Maximum Cardinality Matching

Christine Rizkallah

March 17, 2025

Abstract

A matching in a graph G is a subset M of the edges of G such that no two share an endpoint. A matching has maximum cardinality if its cardinality is at least as large as that of any other matching. An odd-set cover OSC of a graph G is a labeling of the nodes of G with integers such that every edge of G is either incident to a node labeled 1 or connects two nodes labeled with the same number $i \geq 2$.

Theorem 1 (Edmonds [2]). Let M be a matching in a graph G and let OSC be an odd-set cover of G. For any $i \geq 0$, let n_i be the number of nodes labeled i. If

$$|M| = n_1 + \sum_{i \ge 2} \lfloor n_i/2 \rfloor$$

then M is a maximum cardinality matching.

We provide an Isabelle proof of Edmonds theorem. For an explanation of the proof see [1].

Contents

1	Definitions	2
2	Lemmas $2.1 M1 \le n1$ $2.2 Mi \le \lfloor ni/2 \rfloor$ $2.3 M \le \sum Mi $	6
the im be	Final Theorem eory Matching ports Main gin pe-synonym label = nat	9

1 Definitions

```
definition finite-graph :: 'v set => ('v * 'v) set \Rightarrow bool where
  finite-graph VE = (finite\ V \land finite\ E \land
  (\forall e \in E. fst \ e \in V \land snd \ e \in V \land fst \ e \sim = snd \ e))
definition degree :: ('v * 'v) set \Rightarrow 'v \Rightarrow nat where
  degree E \ v = card \ \{e \in E. \ fst \ e = v \lor snd \ e = v\}
definition edge-as-set :: ('v * 'v) \Rightarrow 'v set where
  edge-as-set e = \{fst \ e, \ snd \ e\}
definition N :: 'v \ set \Rightarrow ('v \Rightarrow label) \Rightarrow nat \Rightarrow nat \ \mathbf{where}
  N\ V\ L\ i = card\ \{v \in V.\ L\ v = i\}
definition weight:: label set \Rightarrow (label \Rightarrow nat) \Rightarrow nat where
  weight LV f = f 1 + (\sum i \in LV. (f i) div 2)
definition OSC :: ('v \Rightarrow label) \Rightarrow ('v * 'v) set \Rightarrow bool where
  OSC\ L\ E = (\forall\ e \in E.\ L\ (fst\ e) = 1\ \lor\ L\ (snd\ e) = 1\ \lor
                       L (fst e) = L (snd e) \wedge L (fst e) > 1)
definition disjoint-edges :: ('v * 'v) \Rightarrow ('v * 'v) \Rightarrow bool where
  disjoint-edges e1 e2 = (fst e1 \neq fst e2 \wedge fst e1 \neq snd e2 \wedge
                             snd\ e1 \neq fst\ e2 \land snd\ e1 \neq snd\ e2)
definition matching :: 'v set \Rightarrow ('v * 'v) set \Rightarrow ('v * 'v) set \Rightarrow bool where
  \mathit{matching}\ V\ E\ M = (M \subseteq E\ \land\ \mathit{finite\text{-}\mathit{graph}}\ V\ E\ \land
  (\forall e1 \in M. \ \forall \ e2 \in M. \ e1 \neq e2 \longrightarrow disjoint\text{-}edges \ e1 \ e2))
definition matching-i :: nat \Rightarrow 'v set \Rightarrow ('v * 'v) set \Rightarrow ('v * 'v) set \Rightarrow
  ('v \Rightarrow label) \Rightarrow ('v * 'v) set where
  matching-i i V E M L = \{e \in M. i=1 \land (L (fst e) = i \lor L (snd e) = i)\}
  \vee i > 1 \wedge L (fst \ e) = i \wedge L (snd \ e) = i 
definition V-i:: nat \Rightarrow 'v \ set \Rightarrow ('v * 'v) \ set \Rightarrow ('v * 'v) \ set \Rightarrow
                    ('v \Rightarrow label) \Rightarrow 'v set  where
  V-i i V E M L = \bigcup (edge-as-set 'matching-i i V E M L)
definition endpoint-in V :: 'v \ set \Rightarrow ('v * 'v) \Rightarrow 'v \ where
  endpoint-inV\ V\ e = (if\ fst\ e \in V\ then\ fst\ e\ else\ snd\ e)
definition relevant-endpoint :: ('v \Rightarrow label) \Rightarrow 'v \ set \Rightarrow
                                    ('v * 'v) \Rightarrow 'v where
  relevant-endpoint L V e = (if L (fst e) = 1 then fst e else snd e)
```

2 Lemmas

lemma definition-of-range:

```
endpoint-inV\ V1 ' matching-i\ 1\ V\ E\ M\ L=
  \{v. \exists e \in matching-i \ 1 \ V \ E \ M \ L. \ endpoint-in \ V \ V1 \ e = v \} \ \mathbf{by} \ auto
{f lemma}\ matching-i-edges-as-sets:
  edge-as-set 'matching-i i V E M L =
  \{e1. \exists (u, v) \in matching-i \ i \ V \ E \ M \ L. \ edge-as-set \ (u, v) = e1\} \ \mathbf{by} \ auto
lemma matching-disjointness:
 assumes matching V E M
 assumes e1 \in M
 assumes e2 \in M
 assumes e1 \neq e2
 shows edge-as-set e1 \cap edge-as-set e2 = {}
 using assms
 by (auto simp add: edge-as-set-def disjoint-edges-def matching-def)
lemma expand-set-containment:
 assumes matching\ V\ E\ M
 assumes e \in M
 shows e \in E
 using assms
 by (auto simp add:matching-def)
theorem injectivity:
 assumes is-osc: OSC\ L\ E
 assumes is-m: matching V E M
 assumes e1-in-M1: e1 \in matching-i 1 \ V E \ M \ L
     and e2-in-M1: e2 \in matching-i 1 V E M L
 assumes diff: (e1 \neq e2)
 shows endpoint-in V {v \in V. L v = 1} e1 \neq endpoint-in V {v \in V. L v = 1}
e2
proof -
 from e1-in-M1 have e1 \in M by (auto simp add: matching-i-def)
 moreover
 from e2-in-M1 have e2 \in M by (auto simp add: matching-i-def)
 ultimately
 have disjoint-edge-sets: edge-as-set e1 \cap edge-as-set e2 = {}
   using diff is-m matching-disjointness by fast
  then show ?thesis by (auto simp add: edge-as-set-def endpoint-in V-def)
qed
2.1
       |M1| \leq n1
lemma card-M1-le-NVL1:
 assumes matching\ V\ E\ M
 assumes OSC\ L\ E
 \mathbf{shows} \ \mathit{card} \ (\mathit{matching-i} \ 1 \ \mathit{V} \ \mathit{E} \ \mathit{M} \ \mathit{L}) \leq (\ \mathit{N} \ \mathit{V} \ \mathit{L} \ 1)
proof -
 let ?f = endpoint - inV \{v \in V. L v = 1\}
```

```
let ?A = matching-i \ 1 \ V E M L
 let ?B = \{v \in V. \ L \ v = 1\}
 have inj-on ?f ?A using assms injectivity
   unfolding inj-on-def by blast
 moreover have ?f \cdot ?A \subseteq ?B
 proof -
   {
     fix e assume e \in matching-i \ 1 \ V E \ M \ L
     then have endpoint-in V {v \in V. L v = 1} e \in \{v \in V. L v = 1}
      using assms
      by (auto simp add: endpoint-inV-def matching-def
        matching-i-def OSC-def finite-graph-def definition-of-range)
   }
   then show ?thesis using assms definition-of-range by blast
 qed
 moreover have finite ?B using assms
   by (simp add: matching-def finite-graph-def)
 ultimately show ?thesis unfolding N-def by (rule card-inj-on-le)
qed
lemma edge-as-set-inj-on-Mi:
 assumes matching\ V\ E\ M
 shows inj-on edge-as-set (matching-i i V E M L)
 using assms
 unfolding inj-on-def edge-as-set-def matching-def
   disjoint-edges-def matching-i-def
 by blast
{f lemma}\ card	ext{-}Mi	ext{-}eq	ext{-}card	ext{-}edge	ext{-}as	ext{-}set	ext{-}Mi	ext{:}
 assumes matching\ V\ E\ M
 shows card (matching-i \ i \ V \ E \ M \ L) = card (edge-as-set' matching-i \ i \ V \ E \ M \ L)
 (is card ?Mi = card (?f `-))
proof -
 from assms have bij-betw ?f ?Mi (?f '?Mi)
   by (simp add: bij-betw-def matching-i-edges-as-sets edge-as-set-inj-on-Mi)
 then show ?thesis by (rule bij-betw-same-card)
qed
lemma card-edge-as-set-Mi-twice-card-partitions:
 assumes OSC L E \wedge matching V E M \wedge i > 1
 shows 2 * card (edge-as-set'matching-i i V E M L)
 = card (V-i i V E M L) (is 2 * card ?C = card ?Vi)
proof -
 from assms have 1: finite (\bigcup ?C)
   by (auto simp add: matching-def finite-graph-def
     matching-i-def edge-as-set-def finite-subset)
 show ?thesis unfolding V-i-def
 proof (rule card-partition)
   show finite ?C using 1 by (rule finite-UnionD)
```

```
next
   show finite (\bigcup ?C) using 1.
 next
   fix c assume c \in ?C then show card c = 2
   proof (rule imageE)
     \mathbf{fix} \ x
     assume 2: c = edge-as-set x and 3: x \in matching-i i \ V \ E \ M \ L
     with assms have x \in E
      unfolding matching-i-def matching-def by blast
     then have fst \ x \neq snd \ x using assms \ 3
      by (auto simp add: matching-def finite-graph-def)
     with 2 show ?thesis by (auto simp add: edge-as-set-def)
   qed
 next
   fix x1 x2
   assume 4: x1 \in ?C and 5: x2 \in ?C and 6: x1 \neq x2
    fix e1 e2
    assume 7: x1 = edge-as-set e1 e1 \in matching-i i V E M L
      x2 = edge-as-set e2 \ e2 \in matching-i i V E M L
     from assms have matching V E M by simp
     moreover
     from 7 assms have e1 \in M and e2 \in M
      by (simp-all add: matching-i-def)
     moreover from 6 7 have e1 \neq e2 by blast
     ultimately have x1 \cap x2 = \{\} unfolding 7
      by (rule matching-disjointness)
   }
   with 45 show x1 \cap x2 = \{\} by clarsimp
 qed
qed
lemma card-Mi-twice-card-Vi:
 assumes OSC L E \land matching V E M \land i > 1
 shows 2 * card (matching-i i V E M L) = card (V-i i V E M L)
proof -
 from assms have finite (V-i i V E M L)
   by (auto simp add: edge-as-set-def finite-subset
     matching-def finite-graph-def V-i-def matching-i-def )
 with assms show ?thesis
   by (simp add: card-Mi-eq-card-edge-as-set-Mi
     card-edge-as-set-Mi-twice-card-partitions V-i-def)
qed
\mathbf{lemma} \ \mathit{card}\text{-}\mathit{Mi-le-floor-div-2-Vi:}
 assumes OSC\ L\ E\ \land\ matching\ V\ E\ M\ \land\ i>1
 shows card (matching-i i V E M L) \leq (card (V-i i V E M L)) div 2
 using card-Mi-twice-card-Vi[OF assms]
 by arith
```

```
\mathbf{lemma} \mathit{card}	ext{-}Vi	ext{-}le	ext{-}NVLi:
  assumes i>1 \land matching \ V \ E \ M
 shows card (V-i \ i \ V E \ M \ L) \leq N \ V \ L \ i
  unfolding N-def
proof (rule card-mono)
  show finite \{v \in V. L \ v = i\} using assms
   by (simp add: matching-def finite-graph-def)
next
  let ?A = edge-as-set 'matching-i i V E M L
 let ?C = \{v \in V. \ L \ v = i\}
  show V-i i V E M L \subseteq ?C using assms unfolding V-i-def
  proof (intro Union-least)
   fix X assume X \in ?A
   with assms have \exists x \in matching-i \ i \ V \ E \ M \ L. \ edge-as-set \ x = X
     by (simp add: matching-i-edges-as-sets)
   with assms show X \subseteq ?C
     unfolding finite-graph-def matching-def
       matching-i-def edge-as-set-def by blast
 qed
qed
2.2
       |Mi| \leq |ni/2|
\mathbf{lemma} \ \mathit{card}\text{-}\mathit{Mi-le-floor-div-2-NVL}i:
  assumes OSC L E \wedge matching V E M \wedge i > 1
  shows card (matching-i i V E M L) \leq (N V L i) div 2
proof
  from assms have card (V-i \ i \ V \ E \ M \ L) \leq (N \ V \ L \ i)
   by (simp add: card-Vi-le-NVLi)
  then have card (V-i i V E M L) div 2 \le (N V L i) div 2
   by simp
  moreover from assms have
   card\ (matching-i\ i\ V\ E\ M\ L) \le card\ (V-i\ i\ V\ E\ M\ L)\ div\ 2
   by (intro card-Mi-le-floor-div-2-Vi)
  ultimately show ?thesis by auto
qed
       |M| \leq \sum |Mi|
2.3
lemma card-M-le-sum-card-Mi:
assumes matching\ V\ E\ M and OSC\ L\ E
shows card M \leq (\sum i \in L'V. card (matching-i i V E M L))
  (is card - \leq ?CardMi)
proof -
 let ?UnMi = \bigcup x \in L`V. matching-i x V E M L
  from assms have 1: finite ?UnMi
   by (auto simp add: matching-def
     finite-graph-def matching-i-def finite-subset)
  {
```

```
fix e assume e-inM: e \in M
   let ?v = relevant\text{-}endpoint \ L \ V \ e
   have 1: e \in matching-i (L ?v) V E M L using assms e-inM
     proof cases
       assume L(fst e) = 1
       thus ?thesis using assms e-inM
        by (simp add: relevant-endpoint-def matching-i-def)
       assume a: L (fst e) \neq 1
       have L (fst e) = 1 \vee L (snd e) = 1
        \vee (L (fst e) = L (snd e) \wedge L (fst e) > 1)
        using assms e-inM unfolding OSC-def
        by (blast intro: expand-set-containment)
       thus ?thesis using assms e-inM a
        by (auto simp add: relevant-endpoint-def matching-i-def)
     qed
     have 2: ?v \in V using assms e-inM
       by (auto simp add: matching-def
        relevant-endpoint-def matching-i-def finite-graph-def)
     then have \exists v \in V. e \in matching-i(Lv) V E M L using assms 1 2
       by (intro\ bexI)
   }
   with assms have M \subseteq ?UnMi by (auto)
   with assms and 1 have card M \leq card ?UnMi by (intro card-mono)
   moreover from assms have card ?UnMi = ?CardMi
   proof (intro card-UN-disjoint)
     show finite (L'V) using assms
       by (simp add: matching-def finite-graph-def)
   next
     show \forall i \in L'V. finite (matching-i i V E M L) using assms
       unfolding matching-def finite-graph-def matching-i-def
       by (blast intro: finite-subset)
   next
     show \forall i \in L'V. \ \forall j \in L'V. \ i \neq j \longrightarrow
       matching-i \ i \ V \ E \ M \ L \cap matching-i \ j \ V \ E \ M \ L = \{\}  using assms
       by (auto simp add: matching-i-def)
   qed
  ultimately show ?thesis by simp
qed
\textbf{theorem} \ \textit{card-M-le-weight-NVL}i:
 assumes matching V E M and OSC L E
 shows card M \leq weight \{i \in L : V. i > 1\} (N V L) (is - \leq ?W)
proof -
 let ?M01 = \sum i | i \in L'V \land (i=1 \lor i=0). card (matching-i i V E M L)
 let ?Mgr1 = \sum_{i} i | i \in L'V \land 1 < i. \ card \ (matching-i \ i \ V E \ M \ L) let ?Mi = \sum_{i} i \in L'V. \ card \ (matching-i \ i \ V E \ M \ L)
 have card M \leq ?Mi using assms by (rule card-M-le-sum-card-Mi)
 moreover
```

```
have ?Mi < ?W
proof -
 let ?A = \{i \in L : V. i = 1 \lor i = 0\}
 let ?B = \{i \in L \ `V. \ 1 < i\}
 let ?g = \lambda \ i. \ card \ (matching-i \ i \ V \ E \ M \ L)
 let ?set01 = \{ i. i : L `V \& (i = 1 | i = 0) \}
 have a: L 'V = ?A \cup ?B using assms by auto
 have finite V using assms
   by (simp add: matching-def finite-graph-def)
 have b: sum ?g (?A \cup ?B) = sum ?g ?A + sum ?g ?B
   using assms \ \langle finite \ V \rangle \ \mathbf{by} \ (auto\ intro:\ sum.union-disjoint)
 have 1: ?Mi = ?M01 + ?Mgr1 using assms a b
   by (simp add: matching-def finite-graph-def)
 moreover
 have \theta: card (matching-i \theta V E M L) = \theta using assms
   by (simp add: matching-i-def)
   have 2: ?M01 \le N V L 1
   proof cases
     assume a: 1 \in L'V
     have ?M01 = card \ (matching-i \ 1 \ V E \ M \ L)
     proof cases
      assume b: \theta \in L'V
      with a assms have ?set01 = \{0, 1\} by blast
      thus ?thesis using assms 0 by simp
     next
      assume b: \theta \notin L'V
      with a have ?set01 = \{1\} by (auto simp del: One-nat-def)
      thus ?thesis by simp
     qed
     thus ?thesis using assms a
      by (simp del: One-nat-def, intro card-M1-le-NVL1)
     assume a: 1 \notin L'V
    show ?thesis
     proof cases
      assume b: \theta \in L'V
      with a assms have ?set01 = \{0\} by (auto simp del: One-nat-def)
      thus ?thesis using assms 0 by auto
     next
      assume b: \theta \notin L'V
      with a have ?set01 = \{\} by (auto simp del:One-nat-def)
        then have ?M01 = (\sum i \in \{\}). card (matching-i i V E M L)) by auto
        thus ?thesis by simp
      qed
     qed
   have 3: ?Mgr1 \le (\sum i|i \in L'V \land 1 < i. \ N \ V \ L \ i \ div \ 2) using assms
     by (intro sum-mono card-Mi-le-floor-div-2-NVLi, simp)
 ultimately
```

```
show ?thesis using 1 2 3 assms by (simp add: weight-def) qed ultimately show ?thesis by simp qed
```

3 Final Theorem

The following theorem is due to Edmond [2]:

```
theorem maximum-cardinality-matching: assumes matching V \ E \ M and OSC \ L \ E and card \ M = weight \ \{i \in L \ `V. \ i > 1\} \ (N \ V \ L) and matching V \ E \ M' shows card \ M' \le card \ M using assms \ card-M-le-weight-NVLi by simp
```

The widely used algorithmic library LEDA has a certifying algorithm for maximum cardinality matching. This Isabelle proof is part of the work done to verify the checker of this certifying algorithm. For more information see [1].

end

References

- [1] E. Alkassar, S. Böhme, K. Mehlhorn, and C. Rizkallah. Verification of certifying computations. In *Proceedings of the 23rd International Conference on Computer Aided Verfication (CAV2011)*, Cliff Lodge, Snowbird, Utah, USA, 2011. To Appear.
- [2] J. Edmonds. Maximum matching and a polyhedron with 0,1 vertices. Journal of Research of the National Bureau of Standards, 69B:125–130, 1965.