
Menger’s Theorem
Christoph Dittmann

isabelle@christoph-d.de

September 13, 2023

We present a formalization of Menger’s Theorem for directed and undirected
graphs in Isabelle/HOL. This well-known result shows that if two non-adjacent
distinct vertices u, v in a directed graph have no separator smaller than n, then
there exist n internally vertex-disjoint paths from u to v.

The version for undirected graphs follows immediately because undirected
graphs are a special case of directed graphs.

Contents
1 Introduction 3

2 Relation to Min-Cut Max-Flow 3

3 Helpers 3

4 Graphs 4
4.1 Walks . 5
4.2 Paths . 6
4.3 The Set of All Paths . 6
4.4 Edges of Walks . 8
4.5 The First Edge of a Walk . 11
4.6 Distance . 12
4.7 Subgraphs . 12
4.8 Two Distinguished Distinct Non-adjacent Vertices. 14
4.9 Undirected Graphs . 14

5 Separations 15

6 Internally Vertex-Disjoint Paths 16
6.1 Basic Properties . 16
6.2 Second Vertices . 17

7 One More Path 18
7.1 Characterizing the New Path . 19

1

7.2 The Last Vertex of the New Path . 19
7.3 Removing the Last Vertex . 20
7.4 A New Path Following the Other Paths . 21

8 Induction of Menger’s Theorem 22
8.1 No Small Separations . 22
8.2 Choosing Paths Avoiding new_last . 23
8.3 Finding a Path Avoiding Q . 24
8.4 Decomposing Pk . 25

9 The case y = new_last 27

10 The case y 6= new_last 31

11 Menger’s Theorem 35
11.1 Menger’s Theorem . 37
11.2 Self-contained Statement of the Main Theorem 39

Bibliography 41

2

1 Introduction
Given two non-adjacent distinct vertices u, v in a finite directed graph, a u-v-separator is
a set of vertices S with u /∈ S, v /∈ S such that every u-v-path visits a vertex of S. Two
u-v-paths are internally vertex-disjoint if their intersection is exactly {u, v}.

A famous classical result of graph theory relates the size of a minimum separator to the
maximal number of internally vertex-disjoint paths.

Theorem 1 (Menger [Men27]) Let u, v be two non-adjacent distinct vertices. Then the
size of a minimum u-v-separator equals the maximal number of pairwise internally vertex-
disjoint u-v-paths.

This theorem has many proofs, but as far as the author is aware, there was no formalized
proof. We follow a proof given by William McCuaig, who calls it “A simple proof of
Menger’s theorem” [McC84]. His proof is roughly one page in length. Our formalization is
significantly longer than that because we had to fill in a lot of details.

Most of the work goes into showing the following theorem, which proves one direction of
Theorem 1.

Theorem 2 Let u, v be two non-adjacent distinct vertices. If every u-v-separator has size
at least n, then there exists n pairwise internally vertex-disjoint u-v-paths.

Compared to this, the other direction of Theorem 1 is easy because the existence of n
internally vertex-disjoint paths implies that every separator needs to cut at least these paths,
so every separator needs to have size at least n.

2 Relation to Min-Cut Max-Flow
Another famous result of graph theory is the Min-Cut Max-Flow Theorem, stating that
the size of a minimum u-v-cut equals the value of a maximum u-v-flow. There exists a
formalization of a very general version of this theorem for countable graphs in the Archive
of Formal Proofs, written by Andreas Lochbihler [Loc16].

Technically, our version of Menger’s Theorem should follow from Lochbihler’s very general
result. However, the author was of the opinion that a fresh formalization of Menger’s
Theorem was warranted given the complexity of the Min-Cut Max-Flow formalization. Our
formalization is about a sixth of the size of the Min-Cut Max-Flow formalization (not
counting comments). It may also be easier to grasp by readers who are unfamiliar with the
intricacies of countable networks.

Let us also note that the Min-Cut Max-Flow Theorem considers edge cuts whereas
Menger’s Theorem works with vertex cuts. This is a minor difference because one can be
reduced to the other, but it makes Menger’s Theorem not a trivial corollary of the Min-Cut
Max-Flow formalization.

3 Helpers
theory Helpers imports Main begin

3

First, we will prove a few lemmas unrelated to graphs or Menger’s Theorem. These lemmas
will simplify some of the other proof steps.

If two finite sets have different cardinality, then there exists an element in the larger set
that is not in the smaller set.
lemma card-finite-less-ex:

assumes finite-A: finite A
and finite-B: finite B
and card-AB: card A < card B

shows ∃ b ∈ B. b /∈ A
proof−

have card (B − A) > 0 using finite-A finite-B card-AB
by (meson Diff-eq-empty-iff card-eq-0-iff card-mono finite-Diff gr0I leD)

then show ?thesis using finite-B
by (metis Diff-eq-empty-iff card-0-eq finite-Diff neq-iff subsetI)

qed

The cardinality of the union of two disjoint finite sets is the sum of their cardinalities even
if we intersect everything with a fixed set X.
lemma card-intersect-sum-disjoint:

assumes finite B finite C A = B ∪ C B ∩ C = {}
shows card (A ∩ X) = card (B ∩ X) + card (C ∩ X)

by (metis (no-types, lifting) Un-Diff-Int assms card-Un-disjoint finite-Int inf .commute
inf-sup-distrib2 sup-eq-bot-iff)

If x is in a list xs but is not its last element, then it is also in butlast xs.
lemma set-butlast: [[x ∈ set xs; x 6= last xs]] =⇒ x ∈ set (butlast xs)

by (metis butlast.simps(2) in-set-butlast-appendI last.simps last-appendR
list.set-intros(1) split-list-first)

If a property P is satisfiable and if we have a weight measure mapping into the natural
numbers, then there exists an element of minimum weight satisfying P because the natural
numbers are well-ordered.
lemma arg-min-ex:

fixes P :: ′a ⇒ bool and weight :: ′a ⇒ nat
assumes ∃ x. P x
obtains x where P x

∧
y. P y =⇒ weight x ≤ weight y

proof (cases ∃ x. P x ∧ weight x = 0)
case True then show ?thesis using that by auto

next
case False then show ?thesis

using that ex-least-nat-le[of λn. ∃ x. P x ∧ weight x = n] assms by (metis not-le-imp-less)
qed

end

4 Graphs
theory Graph imports Main begin

4

Let us now define digraphs, graphs, walks, paths, and related concepts.
′a is the vertex type.
type-synonym ′a Edge = ′a × ′a
type-synonym ′a Walk = ′a list

record ′a Graph =
verts :: ′a set (V ı)
arcs :: ′a Edge set (E ı)

abbreviation is-arc :: (′a, ′b) Graph-scheme ⇒ ′a ⇒ ′a ⇒ bool (infixl →ı 60) where
v →G w ≡ (v,w) ∈ EG

We consider directed and undirected finite graphs. Our graphs do not have multi-edges.
locale Digraph =

fixes G :: (′a, ′b) Graph-scheme (structure)
assumes finite-vertex-set: finite V

and valid-edge-set: E ⊆ V × V

context Digraph begin

lemma finite-edge-set [simp]: finite E using finite-vertex-set valid-edge-set
by (simp add: finite-subset)

lemma edges-are-in-V : assumes v→w shows v ∈ V w ∈ V
using assms valid-edge-set by blast+

4.1 Walks

A walk is sequence of vertices connected by edges.
inductive walk :: ′a Walk ⇒ bool where
Nil [simp]: walk []
| Singleton [simp]: v ∈ V =⇒ walk [v]
| Cons: v→w =⇒ walk (w # vs) =⇒ walk (v # w # vs)

Show a few composition/decomposition lemmas for walks. These will greatly simplify the
proofs that follow.
lemma walk-2 [simp]: v→w =⇒ walk [v,w] by (simp add: edges-are-in-V (2) walk.intros(3))
lemma walk-comp: [[walk xs; walk ys; xs = Nil ∨ ys = Nil ∨ last xs→hd ys]] =⇒ walk (xs @ ys)

by (induct rule: walk.induct, simp-all add: walk.intros(3))
(metis list.exhaust-sel walk.intros(2) walk.intros(3))

lemma walk-tl: walk xs =⇒ walk (tl xs) by (induct rule: walk.induct) simp-all
lemma walk-drop: walk xs =⇒ walk (drop n xs) by (induct n, simp) (metis drop-Suc tl-drop walk-tl)
lemma walk-take: walk xs =⇒ walk (take n xs)

by (induct arbitrary: n rule: walk.induct)
(simp, metis Digraph.walk.simps Digraph-axioms take-Cons ′ take-eq-Nil,
metis Digraph.walk.simps Digraph-axioms edges-are-in-V (1) take-Cons ′)

lemma walk-decomp: assumes walk (xs @ ys) shows walk xs walk ys
using assms append-eq-conv-conj[of xs ys xs @ ys] walk-take walk-drop by metis+

lemma walk-in-V : walk xs =⇒ set xs ⊆ V by (induct rule: walk.induct; simp add: edges-are-in-V)
lemma walk-first-edge: walk (v # w # xs) =⇒ v→w using walk.cases by fastforce
lemma walk-first-edge ′: [[walk (v # xs); xs 6= Nil]] =⇒ v→hd xs

5

using walk-first-edge by (metis list.exhaust-sel)
lemma walk-middle-edge: walk (xs @ v # w # ys) =⇒ v→w

by (induct xs @ v # w # ys arbitrary: xs rule: walk.induct, simp, simp)
(metis list.sel(1 ,3) self-append-conv2 tl-append2)

lemma walk-last-edge: [[walk (xs @ ys); xs 6= Nil; ys 6= Nil]] =⇒ last xs→hd ys
using walk-middle-edge[of butlast xs last xs hd ys tl ys]
by (metis Cons-eq-appendI append-butlast-last-id append-eq-append-conv2 list.exhaust-sel self-append-conv)

4.2 Paths

A path is a walk without repeated vertices. This is simple enough, so most of the above
lemmas transfer directly to paths.
abbreviation path :: ′a Walk ⇒ bool where path xs ≡ walk xs ∧ distinct xs

lemma path-singleton [simp]: v ∈ V =⇒ path [v] by simp
lemma path-2 [simp]: [[v→w; v 6= w]] =⇒ path [v,w] by simp
lemma path-cons: [[path xs; xs 6= Nil; v→hd xs; v /∈ set xs]] =⇒ path (v # xs)

by (metis distinct.simps(2) list.exhaust-sel walk.Cons)
lemma path-comp: [[walk xs; walk ys; xs = Nil ∨ ys = Nil ∨ last xs→hd ys; distinct (xs @ ys)]]
=⇒ path (xs @ ys) using walk-comp by blast

lemma path-tl: path xs =⇒ path (tl xs) by (simp add: distinct-tl walk-tl)
lemma path-drop: path xs =⇒ path (drop n xs) by (simp add: walk-drop)
lemma path-take: path xs =⇒ path (take n xs) by (simp add: walk-take)
lemma path-decomp: assumes path (xs @ ys) shows path xs path ys

using walk-decomp assms distinct-append by blast+
lemma path-decomp ′: path (xs @ x # ys) =⇒ path (xs @ [x])

by (metis Singleton distinct.simps(2) distinct1-rotate edges-are-in-V (1) list.discI list.sel(1)
not-distinct-conv-prefix path-decomp(1) rotate1 .simps(2) walk-comp walk-decomp(2)
walk-first-edge ′ walk-last-edge)

lemma path-in-V : path xs =⇒ set xs ⊆ V by (simp add: walk-in-V)
lemma path-length: path xs =⇒ length xs ≤ card V

by (metis card-mono distinct-card finite-vertex-set path-in-V)
lemma path-first-edge: path (v # w # xs) =⇒ v→w using walk-first-edge by blast
lemma path-first-edge ′: [[path (v # xs); xs 6= Nil]] =⇒ v→hd xs using walk-first-edge ′ by blast
lemma path-middle-edge: path (xs @ v # w # ys) =⇒ v → w using walk-middle-edge by blast
lemma path-first-vertex: path (x # xs) =⇒ x /∈ set xs by simp
lemma path-disjoint: [[path (xs @ ys); xs 6= Nil; x ∈ set xs]] =⇒ x /∈ set ys by auto

4.3 The Set of All Paths
definition all-paths where all-paths ≡ { xs | xs. path xs }

Because paths have no repeated vertices, every graph has at most finitely many distinct
paths. This will be useful later to easily derive that any set of paths is finite.
lemma finitely-many-paths: finite all-paths proof−

have all-paths ⊆ {xs. set xs ⊆ V ∧ length xs ≤ card V }
unfolding all-paths-def using path-length by (simp add: Collect-mono path-in-V)

thus ?thesis using finite-lists-length-le[OF finite-vertex-set] walk-in-V infinite-super by blast
qed

end — context Digraph

6

We introduce shorthand notation for a path connecting two vertices.
definition path-from-to :: (′a, ′b) Graph-scheme ⇒ ′a ⇒ ′a Walk ⇒ ′a ⇒ bool
(- ;-;ı - [71 , 71 , 71] 70) where
path-from-to G v xs w ≡ Digraph.path G xs ∧ xs 6= Nil ∧ hd xs = v ∧ last xs = w

context Digraph begin

lemma path-from-toI [intro]: [[path xs; xs 6= Nil; hd xs = v; last xs = w]] =⇒ v ;xs; w
and path-from-toE [dest]: v ;xs; w =⇒ path xs ∧ xs 6= Nil ∧ hd xs = v ∧ last xs = w
unfolding path-from-to-def by blast+

lemma path-from-to-ends: v ;(xs @ w # ys); w =⇒ ys = Nil
by (metis path-from-toE distinct.simps(2) last.simps last-appendR last-in-set list.discI path-decomp(2))

lemma path-from-to-combine:
assumes v ;(xs @ x # xs ′); w v ′ ;(ys @ x # ys ′); w ′ set xs ∩ set ys ′ = {}
shows v ;(xs @ x # ys ′) ; w ′

proof
show path (xs @ x # ys ′)

by (metis path-from-toE assms(1 ,2 ,3) disjoint-insert(1) distinct-append list.sel(1) list.set(2)
list.simps(3) path-decomp(2) walk-comp walk-decomp(1) walk-last-edge)

show hd (xs @ x # ys ′) = v by (metis path-from-toE assms(1) hd-append list.sel(1))
show last (xs @ x # ys ′) = w ′ using assms(2) by auto

qed simp

lemma path-from-to-first: v ;xs; w =⇒ v /∈ set (tl xs)
by (metis path-from-toE list.collapse path-first-vertex)

lemma path-from-to-first ′: v ;(xs @ x # xs ′); w =⇒ v /∈ set xs ′

by (metis path-from-toE append-eq-append-conv2 distinct.simps(2) hd-append list.exhaust-sel
list.sel(3) list.set-sel(1 ,2) list.simps(3) path-disjoint self-append-conv)

lemma path-from-to-last: v ;xs; w =⇒ w /∈ set (butlast xs)
by (metis path-from-toE append-butlast-last-id distinct-append not-distinct-conv-prefix)

lemma path-from-to-last ′: v ;(xs @ x # xs ′); w =⇒ w /∈ set xs
by (metis path-from-toE bex-empty last-appendR last-in-set list.set(1) list.simps(3) path-disjoint)

Every walk contains a path connecting the same vertices.
lemma walk-to-path:

assumes walk xs xs 6= Nil hd xs = v last xs = w
shows ∃ ys. v ;ys; w ∧ set ys ⊆ set xs

proof−

We prove this by removing loops from xs until xs is a path. We want to perform induction
over length xs, but xs in set ys ⊆ set xs should not be part of the induction hypothesis. To
accomplish this, we hide set xs behind a definition for this specific part of the goal.

define target-set where target-set ≡ set xs
hence set xs ⊆ target-set by simp
thus ∃ ys. v ;ys; w ∧ set ys ⊆ target-set
using assms proof (induct length xs arbitrary: xs rule: infinite-descent0)

7

case (smaller n)
then obtain xs where

xs: n = length xs walk xs xs 6= Nil hd xs = v last xs = w set xs ⊆ target-set and
hyp: ¬(∃ ys. v ;ys; w ∧ set ys ⊆ target-set) by blast

If xs is not a path, then xs is not distinct and we can decompose it.
then obtain ys rest u

where xs-decomp: u ∈ set ys distinct ys xs = ys @ u # rest
using not-distinct-conv-prefix by (metis path-from-toI)

u appears in ys, so we have a loop in xs starting from an occurrence of u in ys ending in
the vertex u in u # rest. We define zs as xs without this loop.

obtain ys ′ ys-suffix where
ys-decomp: ys = ys ′ @ u # ys-suffix by (meson split-list xs-decomp(1))

define zs where zs ≡ ys ′ @ u # rest
have walk zs unfolding zs-def using xs(2) xs-decomp(3) ys-decomp

by (metis walk-decomp list.sel(1) list.simps(3) walk-comp walk-last-edge)
moreover have length zs < n unfolding zs-def by (simp add: xs(1) xs-decomp(3) ys-decomp)
moreover have hd zs = v unfolding zs-def

by (metis append-is-Nil-conv hd-append list.sel(1) xs(4) xs-decomp(3) ys-decomp)
moreover have last zs = w unfolding zs-def using xs(5) xs-decomp(3) by auto
moreover have set zs ⊆ target-set unfolding zs-def using xs(6) xs-decomp(3) ys-decomp by

auto
ultimately show ?case using zs-def hyp by blast

qed simp
qed

4.4 Edges of Walks

The set of edges on a walk. Note that this is empty for walks of length 0 or 1.
definition edges-of-walk :: ′a Walk ⇒ ′a Edge set where

edges-of-walk xs = { (v,w) | v w xs-pre xs-post. xs = xs-pre @ v # w # xs-post }

lemma edges-of-walkE : (v,w) ∈ edges-of-walk xs =⇒ ∃ xs-pre xs-post. xs = xs-pre @ v # w # xs-post
unfolding edges-of-walk-def by blast

lemma edges-of-walk-in-E : walk xs =⇒ edges-of-walk xs ⊆ E
unfolding edges-of-walk-def using walk-middle-edge by auto

lemma edges-of-walk-finite: walk xs =⇒ finite (edges-of-walk xs)
using edges-of-walk-in-E finite-edge-set finite-subset by blast

lemma edges-of-walk-empty: edges-of-walk [] = {} edges-of-walk [v] = {}
unfolding edges-of-walk-def by simp-all

lemma edges-of-walk-2 : edges-of-walk [v,w] = {(v,w)} proof
{

fix v ′ w ′ assume (v ′, w ′) ∈ edges-of-walk [v,w]
then obtain xs-pre xs-post where xs-decomp: [v,w] = xs-pre @ v ′ # w ′ # xs-post

using edges-of-walkE [of v ′ w ′ [v,w]] by blast

8

then have xs-pre = Nil
by (metis Nil-is-append-conv butlast.simps(2) butlast-append list.discI)

then have (v ′,w ′) ∈ {(v,w)} using xs-decomp by simp
}
then show edges-of-walk [v, w] ⊆ {(v, w)} by (simp add: subrelI)
show {(v, w)} ⊆ edges-of-walk [v, w] unfolding edges-of-walk-def by blast

qed

lemma edges-of-walk-edge: [[walk xs; (v,w) ∈ edges-of-walk xs]] =⇒ v→w
using edges-of-walkE walk-middle-edge by fastforce

lemma edges-of-walk-middle [simp]: (v,w) ∈ edges-of-walk (xs @ v # w # xs ′)
unfolding edges-of-walk-def by blast

lemma edges-of-comp1 : edges-of-walk xs ⊆ edges-of-walk (xs @ ys)
unfolding edges-of-walk-def by force

lemma edges-of-comp2 : edges-of-walk ys ⊆ edges-of-walk (xs @ ys) proof−
{

fix v w assume (v,w) ∈ edges-of-walk ys
then have ∃ ys-pre ys-post. ys = ys-pre @ v # w # ys-post by (meson edges-of-walkE)
then have (v,w) ∈ edges-of-walk (xs @ ys)

by (metis (mono-tags, lifting) append.assoc edges-of-walk-def mem-Collect-eq)
}
then show ?thesis by (simp add: subrelI)

qed

lemma walk-edges-decomp-simple:
edges-of-walk (v # w # xs) = {(v,w)} ∪ edges-of-walk (w # xs) (is ?A = ?B)

proof
have edges-of-walk (w # xs) ⊆ ?A using edges-of-comp2 [of w # xs [v]] by simp
moreover have (v,w) ∈ ?A by (metis append-eq-Cons-conv edges-of-walk-middle)
ultimately show ?B ⊆ ?A by blast
{

fix v ′ w ′ assume (v ′,w ′) ∈ ?A
then obtain xs-pre xs-post where xs-decomp: v # w # xs = xs-pre @ v ′ # w ′ # xs-post

using edges-of-walkE by blast
have (v ′,w ′) ∈ ?B proof (cases)

assume xs-pre = Nil then show ?thesis using xs-decomp by auto
next

assume xs-pre 6= Nil then show ?thesis
by (metis Cons-eq-append-conv UnI2 edges-of-walk-middle xs-decomp)

qed
}
then show ?A ⊆ ?B by auto

qed

lemma walk-edges-decomp:
edges-of-walk (xs @ x # xs ′) = edges-of-walk (xs @ [x]) ∪ edges-of-walk (x # xs ′)

proof (induct xs)
case (Cons v xs)
show ?case proof (cases)

assume xs = Nil

9

then show ?thesis using edges-of-walk-2 walk-edges-decomp-simple by auto
next

assume xs 6= Nil
then obtain w xs-post where xs = w # xs-post using list.exhaust-sel by blast
then show ?thesis using Cons.hyps walk-edges-decomp-simple by auto

qed
qed (simp add: edges-of-walk-empty(2))

lemma walk-edges-decomp ′:
edges-of-walk (xs @ v # w # xs ′) = edges-of-walk (xs @ [v]) ∪ {(v,w)} ∪ edges-of-walk (w # xs ′)
using walk-edges-decomp walk-edges-decomp-simple by (metis sup.assoc)

lemma walk-edges-vertices: assumes (v, w) ∈ edges-of-walk xs shows v ∈ set xs w ∈ set xs
using assms edges-of-walkE by force+

lemma walk-edges-subset:
assumes edges-subsets: edges-of-walk xs ⊆ edges-of-walk ys

and non-trivial: tl xs 6= Nil
shows set xs ⊆ set ys

proof
fix v assume v ∈ set xs
then obtain xs-pre xs-post where

xs-decomp: xs = xs-pre @ v # xs-post by (meson split-list)
show v ∈ set ys proof (cases)

assume xs-pre = Nil
then have xs-post 6= Nil using xs-decomp non-trivial by auto
then have xs = xs-pre @ v # hd xs-post # tl xs-post by (simp add: xs-decomp)
then have (v, hd xs-post) ∈ edges-of-walk xs using edges-of-walk-def by auto
then show ?thesis using walk-edges-vertices(1) edges-subsets by fastforce

next
assume xs-pre 6= Nil
then have xs = butlast xs-pre @ last xs-pre # v # xs-post by (simp add: xs-decomp)
then have (last xs-pre, v) ∈ edges-of-walk xs using edges-of-walk-def by auto
then show ?thesis using walk-edges-vertices(2) edges-subsets by fastforce

qed
qed

A path has no repeated vertices, so if we split a path at an edge we find that the two pieces
do not contain this edge any more.
lemma path-edges:

assumes path xs (v,w) ∈ edges-of-walk xs
shows ∃ xs-pre xs-post. xs = xs-pre @ v # w # xs-post
∧ (v,w) /∈ edges-of-walk (xs-pre @ [v])
∧ (v,w) /∈ edges-of-walk (w # xs-post)

proof−
obtain xs-pre xs-post where

xs-decomp: xs = xs-pre @ v # w # xs-post by (meson assms(2) edges-of-walkE)
then have (v,w) /∈ edges-of-walk (xs-pre @ [v]) using assms(1) edges-of-walkE

by (metis path-from-to-ends list.discI path-decomp ′ path-from-toI snoc-eq-iff-butlast)
moreover have (v,w) /∈ edges-of-walk (w # xs-post) using assms(1)

by (metis edges-of-walkE in-set-conv-decomp path-decomp(2) path-first-vertex xs-decomp)

10

ultimately show ?thesis using xs-decomp by blast
qed

lemma path-edges-remove-prefix:
assumes path (xs @ x # xs ′)
shows edges-of-walk (xs @ [x]) = edges-of-walk (xs @ x # xs ′) − edges-of-walk (x # xs ′)

proof−
{

fix v w assume ∗: (v,w) ∈ edges-of-walk (xs @ [x])
then have 1 : (v,w) ∈ edges-of-walk (xs @ x # xs ′)

using walk-edges-decomp[of xs x xs ′] by force
moreover have (v,w) /∈ edges-of-walk (x # xs ′) proof

assume contra: (v,w) ∈ edges-of-walk (x # xs ′)
then have w ∈ set (x # xs ′) by (meson walk-edges-vertices(2))
moreover have w 6= x using assms contra ∗ 1

by (metis path-decomp(2) UnE edges-of-walkE edges-of-walk-edge list.set-intros(1)
path-2 path-disjoint path-first-vertex self-append-conv2 set-append walk-edges-vertices(1))

moreover have w ∈ set (xs @ [x]) by (meson ∗ walk-edges-vertices(2))
ultimately show False using assms by auto

qed
ultimately have (v,w) ∈ edges-of-walk (xs @ x # xs ′) − edges-of-walk (x # xs ′) by blast

}
then show ?thesis using walk-edges-decomp[of xs x xs ′] by auto

qed

4.5 The First Edge of a Walk

In the proof of Menger’s Theorem, we will often talk about the first edge of a path. Let us
define this concept.
fun first-edge-of-walk where

first-edge-of-walk (v # w # xs) = (v, w)
| first-edge-of-walk [v] = undefined
| first-edge-of-walk [] = undefined

lemma first-edge-in-edges: tl xs 6= Nil =⇒ first-edge-of-walk xs ∈ edges-of-walk xs
unfolding edges-of-walk-def by (induct rule: first-edge-of-walk.induct) auto

lemma first-edge-hd-tl: [[v ;xs; w; tl xs 6= Nil]] =⇒ first-edge-of-walk xs = (v, hd (tl xs))
by (induct xs rule: first-edge-of-walk.induct) auto

lemma first-edge-first:
assumes v ;xs; w (v,w ′) ∈ edges-of-walk xs
shows first-edge-of-walk xs = (v,w ′)

using assms proof (induct rule: first-edge-of-walk.induct)
case (1 v w xs)
then show ?case

by (metis path-decomp(1) append-self-conv2 edges-of-walkE first-edge-of-walk.simps(1)
hd-append hd-in-set not-distinct-conv-prefix path-from-toE)

next
case (2 v)
then show ?case using path-edges by fastforce

11

qed blast

4.6 Distance

The distance between two vertices is the minimum length of a path. Note that this is not
a symmetric function because we are on digraphs.
definition distance :: ′a ⇒ ′a ⇒ nat where

distance v w ≡ Min { length xs | xs. v;xs;w }

The Min operator applies only to finite sets, so let us prove that this is the case.
lemma distance-lengths-finite: finite { length xs | xs. v;xs;w } proof−

have { length xs | xs. v;xs;w } ⊆ { n | n. n ≤ card V } using path-length by blast
then show ?thesis using finite-Collect-le-nat by (meson finite-subset)

qed

If we have a concrete path from v to w, then the length of this path bounds the distance
from v to w.
lemma distance-upper-bound: v;xs;w =⇒ distance v w ≤ length xs

unfolding distance-def using Min-le[OF distance-lengths-finite] by blast

Another characterization of distance: If we have a concrete minimal path from v to w, this
defines the distance.
lemma distance-witness:

assumes xs: v ;xs; w
and xs-min:

∧
xs ′. v ;xs ′; w =⇒ length xs ≤ length xs ′

shows distance v w = length xs
proof−

have
∧

d. d ∈ {length xs | xs. v ;xs; w} =⇒ length xs ≤ d using xs-min by blast
then show ?thesis unfolding distance-def using Min-eqI

by (metis (mono-tags, lifting) distance-lengths-finite xs mem-Collect-eq)
qed

4.7 Subgraphs

We only need one kind of subgraph: The subgraph obtained by removing a single vertex.
definition remove-vertex :: ′a ⇒ (′a, ′b) Graph-scheme where

remove-vertex x ≡ G(| verts := V − {x}, arcs := Restr E (V − {x}) |)

lemma remove-vertex-V : V remove-vertex x = V − {x} unfolding remove-vertex-def by auto
lemma remove-vertex-V ′: V remove-vertex x ⊆ V unfolding remove-vertex-def by auto
lemma remove-vertex-E : Eremove-vertex x = Restr E (V − {x}) unfolding remove-vertex-def by
simp
lemma remove-vertex-E ′: v →remove-vertex x w =⇒ v→w by (simp add: remove-vertex-E)
lemma remove-vertex-E ′′: [[v→w; v 6= x; w 6= x]] =⇒ v →remove-vertex x w

by (simp add: edges-are-in-V remove-vertex-E)

Of course, this is still a digraph.
lemma remove-vertex-Digraph: Digraph (remove-vertex v) proof

let ?V = V remove-vertex v let ?E = Eremove-vertex v

12

show finite ?V unfolding remove-vertex-def using finite-vertex-set by simp
show ?E ⊆ ?V × ?V proof

fix e assume e ∈ ?E
then have e ∈ (V − {v}) × (V − {v}) by (metis Int-iff remove-vertex-E)
then show e ∈ ?V × ?V using remove-vertex-V by auto

qed
have

∧
x y. [[(x,y) ∈ ?E ; (x,y) /∈ E]] =⇒ (y,x) ∈ ?E unfolding remove-vertex-def by simp

qed

We are also going to need a few lemmas about how walks and paths behave when we remove
a vertex.
First, if we remove a vertex that is not on a walk xs, then xs is still a walk after removing
this vertex.
lemma remove-vertex-walk:

assumes walk xs x /∈ set xs
shows Digraph.walk (remove-vertex x) xs

proof−
interpret H : Digraph remove-vertex x using remove-vertex-Digraph by blast
show ?thesis using assms proof (induct rule: walk.induct)

case (Singleton v)
then have v ∈ V − {x} by simp
then show ?case using remove-vertex-V by simp

next
case (Cons v w vs)
then have v →remove-vertex x w using remove-vertex-E ′′ by auto
then show ?case

by (meson Cons.hyps(3) Cons.prems(1) H .Cons assms(2) list.set-intros(2))
qed simp

qed

The same holds for paths.
lemma remove-vertex-path-from-to:
[[v ;xs; w; x ∈ V ; x /∈ set xs]] =⇒ v ;xs;remove-vertex x w
using path-from-to-def remove-vertex-walk by fastforce

Conversely, if something was a walk or a path in the subgraph, then it is also a walk or a
path in the supergraph.
lemma remove-vertex-walk-add:

assumes Digraph.walk (remove-vertex x) xs
shows walk xs

proof−
interpret H : Digraph remove-vertex x using remove-vertex-Digraph by blast
show ?thesis using assms proof (induct rule: H .walk.induct)

case (Singleton v)
then show ?case by (meson Digraph.Singleton Digraph-axioms remove-vertex-V ′ subsetD)

next
case (Cons v w vs)
then show ?case by (meson Digraph.Cons Digraph-axioms remove-vertex-E ′)

qed simp
qed

13

lemma remove-vertex-path-from-to-add: v ;xs;remove-vertex x w =⇒ v ;xs; w
using path-from-to-def remove-vertex-walk-add by fastforce

end — context Digraph

4.8 Two Distinguished Distinct Non-adjacent Vertices.

The setup for Menger’s Theorem requires two distinguished distinct non-adjacent vertices
v0 and v1. Let us pin down this concept with the following locale.
locale v0-v1-Digraph = Digraph +

fixes v0 v1 :: ′a
assumes v0-V : v0 ∈ V and v1-V : v1 ∈ V

and v0-nonadj-v1 : ¬v0→v1
and v0-neq-v1 : v0 6= v1

The only lemma we need about v0-v1-Digraph for now is that it is closed under removing a
vertex that is not v0 or v1.
lemma (in v0-v1-Digraph) remove-vertices-v0-v1-Digraph:

assumes v 6= v0 v 6= v1
shows v0-v1-Digraph (remove-vertex v) v0 v1

proof (rule v0-v1-Digraph.intro)
show v0-v1-Digraph-axioms (remove-vertex v) v0 v1

using assms v0-nonadj-v1 v0-neq-v1 v0-V v1-V remove-vertex-V remove-vertex-E ′

by unfold-locales blast+
qed (simp add: remove-vertex-Digraph)

4.9 Undirected Graphs

We represent undirecteded graphs as a special case of digraphs where every undirected
edge is represented as an edge in both directions. We also exclude loops because loops are
uncommon in undirected graphs.
As we will explain in the next paragraph, all of this has no bearing on the validity of
Menger’s Theorem for undirected graphs.
locale Graph = Digraph +

assumes undirected: v→w = w→v
and no-loops: ¬v→v

We observe that this makes Digraph a sublocale of Graph, meaning that every theorem we
prove for digraphs automatically holds for undirected graphs, although it may not make
sense because for example “connectedness” (if we were to define it) would need different
definitions for directed and undirected graphs.
Fortunately, the notions of “separator” and “internally vertex-disjoint paths” on directed
graphs are the same for undirected graphs. So Menger’s Theorem, when we eventually prove
it in the Digraph locale, will apply automatically to the Graph locale without any additional
work.
For this reason we will not use the Graph locale again in this proof development and it exists
merely to show that undirected graphs are covered as a special case by our definitions.

14

end

5 Separations
theory Separations imports Helpers Graph begin

locale Separation = v0-v1-Digraph +
fixes S :: ′a set
assumes S-V : S ⊆ V

and v0-notin-S : v0 /∈ S
and v1-notin-S : v1 /∈ S
and S-separates:

∧
xs. v0;xs;v1 =⇒ set xs ∩ S 6= {}

lemma (in Separation) finite-S [simp]: finite S using S-V finite-subset finite-vertex-set by auto

lemma (in v0-v1-Digraph) subgraph-separation-extend:
assumes v 6= v0 v 6= v1 v ∈ V

and Separation (remove-vertex v) v0 v1 S
shows Separation G v0 v1 (insert v S)

proof (rule Separation.intro)
interpret G: Separation remove-vertex v v0 v1 S using assms(4) .
show v0-v1-Digraph G v0 v1 using v0-v1-Digraph-axioms .
show Separation-axioms G v0 v1 (insert v S) proof

show insert v S ⊆ V by (meson G.S-V assms(3) insert-subsetI remove-vertex-V ′ subset-trans)
show v0 /∈ insert v S using G.v0-notin-S assms(1) by blast
show v1 /∈ insert v S using G.v1-notin-S assms(2) by blast

next
fix xs assume v0 ;xs; v1
show set xs ∩ insert v S 6= {} proof (cases)

assume v /∈ set xs
then have v0 ;xs;remove-vertex v v1

using remove-vertex-path-from-to ‹v0 ;xs; v1 › assms(3) by blast
then show ?thesis by (simp add: G.S-separates)

qed simp
qed

qed

lemma (in v0-v1-Digraph) subgraph-separation-min-size:
assumes v 6= v0 v 6= v1 v ∈ V

and no-small-separation:
∧

S . Separation G v0 v1 S =⇒ card S ≥ Suc n
and Separation (remove-vertex v) v0 v1 S

shows card S ≥ n
using subgraph-separation-extend
by (metis Separation.finite-S Suc-leD assms card-insert-disjoint insert-absorb not-less-eq-eq)

lemma (in v0-v1-Digraph) path-exists-if-no-separation:
assumes S ⊆ V v0 /∈ S v1 /∈ S ¬Separation G v0 v1 S
shows ∃ xs. v0;xs;v1 ∧ set xs ∩ S = {}
by (meson assms Separation.intro Separation-axioms.intro v0-v1-Digraph-axioms)

end

15

6 Internally Vertex-Disjoint Paths
theory DisjointPaths imports Separations begin

Menger’s Theorem talks about internally vertex-disjoint v0 -v1 -paths. Let us define this
concept.
locale DisjointPaths = v0-v1-Digraph +

fixes paths :: ′a Walk set
assumes paths:∧

xs. xs ∈ paths =⇒ v0;xs;v1
and paths-disjoint:

∧
xs ys v.

[[xs ∈ paths; ys ∈ paths; xs 6= ys; v ∈ set xs; v ∈ set ys]] =⇒ v = v0 ∨ v = v1

6.1 Basic Properties

The empty set of paths trivially satisfies the conditions.
lemma (in v0-v1-Digraph) DisjointPaths-empty: DisjointPaths G v0 v1 {}

by (simp add: DisjointPaths.intro DisjointPaths-axioms-def v0-v1-Digraph-axioms)

Re-adding a deleted vertex is fine.
lemma (in v0-v1-Digraph) DisjointPaths-supergraph:

assumes DisjointPaths (remove-vertex v) v0 v1 paths
shows DisjointPaths G v0 v1 paths

proof
interpret H : DisjointPaths remove-vertex v v0 v1 paths using assms .
show

∧
xs. xs ∈ paths =⇒ v0 ;xs; v1 using remove-vertex-path-from-to-add H .paths by blast

show
∧

xs ys v. [[xs ∈ paths; ys ∈ paths; xs 6= ys; v ∈ set xs; v ∈ set ys]] =⇒ v = v0 ∨ v = v1
by (meson DisjointPaths.paths-disjoint H .DisjointPaths-axioms)

qed

context DisjointPaths begin

lemma paths-in-all-paths: paths ⊆ all-paths unfolding all-paths-def using paths by blast
lemma finite-paths: finite paths

using finitely-many-paths infinite-super paths-in-all-paths by blast

lemma paths-edge-finite: finite (
⋃
(edges-of-walk ‘ paths)) proof−

have
⋃

(edges-of-walk ‘ paths) ⊆ E using edges-of-walk-in-E paths by fastforce
then show ?thesis by (meson finite-edge-set finite-subset)

qed

lemma paths-tl-notnil: xs ∈ paths =⇒ tl xs 6= Nil
by (metis path-from-toE hd-Cons-tl last-ConsL paths v0-neq-v1)

lemma paths-second-in-V : xs ∈ paths =⇒ hd (tl xs) ∈ V
by (metis paths edges-are-in-V (2) list.exhaust-sel path-from-toE paths-tl-notnil walk-first-edge ′)

lemma paths-second-not-v0 : xs ∈ paths =⇒ hd (tl xs) 6= v0
by (metis distinct.simps(2) hd-in-set list.exhaust-sel path-from-to-def paths paths-tl-notnil)

lemma paths-second-not-v1 : xs ∈ paths =⇒ hd (tl xs) 6= v1

16

using paths paths-tl-notnil v0-nonadj-v1 walk-first-edge ′ by fastforce

lemma paths-second-disjoint: [[xs ∈ paths; ys ∈ paths; xs 6= ys]] =⇒ hd (tl xs) 6= hd (tl ys)
by (metis paths-disjoint Nil-tl hd-in-set list.set-sel(2)

paths-second-not-v0 paths-second-not-v1 paths-tl-notnil)

lemma paths-edge-disjoint:
assumes xs ∈ paths ys ∈ paths xs 6= ys
shows edges-of-walk xs ∩ edges-of-walk ys = {}

proof (rule ccontr)
assume edges-of-walk xs ∩ edges-of-walk ys 6= {}
then obtain v w where v-w: (v,w) ∈ edges-of-walk xs (v,w) ∈ edges-of-walk ys by auto
then have v ∈ set xs w ∈ set xs v ∈ set ys w ∈ set ys by (meson walk-edges-vertices)+
then have v = v0 ∨ v = v1 w = v0 ∨ w = v1 using assms paths-disjoint by blast+
then show False using v-w(1) assms(1) v0-nonadj-v1 edges-of-walk-edge path-edges

by (metis distinct-length-2-or-more path-decomp(2) path-from-to-def path-from-to-ends paths)
qed

Specify the conditions for adding a new disjoint path to the set of disjoint paths.
lemma DisjointPaths-extend:

assumes P-path: v0;P;v1
and P-disjoint:

∧
xs v. [[xs ∈ paths; xs 6= P; v ∈ set xs; v ∈ set P]] =⇒ v = v0 ∨ v = v1

shows DisjointPaths G v0 v1 (insert P paths)
proof

fix xs ys v
assume xs ∈ insert P paths ys ∈ insert P paths xs 6= ys v ∈ set xs v ∈ set ys
then show v = v0 ∨ v = v1

by (metis DisjointPaths.paths-disjoint DisjointPaths-axioms P-disjoint insert-iff)
next

show
∧

xs. xs ∈ insert P paths =⇒ v0 ;xs; v1
using P-path paths by blast

qed

lemma DisjointPaths-reduce:
assumes paths ′ ⊆ paths
shows DisjointPaths G v0 v1 paths ′

proof
fix xs assume xs ∈ paths ′ then show v0 ;xs; v1 using assms paths by blast

next
fix xs ys v assume xs ∈ paths ′ ys ∈ paths ′ xs 6= ys v ∈ set xs v ∈ set ys
then show v = v0 ∨ v = v1 by (meson assms paths-disjoint subsetCE)

qed

6.2 Second Vertices

Let us now define the set of second vertices of the paths. We are going to need this in order
to find a path avoiding the old paths on its first edge.
definition second-vertex where second-vertex ≡ λxs :: ′a Walk. hd (tl xs)
definition second-vertices where second-vertices ≡ second-vertex ‘ paths

lemma second-vertex-inj: inj-on second-vertex paths

17

unfolding second-vertex-def using paths-second-disjoint by (meson inj-onI)

lemma second-vertices-card: card second-vertices = card paths
unfolding second-vertices-def using finite-paths card-image second-vertex-inj by blast

lemma second-vertices-in-V : second-vertices ⊆ V
unfolding second-vertex-def second-vertices-def using paths-second-in-V by blast

lemma v0-v1-notin-second-vertices: v0 /∈ second-vertices v1 /∈ second-vertices
unfolding second-vertices-def second-vertex-def
using paths-second-not-v0 paths-second-not-v1 by blast+

lemma second-vertices-new-path: hd (tl xs) /∈ second-vertices =⇒ xs /∈ paths
by (metis image-iff second-vertex-def second-vertices-def)

lemma second-vertices-first-edge:
[[xs ∈ paths; first-edge-of-walk xs = (v,w)]] =⇒ w ∈ second-vertices
unfolding second-vertices-def second-vertex-def
using first-edge-hd-tl paths paths-tl-notnil by fastforce

If we have no small separations, then the set of second vertices is not a separator and we
can find a path avoiding this set.
lemma disjoint-paths-new-path:

assumes no-small-separations:
∧

S . Separation G v0 v1 S =⇒ card S ≥ Suc (card paths)
shows ∃P-new. v0;P-new;v1 ∧ set P-new ∩ second-vertices = {}

proof−
have ¬Separation G v0 v1 second-vertices

using no-small-separations second-vertices-card by force
then show ?thesis

by (simp add: path-exists-if-no-separation second-vertices-in-V v0-v1-notin-second-vertices)
qed

We need the following predicate to find the first vertex on a new path that hits one of the
other paths. We add the condition x = v1 to cover the case paths = {}.
definition hitting-paths where

hitting-paths ≡ λx. x 6= v0 ∧ ((∃ xs ∈ paths. x ∈ set xs) ∨ x = v1)

end — DisjointPaths

7 One More Path

Let us define a set of disjoint paths with one more path. Except for the first and last vertex,
the new path must be disjoint from all other paths. The first vertex must be v0 and the last
vertex must be on some other path. In the ideal case, the last vertex will be v1, in which
case we are already done because we have found a new disjoint path between v0 and v1.
locale DisjointPathsPlusOne = DisjointPaths +

fixes P-new :: ′a Walk
assumes P-new:

v0 ;P-new; (last P-new)
and tl-P-new:

18

tl P-new 6= Nil
hd (tl P-new) /∈ second-vertices

and last-P-new:
hitting-paths (last P-new)∧

v. v ∈ set (butlast P-new) =⇒ ¬hitting-paths v
begin

7.1 Characterizing the New Path
lemma P-new-hd-disjoint:

∧
xs. xs ∈ paths =⇒ hd (tl P-new) 6= hd (tl xs)

using tl-P-new(2) unfolding second-vertices-def second-vertex-def by blast

lemma P-new-new: P-new /∈ paths using P-new-hd-disjoint by auto

definition paths-with-new where paths-with-new ≡ insert P-new paths

lemma card-paths-with-new: card paths-with-new = Suc (card paths)
unfolding paths-with-new-def using P-new-new by (simp add: finite-paths)

lemma paths-with-new-no-Nil: Nil /∈ paths-with-new
using P-new paths-tl-notnil paths-with-new-def by fastforce

lemma paths-with-new-path: xs ∈ paths-with-new =⇒ path xs
using P-new paths paths-with-new-def by auto

lemma paths-with-new-start-in-v0 : xs ∈ paths-with-new =⇒ hd xs = v0
using P-new paths paths-with-new-def by auto

7.2 The Last Vertex of the New Path

McCuaig in [McC84] calls the last vertex of P-new by the name x. However, this name is
somewhat confusing because it is so short and it will be visible in most places from now on,
so let us give this vertex the more descriptive name of new-last.
definition new-pre where new-pre ≡ butlast P-new
definition new-last where new-last ≡ last P-new

lemma P-new-decomp: P-new = new-pre @ [new-last]
by (metis new-pre-def append-butlast-last-id list.sel(2) tl-P-new(1) new-last-def)

lemma new-pre-not-Nil: new-pre 6= Nil using P-new(1) hitting-paths-def
by (metis P-new-decomp list.sel(3) self-append-conv2 tl-P-new(1))

lemma new-pre-hitting: x ′ ∈ set new-pre =⇒ ¬hitting-paths x ′

by (simp add: new-pre-def last-P-new(2))

lemma P-hit: hitting-paths new-last
by (simp add: last-P-new(1) new-last-def)

lemma new-last-neq-v0 : new-last 6= v0 using hitting-paths-def P-hit by force

lemma new-last-in-V : new-last ∈ V using P-new new-last-def path-in-V by fastforce

19

lemma new-last-to-v1 : ∃R. new-last ;R;remove-vertex v0 v1
proof (cases)

assume new-last = v1
then have new-last ;[v1];remove-vertex v0 v1

by (metis last.simps list.sel(1) list.set(1) list.simps(15) list.simps(3) path-from-to-def
path-singleton remove-vertex-path-from-to singletonD v0-V v0-neq-v1 v1-V)

then show ?thesis by blast
next

assume new-last 6= v1
then obtain xs where xs: xs ∈ paths new-last ∈ set xs

using hitting-paths-def last-P-new(1) new-last-def by auto
then obtain xs-pre xs-post where xs-decomp: xs = xs-pre @ new-last # xs-post

by (meson split-list)
then have new-last ;(new-last # xs-post); v1 using ‹xs ∈ paths›

by (metis paths last-appendR list.sel(1) list.simps(3) path-decomp(2) path-from-to-def)
then have new-last ;(new-last # xs-post);remove-vertex v0 v1

using remove-vertex-path-from-to
by (metis paths Set.set-insert xs-decomp xs(1) disjoint-insert(1) distinct-append hd-append

hitting-paths-def last-P-new(1) list.set-sel(1) path-from-to-def v0-V new-last-def)
then show ?thesis by blast

qed

lemma paths-plus-one-disjoint:
assumes xs ∈ paths-with-new ys ∈ paths-with-new xs 6= ys v ∈ set xs v ∈ set ys
shows v = v0 ∨ v = v1 ∨ v = new-last

proof−
have xs ∈ paths ∨ ys ∈ paths using assms(1 ,2 ,3) paths-with-new-def by auto
then have hitting-paths v ∨ v = v0 using assms(1 ,2 ,4 ,5) unfolding hitting-paths-def by blast
then show ?thesis using assms last-P-new(2) set-butlast paths-disjoint

by (metis insert-iff paths-with-new-def new-last-def)
qed

If the new path is disjoint, we are happy.
lemma P-new-solves-if-disjoint:

new-last = v1 =⇒ ∃ paths ′. DisjointPaths G v0 v1 paths ′ ∧ card paths ′ = Suc (card paths)
using DisjointPaths-extend P-new(1) paths-plus-one-disjoint card-paths-with-new
unfolding paths-with-new-def new-last-def by blast

7.3 Removing the Last Vertex
definition H-x where H-x ≡ remove-vertex new-last

lemma H-x-Digraph: Digraph H-x unfolding H-x-def using remove-vertex-Digraph .

lemma H-x-v0-v1-Digraph: new-last 6= v1 =⇒ v0-v1-Digraph H-x v0 v1 unfolding H-x-def
using remove-vertices-v0-v1-Digraph hitting-paths-def P-hit by (simp add: H-x-def)

20

7.4 A New Path Following the Other Paths

The following lemma is one of the most complicated technical lemmas in the proof of
Menger’s Theorem.
Suppose we have a non-trivial path whose edges are all in the edge set of path-with-new
and whose first edge equals the first edge of some P ∈ path-with-new. Also suppose that
the path does not contain v1 or new-last. Then it follows by induction that this path is an
initial segment of P.
Note that McCuaig does not mention this statement at all in his proof because it looks so
obvious.
lemma new-path-follows-old-paths:

assumes xs: v0 ;xs; w tl xs 6= Nil v1 /∈ set xs new-last /∈ set xs
and P: P ∈ paths-with-new hd (tl xs) = hd (tl P)
and edges-subset: edges-of-walk xs ⊆

⋃
(edges-of-walk ‘ paths-with-new)

shows edges-of-walk xs ⊆ edges-of-walk P
using xs P(2) edges-subset proof (induct length xs arbitrary: xs w)

case 0
then show ?case using xs(1) by auto

next
case (Suc n xs w)
have n 6= 0 using Suc.hyps(2) Suc.prems(1 ,2)

by (metis path-from-toE Nitpick.size-list-simp(2) Suc-inject length-0-conv)
show ?case proof (cases)

assume n = Suc 0
then obtain v w where v-w: xs = [v,w]

by (metis (full-types) Suc.hyps(2) length-0-conv length-Suc-conv)
then have v = v0 using Suc.prems(1) by auto
moreover have w = hd (tl P) using Suc.prems(5) v-w by auto
moreover have edges-of-walk xs = {(v, w)} using v-w edges-of-walk-2 by simp
moreover have (v0 , hd (tl P)) ∈ edges-of-walk P using P tl-P-new(1) P-new paths

by (metis first-edge-hd-tl first-edge-in-edges insert-iff paths-tl-notnil paths-with-new-def)
ultimately show ?thesis by auto

next
assume n 6= Suc 0
obtain xs ′ x where xs ′: xs = xs ′ @ [x]

by (metis path-from-toE Suc.prems(1) append-butlast-last-id)
then have n = length xs ′ using xs ′ using Suc.hyps(2) by auto
moreover have xs ′-path: v0 ;xs ′; last xs ′

using xs ′ Suc.prems(1) ‹tl xs 6= Nil› walk-decomp(1)
by (metis distinct-append hd-append list.sel(3) path-from-to-def self-append-conv2)

moreover have tl xs ′ 6= [] using ‹n 6= Suc 0 ›
by (metis path-from-toE Nitpick.size-list-simp(2) calculation(1 ,2))

moreover have v1 /∈ set xs ′ using xs ′ Suc.prems(3) by auto
moreover have new-last /∈ set xs ′ using xs ′ Suc.prems(4) by auto
moreover have hd (tl xs ′) = hd (tl P)

using xs ′ ‹tl xs ′ 6= []› Suc.prems(5) calculation(2) by auto
moreover have edges-of-walk xs ′ ⊆

⋃
(edges-of-walk ‘ paths-with-new)

using xs ′ Suc.prems(6) edges-of-comp1 by blast
ultimately have xs ′-edges: edges-of-walk xs ′ ⊆ edges-of-walk P using Suc.hyps(1) by blast
moreover have edges-of-walk xs = edges-of-walk xs ′ ∪ { (last xs ′, x) }

21

using xs ′ using walk-edges-decomp ′[of butlast xs ′ last xs ′ x Nil] xs ′-path
by (metis path-from-toE Un-empty-right append-assoc append-butlast-last-id butlast.simps(2)

edges-of-walk-empty(2) last-ConsL last-ConsR list.distinct(1))
moreover have (last xs ′, x) ∈ edges-of-walk P proof (rule ccontr)

assume contra: (last xs ′, x) /∈ edges-of-walk P
have xs-last-edge: (last xs ′, x) ∈ edges-of-walk xs

using xs ′ calculation(2) by blast
then obtain P ′ where

P ′: P ′ ∈ paths-with-new (last xs ′, x) ∈ edges-of-walk P ′

using Suc.prems(6) by auto
then have P 6= P ′ using contra by blast
moreover have last xs ′ ∈ set P using xs-last-edge xs ′-edges ‹tl xs ′ 6= []› xs ′-path

by (metis path-from-toE last-in-set subsetCE walk-edges-subset)
moreover have last xs ′ ∈ set P ′ using P ′(2) by (meson walk-edges-vertices(1))
ultimately have last xs ′ = v0 ∨ last xs ′ = v1 ∨ last xs ′ = new-last

using paths-plus-one-disjoint P ′(1) P paths-with-new-def by auto
then show False using Suc.prems(3) ‹new-last /∈ set xs ′› ‹tl xs ′ 6= []› xs ′ xs ′-path

by (metis path-from-toE butlast-snoc in-set-butlastD last-in-set last-tl path-from-to-first)
qed
ultimately show ?thesis by simp

qed
qed

end — locale DisjointPathsPlusOne

end

8 Induction of Menger’s Theorem
theory MengerInduction imports Separations DisjointPaths begin

8.1 No Small Separations

In this section we set up the general structure of the proof of Menger’s Theorem. The proof
is based on induction over sep-size (called n in McCuaig’s proof), the minimum size of a
separator.
locale NoSmallSeparationsInduct = v0-v1-Digraph +

fixes sep-size :: nat
— The size of a minimum separator.
assumes no-small-separations:

∧
S . Separation G v0 v1 S =⇒ card S ≥ Suc sep-size

— The induction hypothesis.
and no-small-separations-hyp:

∧
G ′ :: (′a, ′b) Graph-scheme.

(
∧

S . Separation G ′ v0 v1 S =⇒ card S ≥ sep-size)
=⇒ v0-v1-Digraph G ′ v0 v1
=⇒ ∃ paths. DisjointPaths G ′ v0 v1 paths ∧ card paths = sep-size

Next, we want to combine this with DisjointPathsPlusOne.
If a minimum separator has size at least Suc sep-size, then it follows immediately from
the induction hypothesis that we have sep-size many disjoint paths. We then observe that

22

second-vertices of these paths is not a separator because card second-vertices = sep-size. So
there exists a new path from v0 to v1 whose second vertex is not in second-vertices.
If this path is disjoint from the other paths, we have found Suc sep-size many disjoint paths,
so assume it is not disjoint. Then there exist a vertex x on the new path that is not v0 or
v1 such that new-last hits one of the other paths. Let P-new be the initial segment of the
new path up to x. We call x, the last vertex of P-new, now new-last.
We then assume that paths and P-new have been chosen in such a way that distance new-last
v1 is minimal.
First, we define a locale that expresses that we have no small separators (with the cor-
responding induction hypothesis) as well as sep-size many internally vertex-disjoint paths
(with sep-size 6= 0 because the other case is trivial) and also one additional path that starts
in v1, whose second vertex is not among second-vertices and whose last vertex is new-last.
We will add the assumption new-last 6= v1 soon.
locale ProofStepInduct =

NoSmallSeparationsInduct G v0 v1 sep-size + DisjointPathsPlusOne G v0 v1 paths P-new
for G (structure) and v0 v1 paths P-new sep-size +
assumes sep-size-not0 : sep-size 6= 0

and paths-sep-size: card paths = sep-size

lemma (in ProofStepInduct) hitting-paths-v1 : hitting-paths v1
unfolding hitting-paths-def using paths v0-neq-v1 by force

8.2 Choosing Paths Avoiding new_last

Let us now consider only the non-trivial case that new-last 6= v1.
locale ProofStepInduct-NonTrivial = ProofStepInduct +

assumes new-last-neq-v1 : new-last 6= v1
begin

The next step is the observation that in the graph remove-vertex new-last, which we called
H-x, there are also sep-size many internally vertex-disjoint paths, again by the induction
hypothesis.
lemma Q-exists: ∃Q. DisjointPaths H-x v0 v1 Q ∧ card Q = sep-size
proof−

have
∧

S . Separation H-x v0 v1 S =⇒ card S ≥ sep-size
using subgraph-separation-min-size paths walk-in-V P-hit new-last-neq-v1 no-small-separations

by (metis H-x-def new-last-in-V new-last-neq-v0)
then show ?thesis using H-x-v0-v1-Digraph new-last-neq-v1 by (meson no-small-separations-hyp)

qed

We want to choose these paths in a clever way, too. Our goal is to choose these paths
such that the number of edges in

⋃
(edges-of-walk ‘ Q) ∩ (E −

⋃
(edges-of-walk ‘

paths-with-new)) is minimal.
definition B where B ≡ E −

⋃
(edges-of-walk ‘ paths-with-new)

definition Q-weight where Q-weight ≡ λQ. card (
⋃

(edges-of-walk ‘ Q) ∩ B)

23

definition Q-good where Q-good ≡ λQ. DisjointPaths H-x v0 v1 Q ∧ card Q = sep-size ∧
(∀Q ′. DisjointPaths H-x v0 v1 Q ′ ∧ card Q ′ = sep-size −→ Q-weight Q ≤ Q-weight Q ′)

definition Q where Q ≡ SOME Q. Q-good Q

It is easy to show that such a Q exists.
lemma Q: DisjointPaths H-x v0 v1 Q card Q = sep-size

and Q-min:
∧

Q ′. DisjointPaths H-x v0 v1 Q ′ ∧ card Q ′ = sep-size =⇒ Q-weight Q ≤ Q-weight
Q ′

proof−
obtain Q ′ where DisjointPaths H-x v0 v1 Q ′ card Q ′ = sep-size∧

Q ′′. DisjointPaths H-x v0 v1 Q ′′ ∧ card Q ′′ = sep-size =⇒ Q-weight Q ′ ≤ Q-weight Q ′′

using arg-min-ex[of λQ. DisjointPaths H-x v0 v1 Q ∧ card Q = sep-size Q-weight]
new-last-neq-v1 Q-exists by metis

then have Q-good Q ′ unfolding Q-good-def by blast
then show DisjointPaths H-x v0 v1 Q card Q = sep-size∧

Q ′. DisjointPaths H-x v0 v1 Q ′ ∧ card Q ′ = sep-size =⇒ Q-weight Q ≤ Q-weight Q ′

using someI [of Q-good] by (simp-all add: Q-def Q-good-def)
qed

sublocale Q: DisjointPaths H-x v0 v1 Q using Q(1) .

8.3 Finding a Path Avoiding Q

Because Q contains only sep-size many paths, we have card Q.second-vertices = sep-size.
So there exists a path P-k among the Suc sep-size many paths in paths-with-new such that
the second vertex of P-k is not among Q.second-vertices.
definition P-k where

P-k ≡ SOME P-k. P-k ∈ paths-with-new ∧ hd (tl P-k) /∈ Q.second-vertices

lemma P-k: P-k ∈ paths-with-new hd (tl P-k) /∈ Q.second-vertices proof−
obtain y where y ∈ insert (hd (tl P-new)) second-vertices y /∈ Q.second-vertices proof−

have hd (tl P-new) /∈ second-vertices using P-new-decomp tl-P-new(2) by simp
moreover have card second-vertices = card Q.second-vertices using Q(2) paths-sep-size

using Q.second-vertices-card second-vertices-card by (simp add: new-last-neq-v1)
ultimately have card (insert (hd (tl P-new)) second-vertices) = Suc (card Q.second-vertices)

using finite-paths second-vertices-def by auto
then show ?thesis

using that card-finite-less-ex
by (metis Q.finite-paths Q.second-vertices-def Zero-not-Suc card.infinite finite-imageI lessI)

qed
then have ∃P-k. P-k ∈ paths-with-new ∧ hd (tl P-k) /∈ Q.second-vertices

by (metis (mono-tags, lifting) image-iff insertCI insertE paths-with-new-def second-vertex-def
second-vertices-def)

then show P-k ∈ paths-with-new hd (tl P-k) /∈ Q.second-vertices
using someI [of λP-k. P-k ∈ paths-with-new ∧ hd (tl P-k) /∈ Q.second-vertices] P-k-def by auto

qed

lemma path-P-k [simp]: path P-k by (simp add: P-k(1) paths-with-new-path)
lemma hd-P-k-v0 [simp]: hd P-k = v0 by (simp add: P-k(1) paths-with-new-start-in-v0)

24

definition hitting-Q-or-new-last where
hitting-Q-or-new-last ≡ λy. y 6= v0 ∧ (y = new-last ∨ (∃Q-hit ∈ Q. y ∈ set Q-hit))

P-k hits a vertex in Q or it hits new-last because it either ends in v1 or in new-last.
lemma P-k-hits-Q: ∃ y ∈ set P-k. hitting-Q-or-new-last y proof (cases)

assume P-k 6= P-new
then have v1 ∈ set P-k

by (metis P-k(1) insertE last-in-set path-from-toE paths paths-with-new-def)
moreover have ∃Q-witness. Q-witness ∈ Q using Q(2) sep-size-not0 finite.simps by fastforce
ultimately show ?thesis

using Q.paths path-from-toE hitting-Q-or-new-last-def v0-neq-v1 by fastforce
qed (metis P-new new-last-neq-v0 hitting-Q-or-new-last-def last-in-set path-from-toE new-last-def)

end — locale ProofStepInduct-NonTrivial

8.4 Decomposing Pk

Having established with the previous lemma that P-k hits Q or new-last, let y be the first
such vertex on P-k. Then we can split P-k at this vertex.
locale ProofStepInduct-NonTrivial-P-k-pre = ProofStepInduct-NonTrivial +

fixes P-k-pre y P-k-post
assumes P-k-decomp: P-k = P-k-pre @ y # P-k-post

and y: hitting-Q-or-new-last y
and y-min:

∧
y ′. y ′ ∈ set P-k-pre =⇒ ¬hitting-Q-or-new-last y ′

We can always go from ProofStepInduct-NonTrivial to ProofStepInduct-NonTrivial-P-k-pre.
lemma (in ProofStepInduct-NonTrivial) ProofStepInduct-NonTrivial-P-k-pre-exists:

shows ∃P-k-pre y P-k-post.
ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths P-new sep-size P-k-pre y P-k-post

proof−
obtain y P-k-pre P-k-post where

P-k = P-k-pre @ y # P-k-post hitting-Q-or-new-last y∧
y ′. y ′ ∈ set P-k-pre =⇒ ¬hitting-Q-or-new-last y ′

using P-k-hits-Q split-list-first-prop[of P-k hitting-Q-or-new-last] by blast
then have ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths P-new sep-size P-k-pre y P-k-post

by unfold-locales
then show ?thesis by blast

qed

context ProofStepInduct-NonTrivial-P-k-pre begin
lemma y-neq-v0 : y 6= v0 using hitting-Q-or-new-last-def y by auto

lemma P-k-pre-not-Nil: P-k-pre 6= Nil
using P-k-decomp hd-P-k-v0 hitting-Q-or-new-last-def y by auto

lemma second-P-k-pre-not-in-Q: hd (tl (P-k-pre @ [y])) /∈ Q.second-vertices
using P-k(2) P-k-decomp P-k-pre-not-Nil
by (metis append-eq-append-conv2 append-self-conv hd-append2 list.sel(1) tl-append2)

definition H where H ≡ remove-vertex v0

25

sublocale H : Digraph H unfolding H-def using remove-vertex-Digraph .

lemma y-eq-v1-implies-P-k-neq-P-new: assumes y = v1 shows P-k 6= P-new proof
assume contra: P-k = P-new
have v0 ;(new-pre @ [new-last]); new-last

using P-new(1) P-new-decomp new-last-def by auto
then have v0 ;P-k; new-last using P-new-decomp contra by auto
moreover have P-k = P-k-pre @ v1 # P-k-post using P-k-decomp assms(1) by blast
ultimately have ∗∗: v0 ;(P-k-pre @ v1 # P-k-post); new-last by simp
then have v1 ∈ set P-new by (metis assms contra P-k-decomp in-set-conv-decomp)
then have new-last = v1

using hitting-paths-v1 assms last-P-new(2) set-butlast new-last-def by fastforce
then show False using new-last-neq-v1 by blast

qed

If y = v1, then we are done.
lemma y-eq-v1-solves:

assumes y = v1
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size

proof−
have P-k 6= P-new using y-eq-v1-implies-P-k-neq-P-new assms by blast
then have P-k = P-k-pre @ [y]

using P-k(1) P-k-decomp paths assms paths-with-new-def by fastforce
then have v0 ;(P-k-pre @ [y]); v1

using paths P-k(1) ‹P-k 6= P-new› by (simp add: paths-with-new-def)
moreover have new-last /∈ set P-k-pre

using hitting-Q-or-new-last-def y-min new-last-neq-v0 by auto
ultimately have v0 ;(P-k-pre @ [y]);H-x v1 using remove-vertex-path-from-to

by (simp add: H-x-def assms new-last-in-V new-last-neq-v1)
moreover {

fix xs v assume xs ∈ Q v ∈ set xs v ∈ set (P-k-pre @ [y]) v 6= v0 v 6= v1
then have v ∈ set P-k-pre using assms by simp
then have ¬hitting-Q-or-new-last v using y-min by blast
then have False using ‹v ∈ set xs› ‹xs ∈ Q› hitting-Q-or-new-last-def ‹v 6= v0 › by auto

}
ultimately have DisjointPaths H-x v0 v1 (insert (P-k-pre @ [y]) Q)

using Q.DisjointPaths-extend by blast
then have DisjointPaths G v0 v1 (insert (P-k-pre @ [y]) Q)
using DisjointPaths-supergraph H-x-def new-last-in-V new-last-neq-v0 new-last-neq-v1 by auto

moreover have card (insert (P-k-pre @ [y]) Q) = Suc sep-size proof−
have P-k-pre @ [y] /∈ Q

by (metis P-k(2) Q.second-vertices-def ‹P-k = P-k-pre @ [y]› image-iff second-vertex-def)
then show ?thesis by (simp add: Q(2) Q.finite-paths)

qed
ultimately show ?thesis by blast

qed
end — locale ProofStepInduct-NonTrivial-P-k-pre

end

26

9 The case y = new_last

theory Y-eq-new-last imports MengerInduction begin

We may assume y 6= v1 now because [[ProofStepInduct-NonTrivial-P-k-pre ?G ?v0 .0 ?v1 .0
?paths ?P-new ?sep-size ?P-k-pre ?y ?P-k-post; ?y = ?v1 .0]] =⇒ ∃ paths. DisjointPaths ?G
?v0 .0 ?v1 .0 paths ∧ card paths = Suc ?sep-size shows that y = v1 already gives us Suc
sep-size many disjoint paths.
We also assume that we have chosen the previous paths optimally in the sense that the
distance from new-last to v1 is minimal.
locale ProofStepInduct-y-eq-new-last = ProofStepInduct-NonTrivial-P-k-pre +

assumes y-neq-v1 : y 6= v1 and y-eq-new-last: y = new-last
and optimal-paths:

∧
paths ′ P-new ′.

ProofStepInduct G v0 v1 paths ′ P-new ′ sep-size
=⇒ H .distance (last P-new) v1 ≤ H .distance (last P-new ′) v1

begin

Let R be a shortest path from new-last to v1.
definition R where R ≡

SOME R. new-last ;R;H v1 ∧ (∀R ′. new-last ;R ′;H v1 −→ length R ≤ length R ′)

lemma R: new-last ;R;H v1
∧

R ′. new-last ;R ′;H v1 =⇒ length R ≤ length R ′ proof−
obtain R ′ where

R ′: new-last ;R ′;H v1
∧

R ′′. new-last ;R ′′;H v1 =⇒ length R ′ ≤ length R ′′

using arg-min-ex[OF new-last-to-v1] unfolding H-def by blast
then show new-last ;R;H v1

∧
R ′. new-last ;R ′;H v1 =⇒ length R ≤ length R ′

using someI [of λR. new-last ;R;H v1 ∧ (∀R ′. new-last ;R ′;H v1 −→ length R ≤ length
R ′)]

R-def by auto
qed

lemma v1-in-Q: ∃Q-hit ∈ Q. v1 ∈ set Q-hit proof−
obtain xs where xs ∈ Q using Q(2) sep-size-not0 by fastforce
then show ?thesis using Q.paths last-in-set by blast

qed

lemma R-hits-Q: ∃ z ∈ set R. Q.hitting-paths z proof−
have v1 ∈ set R using R(1) last-in-set by (metis path-from-to-def)
then show ?thesis unfolding Q.hitting-paths-def using v0-neq-v1 by auto

qed

lemma R-decomp-exists:
obtains R-pre z R-post

where R = R-pre @ z # R-post
and Q.hitting-paths z
and

∧
z ′. z ′ ∈ set R-pre =⇒ ¬Q.hitting-paths z ′

using R-hits-Q split-list-first-prop[of R Q.hitting-paths] by blast

We open an anonymous context in order to hide all but the final lemma. This also gives us
the decomposition of R whose existence we established above.

27

context fixes R-pre z R-post
assumes R-decomp: R = R-pre @ z # R-post

and z: Q.hitting-paths z
and z-min:

∧
z ′. z ′ ∈ set R-pre =⇒ ¬Q.hitting-paths z ′

begin
private lemma z-neq-v0 : z 6= v0 using z Q.hitting-paths-def by auto

private lemma z-neq-new-last: z 6= new-last proof
assume z = new-last
then obtain Q-hit where Q-hit: Q-hit ∈ Q new-last ∈ set Q-hit

using z Q.hitting-paths-def y-eq-new-last y-neq-v1 by auto
then have Q.path Q-hit by (meson Q.paths path-from-to-def)
then have set Q-hit ⊆ V − {new-last} using Q.walk-in-V H-x-def remove-vertex-V by simp
then show False using Q-hit(2) by blast

qed

private lemma R-pre-neq-Nil: R-pre 6= Nil using z-neq-new-last R-decomp R(1) by auto

private lemma z-closer-than-new-last: H .distance z v1 < H .distance new-last v1 proof−
have H .distance new-last v1 = length R using H .distance-witness R by auto
moreover have z ;(z # R-post);H v1 using R-decomp R(1)

by (metis H .walk-decomp(2) distinct-append last-appendR list.sel(1)
list.simps(3) path-from-to-def)

moreover have length R > length (z # R-post)
unfolding R-decomp using R-pre-neq-Nil by simp

ultimately show ?thesis using H .distance-upper-bound by fastforce
qed

private definition R ′-walk where R ′-walk ≡ P-k-pre @ R-pre @ [z]

private lemma R ′-walk-not-Nil: R ′-walk 6= Nil using R ′-walk-def R(1) by simp

private lemma R ′-walk-no-Q: [[v ∈ set R ′-walk; v 6= z]] =⇒ ¬Q.hitting-paths v proof−
fix v assume v ∈ set R ′-walk v 6= z
moreover have v ∈ set P-k-pre =⇒ ¬Q.hitting-paths v

using Q.hitting-paths-def hitting-Q-or-new-last-def y-min v1-in-Q by auto
moreover have v ∈ set R-pre =⇒ ¬Q.hitting-paths v using z-min by simp
ultimately show ¬Q.hitting-paths v unfolding R ′-walk-def using R ′-walk-def by auto

qed

The original proof goes like this: “Let z be the first vertex of R on some path in Q. Then the
distance in H from z to v1 is less than the distance from new-last to v1. This contradicts
the choice of paths and P-new.”
It does not say exactly why it contradicts the choice of paths and P-new. It seems we can
choose Q together with R ′-walk as our new paths plus extrapath. But this seems to be
wrong because we cannot show that R ′-walk is a path: P-k-pre and R-pre could intersect.
So we use [[walk ?xs; ?xs 6= []; hd ?xs = ?v; last ?xs = ?w]] =⇒ ∃ ys. ?v ;ys; ?w ∧ set ys
⊆ set ?xs to transform R ′-walk into a path R ′.

private definition R ′ where
R ′ ≡ SOME R ′. hd (tl R ′-walk) ;R ′; z ∧ set R ′ ⊆ set (tl R ′-walk)

28

private lemma R ′: hd (tl R ′-walk) ;R ′; z set R ′ ⊆ set (tl R ′-walk) proof−
have tl R ′-walk 6= Nil by (simp add: P-k-pre-not-Nil R ′-walk-def)
moreover have last R ′-walk = z unfolding R ′-walk-def by simp
moreover have walk (tl R ′-walk)

by (metis (no-types, lifting) path-from-toE walk-tl H-def P-k-decomp R ′-walk-def R(1)
R-decomp path-P-k y-eq-new-last hd-append list.sel(1) list.simps(3) path-decomp ′

remove-vertex-path-from-to-add walk-comp walk-decomp(1) walk-last-edge)
ultimately obtain R ′′ where hd (tl R ′-walk) ;R ′′; z set R ′′ ⊆ set (tl R ′-walk)

using walk-to-path[of tl R ′-walk hd (tl R ′-walk) z] last-tl by force
then show hd (tl R ′-walk) ;R ′; z set R ′ ⊆ set (tl R ′-walk) unfolding R ′-def

using someI [of λR ′. hd (tl R ′-walk) ;R ′; z ∧ set R ′ ⊆ set (tl R ′-walk)] by auto
qed

private lemma hd-R ′: hd R ′ = hd (tl P-k) proof−
have hd (tl R ′-walk) = hd (tl P-k) proof (cases)

assume tl P-k-pre = Nil
then show ?thesis unfolding R ′-walk-def using P-k-decomp R(1) P-k-pre-not-Nil y-eq-new-last

by (metis H .path-from-toE R-decomp hd-append list.sel(1) tl-append2)
next

assume tl P-k-pre 6= Nil
then show ?thesis unfolding R ′-walk-def using P-k-pre-not-Nil by (simp add: P-k-decomp)

qed
then show ?thesis using R ′(1) by auto

qed

private lemma R ′-no-Q: [[v ∈ set R ′; v 6= z]] =⇒ ¬Q.hitting-paths v
using R ′-walk-no-Q by (meson R ′(2) R ′-walk-not-Nil list.set-sel(2) subsetCE)

private lemma v0-R ′-path: v0 ;(v0 # R ′); z proof−
have v0→hd R ′ using hd-R ′ hd-P-k-v0

by (metis Nil-is-append-conv P-k-decomp P-k-pre-not-Nil path-P-k list.distinct(1)
list.exhaust-sel path-first-edge ′ tl-append2)

moreover have v0 /∈ set R ′ proof−
have v0 /∈ set R using R(1) H-def H .path-in-V remove-vertex-V

by (simp add: path-from-to-def subset-Diff-insert)
then have v0 /∈ set R-pre using R-decomp by simp
moreover have v0 /∈ set (tl P-k-pre) using hd-P-k-v0 path-P-k path-first-vertex

by (metis P-k-decomp P-k-pre-not-Nil hd-append list.exhaust-sel path-decomp(1))
ultimately show ?thesis using R ′(2) unfolding R ′-walk-def

using P-k-pre-not-Nil z-neq-v0 by auto
qed
ultimately show ?thesis using path-cons

by (metis R ′(1) last.simps list.sel(1) list.simps(3) path-from-to-def)
qed

private corollary z-last-R ′: z = last (v0 # R ′) using v0-R ′-path by auto

private lemma z-eq-v1-solves:
assumes z = v1
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size

proof−

29

interpret Q ′: DisjointPaths G v0 v1 Q
using DisjointPaths-supergraph H-x-def Q.DisjointPaths-axioms by auto

have v0 ;(v0 # R ′); v1 using assms v0-R ′-path by auto
moreover {

fix xs v assume xs ∈ Q xs 6= v0 # R ′ v ∈ set xs v ∈ set (v0 # R ′)
then have v = v0 ∨ v = v1 using R ′-no-Q Q.hitting-paths-def ‹z = v1 › by auto

}
ultimately have DisjointPaths G v0 v1 (insert (v0 # R ′) Q)

using Q ′.DisjointPaths-extend by blast
moreover have card (insert (v0 # R ′) Q) = Suc sep-size

by (simp add: P-k(2) Q(2) Q.finite-paths Q.second-vertices-new-path hd-R ′)
ultimately show ?thesis by blast

qed

private lemma z-neq-v1-solves:
assumes z 6= v1
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size

proof−
have ProofStepInduct G v0 v1 Q (v0 # R ′) sep-size proof (rule ProofStepInduct.intro)

show DisjointPathsPlusOne G v0 v1 Q (v0 # R ′) proof (rule DisjointPathsPlusOne.intro)
show DisjointPaths G v0 v1 Q

using DisjointPaths-supergraph H-x-def Q.DisjointPaths-axioms by auto
show DisjointPathsPlusOne-axioms G v0 v1 Q (v0 # R ′) proof

show v0 ;(v0 # R ′); last (v0 # R ′) using v0-R ′-path by blast
show tl (v0 # R ′) 6= [] using R ′(1) by auto
show hd (tl (v0 # R ′)) /∈ Q.second-vertices using hd-R ′ P-k(2) by auto
show Q.hitting-paths (last (v0 # R ′)) using z z-last-R ′ by auto

next
fix v assume v ∈ set (butlast (v0 # R ′))
then show ¬Q.hitting-paths v using R ′-no-Q path-from-to-last[OF v0-R ′-path]

by (metis Q.hitting-paths-def in-set-butlastD set-ConsD)
qed

qed
show ProofStepInduct-axioms Q sep-size using sep-size-not0 Q(2) by unfold-locales

qed (insert NoSmallSeparationsInduct-axioms)
then have H .distance (last P-new) v1 ≤ H .distance (last (v0 # R ′)) v1

using H-def optimal-paths[of Q v0 # R ′] by blast
then have False using z-last-R ′ new-last-def z-closer-than-new-last by simp
then show ?thesis by blast

qed

corollary with-optimal-paths-solves ′:
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size
using optimal-paths z-eq-v1-solves z-neq-v1-solves by blast

end — anonymous context

corollary with-optimal-paths-solves:
∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size
using optimal-paths with-optimal-paths-solves ′ R-decomp-exists by blast

end — locale ProofStepInduct-y-eq-new-last
end

30

10 The case y 6= new_last

theory Y-neq-new-last imports MengerInduction begin

Let us now consider the case that y 6= v1 ∧ y 6= new-last. Our goal is to show that this is
inconsistent: The following locale will be unsatisfiable, proving that y = v1 ∨ y = new-last
holds.
locale ProofStepInduct-y-neq-new-last = ProofStepInduct-NonTrivial-P-k-pre +

assumes y-neq-v1 : y 6= v1 and y-neq-new-last: y 6= new-last
begin

lemma Q-hit-exists: obtains Q-hit Q-hit-pre Q-hit-post where
Q-hit ∈ Q y ∈ set Q-hit Q-hit = Q-hit-pre @ y # Q-hit-post

proof−
obtain Q-hit where Q-hit ∈ Q y ∈ set Q-hit

using hitting-Q-or-new-last-def y y-neq-v1 y-neq-new-last by auto
then show ?thesis using that by (meson split-list)

qed

We open an anonymous context because we do not want to export any lemmas except the
final lemma proving the contradiction. This is also an easy way to get the decomposition
of Q-hit, whose existence we have established above.
context

fixes Q-hit Q-hit-pre Q-hit-post
assumes Q-hit: Q-hit ∈ Q y ∈ set Q-hit

and Q-hit-decomp: Q-hit = Q-hit-pre @ y # Q-hit-post
begin

private lemma Q-hit-v0-v1 : v0 ;Q-hit;H-x v1 using Q.paths Q-hit(1) by blast

private lemma Q-hit-vertices: set Q-hit ⊆ V − {new-last}
using Q.walk-in-V H-x-def path-from-to-def remove-vertex-V Q-hit-v0-v1 by fastforce

private lemma Q-hit-pre-not-Nil: Q-hit-pre 6= Nil
using Q-hit-v0-v1 y-neq-v0 unfolding Q-hit-decomp by auto

private lemma tl-Q-hit-pre: tl (Q-hit-pre @ [y]) 6= Nil using Q-hit-pre-not-Nil by simp

private lemma Q-hit-pre-edges: edges-of-walk (Q-hit-pre @ [y]) ∩ B 6= {} proof
assume edges-of-walk (Q-hit-pre @ [y]) ∩ B = {}
moreover have edges-of-walk (Q-hit-pre @ [y]) ⊆ E

by (metis Q.paths H-x-def Q-hit(1) Q-hit-decomp edges-of-walk-in-E path-decomp ′

path-from-to-def remove-vertex-walk-add)
ultimately have Q-hit-pre-edges:

edges-of-walk (Q-hit-pre @ [y]) ⊆
⋃
(edges-of-walk ‘ paths-with-new)

unfolding B-def by blast
then have ∗: first-edge-of-walk (Q-hit-pre @ [y]) ∈

⋃
(edges-of-walk ‘ paths-with-new)

using tl-Q-hit-pre first-edge-in-edges by blast

define v ′ where v ′ ≡ hd (tl (Q-hit-pre @ [y]))
then have v ′: (v0 , v ′) = first-edge-of-walk (Q-hit-pre @ [y])

using first-edge-hd-tl Q-hit-pre-not-Nil tl-Q-hit-pre

31

by (metis Q.path-from-toE Q-hit-decomp Q-hit-v0-v1 first-edge-of-walk.simps(1)
hd-Cons-tl hd-append snoc-eq-iff-butlast)

then obtain P-i where
P-i: P-i ∈ paths-with-new (v0 , v ′) ∈ edges-of-walk P-i using ∗ by auto

then have P-i-first: first-edge-of-walk P-i = (v0 , v ′)
using first-edge-first paths-with-new-def paths P-new by (metis insert-iff)

moreover have first-edge-of-walk P-k = (v0 , hd (tl P-k))
by (metis P-k-decomp P-k-pre-not-Nil append-is-Nil-conv first-edge-of-walk.simps(1)

hd-P-k-v0 list.distinct(1) list.exhaust-sel tl-append2)
ultimately have P-i 6= P-k

by (metis Q.first-edge-first P-k(2) Q.second-vertices-first-edge Q-hit(1) Q-hit-decomp
Q-hit-v0-v1 Un-iff v ′ tl-Q-hit-pre first-edge-in-edges walk-edges-decomp)

Then P-k and P-i intersect in y, which is not one of v0, v1, or new-last. So we get a
contradiction because these two paths should be disjoint on all other vertices.

moreover have v1 /∈ set (Q-hit-pre @ [y])
using Q-hit-v0-v1 Q-hit-decomp y-neq-v1 by (simp add: Q.path-from-to-last ′)

moreover have new-last /∈ set (Q-hit-pre @ [y]) proof−
have new-last /∈ set Q-hit-pre using Q-hit-decomp Q-hit-vertices by auto
then show ?thesis using y-neq-new-last by auto

qed
moreover have hd (tl (Q-hit-pre @ [y])) = hd (tl P-i) proof−

have hd (tl P-i) = v ′ using P-i-first P-i(1) tl-P-new(1)
by (metis Pair-inject first-edge-of-walk.simps(1) insert-iff list.collapse

paths-tl-notnil paths-with-new-def tl-Nil)
then show ?thesis using v ′-def by simp

qed
moreover have v0 ;(Q-hit-pre @ [y]); y

by (metis Q.path-decomp ′ H-x-def Q-hit-decomp Q-hit-v0-v1 Q-hit-pre-not-Nil
hd-append2 path-from-to-def remove-vertex-walk-add snoc-eq-iff-butlast)

ultimately have edges-of-walk (Q-hit-pre @ [y]) ⊆ edges-of-walk P-i
using new-path-follows-old-paths tl-Q-hit-pre P-i(1) Q-hit-pre-edges by blast

from walk-edges-subset[OF this] have y ∈ set P-i by (simp add: tl-Q-hit-pre)
moreover have y ∈ set P-k using P-k-decomp by auto
ultimately show False

using y-neq-v0 y-neq-v1 y-neq-new-last ‹P-i 6= P-k›
paths-plus-one-disjoint[OF P-i(1), of P-k y] P-k(1) P-new-decomp by auto

qed

private lemma P-k-pre-edges: edges-of-walk (P-k-pre @ [y]) ∩ B = {} proof−
have edges-of-walk (P-k-pre @ [y]) ⊆

⋃
(edges-of-walk ‘ paths-with-new)

proof (cases)
assume P-k = P-new
then have edges-of-walk (P-k-pre @ [y]) ⊆ edges-of-walk P-new

using P-k-decomp edges-of-comp1 by force
then show ?thesis unfolding paths-with-new-def by blast

next
assume P-k 6= P-new
then have P-k ∈ paths using P-k(1) paths-with-new-def by blast
then have edges-of-walk (P-k-pre @ [y]) ⊆

⋃
(edges-of-walk ‘ paths)

32

using edges-of-comp1 [of P-k-pre @ [y]] P-k-decomp by auto
then show ?thesis unfolding paths-with-new-def by blast

qed
then show ?thesis unfolding B-def by blast

qed

private definition Q-hit ′ where Q-hit ′ ≡ P-k-pre @ y # Q-hit-post

private lemma Q-hit ′-v0-v1 : v0 ;Q-hit ′; v1 proof−
{

fix v assume v ∈ set P-k-pre
then have ¬Q.hitting-paths v using Q.paths Q-hit(1) y-min

by (metis Q.hitting-paths-def hitting-Q-or-new-last-def last-in-set path-from-to-def)
moreover have v0 /∈ set Q-hit-post using Q.path-from-to-first ′ Q-hit-v0-v1

unfolding Q-hit-decomp by blast
ultimately have v /∈ set Q-hit-post unfolding Q.hitting-paths-def

using Q-hit(1) Q-hit-decomp by auto
}
then have set P-k-pre ∩ set Q-hit-post = {} by blast
then show ?thesis unfolding Q-hit ′-def using path-from-to-combine

by (metis H-x-def P-k-decomp P-k-pre-not-Nil Q-hit-decomp Q-hit-v0-v1 append-is-Nil-conv
hd-P-k-v0 path-P-k path-from-toI remove-vertex-path-from-to-add)

qed

private lemma Q-hit ′-v0-v1-H-x: v0 ;Q-hit ′;H-x v1 proof−
have new-last /∈ set P-k-pre using new-last-neq-v0 hitting-Q-or-new-last-def y-min by auto
moreover have new-last /∈ set Q-hit-post using Q-hit-vertices unfolding Q-hit-decomp by auto
ultimately have new-last /∈ set Q-hit ′ using y-neq-new-last Q-hit ′-def by auto
then show ?thesis using remove-vertex-path-from-to[OF Q-hit ′-v0-v1] H-x-def new-last-in-V

by simp
qed

private definition Q ′ where Q ′ ≡ insert Q-hit ′ (Q − {Q-hit})

private lemma Q-hit-edges-disjoint:⋃
(edges-of-walk ‘ (Q − {Q-hit})) ∩ edges-of-walk Q-hit = {}

using DiffD1 Q.paths-edge-disjoint Q-hit(1) by fastforce

private lemma Q-hit ′-notin-Q-minus-Q-hit: Q-hit ′ /∈ Q − {Q-hit} proof−
have hd (tl Q-hit ′) /∈ Q.second-vertices using P-k(2) P-k-decomp

by (metis P-k-pre-not-Nil Q-hit ′-def append-eq-append-conv2 append-self-conv hd-append2
list.sel(1) tl-append2)

then show ?thesis using Q.second-vertices-new-path[of Q-hit ′] by blast
qed

private lemma Q-weight-smaller : Q-weight Q ′ < Q-weight Q proof−
define Q-edges where Q-edges ≡

⋃
(edges-of-walk ‘ Q) ∩ B

define Q ′-edges where Q ′-edges ≡
⋃
(edges-of-walk ‘ Q ′) ∩ B

{
fix v w assume ∗: (v,w) ∈ Q ′-edges (v,w) /∈ Q-edges
then have v-w-in-B: (v,w) ∈ B unfolding Q ′-edges-def by blast

33

obtain Q ′-v-w-witness where Q ′-v-w-witness:
Q ′-v-w-witness ∈ Q ′ (v,w) ∈ edges-of-walk Q ′-v-w-witness
using ∗(1) unfolding Q ′-edges-def by blast

have Q ′-v-w-witness 6= Q-hit ′ proof
assume Q ′-v-w-witness = Q-hit ′

then have edges-of-walk Q ′-v-w-witness =
edges-of-walk (P-k-pre @ [y]) ∪ edges-of-walk (y # Q-hit-post)

unfolding Q-hit ′-def using walk-edges-decomp[of P-k-pre y Q-hit-post] by simp
moreover have (v,w) /∈ edges-of-walk (P-k-pre @ [y])

using P-k-pre-edges v-w-in-B by blast
moreover have (v,w) /∈ edges-of-walk (y # Q-hit-post) proof

assume (v,w) ∈ edges-of-walk (y # Q-hit-post)
then have (v,w) ∈ edges-of-walk Q-hit

unfolding Q-hit-decomp by (metis UnCI walk-edges-decomp)
then show False using ∗(2) v-w-in-B Q-hit(1) unfolding Q-edges-def by blast

qed
ultimately show False using Q ′-v-w-witness(2) by blast

qed
then have Q ′-v-w-witness ∈ Q using Q ′-v-w-witness(1) unfolding Q ′-def by blast
then have False using ∗(2) v-w-in-B Q ′-v-w-witness(2) unfolding Q-edges-def by blast

}
moreover have ∃ e ∈ Q-edges. e /∈ Q ′-edges proof−

obtain v w where v-w: (v,w) ∈ edges-of-walk (Q-hit-pre @ [y]) ∩ B
using Q-hit-pre-edges by auto

then have v-w-in-Q-hit: (v,w) ∈ edges-of-walk Q-hit ∩ B unfolding Q-hit-decomp
by (metis Int-iff UnCI walk-edges-decomp)

then have (v,w) ∈ Q-edges unfolding Q-edges-def using Q-hit(1) by blast
moreover have (v,w) /∈ Q ′-edges proof

assume (v,w) ∈ Q ′-edges
then have (v,w) ∈ edges-of-walk Q-hit ′ unfolding Q ′-edges-def Q ′-def

using IntD1 v-w-in-Q-hit Q-hit-edges-disjoint by auto
then have (v,w) ∈ edges-of-walk (y # Q-hit-post) unfolding Q-hit ′-def

using v-w P-k-pre-edges
by (metis (no-types, lifting) IntD2 UnE disjoint-iff-not-equal walk-edges-decomp)

then show False using v-w Q-hit(1) Q.paths Q-hit-decomp
by (metis DiffE Q.path-edges-remove-prefix IntD1 path-from-to-def)

qed
ultimately show ?thesis by blast

qed
moreover have finite Q-edges unfolding Q-edges-def B-def by simp
moreover have finite Q ′-edges unfolding Q ′-edges-def B-def by simp
ultimately have card Q ′-edges < card Q-edges by (metis card-seteq not-le subrelI)
then have card (

⋃
(edges-of-walk ‘ Q ′) ∩ B) < card (

⋃
(edges-of-walk ‘ Q) ∩ B)

unfolding Q-edges-def Q ′-edges-def by blast
then show ?thesis unfolding Q-weight-def by blast

qed

private lemma DisjointPaths-Q ′: DisjointPaths H-x v0 v1 Q ′ proof−
interpret Q-reduced: DisjointPaths H-x v0 v1 Q − {Q-hit}

using Q.DisjointPaths-reduce[of Q − {Q-hit}] by blast
{

34

fix xs v
assume xs: xs ∈ Q − {Q-hit}

and v: v ∈ set xs v ∈ set Q-hit ′ v 6= v0 v 6= v1
have v /∈ set P-k-pre proof

assume v ∈ set P-k-pre
then have ¬hitting-Q-or-new-last v using y-min by blast
moreover have v 6= new-last using v(2) calculation hitting-Q-or-new-last-def v(3) by auto
ultimately show False unfolding hitting-Q-or-new-last-def using v(1 ,3) xs by blast

qed
moreover have v 6= y

by (metis DiffE Q.paths-disjoint Q-hit y-neq-v0 y-neq-v1 insert-iff v(1) xs)
moreover have v /∈ set Q-hit-post proof

assume v ∈ set Q-hit-post
then have v ∈ set Q-hit unfolding Q-hit-decomp by simp
then show False using Q.paths-disjoint[of Q-hit xs] xs Q-hit(1) v by blast

qed
ultimately have False using v(2) unfolding Q-hit ′-def by simp

}
then show ?thesis using Q-reduced.DisjointPaths-extend Q-hit ′-v0-v1-H-x

unfolding Q ′-def by blast
qed

private lemma card-Q ′: card Q ′ = sep-size proof−
have Suc (card (Q − {Q-hit})) = card Q

using Q-hit(1) Q.finite-paths by (meson card-Suc-Diff1)
then show ?thesis using Q(2) Q.finite-paths Q-hit ′-notin-Q-minus-Q-hit

unfolding Q ′-def by simp
qed

lemma contradiction ′: False using Q-weight-smaller DisjointPaths-Q ′ card-Q ′ Q-min
using Suc-leI not-less-eq-eq by blast

end — anonymous context

corollary contradiction: False using Q-hit-exists contradiction ′ by blast

end — locale ProofStepInduct-y-neq-new-last
end

11 Menger’s Theorem
theory Menger imports Y-eq-new-last Y-neq-new-last begin

In this section, we combine the cases and finally prove Menger’s Theorem.
locale ProofStepInductOptimalPaths = ProofStepInduct +

assumes optimal-paths:∧
paths ′ P-new ′. ProofStepInduct G v0 v1 paths ′ P-new ′ sep-size
=⇒ Digraph.distance (remove-vertex v0) (last P-new) v1
≤ Digraph.distance (remove-vertex v0) (last P-new ′) v1

begin

lemma one-more-paths-exists-trivial:

35

new-last = v1 =⇒ ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size
using P-new-solves-if-disjoint paths-sep-size by blast

lemma one-more-paths-exists-nontrivial:
assumes new-last 6= v1
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size

proof−
interpret ProofStepInduct-NonTrivial G v0 v1 paths P-new sep-size

using assms new-last-def by unfold-locales simp
obtain P-k-pre y P-k-post where

ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths P-new sep-size P-k-pre y P-k-post
using ProofStepInduct-NonTrivial-P-k-pre-exists by blast

then interpret ProofStepInduct-NonTrivial-P-k-pre G v0 v1 paths P-new sep-size P-k-pre y
P-k-post .

{
assume y 6= v1 y = new-last
then interpret ProofStepInduct-y-eq-new-last G v0 v1 paths P-new sep-size P-k-pre y P-k-post

using optimal-paths[folded H-def] by unfold-locales
have ?thesis using with-optimal-paths-solves by blast

} moreover {
assume y 6= v1 y 6= new-last
then interpret ProofStepInduct-y-neq-new-last G v0 v1 paths P-new sep-size P-k-pre y P-k-post

by unfold-locales
have ?thesis using contradiction by blast

}
ultimately show ?thesis using y-eq-v1-solves by blast

qed

corollary one-more-paths-exists:
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size
using one-more-paths-exists-trivial one-more-paths-exists-nontrivial by blast

end

lemma (in ProofStepInduct) one-more-paths-exists:
∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = Suc sep-size

proof−
define paths-weight where paths-weight ≡
λ(paths ′ :: ′a Walk set, P-new ′). Digraph.distance (remove-vertex v0) (last P-new ′) v1

define paths-good where paths-good ≡
λ(paths ′, P-new ′). ProofStepInduct G v0 v1 paths ′ P-new ′ sep-size

have ∃ paths ′ P-new ′. paths-good (paths ′, P-new ′)
unfolding paths-good-def using ProofStepInduct-axioms by auto

then obtain P ′ where
P ′: paths-good P ′ ∧P ′′. paths-good P ′′ =⇒ paths-weight P ′ ≤ paths-weight P ′′

using arg-min-ex[of paths-good paths-weight] by blast

then obtain paths ′ P-new ′ where P ′-decomp: P ′ = (paths ′, P-new ′) by (meson surj-pair)

have optimal-paths-good: ProofStepInduct G v0 v1 paths ′ P-new ′ sep-size
using P ′(1) P ′-decomp unfolding paths-good-def by auto

36

have
∧

paths ′′ P-new ′′. paths-good (paths ′′, P-new ′′)
=⇒ paths-weight P ′ ≤ paths-weight (paths ′′, P-new ′′) by (simp add: P ′(2))

then have optimal-paths-min:
∧

paths ′′ P-new ′′. ProofStepInduct G v0 v1 paths ′′ P-new ′′ sep-size
=⇒ Digraph.distance (remove-vertex v0) (last P-new ′) v1

≤ Digraph.distance (remove-vertex v0) (last P-new ′′) v1
unfolding paths-good-def paths-weight-def by (simp add: P ′-decomp)

interpret G: ProofStepInductOptimalPaths G v0 v1 paths ′ P-new ′ sep-size
using optimal-paths-good optimal-paths-min
by (simp add: ProofStepInductOptimalPaths.intro ProofStepInductOptimalPaths-axioms.intro)

show ?thesis using G.one-more-paths-exists by blast
qed

11.1 Menger’s Theorem
theorem (in v0-v1-Digraph) menger :

assumes
∧

S . Separation G v0 v1 S =⇒ card S ≥ n
shows ∃ paths. DisjointPaths G v0 v1 paths ∧ card paths = n

using assms v0-v1-Digraph-axioms proof (induct n arbitrary: G)
case (0 G)
then show ?case using v0-v1-Digraph.DisjointPaths-empty[of G] card.empty by blast

next
case (Suc n G)
interpret G: v0-v1-Digraph G v0 v1 using Suc(3) .
have

∧
S . Separation G v0 v1 S =⇒ n ≤ card S using Suc.prems Suc-leD by blast

then obtain paths where P: DisjointPaths G v0 v1 paths card paths = n using Suc(1 ,3) by
blast

interpret G: DisjointPaths G v0 v1 paths using P(1) .

obtain P-new where
P-new: v0 ;P-new;G v1 set P-new ∩ G.second-vertices = {}
using G.disjoint-paths-new-path P(2) Suc.prems(1) by blast

have P-new-new: P-new /∈ paths
by (metis G.paths-tl-notnil G.second-vertex-def G.second-vertices-def G.path-from-toE IntI

P-new empty-iff image-eqI list.set-sel(1) list.set-sel(2))

have G.hitting-paths v1 unfolding G.hitting-paths-def using v0-neq-v1 by blast
then have ∃ x ∈ set P-new. G.hitting-paths x using P-new(1) by fastforce
then obtain new-pre x new-post where

P-new-decomp: P-new = new-pre @ x # new-post
and x: G.hitting-paths x∧

y. y ∈ set new-pre =⇒ ¬G.hitting-paths y
by (metis split-list-first-prop)

have 1 : DisjointPathsPlusOne G v0 v1 paths (new-pre @ [x]) proof
show v0 ;(new-pre @ [x]);G last (new-pre @ [x]) using P-new(1)

by (metis G.path-decomp ′ P-new-decomp append-is-Nil-conv hd-append2 list.distinct(1)
list.sel(1) path-from-to-def self-append-conv2)

then show tl (new-pre @ [x]) 6= []
by (metis DisjointPaths.hitting-paths-def G.DisjointPaths-axioms G.path-from-toE

butlast.simps(1) butlast-snoc list.distinct(1) list.sel(1) self-append-conv2
tl-append2 x(1))

37

have new-pre 6= Nil using G.hitting-paths-def P-new(1) P-new-decomp x(1) by auto
then have hd (tl (new-pre @ [x])) = hd (tl P-new) by (simp add: P-new-decomp hd-append)
then show hd (tl (new-pre @ [x])) /∈ G.second-vertices

by (metis P-new(2) P-new-decomp ‹new-pre 6= []› append-is-Nil-conv disjoint-iff-not-equal
list.distinct(1) list.set-sel(1) list.set-sel(2) tl-append2)

show G.hitting-paths (last (new-pre @ [x])) using x(1) by auto
show

∧
v. v ∈ set (butlast (new-pre @ [x])) =⇒ ¬G.hitting-paths v by (simp add: x(2))

qed

have 2 : NoSmallSeparationsInduct G v0 v1 n
by (simp add: G.v0-v1-Digraph-axioms NoSmallSeparationsInduct.intro

NoSmallSeparationsInduct-axioms-def Suc.hyps Suc.prems(1))

show ?case proof (rule ccontr)
assume not-case: ¬?case
have x 6= v1 proof

assume x = v1
define paths ′ where paths ′ = insert P-new paths
{

fix xs v
assume ∗: xs ∈ paths v ∈ set xs v ∈ set P-new v 6= v0 v 6= v1
have v ∈ set new-pre

by (metis ∗(3 ,5) G.path-from-to-ends G.path-from-toE P-new(1) P-new-decomp
‹x = v1 › butlast-snoc set-butlast)

then have False using ∗(1 ,2 ,4) G.hitting-paths-def x(2) by auto
}
then have DisjointPaths G v0 v1 paths ′ unfolding paths ′-def

using G.DisjointPaths-extend P-new(1) by blast
moreover have card paths ′ = Suc n

using P-new-new by (simp add: G.finite-paths P(2) paths ′-def)
ultimately show False using not-case by blast

qed
have ProofStepInduct-axioms paths n proof

show n 6= 0
using G.DisjointPaths-extend G.finite-paths P(2) P-new(1) not-case card-insert-disjoint
by fastforce

qed (insert P(2))
then have ProofStepInduct G v0 v1 paths (new-pre @ [x]) n

using 1 2 by (simp add: ProofStepInduct.intro)
then show False using ProofStepInduct.one-more-paths-exists not-case by metis

qed
qed

The previous theorem was the difficult direction of Menger’s Theorem. Let us now prove
the other direction: If we have n disjoint paths, than every separator must contain at least
n vertices. This direction is rather trivial because every separator needs to separate at least
the n paths, so we do not need induction or an elaborate setup to prove this.
theorem (in v0-v1-Digraph) menger-trivial:

assumes DisjointPaths G v0 v1 paths card paths = n
shows

∧
S . Separation G v0 v1 S =⇒ card S ≥ n

proof−

38

interpret DisjointPaths G v0 v1 paths using assms(1) .
fix S assume Separation G v0 v1 S
then interpret S : Separation G v0 v1 S .

Our plan is to show n ≤ card S by defining an injective function from paths into S. Because
we have card paths = n, the result follows.
For the injective function, we simply use the observation stated above: Every path needs to
be separated by S at some vertex, so we can choose such a vertex.

define f where f ≡ λxs. SOME v. v ∈ S ∧ v ∈ set xs

have f-good:
∧

xs. xs ∈ paths =⇒ f xs ∈ S ∧ f xs ∈ set xs proof−
fix xs assume xs ∈ paths
then obtain v where v ∈ set xs ∩ S using S .S-separates paths by fastforce
then show f xs ∈ S ∧ f xs ∈ set xs unfolding f-def

using someI [of λv. v ∈ S ∧ v ∈ set xs v] by blast
qed

This f is injective because no two paths intersect in the same vertex.
have inj-on f paths proof

fix xs ys
assume ∗: xs ∈ paths ys ∈ paths f xs = f ys
then obtain v where v ∈ S v ∈ set xs v ∈ set ys

using f-good by fastforce
then show xs = ys using ∗(1 ,2) paths-disjoint S .v0-notin-S S .v1-notin-S by fastforce

qed

then show card S ≥ n using assms(2) f-good
by (metis S .finite-S finite-paths image-subsetI inj-on-iff-card-le)

qed

11.2 Self-contained Statement of the Main Theorem

Let us state both directions of Menger’s Theorem again in a more self-contained way in the
Digraph locale. Stating the theorems in a self-contained way helps avoiding mistakes due
to wrong definitions hidden in one of the numerous locales we used and also significantly
reduces the work needed to review this formalization.
With the statements below, all you need to do in order to verify that this formalization ac-
tually expresses Menger’s Theorem (and not something else), is to look into the assumptions
and definitions of the Digraph locale.
theorem (in Digraph) menger :

fixes v0 v1 :: ′a and n :: nat
assumes v0-V : v0 ∈ V

and v1-V : v1 ∈ V
and v0-nonadj-v1 : ¬v0→v1
and v0-neq-v1 : v0 6= v1
and no-small-separators:

∧
S .

[[S ⊆ V ; v0 /∈ S ; v1 /∈ S ;
∧

xs. v0 ;xs; v1 =⇒ set xs ∩ S 6= {}]] =⇒ card S ≥ n
shows ∃ paths. card paths = n ∧ (∀ xs ∈ paths.

v0 ;xs; v1 ∧ (∀ ys ∈ paths − {xs}. (∀ v ∈ set xs ∩ set ys. v = v0 ∨ v = v1)))

39

proof−
interpret v0-v1-Digraph G v0 v1 using v0-V v1-V v0-nonadj-v1 v0-neq-v1 by unfold-locales
have

∧
S . Separation G v0 v1 S =⇒ n ≤ card S using no-small-separators

by (simp add: Separation.S-V Separation.S-separates Separation.v0-notin-S Separation.v1-notin-S)
then obtain paths where

paths: DisjointPaths G v0 v1 paths card paths = n using no-small-separators menger by blast
then show ?thesis
by (metis DiffD1 DiffD2 DisjointPaths.paths DisjointPaths.paths-disjoint IntD1 IntD2 singletonI)

qed

theorem (in Digraph) menger-trivial:
fixes v0 v1 :: ′a and n :: nat
assumes v0-V : v0 ∈ V

and v1-V : v1 ∈ V
and v0-nonadj-v1 : ¬v0→v1
and v0-neq-v1 : v0 6= v1
and n-paths: card paths = n
and paths-disjoint: ∀ xs ∈ paths.

v0 ;xs; v1 ∧ (∀ ys ∈ paths − {xs}. (∀ v ∈ set xs ∩ set ys. v = v0 ∨ v = v1))
shows

∧
S . [[S ⊆ V ; v0 /∈ S ; v1 /∈ S ;

∧
xs. v0 ;xs; v1 =⇒ set xs ∩ S 6= {}]] =⇒ card S ≥ n

proof−
interpret v0-v1-Digraph G v0 v1 using v0-V v1-V v0-nonadj-v1 v0-neq-v1 by unfold-locales
interpret DisjointPaths G v0 v1 paths proof

show
∧

xs. xs ∈ paths =⇒ v0 ;xs; v1 using paths-disjoint by simp
next

fix xs ys v assume xs ∈ paths ys ∈ paths xs 6= ys v ∈ set xs v ∈ set ys
then have xs ∈ paths ys ∈ paths − {xs} v ∈ set xs ∩ set ys by blast+
then show v = v0 ∨ v = v1 using paths-disjoint by blast

qed
fix S assume S ⊆ V v0 /∈ S v1 /∈ S

∧
xs. v0 ;xs; v1 =⇒ set xs ∩ S 6= {}

then interpret Separation G v0 v1 S by unfold-locales
show card S ≥ n using menger-trivial DisjointPaths-axioms Separation-axioms n-paths by blast

qed

end

40

References

[Loc16] Andreas Lochbihler. A formal proof of the max-flow min-cut theorem for count-
able networks. Archive of Formal Proofs, May 2016. http://isa-afp.org/entries/
MFMC_Countable.shtml, Formal proof development.

[McC84] William McCuaig. A simple proof of Menger’s theorem. Journal of Graph Theory,
8(3):427–429, 1984. doi:10.1002/jgt.3190080311.

[Men27] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927. URL: http://eudml.org/doc/211191.

41

http://isa-afp.org/entries/MFMC_Countable.shtml
http://isa-afp.org/entries/MFMC_Countable.shtml
https://doi.org/10.1002/jgt.3190080311
http://eudml.org/doc/211191

	1 Introduction
	2 Relation to Min-Cut Max-Flow
	3 Helpers
	4 Graphs
	4.1 Walks
	4.2 Paths
	4.3 The Set of All Paths
	4.4 Edges of Walks
	4.5 The First Edge of a Walk
	4.6 Distance
	4.7 Subgraphs
	4.8 Two Distinguished Distinct Non-adjacent Vertices.
	4.9 Undirected Graphs

	5 Separations
	6 Internally Vertex-Disjoint Paths
	6.1 Basic Properties
	6.2 Second Vertices

	7 One More Path
	7.1 Characterizing the New Path
	7.2 The Last Vertex of the New Path
	7.3 Removing the Last Vertex
	7.4 A New Path Following the Other Paths

	8 Induction of Menger's Theorem
	8.1 No Small Separations
	8.2 Choosing Paths Avoiding new_last
	8.3 Finding a Path Avoiding Q
	8.4 Decomposing Pk

	9 The case y = new_last
	10 The case y =new_last
	11 Menger's Theorem
	11.1 Menger's Theorem
	11.2 Self-contained Statement of the Main Theorem

	Bibliography

