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Abstract

This article defines combinatorial structures known as Indepen-
dence Systems and Matroids and provides basic concepts and theorems
related to them. These structures play an important role in combinato-
rial optimisation, e.g. greedy algorithms such as Kruskal’s algorithm.
The development is based on Oxley’s “What is a Matroid?’ [1].
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1 Independence systems

theory Indep-System
imports Main
begin

lemma finite-psubset-inc-induct:
assumes finite A X C A
assumes AX. A Y. XCY =Y CA=PY)=PX
shows P X
proof —
have wf: wf {(X,Y). Y C X A X C 4}
by (rule wf-bounded-set[where ub = A-. A and f = id]) (auto simp add: <finite
A»)
show ?thesis
proof (induction X rule: wf-induct]OF wf, case-names step))
case (step X)
then show ?Zcase using assms(3)[of X] by blast
qed
qed

An independence system consists of a finite ground set together with an in-
dependence predicate over the sets of this ground set. At least one set of the
carrier is independent and subsets of independent sets are also independent.

locale indep-system =

fixes carrier :: 'a set

fixes indep :: 'a set = bool

assumes carrier-finite: finite carrier

assumes indep-subset-carrier: indep X = X C carrier

assumes ndep-ex: 3 X. indep X

assumes indep-subset: indep X = Y C X = indep Y
begin

lemmas psubset-inc-induct [case-names carrier step] = finite-psubset-inc-induct[ OF
carrier-finite]
lemmas indep-finite [simp] = finite-subset| OF indep-subset-carrier carrier-finite]

The empty set is independent.

lemma indep-empty [simp): indep {}
using indep-ex indep-subset by auto

1.1 Sub-independence systems

A subset of the ground set induces an independence system.

definition indep-in where indep-in € X +— X C £ A indep X

lemma indep-inl:
assumes X C &£



assumes indep X
shows indep-in &€ X
using assms unfolding indep-in-def by auto

lemma indep-in-subl: indep-in € X = indep-in £’ (X N &)
using indep-subset unfolding indep-in-def by auto

lemma dep-in-subl:
assumes X C &’
shows — indep-in £’ X = — indep-in € X
using assms unfolding indep-in-def by auto

lemma indep-in-subset-carrier: indep-in € X = X C &
unfolding indep-in-def by auto

lemma indep-in-subl-subset:
assumes £’ C &£
assumes indep-in £’ X
shows indep-in &€ X
proof —
have indep-in £ (X N £) using assms indep-in-subl by auto
moreover have X N £ = X using assms indep-in-subset-carrier by auto
ultimately show ?thesis by auto
qed

lemma indep-in-supl:
assumes X C £'E'C €&
assumes indep-in &€ X
shows indep-in £’ X
proof —
have X N £’ = X using assms by auto
then show ?thesis using assms indep-in-subl[where & = £ and £’ = £’ and
X = X] by auto
qed

lemma indep-in-indep: indep-in € X = indep X
unfolding indep-in-def by auto

lemmas indep-inD = indep-in-subset-carrier indep-in-indep

lemma indep-system-subset [simp, intro):
assumes £ C carrier
shows indep-system & (indep-in E)
unfolding indep-system-def indep-in-def
using finite-subset[OF assms carrier-finite] indep-subset by auto

We will work a lot with different sub structures. Therefore, every defini-
tion ‘foo’ will have a counterpart ‘foo_in’ which has the ground set as an
additional parameter. Furthermore, every result about ‘foo’ will have an-



other result about ‘foo_in’. With this, we usually don’t have to work with
interpretation in proofs.

context

fixes £

assumes & C carrier
begin

interpretation &: indep-system &£ indep-in €
using <€ C carriery by auto

lemma indep-in-sub-cong:
assumes £’ C &£
shows &.indep-in £’ X +— indep-in €' X
unfolding &.indep-in-def indep-in-def using assms by auto

lemmas indep-in-ex = £.indep-ex
lemmas indep-in-subset = &.indep-subset
lemmas indep-in-empty = £.indep-empty

end

1.2 Bases

A basis is a maximal independent set, i. e. an independent set which becomes
dependent on inserting any element of the ground set.

definition basis where basis X <— indep X A (Vz € carrier — X. — indep (insert
z X))

lemma basisl:
assumes indep X
assumes Az. x € carrier — X = — indep (insert z X)
shows basis X
using assms unfolding basis-def by auto

lemma basis-indep: basis X = indep X
unfolding basis-def by auto

lemma basis-maz-indep: basis X = x € carrier — X = — indep (insert z X)
unfolding basis-def by auto

lemmas basisD = basis-indep basis-max-indep
lemmas basis-subset-carrier = indep-subset-carrier[OF basis-indep]
lemmas basis-finite [simp] = indep-finite]OF basis-indep]

lemma indep-not-basis:
assumes indep X
assumes — basis X
shows 3z € carrier — X. indep (insert z X)



using assms basisl by auto

lemma basis-subset-eq:
assumes basis By
assumes basis By
assumes B; C By
shows B, = B
proof (rule ccontr)
assume B, # Bs
then obtain x where z: x € By — By using assms by auto
then have insert x By C By using assms by auto
then have indep (insert © By) using assms basis-indep|of Bs] indep-subset by
auto
moreover have x € carrier — By using assms x basis-subset-carrier by auto
ultimately show Fulse using assms basisD by auto
qed

definition basis-in where
basis-in & X <— indep-system.basis £ (indep-in £) X

lemma basis-iff-basis-in: basis B «— basis-in carrier B
proof —
interpret &: indep-system carrier indep-in carrier
by auto

show basis B «— basis-in carrier B
unfolding basis-in-def
proof (standard, goal-cases LTR RTL)
case LTR
show ?case
proof (rule &£.basisI)
show indep-in carrier B using LTR basisD indep-subset-carrier indep-inl by
auto
next
fix z
assume z € carrier — B
then have — indep (insert x B) using LTR basisD by auto
then show — indep-in carrier (insert z B) using indep-inD by auto
qed
next
case RTL
show ?Zcase
proof (rule basisI)
show indep B using RTL &£.basis-indep indep-inD by blast
next
fix z
assume z € carrier — B
then have — indep-in carrier (insert z B) using RTL &.basisD by auto
then show — indep (insert x B) using indep-subset-carrier indep-inl by blast



qed
qed
qed

context

fixes £

assumes & C carrier
begin

interpretation &: indep-system &£ indep-in €
using <& C carriery by auto

lemma basis-inl-auz: £€.basis X = basis-in € X
unfolding basis-in-def by auto

lemma basis-inD-auz: basis-in € X —> E.basis X
unfolding basis-in-def by auto

lemma not-basis-inD-auz: — basis-in £ X = — E.basis X
using basis-inl-aur by auto

lemmas basis-inl = basis-inl-auz[OF &.basisI]

lemmas basis-in-indep-in = E.basis-indep[OF basis-inD-auz]

lemmas basis-in-maz-indep-in = &.basis-maz-indep|OF basis-inD-aux]
lemmas basis-inD = &.basisD|OF basis-inD-auz]

lemmas basis-in-subset-carrier = £.basis-subset-carrier|OF basis-inD-auz]
lemmas basis-in-finite = &.basis-finite[OF basis-inD-auz)

lemmas indep-in-not-basis-in = £.indep-not-basis|OF - not-basis-inD-auz]
lemmas basis-in-subset-eq = E£.basis-subset-eq[ OF basis-inD-aux basis-inD-auz]

end

context

fixes &

assumes *: £ C carrier
begin

interpretation &: indep-system &£ indep-in €
using * by auto

lemma basis-in-sub-cong:

assumes £' C &£

shows &.basis-in £’ B <— basis-in £' B
proof (safe, goal-cases LTR RTL)

case LTR

show ?Zcase

proof (rule basis-inI)

show &' C carrier using assms * by auto
next



show indep-in £’ B
using x assms LTR & .basis-in-subset-carrier £.basis-in-indep-in indep-in-sub-cong
by auto
next
fix z
assume z € £’ — B
then show — indep-in £’ (insert x B)
using *x assms LTR &.basis-in-maz-indep-in E.basis-in-subset-carrier in-
dep-in-sub-cong by auto
qged
next
case RTL
show ?Zcase
proof (rule £.basis-inl)
show £’ C £ using assms by auto
next
show &.indep-in &' B
using * assms RTL basis-in-subset-carrier basis-in-indep-in indep-in-sub-cong
by auto
next
fix z
assume z € £’ — B
then show — &.indep-in £’ (insert x B)
using * assms RTL basis-in-maz-indep-in basis-in-subset-carrier indep-in-sub-cong
by auto
qged
qed

end

1.3 Circuits

A circuit is a minimal dependent set, i. e. a set which becomes independent
on removing any element of the ground set.

definition circuit where circuit X <— X C carrier A — indep X N (Vz € X.
indep (X — {z}))

lemma circuitl:
assumes X C carrier
assumes - indep X
assumes Az. z € X = indep (X — {z})
shows circuit X
using assms unfolding circuit-def by auto

lemma circuit-subset-carrier: circuit X = X C carrier
unfolding circuit-def by auto

lemmas circuit-finite [simp] = finite-subset| OF circuit-subset-carrier carrier-finite]

lemma circuit-dep: circuit X = — indep X



unfolding circuit-def by auto

lemma circuit-min-dep: circuit X = z € X = indep (X — {z})
unfolding circuit-def by auto

lemmas circuitD = circuit-subset-carrier circuit-dep circuit-min-dep

lemma circuit-nonempty: circuit X = X # {}
using circuit-dep indep-empty by blast

lemma dep-not-circuit:
assumes X C carrier
assumes — indep X
assumes — circuit X
shows 3z € X. = indep (X — {z})
using assms circuit] by auto

lemma circuit-subset-eq:
assumes circuit Cq
assumes circuit Co
assumes C; C (5
shows C1 = C»
proof (rule ccontr)
assume C; # C,
then obtain z where = ¢ C1 z € Cy using assms by auto
then have indep C; using indep-subset «Cy C Co» circuit-min-dep|OF <circuit
Cy, of z] by auto
then show Fulse using assms circuitD by auto
qed

definition circuit-in where
circuit-in € X <— indep-system.circuit € (indep-in £) X

context

fixes &

assumes & C carrier
begin

interpretation &: indep-system &£ indep-in €
using «€ C carrier) by auto

lemma circuit-inl-auz: £.circuit X = circuit-in £ X
unfolding circuit-in-def by auto

lemma circuit-inD-auz: circuit-in € X = £.circuit X
unfolding circuit-in-def by auto

lemma not-circuit-inD-aux: — circuit-in € X — — E.circuit X
using circuit-inl-auz by auto



lemmas

lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas

end

circuit-inl = circuit-inl-aux| OF . circuitl]

circuit-in-subset-carrier = E.circuit-subset-carrier| OF circuit-inD-auz]
circuit-in-finite = E.circuit-finite[OF circuit-inD-auz]

circuit-in-dep-in = &.circuit-dep[OF circuit-inD-aux)

circuit-in-min-dep-in = E.circuit-min-dep|OF circuit-inD-aquz)

circuit-inD = E.circuitD[OF circuit-inD-auz)

circuit-in-nonempty = E.circuit-nonempty| OF circuit-inD-auz]
dep-in-not-circuit-in = £.dep-not-circuit[OF - - not-circuit-inD-auz]
circuit-in-subset-eq = E.circuit-subset-eq| OF circuit-inD-aux circuit-inD-auz)

lemma circuit-in-subl:
assumes &' C £ £ C carrier
assumes circuit-in €' C
shows circuit-in € C
proof (rule circuit-inl)
show & C carrier using assms by auto

next

show C C & using assms circuit-in-subset-carrier[of £’ C] by auto

next

show — indep-in £ C
using assms
circuit-in-dep-in[where £ = £’ and X = (]
circuit-in-subset-carrier dep-in-subl[where £’ = £’ and £ = £]
by auto

next
fix z

assume z € C
then show indep-in £ (C — {z})

using assms circuit-in-min-dep-in indep-in-subl-subset by auto

qed

lemma circuit-in-supl:
assumes ' C € € C carrier C C &'
assumes circuit-in € C

shows

circuit-in £’ C

proof (rule circuit-inl)
show &' C carrier using assms by auto

next

show C C &' using assms by auto

next

have — indep-in £ C using assms circuit-in-dep-in by auto
then show — indep-in £’ C using assms dep-in-subl[of C &] by auto

next
fix z

assume z € C
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then have indep-in € (C — {z}) using assms circuit-in-min-dep-in by auto
then have indep-in £’ ((C — {z}) N £’) using indep-in-subl by auto
moreover have (C — {z}) N &'= C — {z} using assms circuit-in-subset-carrier
by auto
ultimately show indep-in £’ (C' — {z}) by auto
qed

context

fixes &

assumes *: £ C carrier
begin

interpretation &: indep-system & indep-in &
using * by auto

lemma circuit-in-sub-cong:
assumes £’ C &£
shows &.circuit-in £’ C' +— circuit-in £’ C
proof (safe, goal-cases LTR RTL)
case LTR
show ?Zcase
proof (rule circuit-inI)
show &’ C carrier using assms * by auto
next
show C C &'
using assms LTR &.circuit-in-subset-carrier by auto
next
show — indep-in £’ C
using assms LTR &.circuit-in-dep-in indep-in-sub-cong[OF %] by auto
next
fix z
assume z € C
then show indep-in £’ (C — {z})
using assms LTR &.circuit-in-min-dep-in indep-in-sub-cong[OF *] by auto
qed
next
case RTL
show ?Zcase
proof (rule &.circuit-inl)
show £’ C £ using assms * by auto
next
show C C &’
using assms * RTL circuit-in-subset-carrier by auto
next
show - E.indep-in &' C
using assms * RTL circuit-in-dep-in indep-in-sub-cong[OF | by auto
next
fix z
assume z € C
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then show E.indep-in £’ (C — {z})
using assms * RTL circuit-in-min-dep-in indep-in-sub-cong| OF ] by auto
qed
qed

end

lemma circuit-imp-circuit-in:

assumes circuit C

shows circuit-in carrier C
proof (rule circuit-inl)

show C C carrier using circuit-subset-carrier|OF assms| .
next

show — indep-in carrier C' using circuit-dep| OF assms| indep-in-indep by auto
next

fix z

assume z € C

then have indep (C — {z}) using circuit-min-dep[OF assms| by auto

then show indep-in carrier (C' — {z}) using circuit-subset-carrier|OF assms]
by (auto intro: indep-inI)
qed auto

1.4 Relation between independence and bases

A set is independent iff it is a subset of a basis.

lemma indep-imp-subset-basis:
assumes indep X
shows 3 B. basis BN X C B
using assms
proof (induction X rule: psubset-inc-induct)
case carrier
show ?case using indep-subset-carrier[OF assms] .
next
case (step X)
{
assume - basis X
then obtain z where z € carrier © ¢ X indep (insert x X)
using step.prems indep-not-basis by auto
then have ?case using step.IH[of insert © X| indep-subset-carrier by auto
}
then show ?case by auto
qed

lemmas subset-basis-imp-indep = indep-subset| OF basis-indep)

lemma indep-iff-subset-basis: indep X «— (I B. basis B AN X C B)
using indep-imp-subset-basis subset-basis-imp-indep by auto

lemma basis-ex: 3 B. basis B
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using indep-imp-subset-basis| OF indep-empty| by auto

context

fixes &

assumes *: £ C carrier
begin

interpretation &: indep-system & indep-in &
using * by auto

lemma indep-in-imp-subset-basis-in:
assumes indep-in &€ X
shows 3 B. basis-in € BAN X C B
unfolding basis-in-def using &.indep-imp-subset-basis| OF assms] .

lemmas subset-basis-in-imp-indep-in = indep-in-subset[OF * basis-in-indep-in[OF

+]

lemma indep-in-iff-subset-basis-in: indep-in € X «— (I B. basis-in € B N X C
B)
using indep-in-imp-subset-basis-in subset-basis-in-imp-indep-in by auto

lemma basis-in-ex: 3 B. basis-in £ B
unfolding basis-in-def using £.basis-ex .

lemma basis-in-subl:
assumes £’ C £ € C carrier
assumes basis-in &' B
shows 3B’ C £ — &’ basis-in £ (B U B’)
proof —
have indep-in £ B using assms basis-in-indep-in indep-in-subl-subset by auto
then obtain B’ where B’ basis-in &€ B’ B C B’
using assms indep-in-imp-subset-basis-in[of B] by auto
show ?thesis
proof (rule exI)
have B'— BC & — &’
proof
fix z
assume *: z € B’ — B
then havez € £z ¢ B
using assms <basis-in € B’y basis-in-subset-carrier|of ] by auto
moreover {
assume z € &’
moreover have indep-in £ (insert x B)
using * assms indep-in-subset|OF - basis-in-indep-in| B’ by auto
ultimately have indep-in £’ (insert x B)
using assms basis-in-subset-carrier unfolding indep-in-def by auto
then have Fulse using assms * <z € £’ basis-in-maz-indep-in by auto

}
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ultimately show z € £ — £’ by auto
qed
moreover have B U (B’ — B) = B’ using <B C B') by auto
ultimately show B’ — B C & — &' A basis-in € (B U (B’ — B))
using <basis-in £ B’> by auto
qed
qed

lemma basis-in-supl:
assumes B C £' &' C € £ C carrier
assumes basis-in £ B
shows basis-in £’ B
proof (rule basis-inI)
show &' C carrier using assms by auto
next
show indep-in £’ B
proof —
have indep-in €' (B N &)
using assms basis-in-indep-in[of € B] indep-in-subl by auto
moreover have B N £’ = B using assms by auto
ultimately show ?thesis by auto
qed
next
show Az. z € &' — B = — indep-in £’ (insert © B)
using assms basis-in-subset-carrier basis-in-maz-indep-in dep-in-subl[of - € £
by auto
qed

end

1.5 Relation between dependence and circuits

A set is dependent iff it contains a circuit.

lemma dep-imp-supset-circuit:
assumes X C carrier
assumes - indep X
shows 3 C. circuit C N C C X
using assms

proof (induction X rule: remove-induct)
case (remove X)

assume — circuit X

then obtain z where z € X — indep (X — {z})
using remove.prems dep-not-circuit by auto

then obtain C where circuit C C C X — {z}
using remove.prems remove.IH|of z] by auto

then have ?case by auto

}

then show ?case using remove.prems by auto
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qed (auto simp add: carrier-finite finite-subset)

lemma supset-circuit-imp-dep:
assumes circuit C N C C X
shows — indep X
using assms indep-subset circuit-dep by auto

lemma dep-iff-supset-circuit:
assumes X C carrier
shows — indep X <— (3 C. circuit C AN C C X)
using assms dep-imp-supset-circuit supset-circuit-imp-dep by auto

context

fixes &

assumes £ C carrier
begin

interpretation &: indep-system & indep-in &
using <€ C carriery by auto

lemma dep-in-imp-supset-circuit-in:
assumes X C &£
assumes — indep-in &€ X
shows 3 C. circuit-in E C N C C X
unfolding circuit-in-def using &.dep-imp-supset-circuit| OF assms] .

lemma supset-circuit-in-imp-dep-in:
assumes circuit-in E C N C C X
shows — indep-in &€ X
using assms E.supset-circuit-imp-dep unfolding circuit-in-def by auto

lemma dep-in-iff-supset-circuit-in:
assumes X C &£
shows - indep-in € X <— (3 C. circuit-in E C N C C X)
using assms dep-in-imp-supset-circuit-in supset-circuit-in-imp-dep-in by auto

end

1.6 Ranks

definition lower-rank-of :: 'a set = nat where
lower-rank-of carrier’ = Min {card B | B. basis-in carrier’ B}

definition upper-rank-of :: ‘a set = nat where
upper-rank-of carrier’ = Max {card B | B. basis-in carrier’ B}

lemma collect-basis-finite: finite (Collect basis)

proof —
have Collect basis C {X. X C carrier}
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using basis-subset-carrier by auto
moreover have finite ...
using carrier-finite by auto
ultimately show ?thesis using finite-subset by auto
qed

context

fixes &

assumes *: £ C carrier
begin

interpretation &: indep-system &£ indep-in €
using * by auto

lemma collect-basis-in-finite: finite (Collect (basis-in £))
unfolding basis-in-def using £.collect-basis-finite .

lemma lower-rank-of-le: lower-rank-of € < card &
proof —
have 3n € {card B | B. basis-in & B}. n < card £
using card-mono|OF &.carrier-finite basis-in-subset-carrier| OF x]| basis-in-ex[OF
x| by auto
moreover have finite {card B | B. basis-in £ B}
using collect-basis-in-finite by auto
ultimately show ?thesis
unfolding lower-rank-of-def using basis-ex Min-le-iff by auto
qed

lemma upper-rank-of-le: upper-rank-of € < card £
proof —
have Vn € {card B | B. basis-in & B}. n < card £
using card-mono|OF &.carrier-finite basis-in-subset-carrier|OF x]] by auto
then show ?thesis
unfolding upper-rank-of-def using basis-in-ex[OF x| collect-basis-in-finite by
auto
qed

context

fixes &’

assumes xx: £' C €
begin

interpretation £';: indep-system £’ indep-in £’
using * x* by auto

interpretation £'3: indep-system E' E.indep-in £’
using * x* by auto

lemma lower-rank-of-sub-cong:
shows &.lower-rank-of £’ = lower-rank-of &£’

16



proof —
have A\B. £'1.basis B +— &’5.basis B
using xx basis-in-sub-cong|OF x*, of £’
unfolding basis-in-def £.basis-in-def by auto
then show ?thesis
unfolding lower-rank-of-def &.lower-rank-of-def
using basis-in-sub-cong[ OF * x|
by auto
qed

lemma upper-rank-of-sub-cong:
shows &.upper-rank-of £’ = upper-rank-of &£’
proof —
have A\B. £'1.basis B +— E’5.basis B
using xx basis-in-sub-cong[OF x*, of £’
unfolding basis-in-def £.basis-in-def by auto
then show ?thesis
unfolding upper-rank-of-def E.upper-rank-of-def
using basis-in-sub-cong[OF * sxx]
by auto
qed

end
end
end

end

2 Matroids

theory Matroid
imports Indep-System
begin

lemma card-subset-ex:
assumes finite A n < card A
shows 3B C A. card B = n
using assms
proof (induction A arbitrary: n rule: finite-induct)
case (insert z A)
show ?Zcase
proof (cases n)
case (
then show ?thesis using card.empty by blast
next
case (Suc k)
then have 3B C A. card B = k using insert by auto
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then obtain B where B C A card B = k by auto
moreover from this have finite B using insert.hyps finite-subset by auto
ultimately have card (insert ¢ B) = n
using Suc insert.hyps card-insert-disjoint by fastforce
then show ?thesis using «B C A by blast
qed
qed auto

locale matroid = indep-system +
assumes augment-auz:
indep X = indep ¥ = card X = Suc (card Y) = Jx € X — Y. indep
(insert © Y)
begin

lemma augment:
assumes indep X indep Y card Y < card X
shows 3z € X — Y. indep (insert z Y)
proof —
obtain X’ where X' C X card X' = Suc (card ')
using assms card-subset-ex[of X Suc (card Y)] indep-finite by auto
then obtain z where x € X' — Y indep (insert z Y)
using assms augment-auz|of X' Y] indep-subset by auto
then show ?thesis using <X’ C X» by auto
qed

lemma augment-psubset:
assumes indep X indep Y'Y C X
shows 3z € X — Y. indep (insert z Y)
using assms augment psubset-card-mono indep-finite by blast

2.1 Minors

A subset of the ground set induces a matroid.

lemma matroid-subset [simp, introl:

assumes & C carrier

shows matroid £ (indep-in E)

unfolding matroid-def matroid-axioms-def
proof (safe, goal-cases indep-system augment)

case indep-system

then show ?case using indep-system-subset| OF assms| .
next

case (augment X Y)

then show ?case using augment-auz[of X Y] unfolding indep-in-def by auto
qed

context

fixes &

assumes & C carrier
begin
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interpretation &: matroid £ indep-in &
using <€ C carriery by auto

lemmas augment-auz-indep-in = £.augment-aux
lemmas augment-indep-in = £.augment
lemmas augment-psubset-indep-in = &£.augment-psubset

end

2.2 Bases

lemma basis-card:
assumes basis By
assumes basis By
shows card B1 = card Bo
proof (rule ccontr, goal-cases False)
case Fulse
then have card B; < card By V card Bs < card By by auto
moreover {
fix Bl BQ
assume basis By basis By card By < card Bo
then obtain © where z € By — By indep (insert x By)
using augment basisD by blast
then have z € carrier — By
using <basis B1> basisD indep-subset-carrier by blast
then have — indep (insert x B) using <basis B1> basisD by auto
then have Fualse using <indep (insert z By)» by auto
}
ultimately show ?case using assms by auto
qed

lemma basis-indep-card:
assumes indep X
assumes basis B
shows card X < card B
proof —
obtain B’ where basis B’ X C B’ using assms indep-imp-subset-basis by auto
then show ?thesis using assms basis-finite basis-card[of B B’] by (auto intro:
card-mono)
qed

lemma basis-augment:
assumes basis By basis By x € B1 — Bo
shows Jy € By — By. basis (insert y (By — {z}))
proof —
let ?Bl = B1 — {.’I?}
have card ?B, < card Bs
using assms basis-card|[of By Bs] card-Diff1-less|OF basis-finite, of B1] by auto
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moreover have indep ?By using assms basis-indeplof Bi| indep-subset|[of By
¢B1] by auto
ultimately obtain y where y: y € Bo — ?B; indep (insert y ?B)
using assms augment[of By ?B1] basis-indep by auto
let 2By’ = insert y ?B;
have basis ?B1’ using (indep ?B1"
proof (rule basisl, goal-cases insert)
case (insert x)
have card (insert x ?B1") > card B,
proof —
have card (insert x ?B1") = Suc (card ?B;’)
using insert card.insert-remove[OF indep-finite, of ¢B1'] y by auto

also have ... = Suc (Suc (card ?By))
using card.insert-remove| OF indep-finite, of ?B1] <indep ?B1> y by auto
also have ... = Suc (card B1)

using assms basis-finite[of B1] card.removelof B1]| by auto
finally show ?¢thesis by auto
qed
then have —indep (insert x (insert y ?B1))
using assms basis-indep-card|of insert x (insert y ?By) Bi] by auto
moreover have insert © (insert y ?B1) C carrier
using assms insert y basis-finite indep-subset-carrier by auto
ultimately show ¢case by auto
qed
then show “thesis using assms y by auto
qed

context

fixes &

assumes *: £ C carrier
begin

interpretation &: matroid £ indep-in €
using <€ C carriery by auto

lemmas basis-in-card = E.basis-card[OF basis-inD-auz[OF *] basis-inD-auz[OF
+]
lemmas basis-in-indep-in-card = £.basis-indep-card[OF - basis-inD-auz[OF x|
lemma basis-in-augment:

assumes basis-in £ By basis-in £ By x € By — By

shows Jy € By — By. basis-in € (insert y (B1 — {z}))

using assms &.basis-augment unfolding basis-in-def by auto
end

2.3 Circuits

lemma circuit-elim:
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assumes circuit Cy circuit Co Cy # Co x € C1 N Oy
shows 3C5 C (C; U C3) — {z}. circuit C3
proof —
let 2C = (Cl U Cg) — {{I?}
let ?carrier = C1 U Oy

have assms’: circuit-in carrier Cy1 circuit-in carrier Cq
using assms circuit-imp-circuit-in by auto

have ?C C carrier using assms circuit-subset-carrier by auto
show ?thesis
proof (cases indep 7C')
case Fulse
then show ?%thesis using dep-iff-supset-circuit <?C C carriery by auto
next
case True
then have indep-in ?carrier ¢C using «?C C carrier) by (auto intro: indep-inl)

have *: Zcarrier C carrier using assms circuit-subset-carrier by auto
obtain y where y: y € Cy y ¢ C1 using assms circuit-subset-eq by blast
then have indep-in ?carrier (C2 — {y})
using assms’ circuit-in-min-dep-in[OF x circuit-in-supI[OF x, of Cs]] by
auto
then obtain B where B: basis-in ?carrier B C3 — {y} C B
using * assms indep-in-imp-subset-basis-in[of Zcarrier Co — {y}] by auto

have y ¢ B
proof (rule ccontr, goal-cases False)
case Fulse
then have C; C B using B by auto
moreover have circuit-in ?carrier Cy using * assms’ circuit-in-supl by auto
ultimately have — indep-in ?carrier B
using B basis-in-subset-carrier| OF x| supset-circuit-in-imp-dep-in[OF x| by
auto
then show False using assms B basis-in-indep-in[OF x| by auto
qed

have Cy — B # {}
proof (rule ccontr, goal-cases False)
case Fulse
then have C; — (Cy N B) = {} by auto
then have C; = C; N B using assms circuit-subset-eq by auto
moreover have indep (C; N B)
using assms B basis-in-indep-in|OF x| indep-in-subset|OF x, of B C'1 N B|
indep-in-indep
by auto
ultimately show ?case using assms circuitD by auto
qed
then obtain z where z: z € C; z ¢ B by auto
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have y # z using y z by auto
have z € Cy z € C5 using assms by auto

have finite ?carrier using assms carrier-finite finite-subset by auto
have card B < card (%carrier — {y, z})
proof (rule card-mono)
show finite (C1 U Co — {y, z}) using «finite ?carriers by auto
next
show BC Cy; U Cy — {y, 2z}
using B basis-in-subset-carrier|OF x, of B] <y ¢ B> <z ¢ B> by auto
qed
also have ... = card ?carrier — 2
using <finite ?carriery <y € Co» <z € Cy1y <y # 2> card-Diff-subset-Int by
auto
also have ... < card Zcarrier — 1
proof —
have card ?carrier = card C1 + card Cy — card (C1 N C3)
using assms <finite ?carriery card-Un-Int[of C; Cs] by auto

also have ... = card Cy + (card Cy — card (C1 N Cy))
using assms <finite ?carrier) card-mono[of C3] by auto

also have ... = card Cy + card (Cy — C1)

proof —

have card (Co — C1) = card Cy — card (Cy N C1)
using assms <finite ?carriery card-Diff-subset-Int[of Cy C1] by auto

also have ... = card Cy — card (C1 N Cs) by (simp add: inf-commute)
finally show ?thesis by auto
qed

finally have card (Cy U C3) = card Cy + card (Cy — C4) .
moreover have card Cy > 0 using assms circuit-nonempty <finite ?carrier»
by auto
moreover have card (Cy — C1) > 0 using assms <finite ?carriery <y € Ca»
«y ¢ Cp> by auto
ultimately show ?thesis by auto
qed
also have ... = card 7C
using «finite Zcarriery card-Diff-singleton <x € C1» <x € Co) by auto
finally have card B < card ?C .
then have Fulse
using basis-in-indep-in-card[OF «, of ?C B| B <indep-in ?carrier ?C» by auto
then show %thesis by auto
qed
qed

lemma min-dep-imp-supset-circuit:
assumes ndep X
assumes circuit C
assumes C C insert z X
shows z € C
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proof (rule ccontr)
assume z ¢ C
then have C' C X using assms by auto
then have indep C using assms indep-subset by auto
then show False using assms circuitD by auto
qed

lemma min-dep-imp-ex1-supset-circuit:
assumes x € carrier
assumes indep X
assumes — indep (insert x X)
shows 3!C. circuit C N C C insert x X
proof —
obtain C where C: circuit C C C insert v X
using assms indep-subset-carrier dep-iff-supset-circuit by auto

show ?thesis
proof (rule ex1l, goal-cases ex unique)
show circuit C A C C insert x X using C by auto

next
{
fix C’
assume C": circuit C' C' C insert v X
have C'= C

proof (rule ccontr)
assume C' # C
moreover have z € C’' N C using C C’ assms min-dep-imp-supset-circuit
by auto
ultimately have — indep (C'U C — {z})
using circuit-elim[OF C(1) C'(1), of z] supset-circuit-imp-dep[of - C' U
C — {z}] by auto
moreover have C’'U C — {z} C X using C C’' by auto
ultimately show Fulse using assms indep-subset by auto
qed
}
then show AC'. circuit C' N C' Cinsertz X = C'=C
by auto
qed
qed

lemma basis-exl-supset-circuit:
assumes basis B
assumes x € carrier — B
shows 3!C. circuit C N C C insert x B
using assms min-dep-imp-exl-supset-circuit basisD by auto

definition fund-circuit :: 'a = 'a set = 'a set where
fund-circuit ¢ B = (THE C. circuit C A C C insert z B)
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lemma circuit-iff-fund-circuit:
circuit C <— (3z B. ¢ € carrier — B A basis B A C = fund-circuit © B)
proof (safe, goal-cases LTR RTL)
case LTR
then obtain x where x € C using circuit-nonempty by auto
then have indep (C — {z}) using LTR unfolding circuit-def by auto
then obtain B where B: basis B C — {z} C B using indep-imp-subset-basis
by auto
then have z € carrier using LTR circuit-subset-carrier <x € C» by auto
moreover have z ¢ B
proof (rule ccontr, goal-cases False)
case Fulse
then have C' C B using «C — {z} C B) by auto
then have — indep B using LTR B basis-subset-carrier supset-circuit-imp-dep
by auto
then show ?case using B basis-indep by auto
qed
ultimately show ?case
unfolding fund-circuit-def
using LTR B thel-unique[OF basis-ex1-supset-circuit|of B x|, of C] by auto
next
case (RTL z B)
then have 3!C. circuit C AN C C insert z B
using min-dep-imp-ex1-supset-circuit basisD[of B] by auto
then show ?case
unfolding fund-circuit-def
using thel[of AC. circuit C A C C insert © B] by fastforce
qed

lemma fund-circuitl:
assumes basis B
assumes x € carrier — B
assumes circuit C
assumes C C insert x B
shows fund-circuit xt B = C
unfolding fund-circuit-def
using assms thel-unique[OF basis-ex1-supset-circuit, of B « C] by auto

definition fund-circuit-in where fund-circuit-in €& x B = matroid.fund-circuit €
(indep-in &) © B

context

fixes £

assumes *: £ C carrier
begin

interpretation £: matroid £ indep-in £
using <€ C carriery by auto
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lemma fund-circuit-inl-auz: &.fund-circuit © B = fund-circuit-in £ © B
unfolding fund-circuit-in-def by auto

lemma circuit-in-elim:
assumes circuit-in £ Cy circuit-in € Cy Cy # Co z € C1 N Cq
shows 3 C3 C (C1 U C2) — {z}. circuit-in £ C3
using assms &.circuit-elim unfolding circuit-in-def by auto

lemmas min-dep-in-imp-supset-circuit-in = £.min-dep-imp-supset-circuit[ OF - cir-
cuit-inD-auz| OF )

lemma min-dep-in-imp-exl-supset-circuit-in:
assumes z € &
assumes indep-in £ X
assumes — indep-in € (insert x X)
shows 3!C. circuit-in € C A C C insert t X
using assms £.min-dep-imp-exl-supset-circuit unfolding circuit-in-def by auto

lemma basis-in-ex1-supset-circuit-in:

assumes basis-in £ B

assumes ¢ € £ — B

shows 3!C. circuit-in € C A C C insert z B

using assms £.basis-ex1-supset-circuit unfolding circuit-in-def basis-in-def by
auto

lemma fund-circuit-inl:
assumes basis-in £ B
assumes z € £ — B
assumes circuit-in £ C
assumes C C insert x B
shows fund-circuit-in € x B = C
using assms . fund-circuit]
unfolding basis-in-def circuit-in-def fund-circuit-in-def by auto

end

context

fixes £

assumes *: £ C carrier
begin

interpretation &: matroid £ indep-in £
using <€ C carriery by auto

lemma fund-circuit-in-sub-cong:
assumes &' C &
assumes ¢ € £’ — B
assumes basis-in £’ B
shows &.fund-circuit-in €' x B = fund-circuit-in £’ x B
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proof —
obtain C where C: circuit-in £’ C C C insert z B
using * assms basis-in-exI-supset-circuit-in[of £’ B z] by auto
then have fund-circuit-in &’ x B = C
using * assms fund-circuit-inl by auto
also have ... = &.fund-circuit-in &' z B
using x assms C . fund-circuit-inl basis-in-sub-cong|of ] circuit-in-sub-cong|of
&) by auto
finally show ?thesis by auto
qed

end

2.4 Ranks

abbreviation rank-of where rank-of = lower-rank-of

lemmas rank-of-def = lower-rank-of-def
lemmas rank-of-sub-cong = lower-rank-of-sub-cong
lemmas rank-of-le = lower-rank-of-le

context

fixes £

assumes *: £ C carrier
begin

interpretation &: matroid £ indep-in &
using * by auto

lemma lower-rank-of-eq-upper-rank-of: lower-rank-of € = upper-rank-of £
proof —
obtain B where basis-in €& B using basis-in-ex|OF x| by auto
then have {card B | B. basis-in & B} = {card B}
by safe (auto dest: basis-in-card[OF x])
then show ?thesis unfolding lower-rank-of-def upper-rank-of-def by auto
qed

lemma rank-of-eq-card-basis-in:
assumes basis-in £ B
shows rank-of £ = card B
proof —
have {card B | B. basis-in & B} = {card B} using assms by safe (auto dest:
basis-in-card[ OF x])
then show ?thesis unfolding rank-of-def by auto
qed

lemma rank-of-indep-in-le:

assumes indep-in € X
shows card X < rank-of €
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proof —
{
fix B
assume basis-in £ B
moreover obtain B’ where basis-in € B’ X C B’
using assms indep-in-imp-subset-basis-in[OF x| by auto
ultimately have card X < card B
using card-mono[OF basis-in-finite|OF x| basis-in-card[OF x, of B B'] by
auto
}
moreover have finite {card B | B. basis-in £ B}
using collect-basis-in-finite]OF *] by auto
ultimately show ?thesis
unfolding rank-of-def using basis-in-ex|OF x| by auto
qed

end

lemma rank-of-mono:

assumes X C Y

assumes Y C carrier

shows rank-of X < rank-of Y
proof —

obtain By where By: basis-in X Bx using assms basis-in-ex[of X| by auto

moreover obtain By where By: basis-in Y By using assms basis-in-ezx[of Y]
by auto

moreover have card Bx < card By

using assms basis-in-indep-in-card|OF - - By] basis-in-indep-in[OF - Bx]
indep-in-subl-subset
by auto

ultimately show ?thesis using assms rank-of-eq-card-basis-in by auto

qed

lemma rank-of-insert-le:
assumes X C carrier
assumes z € carrier
shows rank-of (insert x X) < Suc (rank-of X)
proof —
obtain B where B: basis-in X B using assms basis-in-ex|[of X] by auto
have basis-in (insert x X) B V basis-in (insert © X) (insert x B)
proof —
obtain B’ where B": B’ C insert + X — X basis-in (insert x X) (B U B’)
using assms B basis-in-subl[of insert + X X B] by auto
then have B’ = {} vV B’ = {z} by auto
then show ?thesis
proof
assume B’ = {}
then have basis-in (insert x X) B using B’ by auto
then show ?thesis by auto
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next
assume B’ = {z}
then have basis-in (insert © X) (insert  B) using B’ by auto
then show ?thesis by auto
qed
qed
then show ?thesis
proof
assume basis-in (insert z X) B
then show ?thesis
using assms B rank-of-eq-card-basis-in by auto
next
assume basis-in (insert ¢ X) (insert z B)
then have rank-of (insert x X) = card (insert z B)
using assms rank-of-eq-card-basis-in by auto
also have ... = Suc (card (B — {z}))
using assms card.insert-removelof B x] using B basis-in-finite by auto
also have ... < Suc (card B)
using assms B basis-in-finite card-Diff1-le[of B] by auto
also have ... = Suc (rank-of X)
using assms B rank-of-eq-card-basis-in by auto
finally show ?%thesis .
qed
qed

lemma rank-of-Un-Int-le:
assumes X C carrier
assumes Y C carrier
shows rank-of (X U Y) + rank-of (X N'Y) < rank-of X + rank-of Y
proof —
obtain B-Int where B-Int: basis-in (X N Y) B-Int using assms basis-in-ex|of
X N Y] by auto
then have indep-in (X U Y) B-Int
using assms indep-in-subl-subset|OF - basis-in-indep-inlof X N Y B-Int], of X
U Y] by auto
then obtain B-Un where B-Un: basis-in (X U Y) B-Un B-Int C B-Un
using assms indep-in-imp-subset-basis-in[of X U Y B-Int] by auto

have card (B-Un N (X U Y)) 4+ card (B-Un N (X N Y)) = card ((B-Un N X)
U(B-UnNY))+ card (B-Un N X) N (B-UnNY))

by (simp add: inf-assoc inf-left-commute inf-sup-distrib1)
also have ... = card (B-Un N X) + card (B-UnN Y)
proof —

have finite (B-Un N X) finite (B-Un N Y)

using assms finite-subset| OF - carrier-finite] by auto

then show ?thesis using card-Un-Int[of B-Un N X B-Un N Y] by auto
qed
also have ... < rank-of X + rank-of Y
proof —
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have card (B-Un N X) < rank-of X
proof —
have indep-in X (B-Un N X) using assms basis-in-indep-in[OF - B-Un(1)]
indep-in-subl by auto
then show ?thesis using assms rank-of-indep-in-le by auto
qed
moreover have card (B-Un N'Y) < rank-of Y
proof —
have indep-in Y (B-Un N Y) using assms basis-in-indep-in|OF - B-Un(1)]
indep-in-subl by auto
then show ?thesis using assms rank-of-indep-in-le by auto
qed
ultimately show ?thesis by auto
qed
finally have rank-of X + rank-of Y > card (B-Un N (X U Y)) + card (B-Un
NXNY).
moreover have B-Un N (X U Y) = B-Un using assms basis-in-subset-carrier| OF
- B-Un(1)] by auto
moreover have B-Un N (X N Y) = B-Int
proof —
have card (B-Un N (X N Y)) < card B-Int
proof —
have indep-in (X N'Y) (B-UnN (X NY))
using assms basis-in-indep-in|OF - B-Un(1)] indep-in-subl by auto
then show ?thesis using assms basis-in-indep-in-card[of X N Y - B-Int]
B-Int by auto
qed
moreover have finite (B-Un N (X N Y))
using assms carrier-finite finite-subset[of B-Un N (X N Y)] by auto
moreover have B-Int C B-Un N (X NY)
using assms B-Un B-Int basis-in-subset-carrier[of X N Y B-Int] by auto
ultimately show ?thesis using card-seteq by blast
qed
ultimately have rank-of X + rank-of Y > card B-Un + card B-Int by auto
moreover have card B-Un = rank-of (X U Y)
using assms rank-of-eq-card-basis-in[OF - B-Un(1)] by auto
moreover have card B-Int = rank-of (X N Y)
using assms rank-of-eq-card-basis-in|OF - B-Int] by fastforce
ultimately show rank-of X + rank-of Y > rank-of (X U Y) + rank-of (X N
Y) by auto
qed

lemma rank-of-Un-absorbl:

assumes X C carrier Y C carrier

assumes A\y. y € Y — X = rank-of (insert y X) = rank-of X

shows rank-of (X U Y) = rank-of X
proof —

have finite (Y — X) using finite-subset[OF <Y C carriers] carrier-finite by
auto
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then show ?thesis using assms
proof (induction Y — X arbitrary: Y rule: finite-induct )
case empty
then have X U Y = X by auto
then show ?case by auto
next
case (insert y F')
have rank-of (X U Y) + rank-of X < rank-of X + rank-of X
proof —
have rank-of (X U Y) + rank-of X = rank-of ((X U (Y — {y})) U (insert
y X)) + rank-of (X U (Y — {y})) N (insert y X))
proof —
have X U Y = (X U (Y — {y})) U (insert y X) X = (X U (Y — {y})) N
(insert y X) using insert by auto
then show ?thesis by auto
qed
also have ... < rank-of (X U (Y — {y})) + rank-of (insert y X)
proof (rule rank-of-Un-Int-le)
show X U (Y — {y}) C carrier using insert by auto

next
show insert y X C carrier using insert by auto
qed
also have ... = rank-of (X U (Y — {y})) + rank-of X
proof —

have y € Y — X using insert by auto
then show ?thesis using insert by auto
qed
also have ... = rank-of X + rank-of X
proof —
have FF = (Y — {y}) — X Y — {y} C carrier using insert by auto
then show ?thesis using insert insert(3)[of Y — {y}] by auto
qed
finally show ?thesis .
qed
moreover have rank-of (X U Y) + rank-of X > rank-of X + rank-of X
using insert rank-of-mono by auto
ultimately show ?case by auto
qed
qed

lemma indep-iff-rank-of:

assumes X C carrier

shows indep X <— rank-of X = card X
proof (standard, goal-cases LTR RTL)

case LTR

then have indep-in X X by (auto intro: indep-inl)

then have basis-in X X by (auto intro: basis-inl[OF assms])

then show ?case using rank-of-eq-card-basis-in[OF assms| by auto
next
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case RTL
obtain B where B: basis-in X B using basis-in-ex[OF assms| by auto
then have card B = card X using RTL rank-of-eq-card-basis-in| OF assms] by
auto
then have B = X
using basis-in-subset-carrier|OF assms B] card-seteq[OF finite-subset| OF assms
carrier-finite]]
by auto
then show ?case using basis-in-indep-in| OF assms B] indep-in-indep by auto
qed

lemma basis-iff-rank-of:
assumes X C carrier
shows basis X +— rank-of X = card X N rank-of X = rank-of carrier
proof (standard, goal-cases LTR RTL)
case LTR
then have rank-of X = card X using assms indep-iff-rank-of basis-indep by
auto
moreover have ... = rank-of carrier
using LTR rank-of-eq-card-basis-in[of carrier X| basis-iff-basis-in by auto
ultimately show ?case by auto
next
case RTL
show ?Zcase
proof (rule basisl)
show indep X using assms RTL indep-iff-rank-of by blast
next
fix z
assume z: ¢ € carrier — X
show - indep (insert z X)
proof (rule ccontr, goal-cases False)
case Fulse
then have card (insert x X) < rank-of carrier
using assms z indep-inl rank-of-indep-in-le by auto
also have ... = card X using RTL by auto
finally show ?case using finite-subset|OF assms carrier-finite] x by auto
qged
qed
qed

lemma circuit-iff-rank-of:

assumes X C carrier

shows circuit X «— X # {} A (Vz € X. rank-of (X — {z}) = card (X — {z})
A card (X — {z}) = rank-of X)
proof (standard, goal-cases LTR RTL)

case LTR

then have X # {} using circuit-nonempty by auto

moreover have indep-remove: Az. ¢ € X = rank-of (X — {z}) = card (X —

{z})
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proof —
fix z
assume z € X
then have indep (X — {z}) using circuit-min-dep|OF LTR] by auto
moreover have X — {z} C carrier using assms by auto
ultimately show rank-of (X — {z}) = card (X — {z}) using indep-iff-rank-of
by auto
qed
moreover have \z. z € X = rank-of (X — {z}) = rank-of X
proof —
fix z
assume *: z € X
have rank-of X < card X using assms rank-of-le by auto
moreover have rank-of X # card X using assms LTR circuitD indep-iff-rank-of [of
X] by auto
ultimately have rank-of X < card X by auto
then have rank-of X < card (X — {z}) using x finite-subset[OF assms]
carrier-finite by auto
also have ... = rank-of (X — {z}) using indep-remove <z € X» by auto
finally show rank-of (X — {z}) = rank-of X using assms rank-of-mono[of X
— {z} X] by auto
qed
ultimately show ?case by auto
next
case RTL
then have X # {}
and indep-remove: A\z. v € X = rank-of (X — {z}) = card (X — {z})
and dep: Az. z € X = rank-of (X — {z}) = rank-of X
by auto
show ?case using assms
proof (rule circuitl)
obtain z where z: z € X using <X # {}> by auto
then have rank-of X = card (X — {z}) using dep indep-remove by auto
also have ... < card X using card-Diff1-less|OF finite-subset|OF assms car-
rier-finite] z] .
finally show — indep X using indep-iff-rank-of [OF assms] by auto
next
fix z
assume z € X
then show indep (X — {z}) using assms indep-remove|of x| indep-iff-rank-of [of
X — {z}]
by auto
qed
qed

context

fixes &

assumes *: £ C carrier
begin
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interpretation &: matroid £ indep-in &
using * by auto

lemma indep-in-iff-rank-of:
assumes X C &£
shows indep-in &€ X <— rank-of X = card X
using assms £.indep-iff-rank-of rank-of-sub-cong[OF * assms] by auto

lemma basis-in-iff-rank-of:
assumes X C &£
shows basis-in &€ X <— rank-of X = card X A rank-of X = rank-of &
using &.basis-iff-rank-of [OF assms| rank-of-sub-cong|OF x| assms
unfolding basis-in-def by auto

lemma circuit-in-iff-rank-of:

assumes X C &£

shows circuit-in € X «+— X # {} A (Vz € X. rank-of (X — {z}) = card (X —
{z}) A card (X — {z}) = rank-of X)
proof —

have circuit-in £ X +— E.circuit X unfolding circuit-in-def ..

also have ... +— X £ {} A (Vz € X. E.rank-of (X — {z}) = card (X — {z})
A card (X — {z}) = E.rank-of X)

using &.circuit-iff-rank-of [OF assms] .

also have ... +— X # {} A (Vz € X. rank-of (X — {z}) = card (X — {z}) A
card (X — {z}) = rank-of X)

proof —

{

fix z
have E.rank-of (X — {z}) = rank-of (X — {z}) E.rank-of X = rank-of X
using assms rank-of-sub-cong[OF *, of X — {x}] rank-of-sub-cong|OF x, of
X] by auto
then have &.rank-of (X — {z}) = card (X — {z}) A card (X — {z}) =
E.rank-of X «— rank-of (X — {z}) = card (X — {z}) A card (X — {z}) = rank-of
X
by auto
}
then show ?thesis
by (auto simp: simp del: card-Diff-insert)
qed
finally show ?thesis .
qged

end

2.5 Closure

definition cl :: ‘a set = ’a set where
el X = {z € carrier. rank-of (insert © X) = rank-of X}
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lemma clI:
assumes x € carrier
assumes rank-of (insert x X) = rank-of X
shows z € ¢l X
unfolding cl-def using assms by auto

lemma cl-altdef:
assumes X C carrier
shows ¢l X = J{Y € Pow carrier. X C Y A rank-of Y = rank-of X}
proof —
{
fix
assume *: z € cl X
have z € J{Y € Pow carrier. X C Y A rank-of Y = rank-of X}
proof
show insert ¢ X € {Y € Pow carrier. X C Y A rank-of Y = rank-of X}
using assms x unfolding cl-def by auto
qed auto
}
moreover {
fix x
assume x: ¢ € |J{Y € Pow carrier. X C Y A rank-of Y = rank-of X}
then obtain Y where Y:z € Y Y C carrier X C Y rank-of Y = rank-of X

by auto
have rank-of (insert © X) = rank-of X
proof —
have rank-of (insert © X) < rank-of X
proof —

have insert t X C Y using Y by auto
then show ?thesis using rank-of-monolof insert £ X Y] Y by auto
qed
moreover have rank-of X < rank-of (insert © X) using Y by (auto intro:
rank-of-mono)
ultimately show ?Zthesis by auto
qed
then have z € ¢l X using * unfolding cl-def by auto
}
ultimately show ¢thesis by blast
qed

lemma cl-rank-of: x € ¢l X = rank-of (insert © X) = rank-of X
unfolding cl-def by auto

lemma cl-subset-carrier: ¢l X C carrier
unfolding cl-def by auto

lemmas clD = cl-rank-of cl-subset-carrier
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lemma cl-subset:
assumes X C carrier
shows X C ¢l X
using assms using insert-absorb[of - X| by (auto introl: clI)

lemma cl-mono:
assumes X C Y
assumes Y C carrier
shows ¢l X C cl Y
proof
fix z
assume z € cl X
then have z € carrier using cl-subset-carrier by auto

have insert x X C carrier
using assms <z € cl X» cl-subset-carrier[of X] by auto
then interpret X-insert: matroid insert © X indep-in (insert x X) by auto

have insert ¢ Y C carrier
using assms «x € cl X» cl-subset-carrier[of X| by auto
then interpret Y-insert: matroid insert © Y indep-in (insert x Y) by auto

show z € ¢l Y using <z € carrier>
proof (rule cll, cases © € X)
case True
then show rank-of (insert x Y) = rank-of Y using assms insert-absorb[of
Y] by auto
next
case Fulse
obtain Bx where Bx: basis-in X Bx using assms basis-in-ex[of X] by auto

have basis-in (insert x X) Bx
proof —
have rank-of Bx = card Bx A rank-of Bx = rank-of (insert z X)
proof —
have rank-of Bx = card Bx A rank-of Bx = rank-of X
using assms Bx
basis-in-subset-carrier[where £ = X and X = Bx]
basis-in-iff-rank-of [where £ = X and X = Bx]
by blast
then show ?thesis using cl-rank-of [OF <z € cl X»] by auto
qed
then show ?thesis
using assms basis-in-subset-carrier|OF - Bx| «x € carriery basis-in-iff-rank-of [of
insert x X Bx]
by auto
qed
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have indep-in (insert x Y) Bx
using assms basis-in-indep-in| OF - Bx] indep-in-subl-subset[of X insert x Y]
by auto
then obtain By where By: basis-in (insert © Y) By Bx C By
using assms «x € carriersy indep-in-iff-subset-basis-in[of insert © Y Bx] by
auto

have basis-in Y By
proof —
have z ¢ By
proof (rule ccontr, goal-cases False)
case Fulse
then have insert xt Bx C By using <Bx C By» by auto
then have indep-in (insert  Y) (insert z Bx)
using assms <x € carrier)
By basis-in-indep-in[where £ = insert ¢ Y and X = By]
indep-in-subset|where £ = insert x Y and X = By and Y = insert z
Bx]
by auto
then have indep-in (insert © X) (insert x Bx)
using assms Bx
basis-in-subset-carrier[where £ = X and X = Bx]
indep-in-supl [where £ = insert ¢ Y and £’ = insert z X and X =
insert x Bx]
by auto
moreover have z € insert t X — By
using assms <z ¢ X» Bx basis-in-subset-carrier[where £ = X and X =
Bx] by auto
ultimately show ?Zcase
using assms <z € carriery <basis-in (insert x X) Bx»
basis-in-maz-indep-in[where £ = insert + X and X = Bx and z = z]
by auto
qed
then show ?thesis
using assms «x € carriery By basis-in-subset-carrier|of insert x Y By
basis-in-supl[where £ = insert ¢ Y and £’ = Y and B = By] by auto
qged

show rank-of (insert x Y) = rank-of Y
proof —
have rank-of (insert ¢ Y) = card By
using assms <z € carriery <basis-in (insert x Y) By basis-in-subset-carrier
using basis-in-iff-rank-of[where £ = insert ¢ Y and X = By]
by auto
also have ... = rank-of Y
using assms «x € carriery <basis-in Y By» basis-in-subset-carrier
using basis-in-iff-rank-of[where £ = Y and X = By]|
by auto
finally show ?thesis .
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qed
qed
qed

lemma cl-insert-absorb:
assumes X C carrier
assumes ¢ € cl X
shows ¢l (insert x X) = ¢l X
proof
show ¢l (insert x X) C ¢l X
proof (standard, goal-cases elem)
case (elem y)
then have *: z € carrier y € carrier using assms cl-subset-carrier by auto

have rank-of (insert y X) = rank-of (insert y (insert X))
proof —
have rank-of (insert y X) < rank-of (insert y (insert z X))
using assms * by (auto intro: rank-of-mono)
moreover have rank-of (insert y (insert x X)) = rank-of (insert y X)
proof —
have insert y (insert z X) = insert « (insert y X) by auto
then have rank-of (insert y (insert x X)) = rank-of (insert z (insert y X))
by auto

also have ... = rank-of (insert y X)
proof —
have ¢l X C ¢l (insert y X) by (rule cl-mono) (auto simp add: assms <y
€ carriery)

then have z € ¢l (insert y X) using assms by auto
then show ?thesis unfolding cl-def by auto

qed
finally show ?thesis .
qed
ultimately show ?thesis by auto
qed
also have ... = rank-of (insert z X) using elem using cl-rank-of by auto
also have ... = rank-of X using assms cl-rank-of by auto
finally show y € ¢l X using * by (auto intro: cll)
qed
next

have insert x X C carrier using assms cl-subset-carrier by auto

moreover have X C insert z X using assms by auto

ultimately show ¢l X C ¢l (insert ¢ X) using assms cl-subset-carrier cl-mono
by auto
qed

lemma cl-cl-absorb:
assumes X C carrier
shows ¢l (¢l X) =l X
proof

37



show ¢l (¢l X) C el X
proof (standard, goal-cases elem)
case (elem z)
then have = € carrier using cl-subset-carrier by auto
then show “case
proof (rule cll)
have rank-of (insert © X) > rank-of X
using assms «x € carriery rank-of-monolof X insert x X] by auto
moreover have rank-of (insert © X) < rank-of X
proof —
have rank-of (insert x X) < rank-of (insert z (cl X))
using assms «x € carriery cl-subset-carrier cl-subset[of X]
rank-of-mono|of insert x X insert x (cl X)| by auto

also have ... = rank-of (cl X) using elem cl-rank-of by auto
also have ... = rank-of (X U (cd X — X))

using Diff-partition[OF cl-subset|OF assms]] by auto
also have ... = rank-of X using <X C carrier»

proof (rule rank-of-Un-absorbl)
show ¢l X — X C carrier using assms cl-subset-carrier by auto
next
fix y
assume y € ¢l X — X — X
then show rank-of (insert y X) = rank-of X unfolding ci-def by auto
qed
finally show ?thesis .
qed
ultimately show rank-of (insert x X) = rank-of X by auto
qed
qed
next
show ¢l X C ¢l (¢l X) using cl-subset|OF cl-subset-carrier] by auto
qed

lemma cl-augment:
assumes X C carrier
assumes z € carrier
assumes y € cl (insert t X) — ¢l X
shows z € ¢l (insert y X)
using <x € carrier)
proof (rule cll)
have rank-of (insert y X) < rank-of (insert z (insert y X))
using assms cl-subset-carrier by (auto intro: rank-of-mono)
moreover have rank-of (insert x (insert y X)) < rank-of (insert y X)
proof —
have rank-of (insert x (insert y X)) = rank-of (insert y (insert z X))
proof —
have insert « (insert y X) = insert y (insert x X) by auto
then show ?thesis by auto
qed
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also have rank-of (insert y (insert x X)) = rank-of (insert z X)
using assms cl-def by auto
also have ... < Suc (rank-of X)
using assms cl-subset-carrier by (auto intro: rank-of-insert-le)
also have ... = rank-of (insert y X)
proof —
have rank-of (insert y X) < Suc (rank-of X)
using assms cl-subset-carrier by (auto intro: rank-of-insert-le)
moreover have rank-of (insert y X) # rank-of X
using assms cl-def by auto
moreover have rank-of X < rank-of (insert y X)
using assms cl-subset-carrier by (auto intro: rank-of-mono)
ultimately show ?thesis by auto
qed
finally show ?thesis .
qged
ultimately show rank-of (insert x (insert y X)) = rank-of (insert y X) by auto
qed

lemma cll-insert:
assumes z € carrier
assumes indep X
assumes — indep (insert x X)
shows z € cl X
using «x € carrier)
proof (rule cll)
have x: X C carrier using assms indep-subset-carrier by auto
then have xx: insert x X C carrier using assms by auto

have indep-in (insert x X) X using assms by (auto intro: indep-inl)
then obtain B where B: basis-in (insert x X) B X C B
using assms indep-in-iff-subset-basis-in| OF xx] by auto
have z ¢ B
proof (rule ccontr, goal-cases False)
case Fulse
then have indep-in (insert z X) (insert x X)
using B indep-in-subset[OF xx basis-in-indep-in| OF xx]] by auto
then show ?case using assms indep-in-indep by auto
qed

have basis-in X B using x
proof (rule basis-inl, goal-cases indep maz-indep)
case indep
show ?Zcase
proof (rule indep-in-supl[where £ = insert z X))
show B C X using B basis-in-subset-carrier|OF xx] «x ¢ B> by auto
next
show indep-in (insert x X) B using basis-in-indep-in[OF xx B(1)] .
qed auto
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next
case (maz-indep y)
then have — indep-in (insert © X) (insert y B)
using B basis-in-maz-indep-in[OF *x] by auto
then show Zcase by (auto intro: indep-in-subl-subset)
qed
then show rank-of (insert © X) = rank-of X
using B rank-of-eq-card-basis-in|OF x| rank-of-eq-card-basis-in[OF *x| by auto
qed

lemma indep-in-carrier [simp]: indep-in carrier = indep
using indep-subset-carrier by (auto simp: indep-in-def fun-eq-iff)

context

fixes I

defines I = (AX. X C carrier N VzeX. z ¢ cl (X — {z})))
begin

lemma I-mono: I Y if Y C XTI X for XY :: 'a set
proof —
have VzeY. z ¢ cl (Y — {z})
proof (intro balll)
fix z assume z: z € Y
with that have cl (Y — {z}) C ¢l (X — {z})
by (intro cl-mono) (auto simp: I-def)
with that and x show z ¢ cl (Y — {z}) by (auto simp: I-def)
qed
with that show %thesis by (auto simp: I-def)
qed

lemma cll”:
assumes [ X z € carrier =1 (insert z X)
shows z € cl X
proof —
from assms have z: z ¢ X by (auto simp: insert-absorb)
from assms obtain y where y: y € insert X y € cl (insert x X — {y})
by (force simp: I-def)
show z € ¢l X
proof (cases z = y)
case True
thus ?thesis using assms x y by (auto simp: I-def)
next
case Fulse
have y € ¢l (insert v X — {y}) by fact
also from Fualse have insert x X — {y} = insert x (X — {y}) by auto
finally have y € ¢l (insert z (X — {y})) — ¢l (X — {y})
using assms Fualse y unfolding I-def by blast
hence z € ¢l (insert y (X — {y}))
using cl-augment[of X — {y} = y| assms False y by (auto simp: I-def)
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also from y and Fulse have insert y (X — {y}) = X by auto
finally show ?thesis .
qed
qed

lemma matroid-I: matroid carrier 1
proof (unfold-locales, goal-cases)
show finite carrier by (rule carrier-finite)
next
case (4 X Y)
have VzeY. z ¢ cl (Y — {z})
proof (intro balll)
fix z assume z: z € Y
with / have ¢l (Y — {z}) C ¢l (X — {z})
by (intro cl-mono) (auto simp: I-def)
with 4 and z show z ¢ ¢l (Y — {z}) by (auto simp: I-def)
qed
with 4 show Zcase by (auto simp: I-def)
next
case (5 X Y)
have "X Y. IXATY Acard X < card Y N (VzeY—X. —I (insert z X)))
proof
assume x: IX Y. IXATY ANcard X < card Y N VaeY—X. -1 (insert x
X)) (is3XY.?P X Y)
define n where n = Maz (MX, Y). card (X NY)) ‘{(X, Y). 2P X Y})
have {(X, Y). P X Y} C Pow carrier x Pow carrier
by (auto simp: I-def)
hence finite: finite {(X, Y). P X Y}
by (rule finite-subset) (insert carrier-finite, auto)
hence n € (\(X, Y). card (X N Y)) ‘{(X, V). 2P X Y})
unfolding n-def using * by (intro Maz-in finite-imagel ) auto
then obtain X Y where XY: 2P X Yn = card (X NY)
by auto
hence finite”: finite X finite Y
using finite-subset[OF - carrier-finite] XY by (auto simp: I-def)
from XY finite’ have ~(Y C X)
using card-monolof X Y] by auto
then obtain y where y: y € Y — X by blast

have False
proof (cases X C ¢l (Y — {y}))
case True
from y XY have [simp|: y € carrier by (auto simp: I-def)
assume X C ¢l (Y — {y})
hence ¢l X C ¢l (el (Y — {y}))
by (intro cl-mono cl-subset-carrier)
also have ... = ¢l (Y — {y})
using XY by (intro cl-cl-absorb) (auto simp: I-def)
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finally have ¢l X C ¢l (Y — {y}) .
moreover have y ¢ cl (Y — {y})
using y I-def XY (1) by blast
ultimately have y ¢ cl X by blast
thus Fulse unfolding I-def
using XY y clI’ <y € carriery by blast
next
case Fulse
with y XY have [simp]: y € carrier by (auto simp: I-def)
assume —(X C ¢l (Y — {y}))
then obtain ¢ where t: t € Xt ¢ cl (Y — {y})
by auto
with XY have [simp]: t € carrier by (auto simp: I-def)

have t ¢ X — Y

using t y cll[of t Y — {y}] by (cases t = y) (auto simp: insert-absorb)
moreover have I (Y — {y}) using XY (1) I-mono[of Y — {y} Y] by blast
ultimately have x: I (insert t (Y — {y}))

using cll'lof Y — {y} t] t by auto

from XY have finite Y
by (intro finite-subset|OF - carrier-finite]) (auto simp: I-def)
moreover from y have Y # {} by auto
ultimately have [simp]: card (insert t (Y — {y})) = card Y using «t € X
- Yy
by (simp add: Suc-diff-Suc card-gt-0-iff)

have JzcY — X. I (insert x X)
proof (rule ccontr)
assume - ?thesis
hence ?P X (insertt (Y — {y})) using XY x <t € X — Y)
by auto
hence card (X N insert t (Y — {y})) < n
unfolding n-def using finite by (intro Max-ge) auto
also have X N insert t (Y — {y}) = insert t (X N Y) — {y})
using y <t € X — Y)» by blast
also have card ... = Suc (card (X N Y))
using y <t € X — Y «finite Y by (simp add: card.insert-remove)
finally show Fulse using XY by simp
qed
with XY show Fulse by blast
qed
thus Fulse .
qed
with 5 show ?Zcase by auto
qed (auto simp: I-def)

end
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definition cl-in where cl-in € X = matroid.cl € (indep-in £) X

lemma cl-eq-cl-in:
assumes X C carrier
shows cl X = cl-in carrier X
proof —
interpret &: matroid carrier indep-in carrier
by (intro matroid-subset) auto
have ¢l X = {z € carrier. rank-of (insert © X) = rank-of X}
unfolding cl-def by auto

also have ... = {& € carrier. £.rank-of (insert x X) = E.rank-of X}
using rank-of-sub-conglof carrier| assms by auto
also have ... = cl-in carrier X

unfolding cl-in-def £.cl-def by auto
finally show ?thesis .
qed

context

fixes &

assumes *: £ C carrier
begin

interpretation &: matroid £ indep-in £
using * by auto

lemma cl-inl-auz: t € E.cl X = z € cl-in &€ X
unfolding cl-in-def by auto

lemma cl-inD-auz: z € cl-in E X = vz € E.cl X
unfolding cl-in-def by auto

lemma cl-inl:

assumes X C &£

assumes ¢ € &

assumes rank-of (insert ¢ X) = rank-of X

shows z € cl-in £ X
proof —

have &.rank-of (insert © X) = rank-of (insert x X) E.rank-of X = rank-of X

using assms rank-of-sub-cong[OF x| by auto

then show %thesis unfolding cl-in-def using assms by (auto intro: £.cll)

qed

lemma cl-in-altdef:
assumes X C &£
shows cl-in € X = J{Y € Pow £. X C Y A rank-of Y = rank-of X}
unfolding cl-in-def
proof (safe, goal-cases LTR RTL)
case (LTR z)
then have z € |J{Y € Pow £. X C Y A E.rank-of Y = E.rank-of X}

43



using &.cl-altdef[OF assms| by auto
then obtain Y where Y: 2 € Y Y € Pow & X C Y E.rank-of Y = E.rank-of
X by auto
then show ?Zcase using rank-of-sub-cong[OF x| by auto
next
case (RTLz Y)
then have z € | J{Y € Pow £. X C Y A E.rank-of Y = E.rank-of X}
using rank-of-sub-cong|OF x, of X| rank-of-sub-cong|OF x, of Y| by auto
then show ?case using &.cl-altdef[OF assms| by auto
qed

lemma cl-in-subset-carrier: cl-in € X C &£
using &.cl-subset-carrier unfolding cl-in-def .

lemma cl-in-rank-of:
assumes X C &£
assumes z € cl-in € X
shows rank-of (insert x X) = rank-of X
proof —
have &.rank-of (insert © X) = E.rank-of X
using assms £.cl-rank-of unfolding cl-in-def by auto
moreover have £.rank-of (insert z X) = rank-of (insert z X)
using assms rank-of-sub-cong[OF x, of insert x X| cl-in-subset-carrier by auto
moreover have &.rank-of X = rank-of X
using assms rank-of-sub-cong[OF x| by auto
ultimately show “thesis by auto
qed

lemmas cl-inD = cl-in-rank-of cl-in-subset-carrier

lemma cl-in-subset:
assumes X C &£
shows X C cl-in £ X
using &.cl-subset|OF assms] unfolding cl-in-def .

lemma cl-in-mono:
assumes X C Y
assumes Y C &
shows cl-in £ X Ccl-inE Y
using &.cl-mono[OF assms| unfolding cl-in-def .

lemma cl-in-insert-absorb:
assumes X C &£
assumes z € cl-in € X
shows cl-in € (insert x X) = cl-in € X
using assms E.cl-insert-absorb unfolding cl-in-def by auto

lemma cl-in-augment:
assumes X C &£
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assumes ¢ € &

assumes y € cl-in € (insert + X) — cl-in € X

shows z € cl-in € (insert y X)

using assms &.cl-augment unfolding cl-in-def by auto

lemmas cl-inl-insert = cl-inl-auz[OF &.cll-insert]
end

lemma cl-in-subl:

assumes X C &' &' C € £ C carrier

shows cl-in £’ X C cl-in € X
proof (safe, goal-cases elem)

case (elem )

then have z € £’ rank-of (insert x X) = rank-of X

using assms cl-inD[where £ = £’ and X = X]| by auto

then show z € cl-in £ X using assms by (auto intro: cl-inI)

qed

context

fixes &

assumes *: £ C carrier
begin

interpretation £: matroid £ indep-in £
using * by auto

lemma cl-in-sub-cong:
assumes X C £'E'C &
shows E.cl-in &' X = cl-in &' X
proof (safe, goal-cases LTR RTL)
case (LTR z)
then have z € &' E.rank-of (insert © X) = E.rank-of X
using assms
E.cl-in-rank-of[where £ = £’ and X = X and z = z]
E.cl-in-subset-carrier[where £ = £’)
by auto
moreover have £.rank-of X = rank-of X
using assms rank-of-sub-cong[OF x| by auto
moreover have E.rank-of (insert x X) = rank-of (insert z X)
using assms rank-of-sub-cong|OF x, of insert z X| <z € £’y by auto
ultimately show ?case using assms x by (auto intro: cl-inl)
next
case (RTL z)
then have z € &' rank-of (insert ¢ X) = rank-of X
using * assms cl-inD[where £ = £’ and X = X] by auto
moreover have &.rank-of X = rank-of X
using assms rank-of-sub-cong|OF x| by auto
moreover have E.rank-of (insert x X) = rank-of (insert z X)
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using assms rank-of-sub-cong[OF x, of insert z X] «x € £y by auto
ultimately show ?case using assms by (auto intro: E.cl-inl)
qed
end

end
end
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