
Maximum Segment Sum

Nils Cremer

March 17, 2025

Abstract

In this work we consider the maximum segment sum problem [1],
that is to compute, given a list of numbers, the largest of the sums
of the contiguous segments of that list. We assume that the elements
of the list are not necessarily numbers but just elements of some lin-
early ordered group. Both an implementation for a naive algorithm
(O(n2)) as well as for Kadane’s algorithm [1] (O(n)) are given and
their correctness proven.

Contents
1 Maximum Segment Sum 1

1.1 Naive Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Kadane’s Algorithms . . . . . . . . . . . . . . . . . . . . . . . 4

1 Maximum Segment Sum
theory Maximum-Segment-Sum

imports Main
begin

The maximum segment sum problem is to compute, given a list of num-
bers, the largest of the sums of the contiguous segments of that list. It is
also known as the maximum sum subarray problem and has been consid-
ered many times in the literature; the Wikipedia article Maximum subarray
problem is a good starting point.
We assume that the elements of the list are not necessarily numbers but just
elements of some linearly ordered group.
class linordered-group-add = linorder + group-add +
assumes add-left-mono: a ≤ b =⇒ c + a ≤ c + b
assumes add-right-mono: a ≤ b =⇒ a + c ≤ b + c
begin

lemma max-add-distrib-left: max y z + x = max (y+x) (z+x)

1

https://en.wikipedia.org/wiki/Maximum_subarray_problem
https://en.wikipedia.org/wiki/Maximum_subarray_problem


by (metis add-right-mono max.absorb-iff1 max-def )

lemma max-add-distrib-right: x + max y z = max (x+y) (x+z)
by (metis add-left-mono max.absorb1 max.cobounded2 max-def )

1.1 Naive Solution
fun mss-rec-naive-aux :: ′a list ⇒ ′a where

mss-rec-naive-aux [] = 0
| mss-rec-naive-aux (x#xs) = max 0 (x + mss-rec-naive-aux xs)

fun mss-rec-naive :: ′a list ⇒ ′a where
mss-rec-naive [] = 0

| mss-rec-naive (x#xs) = max (mss-rec-naive-aux (x#xs)) (mss-rec-naive xs)

definition fronts :: ′a list ⇒ ′a list set where
fronts xs = {as. ∃ bs. xs = as @ bs}

definition front-sums xs ≡ sum-list ‘ fronts xs

lemma fronts-cons: fronts (x#xs) = ((#) x) ‘ fronts xs ∪ {[]} (is ?l = ?r)
proof

show ?l ⊆ ?r
proof

fix as assume as ∈ ?l
then show as ∈ ?r by (cases as) (auto simp: fronts-def )

qed
show ?r ⊆ ?l unfolding fronts-def by auto

qed

lemma front-sums-cons: front-sums (x#xs) = (+) x ‘ front-sums xs ∪ {0}
proof −
have sum-list ‘ ((#) x) ‘ fronts xs = (+) x ‘ front-sums xs unfolding front-sums-def

by force
then show ?thesis by (simp add: front-sums-def fronts-cons)

qed

lemma finite-fronts: finite (fronts xs)
by (induction xs) (simp add: fronts-def , simp add: fronts-cons)

lemma finite-front-sums: finite (front-sums xs)
using front-sums-def finite-fronts by simp

lemma front-sums-not-empty: front-sums xs 6= {}
unfolding front-sums-def fronts-def using image-iff by fastforce

lemma max-front-sum: Max (front-sums (x#xs)) = max 0 (x + Max (front-sums
xs))
using finite-front-sums front-sums-not-empty

2



by (auto simp add: front-sums-cons hom-Max-commute max-add-distrib-right)

lemma mss-rec-naive-aux-front-sums: mss-rec-naive-aux xs = Max (front-sums xs)
by (induction xs) (simp add: front-sums-def fronts-def , auto simp: max-front-sum)

lemma front-sums: front-sums xs = {s. ∃ as bs. xs = as @ bs ∧ s = sum-list as}
unfolding front-sums-def fronts-def by auto

lemma mss-rec-naive-aux: mss-rec-naive-aux xs = Max {s. ∃ as bs. xs = as @ bs
∧ s = sum-list as}
using front-sums mss-rec-naive-aux-front-sums by simp

definition mids :: ′a list ⇒ ′a list set where
mids xs ≡ {bs. ∃ as cs. xs = as @ bs @ cs}

definition mid-sums xs ≡ sum-list ‘ mids xs

lemma fronts-mids: bs ∈ fronts xs =⇒ bs ∈ mids xs
unfolding fronts-def mids-def by auto

lemma mids-mids-cons: bs ∈ mids xs =⇒ bs ∈ mids (x#xs)
proof−

fix bs assume bs ∈ mids xs
then obtain as cs where xs = as @ bs @ cs unfolding mids-def by blast
then have x # xs = (x#as) @ bs @ cs by simp
then show bs ∈ mids (x#xs) unfolding mids-def by blast

qed

lemma mids-cons: mids (x#xs) = fronts (x#xs) ∪ mids xs (is ?l = ?r)
proof

show ?l ⊆ ?r
proof

fix bs assume bs ∈ ?l
then obtain as cs where as-bs-cs: (x#xs) = as @ bs @ cs unfolding mids-def

by blast
then show bs ∈ ?r
proof (cases as)

case Nil
then have bs ∈ fronts (x#xs) by (simp add: fronts-def as-bs-cs)
then show ?thesis by simp

next
case (Cons a as ′)
then have xs = as ′ @ bs @ cs using as-bs-cs by simp
then show ?thesis unfolding mids-def by auto

qed
qed
show ?r ⊆ ?l using fronts-mids mids-mids-cons by auto

qed

3



lemma mid-sums-cons: mid-sums (x#xs) = front-sums (x#xs) ∪ mid-sums xs
unfolding mid-sums-def by (auto simp: mids-cons front-sums-def )

lemma finite-mids: finite (mids xs)
by (induction xs) (simp add: mids-def , simp add: mids-cons finite-fronts)

lemma finite-mid-sums: finite (mid-sums xs)
by (simp add: mid-sums-def finite-mids)

lemma mid-sums-not-empty: mid-sums xs 6= {}
unfolding mid-sums-def mids-def by blast

lemma max-mid-sums-cons: Max (mid-sums (x#xs)) = max (Max (front-sums
(x#xs))) (Max (mid-sums xs))
by (auto simp: mid-sums-cons Max-Un finite-front-sums finite-mid-sums front-sums-not-empty

mid-sums-not-empty)

lemma mss-rec-naive-max-mid-sum: mss-rec-naive xs = Max (mid-sums xs)
by (induction xs) (simp add: mid-sums-def mids-def , auto simp: max-mid-sums-cons

mss-rec-naive-aux front-sums)

lemma mid-sums: mid-sums xs = {s. ∃ as bs cs. xs = as @ bs @ cs ∧ s = sum-list
bs}

by (auto simp: mid-sums-def mids-def )

theorem mss-rec-naive: mss-rec-naive xs = Max {s. ∃ as bs cs. xs = as @ bs @ cs
∧ s = sum-list bs}

unfolding mss-rec-naive-max-mid-sum mid-sums by simp

1.2 Kadane’s Algorithms
fun kadane :: ′a list ⇒ ′a ⇒ ′a ⇒ ′a where

kadane [] cur m = m
| kadane (x#xs) cur m =

(let cur ′ = max (cur + x) x in
kadane xs cur ′ (max m cur ′))

definition mss-kadane xs ≡ kadane xs 0 0

lemma Max-front-sums-geq-0 : Max (front-sums xs) ≥ 0
proof−

have [] ∈ fronts xs unfolding fronts-def by blast
then have 0 ∈ front-sums xs unfolding front-sums-def by force
then show ?thesis using finite-front-sums Max-ge by simp

qed

lemma Max-mid-sums-geq-0 : Max (mid-sums xs) ≥ 0
proof−

4



have 0 ∈ mid-sums xs unfolding mid-sums-def mids-def by force
then show ?thesis using finite-mid-sums Max-ge by simp

qed

lemma kadane: m ≥ cur =⇒ m ≥ 0 =⇒ kadane xs cur m = max m (max (cur
+ Max (front-sums xs)) (Max (mid-sums xs)))
proof (induction xs cur m rule: kadane.induct)

case (1 cur m)
then show ?case unfolding front-sums-def fronts-def mid-sums-def mids-def by

auto
next

case (2 x xs cur m)
then show ?case

apply (auto simp: max-front-sum max-mid-sums-cons Let-def )
by (smt (verit, ccfv-threshold) Max-front-sums-geq-0 add-assoc add-0-right

max.assoc max.coboundedI1 max.left-commute max.orderE max-add-distrib-left max-add-distrib-right)
qed

lemma Max-front-sums-leq-Max-mid-sums: Max (front-sums xs) ≤ Max (mid-sums
xs)
proof−

have front-sums xs ⊆ mid-sums xs unfolding front-sums-def mid-sums-def us-
ing fronts-mids subset-iff by blast

then show ?thesis using front-sums-not-empty finite-mid-sums Max-mono by
blast
qed

lemma mss-kadane-mid-sums: mss-kadane xs = Max (mid-sums xs)
unfolding mss-kadane-def using kadane Max-mid-sums-geq-0 Max-front-sums-leq-Max-mid-sums

by auto

theorem mss-kadane: mss-kadane xs = Max {s. ∃ as bs cs. xs = as @ bs @ cs ∧
s = sum-list bs}

using mss-kadane-mid-sums mid-sums by auto

end

end

References

[1] Wikipedia. Maximum subarray problem, 2022. [https://en.wikipedia.
org/wiki/Maximum_subarray_problem; accessed 25-September-2022].

5

https://en.wikipedia.org/wiki/Maximum_subarray_problem
https://en.wikipedia.org/wiki/Maximum_subarray_problem

	Maximum Segment Sum
	Naive Solution
	Kadane's Algorithms


