
The Median Method

Emin Karayel

March 17, 2025

Abstract

The median method is an amplification result for randomized ap-
proximation algorithms described in [1]. Given an algorithm whose
result is in a desired interval with a probability larger than 1

2 , it is
possible to improve the success probability, by running the algorithm
multiple times independently and using the median. In contrast to
using the mean, the amplification of the success probability grows ex-
ponentially with the number of independent runs.

This entry contains a formalization of the underlying theorem:
Given a sequence of n independent random variables, which are in
a desired interval with a probability 1

2 + α. Then their median will
be in the desired interval with a probability of 1 − exp(−2α2n). In
particular, the success probability approaches 1 exponentially with the
number of variables.

In addition to that, this entry also contains a proof that order-
statistics of Borel-measurable random variables are themselves mea-
surable and that generalized intervals in linearly ordered Borel-spaces
are measurable.

Contents
1 Intervals are Borel measurable 1

2 Order statistics are Borel measurable 4

3 The Median Method 8

4 Some additional results about the median 19

1 Intervals are Borel measurable
theory Median

imports
HOL−Probability.Probability
HOL−Library.Multiset
Universal-Hash-Families.Universal-Hash-Families-More-Independent-Families

1

begin

This section contains a proof that intervals are Borel measurable, where
an interval is defined as a convex subset of linearly ordered space, more
precisely, a set is an interval, if for each triple of points x < y < z: If x and z
are in the set so is y. This includes ordinary intervals like {a..b}, {a<..<b}
but also for example {x::rat. x ∗ x < (2 ::rat)} which cannot be expressed
in the standard notation.
In the HOL−Analysis.Borel-Space there are proofs for the measurability of
each specific type of interval, but those unfortunately do not help if we want
to express the result about the median bound for arbitrary types of intervals.
definition interval :: (′a :: linorder) set ⇒ bool where

interval I = (∀ x y z. x ∈ I −→ z ∈ I −→ x ≤ y −→ y ≤ z −→ y ∈ I)

definition up-ray :: (′a :: linorder) set ⇒ bool where
up-ray I = (∀ x y. x ∈ I −→ x ≤ y −→ y ∈ I)

lemma up-ray-borel:
assumes up-ray (I :: ((′a :: linorder-topology) set))
shows I ∈ borel

proof (cases closed I)
case True
then show ?thesis using borel-closed by blast

next
case False
hence b:¬ closed I by blast

have open I
proof (rule Topological-Spaces.openI)

fix x
assume c:x ∈ I
show ∃T . open T ∧ x ∈ T ∧ T ⊆ I
proof (cases ∃ y. y < x ∧ y ∈ I)

case True
then obtain y where a:y < x ∧ y ∈ I by blast
have open {y<..} by simp
moreover have x ∈ {y<..} using a by simp
moreover have {y<..} ⊆ I

using a assms(1) by (auto simp: up-ray-def)
ultimately show ?thesis by blast

next
case False
hence I ⊆ {x..} using linorder-not-less by auto
moreover have {x..} ⊆ I

using c assms(1) unfolding up-ray-def by blast
ultimately have I = {x..}

by (rule order-antisym)
moreover have closed {x..} by simp

2

ultimately have False using b by auto
then show ?thesis by simp

qed
qed
then show ?thesis by simp

qed

definition down-ray :: (′a :: linorder) set ⇒ bool where
down-ray I = (∀ x y. y ∈ I −→ x ≤ y −→ x ∈ I)

lemma down-ray-borel:
assumes down-ray (I :: ((′a :: linorder-topology) set))
shows I ∈ borel

proof −
have up-ray (−I) using assms

by (simp add: up-ray-def down-ray-def , blast)
hence (−I) ∈ borel using up-ray-borel by blast
thus I ∈ borel

by (metis borel-comp double-complement)
qed

Main result of this section:
lemma interval-borel:

assumes interval (I :: ((′a :: linorder-topology) set))
shows I ∈ borel

proof (cases I = {})
case True
then show ?thesis by simp

next
case False
then obtain x where a:x ∈ I by blast
have

∧
y z . y ∈ I ∪ {x..} =⇒ y ≤ z =⇒ z ∈ I ∪ {x..}

by (metis assms a interval-def IntE UnE Un-Int-eq(1) Un-Int-eq(2) atLeast-iff
nle-le order .trans)

hence up-ray (I ∪ {x..})
using up-ray-def by blast

hence b:I ∪ {x..} ∈ borel
using up-ray-borel by blast

have
∧

y z . y ∈ I ∪ {..x} =⇒ z ≤ y =⇒ z ∈ I ∪ {..x}
by (metis assms a interval-def UnE UnI1 UnI2 atMost-iff dual-order .trans

linorder-le-cases)
hence down-ray (I ∪ {..x})

using down-ray-def by blast
hence c:I ∪ {..x} ∈ borel

using down-ray-borel by blast

have I = (I ∪ {x..}) ∩ (I ∪ {..x})
using a by fastforce

3

then show ?thesis using b c
by (metis sets.Int)

qed

2 Order statistics are Borel measurable

This section contains a proof that order statistics of Borel measurable ran-
dom variables are themselves Borel measurable.
The proof relies on the existence of branch-free comparison-sort algorithms.
Given a sequence length these algorithms perform compare-swap operations
on predefined pairs of positions. In particular the result of a comparison
does not affect future operations. An example for a branch-free comparison
sort algorithm is shell-sort and also bubble-sort without the early exit.
The advantage of using such a comparison-sort algorithm is that it can be
lifted to work on random variables, where the result of a comparison-swap
operation on two random variables X and Y can be represented as the
expressions λω. min (X ω) (Y ω) and λω. max (X ω) (Y ω).
Because taking the point-wise minimum (resp. maximum) of two random
variables is still Borel measurable, and because the entire sorting operation
can be represented using such compare-swap operations, we can show that
all order statistics are Borel measuable.
fun sort-primitive where

sort-primitive i j f k = (if k = i then min (f i) (f j) else (if k = j then max (f i)
(f j) else f k))

fun sort-map where
sort-map f n = fold id [sort-primitive j i. i <− [0 ..<n], j <− [0 ..<i]] f

lemma sort-map-ind:
sort-map f (Suc n) = fold id [sort-primitive j n. j <− [0 ..<n]] (sort-map f n)
by simp

lemma sort-map-strict-mono:
fixes f :: nat ⇒ ′b :: linorder
shows j < n =⇒ i < j =⇒ sort-map f n i ≤ sort-map f n j

proof (induction n arbitrary: i j)
case 0
then show ?case by simp

next
case (Suc n)
define g where g = (λk. fold id [sort-primitive j n. j <− [0 ..<k]] (sort-map f

n))
define k where k = n
have a:(∀ i j. j < n −→ i < j −→ g k i ≤ g k j) ∧ (∀ l. l < k −→ g k l ≤ g k n)
proof (induction k)

4

case 0
then show ?case using Suc by (simp add:g-def del:sort-map.simps)

next
case (Suc k)
have g (Suc k) = sort-primitive k n (g k)

by (simp add:g-def)
then show ?case using Suc

apply (cases g k k ≤ g k n)
apply (simp add:min-def max-def)
using less-antisym apply blast

apply (cases g k n ≤ g k k)
apply (simp add:min-def max-def)
apply (metis less-antisym max.coboundedI2 max.orderE)

by simp
qed

hence
∧

i j. j < Suc n =⇒ i < j =⇒ g n i ≤ g n j
apply (simp add:k-def) using less-antisym by blast

moreover have sort-map f (Suc n) = g n
by (simp add:sort-map-ind g-def del:sort-map.simps)

ultimately show ?case
using Suc by (simp del:sort-map.simps)

qed

lemma sort-map-mono:
fixes f :: nat ⇒ ′b :: linorder
shows j < n =⇒ i ≤ j =⇒ sort-map f n i ≤ sort-map f n j
by (metis sort-map-strict-mono eq-iff le-imp-less-or-eq)

lemma sort-map-perm:
fixes f :: nat ⇒ ′b :: linorder
shows image-mset (sort-map f n) (mset [0 ..<n]) = image-mset f (mset [0 ..<n])

proof −
define is-swap where is-swap = (λ(ts :: ((nat ⇒ ′b) ⇒ nat ⇒ ′b)). ∃ i < n. ∃ j

< n. ts = sort-primitive i j)
define t :: ((nat ⇒ ′b) ⇒ nat ⇒ ′b) list

where t = [sort-primitive j i. i <− [0 ..<n], j <− [0 ..<i]]

have a:
∧

x f . is-swap x =⇒ image-mset (x f) (mset-set {0 ..<n}) = image-mset
f (mset-set {0 ..<n})

proof −
fix x
fix f :: nat ⇒ ′b :: linorder
assume is-swap x
then obtain i j where x-def : x = sort-primitive i j and i-bound: i < n and

j-bound:j < n
using is-swap-def by blast

define inv where inv = mset-set {k. k < n ∧ k 6= i ∧ k 6= j}
have b:{0 ..<n} = {k. k < n ∧ k 6= i ∧ k 6= j} ∪ {i,j}

5

apply (rule order-antisym, rule subsetI , simp, blast, rule subsetI , simp)
using i-bound j-bound by meson

have c:
∧

k. k ∈# inv =⇒ (x f) k = f k
by (simp add:x-def inv-def)

have image-mset (x f) inv = image-mset f inv
apply (rule multiset-eqI)
using c multiset.map-cong0 by force

moreover have image-mset (x f) (mset-set {i,j}) = image-mset f (mset-set
{i,j})

apply (cases i = j)
by (simp add:x-def max-def min-def)+

moreover have mset-set {0 ..<n} = inv + mset-set {i,j}
by (simp only:inv-def b, rule mset-set-Union, simp, simp, simp)

ultimately show image-mset (x f) (mset-set {0 ..<n}) = image-mset f (mset-set
{0 ..<n})

by simp
qed

have (∀ x ∈ set t. is-swap x) =⇒ image-mset (fold id t f) (mset [0 ..<n]) =
image-mset f (mset [0 ..<n])

by (induction t arbitrary:f , simp, simp add:a)
moreover have

∧
x. x ∈ set t =⇒ is-swap x

apply (simp add:t-def is-swap-def)
by (meson atLeastLessThan-iff imageE less-imp-le less-le-trans)

ultimately have image-mset (fold id t f) (mset [0 ..<n]) = image-mset f (mset
[0 ..<n]) by blast

then show ?thesis by (simp add:t-def)
qed

lemma list-eq-iff :
assumes mset xs = mset ys
assumes sorted xs
assumes sorted ys
shows xs = ys
using assms properties-for-sort by blast

lemma sort-map-eq-sort:
fixes f :: nat ⇒ (′b :: linorder)
shows map (sort-map f n) [0 ..<n] = sort (map f [0 ..<n]) (is ?A = ?B)

proof −
have mset ?A = mset ?B

using sort-map-perm[where f=f and n=n]
by (simp del:sort-map.simps)

moreover have sorted ?B
by simp

moreover have sorted ?A
apply (subst sorted-wrt-iff-nth-less)
apply (simp del:sort-map.simps)
by (metis sort-map-mono nat-less-le)

6

ultimately show ?A = ?B
using list-eq-iff by blast

qed

lemma order-statistics-measurable-aux:
fixes X :: nat ⇒ ′a ⇒ (′b :: {linorder-topology, second-countable-topology})
assumes n ≥ 1
assumes j < n
assumes

∧
i. i < n =⇒ X i ∈ measurable M borel

shows (λx. (sort-map (λi. X i x) n) j) ∈ measurable M borel
proof −

have n-ge-0 :n > 0 using assms by simp
define is-swap where is-swap = (λ(ts :: ((nat ⇒ ′b) ⇒ nat ⇒ ′b)). ∃ i < n. ∃ j

< n. ts = sort-primitive i j)
define t :: ((nat ⇒ ′b) ⇒ nat ⇒ ′b) list

where t = [sort-primitive j i. i <− [0 ..<n], j <− [0 ..<i]]

define meas-ptw :: (nat ⇒ ′a ⇒ ′b) ⇒ bool
where meas-ptw = (λf . (∀ k. k < n −→ f k ∈ borel-measurable M))

have ind-step:∧
x (g :: nat ⇒ ′a ⇒ ′b). meas-ptw g =⇒ is-swap x =⇒ meas-ptw (λk ω. x (λi.

g i ω) k)
proof −

fix x g
assume meas-ptw g
hence a:

∧
k. k < n =⇒ g k ∈ borel-measurable M by (simp add:meas-ptw-def)

assume is-swap x
then obtain i j where x-def :x=sort-primitive i j and i-le:i < n and j-le:j <

n
by (simp add:is-swap-def , blast)

have
∧

k. k < n =⇒ (λω. x (λi. g i ω) k) ∈ borel-measurable M
proof −

fix k
assume k < n
thus (λω. x (λi. g i ω) k) ∈ borel-measurable M

apply (simp add:x-def)
apply (cases k = i, simp)
using a i-le j-le borel-measurable-min apply blast
apply (cases k = j, simp)
using a i-le j-le borel-measurable-max apply blast
using a by simp

qed
thus meas-ptw (λk ω. x (λi. g i ω) k)

by (simp add:meas-ptw-def)
qed

have (∀ x ∈ set t. is-swap x) =⇒ meas-ptw (λ k ω. (fold id t (λk. X k ω)) k)
proof (induction t rule:rev-induct)

7

case Nil
then show ?case using assms by (simp add:meas-ptw-def)

next
case (snoc x xs)
have a:meas-ptw (λk ω. fold (λa. a) xs (λk. X k ω) k) using snoc by simp
have b:is-swap x using snoc by simp
show ?case using ind-step[OF a b] by simp

qed
moreover have

∧
x. x ∈ set t =⇒ is-swap x

apply (simp add:t-def is-swap-def)
by (meson atLeastLessThan-iff imageE less-imp-le less-le-trans)

ultimately show ?thesis using assms
by (simp add:t-def [symmetric] meas-ptw-def)

qed

Main results of this section:
lemma order-statistics-measurable:

fixes X :: nat ⇒ ′a ⇒ (′b :: {linorder-topology, second-countable-topology})
assumes n ≥ 1
assumes j < n
assumes

∧
i. i < n =⇒ X i ∈ measurable M borel

shows (λx. (sort (map (λi. X i x) [0 ..<n])) ! j) ∈ measurable M borel
apply (subst sort-map-eq-sort[symmetric])
using assms by (simp add:order-statistics-measurable-aux del:sort-map.simps)

definition median :: nat ⇒ (nat ⇒ (′a :: linorder)) ⇒ ′a where
median n f = sort (map f [0 ..<n]) ! (n div 2)

lemma median-measurable:
fixes X :: nat ⇒ ′a ⇒ (′b :: {linorder-topology, second-countable-topology})
assumes n ≥ 1
assumes

∧
i. i < n =⇒ X i ∈ measurable M borel

shows (λx. median n (λi. X i x)) ∈ measurable M borel
apply (simp add:median-def)
apply (rule order-statistics-measurable[OF assms(1) - assms(2)])
using assms(1) by force+

3 The Median Method

This section contains the proof for the probability that the median of inde-
pendent random variables will be in an interval with high probability if the
individual variables are in the same interval with probability larger than 1

2 .
The proof starts with the elementary observation that the median of a se-
qeuence with n elements is in an interval I if at least half of them are in I.
This works because after sorting the sequence the elements that will be in
the interval must necessarily form a consecutive subsequence, if its length is
larger than n

2 the median must be in it.

8

The remainder follows the proof in [1, §2.1] using the Hoeffding inequality
to estimate the probability that at least half of the sequence elements will
be in the interval I.
lemma interval-rule:

assumes interval I
assumes a ≤ x x ≤ b
assumes a ∈ I
assumes b ∈ I
shows x ∈ I
using assms(1) apply (simp add:interval-def)
using assms by blast

lemma sorted-int:
assumes interval I
assumes sorted xs
assumes k < length xs i ≤ j j ≤ k
assumes xs ! i ∈ I xs ! k ∈ I
shows xs ! j ∈ I
apply (rule interval-rule[where a=xs ! i and b=xs ! k])
using assms by (simp add: sorted-nth-mono)+

lemma mid-in-interval:
assumes 2∗length (filter (λx. x ∈ I) xs) > length xs
assumes interval I
assumes sorted xs
shows xs ! (length xs div 2) ∈ I

proof −
have length (filter (λx. x ∈ I) xs) > 0 using assms(1) by linarith
then obtain v where v-1 : v < length xs and v-2 : xs ! v ∈ I

by (metis filter-False in-set-conv-nth length-greater-0-conv)

define J where J = {k. k < length xs ∧ xs ! k ∈ I}

have card-J-min: 2∗card J > length xs
using assms(1) by (simp add:J-def length-filter-conv-card)

consider
(a) xs ! (length xs div 2) ∈ I |
(b) xs ! (length xs div 2) /∈ I ∧ v > (length xs div 2) |
(c) xs ! (length xs div 2) /∈ I ∧ v < (length xs div 2)
by (metis linorder-cases v-2)

thus ?thesis
proof (cases)

case a
then show ?thesis by simp

next
case b
have p:

∧
k. k ≤ length xs div 2 =⇒ xs ! k /∈ I

using b v-2 sorted-int[OF assms(2) assms(3) v-1 , where j=length xs div 2]

9

apply simp by blast
hence card J ≤ card {Suc (length xs div 2)..<length xs}
unfolding J-def using not-less-eq-eq[symmetric] by (intro card-mono subsetI)

auto
hence card J ≤ length xs − (Suc (length xs div 2))

using card-atLeastLessThan by metis
hence length xs ≤ 2∗(length xs − (Suc (length xs div 2)))

using card-J-min by linarith
hence False using b v-1 by auto
then show ?thesis by simp

next
case c
have

∧
k. k ≥ length xs div 2 =⇒ k < length xs =⇒ xs ! k /∈ I

using c v-1 v-2 sorted-int[OF assms(2 ,3), where i =v and j=length xs div
2]

by simp blast
hence card J ≤ card {0 ..<(length xs div 2)}

unfolding J-def using linorder-le-less-linear by (intro card-mono subsetI)
auto

hence card J ≤ (length xs div 2)
using card-atLeastLessThan by simp

then show ?thesis using card-J-min by linarith
qed

qed

lemma median-est:
assumes interval I
assumes 2∗card {k. k < n ∧ f k ∈ I} > n
shows median n f ∈ I

proof −
have {k. k < n ∧ f k ∈ I} = {i. i < n ∧ map f [0 ..<n] ! i ∈ I} by auto
thus ?thesis using assms unfolding median-def

by (intro mid-in-interval[OF - assms(1),where xs=sort (map f [0 ..<n]), sim-
plified])

(simp-all add:filter-sort comp-def length-filter-conv-card)
qed

lemma median-est-rev:
assumes interval I
assumes median n f /∈ I
shows 2∗card {k. k < n ∧ f k /∈ I} ≥ n

proof (rule ccontr)
assume a: ¬(2∗card {k. k < n ∧ f k /∈ I} ≥ n)

have 2 ∗ n = 2 ∗ card {k. k < n} by simp
also have ... = 2 ∗ card ({k. k < n ∧ f k ∈ I} ∪ {k. k < n ∧ f k /∈ I})

by (intro arg-cong2 [where f=(∗)] refl arg-cong[where f=card]) auto
also have ... = 2 ∗ card {k. k < n ∧ f k ∈ I} + 2 ∗ card {k. k < n ∧ f k /∈ I}

by (subst card-Un-disjoint) auto

10

also have ... ≤ n + 2 ∗ card {k. k < n ∧ f k /∈ I}
using median-est[OF assms(1)] assms(2) not-less by (intro add-mono) auto

also have ... < n + n
using a by (intro add-strict-left-mono) auto

finally show False by auto
qed

lemma prod-pmf-bernoulli-mono:
assumes finite I
assumes

∧
i. i ∈ I =⇒ 0 ≤ f i ∧ f i ≤ g i ∧ g i ≤ 1

assumes
∧

x y. x ∈ A =⇒ (∀ i ∈ I . x i ≤ y i) =⇒ y ∈ A
shows measure (Pi-pmf I d (bernoulli-pmf ◦ f)) A ≤ measure (Pi-pmf I d

(bernoulli-pmf ◦ g)) A
(is ?L ≤ ?R)

proof −
define q where q i = pmf-of-list [(0 ::nat, f i), (1 , g i − f i), (2 , 1 − g i)] for i

have wf :pmf-of-list-wf [(0 ::nat, f i), (1 , g i − f i), (2 , 1 − g i)] if i ∈ I for i
using assms(2)[OF that] by (intro pmf-of-list-wfI) auto

have 0 : bernoulli-pmf (f i) = map-pmf (λx. x = 0) (q i) (is ?L1 = ?R1)
if i ∈ I for i

proof −
have 0 ≤ f i f i ≤ 1 using assms(2)[OF that] by auto
hence pmf ?L1 x = pmf ?R1 x for x

unfolding q-def pmf-map measure-pmf-of-list[OF wf [OF that]]
by (cases x;simp-all add:vimage-def)

thus ?thesis
by (intro pmf-eqI) auto

qed

have 1 : bernoulli-pmf (g i) = map-pmf (λx. x ∈ {0 ,1}) (q i) (is ?L1 = ?R1)
if i ∈ I for i

proof −
have 0 ≤ g i g i ≤ 1 using assms(2)[OF that] by auto
hence pmf ?L1 x = pmf ?R1 x for x

unfolding q-def pmf-map measure-pmf-of-list[OF wf [OF that]]
by (cases x;simp-all add:vimage-def)

thus ?thesis
by (intro pmf-eqI) auto

qed

have 2 : (λk. x k = 0) ∈ A =⇒ (λk. x k = 0 ∨ x k = Suc 0) ∈ A for x
by (erule assms(3)) auto

have ?L = measure (Pi-pmf I d (λi. map-pmf (λx. x = 0) (q i))) A
unfolding comp-def by (simp add:0 cong: Pi-pmf-cong)

also have ... = measure (map-pmf ((◦) (λx. x = 0)) (Pi-pmf I (if d then 0 else
2) q)) A

11

by (intro arg-cong2 [where f=measure-pmf .prob] Pi-pmf-map[OF assms(1)])
auto

also have ... = measure (Pi-pmf I (if d then 0 else 2) q) {x. (λk. x k = 0) ∈ A}
by (simp add:comp-def vimage-def)

also have ... ≤ measure (Pi-pmf I (if d then 0 else 2) q) {x. (λk. x k ∈ {0 ,1})
∈ A}

using 2 by (intro measure-pmf .finite-measure-mono subsetI) auto
also have ... = measure (map-pmf ((◦) (λx. x ∈ {0 ,1})) (Pi-pmf I (if d then 0

else 2) q)) A
by (simp add:vimage-def comp-def)

also have ... = measure (Pi-pmf I d (λi. map-pmf (λx. x ∈ {0 ,1}) (q i))) A
by (intro arg-cong2 [where f=measure-pmf .prob] Pi-pmf-map[OF assms(1),

symmetric]) auto
also have ... = ?R

unfolding comp-def by (simp add:1 cong: Pi-pmf-cong)
finally show ?thesis by simp

qed

lemma discrete-measure-eqI :
assumes sets M = count-space UNIV
assumes sets N = count-space UNIV
assumes countable Ω
assumes

∧
x. x ∈ Ω =⇒ emeasure M {x} = emeasure N {x} ∧ emeasure M {x}

6= ∞
assumes AE x in M . x ∈ Ω
assumes AE x in N . x ∈ Ω
shows M = N

proof −
define E where E = insert {} ((λx. {x}) ‘ Ω)

have 0 : Int-stable E unfolding E-def by (intro Int-stableI) auto
have 1 : countable E using assms(3) unfolding E-def by simp

have E ⊆ Pow Ω unfolding E-def by auto
have emeasure M A = emeasure N A if A-range: A ∈ E for A

using that assms(4) unfolding E-def by auto
moreover have sets M = sets N using assms(1 ,2) by simp
moreover have Ω ∈ sets M using assms(1) by simp
moreover have E 6= {} unfolding E-def by simp
moreover have

⋃
E = Ω unfolding E-def by simp

moreover have emeasure M a 6= ∞ if a ∈ E for a
using that assms(4) unfolding E-def by auto

moreover have sets (restrict-space M Ω) = Pow Ω
using assms(1) by (simp add:sets-restrict-space range-inter)

moreover have sets (restrict-space N Ω) = Pow Ω
using assms(2) by (simp add:sets-restrict-space range-inter)

moreover have sigma-sets Ω E = Pow Ω
unfolding E-def by (intro sigma-sets-singletons-and-empty assms(3))

ultimately show ?thesis

12

by (intro measure-eqI-restrict-generator [OF 0 - - - - - - assms(5 ,6) 1]) auto
qed

Main results of this section:

The next theorem establishes a bound for the probability of the median of in-
dependent random variables using the binomial distribution. In a follow-up
step, we will establish tail bounds for the binomial distribution and corre-
sponding median bounds.
This two-step strategy was suggested by Yong Kiam Tan. In a previ-
ous version, I only had verified the exponential tail bound (see theorem
median_bound below).
theorem (in prob-space) median-bound-raw:

fixes I :: (′b :: {linorder-topology, second-countable-topology}) set
assumes n > 0 p ≥ 0
assumes interval I
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes

∧
i. i < n =⇒ P(ω in M . X i ω ∈ I) ≥ p

shows P(ω in M . median n (λi. X i ω) ∈ I) ≥ 1 − measure (binomial-pmf n p)
{..n div 2}

(is ?L ≥ ?R)
proof −

let ?pi = Pi-pmf {..<n} undefined
define q where q i = P(ω in M . X i ω ∈ I) for i

have n-ge-1 : n ≥ 1 using assms(1) by simp

have 0 : {k. k < n ∧ (k < n −→ X k ω ∈ I)} = {k. k < n ∧ X k ω ∈ I} for ω
by auto

have countable ({..<n} →E (UNIV :: bool set))
by (intro countable-PiE) auto

hence countable-ext: countable (extensional {..<n} :: (nat ⇒ bool) set)
unfolding PiE-def by auto

have m0 : I ∈ sets borel
using interval-borel[OF assms(3)] by simp

have m1 : random-variable borel (λx. X k x) if k ∈ {..<n} for k
using assms(4) that unfolding indep-vars-def by auto

have m2 : (λx. x ∈ I) ∈ borel →M (measure-pmf ((bernoulli-pmf ◦ q) k))
for k using m0 by measurable

hence m3 : random-variable (measure-pmf ((bernoulli-pmf ◦ q) k)) (λx. X k x ∈
I)

if k ∈ {..<n} for k
by (intro measurable-compose[OF m1] that)

13

hence m4 : random-variable (PiM {..<n} (bernoulli-pmf ◦ q)) (λω. λk∈{..<n}.
X k ω ∈ I)

by (intro measurable-restrict) auto
moreover have A ∈ sets (PiM {..<n} (λx. measure-pmf (bernoulli-pmf (q x))))

if A ⊆ extensional {..<n} for A
proof −

have A = (
⋃

a ∈ A. {a}) by auto
also have ... = (

⋃
a ∈ A. PiE {..<n} (λk. {a k}))

using that by (intro arg-cong[where f=Union] image-cong refl PiE-singleton[symmetric])
auto

also have ... ∈ sets (PiM {..<n} (λx. measure-pmf (bernoulli-pmf (q x))))
using that countable-ext countable-subset

by (intro sets.countable-Union countable-image image-subsetI sets-PiM-I-finite)
auto

finally show ?thesis by simp
qed
hence m5 : id ∈ (PiM {..<n} (bernoulli-pmf ◦ q)) →M (count-space UNIV)

by (intro measurableI) (simp-all add:vimage-def space-PiM PiE-def)
ultimately have random-variable (count-space UNIV) (id ◦ (λω. λk∈{..<n}. X

k ω ∈ I))
by (rule measurable-comp)

hence m6 : random-variable (count-space UNIV) (λω. λk∈{..<n}. X k ω ∈ I)
by simp

have indep: indep-vars (bernoulli-pmf ◦ q) (λi x. X i x ∈ I) {0 ..<n}
by (intro indep-vars-compose2 [OF assms(4)] m2)

have measure M {x ∈ space M . (X k x ∈ I) = ω} = measure (bernoulli-pmf (q
k)) {ω}

if k < n for ω k
proof (cases ω)

case True
then show ?thesis unfolding q-def by (simp add:measure-pmf-single)

next
case False
have {x ∈ space M . X k x ∈ I} ∈ events

using that m0 by (intro measurable-sets-Collect[OF m1]) auto
hence prob {x ∈ space M . X k x /∈ I} = 1 − prob {ω ∈ space M . X k ω ∈ I}

by (subst prob-neg) auto
thus ?thesis using False unfolding q-def by (simp add:measure-pmf-single)

qed

hence 1 : emeasure M {x ∈ space M . (X k x ∈ I) = ω} = emeasure (bernoulli-pmf
(q k)) {ω}

if k < n for ω k
using that unfolding emeasure-eq-measure measure-pmf .emeasure-eq-measure

by simp

interpret product-sigma-finite (bernoulli-pmf ◦ q)

14

by standard

have distr M (count-space UNIV) (λω. (λk∈{..<n} . X k ω ∈ I)) = distr
(distr M (PiM {..<n} (bernoulli-pmf ◦ q)) (λω. λk∈{..<n}. X k ω ∈ I))

(count-space UNIV) id
by (subst distr-distr [OF m5 m4]) (simp add:comp-def)

also have ... = distr (PiM {..<n} (λi. (distr M ((bernoulli-pmf ◦ q) i) (λω. X
i ω ∈ I))))

(count-space UNIV) id
using assms(1) indep atLeast0LessThan by (intro arg-cong2 [where f=λx y.

distr x y id]
iffD1 [OF indep-vars-iff-distr-eq-PiM ′] m3) auto

also have ... = distr (PiM {..<n} (bernoulli-pmf ◦ q)) (count-space UNIV) id
using m3 1 by (intro distr-cong PiM-cong refl discrete-measure-eqI [where

Ω=UNIV])
(simp-all add:emeasure-distr vimage-def Int-def conj-commute)

also have ... = ?pi (bernoulli-pmf ◦ q)
proof (rule discrete-measure-eqI [where Ω=extensional {..<n}], goal-cases)

case 1 show ?case by simp
next

case 2 show ?case by simp
next

case 3 show ?case using countable-ext by simp
next

case (4 x)
have emeasure (PiM {..<n} (bernoulli-pmf ◦ q)) {x} =

emeasure (PiM {..<n} (bernoulli-pmf ◦ q)) (PiE {..<n} (λk. {x k}))
using PiE-singleton[OF 4] by simp

also have ... = (
∏

i<n. emeasure (measure-pmf (bernoulli-pmf (q i))) {x i})
by (subst emeasure-PiM) auto

also have ... = emeasure (Pi-pmf {..<n} undefined (bernoulli-pmf ◦q))
(PiE-dflt {..<n} undefined (λk. {x k}))
unfolding measure-pmf .emeasure-eq-measure
by (subst measure-Pi-pmf-PiE-dflt) (simp-all add:prod-ennreal)

also have ... = emeasure (Pi-pmf {..<n} undefined (bernoulli-pmf ◦q)) {x}
using 4 by (intro arg-cong2 [where f=emeasure]) (auto simp add:PiE-dflt-def

extensional-def)
finally have emeasure (PiM {..<n} (bernoulli-pmf ◦ q)) {x} =

emeasure (Pi-pmf {..<n} undefined (bernoulli-pmf ◦ q)) {x}
by simp

thus ?case using 4
by (subst (1 2) emeasure-distr [OF m5]) (simp-all add:vimage-def space-PiM

PiE-def)
next

case 5
have AE x in PiM {..<n} (bernoulli-pmf ◦ q). x ∈ extensional {..<n}

by (intro AE-I2) (simp add:space-PiM PiE-def)
then show ?case by (subst AE-distr-iff [OF m5]) simp-all

next

15

case 6
then show ?case by (intro AE-pmfI) (simp add: set-Pi-pmf PiE-dflt-def ex-

tensional-def)
qed
finally have 2 : distr M (count-space UNIV) (λω. (λk∈{..<n}. X k ω ∈ I)) =

?pi (bernoulli-pmf ◦q)
by simp

have 3 : n < 2 ∗ card {k. k < n ∧ y k} if
n < 2 ∗ card {k. k < n ∧ x k}

∧
i. i < n =⇒ x i =⇒ y i for x y

proof −
have 2 ∗ card {k. k < n ∧ x k} ≤ 2 ∗ card {k. k < n ∧ y k}

using that(2) by (intro mult-left-mono card-mono) auto
thus ?thesis using that(1) by simp

qed

have 4 : 0 ≤ p ∧ p ≤ q i ∧ q i ≤ 1 if i < n for i
unfolding q-def using assms(2 ,5) that by auto

have p-range: p ∈ {0 ..1}
using 4 [OF assms(1)] by auto

have ?R = 1 − measure-pmf .prob (binomial-pmf n p) {k. 2 ∗ k ≤ n}
by (intro arg-cong2 [where f=(−)] arg-cong2 [where f=measure-pmf .prob])

auto
also have ... = measure (binomial-pmf n p) {k. n < 2 ∗ k}

by (subst measure-pmf .prob-compl[symmetric]) (simp-all add:set-diff-eq not-le)
also have ... = measure (?pi (bernoulli-pmf ◦ (λ-. p))) {ω. n < 2 ∗ card {k. k

< n ∧ ω k}}
using p-range by (subst binomial-pmf-altdef ′[where A={..<n} and dflt=undefined])

auto
also have ... ≤ measure (?pi (bernoulli-pmf ◦ q)) {ω. n < 2 ∗ card {k. k < n

∧ ω k}}
using 3 4 by (intro prod-pmf-bernoulli-mono) auto

also have ... =
P(ω in distr M (count-space UNIV) (λω. λk∈{..<n}. X k ω ∈ I). n<2∗card

{k. k < n ∧ ω k})
unfolding 2 by simp

also have ... = P(ω in M . n < 2∗card {k. k < n ∧ X k ω ∈ I})
by (subst measure-distr [OF m6]) (simp-all add:vimage-def Int-def conj-commute

0)
also have ... ≤ ?L

using median-est[OF assms(3)] m0 m1
by (intro finite-measure-mono measurable-sets-Collect[OF median-measurable[OF

n-ge-1]]) auto
finally show ?R ≤ ?L by simp

qed

Cumulative distribution of the binomial distribution (contributed by Yong

16

Kiam Tan):
lemma prob-binomial-pmf-upto:

assumes 0 ≤ p p ≤ 1
shows measure-pmf .prob (binomial-pmf n p) {..m} =

sum (λi. real (n choose i) ∗ p^i ∗ (1 − p) ^(n−i)) {0 ..m}
by (auto simp: pmf-binomial[OF assms] measure-measure-pmf-finite intro!: sum.cong)

A tail bound for the binomial distribution using Hoeffding’s inequality:
lemma binomial-pmf-tail:

assumes p ∈ {0 ..1} real k ≤ real n ∗ p
shows measure (binomial-pmf n p) {..k} ≤ exp (− 2 ∗ real n ∗ (p − real k /

n)^2)
(is ?L ≤ ?R)

proof (cases n = 0)
case True then show ?thesis by simp

next
case False
let ?A = {..<n}
let ?pi = Pi-pmf ?A undefined (λ-. bernoulli-pmf p)

define µ where µ = (
∑

i<n. (
∫

x. (of-bool (x i) :: real) ∂ ?pi))
define ε :: real where ε = µ − k

have µ = (
∑

i<n. (
∫

x. (of-bool x :: real) ∂ (map-pmf (λω. ω i) ?pi)))
unfolding µ-def by simp

also have ... = (
∑

i<n. (
∫

x. (of-bool x :: real) ∂ (bernoulli-pmf p)))
by (simp add: Pi-pmf-component)

also have ... = real n ∗ p using assms(1) by simp
finally have µ-alt: µ = real n ∗ p

by simp

have ε-ge-0 : ε ≥ 0
using assms(2) unfolding ε-def µ-alt by auto

have indep: prob-space.indep-vars ?pi (λ-. borel) (λk ω. of-bool (ω k)) {..<n}
by (intro prob-space.indep-vars-compose2 [OF prob-space-measure-pmf indep-vars-Pi-pmf])

auto
interpret Hoeffding-ineq ?pi {..<n} λk ω. of-bool (ω k) λ-.0 λ-.1 µ

using indep unfolding µ-def by (unfold-locales) simp-all

have ?L = measure (map-pmf (λf . card {x ∈ ?A. f x}) ?pi) {..k}
by (intro arg-cong2 [where f=measure-pmf .prob] binomial-pmf-altdef ′ assms(1))

auto
also have ... = P(ω in ?pi. (

∑
i<n. of-bool (ω i)) ≤ µ − ε)

unfolding ε-def by (simp add:vimage-def Int-def)
also have ... ≤ exp (− 2 ∗ ε2 / (

∑
i<n. (1 − 0)2))

using False by (intro Hoeffding-ineq-le ε-ge-0) auto
also have ... = ?R

unfolding ε-def µ-alt by (simp add:power2-eq-square field-simps)

17

finally show ?thesis by simp
qed

theorem (in prob-space) median-bound:
fixes n :: nat
fixes I :: (′b :: {linorder-topology, second-countable-topology}) set
assumes interval I
assumes α > 0
assumes ε ∈ {0<..<1}
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes n ≥ − ln ε / (2 ∗ α2)
assumes

∧
i. i < n =⇒ P(ω in M . X i ω ∈ I) ≥ 1/2+α

shows P(ω in M . median n (λi. X i ω) ∈ I) ≥ 1−ε
proof −

have 0 < −ln ε / (2 ∗ α2)
using assms by (intro divide-pos-pos) auto

also have ... ≤ real n using assms by simp
finally have real n > 0 by simp
hence n-ge-0 :n > 0 by simp

have d0 : real-of-int breal n / 2 c ∗ 2 / real n ≤ 1
using n-ge-0 by simp linarith

hence d1 : real (nat breal n / 2 c) ≤ real n ∗ (1 / 2)
using n-ge-0 by (simp add:field-simps)

also have ... ≤ real n ∗ (1 / 2 + α)
using assms(2) by (intro mult-left-mono) auto

finally have d1 : real (nat breal n / 2 c) ≤ real n ∗ (1 / 2 + α) by simp

have 1/2 + α ≤ P(ω in M . X 0 ω ∈ I) using n-ge-0 by (intro assms(6))
also have ... ≤ 1 by simp
finally have d2 : 1 / 2 + α ≤ 1 by simp

have d3 : nat breal n / 2 c = n div 2 by linarith

have 1 − ε ≤ 1 − exp (− 2 ∗ real n ∗ α2)
using assms(2 ,3 ,5) by (intro diff-mono order .refl iffD1 [OF ln-ge-iff]) (auto

simp:field-simps)
also have ... ≤ 1 − exp (− 2 ∗ real n ∗ ((1/2+α) − real (nat breal n/2 c) / real

n)2)
using d0 n-ge-0 assms(2)
by (intro diff-mono order .refl iffD2 [OF exp-le-cancel-iff] mult-left-mono-neg

power-mono) auto
also have ... ≤ 1 − measure (binomial-pmf n (1/2+α)) {..nat breal n/2 c}

using assms(2) d1 d2 by (intro diff-mono order .refl binomial-pmf-tail) auto
also have ... = 1 − measure (binomial-pmf n (1/2+α)) {..n div 2} by (simp

add:d3)
also have ... ≤ P(ω in M . median n (λi. X i ω) ∈ I)
using assms(2) by (intro median-bound-raw n-ge-0 assms(1 ,4 ,6) add-nonneg-nonneg)

18

auto
finally show ?thesis by simp

qed

This is a specialization of the above to closed real intervals.
corollary (in prob-space) median-bound-1 :

assumes α > 0
assumes ε ∈ {0<..<1}
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes n ≥ − ln ε / (2 ∗ α2)
assumes ∀ i ∈ {0 ..<n}. P(ω in M . X i ω ∈ ({a..b} :: real set)) ≥ 1/2+α
shows P(ω in M . median n (λi. X i ω) ∈ {a..b}) ≥ 1−ε
using assms(5) by (intro median-bound[OF - assms(1 ,2 ,3 ,4)]) (auto simp:interval-def)

This is a specialization of the above, where α = 1
6 and the interval is de-

scribed using a mid point µ and radius δ. The choice of α = 1
6 implies

a success probability per random variable of 2
3 . It is a commonly chosen

success probability for Monte-Carlo algorithms (cf. [2, §4] or [3, §1]).
corollary (in prob-space) median-bound-2 :

fixes µ δ :: real
assumes ε ∈ {0<..<1}
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes n ≥ −18 ∗ ln ε
assumes

∧
i. i < n =⇒ P(ω in M . abs (X i ω − µ) > δ) ≤ 1/3

shows P(ω in M . abs (median n (λi. X i ω) − µ) ≤ δ) ≥ 1−ε
proof −

have b:space M − {ω ∈ space M . X i ω ∈ {µ−δ..µ+δ}} = {ω ∈ space M . abs
(X i ω − µ) > δ} for i

by auto

have
∧

i. i < n =⇒ 1 − P(ω in M . X i ω ∈ {µ− δ..µ+δ}) ≤ 1/3
using assms
apply (subst prob-compl[symmetric])
apply (measurable, simp add:indep-vars-def)

by (subst b, simp)

hence a:
∧

i. i < n =⇒ P(ω in M . X i ω ∈ {µ− δ..µ+δ}) ≥ 2/3 by simp

have 1−ε ≤ P(ω in M . median n (λi. X i ω) ∈ {µ−δ..µ+δ}) using a assms(3)
by (intro median-bound-1 [OF - assms(1 ,2), where α=1/6]) (simp-all add:power2-eq-square)

also have ... = P(ω in M . abs (median n (λi. X i ω) − µ) ≤ δ)
by (intro arg-cong2 [where f=measure] Collect-cong) auto

finally show ?thesis by simp
qed

4 Some additional results about the median
lemma sorted-mono-map:

19

assumes sorted xs
assumes mono f
shows sorted (map f xs)
using assms(2) unfolding sorted-wrt-map
by (intro sorted-wrt-mono-rel[OF - assms(1)]) (simp add:mono-def)

This could be added to HOL.List:
lemma map-sort:

assumes mono f
shows sort (map f xs) = map f (sort xs)
using assms by (intro properties-for-sort sorted-mono-map) auto

lemma median-cong:
assumes

∧
i. i < n =⇒ f i = g i

shows median n f = median n g
unfolding median-def using assms
by (intro arg-cong2 [where f=(!)] arg-cong[where f=sort] map-cong) auto

lemma median-restrict:
median n (λi ∈ {0 ..<n}.f i) = median n f
by (rule median-cong, simp)

lemma median-commute-mono:
assumes n > 0
assumes mono g
shows g (median n f) = median n (g ◦ f)
apply (simp add: median-def del:map-map)
apply (subst map-map[symmetric])
apply (subst map-sort[OF assms(2)])
apply (subst nth-map, simp) using assms apply fastforce
by simp

lemma median-rat:
assumes n > 0
shows real-of-rat (median n f) = median n (λi. real-of-rat (f i))
apply (subst (2) comp-def [where g=f , symmetric])
apply (rule median-commute-mono[OF assms(1)])
by (simp add: mono-def of-rat-less-eq)

lemma median-const:
assumes k > 0
shows median k (λi ∈ {0 ..<k}. a) = a

proof −
have b: sorted (map (λ-. a) [0 ..<k])

by (subst sorted-wrt-map, simp)
have a: sort (map (λ-. a) [0 ..<k]) = map (λ-. a) [0 ..<k]

by (subst sorted-sort-id[OF b], simp)
have median k (λi ∈ {0 ..<k}. a) = median k (λ-. a)

by (subst median-restrict, simp)

20

also have ... = a using assms by (simp add:median-def a)
finally show ?thesis by simp

qed

end

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approx-
imating the frequency moments. Journal of Computer and System Sci-
ences, 58(1):137–147, 1999.

[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting distinct elements in a data stream. In Randomization and
Approximation Techniques in Computer Science, pages 1–10. Springer
Berlin Heidelberg, 2002.

[3] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’10, pages 41–52, New York, 2010.

21

	Intervals are Borel measurable
	Order statistics are Borel measurable
	The Median Method
	Some additional results about the median

