
The Median-Of-Medians Selection Algorithm

Manuel Eberl

March 17, 2025

Abstract

This entry provides an executable functional implementation of the
Median-of-Medians algorithm [1] for selecting the k-th smallest element
of an unsorted list deterministically in linear time. The size bounds for
the recursive call that lead to the linear upper bound on the run-time
of the algorithm are also proven.

Contents
1 The Median-of-Medians Selection Algorithm 1

1.1 Some facts about lists and multisets 1
1.2 The dual order type . 3
1.3 Chopping a list into equal-sized sublists 4
1.4 k-th order statistics and medians 6
1.5 A more liberal notion of medians 8
1.6 Properties of a median-of-medians 10
1.7 The recursive step . 14
1.8 Medians of lists of length at most 5 16
1.9 Median-of-medians selection algorithm 18

1 The Median-of-Medians Selection Algorithm
theory Median-Of-Medians-Selection

imports Complex-Main HOL−Library.Multiset
begin

1.1 Some facts about lists and multisets
lemma mset-concat: mset (concat xss) = sum-list (map mset xss)

by (induction xss) simp-all

lemma set-mset-sum-list [simp]: set-mset (sum-list xs) = (
⋃

x∈set xs. set-mset x)
by (induction xs) auto

lemma filter-mset-image-mset:

1

filter-mset P (image-mset f A) = image-mset f (filter-mset (λx. P (f x)) A)
by (induction A) auto

lemma filter-mset-sum-list: filter-mset P (sum-list xs) = sum-list (map (filter-mset
P) xs)

by (induction xs) simp-all

lemma sum-mset-mset-mono:
assumes (

∧
x. x ∈# A =⇒ f x ⊆# g x)

shows (
∑

x∈#A. f x) ⊆# (
∑

x∈#A. g x)
using assms by (induction A) (auto intro!: subset-mset.add-mono)

lemma mset-filter-mono:
assumes A ⊆# B

∧
x. x ∈# A =⇒ P x =⇒ Q x

shows filter-mset P A ⊆# filter-mset Q B
by (rule mset-subset-eqI) (insert assms, auto simp: mset-subset-eq-count count-eq-zero-iff)

lemma size-mset-sum-mset-distrib: size (sum-mset A :: ′a multiset) = sum-mset
(image-mset size A)

by (induction A) auto

lemma sum-mset-mono:
assumes

∧
x. x ∈# A =⇒ f x ≤ (g x :: ′a :: {ordered-ab-semigroup-add,comm-monoid-add})

shows (
∑

x∈#A. f x) ≤ (
∑

x∈#A. g x)
using assms by (induction A) (auto intro!: add-mono)

lemma filter-mset-is-empty-iff : filter-mset P A = {#} ←→ (∀ x. x ∈# A −→ ¬P
x)

by (auto simp: multiset-eq-iff count-eq-zero-iff)

lemma sorted-filter-less-subset-take:
assumes sorted xs i < length xs
shows {# x ∈# mset xs. x < xs ! i #} ⊆# mset (take i xs)
using assms

proof (induction xs arbitrary: i rule: list.induct)
case (Cons x xs i)
show ?case
proof (cases i)

case 0
thus ?thesis using Cons.prems by (auto simp: filter-mset-is-empty-iff)

next
case (Suc i ′)
have {#y ∈# mset (x # xs). y < (x # xs) ! i#} ⊆# add-mset x {#y ∈#

mset xs. y < xs ! i ′#}
using Suc Cons.prems by (auto)

also have . . . ⊆# add-mset x (mset (take i ′ xs))
unfolding mset-subset-eq-add-mset-cancel using Cons.prems Suc
by (intro Cons.IH) (auto)

also have . . . = mset (take i (x # xs)) by (simp add: Suc)

2

finally show ?thesis .
qed

qed auto

lemma sorted-filter-greater-subset-drop:
assumes sorted xs i < length xs
shows {# x ∈# mset xs. x > xs ! i #} ⊆# mset (drop (Suc i) xs)
using assms

proof (induction xs arbitrary: i rule: list.induct)
case (Cons x xs i)
show ?case
proof (cases i)

case 0
thus ?thesis by (auto simp: sorted-append filter-mset-is-empty-iff)

next
case (Suc i ′)
have {#y ∈# mset (x # xs). y > (x # xs) ! i#} ⊆# {#y ∈# mset xs. y >

xs ! i ′#}
using Suc Cons.prems by (auto simp: set-conv-nth)

also have . . . ⊆# mset (drop (Suc i ′) xs)
using Cons.prems Suc by (intro Cons.IH) (auto)

also have . . . = mset (drop (Suc i) (x # xs)) by (simp add: Suc)
finally show ?thesis .

qed
qed auto

1.2 The dual order type

The following type is a copy of a given ordered base type, but with the
ordering reversed. This will be useful later because we can do some of our
reasoning simply by symmetry.
typedef ′a dual-ord = UNIV :: ′a set morphisms of-dual-ord to-dual-ord

by auto

setup-lifting type-definition-dual-ord

instantiation dual-ord :: (ord) ord
begin

lift-definition less-eq-dual-ord :: ′a dual-ord ⇒ ′a dual-ord ⇒ bool is
λa b :: ′a. a ≥ b .

lift-definition less-dual-ord :: ′a dual-ord ⇒ ′a dual-ord ⇒ bool is
λa b :: ′a. a > b .

instance ..
end

instance dual-ord :: (preorder) preorder

3

by standard (transfer ; force simp: less-le-not-le intro: order-trans)+

instance dual-ord :: (linorder) linorder
by standard (transfer ; force simp: not-le)+

1.3 Chopping a list into equal-sized sublists
function chop :: nat ⇒ ′a list ⇒ ′a list list where

chop n [] = []
| chop 0 xs = []
| n > 0 =⇒ xs 6= [] =⇒ chop n xs = take n xs # chop n (drop n xs)

by force+
termination by lexicographic-order

context
includes lifting-syntax

begin

lemma chop-transfer [transfer-rule]:
((=) ===> list-all2 R ===> list-all2 (list-all2 R)) chop chop

proof (intro rel-funI)
fix m n ::nat and xs :: ′a list and ys :: ′b list
assume m = n list-all2 R xs ys
from this(2) have list-all2 (list-all2 R) (chop n xs) (chop n ys)
proof (induction n xs arbitrary: ys rule: chop.induct)

case (3 n xs ys)
hence ys 6= [] by auto
with 3 show ?case by auto

qed auto
with ‹m = n› show list-all2 (list-all2 R) (chop m xs) (chop n ys) by simp

qed

end

lemma chop-reduce: chop n xs = (if n = 0 ∨ xs = [] then [] else take n xs # chop
n (drop n xs))

by (cases n = 0 ; cases xs = []) auto

lemma concat-chop [simp]: n > 0 =⇒ concat (chop n xs) = xs
by (induction n xs rule: chop.induct) auto

lemma chop-elem-not-Nil [simp,dest]: ys ∈ set (chop n xs) =⇒ ys 6= []
by (induction n xs rule: chop.induct) (auto simp: eq-commute[of []])

lemma chop-eq-Nil-iff [simp]: chop n xs = [] ←→ n = 0 ∨ xs = []
by (induction n xs rule: chop.induct) auto

lemma chop-ge-length-eq: n > 0 =⇒ xs 6= [] =⇒ n ≥ length xs =⇒ chop n xs =
[xs]

4

by simp

lemma length-chop-part-le: ys ∈ set (chop n xs) =⇒ length ys ≤ n
by (induction n xs rule: chop.induct) auto

lemma length-nth-chop:
assumes i < length (chop n xs)
shows length (chop n xs ! i) =

(if i = length (chop n xs) − 1 ∧ ¬n dvd length xs then length xs mod n
else n)
proof (cases n = 0)

case False
thus ?thesis

using assms
proof (induction n xs arbitrary: i rule: chop.induct)

case (3 n xs i)
show ?case
proof (cases i)

case 0
thus ?thesis using 3 .prems
by (cases length xs < n) (auto simp: le-Suc-eq dest: dvd-imp-le)

next
case [simp]: (Suc i ′)
with 3 .prems have [simp]: xs 6= [] by auto
with 3 .prems have ∗: length xs > n by (cases length xs ≤ n) simp-all
with 3 .prems have chop n xs ! i = chop n (drop n xs) ! i ′ by simp
also have length . . . = (if i = length (chop n xs) − 1 ∧ ¬ n dvd (length xs

− n)
then (length xs − n) mod n else n)

by (subst 3 .IH) (use Suc 3 .prems in auto)
also have n dvd (length xs − n) ←→ n dvd length xs

using ∗ by (subst dvd-minus-self) auto
also have (length xs − n) mod n = length xs mod n

using ∗ by (subst le-mod-geq [symmetric]) auto
finally show ?thesis .

qed
qed auto

qed (insert assms, auto)

lemma length-chop:
assumes n > 0
shows length (chop n xs) = nat dlength xs / ne
using assms

proof (induction n xs rule: chop.induct)
case (3 n xs)
show ?case
proof (cases length xs ≥ n)

case False
hence dreal (length xs) / real ne = 1 using 3 .hyps

5

by (intro ceiling-unique) auto
with False show ?thesis using 3 .prems 3 .hyps

by (auto simp: chop-ge-length-eq not-le)
next

case True
hence real (length xs) = real n + real (length (drop n xs))

by simp
also have . . . / real n = real (length (drop n xs)) / real n + 1

using ‹n > 0 › by (simp add: divide-simps)
also have ceiling . . . = ceiling (real (length (drop n xs)) / real n) + 1 by simp
also have nat . . . = nat (ceiling (real (length (drop n xs)) / real n)) + nat 1

by (intro nat-add-distrib[OF order .trans[OF - ceiling-mono[of 0]]]) auto
also have . . . = length (chop n xs)

using ‹n > 0 › 3 .hyps by (subst 3 .IH [symmetric]) auto
finally show ?thesis ..

qed
qed auto

lemma sum-msets-chop: n > 0 =⇒ (
∑

ys←chop n xs. mset ys) = mset xs
by (subst mset-concat [symmetric]) simp-all

lemma UN-sets-chop: n > 0 =⇒ (
⋃

ys∈set (chop n xs). set ys) = set xs
by (simp only: set-concat [symmetric] concat-chop)

lemma in-set-chopD [dest]:
assumes x ∈ set ys ys ∈ set (chop d xs)
shows x ∈ set xs

proof (cases d > 0)
case True
thus ?thesis by (subst UN-sets-chop [symmetric]) (use assms in auto)

qed (use assms in auto)

1.4 k-th order statistics and medians

This returns the k-th smallest element of a list. This is also known as the
k-th order statistic.
definition select :: nat ⇒ ′a list ⇒ (′a :: linorder) where

select k xs = sort xs ! k

The median of a list, where, for lists of even lengths, the smaller one is
favoured:
definition median where median xs = select ((length xs − 1) div 2) xs

lemma select-in-set [intro,simp]:
assumes k < length xs
shows select k xs ∈ set xs

proof −
from assms have sort xs ! k ∈ set (sort xs) by (intro nth-mem) auto

6

also have set (sort xs) = set xs by simp
finally show ?thesis by (simp add: select-def)

qed

lemma median-in-set [intro, simp]:
assumes xs 6= []
shows median xs ∈ set xs

proof −
from assms have length xs > 0 by auto
hence (length xs − 1) div 2 < length xs by linarith
thus ?thesis by (simp add: median-def)

qed

We show that selection and medians does not depend on the order of the
elements:
lemma sort-cong: mset xs = mset ys =⇒ sort xs = sort ys

by (rule properties-for-sort) simp-all

lemma select-cong:
k = k ′ =⇒ mset xs = mset xs ′ =⇒ select k xs = select k ′ xs ′

by (auto simp: select-def dest: sort-cong)

lemma median-cong: mset xs = mset xs ′ =⇒ median xs = median xs ′

unfolding median-def by (intro select-cong) (auto dest: mset-eq-length)

Selection distributes over appending lists under certain conditions:
lemma sort-append:

assumes
∧

x y. x ∈ set xs =⇒ y ∈ set ys =⇒ x ≤ y
shows sort (xs @ ys) = sort xs @ sort ys
using assms by (intro properties-for-sort) (auto simp: sorted-append)

lemma select-append:
assumes

∧
y z . y ∈ set ys =⇒ z ∈ set zs =⇒ y ≤ z

shows k < length ys =⇒ select k (ys @ zs) = select k ys
k ∈ {length ys..<length ys + length zs} =⇒

select k (ys @ zs) = select (k − length ys) zs
using assms by (simp-all add: select-def sort-append nth-append)

lemma select-append ′:
assumes

∧
y z . y ∈ set ys =⇒ z ∈ set zs =⇒ y ≤ z k < length ys + length zs

shows select k (ys @ zs) = (if k < length ys then select k ys else select (k −
length ys) zs)

using assms by (auto intro!: select-append)

We can find simple upper bounds for the number of elements that are strictly
less than (resp. greater than) the median of a list.
lemma size-less-than-median:

size {#y ∈# mset xs. y < median xs#} ≤ (length xs − 1) div 2

7

proof (cases xs = [])
case False
hence length xs > 0 by simp
hence (length xs − 1) div 2 < length xs by linarith
hence size {#y ∈# mset (sort xs). y < median xs#} ≤

size (mset (take ((length xs − 1) div 2) (sort xs)))
unfolding median-def select-def using False
by (intro size-mset-mono sorted-filter-less-subset-take) auto

thus ?thesis using False by simp
qed auto

lemma size-greater-than-median:
size {#y ∈# mset xs. y > median xs#} ≤ length xs div 2

proof (cases xs = [])
case False
hence length xs > 0 by simp
hence (length xs − 1) div 2 < length xs by linarith
hence size {#y ∈# mset (sort xs). y > median xs#} ≤

size (mset (drop (Suc ((length xs − 1) div 2)) (sort xs)))
unfolding median-def select-def using False
by (intro size-mset-mono sorted-filter-greater-subset-drop) auto

hence size (filter-mset (λy. y > median xs) (mset xs)) ≤
length xs − Suc ((length xs − 1) div 2) by simp

also have . . . = length xs div 2 by linarith
finally show ?thesis .

qed auto

1.5 A more liberal notion of medians

We now define a more relaxed version of being “a median” as opposed to
being “the median”. A value is a median if at most half the values in the list
are strictly smaller than it and at most half are strictly greater. Note that,
by this definition, the median does not even have to be in the list itself.
definition is-median :: ′a :: linorder ⇒ ′a list ⇒ bool where

is-median x xs ←→ length (filter (λy. y < x) xs) ≤ length xs div 2 ∧
length (filter (λy. y > x) xs) ≤ length xs div 2

We set up some transfer rules for is-median. In particular, we have a rule
that shows that something is a median for a list iff it is a median on that
list w. r. t. the dual order, which will later allow us to argue by symmetry.
context

includes lifting-syntax
begin
lemma transfer-is-median [transfer-rule]:

assumes [transfer-rule]: (r ===> r ===> (=)) (<) (<)
shows (r ===> list-all2 r ===> (=)) is-median is-median
unfolding is-median-def by transfer-prover

8

lemma list-all2-eq-fun-conv-map: list-all2 (λx y. x = f y) xs ys ←→ xs = map f
ys
proof

assume list-all2 (λx y. x = f y) xs ys
thus xs = map f ys by induction auto

next
assume xs = map f ys
moreover have list-all2 (λx y. x = f y) (map f ys) ys

by (induction ys) auto
ultimately show list-all2 (λx y. x = f y) xs ys by simp

qed

lemma transfer-is-median-dual-ord [transfer-rule]:
(pcr-dual-ord (=) ===> list-all2 (pcr-dual-ord (=)) ===> (=)) is-median

is-median
by (auto simp: pcr-dual-ord-def cr-dual-ord-def OO-def rel-fun-def is-median-def

list-all2-eq-fun-conv-map o-def less-dual-ord.rep-eq)
end

lemma is-median-to-dual-ord-iff [simp]:
is-median (to-dual-ord x) (map to-dual-ord xs) ←→ is-median x xs
unfolding is-median-def by transfer auto

The following is an obviously equivalent definition of is-median in terms of
multisets that is occasionally nicer to use.
lemma is-median-altdef :

is-median x xs ←→ size (filter-mset (λy. y < x) (mset xs)) ≤ length xs div 2 ∧
size (filter-mset (λy. y > x) (mset xs)) ≤ length xs div 2

proof −
have ∗: length (filter P xs) = size (filter-mset P (mset xs)) for P and xs :: ′a

list
by (simp flip: mset-filter)

show ?thesis by (simp only: is-median-def ∗)
qed

lemma is-median-cong:
assumes x = y mset xs = mset ys
shows is-median x xs ←→ is-median y ys
unfolding is-median-altdef by (simp only: assms mset-eq-length[OF assms(2)])

If an element is the median of a list of odd length, we can add any element to
the list and the element is still a median. Conversely, if we want to compute
a median of a list with even length n, we can simply drop one element and
reduce the problem to a median of a list of size n− 1.
lemma is-median-Cons-odd:

assumes is-median x xs and odd (length xs)
shows is-median x (y # xs)
using assms by (auto simp: is-median-def)

9

And, of course, the median is a median.
lemma is-median-median [simp,intro]: is-median (median xs) xs

using size-less-than-median[of xs] size-greater-than-median[of xs]
unfolding is-median-def size-mset [symmetric] mset-filter by linarith+

1.6 Properties of a median-of-medians

We can now bound the number of list elements that can be strictly smaller
than a median-of-medians of a chopped-up list (where each part has length
d except for the last one, which can also be shorter).
The core argument is that at least roughly half of the medians of the sublists
are greater or equal to the median-of-medians, and about d

2 elements in each
such sublist are greater than or equal to their median and thereby also than
the median-of-medians.
lemma size-less-than-median-of-medians-strong:

fixes xs :: ′a :: linorder list and d :: nat
assumes d: d > 0
assumes median:

∧
xs. xs 6= [] =⇒ length xs ≤ d =⇒ is-median (med xs) xs

assumes median ′: is-median x (map med (chop d xs))
defines m ≡ length (chop d xs)
shows size {#y ∈# mset xs. y < x#} ≤ m ∗ (d div 2) + m div 2 ∗ ((d + 1)

div 2)
proof −

define n where [simp]: n = length xs
— The medians of the sublists
define M where M = mset (map med (chop d xs))
define YS where YS = mset (chop d xs)
— The sublists with a smaller median than the median-of-medians x and the rest.
define YS1 where YS1 = filter-mset (λys. med ys < x) (mset (chop d xs))
define YS2 where YS2 = filter-mset (λys. ¬(med ys < x)) (mset (chop d xs))

— At most roughly half of the lists have a median that is smaller than M
have size YS1 = size (image-mset med YS1) by simp
also have image-mset med YS1 = {#y ∈# mset (map med (chop d xs)). y <

x#}
unfolding YS1-def by (subst filter-mset-image-mset [symmetric]) simp-all

also have size . . . ≤ (length (map med (chop d xs))) div 2
using median ′ unfolding is-median-altdef by simp

also have . . . = m div 2 by (simp add: m-def)
finally have size-YS1 : size YS1 ≤ m div 2 .

have m = size (mset (chop d xs)) by (simp add: m-def)
also have mset (chop d xs) = YS1 + YS2 unfolding YS1-def YS2-def

by (rule multiset-partition)
finally have m-eq: m = size YS1 + size YS2 by simp

— We estimate the number of elements less than x by grouping them into elements

10

coming from YS1 and elements coming from YS2. In the first case, we just note
that no more than d elements can come from each sublist, whereas in the second
case, we make the analysis more precise and note that only elements that are less
than the median of their sublist can be less than x.

have {# y ∈# mset xs. y < x#} = {# y ∈# (
∑

ys←chop d xs. mset ys). y <
x#} using d

by (subst sum-msets-chop) simp-all
also have . . . = (

∑
ys←chop d xs. {#y ∈# mset ys. y < x#})

by (subst filter-mset-sum-list) (simp add: o-def)
also have . . . = (

∑
ys∈#YS . {#y ∈# mset ys. y < x#}) unfolding YS-def

by (subst sum-mset-sum-list [symmetric]) simp-all
also have YS = YS1 + YS2

by (simp add: YS-def YS1-def YS2-def not-le)
also have (

∑
ys∈#. . .. {#y ∈# mset ys. y < x#}) =

(
∑

ys∈#YS1 . {#y ∈# mset ys. y < x#}) + (
∑

ys∈#YS2 . {#y ∈#
mset ys. y < x#})

by simp
also have . . . ⊆# (

∑
ys∈#YS1 . mset ys) + (

∑
ys∈#YS2 . {#y ∈# mset ys. y

< med ys#})
by (intro subset-mset.add-mono sum-mset-mset-mono mset-filter-mono) (auto

simp: YS2-def)
finally have {# y ∈# mset xs. y < x #} ⊆#
hence size {# y ∈# mset xs. y < x #} ≤ size . . . by (rule size-mset-mono)

— We do some further straightforward estimations and arrive at our goal.
also have . . . = (

∑
ys∈#YS1 . length ys) + (

∑
x∈#YS2 . size {#y ∈# mset x.

y < med x#})
by (simp add: size-mset-sum-mset-distrib multiset.map-comp o-def)

also have (
∑

ys∈#YS1 . length ys) ≤ (
∑

ys∈#YS1 . d)
by (intro sum-mset-mono) (auto simp: YS1-def length-chop-part-le)

also have . . . = size YS1 ∗ d by simp
also have d: d = (d div 2) + ((d + 1) div 2) using d by linarith
have size YS1 ∗ d = size YS1 ∗ (d div 2) + size YS1 ∗ ((d + 1) div 2)

by (subst d) (simp add: algebra-simps)
also have (

∑
ys∈#YS2 . size {#y ∈# mset ys. y < med ys#}) ≤

(
∑

ys∈#YS2 . length ys div 2)
proof (intro sum-mset-mono size-less-than-median, goal-cases)

case (1 ys)
hence ys 6= [] length ys ≤ d by (auto simp: YS2-def length-chop-part-le)
from median[OF this] show ?case by (auto simp: is-median-altdef)

qed
also have . . . ≤ (

∑
ys∈#YS2 . d div 2)

by (intro sum-mset-mono div-le-mono diff-le-mono) (auto simp: YS2-def dest:
length-chop-part-le)

also have . . . = size YS2 ∗ (d div 2) by simp
also have size YS1 ∗ (d div 2) + size YS1 ∗ ((d + 1) div 2) + . . . =

m ∗ (d div 2) + size YS1 ∗ ((d + 1) div 2) by (simp add: m-eq
algebra-simps)

also have size YS1 ∗ ((d + 1) div 2) ≤ (m div 2) ∗ ((d + 1) div 2)

11

by (intro mult-right-mono size-YS1) auto
finally show size {#y ∈# mset xs. y < x#} ≤

m ∗ (d div 2) + m div 2 ∗ ((d + 1) div 2) by simp-all
qed

We now focus on the case of an odd chopping size and make some further
estimations to simplify the above result a little bit.
theorem size-less-than-median-of-medians:

fixes xs :: ′a :: linorder list and d :: nat
assumes median:

∧
xs. xs 6= [] =⇒ length xs ≤ Suc (2 ∗ d) =⇒ is-median (med

xs) xs
assumes median ′: is-median x (map med (chop (Suc (2∗d)) xs))
defines n ≡ length xs
defines c ≡ (3 ∗ real d + 1) / (2 ∗ (2 ∗ d + 1))
shows size {#y ∈# mset xs. y < x#} ≤ nat dc ∗ ne + (5 ∗ d) div 2 + 1

proof (cases xs = [])
case False
define m where m = length (chop (Suc (2∗d)) xs)

have real (m div 2) ≤ real (nat dreal n / (1 + 2 ∗ real d)e) / 2
by (simp add: m-def length-chop n-def flip: of-nat-int-ceiling)

also have real (nat dreal n / (1 + 2 ∗ real d)e) =
of-int dreal n / (1 + 2 ∗ real d)e

by (intro of-nat-nat) (auto simp: divide-simps)
also have . . . / 2 ≤ (real n / (1 + 2 ∗ real d) + 1) / 2

by (intro divide-right-mono) linarith+
also have . . . = n / (2 ∗ (2 ∗ real d + 1)) + 1 / 2 by (simp add: field-simps)
finally have m: real (m div 2) ≤

have size {#y ∈# mset xs. y < x#} ≤ d ∗ m + Suc d ∗ (m div 2)
using size-less-than-median-of-medians-strong[of Suc (2 ∗ d) med x xs] assms
unfolding m-def by (simp add: algebra-simps)

also have . . . ≤ d ∗ (2 ∗ (m div 2) + 1) + Suc d ∗ (m div 2)
by (intro add-mono mult-left-mono) linarith+

also have . . . = (3 ∗ d + 1) ∗ (m div 2) + d
by (simp add: algebra-simps)

finally have real (size {#y ∈# mset xs. y < x#}) ≤ real . . .
by (subst of-nat-le-iff)

also have . . . ≤ (3 ∗ real d + 1) ∗ (n / (2 ∗ (2 ∗ d + 1)) + 1/2) + real d
unfolding of-nat-add of-nat-mult of-nat-1 of-nat-numeral
by (intro add-mono mult-mono order .refl m) (auto simp: m-def length-chop

n-def add-ac)
also have . . . = c ∗ real n + (5 ∗ real d + 1) / 2

by (simp add: field-simps c-def)
also have . . . ≤ real (nat dc ∗ ne + ((5 ∗ d) div 2 + 1))

unfolding of-nat-add by (intro add-mono) (linarith, simp add: field-simps)
finally show ?thesis by (subst (asm) of-nat-le-iff) (simp-all add: add-ac)

qed auto

12

We get the analogous result for the number of elements that are greater than
a median-of-medians by looking at the dual order and using the transfer
method.
theorem size-greater-than-median-of-medians:

fixes xs :: ′a :: linorder list and d :: nat
assumes median:

∧
xs. xs 6= [] =⇒ length xs ≤ Suc (2 ∗ d) =⇒ is-median (med

xs) xs
assumes median ′: is-median x (map med (chop (Suc (2∗d)) xs))
defines n ≡ length xs
defines c ≡ (3 ∗ real d + 1) / (2 ∗ (2 ∗ d + 1))
shows size {#y ∈# mset xs. y > x#} ≤ nat dc ∗ ne + (5 ∗ d) div 2 + 1

proof −
include lifting-syntax
define med ′ where med ′ = (λxs. to-dual-ord (med (map of-dual-ord xs)))
have xs = map of-dual-ord ys if list-all2 cr-dual-ord xs ys for xs :: ′a list and ys

using that by induction (auto simp: cr-dual-ord-def)
hence [transfer-rule]: (list-all2 (pcr-dual-ord (=)) ===> pcr-dual-ord (=)) med

med ′

by (auto simp: rel-fun-def pcr-dual-ord-def OO-def med ′-def cr-dual-ord-def
dual-ord.to-dual-ord-inverse)

have size {#y ∈# mset xs. y > x#} = length (filter (λy. y > x) xs)
by (subst size-mset [symmetric]) (simp only: mset-filter)

also have . . . = length (map to-dual-ord (filter (λy. y > x) xs)) by simp
also have (λy. y > x) = (λy. to-dual-ord y < to-dual-ord x)

by transfer simp-all
hence length (map to-dual-ord (filter (λy. y > x) xs)) = length (map to-dual-ord

(filter . . . xs))
by simp

also have . . . = length (filter (λy. y < to-dual-ord x) (map to-dual-ord xs))
unfolding filter-map o-def by simp

also have . . . = size {#y ∈# mset (map to-dual-ord xs). y < to-dual-ord x#}
by (subst size-mset [symmetric]) (simp only: mset-filter)

also have . . . ≤ nat d(3 ∗ real d + 1) / real (2 ∗ (2 ∗ d + 1)) ∗ length (map
to-dual-ord xs)e

+ 5 ∗ d div 2 + 1
proof (intro size-less-than-median-of-medians)

fix xs :: ′a dual-ord list assume xs: xs 6= [] length xs ≤ Suc (2 ∗ d)
from xs show is-median (med ′ xs) xs by (transfer fixing: d) (rule median)

next
show is-median (to-dual-ord x) (map med ′ (chop (Suc (2 ∗ d)) (map to-dual-ord

xs)))
by (transfer fixing: d x xs) (use median ′ in simp-all)

qed
finally show ?thesis by (simp add: n-def c-def)

qed

The most important case is that of chopping size 5, since that is the most
practical one for the median-of-medians selection algorithm. For it, we ob-

13

tain the following nice and simple bounds:
corollary size-less-greater-median-of-medians-5 :

fixes xs :: ′a :: linorder list
assumes

∧
xs. xs 6= [] =⇒ length xs ≤ 5 =⇒ is-median (med xs) xs

assumes is-median x (map med (chop 5 xs))
shows length (filter (λy. y < x) xs) ≤ nat d0 .7 ∗ length xse + 6

and length (filter (λy. y > x) xs) ≤ nat d0 .7 ∗ length xse + 6
using size-less-than-median-of-medians[of 2 med x xs]

size-greater-than-median-of-medians[of 2 med x xs] assms
by (simp-all add: size-mset [symmetric] mset-filter mult-ac add-ac del: size-mset)

1.7 The recursive step

We now turn to the actual selection algorithm itself. The following simple
reduction lemma illustrates the idea of the algorithm quite well already, but
it has the disadvantage that, if one were to use it as a recursive algorithm, it
would only work for lists with distinct elements. If the list contains repeated
elements, this may not even terminate.
The basic idea is that we choose some pivot element, partition the list into
elements that are bigger than the pivot and those that are not, and then
recurse into one of these (hopefully smaller) lists.
theorem select-rec-partition:

assumes d > 0 k < length xs
shows select k xs = (

let (ys, zs) = partition (λy. y ≤ x) xs
in if k < length ys then select k ys else select (k − length ys) zs
) (is - = ?rhs)

proof −
define ys zs where ys = filter (λy. y ≤ x) xs and zs = filter (λy. ¬(y ≤ x)) xs
have select k xs = select k (ys @ zs)

by (intro select-cong) (simp-all add: ys-def zs-def)
also have . . . = (if k < length ys then select k ys else select (k − length ys) zs)
using assms(2) by (intro select-append ′) (auto simp: ys-def zs-def sum-length-filter-compl)

finally show ?thesis by (simp add: ys-def zs-def Let-def o-def)
qed

The following variant uses a three-way partitioning function instead. This
way, the size of the list in the final recursive call decreases by a factor of
at least 3d′+1

2(2d′+1) by the previous estimates, given that the chopping size is
d = 2d′ + 1. For a chopping size of 5, we get a factor of 0.7.
definition threeway-partition :: ′a ⇒ ′a :: linorder list ⇒ ′a list × ′a list × ′a list
where

threeway-partition x xs = (filter (λy. y < x) xs, filter (λy. y = x) xs, filter (λy.
y > x) xs)

lemma threeway-partition-code [code]:

14

threeway-partition x [] = ([], [], [])
threeway-partition x (y # ys) =

(case threeway-partition x ys of (ls, es, gs) ⇒
if y < x then (y # ls, es, gs) else if x = y then (ls, y # es, gs) else (ls, es,

y # gs))
by (auto simp: threeway-partition-def)

theorem select-rec-threeway-partition:
assumes d > 0 k < length xs
shows select k xs = (

let (ls, es, gs) = threeway-partition x xs;
nl = length ls; ne = length es

in
if k < nl then select k ls
else if k < nl + ne then x
else select (k − nl − ne) gs

) (is - = ?rhs)
proof −

define ls es gs where ls = filter (λy. y < x) xs and es = filter (λy. y = x) xs
and gs = filter (λy. y > x) xs

define nl ne where [simp]: nl = length ls ne = length es
have mset-eq: mset xs = mset ls + mset es + mset gs unfolding ls-def es-def

gs-def
by (induction xs) auto

have length-eq: length xs = length ls + length es + length gs unfolding ls-def
es-def gs-def

by (induction xs) (auto simp del: filter-True)

have [simp]: select i es = x if i < length es for i
proof −

have select i es ∈ set (sort es) unfolding select-def
using that by (intro nth-mem) auto

hence select i es ∈ set es using that by (auto simp: select-def)
also have set es ⊆ {x} unfolding es-def by (induction es) auto
finally show ?thesis by simp

qed

have select k xs = select k (ls @ (es @ gs))
by (intro select-cong) (simp-all add: mset-eq)

also have . . . = (if k < nl then select k ls else select (k − nl) (es @ gs))
unfolding nl-ne-def using assms
by (intro select-append ′) (auto simp: ls-def es-def gs-def length-eq)

also have . . . = (if k < nl then select k ls else if k < nl + ne then x
else select (k − nl − ne) gs) (is ?lhs ′ = ?rhs ′)

proof (cases k < nl)
case False
hence ?lhs ′ = select (k − nl) (es @ gs) by simp
also have . . . = (if k − nl < ne then select (k − nl) es else select (k − nl −

ne) gs)

15

unfolding nl-ne-def using assms False
by (intro select-append ′) (auto simp: ls-def es-def gs-def length-eq)

also have . . . = (if k − nl < ne then x else select (k − nl − ne) gs)
by simp

also from False have . . . = ?rhs ′ by auto
finally show ?thesis .

qed simp-all
also have . . . = ?rhs

by (simp add: threeway-partition-def Let-def ls-def es-def gs-def)
finally show ?thesis .

qed

By the above results, it can be seen quite easily that, in each recursive step,
the algorithm takes a list of length n, does O(n) work for the chopping,
computing the medians of the sublists, and partitioning, and it calls itself
recursively with lists of size at most d0.2ne and d0.7ne + 6, respectively.
This means that the runtime of the algorithm is bounded above by the
Akra–Bazzi-style recurrence

T (n) = T (d0.2ne) + T (d0.7ne+ 6) +O(n)

which, by the Akra–Bazzi theorem, can be shown to fulfil T ∈ Θ(n).
However, a proper analysis of this would require an actual execution model
and some way of measuring the runtime of the algorithm, which is not what
we aim to do here. Additionally, the entire algorithm can be performed
in-place in an imperative way, but this because quite tedious.
Instead of this, we will now focus on developing the above recursion into an
executable functional algorithm.

1.8 Medians of lists of length at most 5

We now show some basic results about how to efficiently find a median of a
list of size at most 5. For length 1 or 2, this is trivial, since we can just pick
any element. For length 3 and 4, we need at most three comparisons. For
length 5, we need at most six comparisons.
This allows us to save some comparisons compared with the naive method
of performing insertion sort and then returning the element in the middle.
definition median-3 :: ′a :: linorder ⇒ - where

median-3 a b c =
(if a ≤ b then

if b ≤ c then b else max a c
else

if c ≤ b then b else min a c)

lemma median-3 : median-3 a b c = median [a, b, c]
by (auto simp: median-3-def median-def select-def min-def max-def)

16

definition median-5-aux :: ′a :: linorder ⇒ - where
median-5-aux x1 x2 x3 x4 x5 = (

if x2 ≤ x3 then if x2 ≤ x4 then min x3 x4 else min x2 x5
else if x4 ≤ x3 then min x3 x5 else min x2 x4)

lemma median-5-aux:
assumes x1 ≤ x2 x4 ≤ x5 x1 ≤ x4
shows median-5-aux x1 x2 x3 x4 x5 = median [x1 ,x2 ,x3 ,x4 ,x5]
using assms by (auto simp: median-5-aux-def median-def select-def min-def)

definition median-5 :: ′a :: linorder ⇒ - where
median-5 a b c d e = (

let (x1 , x2) = (if a ≤ b then (a, b) else (b, a));
(x4 , x5) = (if d ≤ e then (d, e) else (e, d))

in
if x1 ≤ x4 then median-5-aux x1 x2 c x4 x5 else median-5-aux x4 x5 c x1

x2)

lemma median-5 : median-5 a b c d e = median [a, b, c, d, e]
by (auto simp: median-5-def Let-def median-5-aux intro: median-cong)

fun median-le-5 where
median-le-5 [a] = a
| median-le-5 [a,b] = a
| median-le-5 [a,b,c] = median-3 a b c
| median-le-5 [a,b,c,d] = median-3 a b c
| median-le-5 [a,b,c,d,e] = median-5 a b c d e
| median-le-5 - = undefined

lemma median-5-in-set: median-5 a b c d e ∈ {a, b, c, d, e}
proof −

have median-5 a b c d e ∈ set [a, b, c, d, e]
unfolding median-5 by (rule median-in-set) auto

thus ?thesis by simp
qed

lemma median-le-5-in-set:
assumes xs 6= [] length xs ≤ 5
shows median-le-5 xs ∈ set xs

proof (cases xs rule: median-le-5 .cases)
case (5 a b c d e)
with median-5-in-set[of a b c d e] show ?thesis by simp

qed (insert assms, auto simp: median-3-def min-def max-def)

lemma median-le-5 :
assumes xs 6= [] length xs ≤ 5
shows is-median (median-le-5 xs) xs

proof (cases xs rule: median-le-5 .cases)

17

case (3 a b c)
have is-median (median xs) xs by simp
also have median xs = median-3 a b c by (simp add: median-3 3)
finally show ?thesis using 3 by simp

next
case (4 a b c d)
have is-median (median [a,b,c]) [a,b,c] by simp
also have median [a,b,c] = median-3 a b c by (simp add: median-3 4)
finally have is-median (median-3 a b c) (d # [a,b,c]) by (rule is-median-Cons-odd)

auto
also have ?this←→ is-median (median-3 a b c) [a,b,c,d] by (intro is-median-cong)

auto
finally show ?thesis using 4 by simp

next
case (5 a b c d e)
have is-median (median xs) xs by simp
also have median xs = median-5 a b c d e by (simp add: median-5 5)
finally show ?thesis using 5 by simp

qed (insert assms, auto simp: is-median-def)

1.9 Median-of-medians selection algorithm

The fast selection function now simply computes the median-of-medians of
the chopped-up list as a pivot, partitions the list into with respect to that
pivot, and recurses into one of the resulting sublists.
function fast-select where

fast-select k xs = (
if length xs ≤ 20 then

sort xs ! k
else

let x = fast-select (((length xs + 4) div 5 − 1) div 2) (map median-le-5
(chop 5 xs));

(ls, es, gs) = threeway-partition x xs
in

if k < length ls then fast-select k ls
else if k < length ls + length es then x
else fast-select (k − length ls − length es) gs

)
by auto

The correctness of this is obvious from the above theorems, but the proof
is still somewhat complicated by the fact that termination depends on the
correctness of the function.
lemma fast-select-correct-aux:

assumes fast-select-dom (k, xs) k < length xs
shows fast-select k xs = select k xs
using assms

proof induction

18

case (1 k xs)
show ?case
proof (cases length xs ≤ 20)

case True
thus ?thesis using 1 .prems 1 .hyps

by (subst fast-select.psimps) (auto simp: select-def)
next

case False
define x where

x = fast-select (((length xs + 4) div 5 − Suc 0) div 2) (map median-le-5
(chop 5 xs))

define ls where ls = filter (λy. y < x) xs
define es where es = filter (λy. y = x) xs
define gs where gs = filter (λy. y > x) xs
define nl ne where nl = length ls and ne = length es
note defs = nl-def ne-def x-def ls-def es-def gs-def
have tw: (ls, es, gs) = threeway-partition (fast-select (((length xs + 4) div 5 −

1) div 2)
(map median-le-5 (chop 5 xs))) xs

unfolding threeway-partition-def defs One-nat-def ..
have tw ′: (ls, es, gs) = threeway-partition x xs

by (simp add: tw x-def)

have fast-select k xs = (if k < nl then fast-select k ls else if k < nl + ne then x
else fast-select (k − nl − ne) gs) using 1 .hyps False

by (subst fast-select.psimps) (simp-all add: threeway-partition-def defs [symmetric])
also have . . . = (if k < nl then select k ls else if k < nl + ne then x

else select (k − nl − ne) gs)
proof (intro if-cong refl)

assume ∗: k < nl
show fast-select k ls = select k ls

by (rule 1 ; (rule refl tw)?)
(insert ∗, auto simp: False threeway-partition-def ls-def x-def nl-def)+

next
assume ∗: ¬k < nl ¬k < nl + ne
have ∗∗: length xs = length ls + length es + length gs
unfolding ls-def es-def gs-def by (induction xs) (auto simp del: filter-True)

show fast-select (k − nl − ne) gs = select (k − nl − ne) gs
unfolding nl-def ne-def
by (rule 1 ; (rule refl tw)?) (insert False ∗ ∗∗ ‹k < length xs›, auto simp:

nl-def ne-def)
qed
also have . . . = select k xs using ‹k < length xs›

by (subst (3) select-rec-threeway-partition[of 5 ::nat - - x])
(unfold Let-def nl-def ne-def ls-def gs-def es-def x-def threeway-partition-def ,

simp-all)
finally show ?thesis .

qed
qed

19

Termination of the algorithm is reasonably obvious because the lists that
are recursed into never contain the pivot (the median-of-medians), while the
original list clearly does. The proof is still somewhat technical though.
lemma fast-select-termination: All fast-select-dom
proof (relation measure (length ◦ snd); (safe)?, goal-cases)

case (1 k xs)
thus ?case

by (auto simp: length-chop nat-less-iff ceiling-less-iff)
next

fix k :: nat and xs ls es gs :: ′a list
define x where x = fast-select (((length xs + 4) div 5 − 1) div 2) (map

median-le-5 (chop 5 xs))
assume A: ¬ length xs ≤ 20

(ls, es, gs) = threeway-partition x xs
fast-select-dom (((length xs + 4) div 5 − 1) div 2 ,

map median-le-5 (chop 5 xs))
from A have eq: ls = filter (λy. y < x) xs gs = filter (λy. y > x) xs

by (simp-all add: x-def threeway-partition-def)
have len: (length xs + 4) div 5 = nat dlength xs / 5 e by linarith
have less: (nat dreal (length xs) / 5 e − Suc 0) div 2 < nat dreal (length xs) /

5 e
using A(1) by linarith

have x = select (((length xs + 4) div 5 − 1) div 2) (map median-le-5 (chop 5
xs))

using less unfolding x-def by (intro fast-select-correct-aux A) (auto simp:
length-chop len)

also have . . . = median (map median-le-5 (chop 5 xs)) by (simp add: median-def
len length-chop)

finally have x: x =
moreover {

have x ∈ set (map median-le-5 (chop 5 xs))
using A(1) unfolding x by (intro median-in-set) auto

also have . . . ⊆ (
⋃

ys∈set (chop 5 xs). {median-le-5 ys}) by auto
also have . . . ⊆ (

⋃
ys∈set (chop 5 xs). set ys) using A(1)

by (intro UN-mono) (auto simp: median-le-5-in-set length-chop-part-le)
also have . . . = set xs by (subst UN-sets-chop) auto
finally have x ∈ set xs .

}
ultimately show ((k, ls), k, xs) ∈ measure (length ◦ snd)

and ((k − length ls − length es, gs), k, xs) ∈ measure (length ◦ snd)
using A(1) by (auto simp: eq intro!: length-filter-less[of x])

qed

We now have all the ingredients to show that fast-select terminates and does,
indeed, compute the k-th order statistic.
termination fast-select by (rule fast-select-termination)

theorem fast-select-correct: k < length xs =⇒ fast-select k xs = select k xs
using fast-select-termination by (intro fast-select-correct-aux) auto

20

The following version is then suitable for code export.
lemma fast-select-code [code]:

fast-select k xs = (
if length xs ≤ 20 then

fold insort xs [] ! k
else

let x = fast-select (((length xs + 4) div 5 − 1) div 2) (map median-le-5
(chop 5 xs));

(ls, es, gs) = threeway-partition x xs;
nl = length ls; ne = nl + length es

in
if k < nl then fast-select k ls
else if k < ne then x
else fast-select (k − ne) gs

)
by (subst fast-select.simps) (simp-all only: Let-def algebra-simps sort-conv-fold)

lemma select-code [code]:
select k xs = (if k < length xs then fast-select k xs

else Code.abort (STR ′′Selection index out of bounds. ′′) (λ-. select
k xs))
proof (cases k < length xs)

case True
thus ?thesis by (simp only: if-True fast-select-correct)

qed (simp-all only: Code.abort-def if-False)

end

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

21

	The Median-of-Medians Selection Algorithm
	Some facts about lists and multisets
	The dual order type
	Chopping a list into equal-sized sublists
	k-th order statistics and medians
	A more liberal notion of medians
	Properties of a median-of-medians
	The recursive step
	Medians of lists of length at most 5
	Median-of-medians selection algorithm

