need induction or an elaborate setup to prove this.
```

theorem (in v0-v1-Digraph) menger-trivial:
assumes DisjointPaths G v0 v1 paths card paths =n
shows }\bigwedgeS\mathrm{ . Separation Gv0v1S C card S}\geq
proof-

```
interpret DisjointPaths G v0 v1 paths using assms(1).
fix \(S\) assume Separation \(G v 0\) v1 \(S\)
then interpret \(S\) : Separation \(G v 0\) v1 \(S\).
Our plan is to show \(n \leq\) card \(S\) by defining an injective function from paths into \(S\). Because we have card paths \(=n\), the result follows.
For the injective function, we simply use the observation stated above: Every path needs to be separated by \(S\) at some vertex, so we can choose such a vertex.
```

define $f$ where $f \equiv \lambda x s$. SOME v. $v \in S \wedge v \in$ set $x s$
have f-good: $\bigwedge x s . x s \in$ paths $\Longrightarrow f x s \in S \wedge f x s \in$ set $x s$ proof-
fix $x s$ assume $x s \in$ paths
then obtain $v$ where $v \in$ set xs $\cap S$ using $S$.S-separates paths by fastforce
then show $f x s \in S \wedge f x s \in$ set xs unfolding $f$-def
using someI $[o f \lambda v . v \in S \wedge v \in$ set xs $v]$ by blast
qed

```

This \(f\) is injective because no two paths intersect in the same vertex.
```

have inj-on $f$ paths proof
fix $x s$ ys
assume $*: x s \in$ paths ys $\in$ paths $f x s=f y s$
then obtain $v$ where $v \in S v \in$ set $x s v \in$ set $y s$
using $f$-good by fastforce
then show $x s=y s$ using $*(1,2)$ paths-disjoint S.v0-notin-S S.v1-notin-S by fastforce
qed
then show card $S \geq n$ using assms(2) f-good
by (metis S.finite-S finite-paths image-subsetI inj-on-iff-card-le)
qed

```

\subsection*{11.2 Self-contained Statement of the Main Theorem}

Let us state both directions of Menger's Theorem again in a more self-contained way in the Digraph locale. Stating the theorems in a self-contained way helps avoiding mistakes due to wrong definitions hidden in one of the numerous locales we used and also significantly reduces the work needed to review this formalization.
With the statements below, all you need to do in order to verify that this formalization actually expresses Menger's Theorem (and not something else), is to look into the assumptions and definitions of the Digraph locale.
```

theorem (in Digraph) menger:
fixes v0 v1 ::' 'a and n :: nat
assumes v0-V:v0\inV
and v1-V: v1 \inV
and v0-nonadj-v1: \negv0->v1
and v0-neq-v1:v0 \not=v1
and no-small-separators: }\S\mathrm{ .
\llbracketS\subseteqV;v0 \&S;v1 \&S; \xs.v0 ~xs~v1\Longrightarrow set xs \capS\not={}\rrbracket\Longrightarrow card S\geqn
shows \exists paths. card paths =n\wedge(\forallxs\in paths.
v0~xs~v1\wedge(\forallys\in paths -{xs}. (\forallv\in set xs \cap set ys.v=v0\veev=v1)))

```
```

proof-
interpret v0-v1-Digraph G v0 v1 using v0-V v1-V v0-nonadj-v1 v0-neq-v1 by unfold-locales
have \S. Separation G v0 v1 S \Longrightarrow n card S using no-small-separators
by (simp add: Separation.S-V Separation.S-separates Separation.v0-notin-S Separation.v1-notin-S)
then obtain paths where
paths: DisjointPaths G v0 v1 paths card paths = n using no-small-separators menger by blast
then show ?thesis
by (metis DiffD1 DiffD2 DisjointPaths.paths DisjointPaths.paths-disjoint IntD1 IntD2 singletonI)
qed
theorem (in Digraph) menger-trivial:
fixes v0 v1 :: 'a and n :: nat
assumes v0-V:v0 \inV
and v1-V:v1\inV
and v0-nonadj-v1:}\negv0->v
and v0-neq-v1:v0 \not=v1
and n-paths: card paths = n
and paths-disjoint: }\forallxs\in\mathrm{ paths.
v0 ~xs~v1 ^( }\forallys\in\mathrm{ paths - {xs}. ( }\forallv\in\mathrm{ set xs }\cap\mathrm{ set ys. v = v0 }\veev=v1)
shows \S.\llbracketS\subseteqV;v0\not\inS;v1\not\inS;\bigwedgexs.v0 ~xs~v1\Longrightarrow set xs \capS\not={}\rrbracket\Longrightarrow card S\geqn
proof-
interpret v0-v1-Digraph G v0 v1 using v0-V v1-V v0-nonadj-v1 v0-neq-v1 by unfold-locales
interpret DisjointPaths G v0 v1 paths proof
show \xs. xs \in paths \Longrightarrowv0 ~xs~ v1 using paths-disjoint by simp
next
fix xs ys v assume xs \in paths ys \in paths xs }\not=ysv\in\mathrm{ set xs v fet ys
then have xs \in paths ys \in paths - {xs} v\in set xs \cap set ys by blast+
then show v=v0\veev=v1 using paths-disjoint by blast
qed
fix S assume S\subseteqVv0\not\inSv1\not\inS \xs.v0 ~xs~~v1\Longrightarrow set xs \capS\not={}
then interpret Separation G v0 v1 S by unfold-locales
show card S \geq n using menger-trivial DisjointPaths-axioms Separation-axioms n-paths by blast
qed
end

```

\section*{References}
[Loc16] Andreas Lochbihler. A formal proof of the max-flow min-cut theorem for countable networks. Archive of Formal Proofs, May 2016. http://isa-afp.org/entries/ MFMC_Countable.shtml, Formal proof development.
[McC84] William McCuaig. A simple proof of Menger's theorem. Journal of Graph Theory, 8(3):427-429, 1984. doi:10.1002/jgt.3190080311.
[Men27] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10(1):96-115, 1927. URL: http://eudml.org/doc/211191.```

