
Matroids

Jonas Keinholz

March 17, 2025

Abstract

This article defines combinatorial structures known as Indepen-
dence Systems and Matroids and provides basic concepts and theorems
related to them. These structures play an important role in combinato-
rial optimisation, e. g. greedy algorithms such as Kruskal’s algorithm.
The development is based on Oxley’s ‘What is a Matroid?’ [1].

1

Contents
1 Independence systems 3

1.1 Sub-independence systems . 3
1.2 Bases . 5
1.3 Circuits . 8
1.4 Relation between independence and bases 12
1.5 Relation between dependence and circuits 14
1.6 Ranks . 15

2 Matroids 17
2.1 Minors . 18
2.2 Bases . 19
2.3 Circuits . 20
2.4 Ranks . 26
2.5 Closure . 33

2

1 Independence systems
theory Indep-System

imports Main
begin

lemma finite-psubset-inc-induct:
assumes finite A X ⊆ A
assumes

∧
X . (

∧
Y . X ⊂ Y =⇒ Y ⊆ A =⇒ P Y) =⇒ P X

shows P X
proof −

have wf : wf {(X ,Y). Y ⊂ X ∧ X ⊆ A}
by (rule wf-bounded-set[where ub = λ-. A and f = id]) (auto simp add: ‹finite

A›)
show ?thesis
proof (induction X rule: wf-induct[OF wf , case-names step])

case (step X)
then show ?case using assms(3)[of X] by blast

qed
qed

An independence system consists of a finite ground set together with an in-
dependence predicate over the sets of this ground set. At least one set of the
carrier is independent and subsets of independent sets are also independent.
locale indep-system =

fixes carrier :: ′a set
fixes indep :: ′a set ⇒ bool
assumes carrier-finite: finite carrier
assumes indep-subset-carrier : indep X =⇒ X ⊆ carrier
assumes indep-ex: ∃X . indep X
assumes indep-subset: indep X =⇒ Y ⊆ X =⇒ indep Y

begin

lemmas psubset-inc-induct [case-names carrier step] = finite-psubset-inc-induct[OF
carrier-finite]
lemmas indep-finite [simp] = finite-subset[OF indep-subset-carrier carrier-finite]

The empty set is independent.
lemma indep-empty [simp]: indep {}

using indep-ex indep-subset by auto

1.1 Sub-independence systems

A subset of the ground set induces an independence system.
definition indep-in where indep-in E X ←→ X ⊆ E ∧ indep X

lemma indep-inI :
assumes X ⊆ E

3

assumes indep X
shows indep-in E X
using assms unfolding indep-in-def by auto

lemma indep-in-subI : indep-in E X =⇒ indep-in E ′ (X ∩ E ′)
using indep-subset unfolding indep-in-def by auto

lemma dep-in-subI :
assumes X ⊆ E ′

shows ¬ indep-in E ′ X =⇒ ¬ indep-in E X
using assms unfolding indep-in-def by auto

lemma indep-in-subset-carrier : indep-in E X =⇒ X ⊆ E
unfolding indep-in-def by auto

lemma indep-in-subI-subset:
assumes E ′ ⊆ E
assumes indep-in E ′ X
shows indep-in E X

proof −
have indep-in E (X ∩ E) using assms indep-in-subI by auto
moreover have X ∩ E = X using assms indep-in-subset-carrier by auto
ultimately show ?thesis by auto

qed

lemma indep-in-supI :
assumes X ⊆ E ′ E ′ ⊆ E
assumes indep-in E X
shows indep-in E ′ X

proof −
have X ∩ E ′ = X using assms by auto
then show ?thesis using assms indep-in-subI [where E = E and E ′ = E ′ and

X = X] by auto
qed

lemma indep-in-indep: indep-in E X =⇒ indep X
unfolding indep-in-def by auto

lemmas indep-inD = indep-in-subset-carrier indep-in-indep

lemma indep-system-subset [simp, intro]:
assumes E ⊆ carrier
shows indep-system E (indep-in E)
unfolding indep-system-def indep-in-def
using finite-subset[OF assms carrier-finite] indep-subset by auto

We will work a lot with different sub structures. Therefore, every defini-
tion ‘foo’ will have a counterpart ‘foo_in’ which has the ground set as an
additional parameter. Furthermore, every result about ‘foo’ will have an-

4

other result about ‘foo_in’. With this, we usually don’t have to work with
interpretation in proofs.
context

fixes E
assumes E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ‹E ⊆ carrier› by auto

lemma indep-in-sub-cong:
assumes E ′ ⊆ E
shows E .indep-in E ′ X ←→ indep-in E ′ X
unfolding E .indep-in-def indep-in-def using assms by auto

lemmas indep-in-ex = E .indep-ex
lemmas indep-in-subset = E .indep-subset
lemmas indep-in-empty = E .indep-empty

end

1.2 Bases

A basis is a maximal independent set, i. e. an independent set which becomes
dependent on inserting any element of the ground set.
definition basis where basis X ←→ indep X ∧ (∀ x ∈ carrier − X . ¬ indep (insert
x X))

lemma basisI :
assumes indep X
assumes

∧
x. x ∈ carrier − X =⇒ ¬ indep (insert x X)

shows basis X
using assms unfolding basis-def by auto

lemma basis-indep: basis X =⇒ indep X
unfolding basis-def by auto

lemma basis-max-indep: basis X =⇒ x ∈ carrier − X =⇒ ¬ indep (insert x X)
unfolding basis-def by auto

lemmas basisD = basis-indep basis-max-indep
lemmas basis-subset-carrier = indep-subset-carrier [OF basis-indep]
lemmas basis-finite [simp] = indep-finite[OF basis-indep]

lemma indep-not-basis:
assumes indep X
assumes ¬ basis X
shows ∃ x ∈ carrier − X . indep (insert x X)

5

using assms basisI by auto

lemma basis-subset-eq:
assumes basis B1

assumes basis B2

assumes B1 ⊆ B2

shows B1 = B2

proof (rule ccontr)
assume B1 6= B2

then obtain x where x: x ∈ B2 − B1 using assms by auto
then have insert x B1 ⊆ B2 using assms by auto
then have indep (insert x B1) using assms basis-indep[of B2] indep-subset by

auto
moreover have x ∈ carrier − B1 using assms x basis-subset-carrier by auto
ultimately show False using assms basisD by auto

qed

definition basis-in where
basis-in E X ←→ indep-system.basis E (indep-in E) X

lemma basis-iff-basis-in: basis B ←→ basis-in carrier B
proof −

interpret E : indep-system carrier indep-in carrier
by auto

show basis B ←→ basis-in carrier B
unfolding basis-in-def

proof (standard, goal-cases LTR RTL)
case LTR
show ?case
proof (rule E .basisI)
show indep-in carrier B using LTR basisD indep-subset-carrier indep-inI by

auto
next

fix x
assume x ∈ carrier − B
then have ¬ indep (insert x B) using LTR basisD by auto
then show ¬ indep-in carrier (insert x B) using indep-inD by auto

qed
next

case RTL
show ?case
proof (rule basisI)

show indep B using RTL E .basis-indep indep-inD by blast
next

fix x
assume x ∈ carrier − B
then have ¬ indep-in carrier (insert x B) using RTL E .basisD by auto

then show ¬ indep (insert x B) using indep-subset-carrier indep-inI by blast

6

qed
qed

qed

context
fixes E
assumes E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ‹E ⊆ carrier› by auto

lemma basis-inI-aux: E .basis X =⇒ basis-in E X
unfolding basis-in-def by auto

lemma basis-inD-aux: basis-in E X =⇒ E .basis X
unfolding basis-in-def by auto

lemma not-basis-inD-aux: ¬ basis-in E X =⇒ ¬ E .basis X
using basis-inI-aux by auto

lemmas basis-inI = basis-inI-aux[OF E .basisI]
lemmas basis-in-indep-in = E .basis-indep[OF basis-inD-aux]
lemmas basis-in-max-indep-in = E .basis-max-indep[OF basis-inD-aux]
lemmas basis-inD = E .basisD[OF basis-inD-aux]
lemmas basis-in-subset-carrier = E .basis-subset-carrier [OF basis-inD-aux]
lemmas basis-in-finite = E .basis-finite[OF basis-inD-aux]
lemmas indep-in-not-basis-in = E .indep-not-basis[OF - not-basis-inD-aux]
lemmas basis-in-subset-eq = E .basis-subset-eq[OF basis-inD-aux basis-inD-aux]

end

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ∗ by auto

lemma basis-in-sub-cong:
assumes E ′ ⊆ E
shows E .basis-in E ′ B ←→ basis-in E ′ B

proof (safe, goal-cases LTR RTL)
case LTR
show ?case
proof (rule basis-inI)

show E ′ ⊆ carrier using assms ∗ by auto
next

7

show indep-in E ′ B
using ∗ assms LTR E .basis-in-subset-carrier E .basis-in-indep-in indep-in-sub-cong

by auto
next

fix x
assume x ∈ E ′ − B
then show ¬ indep-in E ′ (insert x B)

using ∗ assms LTR E .basis-in-max-indep-in E .basis-in-subset-carrier in-
dep-in-sub-cong by auto

qed
next

case RTL
show ?case
proof (rule E .basis-inI)

show E ′ ⊆ E using assms by auto
next

show E .indep-in E ′ B
using ∗ assms RTL basis-in-subset-carrier basis-in-indep-in indep-in-sub-cong

by auto
next

fix x
assume x ∈ E ′ − B
then show ¬ E .indep-in E ′ (insert x B)
using ∗ assms RTL basis-in-max-indep-in basis-in-subset-carrier indep-in-sub-cong

by auto
qed

qed

end

1.3 Circuits

A circuit is a minimal dependent set, i. e. a set which becomes independent
on removing any element of the ground set.
definition circuit where circuit X ←→ X ⊆ carrier ∧ ¬ indep X ∧ (∀ x ∈ X .
indep (X − {x}))

lemma circuitI :
assumes X ⊆ carrier
assumes ¬ indep X
assumes

∧
x. x ∈ X =⇒ indep (X − {x})

shows circuit X
using assms unfolding circuit-def by auto

lemma circuit-subset-carrier : circuit X =⇒ X ⊆ carrier
unfolding circuit-def by auto

lemmas circuit-finite [simp] = finite-subset[OF circuit-subset-carrier carrier-finite]

lemma circuit-dep: circuit X =⇒ ¬ indep X

8

unfolding circuit-def by auto

lemma circuit-min-dep: circuit X =⇒ x ∈ X =⇒ indep (X − {x})
unfolding circuit-def by auto

lemmas circuitD = circuit-subset-carrier circuit-dep circuit-min-dep

lemma circuit-nonempty: circuit X =⇒ X 6= {}
using circuit-dep indep-empty by blast

lemma dep-not-circuit:
assumes X ⊆ carrier
assumes ¬ indep X
assumes ¬ circuit X
shows ∃ x ∈ X . ¬ indep (X − {x})
using assms circuitI by auto

lemma circuit-subset-eq:
assumes circuit C 1

assumes circuit C 2

assumes C 1 ⊆ C 2

shows C 1 = C 2

proof (rule ccontr)
assume C 1 6= C 2

then obtain x where x /∈ C 1 x ∈ C 2 using assms by auto
then have indep C 1 using indep-subset ‹C 1 ⊆ C 2› circuit-min-dep[OF ‹circuit

C 2›, of x] by auto
then show False using assms circuitD by auto

qed

definition circuit-in where
circuit-in E X ←→ indep-system.circuit E (indep-in E) X

context
fixes E
assumes E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ‹E ⊆ carrier› by auto

lemma circuit-inI-aux: E .circuit X =⇒ circuit-in E X
unfolding circuit-in-def by auto

lemma circuit-inD-aux: circuit-in E X =⇒ E .circuit X
unfolding circuit-in-def by auto

lemma not-circuit-inD-aux: ¬ circuit-in E X =⇒ ¬ E .circuit X
using circuit-inI-aux by auto

9

lemmas circuit-inI = circuit-inI-aux[OF E .circuitI]

lemmas circuit-in-subset-carrier = E .circuit-subset-carrier [OF circuit-inD-aux]
lemmas circuit-in-finite = E .circuit-finite[OF circuit-inD-aux]
lemmas circuit-in-dep-in = E .circuit-dep[OF circuit-inD-aux]
lemmas circuit-in-min-dep-in = E .circuit-min-dep[OF circuit-inD-aux]
lemmas circuit-inD = E .circuitD[OF circuit-inD-aux]
lemmas circuit-in-nonempty = E .circuit-nonempty[OF circuit-inD-aux]
lemmas dep-in-not-circuit-in = E .dep-not-circuit[OF - - not-circuit-inD-aux]
lemmas circuit-in-subset-eq = E .circuit-subset-eq[OF circuit-inD-aux circuit-inD-aux]

end

lemma circuit-in-subI :
assumes E ′ ⊆ E E ⊆ carrier
assumes circuit-in E ′ C
shows circuit-in E C

proof (rule circuit-inI)
show E ⊆ carrier using assms by auto

next
show C ⊆ E using assms circuit-in-subset-carrier [of E ′ C] by auto

next
show ¬ indep-in E C

using assms
circuit-in-dep-in[where E = E ′ and X = C]
circuit-in-subset-carrier dep-in-subI [where E ′ = E ′ and E = E]

by auto
next

fix x
assume x ∈ C
then show indep-in E (C − {x})

using assms circuit-in-min-dep-in indep-in-subI-subset by auto
qed

lemma circuit-in-supI :
assumes E ′ ⊆ E E ⊆ carrier C ⊆ E ′

assumes circuit-in E C
shows circuit-in E ′ C

proof (rule circuit-inI)
show E ′ ⊆ carrier using assms by auto

next
show C ⊆ E ′ using assms by auto

next
have ¬ indep-in E C using assms circuit-in-dep-in by auto
then show ¬ indep-in E ′ C using assms dep-in-subI [of C E] by auto

next
fix x
assume x ∈ C

10

then have indep-in E (C − {x}) using assms circuit-in-min-dep-in by auto
then have indep-in E ′ ((C − {x}) ∩ E ′) using indep-in-subI by auto
moreover have (C − {x}) ∩ E ′ = C − {x} using assms circuit-in-subset-carrier

by auto
ultimately show indep-in E ′ (C − {x}) by auto

qed

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ∗ by auto

lemma circuit-in-sub-cong:
assumes E ′ ⊆ E
shows E .circuit-in E ′ C ←→ circuit-in E ′ C

proof (safe, goal-cases LTR RTL)
case LTR
show ?case
proof (rule circuit-inI)

show E ′ ⊆ carrier using assms ∗ by auto
next

show C ⊆ E ′

using assms LTR E .circuit-in-subset-carrier by auto
next

show ¬ indep-in E ′ C
using assms LTR E .circuit-in-dep-in indep-in-sub-cong[OF ∗] by auto

next
fix x
assume x ∈ C
then show indep-in E ′ (C − {x})

using assms LTR E .circuit-in-min-dep-in indep-in-sub-cong[OF ∗] by auto
qed

next
case RTL
show ?case
proof (rule E .circuit-inI)

show E ′ ⊆ E using assms ∗ by auto
next

show C ⊆ E ′

using assms ∗ RTL circuit-in-subset-carrier by auto
next

show ¬ E .indep-in E ′ C
using assms ∗ RTL circuit-in-dep-in indep-in-sub-cong[OF ∗] by auto

next
fix x
assume x ∈ C

11

then show E .indep-in E ′ (C − {x})
using assms ∗ RTL circuit-in-min-dep-in indep-in-sub-cong[OF ∗] by auto

qed
qed

end

lemma circuit-imp-circuit-in:
assumes circuit C
shows circuit-in carrier C

proof (rule circuit-inI)
show C ⊆ carrier using circuit-subset-carrier [OF assms] .

next
show ¬ indep-in carrier C using circuit-dep[OF assms] indep-in-indep by auto

next
fix x
assume x ∈ C
then have indep (C − {x}) using circuit-min-dep[OF assms] by auto
then show indep-in carrier (C − {x}) using circuit-subset-carrier [OF assms]

by (auto intro: indep-inI)
qed auto

1.4 Relation between independence and bases

A set is independent iff it is a subset of a basis.
lemma indep-imp-subset-basis:

assumes indep X
shows ∃B. basis B ∧ X ⊆ B
using assms

proof (induction X rule: psubset-inc-induct)
case carrier
show ?case using indep-subset-carrier [OF assms] .

next
case (step X)
{

assume ¬ basis X
then obtain x where x ∈ carrier x /∈ X indep (insert x X)

using step.prems indep-not-basis by auto
then have ?case using step.IH [of insert x X] indep-subset-carrier by auto

}
then show ?case by auto

qed

lemmas subset-basis-imp-indep = indep-subset[OF basis-indep]

lemma indep-iff-subset-basis: indep X ←→ (∃B. basis B ∧ X ⊆ B)
using indep-imp-subset-basis subset-basis-imp-indep by auto

lemma basis-ex: ∃B. basis B

12

using indep-imp-subset-basis[OF indep-empty] by auto

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ∗ by auto

lemma indep-in-imp-subset-basis-in:
assumes indep-in E X
shows ∃B. basis-in E B ∧ X ⊆ B
unfolding basis-in-def using E .indep-imp-subset-basis[OF assms] .

lemmas subset-basis-in-imp-indep-in = indep-in-subset[OF ∗ basis-in-indep-in[OF
∗]]

lemma indep-in-iff-subset-basis-in: indep-in E X ←→ (∃B. basis-in E B ∧ X ⊆
B)

using indep-in-imp-subset-basis-in subset-basis-in-imp-indep-in by auto

lemma basis-in-ex: ∃B. basis-in E B
unfolding basis-in-def using E .basis-ex .

lemma basis-in-subI :
assumes E ′ ⊆ E E ⊆ carrier
assumes basis-in E ′ B
shows ∃B ′ ⊆ E − E ′. basis-in E (B ∪ B ′)

proof −
have indep-in E B using assms basis-in-indep-in indep-in-subI-subset by auto
then obtain B ′ where B ′: basis-in E B ′ B ⊆ B ′

using assms indep-in-imp-subset-basis-in[of B] by auto
show ?thesis
proof (rule exI)

have B ′ − B ⊆ E − E ′

proof
fix x
assume ∗: x ∈ B ′ − B
then have x ∈ E x /∈ B

using assms ‹basis-in E B ′› basis-in-subset-carrier [of E] by auto
moreover {

assume x ∈ E ′

moreover have indep-in E (insert x B)
using ∗ assms indep-in-subset[OF - basis-in-indep-in] B ′ by auto

ultimately have indep-in E ′ (insert x B)
using assms basis-in-subset-carrier unfolding indep-in-def by auto

then have False using assms ∗ ‹x ∈ E ′› basis-in-max-indep-in by auto
}

13

ultimately show x ∈ E − E ′ by auto
qed
moreover have B ∪ (B ′ − B) = B ′ using ‹B ⊆ B ′› by auto
ultimately show B ′ − B ⊆ E − E ′ ∧ basis-in E (B ∪ (B ′ − B))

using ‹basis-in E B ′› by auto
qed

qed

lemma basis-in-supI :
assumes B ⊆ E ′ E ′ ⊆ E E ⊆ carrier
assumes basis-in E B
shows basis-in E ′ B

proof (rule basis-inI)
show E ′ ⊆ carrier using assms by auto

next
show indep-in E ′ B
proof −

have indep-in E ′ (B ∩ E ′)
using assms basis-in-indep-in[of E B] indep-in-subI by auto

moreover have B ∩ E ′ = B using assms by auto
ultimately show ?thesis by auto

qed
next

show
∧

x. x ∈ E ′ − B =⇒ ¬ indep-in E ′ (insert x B)
using assms basis-in-subset-carrier basis-in-max-indep-in dep-in-subI [of - E E ′]

by auto
qed

end

1.5 Relation between dependence and circuits

A set is dependent iff it contains a circuit.
lemma dep-imp-supset-circuit:

assumes X ⊆ carrier
assumes ¬ indep X
shows ∃C . circuit C ∧ C ⊆ X
using assms

proof (induction X rule: remove-induct)
case (remove X)
{

assume ¬ circuit X
then obtain x where x ∈ X ¬ indep (X − {x})

using remove.prems dep-not-circuit by auto
then obtain C where circuit C C ⊆ X − {x}

using remove.prems remove.IH [of x] by auto
then have ?case by auto

}
then show ?case using remove.prems by auto

14

qed (auto simp add: carrier-finite finite-subset)

lemma supset-circuit-imp-dep:
assumes circuit C ∧ C ⊆ X
shows ¬ indep X
using assms indep-subset circuit-dep by auto

lemma dep-iff-supset-circuit:
assumes X ⊆ carrier
shows ¬ indep X ←→ (∃C . circuit C ∧ C ⊆ X)
using assms dep-imp-supset-circuit supset-circuit-imp-dep by auto

context
fixes E
assumes E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ‹E ⊆ carrier› by auto

lemma dep-in-imp-supset-circuit-in:
assumes X ⊆ E
assumes ¬ indep-in E X
shows ∃C . circuit-in E C ∧ C ⊆ X
unfolding circuit-in-def using E .dep-imp-supset-circuit[OF assms] .

lemma supset-circuit-in-imp-dep-in:
assumes circuit-in E C ∧ C ⊆ X
shows ¬ indep-in E X
using assms E .supset-circuit-imp-dep unfolding circuit-in-def by auto

lemma dep-in-iff-supset-circuit-in:
assumes X ⊆ E
shows ¬ indep-in E X ←→ (∃C . circuit-in E C ∧ C ⊆ X)
using assms dep-in-imp-supset-circuit-in supset-circuit-in-imp-dep-in by auto

end

1.6 Ranks
definition lower-rank-of :: ′a set ⇒ nat where

lower-rank-of carrier ′ ≡ Min {card B | B. basis-in carrier ′ B}

definition upper-rank-of :: ′a set ⇒ nat where
upper-rank-of carrier ′ ≡ Max {card B | B. basis-in carrier ′ B}

lemma collect-basis-finite: finite (Collect basis)
proof −

have Collect basis ⊆ {X . X ⊆ carrier}

15

using basis-subset-carrier by auto
moreover have finite . . .

using carrier-finite by auto
ultimately show ?thesis using finite-subset by auto

qed

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : indep-system E indep-in E
using ∗ by auto

lemma collect-basis-in-finite: finite (Collect (basis-in E))
unfolding basis-in-def using E .collect-basis-finite .

lemma lower-rank-of-le: lower-rank-of E ≤ card E
proof −

have ∃n ∈ {card B | B. basis-in E B}. n ≤ card E
using card-mono[OF E .carrier-finite basis-in-subset-carrier [OF ∗]] basis-in-ex[OF

∗] by auto
moreover have finite {card B | B. basis-in E B}

using collect-basis-in-finite by auto
ultimately show ?thesis

unfolding lower-rank-of-def using basis-ex Min-le-iff by auto
qed

lemma upper-rank-of-le: upper-rank-of E ≤ card E
proof −

have ∀n ∈ {card B | B. basis-in E B}. n ≤ card E
using card-mono[OF E .carrier-finite basis-in-subset-carrier [OF ∗]] by auto

then show ?thesis
unfolding upper-rank-of-def using basis-in-ex[OF ∗] collect-basis-in-finite by

auto
qed

context
fixes E ′

assumes ∗∗: E ′ ⊆ E
begin

interpretation E ′
1: indep-system E ′ indep-in E ′

using ∗ ∗∗ by auto
interpretation E ′

2: indep-system E ′ E .indep-in E ′

using ∗ ∗∗ by auto

lemma lower-rank-of-sub-cong:
shows E .lower-rank-of E ′ = lower-rank-of E ′

16

proof −
have

∧
B. E ′

1.basis B ←→ E ′
2.basis B

using ∗∗ basis-in-sub-cong[OF ∗, of E ′]
unfolding basis-in-def E .basis-in-def by auto

then show ?thesis
unfolding lower-rank-of-def E .lower-rank-of-def
using basis-in-sub-cong[OF ∗ ∗∗]
by auto

qed

lemma upper-rank-of-sub-cong:
shows E .upper-rank-of E ′ = upper-rank-of E ′

proof −
have

∧
B. E ′

1.basis B ←→ E ′
2.basis B

using ∗∗ basis-in-sub-cong[OF ∗, of E ′]
unfolding basis-in-def E .basis-in-def by auto

then show ?thesis
unfolding upper-rank-of-def E .upper-rank-of-def
using basis-in-sub-cong[OF ∗ ∗∗]
by auto

qed

end

end

end

end

2 Matroids
theory Matroid

imports Indep-System
begin

lemma card-subset-ex:
assumes finite A n ≤ card A
shows ∃B ⊆ A. card B = n

using assms
proof (induction A arbitrary: n rule: finite-induct)

case (insert x A)
show ?case
proof (cases n)

case 0
then show ?thesis using card.empty by blast

next
case (Suc k)
then have ∃B ⊆ A. card B = k using insert by auto

17

then obtain B where B ⊆ A card B = k by auto
moreover from this have finite B using insert.hyps finite-subset by auto
ultimately have card (insert x B) = n

using Suc insert.hyps card-insert-disjoint by fastforce
then show ?thesis using ‹B ⊆ A› by blast

qed
qed auto

locale matroid = indep-system +
assumes augment-aux:

indep X =⇒ indep Y =⇒ card X = Suc (card Y) =⇒ ∃ x ∈ X − Y . indep
(insert x Y)
begin

lemma augment:
assumes indep X indep Y card Y < card X
shows ∃ x ∈ X − Y . indep (insert x Y)

proof −
obtain X ′ where X ′ ⊆ X card X ′ = Suc (card Y)

using assms card-subset-ex[of X Suc (card Y)] indep-finite by auto
then obtain x where x ∈ X ′ − Y indep (insert x Y)

using assms augment-aux[of X ′ Y] indep-subset by auto
then show ?thesis using ‹X ′ ⊆ X› by auto

qed

lemma augment-psubset:
assumes indep X indep Y Y ⊂ X
shows ∃ x ∈ X − Y . indep (insert x Y)
using assms augment psubset-card-mono indep-finite by blast

2.1 Minors

A subset of the ground set induces a matroid.
lemma matroid-subset [simp, intro]:

assumes E ⊆ carrier
shows matroid E (indep-in E)
unfolding matroid-def matroid-axioms-def

proof (safe, goal-cases indep-system augment)
case indep-system
then show ?case using indep-system-subset[OF assms] .

next
case (augment X Y)
then show ?case using augment-aux[of X Y] unfolding indep-in-def by auto

qed

context
fixes E
assumes E ⊆ carrier

begin

18

interpretation E : matroid E indep-in E
using ‹E ⊆ carrier› by auto

lemmas augment-aux-indep-in = E .augment-aux
lemmas augment-indep-in = E .augment
lemmas augment-psubset-indep-in = E .augment-psubset

end

2.2 Bases
lemma basis-card:

assumes basis B1

assumes basis B2

shows card B1 = card B2

proof (rule ccontr , goal-cases False)
case False
then have card B1 < card B2 ∨ card B2 < card B1 by auto
moreover {

fix B1 B2

assume basis B1 basis B2 card B1 < card B2

then obtain x where x ∈ B2 − B1 indep (insert x B1)
using augment basisD by blast

then have x ∈ carrier − B1

using ‹basis B1› basisD indep-subset-carrier by blast
then have ¬ indep (insert x B1) using ‹basis B1› basisD by auto
then have False using ‹indep (insert x B1)› by auto

}
ultimately show ?case using assms by auto

qed

lemma basis-indep-card:
assumes indep X
assumes basis B
shows card X ≤ card B

proof −
obtain B ′ where basis B ′ X ⊆ B ′ using assms indep-imp-subset-basis by auto
then show ?thesis using assms basis-finite basis-card[of B B ′] by (auto intro:

card-mono)
qed

lemma basis-augment:
assumes basis B1 basis B2 x ∈ B1 − B2

shows ∃ y ∈ B2 − B1. basis (insert y (B1 − {x}))
proof −

let ?B1 = B1 − {x}
have card ?B1 < card B2

using assms basis-card[of B1 B2] card-Diff1-less[OF basis-finite, of B1] by auto

19

moreover have indep ?B1 using assms basis-indep[of B1] indep-subset[of B1

?B1] by auto
ultimately obtain y where y: y ∈ B2 − ?B1 indep (insert y ?B1)

using assms augment[of B2 ?B1] basis-indep by auto
let ?B1

′ = insert y ?B1

have basis ?B1
′ using ‹indep ?B1

′›
proof (rule basisI , goal-cases insert)

case (insert x)
have card (insert x ?B1

′) > card B1

proof −
have card (insert x ?B1

′) = Suc (card ?B1
′)

using insert card.insert-remove[OF indep-finite, of ?B1
′] y by auto

also have . . . = Suc (Suc (card ?B1))
using card.insert-remove[OF indep-finite, of ?B1] ‹indep ?B1› y by auto

also have . . . = Suc (card B1)
using assms basis-finite[of B1] card.remove[of B1] by auto

finally show ?thesis by auto
qed
then have ¬indep (insert x (insert y ?B1))

using assms basis-indep-card[of insert x (insert y ?B1) B1] by auto
moreover have insert x (insert y ?B1) ⊆ carrier

using assms insert y basis-finite indep-subset-carrier by auto
ultimately show ?case by auto

qed
then show ?thesis using assms y by auto

qed

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : matroid E indep-in E
using ‹E ⊆ carrier› by auto

lemmas basis-in-card = E .basis-card[OF basis-inD-aux[OF ∗] basis-inD-aux[OF
∗]]
lemmas basis-in-indep-in-card = E .basis-indep-card[OF - basis-inD-aux[OF ∗]]

lemma basis-in-augment:
assumes basis-in E B1 basis-in E B2 x ∈ B1 − B2

shows ∃ y ∈ B2 − B1. basis-in E (insert y (B1 − {x}))
using assms E .basis-augment unfolding basis-in-def by auto

end

2.3 Circuits
lemma circuit-elim:

20

assumes circuit C 1 circuit C 2 C 1 6= C 2 x ∈ C 1 ∩ C 2

shows ∃C 3 ⊆ (C 1 ∪ C 2) − {x}. circuit C 3

proof −
let ?C = (C 1 ∪ C 2) − {x}
let ?carrier = C 1 ∪ C 2

have assms ′: circuit-in carrier C 1 circuit-in carrier C 2

using assms circuit-imp-circuit-in by auto

have ?C ⊆ carrier using assms circuit-subset-carrier by auto
show ?thesis
proof (cases indep ?C)

case False
then show ?thesis using dep-iff-supset-circuit ‹?C ⊆ carrier› by auto

next
case True

then have indep-in ?carrier ?C using ‹?C ⊆ carrier› by (auto intro: indep-inI)

have ∗: ?carrier ⊆ carrier using assms circuit-subset-carrier by auto
obtain y where y: y ∈ C 2 y /∈ C 1 using assms circuit-subset-eq by blast
then have indep-in ?carrier (C 2 − {y})

using assms ′ circuit-in-min-dep-in[OF ∗ circuit-in-supI [OF ∗, of C 2]] by
auto

then obtain B where B: basis-in ?carrier B C 2 − {y} ⊆ B
using ∗ assms indep-in-imp-subset-basis-in[of ?carrier C 2 − {y}] by auto

have y /∈ B
proof (rule ccontr , goal-cases False)

case False
then have C 2 ⊆ B using B by auto

moreover have circuit-in ?carrier C 2 using ∗ assms ′ circuit-in-supI by auto
ultimately have ¬ indep-in ?carrier B
using B basis-in-subset-carrier [OF ∗] supset-circuit-in-imp-dep-in[OF ∗] by

auto
then show False using assms B basis-in-indep-in[OF ∗] by auto

qed

have C 1 − B 6= {}
proof (rule ccontr , goal-cases False)

case False
then have C 1 − (C 1 ∩ B) = {} by auto
then have C 1 = C 1 ∩ B using assms circuit-subset-eq by auto
moreover have indep (C 1 ∩ B)

using assms B basis-in-indep-in[OF ∗] indep-in-subset[OF ∗, of B C 1 ∩ B]
indep-in-indep

by auto
ultimately show ?case using assms circuitD by auto

qed
then obtain z where z: z ∈ C 1 z /∈ B by auto

21

have y 6= z using y z by auto
have x ∈ C 1 x ∈ C 2 using assms by auto

have finite ?carrier using assms carrier-finite finite-subset by auto
have card B ≤ card (?carrier − {y, z})
proof (rule card-mono)

show finite (C 1 ∪ C 2 − {y, z}) using ‹finite ?carrier› by auto
next

show B ⊆ C 1 ∪ C 2 − {y, z}
using B basis-in-subset-carrier [OF ∗, of B] ‹y /∈ B› ‹z /∈ B› by auto

qed
also have . . . = card ?carrier − 2

using ‹finite ?carrier› ‹y ∈ C 2› ‹z ∈ C 1› ‹y 6= z› card-Diff-subset-Int by
auto

also have . . . < card ?carrier − 1
proof −

have card ?carrier = card C 1 + card C 2 − card (C 1 ∩ C 2)
using assms ‹finite ?carrier› card-Un-Int[of C 1 C 2] by auto

also have . . . = card C 1 + (card C 2 − card (C 1 ∩ C 2))
using assms ‹finite ?carrier› card-mono[of C 2] by auto

also have . . . = card C 1 + card (C 2 − C 1)
proof −

have card (C 2 − C 1) = card C 2 − card (C 2 ∩ C 1)
using assms ‹finite ?carrier› card-Diff-subset-Int[of C 2 C 1] by auto

also have . . . = card C 2 − card (C 1 ∩ C 2) by (simp add: inf-commute)
finally show ?thesis by auto

qed
finally have card (C 1 ∪ C 2) = card C 1 + card (C 2 − C 1) .
moreover have card C 1 > 0 using assms circuit-nonempty ‹finite ?carrier›

by auto
moreover have card (C 2 − C 1) > 0 using assms ‹finite ?carrier› ‹y ∈ C 2›

‹y /∈ C 1› by auto
ultimately show ?thesis by auto

qed
also have . . . = card ?C

using ‹finite ?carrier› card-Diff-singleton ‹x ∈ C 1› ‹x ∈ C 2› by auto
finally have card B < card ?C .
then have False
using basis-in-indep-in-card[OF ∗, of ?C B] B ‹indep-in ?carrier ?C › by auto

then show ?thesis by auto
qed

qed

lemma min-dep-imp-supset-circuit:
assumes indep X
assumes circuit C
assumes C ⊆ insert x X
shows x ∈ C

22

proof (rule ccontr)
assume x /∈ C
then have C ⊆ X using assms by auto
then have indep C using assms indep-subset by auto
then show False using assms circuitD by auto

qed

lemma min-dep-imp-ex1-supset-circuit:
assumes x ∈ carrier
assumes indep X
assumes ¬ indep (insert x X)
shows ∃ !C . circuit C ∧ C ⊆ insert x X

proof −
obtain C where C : circuit C C ⊆ insert x X

using assms indep-subset-carrier dep-iff-supset-circuit by auto

show ?thesis
proof (rule ex1I , goal-cases ex unique)

show circuit C ∧ C ⊆ insert x X using C by auto
next

{
fix C ′

assume C ′: circuit C ′ C ′ ⊆ insert x X
have C ′ = C
proof (rule ccontr)

assume C ′ 6= C
moreover have x ∈ C ′ ∩ C using C C ′ assms min-dep-imp-supset-circuit

by auto
ultimately have ¬ indep (C ′ ∪ C − {x})

using circuit-elim[OF C (1) C ′(1), of x] supset-circuit-imp-dep[of - C ′ ∪
C − {x}] by auto

moreover have C ′ ∪ C − {x} ⊆ X using C C ′ by auto
ultimately show False using assms indep-subset by auto

qed
}
then show

∧
C ′. circuit C ′ ∧ C ′ ⊆ insert x X =⇒ C ′ = C

by auto
qed

qed

lemma basis-ex1-supset-circuit:
assumes basis B
assumes x ∈ carrier − B
shows ∃ !C . circuit C ∧ C ⊆ insert x B
using assms min-dep-imp-ex1-supset-circuit basisD by auto

definition fund-circuit :: ′a ⇒ ′a set ⇒ ′a set where
fund-circuit x B ≡ (THE C . circuit C ∧ C ⊆ insert x B)

23

lemma circuit-iff-fund-circuit:
circuit C ←→ (∃ x B. x ∈ carrier − B ∧ basis B ∧ C = fund-circuit x B)

proof (safe, goal-cases LTR RTL)
case LTR
then obtain x where x ∈ C using circuit-nonempty by auto
then have indep (C − {x}) using LTR unfolding circuit-def by auto
then obtain B where B: basis B C − {x} ⊆ B using indep-imp-subset-basis

by auto
then have x ∈ carrier using LTR circuit-subset-carrier ‹x ∈ C › by auto
moreover have x /∈ B
proof (rule ccontr , goal-cases False)

case False
then have C ⊆ B using ‹C − {x} ⊆ B› by auto
then have ¬ indep B using LTR B basis-subset-carrier supset-circuit-imp-dep

by auto
then show ?case using B basis-indep by auto

qed
ultimately show ?case

unfolding fund-circuit-def
using LTR B theI-unique[OF basis-ex1-supset-circuit[of B x], of C] by auto

next
case (RTL x B)
then have ∃ !C . circuit C ∧ C ⊆ insert x B

using min-dep-imp-ex1-supset-circuit basisD[of B] by auto
then show ?case

unfolding fund-circuit-def
using theI [of λC . circuit C ∧ C ⊆ insert x B] by fastforce

qed

lemma fund-circuitI :
assumes basis B
assumes x ∈ carrier − B
assumes circuit C
assumes C ⊆ insert x B
shows fund-circuit x B = C
unfolding fund-circuit-def
using assms theI-unique[OF basis-ex1-supset-circuit, of B x C] by auto

definition fund-circuit-in where fund-circuit-in E x B ≡ matroid.fund-circuit E
(indep-in E) x B

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : matroid E indep-in E
using ‹E ⊆ carrier› by auto

24

lemma fund-circuit-inI-aux: E .fund-circuit x B = fund-circuit-in E x B
unfolding fund-circuit-in-def by auto

lemma circuit-in-elim:
assumes circuit-in E C 1 circuit-in E C 2 C 1 6= C 2 x ∈ C 1 ∩ C 2

shows ∃C 3 ⊆ (C 1 ∪ C 2) − {x}. circuit-in E C 3

using assms E .circuit-elim unfolding circuit-in-def by auto

lemmas min-dep-in-imp-supset-circuit-in = E .min-dep-imp-supset-circuit[OF - cir-
cuit-inD-aux[OF ∗]]

lemma min-dep-in-imp-ex1-supset-circuit-in:
assumes x ∈ E
assumes indep-in E X
assumes ¬ indep-in E (insert x X)
shows ∃ !C . circuit-in E C ∧ C ⊆ insert x X
using assms E .min-dep-imp-ex1-supset-circuit unfolding circuit-in-def by auto

lemma basis-in-ex1-supset-circuit-in:
assumes basis-in E B
assumes x ∈ E − B
shows ∃ !C . circuit-in E C ∧ C ⊆ insert x B
using assms E .basis-ex1-supset-circuit unfolding circuit-in-def basis-in-def by

auto

lemma fund-circuit-inI :
assumes basis-in E B
assumes x ∈ E − B
assumes circuit-in E C
assumes C ⊆ insert x B
shows fund-circuit-in E x B = C
using assms E .fund-circuitI
unfolding basis-in-def circuit-in-def fund-circuit-in-def by auto

end

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : matroid E indep-in E
using ‹E ⊆ carrier› by auto

lemma fund-circuit-in-sub-cong:
assumes E ′ ⊆ E
assumes x ∈ E ′ − B
assumes basis-in E ′ B
shows E .fund-circuit-in E ′ x B = fund-circuit-in E ′ x B

25

proof −
obtain C where C : circuit-in E ′ C C ⊆ insert x B

using ∗ assms basis-in-ex1-supset-circuit-in[of E ′ B x] by auto
then have fund-circuit-in E ′ x B = C

using ∗ assms fund-circuit-inI by auto
also have . . . = E .fund-circuit-in E ′ x B
using ∗ assms C E .fund-circuit-inI basis-in-sub-cong[of E] circuit-in-sub-cong[of

E] by auto
finally show ?thesis by auto

qed

end

2.4 Ranks
abbreviation rank-of where rank-of ≡ lower-rank-of

lemmas rank-of-def = lower-rank-of-def
lemmas rank-of-sub-cong = lower-rank-of-sub-cong
lemmas rank-of-le = lower-rank-of-le

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : matroid E indep-in E
using ∗ by auto

lemma lower-rank-of-eq-upper-rank-of : lower-rank-of E = upper-rank-of E
proof −

obtain B where basis-in E B using basis-in-ex[OF ∗] by auto
then have {card B | B. basis-in E B} = {card B}

by safe (auto dest: basis-in-card[OF ∗])
then show ?thesis unfolding lower-rank-of-def upper-rank-of-def by auto

qed

lemma rank-of-eq-card-basis-in:
assumes basis-in E B
shows rank-of E = card B

proof −
have {card B | B. basis-in E B} = {card B} using assms by safe (auto dest:

basis-in-card[OF ∗])
then show ?thesis unfolding rank-of-def by auto

qed

lemma rank-of-indep-in-le:
assumes indep-in E X
shows card X ≤ rank-of E

26

proof −
{

fix B
assume basis-in E B
moreover obtain B ′ where basis-in E B ′ X ⊆ B ′

using assms indep-in-imp-subset-basis-in[OF ∗] by auto
ultimately have card X ≤ card B

using card-mono[OF basis-in-finite[OF ∗]] basis-in-card[OF ∗, of B B ′] by
auto

}
moreover have finite {card B | B. basis-in E B}

using collect-basis-in-finite[OF ∗] by auto
ultimately show ?thesis

unfolding rank-of-def using basis-in-ex[OF ∗] by auto
qed

end

lemma rank-of-mono:
assumes X ⊆ Y
assumes Y ⊆ carrier
shows rank-of X ≤ rank-of Y

proof −
obtain BX where BX : basis-in X BX using assms basis-in-ex[of X] by auto
moreover obtain BY where BY : basis-in Y BY using assms basis-in-ex[of Y]

by auto
moreover have card BX ≤ card BY

using assms basis-in-indep-in-card[OF - - BY] basis-in-indep-in[OF - BX]
indep-in-subI-subset

by auto
ultimately show ?thesis using assms rank-of-eq-card-basis-in by auto

qed

lemma rank-of-insert-le:
assumes X ⊆ carrier
assumes x ∈ carrier
shows rank-of (insert x X) ≤ Suc (rank-of X)

proof −
obtain B where B: basis-in X B using assms basis-in-ex[of X] by auto
have basis-in (insert x X) B ∨ basis-in (insert x X) (insert x B)
proof −

obtain B ′ where B ′: B ′ ⊆ insert x X − X basis-in (insert x X) (B ∪ B ′)
using assms B basis-in-subI [of insert x X X B] by auto

then have B ′ = {} ∨ B ′ = {x} by auto
then show ?thesis
proof

assume B ′ = {}
then have basis-in (insert x X) B using B ′ by auto
then show ?thesis by auto

27

next
assume B ′ = {x}
then have basis-in (insert x X) (insert x B) using B ′ by auto
then show ?thesis by auto

qed
qed
then show ?thesis
proof

assume basis-in (insert x X) B
then show ?thesis

using assms B rank-of-eq-card-basis-in by auto
next

assume basis-in (insert x X) (insert x B)
then have rank-of (insert x X) = card (insert x B)

using assms rank-of-eq-card-basis-in by auto
also have . . . = Suc (card (B − {x}))

using assms card.insert-remove[of B x] using B basis-in-finite by auto
also have . . . ≤ Suc (card B)

using assms B basis-in-finite card-Diff1-le[of B] by auto
also have . . . = Suc (rank-of X)

using assms B rank-of-eq-card-basis-in by auto
finally show ?thesis .

qed
qed

lemma rank-of-Un-Int-le:
assumes X ⊆ carrier
assumes Y ⊆ carrier
shows rank-of (X ∪ Y) + rank-of (X ∩ Y) ≤ rank-of X + rank-of Y

proof −
obtain B-Int where B-Int: basis-in (X ∩ Y) B-Int using assms basis-in-ex[of

X ∩ Y] by auto
then have indep-in (X ∪ Y) B-Int

using assms indep-in-subI-subset[OF - basis-in-indep-in[of X ∩ Y B-Int], of X
∪ Y] by auto

then obtain B-Un where B-Un: basis-in (X ∪ Y) B-Un B-Int ⊆ B-Un
using assms indep-in-imp-subset-basis-in[of X ∪ Y B-Int] by auto

have card (B-Un ∩ (X ∪ Y)) + card (B-Un ∩ (X ∩ Y)) = card ((B-Un ∩ X)
∪ (B-Un ∩ Y)) + card ((B-Un ∩ X) ∩ (B-Un ∩ Y))

by (simp add: inf-assoc inf-left-commute inf-sup-distrib1)
also have . . . = card (B-Un ∩ X) + card (B-Un ∩ Y)
proof −

have finite (B-Un ∩ X) finite (B-Un ∩ Y)
using assms finite-subset[OF - carrier-finite] by auto

then show ?thesis using card-Un-Int[of B-Un ∩ X B-Un ∩ Y] by auto
qed
also have . . . ≤ rank-of X + rank-of Y
proof −

28

have card (B-Un ∩ X) ≤ rank-of X
proof −

have indep-in X (B-Un ∩ X) using assms basis-in-indep-in[OF - B-Un(1)]
indep-in-subI by auto

then show ?thesis using assms rank-of-indep-in-le by auto
qed
moreover have card (B-Un ∩ Y) ≤ rank-of Y
proof −

have indep-in Y (B-Un ∩ Y) using assms basis-in-indep-in[OF - B-Un(1)]
indep-in-subI by auto

then show ?thesis using assms rank-of-indep-in-le by auto
qed
ultimately show ?thesis by auto

qed
finally have rank-of X + rank-of Y ≥ card (B-Un ∩ (X ∪ Y)) + card (B-Un
∩ (X ∩ Y)) .
moreover have B-Un ∩ (X ∪ Y) = B-Un using assms basis-in-subset-carrier [OF

- B-Un(1)] by auto
moreover have B-Un ∩ (X ∩ Y) = B-Int
proof −

have card (B-Un ∩ (X ∩ Y)) ≤ card B-Int
proof −

have indep-in (X ∩ Y) (B-Un ∩ (X ∩ Y))
using assms basis-in-indep-in[OF - B-Un(1)] indep-in-subI by auto
then show ?thesis using assms basis-in-indep-in-card[of X ∩ Y - B-Int]

B-Int by auto
qed
moreover have finite (B-Un ∩ (X ∩ Y))

using assms carrier-finite finite-subset[of B-Un ∩ (X ∩ Y)] by auto
moreover have B-Int ⊆ B-Un ∩ (X ∩ Y)

using assms B-Un B-Int basis-in-subset-carrier [of X ∩ Y B-Int] by auto
ultimately show ?thesis using card-seteq by blast

qed
ultimately have rank-of X + rank-of Y ≥ card B-Un + card B-Int by auto
moreover have card B-Un = rank-of (X ∪ Y)

using assms rank-of-eq-card-basis-in[OF - B-Un(1)] by auto
moreover have card B-Int = rank-of (X ∩ Y)

using assms rank-of-eq-card-basis-in[OF - B-Int] by fastforce
ultimately show rank-of X + rank-of Y ≥ rank-of (X ∪ Y) + rank-of (X ∩

Y) by auto
qed

lemma rank-of-Un-absorbI :
assumes X ⊆ carrier Y ⊆ carrier
assumes

∧
y. y ∈ Y − X =⇒ rank-of (insert y X) = rank-of X

shows rank-of (X ∪ Y) = rank-of X
proof −

have finite (Y − X) using finite-subset[OF ‹Y ⊆ carrier›] carrier-finite by
auto

29

then show ?thesis using assms
proof (induction Y − X arbitrary: Y rule: finite-induct)

case empty
then have X ∪ Y = X by auto
then show ?case by auto

next
case (insert y F)
have rank-of (X ∪ Y) + rank-of X ≤ rank-of X + rank-of X
proof −

have rank-of (X ∪ Y) + rank-of X = rank-of ((X ∪ (Y − {y})) ∪ (insert
y X)) + rank-of ((X ∪ (Y − {y})) ∩ (insert y X))

proof −
have X ∪ Y = (X ∪ (Y − {y})) ∪ (insert y X) X = (X ∪ (Y − {y})) ∩

(insert y X) using insert by auto
then show ?thesis by auto

qed
also have . . . ≤ rank-of (X ∪ (Y − {y})) + rank-of (insert y X)
proof (rule rank-of-Un-Int-le)

show X ∪ (Y − {y}) ⊆ carrier using insert by auto
next

show insert y X ⊆ carrier using insert by auto
qed
also have . . . = rank-of (X ∪ (Y − {y})) + rank-of X
proof −

have y ∈ Y − X using insert by auto
then show ?thesis using insert by auto

qed
also have . . . = rank-of X + rank-of X
proof −

have F = (Y − {y}) − X Y − {y} ⊆ carrier using insert by auto
then show ?thesis using insert insert(3)[of Y − {y}] by auto

qed
finally show ?thesis .

qed
moreover have rank-of (X ∪ Y) + rank-of X ≥ rank-of X + rank-of X

using insert rank-of-mono by auto
ultimately show ?case by auto

qed
qed

lemma indep-iff-rank-of :
assumes X ⊆ carrier
shows indep X ←→ rank-of X = card X

proof (standard, goal-cases LTR RTL)
case LTR
then have indep-in X X by (auto intro: indep-inI)
then have basis-in X X by (auto intro: basis-inI [OF assms])
then show ?case using rank-of-eq-card-basis-in[OF assms] by auto

next

30

case RTL
obtain B where B: basis-in X B using basis-in-ex[OF assms] by auto
then have card B = card X using RTL rank-of-eq-card-basis-in[OF assms] by

auto
then have B = X
using basis-in-subset-carrier [OF assms B] card-seteq[OF finite-subset[OF assms

carrier-finite]]
by auto

then show ?case using basis-in-indep-in[OF assms B] indep-in-indep by auto
qed

lemma basis-iff-rank-of :
assumes X ⊆ carrier
shows basis X ←→ rank-of X = card X ∧ rank-of X = rank-of carrier

proof (standard, goal-cases LTR RTL)
case LTR
then have rank-of X = card X using assms indep-iff-rank-of basis-indep by

auto
moreover have . . . = rank-of carrier

using LTR rank-of-eq-card-basis-in[of carrier X] basis-iff-basis-in by auto
ultimately show ?case by auto

next
case RTL
show ?case
proof (rule basisI)

show indep X using assms RTL indep-iff-rank-of by blast
next

fix x
assume x: x ∈ carrier − X
show ¬ indep (insert x X)
proof (rule ccontr , goal-cases False)

case False
then have card (insert x X) ≤ rank-of carrier

using assms x indep-inI rank-of-indep-in-le by auto
also have . . . = card X using RTL by auto
finally show ?case using finite-subset[OF assms carrier-finite] x by auto

qed
qed

qed

lemma circuit-iff-rank-of :
assumes X ⊆ carrier
shows circuit X ←→ X 6= {} ∧ (∀ x ∈ X . rank-of (X − {x}) = card (X − {x})
∧ card (X − {x}) = rank-of X)
proof (standard, goal-cases LTR RTL)

case LTR
then have X 6= {} using circuit-nonempty by auto
moreover have indep-remove:

∧
x. x ∈ X =⇒ rank-of (X − {x}) = card (X −

{x})

31

proof −
fix x
assume x ∈ X
then have indep (X − {x}) using circuit-min-dep[OF LTR] by auto
moreover have X − {x} ⊆ carrier using assms by auto
ultimately show rank-of (X − {x}) = card (X − {x}) using indep-iff-rank-of

by auto
qed
moreover have

∧
x. x ∈ X =⇒ rank-of (X − {x}) = rank-of X

proof −
fix x
assume ∗: x ∈ X
have rank-of X ≤ card X using assms rank-of-le by auto

moreover have rank-of X 6= card X using assms LTR circuitD indep-iff-rank-of [of
X] by auto

ultimately have rank-of X < card X by auto
then have rank-of X ≤ card (X − {x}) using ∗ finite-subset[OF assms]

carrier-finite by auto
also have . . . = rank-of (X − {x}) using indep-remove ‹x ∈ X› by auto
finally show rank-of (X − {x}) = rank-of X using assms rank-of-mono[of X

− {x} X] by auto
qed
ultimately show ?case by auto

next
case RTL
then have X 6= {}

and indep-remove:
∧

x. x ∈ X =⇒ rank-of (X − {x}) = card (X − {x})
and dep:

∧
x. x ∈ X =⇒ rank-of (X − {x}) = rank-of X

by auto
show ?case using assms
proof (rule circuitI)

obtain x where x: x ∈ X using ‹X 6= {}› by auto
then have rank-of X = card (X − {x}) using dep indep-remove by auto
also have . . . < card X using card-Diff1-less[OF finite-subset[OF assms car-

rier-finite] x] .
finally show ¬ indep X using indep-iff-rank-of [OF assms] by auto

next
fix x
assume x ∈ X

then show indep (X − {x}) using assms indep-remove[of x] indep-iff-rank-of [of
X − {x}]

by auto
qed

qed

context
fixes E
assumes ∗: E ⊆ carrier

begin

32

interpretation E : matroid E indep-in E
using ∗ by auto

lemma indep-in-iff-rank-of :
assumes X ⊆ E
shows indep-in E X ←→ rank-of X = card X
using assms E .indep-iff-rank-of rank-of-sub-cong[OF ∗ assms] by auto

lemma basis-in-iff-rank-of :
assumes X ⊆ E
shows basis-in E X ←→ rank-of X = card X ∧ rank-of X = rank-of E
using E .basis-iff-rank-of [OF assms] rank-of-sub-cong[OF ∗] assms
unfolding basis-in-def by auto

lemma circuit-in-iff-rank-of :
assumes X ⊆ E
shows circuit-in E X ←→ X 6= {} ∧ (∀ x ∈ X . rank-of (X − {x}) = card (X −
{x}) ∧ card (X − {x}) = rank-of X)
proof −

have circuit-in E X ←→ E .circuit X unfolding circuit-in-def ..
also have . . . ←→ X 6= {} ∧ (∀ x ∈ X . E .rank-of (X − {x}) = card (X − {x})
∧ card (X − {x}) = E .rank-of X)

using E .circuit-iff-rank-of [OF assms] .
also have . . . ←→ X 6= {} ∧ (∀ x ∈ X . rank-of (X − {x}) = card (X − {x}) ∧

card (X − {x}) = rank-of X)
proof −

{
fix x
have E .rank-of (X − {x}) = rank-of (X − {x}) E .rank-of X = rank-of X

using assms rank-of-sub-cong[OF ∗, of X − {x}] rank-of-sub-cong[OF ∗, of
X] by auto

then have E .rank-of (X − {x}) = card (X − {x}) ∧ card (X − {x}) =
E .rank-of X ←→ rank-of (X − {x}) = card (X − {x}) ∧ card (X − {x}) = rank-of
X

by auto
}
then show ?thesis

by (auto simp: simp del: card-Diff-insert)
qed
finally show ?thesis .

qed

end

2.5 Closure
definition cl :: ′a set ⇒ ′a set where

cl X ≡ {x ∈ carrier . rank-of (insert x X) = rank-of X}

33

lemma clI :
assumes x ∈ carrier
assumes rank-of (insert x X) = rank-of X
shows x ∈ cl X
unfolding cl-def using assms by auto

lemma cl-altdef :
assumes X ⊆ carrier
shows cl X =

⋃
{Y ∈ Pow carrier . X ⊆ Y ∧ rank-of Y = rank-of X}

proof −
{

fix x
assume ∗: x ∈ cl X
have x ∈

⋃
{Y ∈ Pow carrier . X ⊆ Y ∧ rank-of Y = rank-of X}

proof
show insert x X ∈ {Y ∈ Pow carrier . X ⊆ Y ∧ rank-of Y = rank-of X}

using assms ∗ unfolding cl-def by auto
qed auto

}
moreover {

fix x
assume ∗: x ∈

⋃
{Y ∈ Pow carrier . X ⊆ Y ∧ rank-of Y = rank-of X}

then obtain Y where Y : x ∈ Y Y ⊆ carrier X ⊆ Y rank-of Y = rank-of X
by auto

have rank-of (insert x X) = rank-of X
proof −

have rank-of (insert x X) ≤ rank-of X
proof −

have insert x X ⊆ Y using Y by auto
then show ?thesis using rank-of-mono[of insert x X Y] Y by auto

qed
moreover have rank-of X ≤ rank-of (insert x X) using Y by (auto intro:

rank-of-mono)
ultimately show ?thesis by auto

qed
then have x ∈ cl X using ∗ unfolding cl-def by auto

}
ultimately show ?thesis by blast

qed

lemma cl-rank-of : x ∈ cl X =⇒ rank-of (insert x X) = rank-of X
unfolding cl-def by auto

lemma cl-subset-carrier : cl X ⊆ carrier
unfolding cl-def by auto

lemmas clD = cl-rank-of cl-subset-carrier

34

lemma cl-subset:
assumes X ⊆ carrier
shows X ⊆ cl X
using assms using insert-absorb[of - X] by (auto intro!: clI)

lemma cl-mono:
assumes X ⊆ Y
assumes Y ⊆ carrier
shows cl X ⊆ cl Y

proof
fix x
assume x ∈ cl X
then have x ∈ carrier using cl-subset-carrier by auto

have insert x X ⊆ carrier
using assms ‹x ∈ cl X› cl-subset-carrier [of X] by auto

then interpret X-insert: matroid insert x X indep-in (insert x X) by auto

have insert x Y ⊆ carrier
using assms ‹x ∈ cl X› cl-subset-carrier [of X] by auto

then interpret Y-insert: matroid insert x Y indep-in (insert x Y) by auto

show x ∈ cl Y using ‹x ∈ carrier›
proof (rule clI , cases x ∈ X)

case True
then show rank-of (insert x Y) = rank-of Y using assms insert-absorb[of x

Y] by auto
next

case False
obtain BX where BX : basis-in X BX using assms basis-in-ex[of X] by auto

have basis-in (insert x X) BX

proof −
have rank-of BX = card BX ∧ rank-of BX = rank-of (insert x X)
proof −

have rank-of BX = card BX ∧ rank-of BX = rank-of X
using assms BX

basis-in-subset-carrier [where E = X and X = BX]
basis-in-iff-rank-of [where E = X and X = BX]

by blast
then show ?thesis using cl-rank-of [OF ‹x ∈ cl X›] by auto

qed
then show ?thesis
using assms basis-in-subset-carrier [OF - BX] ‹x ∈ carrier› basis-in-iff-rank-of [of

insert x X BX]
by auto

qed

35

have indep-in (insert x Y) BX

using assms basis-in-indep-in[OF - BX] indep-in-subI-subset[of X insert x Y]
by auto

then obtain BY where BY : basis-in (insert x Y) BY BX ⊆ BY

using assms ‹x ∈ carrier› indep-in-iff-subset-basis-in[of insert x Y BX] by
auto

have basis-in Y BY

proof −
have x /∈ BY

proof (rule ccontr , goal-cases False)
case False
then have insert x BX ⊆ BY using ‹BX ⊆ BY › by auto
then have indep-in (insert x Y) (insert x BX)

using assms ‹x ∈ carrier›
BY basis-in-indep-in[where E = insert x Y and X = BY]
indep-in-subset[where E = insert x Y and X = BY and Y = insert x

BX]
by auto

then have indep-in (insert x X) (insert x BX)
using assms BX

basis-in-subset-carrier [where E = X and X = BX]
indep-in-supI [where E = insert x Y and E ′ = insert x X and X =

insert x BX]
by auto

moreover have x ∈ insert x X − BX

using assms ‹x /∈ X› BX basis-in-subset-carrier [where E = X and X =
BX] by auto

ultimately show ?case
using assms ‹x ∈ carrier› ‹basis-in (insert x X) BX›

basis-in-max-indep-in[where E = insert x X and X = BX and x = x]
by auto

qed
then show ?thesis
using assms ‹x ∈ carrier› BY basis-in-subset-carrier [of insert x Y BY]

basis-in-supI [where E = insert x Y and E ′ = Y and B = BY] by auto
qed

show rank-of (insert x Y) = rank-of Y
proof −

have rank-of (insert x Y) = card BY

using assms ‹x ∈ carrier› ‹basis-in (insert x Y) BY › basis-in-subset-carrier
using basis-in-iff-rank-of [where E = insert x Y and X = BY]
by auto

also have . . . = rank-of Y
using assms ‹x ∈ carrier› ‹basis-in Y BY › basis-in-subset-carrier
using basis-in-iff-rank-of [where E = Y and X = BY]
by auto

finally show ?thesis .

36

qed
qed

qed

lemma cl-insert-absorb:
assumes X ⊆ carrier
assumes x ∈ cl X
shows cl (insert x X) = cl X

proof
show cl (insert x X) ⊆ cl X
proof (standard, goal-cases elem)

case (elem y)
then have ∗: x ∈ carrier y ∈ carrier using assms cl-subset-carrier by auto

have rank-of (insert y X) = rank-of (insert y (insert x X))
proof −

have rank-of (insert y X) ≤ rank-of (insert y (insert x X))
using assms ∗ by (auto intro: rank-of-mono)

moreover have rank-of (insert y (insert x X)) = rank-of (insert y X)
proof −

have insert y (insert x X) = insert x (insert y X) by auto
then have rank-of (insert y (insert x X)) = rank-of (insert x (insert y X))

by auto
also have . . . = rank-of (insert y X)
proof −

have cl X ⊆ cl (insert y X) by (rule cl-mono) (auto simp add: assms ‹y
∈ carrier›)

then have x ∈ cl (insert y X) using assms by auto
then show ?thesis unfolding cl-def by auto

qed
finally show ?thesis .

qed
ultimately show ?thesis by auto

qed
also have . . . = rank-of (insert x X) using elem using cl-rank-of by auto
also have . . . = rank-of X using assms cl-rank-of by auto
finally show y ∈ cl X using ∗ by (auto intro: clI)

qed
next

have insert x X ⊆ carrier using assms cl-subset-carrier by auto
moreover have X ⊆ insert x X using assms by auto
ultimately show cl X ⊆ cl (insert x X) using assms cl-subset-carrier cl-mono

by auto
qed

lemma cl-cl-absorb:
assumes X ⊆ carrier
shows cl (cl X) = cl X

proof

37

show cl (cl X) ⊆ cl X
proof (standard, goal-cases elem)

case (elem x)
then have x ∈ carrier using cl-subset-carrier by auto
then show ?case
proof (rule clI)

have rank-of (insert x X) ≥ rank-of X
using assms ‹x ∈ carrier› rank-of-mono[of X insert x X] by auto

moreover have rank-of (insert x X) ≤ rank-of X
proof −

have rank-of (insert x X) ≤ rank-of (insert x (cl X))
using assms ‹x ∈ carrier› cl-subset-carrier cl-subset[of X]

rank-of-mono[of insert x X insert x (cl X)] by auto
also have . . . = rank-of (cl X) using elem cl-rank-of by auto
also have . . . = rank-of (X ∪ (cl X − X))

using Diff-partition[OF cl-subset[OF assms]] by auto
also have . . . = rank-of X using ‹X ⊆ carrier›
proof (rule rank-of-Un-absorbI)

show cl X − X ⊆ carrier using assms cl-subset-carrier by auto
next

fix y
assume y ∈ cl X − X − X
then show rank-of (insert y X) = rank-of X unfolding cl-def by auto

qed
finally show ?thesis .

qed
ultimately show rank-of (insert x X) = rank-of X by auto

qed
qed

next
show cl X ⊆ cl (cl X) using cl-subset[OF cl-subset-carrier] by auto

qed

lemma cl-augment:
assumes X ⊆ carrier
assumes x ∈ carrier
assumes y ∈ cl (insert x X) − cl X
shows x ∈ cl (insert y X)
using ‹x ∈ carrier›

proof (rule clI)
have rank-of (insert y X) ≤ rank-of (insert x (insert y X))

using assms cl-subset-carrier by (auto intro: rank-of-mono)
moreover have rank-of (insert x (insert y X)) ≤ rank-of (insert y X)
proof −

have rank-of (insert x (insert y X)) = rank-of (insert y (insert x X))
proof −

have insert x (insert y X) = insert y (insert x X) by auto
then show ?thesis by auto

qed

38

also have rank-of (insert y (insert x X)) = rank-of (insert x X)
using assms cl-def by auto

also have . . . ≤ Suc (rank-of X)
using assms cl-subset-carrier by (auto intro: rank-of-insert-le)

also have . . . = rank-of (insert y X)
proof −

have rank-of (insert y X) ≤ Suc (rank-of X)
using assms cl-subset-carrier by (auto intro: rank-of-insert-le)

moreover have rank-of (insert y X) 6= rank-of X
using assms cl-def by auto

moreover have rank-of X ≤ rank-of (insert y X)
using assms cl-subset-carrier by (auto intro: rank-of-mono)

ultimately show ?thesis by auto
qed
finally show ?thesis .

qed
ultimately show rank-of (insert x (insert y X)) = rank-of (insert y X) by auto

qed

lemma clI-insert:
assumes x ∈ carrier
assumes indep X
assumes ¬ indep (insert x X)
shows x ∈ cl X
using ‹x ∈ carrier›

proof (rule clI)
have ∗: X ⊆ carrier using assms indep-subset-carrier by auto
then have ∗∗: insert x X ⊆ carrier using assms by auto

have indep-in (insert x X) X using assms by (auto intro: indep-inI)
then obtain B where B: basis-in (insert x X) B X ⊆ B

using assms indep-in-iff-subset-basis-in[OF ∗∗] by auto
have x /∈ B
proof (rule ccontr , goal-cases False)

case False
then have indep-in (insert x X) (insert x X)

using B indep-in-subset[OF ∗∗ basis-in-indep-in[OF ∗∗]] by auto
then show ?case using assms indep-in-indep by auto

qed

have basis-in X B using ∗
proof (rule basis-inI , goal-cases indep max-indep)

case indep
show ?case
proof (rule indep-in-supI [where E = insert x X])

show B ⊆ X using B basis-in-subset-carrier [OF ∗∗] ‹x /∈ B› by auto
next

show indep-in (insert x X) B using basis-in-indep-in[OF ∗∗ B(1)] .
qed auto

39

next
case (max-indep y)
then have ¬ indep-in (insert x X) (insert y B)

using B basis-in-max-indep-in[OF ∗∗] by auto
then show ?case by (auto intro: indep-in-subI-subset)

qed
then show rank-of (insert x X) = rank-of X

using B rank-of-eq-card-basis-in[OF ∗] rank-of-eq-card-basis-in[OF ∗∗] by auto
qed

lemma indep-in-carrier [simp]: indep-in carrier = indep
using indep-subset-carrier by (auto simp: indep-in-def fun-eq-iff)

context
fixes I
defines I ≡ (λX . X ⊆ carrier ∧ (∀ x∈X . x /∈ cl (X − {x})))

begin

lemma I-mono: I Y if Y ⊆ X I X for X Y :: ′a set
proof −

have ∀ x∈Y . x /∈ cl (Y − {x})
proof (intro ballI)

fix x assume x: x ∈ Y
with that have cl (Y − {x}) ⊆ cl (X − {x})

by (intro cl-mono) (auto simp: I-def)
with that and x show x /∈ cl (Y − {x}) by (auto simp: I-def)

qed
with that show ?thesis by (auto simp: I-def)

qed

lemma clI ′:
assumes I X x ∈ carrier ¬I (insert x X)
shows x ∈ cl X

proof −
from assms have x: x /∈ X by (auto simp: insert-absorb)
from assms obtain y where y: y ∈ insert x X y ∈ cl (insert x X − {y})

by (force simp: I-def)
show x ∈ cl X
proof (cases x = y)

case True
thus ?thesis using assms x y by (auto simp: I-def)

next
case False
have y ∈ cl (insert x X − {y}) by fact
also from False have insert x X − {y} = insert x (X − {y}) by auto
finally have y ∈ cl (insert x (X − {y})) − cl (X − {y})

using assms False y unfolding I-def by blast
hence x ∈ cl (insert y (X − {y}))

using cl-augment[of X − {y} x y] assms False y by (auto simp: I-def)

40

also from y and False have insert y (X − {y}) = X by auto
finally show ?thesis .

qed
qed

lemma matroid-I : matroid carrier I
proof (unfold-locales, goal-cases)

show finite carrier by (rule carrier-finite)
next

case (4 X Y)
have ∀ x∈Y . x /∈ cl (Y − {x})
proof (intro ballI)

fix x assume x: x ∈ Y
with 4 have cl (Y − {x}) ⊆ cl (X − {x})

by (intro cl-mono) (auto simp: I-def)
with 4 and x show x /∈ cl (Y − {x}) by (auto simp: I-def)

qed
with 4 show ?case by (auto simp: I-def)

next
case (5 X Y)
have ∼(∃X Y . I X ∧ I Y ∧ card X < card Y ∧ (∀ x∈Y−X . ¬I (insert x X)))
proof

assume ∗: ∃X Y . I X ∧ I Y ∧ card X < card Y ∧ (∀ x∈Y−X . ¬I (insert x
X)) (is ∃X Y . ?P X Y)

define n where n = Max ((λ(X , Y). card (X ∩ Y)) ‘ {(X , Y). ?P X Y })
have {(X , Y). ?P X Y } ⊆ Pow carrier × Pow carrier

by (auto simp: I-def)
hence finite: finite {(X , Y). ?P X Y }

by (rule finite-subset) (insert carrier-finite, auto)
hence n ∈ ((λ(X , Y). card (X ∩ Y)) ‘ {(X , Y). ?P X Y })

unfolding n-def using ∗ by (intro Max-in finite-imageI) auto
then obtain X Y where XY : ?P X Y n = card (X ∩ Y)

by auto
hence finite ′: finite X finite Y

using finite-subset[OF - carrier-finite] XY by (auto simp: I-def)
from XY finite ′ have ∼(Y ⊆ X)

using card-mono[of X Y] by auto
then obtain y where y: y ∈ Y − X by blast

have False
proof (cases X ⊆ cl (Y − {y}))

case True
from y XY have [simp]: y ∈ carrier by (auto simp: I-def)
assume X ⊆ cl (Y − {y})
hence cl X ⊆ cl (cl (Y − {y}))

by (intro cl-mono cl-subset-carrier)
also have . . . = cl (Y − {y})

using XY by (intro cl-cl-absorb) (auto simp: I-def)

41

finally have cl X ⊆ cl (Y − {y}) .
moreover have y /∈ cl (Y − {y})

using y I-def XY (1) by blast
ultimately have y /∈ cl X by blast
thus False unfolding I-def

using XY y clI ′ ‹y ∈ carrier› by blast
next

case False
with y XY have [simp]: y ∈ carrier by (auto simp: I-def)
assume ¬(X ⊆ cl (Y − {y}))
then obtain t where t: t ∈ X t /∈ cl (Y − {y})

by auto
with XY have [simp]: t ∈ carrier by (auto simp: I-def)

have t ∈ X − Y
using t y clI [of t Y − {y}] by (cases t = y) (auto simp: insert-absorb)

moreover have I (Y − {y}) using XY (1) I-mono[of Y − {y} Y] by blast
ultimately have ∗: I (insert t (Y − {y}))

using clI ′[of Y − {y} t] t by auto

from XY have finite Y
by (intro finite-subset[OF - carrier-finite]) (auto simp: I-def)

moreover from y have Y 6= {} by auto
ultimately have [simp]: card (insert t (Y − {y})) = card Y using ‹t ∈ X

− Y › y
by (simp add: Suc-diff-Suc card-gt-0-iff)

have ∃ x∈Y − X . I (insert x X)
proof (rule ccontr)

assume ¬?thesis
hence ?P X (insert t (Y − {y})) using XY ∗ ‹t ∈ X − Y ›

by auto
hence card (X ∩ insert t (Y − {y})) ≤ n

unfolding n-def using finite by (intro Max-ge) auto
also have X ∩ insert t (Y − {y}) = insert t ((X ∩ Y) − {y})

using y ‹t ∈ X − Y › by blast
also have card . . . = Suc (card (X ∩ Y))

using y ‹t ∈ X − Y › ‹finite Y › by (simp add: card.insert-remove)
finally show False using XY by simp

qed
with XY show False by blast

qed
thus False .

qed
with 5 show ?case by auto

qed (auto simp: I-def)

end

42

definition cl-in where cl-in E X = matroid.cl E (indep-in E) X

lemma cl-eq-cl-in:
assumes X ⊆ carrier
shows cl X = cl-in carrier X

proof −
interpret E : matroid carrier indep-in carrier

by (intro matroid-subset) auto
have cl X = {x ∈ carrier . rank-of (insert x X) = rank-of X}

unfolding cl-def by auto
also have . . . = {x ∈ carrier . E .rank-of (insert x X) = E .rank-of X}

using rank-of-sub-cong[of carrier] assms by auto
also have . . . = cl-in carrier X

unfolding cl-in-def E .cl-def by auto
finally show ?thesis .

qed

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : matroid E indep-in E
using ∗ by auto

lemma cl-inI-aux: x ∈ E .cl X =⇒ x ∈ cl-in E X
unfolding cl-in-def by auto

lemma cl-inD-aux: x ∈ cl-in E X =⇒ x ∈ E .cl X
unfolding cl-in-def by auto

lemma cl-inI :
assumes X ⊆ E
assumes x ∈ E
assumes rank-of (insert x X) = rank-of X
shows x ∈ cl-in E X

proof −
have E .rank-of (insert x X) = rank-of (insert x X) E .rank-of X = rank-of X

using assms rank-of-sub-cong[OF ∗] by auto
then show ?thesis unfolding cl-in-def using assms by (auto intro: E .clI)

qed

lemma cl-in-altdef :
assumes X ⊆ E
shows cl-in E X =

⋃
{Y ∈ Pow E . X ⊆ Y ∧ rank-of Y = rank-of X}

unfolding cl-in-def
proof (safe, goal-cases LTR RTL)

case (LTR x)
then have x ∈

⋃
{Y ∈ Pow E . X ⊆ Y ∧ E .rank-of Y = E .rank-of X}

43

using E .cl-altdef [OF assms] by auto
then obtain Y where Y : x ∈ Y Y ∈ Pow E X ⊆ Y E .rank-of Y = E .rank-of

X by auto
then show ?case using rank-of-sub-cong[OF ∗] by auto

next
case (RTL x Y)
then have x ∈

⋃
{Y ∈ Pow E . X ⊆ Y ∧ E .rank-of Y = E .rank-of X}

using rank-of-sub-cong[OF ∗, of X] rank-of-sub-cong[OF ∗, of Y] by auto
then show ?case using E .cl-altdef [OF assms] by auto

qed

lemma cl-in-subset-carrier : cl-in E X ⊆ E
using E .cl-subset-carrier unfolding cl-in-def .

lemma cl-in-rank-of :
assumes X ⊆ E
assumes x ∈ cl-in E X
shows rank-of (insert x X) = rank-of X

proof −
have E .rank-of (insert x X) = E .rank-of X

using assms E .cl-rank-of unfolding cl-in-def by auto
moreover have E .rank-of (insert x X) = rank-of (insert x X)

using assms rank-of-sub-cong[OF ∗, of insert x X] cl-in-subset-carrier by auto
moreover have E .rank-of X = rank-of X

using assms rank-of-sub-cong[OF ∗] by auto
ultimately show ?thesis by auto

qed

lemmas cl-inD = cl-in-rank-of cl-in-subset-carrier

lemma cl-in-subset:
assumes X ⊆ E
shows X ⊆ cl-in E X
using E .cl-subset[OF assms] unfolding cl-in-def .

lemma cl-in-mono:
assumes X ⊆ Y
assumes Y ⊆ E
shows cl-in E X ⊆ cl-in E Y
using E .cl-mono[OF assms] unfolding cl-in-def .

lemma cl-in-insert-absorb:
assumes X ⊆ E
assumes x ∈ cl-in E X
shows cl-in E (insert x X) = cl-in E X
using assms E .cl-insert-absorb unfolding cl-in-def by auto

lemma cl-in-augment:
assumes X ⊆ E

44

assumes x ∈ E
assumes y ∈ cl-in E (insert x X) − cl-in E X
shows x ∈ cl-in E (insert y X)
using assms E .cl-augment unfolding cl-in-def by auto

lemmas cl-inI-insert = cl-inI-aux[OF E .clI-insert]

end

lemma cl-in-subI :
assumes X ⊆ E ′ E ′ ⊆ E E ⊆ carrier
shows cl-in E ′ X ⊆ cl-in E X

proof (safe, goal-cases elem)
case (elem x)
then have x ∈ E ′ rank-of (insert x X) = rank-of X

using assms cl-inD[where E = E ′ and X = X] by auto
then show x ∈ cl-in E X using assms by (auto intro: cl-inI)

qed

context
fixes E
assumes ∗: E ⊆ carrier

begin

interpretation E : matroid E indep-in E
using ∗ by auto

lemma cl-in-sub-cong:
assumes X ⊆ E ′ E ′ ⊆ E
shows E .cl-in E ′ X = cl-in E ′ X

proof (safe, goal-cases LTR RTL)
case (LTR x)
then have x ∈ E ′ E .rank-of (insert x X) = E .rank-of X

using assms
E .cl-in-rank-of [where E = E ′ and X = X and x = x]
E .cl-in-subset-carrier [where E = E ′]

by auto
moreover have E .rank-of X = rank-of X

using assms rank-of-sub-cong[OF ∗] by auto
moreover have E .rank-of (insert x X) = rank-of (insert x X)

using assms rank-of-sub-cong[OF ∗, of insert x X] ‹x ∈ E ′› by auto
ultimately show ?case using assms ∗ by (auto intro: cl-inI)

next
case (RTL x)
then have x ∈ E ′ rank-of (insert x X) = rank-of X

using ∗ assms cl-inD[where E = E ′ and X = X] by auto
moreover have E .rank-of X = rank-of X

using assms rank-of-sub-cong[OF ∗] by auto
moreover have E .rank-of (insert x X) = rank-of (insert x X)

45

using assms rank-of-sub-cong[OF ∗, of insert x X] ‹x ∈ E ′› by auto
ultimately show ?case using assms by (auto intro: E .cl-inI)

qed

end
end
end

References

[1] J. Oxley. What is a matroid?, 2003.

46

	Independence systems
	Sub-independence systems
	Bases
	Circuits
	Relation between independence and bases
	Relation between dependence and circuits
	Ranks

	Matroids
	Minors
	Bases
	Circuits
	Ranks
	Closure

