
The Median-Of-Medians Selection Algorithm

Manuel Eberl

March 17, 2025

Abstract

This entry provides an executable functional implementation of the
Median-of-Medians algorithm [1] for selecting the k-th smallest element
of an unsorted list deterministically in linear time. The size bounds for
the recursive call that lead to the linear upper bound on the run-time
of the algorithm are also proven.

Contents
1 The Median-of-Medians Selection Algorithm 1

1.1 Some facts about lists and multisets 1
1.2 The dual order type . 2
1.3 Chopping a list into equal-sized sublists 3
1.4 k-th order statistics and medians 4
1.5 A more liberal notion of medians 6
1.6 Properties of a median-of-medians 7
1.7 The recursive step . 8
1.8 Medians of lists of length at most 5 9
1.9 Median-of-medians selection algorithm 11

1 The Median-of-Medians Selection Algorithm
theory Median-Of-Medians-Selection

imports Complex-Main HOL−Library.Multiset
begin

1.1 Some facts about lists and multisets
lemma mset-concat: mset (concat xss) = sum-list (map mset xss)
〈proof 〉

lemma set-mset-sum-list [simp]: set-mset (sum-list xs) = (
⋃

x∈set xs. set-mset x)
〈proof 〉

lemma filter-mset-image-mset:

1

filter-mset P (image-mset f A) = image-mset f (filter-mset (λx. P (f x)) A)
〈proof 〉

lemma filter-mset-sum-list: filter-mset P (sum-list xs) = sum-list (map (filter-mset
P) xs)
〈proof 〉

lemma sum-mset-mset-mono:
assumes (

∧
x. x ∈# A =⇒ f x ⊆# g x)

shows (
∑

x∈#A. f x) ⊆# (
∑

x∈#A. g x)
〈proof 〉

lemma mset-filter-mono:
assumes A ⊆# B

∧
x. x ∈# A =⇒ P x =⇒ Q x

shows filter-mset P A ⊆# filter-mset Q B
〈proof 〉

lemma size-mset-sum-mset-distrib: size (sum-mset A :: ′a multiset) = sum-mset
(image-mset size A)
〈proof 〉

lemma sum-mset-mono:
assumes

∧
x. x ∈# A =⇒ f x ≤ (g x :: ′a :: {ordered-ab-semigroup-add,comm-monoid-add})

shows (
∑

x∈#A. f x) ≤ (
∑

x∈#A. g x)
〈proof 〉

lemma filter-mset-is-empty-iff : filter-mset P A = {#} ←→ (∀ x. x ∈# A −→ ¬P
x)
〈proof 〉

lemma sorted-filter-less-subset-take:
assumes sorted xs i < length xs
shows {# x ∈# mset xs. x < xs ! i #} ⊆# mset (take i xs)
〈proof 〉

lemma sorted-filter-greater-subset-drop:
assumes sorted xs i < length xs
shows {# x ∈# mset xs. x > xs ! i #} ⊆# mset (drop (Suc i) xs)
〈proof 〉

1.2 The dual order type

The following type is a copy of a given ordered base type, but with the
ordering reversed. This will be useful later because we can do some of our
reasoning simply by symmetry.
typedef ′a dual-ord = UNIV :: ′a set morphisms of-dual-ord to-dual-ord
〈proof 〉

setup-lifting type-definition-dual-ord

2

instantiation dual-ord :: (ord) ord
begin

lift-definition less-eq-dual-ord :: ′a dual-ord ⇒ ′a dual-ord ⇒ bool is
λa b :: ′a. a ≥ b 〈proof 〉

lift-definition less-dual-ord :: ′a dual-ord ⇒ ′a dual-ord ⇒ bool is
λa b :: ′a. a > b 〈proof 〉

instance 〈proof 〉
end

instance dual-ord :: (preorder) preorder
〈proof 〉

instance dual-ord :: (linorder) linorder
〈proof 〉

1.3 Chopping a list into equal-sized sublists
function chop :: nat ⇒ ′a list ⇒ ′a list list where

chop n [] = []
| chop 0 xs = []
| n > 0 =⇒ xs 6= [] =⇒ chop n xs = take n xs # chop n (drop n xs)
〈proof 〉

termination 〈proof 〉

context
includes lifting-syntax

begin

lemma chop-transfer [transfer-rule]:
((=) ===> list-all2 R ===> list-all2 (list-all2 R)) chop chop
〈proof 〉

end

lemma chop-reduce: chop n xs = (if n = 0 ∨ xs = [] then [] else take n xs # chop
n (drop n xs))
〈proof 〉

lemma concat-chop [simp]: n > 0 =⇒ concat (chop n xs) = xs
〈proof 〉

lemma chop-elem-not-Nil [simp,dest]: ys ∈ set (chop n xs) =⇒ ys 6= []
〈proof 〉

lemma chop-eq-Nil-iff [simp]: chop n xs = [] ←→ n = 0 ∨ xs = []

3

〈proof 〉

lemma chop-ge-length-eq: n > 0 =⇒ xs 6= [] =⇒ n ≥ length xs =⇒ chop n xs =
[xs]
〈proof 〉

lemma length-chop-part-le: ys ∈ set (chop n xs) =⇒ length ys ≤ n
〈proof 〉

lemma length-nth-chop:
assumes i < length (chop n xs)
shows length (chop n xs ! i) =

(if i = length (chop n xs) − 1 ∧ ¬n dvd length xs then length xs mod n
else n)
〈proof 〉

lemma length-chop:
assumes n > 0
shows length (chop n xs) = nat dlength xs / ne
〈proof 〉

lemma sum-msets-chop: n > 0 =⇒ (
∑

ys←chop n xs. mset ys) = mset xs
〈proof 〉

lemma UN-sets-chop: n > 0 =⇒ (
⋃

ys∈set (chop n xs). set ys) = set xs
〈proof 〉

lemma in-set-chopD [dest]:
assumes x ∈ set ys ys ∈ set (chop d xs)
shows x ∈ set xs
〈proof 〉

1.4 k-th order statistics and medians

This returns the k-th smallest element of a list. This is also known as the
k-th order statistic.
definition select :: nat ⇒ ′a list ⇒ (′a :: linorder) where

select k xs = sort xs ! k

The median of a list, where, for lists of even lengths, the smaller one is
favoured:
definition median where median xs = select ((length xs − 1) div 2) xs

lemma select-in-set [intro,simp]:
assumes k < length xs
shows select k xs ∈ set xs
〈proof 〉

4

lemma median-in-set [intro, simp]:
assumes xs 6= []
shows median xs ∈ set xs
〈proof 〉

We show that selection and medians does not depend on the order of the
elements:
lemma sort-cong: mset xs = mset ys =⇒ sort xs = sort ys
〈proof 〉

lemma select-cong:
k = k ′ =⇒ mset xs = mset xs ′ =⇒ select k xs = select k ′ xs ′

〈proof 〉

lemma median-cong: mset xs = mset xs ′ =⇒ median xs = median xs ′

〈proof 〉

Selection distributes over appending lists under certain conditions:
lemma sort-append:

assumes
∧

x y. x ∈ set xs =⇒ y ∈ set ys =⇒ x ≤ y
shows sort (xs @ ys) = sort xs @ sort ys
〈proof 〉

lemma select-append:
assumes

∧
y z . y ∈ set ys =⇒ z ∈ set zs =⇒ y ≤ z

shows k < length ys =⇒ select k (ys @ zs) = select k ys
k ∈ {length ys..<length ys + length zs} =⇒

select k (ys @ zs) = select (k − length ys) zs
〈proof 〉

lemma select-append ′:
assumes

∧
y z . y ∈ set ys =⇒ z ∈ set zs =⇒ y ≤ z k < length ys + length zs

shows select k (ys @ zs) = (if k < length ys then select k ys else select (k −
length ys) zs)
〈proof 〉

We can find simple upper bounds for the number of elements that are strictly
less than (resp. greater than) the median of a list.
lemma size-less-than-median:

size {#y ∈# mset xs. y < median xs#} ≤ (length xs − 1) div 2
〈proof 〉

lemma size-greater-than-median:
size {#y ∈# mset xs. y > median xs#} ≤ length xs div 2
〈proof 〉

5

1.5 A more liberal notion of medians

We now define a more relaxed version of being “a median” as opposed to
being “the median”. A value is a median if at most half the values in the list
are strictly smaller than it and at most half are strictly greater. Note that,
by this definition, the median does not even have to be in the list itself.
definition is-median :: ′a :: linorder ⇒ ′a list ⇒ bool where

is-median x xs ←→ length (filter (λy. y < x) xs) ≤ length xs div 2 ∧
length (filter (λy. y > x) xs) ≤ length xs div 2

We set up some transfer rules for is-median. In particular, we have a rule
that shows that something is a median for a list iff it is a median on that
list w. r. t. the dual order, which will later allow us to argue by symmetry.
context

includes lifting-syntax
begin
lemma transfer-is-median [transfer-rule]:

assumes [transfer-rule]: (r ===> r ===> (=)) (<) (<)
shows (r ===> list-all2 r ===> (=)) is-median is-median
〈proof 〉

lemma list-all2-eq-fun-conv-map: list-all2 (λx y. x = f y) xs ys ←→ xs = map f
ys
〈proof 〉

lemma transfer-is-median-dual-ord [transfer-rule]:
(pcr-dual-ord (=) ===> list-all2 (pcr-dual-ord (=)) ===> (=)) is-median

is-median
〈proof 〉

end

lemma is-median-to-dual-ord-iff [simp]:
is-median (to-dual-ord x) (map to-dual-ord xs) ←→ is-median x xs
〈proof 〉

The following is an obviously equivalent definition of is-median in terms of
multisets that is occasionally nicer to use.
lemma is-median-altdef :

is-median x xs ←→ size (filter-mset (λy. y < x) (mset xs)) ≤ length xs div 2 ∧
size (filter-mset (λy. y > x) (mset xs)) ≤ length xs div 2

〈proof 〉

lemma is-median-cong:
assumes x = y mset xs = mset ys
shows is-median x xs ←→ is-median y ys
〈proof 〉

If an element is the median of a list of odd length, we can add any element to

6

the list and the element is still a median. Conversely, if we want to compute
a median of a list with even length n, we can simply drop one element and
reduce the problem to a median of a list of size n− 1.
lemma is-median-Cons-odd:

assumes is-median x xs and odd (length xs)
shows is-median x (y # xs)
〈proof 〉

And, of course, the median is a median.
lemma is-median-median [simp,intro]: is-median (median xs) xs
〈proof 〉

1.6 Properties of a median-of-medians

We can now bound the number of list elements that can be strictly smaller
than a median-of-medians of a chopped-up list (where each part has length
d except for the last one, which can also be shorter).
The core argument is that at least roughly half of the medians of the sublists
are greater or equal to the median-of-medians, and about d

2 elements in each
such sublist are greater than or equal to their median and thereby also than
the median-of-medians.
lemma size-less-than-median-of-medians-strong:

fixes xs :: ′a :: linorder list and d :: nat
assumes d: d > 0
assumes median:

∧
xs. xs 6= [] =⇒ length xs ≤ d =⇒ is-median (med xs) xs

assumes median ′: is-median x (map med (chop d xs))
defines m ≡ length (chop d xs)
shows size {#y ∈# mset xs. y < x#} ≤ m ∗ (d div 2) + m div 2 ∗ ((d + 1)

div 2)
〈proof 〉

We now focus on the case of an odd chopping size and make some further
estimations to simplify the above result a little bit.
theorem size-less-than-median-of-medians:

fixes xs :: ′a :: linorder list and d :: nat
assumes median:

∧
xs. xs 6= [] =⇒ length xs ≤ Suc (2 ∗ d) =⇒ is-median (med

xs) xs
assumes median ′: is-median x (map med (chop (Suc (2∗d)) xs))
defines n ≡ length xs
defines c ≡ (3 ∗ real d + 1) / (2 ∗ (2 ∗ d + 1))
shows size {#y ∈# mset xs. y < x#} ≤ nat dc ∗ ne + (5 ∗ d) div 2 + 1
〈proof 〉

We get the analogous result for the number of elements that are greater than
a median-of-medians by looking at the dual order and using the transfer
method.

7

theorem size-greater-than-median-of-medians:
fixes xs :: ′a :: linorder list and d :: nat
assumes median:

∧
xs. xs 6= [] =⇒ length xs ≤ Suc (2 ∗ d) =⇒ is-median (med

xs) xs
assumes median ′: is-median x (map med (chop (Suc (2∗d)) xs))
defines n ≡ length xs
defines c ≡ (3 ∗ real d + 1) / (2 ∗ (2 ∗ d + 1))
shows size {#y ∈# mset xs. y > x#} ≤ nat dc ∗ ne + (5 ∗ d) div 2 + 1
〈proof 〉

include lifting-syntax
〈proof 〉

The most important case is that of chopping size 5, since that is the most
practical one for the median-of-medians selection algorithm. For it, we ob-
tain the following nice and simple bounds:
corollary size-less-greater-median-of-medians-5 :

fixes xs :: ′a :: linorder list
assumes

∧
xs. xs 6= [] =⇒ length xs ≤ 5 =⇒ is-median (med xs) xs

assumes is-median x (map med (chop 5 xs))
shows length (filter (λy. y < x) xs) ≤ nat d0 .7 ∗ length xse + 6

and length (filter (λy. y > x) xs) ≤ nat d0 .7 ∗ length xse + 6
〈proof 〉

1.7 The recursive step

We now turn to the actual selection algorithm itself. The following simple
reduction lemma illustrates the idea of the algorithm quite well already, but
it has the disadvantage that, if one were to use it as a recursive algorithm, it
would only work for lists with distinct elements. If the list contains repeated
elements, this may not even terminate.
The basic idea is that we choose some pivot element, partition the list into
elements that are bigger than the pivot and those that are not, and then
recurse into one of these (hopefully smaller) lists.
theorem select-rec-partition:

assumes d > 0 k < length xs
shows select k xs = (

let (ys, zs) = partition (λy. y ≤ x) xs
in if k < length ys then select k ys else select (k − length ys) zs
) (is - = ?rhs)

〈proof 〉

The following variant uses a three-way partitioning function instead. This
way, the size of the list in the final recursive call decreases by a factor of
at least 3d′+1

2(2d′+1) by the previous estimates, given that the chopping size is
d = 2d′ + 1. For a chopping size of 5, we get a factor of 0.7.
definition threeway-partition :: ′a ⇒ ′a :: linorder list ⇒ ′a list × ′a list × ′a list
where

8

threeway-partition x xs = (filter (λy. y < x) xs, filter (λy. y = x) xs, filter (λy.
y > x) xs)

lemma threeway-partition-code [code]:
threeway-partition x [] = ([], [], [])
threeway-partition x (y # ys) =

(case threeway-partition x ys of (ls, es, gs) ⇒
if y < x then (y # ls, es, gs) else if x = y then (ls, y # es, gs) else (ls, es,

y # gs))
〈proof 〉

theorem select-rec-threeway-partition:
assumes d > 0 k < length xs
shows select k xs = (

let (ls, es, gs) = threeway-partition x xs;
nl = length ls; ne = length es

in
if k < nl then select k ls
else if k < nl + ne then x
else select (k − nl − ne) gs

) (is - = ?rhs)
〈proof 〉

By the above results, it can be seen quite easily that, in each recursive step,
the algorithm takes a list of length n, does O(n) work for the chopping,
computing the medians of the sublists, and partitioning, and it calls itself
recursively with lists of size at most d0.2ne and d0.7ne + 6, respectively.
This means that the runtime of the algorithm is bounded above by the
Akra–Bazzi-style recurrence

T (n) = T (d0.2ne) + T (d0.7ne+ 6) +O(n)

which, by the Akra–Bazzi theorem, can be shown to fulfil T ∈ Θ(n).
However, a proper analysis of this would require an actual execution model
and some way of measuring the runtime of the algorithm, which is not what
we aim to do here. Additionally, the entire algorithm can be performed
in-place in an imperative way, but this because quite tedious.
Instead of this, we will now focus on developing the above recursion into an
executable functional algorithm.

1.8 Medians of lists of length at most 5

We now show some basic results about how to efficiently find a median of a
list of size at most 5. For length 1 or 2, this is trivial, since we can just pick
any element. For length 3 and 4, we need at most three comparisons. For
length 5, we need at most six comparisons.

9

This allows us to save some comparisons compared with the naive method
of performing insertion sort and then returning the element in the middle.
definition median-3 :: ′a :: linorder ⇒ - where

median-3 a b c =
(if a ≤ b then

if b ≤ c then b else max a c
else

if c ≤ b then b else min a c)

lemma median-3 : median-3 a b c = median [a, b, c]
〈proof 〉

definition median-5-aux :: ′a :: linorder ⇒ - where
median-5-aux x1 x2 x3 x4 x5 = (

if x2 ≤ x3 then if x2 ≤ x4 then min x3 x4 else min x2 x5
else if x4 ≤ x3 then min x3 x5 else min x2 x4)

lemma median-5-aux:
assumes x1 ≤ x2 x4 ≤ x5 x1 ≤ x4
shows median-5-aux x1 x2 x3 x4 x5 = median [x1 ,x2 ,x3 ,x4 ,x5]
〈proof 〉

definition median-5 :: ′a :: linorder ⇒ - where
median-5 a b c d e = (

let (x1 , x2) = (if a ≤ b then (a, b) else (b, a));
(x4 , x5) = (if d ≤ e then (d, e) else (e, d))

in
if x1 ≤ x4 then median-5-aux x1 x2 c x4 x5 else median-5-aux x4 x5 c x1

x2)

lemma median-5 : median-5 a b c d e = median [a, b, c, d, e]
〈proof 〉

fun median-le-5 where
median-le-5 [a] = a
| median-le-5 [a,b] = a
| median-le-5 [a,b,c] = median-3 a b c
| median-le-5 [a,b,c,d] = median-3 a b c
| median-le-5 [a,b,c,d,e] = median-5 a b c d e
| median-le-5 - = undefined

lemma median-5-in-set: median-5 a b c d e ∈ {a, b, c, d, e}
〈proof 〉

lemma median-le-5-in-set:
assumes xs 6= [] length xs ≤ 5
shows median-le-5 xs ∈ set xs
〈proof 〉

10

lemma median-le-5 :
assumes xs 6= [] length xs ≤ 5
shows is-median (median-le-5 xs) xs
〈proof 〉

1.9 Median-of-medians selection algorithm

The fast selection function now simply computes the median-of-medians of
the chopped-up list as a pivot, partitions the list into with respect to that
pivot, and recurses into one of the resulting sublists.
function fast-select where

fast-select k xs = (
if length xs ≤ 20 then

sort xs ! k
else

let x = fast-select (((length xs + 4) div 5 − 1) div 2) (map median-le-5
(chop 5 xs));

(ls, es, gs) = threeway-partition x xs
in

if k < length ls then fast-select k ls
else if k < length ls + length es then x
else fast-select (k − length ls − length es) gs

)
〈proof 〉

The correctness of this is obvious from the above theorems, but the proof
is still somewhat complicated by the fact that termination depends on the
correctness of the function.
lemma fast-select-correct-aux:

assumes fast-select-dom (k, xs) k < length xs
shows fast-select k xs = select k xs
〈proof 〉

Termination of the algorithm is reasonably obvious because the lists that
are recursed into never contain the pivot (the median-of-medians), while the
original list clearly does. The proof is still somewhat technical though.
lemma fast-select-termination: All fast-select-dom
〈proof 〉

We now have all the ingredients to show that fast-select terminates and does,
indeed, compute the k-th order statistic.
termination fast-select 〈proof 〉

theorem fast-select-correct: k < length xs =⇒ fast-select k xs = select k xs
〈proof 〉

The following version is then suitable for code export.

11

lemma fast-select-code [code]:
fast-select k xs = (

if length xs ≤ 20 then
fold insort xs [] ! k

else
let x = fast-select (((length xs + 4) div 5 − 1) div 2) (map median-le-5

(chop 5 xs));
(ls, es, gs) = threeway-partition x xs;
nl = length ls; ne = nl + length es

in
if k < nl then fast-select k ls
else if k < ne then x
else fast-select (k − ne) gs

)
〈proof 〉

lemma select-code [code]:
select k xs = (if k < length xs then fast-select k xs

else Code.abort (STR ′′Selection index out of bounds. ′′) (λ-. select
k xs))
〈proof 〉

end

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

12

	The Median-of-Medians Selection Algorithm
	Some facts about lists and multisets
	The dual order type
	Chopping a list into equal-sized sublists
	k-th order statistics and medians
	A more liberal notion of medians
	Properties of a median-of-medians
	The recursive step
	Medians of lists of length at most 5
	Median-of-medians selection algorithm

