Maximum Cardinality Matching

Christine Rizkallah
March 17, 2025

Abstract

A matching in a graph G is a subset M of the edges of G such that
no two share an endpoint. A matching has maximum cardinality if
its cardinality is at least as large as that of any other matching. An
odd-set cover OSC of a graph G is a labeling of the nodes of G with
integers such that every edge of G is either incident to a node labeled
1 or connects two nodes labeled with the same number 7 > 2.

Theorem 1 (Edmonds [2]). Let M be a matching in a graph G and
let OSC be an odd-set cover of G. For any ¢ > 0, let n; be the number
of nodes labeled 4. If

IM|=n1+> [ni/2]
i>2
then M is a maximum cardinality matching.

We provide an Isabelle proof of Edmonds theorem. For an expla-
nation of the proof see [1].

Contents
1 Definitions
2 Lemmas

3

21 |MI|<nl
92 |Mi| < [ni/2] ..
93 Ml < SOIMi| o oo

Final Theorem

theory Matching
imports Main

begin

type-synonym label = nat

SO W N

1 Definitions

definition finite-graph :: "v set => ('v * 'v) set = bool where
finite-graph V' E = (finite V A finite E A
(VeeckE.fstec VAsndee VAfste~= snde))

definition degree :: (v * 'v) set = 'v = nat where
degree Ev = card {e € E. fst e = v V snd e = v}

definition edge-as-set :: ("v * 'v) = v set where
edge-as-set e = {fst e, snd e}

definition N :: v set = (‘v = label) = nat = nat where
NVLi=card{ve V.Lv=1i}

definition weight:: label set = (label = nat) = nat where
weight LV f = f1 + (O_4eLV. (fi) div 2)

definition OSC :: ('v = label) = ('v * 'v) set = bool where
OSCLE=(Ne€c€E. L(fstey=1V L (snde)=1V
L (fste)=L (snde) NL (fste) > 1)

definition disjoint-edges :: (v * 'v) = (‘v * 'v) = bool where
disjoint-edges el e2 = (fst el # fst e2 A fst el # snd e2 A
snd el # fst e2 A snd el # snd e2)

definition matching :: 'v set = (v * "v) set = (‘v * 'v) set = bool where
matching VEM = (M C E A finite-graph V E A
(Vel € M.V e2 € M. el # e2 — disjoint-edges el e2))

definition matching-i :: nat = v set = (v * "v) set = (v * 'v) set =
('v = label) = ('v * 'v) set where
matching-i i VEML ={e€ M. i=1 AN (L (fste) =iV L (snd e) = 1)
Vi>1 AL (fste)=14iAN L (snde) =i}

definition V-i:: nat = v set = (v * "v) set = (v * "v) set =
("v = label) = 'v set where
V-ii VEML=J (edge-as-set * matching-i i VE M L)

definition endpoint-inV :: 'v set = (v * 'v) = 'v where
endpoint-inV Ve = (if fst e € V then fst e else snd e)

definition relevant-endpoint :: ("v = label) = 'v set =

("v x 'v) = 'v where
relevant-endpoint L 'V e = (if L (fst e) = 1 then fst e else snd e)

2 Lemmas

lemma definition-of-range:

endpoint-inV V1 “ matching-i 1 VE ML =
{ v. 3 e € matching-i 1 VE M L. endpoint-inV V1 e = v } by auto

lemma matching-i-edges-as-sets:
edge-as-set ‘ matching-ii VE M L =
{ el.3 (u, v) € matching-i i VE M L. edge-as-set (u, v) = el} by auto

lemma matching-disjointness:
assumes matching V. E M
assumes el € M
assumes e2 € M
assumes el #* e2
shows edge-as-set el N edge-as-set e2 = {}
using assms
by (auto simp add: edge-as-set-def disjoint-edges-def matching-def)

lemma expand-set-containment:
assumes matching V E M
assumes e € M
shows e €
using assms
by (auto simp add:matching-def)

theorem injectivity:
assumes is-osc: OSC L E
assumes is-m: matching V E M
assumes el-in-M1: el € matching-i 1 VE M L
and e2-in-M1: e2 € matching-i 1 VE M L
assumes diff: (el # e2)
shows endpoint-inV {v € V. L v =1} el # endpoint-inV {ve V. Lv =1}
e2
proof —
from el-in-M1 have el € M by (auto simp add: matching-i-def)
moreover
from e2-in-M1 have e2 € M by (auto simp add: matching-i-def)
ultimately
have disjoint-edge-sets: edge-as-set el N edge-as-set e2 = {}
using diff is-m matching-disjointness by fast
then show %thesis by (auto simp add: edge-as-set-def endpoint-inV-def)
qed

2.1 |Mi| < ni

lemma card-M1-le-NVL1:

assumes matching V E M

assumes OSC L E

shows card (matching-i 1 VEML) < (NVLI)
proof —

let ?f = endpoint-inV {ve V.Lv=1}

let ?A = matching-i 1 VEML
let B={ve V.Lv=1}
have inj-on ?f ?A using assms injectivity
unfolding inj-on-def by blast
moreover have ?f YA C ?B
proof —
{
fix e assume e € matching-i 1 VE M L
then have endpoint-inV {ve V. Lv=1}ec{ve V. Lv=1}
using assms
by (auto simp add: endpoint-inV-def matching-def
matching-i-def OSC-def finite-graph-def definition-of-range)
}
then show %thesis using assms definition-of-range by blast
qed
moreover have finite ?B using assms
by (simp add: matching-def finite-graph-def)
ultimately show ?thesis unfolding N-def by (rule card-inj-on-le)
qed

lemma edge-as-set-inj-on-Mi:
assumes matching V E M
shows inj-on edge-as-set (matching-i i VE M L)
using assms
unfolding inj-on-def edge-as-set-def matching-def
disjoint-edges-def matching-i-def
by blast

lemma card-Mi-eq-card-edge-as-set-Mi:
assumes matching V. E M
shows card (matching-i i VE M L) = card (edge-as-set‘ matching-i i VE M L)
(is card ?Mi = card (?f ¢ -))
proof —
from assms have bij-betw ?f ?Mi (?f ¢ ?Mq)
by (simp add: bij-betw-def matching-i-edges-as-sets edge-as-set-inj-on-Mi)
then show ?thesis by (rule bij-betw-same-card)
qed

lemma card-edge-as-set-Mi-twice-card-partitions:
assumes OSC L E N matching VEM N i > 1
shows 2 x card (edge-as-set‘matching-i i V E M L)
= card (V-ii VEML) (is 2 * card C = card ?Vi)
proof —
from assms have 1: finite (| ?C)
by (auto simp add: matching-def finite-graph-def
matching-i-def edge-as-set-def finite-subset)
show ?thesis unfolding V-i-def
proof (rule card-partition)
show finite ?C using 1 by (rule finite-UnionD)

next
show finite (|J ?C) using 1 .
next
fix ¢ assume ¢ € ?C then show card ¢ = 2
proof (rule imageF)
fix z
assume 2: ¢ = edge-as-set x and 3: x € matching-i i VE M L
with assms have z € E
unfolding matching-i-def matching-def by blast
then have fst © # snd z using assms 3
by (auto simp add: matching-def finite-graph-def)
with 2 show %thesis by (auto simp add: edge-as-set-def)
qed
next
fix z1 z2
assume /: z1 € ?C and 5: 22 € ?C and 6: 1 # 22
{
fix el e2
assume 7: x1 = edge-as-set el el € matching-ii VE M L
x2 = edge-as-set e2 e2 € matching-i i VE M L
from assms have matching V E M by simp
moreover
from 7 assms have el € M and e2 € M
by (simp-all add: matching-i-def)
moreover from 6 7 have el # e2 by blast
ultimately have z1 N z2 = {} unfolding 7
by (rule matching-disjoininess)
}

with 4 5 show z1 N z2 = {} by clarsimp
qed
qed

lemma card-Mi-twice-card-Vi:
assumes OSC L E A matching VE M N i > 1
shows 2 x card (matching-ii VE ML) = card (V-ii VE ML)
proof —
from assms have finite (V-i i VE M L)
by (auto simp add: edge-as-set-def finite-subset
matching-def finite-graph-def V-i-def matching-i-def)
with assms show ?thesis
by (simp add: card-Mi-eq-card-edge-as-set-Mi
card-edge-as-set-Mi-twice-card-partitions V-i-def)
qed

lemma card-Mi-le-floor-div-2- Vi:
assumes OSC L E N matching VEM N i > 1
shows card (matching-i ¢ VE ML) < (card (V-i i VE M L)) div 2
using card-Mi-twice-card-Vi|OF assms]
by arith

lemma card-Vi-le-NVLi:
assumes i>1 A matching VE M
shows card (V-ii VEML) < NV Li
unfolding N-def
proof (rule card-mono)
show finite {v € V. L v = i} using assms
by (simp add: matching-def finite-graph-def)
next
let ?A = edge-as-set ‘ matching-ii VE M L
let ?C ={veV.Lv=1}
show V-i{ VE ML C ?C using assms unfolding V-i-def
proof (intro Union-least)
fix X assume X € 74
with assms have 3z € matching-i i V E M L. edge-as-set x = X
by (simp add: matching-i-edges-as-sets)
with assms show X C ¢2C
unfolding finite-graph-def matching-def
matching-i-def edge-as-set-def by blast
qed
qed

2.2 |Mi| < |ni/2]

lemma card-Mi-le-floor-div-2-NVLi:
assumes OSC L E N matching VEM N i > 1
shows card (matching-i ¢ VE ML) < (N V L i) div 2
proof —
from assms have card (V-ii VEML) < (N V L)
by (simp add: card-Vi-le-NVLi)
then have card (V-i ¢ VEML) div2 < (N V L) div 2
by simp
moreover from assms have
card (matching-i it VE ML) < card (V-ii VE ML) div 2
by (intro card-Mi-le-floor-div-2- Vi)
ultimately show ?thesis by auto
qed

2.3 |M| <3| Mi|

lemma card-M-le-sum-card-Mi:
assumes matching V. E M and OSC L E
shows card M < (3 i € L‘V. card (matching-i i VE M L))
(is card - < ?CardMi)
proof —
let ?UnMi =Jx € L‘V. matching-i x VE ML
from assms have 1: finite 2UnMi
by (auto simp add: matching-def
finite-graph-def matching-i-def finite-subset)
{

fix e assume e-inM: e € M
let %v = relevant-endpoint L V e
have 1: e € matching-i (L %v) V E M L using assms e-inM
proof cases
assume L (fst e) = 1
thus ?thesis using assms e-inM
by (simp add: relevant-endpoint-def matching-i-def)
next
assume a: L (fst e) # 1
have L (fste) =1V L (snd e) = 1
V (L (fste) =L (snd e) N L (fste) >1)
using assms e-inM unfolding OSC-def
by (blast intro: expand-set-containment)
thus ?thesis using assms e-inM a
by (auto simp add: relevant-endpoint-def matching-i-def)
qed
have 2: %v € V using assms e-inM
by (auto simp add: matching-def
relevant-endpoint-def matching-i-def finite-graph-def)
then have 3 v € V. e € matching-i (L v) V E M L using assms 1 2
by (intro bexl)
}

with assms have M C ?UnMi by (auto)
with assms and 1 have card M < card ?UnMi by (intro card-mono)
moreover from assms have card ?UnMi = ?CardMi
proof (intro card-UN-disjoint)
show finite (L‘V) using assms
by (simp add: matching-def finite-graph-def)
next
show VieL‘V. finite (matching-i i V E M L) using assms
unfolding matching-def finite-graph-def matching-i-def
by (blast intro: finite-subset)
next
show Vi€ LV.Vje L'V.i# j —
matching-i i V. E M L N matching-i j V E M L = {} using assms
by (auto simp add: matching-i-def)
qged
ultimately show ?thesis by simp
qed

theorem card-M-le-weight-NVLi:
assumes matching V E M and OSC L FE
shows card M < weight {i € L “*V.i> 1} (NV L) (is - < ?W)
proof —
let 2M01 = > i| i € LV A (i=1 V i=0). card (matching-i i V E M L)
let ?Mgrl = > il i€ LVA 1 < i. card (matching-i i VE M L)
let ?Mi = > i€L‘V. card (matching-i i VE M L)
have card M < ?Mi using assms by (rule card-M-le-sum-card-Mi)
moreover

have ?Mi < ?W
proof —
let PA={icL‘V.i=1Vi=0}
let P B={ieL‘V.1<i}
let 29 = X i. card (matching-i i V.E M L)
let %set0l ={i. i: L V& (i=1|i=0)}
have a: L ‘' V = ?A U ?B using assms by auto
have finite V using assms
by (simp add: matching-def finite-graph-def)
have b: sum ?g (?A U ?B) = sum ?g A + sum ?g ?B
using assms <finite V> by (auto intro: sum.union-disjoint)
have 1: ?Mi = ?M01+ ?Mgr! using assms a b
by (simp add: matching-def finite-graph-def)
moreover
have 0: card (matching-i 0 VE M L) = 0 using assms
by (simp add: matching-i-def)
have 2: ?M01 < NV L 1
proof cases
assume a: I € LV
have ?M01 = card (matching-i 1 VE M L)
proof cases
assume b: 0 € L'V
with a assms have %set01 = {0, 1} by blast
thus ?thesis using assms 0 by simp
next
assume b0: 0 ¢ LV
with a have Zset01 = {1} by (auto simp del: One-nat-def)
thus ?thesis by simp
qed
thus “thesis using assms a
by (simp del: One-nat-def, intro card-M1-le-NVL1)
next
assume a: I ¢ LV
show ?thesis
proof cases
assume b: 0 € LV
with a assms have ?set01 = {0} by (auto simp del:One-nat-def)
thus ?thesis using assms 0 by auto
next
assume b: 0 ¢ LV
with a have ?set01 = {} by (auto simp del: One-nat-def)
then have ?M01 = (> i€{}. card (matching-i i V E M L)) by auto
thus ?thesis by simp
qed
qed
moreover
have 3: ?Mgrl < (>_i|i€eL‘V AN 1 < i. NV Lidiv 2) using assms
by (intro sum-mono card-Mi-le-floor-div-2-NVLi, simp)
ultimately

show ?thesis using 1 2 3 assms by (simp add: weight-def)
qed
ultimately show ?thesis by simp
qed

3 Final Theorem

The following theorem is due to Edmond [2]:

theorem maximum-cardinality-matching:
assumes matching V E M and OSC L E
and card M = weight {i € L *V.i> 1} (NV L)
and matching V E M’
shows card M' < card M
using assms card-M-le-weight-NVLi
by simp

The widely used algorithmic library LEDA has a certifying algorithm for
maximum cardinality matching. This Isabelle proof is part of the work done
to verify the checker of this certifying algorithm. For more information see

[1].

end

References

[1] E. Alkassar, S. Bohme, K. Mehlhorn, and C. Rizkallah. Verification of
certifying computations. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verfication (CAV2011), Cliff Lodge, Snowbird,
Utah, USA, 2011. To Appear.

[2] J. Edmonds. Maximum matching and a polyhedron with 0,1 - vertices.
Journal of Research of the National Bureau of Standards, 69B:125-130,
1965.

	Definitions
	Lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 M1 n1
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Mi ni/2
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 M Mi

	Final Theorem

