
Tensor Product of Matrices

T.V.H. Prathamesh

March 17, 2025

Abstract

In this work, the Kronecker tensor product of matrices and the
proofs of some of its properties are formalized. Properties which have
been formalized include associativity of the tensor product and the
mixed-product property. This formalization of tensor product of ma-
trices relies on the formalization of matrices by Christian Sternagel
and Rene Thiemann under the title ‘Executable Matrix Operations on
Matrices of Arbitrary Dimensions’.

Contents
1 Tensor Product of Matrices 1

1.1 Defining the Tensor Product . . . . . . . . . . . . . . . . . . . 1
1.2 Associativity and Distributive properties . . . . . . . . . . . . 59

We define Tensor Product of Matrics and prove properties such as associa-
tivity and mixed product property(distributivity) of the tensor product.

1 Tensor Product of Matrices
theory Matrix-Tensor
imports Matrix.Utility Matrix.Matrix-Legacy
begin

1.1 Defining the Tensor Product

We define a multiplicative locale here - mult, where the multiplication sat-
isfies commutativity, associativity and contains a left and right identity
locale mult =
fixes id:: ′a
fixes f :: ′a ⇒ ′a ⇒ ′a (infixl ‹∗› 60 )
assumes comm: f a b = f b a
assumes assoc: (f (f a b) c) = (f a (f b c))
assumes left-id: f id x = x
assumes right-id:f x id = x

1



context mult
begin

times a v , gives us the product of the vector v with multiplied pointwise
with a
primrec times:: ′a ⇒ ′a vec ⇒ ′a vec
where
times n [] = []|
times n (y#ys) = (f n y)#(times n ys)

lemma times-scalar-id: times id v = v
by(induction v)(auto simp add:left-id)

lemma times-vector-id: times v [id] = [v]
by(simp add:right-id)

lemma preserving-length: length (times n y) = (length y)
by(induction y)(auto)

vec_vec_Tensor is the tensor product of two vectors. It is illustrated by the
following relation
vec_vec_Tensor(v1, v2, ...vn)(w1, w2, ...wm) = (v1 · w1, ..., v1 · wm, ..., vn ·
w1, ..., vn · wm)

primrec vec-vec-Tensor :: ′a vec ⇒ ′a vec ⇒ ′a vec
where
vec-vec-Tensor [] ys = []|
vec-vec-Tensor (x#xs) ys = (times x ys)@(vec-vec-Tensor xs ys)

lemma vec-vec-Tensor-left-id: vec-vec-Tensor [id] v = v
by(induction v)(auto simp add:left-id)

lemma vec-vec-Tensor-right-id: vec-vec-Tensor v [id] = v
by(induction v)(auto simp add:right-id)

theorem vec-vec-Tensor-length :
(length(vec-vec-Tensor x y)) = (length x)∗(length y)
by(induction x)(auto simp add: preserving-length)

theorem vec-length: assumes vec m x and vec n y
shows vec (m∗n) (vec-vec-Tensor x y)
apply(simp add:vec-def )
apply(simp add:vec-vec-Tensor-length)
apply (metis assms(1 ) assms(2 ) vec-def )
done

vec_mat_Tensor is the tensor product of two vectors. It is illusstrated by
the following relation

2



vec_mat_Tensor (v1, v2, ...vn)(C1, C2, ...Cm) = (v1 · C1, ..., vn · C1, ..., v1 ·
Cm, ..., vn · Cm)
primrec vec-mat-Tensor :: ′a vec ⇒ ′a mat ⇒ ′a mat
where
vec-mat-Tensor xs [] = []|
vec-mat-Tensor xs (ys#yss) = (vec-vec-Tensor xs ys)#(vec-mat-Tensor xs yss)

lemma vec-mat-Tensor-vector-id: vec-mat-Tensor [id] v = v
by(induction v)(auto simp add: times-scalar-id)

lemma vec-mat-Tensor-matrix-id: vec-mat-Tensor v [[id]] = [v]
by(induction v)(auto simp add: right-id)

theorem vec-mat-Tensor-length:
length(vec-mat-Tensor xs ys) = length ys
by(induction ys)(auto)

theorem length-matrix:
assumes mat nr nc (y#ys) and length v = k

and (vec-mat-Tensor v (y#ys) = x#xs)
shows (vec (nr∗k) x)

proof−
have vec-mat-Tensor v (y#ys) = (vec-vec-Tensor v y)#(vec-mat-Tensor v ys)

using vec-mat-Tensor-def assms by auto
also have (vec-vec-Tensor v y) = x using assms by auto
also have length y = nr using assms mat-def

by (metis in-set-member member-rec(1 ) vec-def )
from this

have length (vec-vec-Tensor v y) = nr∗k
using assms vec-vec-Tensor-length by auto

from this
have length x = nr∗k by (simp add: ‹vec-vec-Tensor v y = x›)

from this
have vec (nr∗k) x using vec-def by auto

from this
show ?thesis by auto

qed

lemma matrix-set-list:
assumes mat nr nc M

and length v = k
and x ∈ set M

shows ∃ ys.∃ zs.(ys@x#zs = M )
using assms set-def in-set-conv-decomp by metis

primrec reduct :: ′a mat ⇒ ′a mat
where
reduct [] = []

3



|reduct (x#xs) = xs

lemma length-reduct:
assumes m 6= []
shows length (reduct m) +1 = (length m)
apply(auto)
by (metis One-nat-def Suc-eq-plus1 assms list.size(4 ) neq-Nil-conv reduct.simps(2 ))

lemma mat-empty-column-length: assumes mat nr nc M and M = []
shows nc = 0
proof−
have (length M = nc) using mat-def assms by metis
from this

have nc = 0 using assms by auto
from this

show ?thesis by simp
qed

lemma vec-uniqueness:
assumes vec m v

and vec n v
shows m = n
using vec-def assms(1 ) assms(2 ) by metis

lemma mat-uniqueness:
assumes mat nr1 nc M
and mat nr2 nc M and z = hd M and M 6= []
shows (∀ x∈(set M ).(nr1 = nr2 ))

proof−
have A:z ∈ set M using assms(1 ) assms(3 ) assms(4 ) set-def mat-def

by (metis hd-in-set)
have Ball (set M ) (vec nr1 ) using mat-def assms(1 ) by auto
then have step1 : ((x ∈ (set M )) −→ (vec nr1 x)) using Ball-def assms by auto
have Ball (set M ) (vec nr2 ) using mat-def assms(2 ) by auto
then have step2 : ((x ∈ (set M )) −→ (vec nr2 x)) using Ball-def assms by auto
from step1 and step2

have step3 :∀ x.((x ∈ (set M ))−→ ((vec nr1 x)∧ (vec nr2 x)))
by (metis ‹Ball (set M ) (vec nr1 )› ‹Ball (set M ) (vec nr2 )›)

have ((vec nr1 x)∧ (vec nr2 x)) −→ (nr1 = nr2 ) using vec-uniqueness by auto
with step3

have (∀ x.((x ∈ (set M )) −→((nr1 = nr2 )))) by (metis vec-uniqueness)
then

have (∀ x∈(set M ).(nr1 = nr2 )) by auto
then

show ?thesis by auto
qed

lemma mat-empty-row-length: assumes mat nr nc M and M = []

4



shows mat 0 nc M
proof−
have set M = {} using mat-def assms empty-set by auto
then have Ball (set M ) (vec 0 ) using Ball-def by auto
then have mat 0 nc M using mat-def assms(1 ) assms(2 ) gen-length-code(1 )

length-code
by (metis (full-types) )
then show ?thesis by auto

qed

abbreviation null-matrix:: ′a list list
where
null-matrix ≡ [Nil]

lemma null-mat:null-matrix = [[]]
by auto

lemma zero-matrix: mat 0 0 [] using mat-def in-set-insert insert-Nil list.size(3 )
not-Cons-self2
by (metis (full-types))

row_length gives the length of the first row of a matrix. For a ‘valid’ matrix,
it is equal to the number of rows
definition row-length:: ′a mat ⇒ nat
where
row-length xs ≡ if (xs = []) then 0 else (length (hd xs))

lemma row-length-Nil:
row-length [] =0
using row-length-def by (metis )

lemma row-length-Null:
row-length [[]] =0
using row-length-def by auto

lemma row-length-vect-mat:
row-length (vec-mat-Tensor v m) = length v∗(row-length m)

proof(induct m)
case Nil
have row-length [] = 0

using row-length-Nil by simp
moreover have vec-mat-Tensor v [] = []

using vec-mat-Tensor .simps(1 ) by auto
ultimately have
row-length (vec-mat-Tensor v []) = length v∗(row-length [])

using mult-0-right by (metis )
then show ?case by metis

next
fix a m

5



assume A:row-length (vec-mat-Tensor v m) = length v ∗ row-length m
let ?case =

row-length (vec-mat-Tensor v (a#m)) = (length v)∗(row-length (a#m))
have A:row-length (a # m) = length a

using row-length-def list.distinct(1 )
by auto

have (vec-mat-Tensor v (a#m)) = (vec-vec-Tensor v a)#(vec-mat-Tensor v m)

using vec-mat-Tensor-def vec-mat-Tensor .simps(2 )
by auto

from this have
row-length (vec-mat-Tensor v (a#m)) = length (vec-vec-Tensor v a)

using row-length-def list.distinct(1 ) vec-mat-Tensor .simps(2 )
by auto

from this and vec-vec-Tensor-length have
row-length (vec-mat-Tensor v (a#m)) = (length v)∗(length a)

by auto
from this and A have

row-length (vec-mat-Tensor v (a#m)) = (length v)∗(row-length (a#m))
by auto

from this show ?case by auto
qed

Tensor is the tensor product of matrices
primrec Tensor :: ′a mat ⇒ ′a mat ⇒ ′a mat (infixl ‹⊗› 63 )
where
Tensor [] xs = []|
Tensor (x#xs) ys = (vec-mat-Tensor x ys)@(Tensor xs ys)

lemma Tensor-null: xs ⊗[] = []
by(induction xs)(auto)

Tensor commutes with left and right identity
lemma Tensor-left-id: [[id]] ⊗ xs = xs
by(induction xs)(auto simp add:times-scalar-id)

lemma Tensor-right-id: xs ⊗ [[id]] = xs
by(induction xs)(auto simp add: vec-vec-Tensor-right-id)

row_length of tensor product of matrices is the product of their respective
row lengths
lemma row-length-mat:

(row-length (m1⊗m2 )) = (row-length m1 )∗(row-length m2 )
proof(induct m1 )
case Nil
have row-length ([]⊗m2 ) = 0

using Tensor .simps(1 ) row-length-def
by metis

from this

6



have row-length ([]⊗m2 ) = (row-length [])∗(row-length m2 )
using row-length-Nil
by auto

then show ?case by metis
next
fix a m1
assume row-length (m1 ⊗ m2 ) = row-length m1 ∗ row-length m2
let ?case =

row-length ((a # m1 ) ⊗ m2 ) = row-length (a # m1 ) ∗ row-length m2
have B: row-length (a#m1 ) = length a

using row-length-def list.distinct(1 )
by auto

have row-length ((a # m1 ) ⊗ m2 ) = row-length (a # m1 ) ∗ row-length m2
proof(induct m2 )
case Nil

show ?case using Tensor-null row-length-def mult-0-right by (metis)
next
fix aa m2
assume row-length (a # m1 ⊗ m2 ) = row-length (a # m1 ) ∗ row-length m2
let ?case=
row-length (a # m1 ⊗ aa # m2 )

= row-length (a # m1 ) ∗ row-length (aa # m2 )
have aa#m2 6= []

by auto
from this have non-zero:(vec-mat-Tensor a (aa#m2 )) 6= []

using vec-mat-Tensor-def by auto
from this have

hd ((vec-mat-Tensor a (aa#m2 ))@(m1⊗m2 ))
= hd (vec-mat-Tensor a (aa#m2 ))

by auto
from this have

hd ((a#m1 )⊗(aa#m2 )) = hd (vec-mat-Tensor a (aa#m2 ))
using Tensor .simps(2 ) by auto

from this have s1 : row-length ((a#m1 )⊗(aa#m2 ))
= row-length (vec-mat-Tensor a (aa#m2 ))

using row-length-def Nil-is-append-conv non-zero Tensor .simps(2 )
by auto

have row-length (vec-mat-Tensor a (aa#m2 ))
= (length a)∗row-length(aa#m2 )

using row-length-vect-mat by metis
from this and s1
have row-length (vec-mat-Tensor a (aa#m2 ))

= (length a)∗row-length(aa#m2 )
by auto

from this and B
have row-length (vec-mat-Tensor a (aa#m2 ))

= (row-length (a#m1 ))∗row-length(aa#m2 )
by auto

from this and s1 show ?case by auto

7



qed
from this show ?case by auto

qed

lemma hd-set:assumes x ∈ set (a#M ) shows (x = a) ∨ (x∈(set M ))
using set-def assms set-ConsD by auto

for every valid matrix can also be written in the following form
theorem matrix-row-length:
assumes mat nr nc M
shows mat (row-length M ) (length M ) M

proof(cases M )
case Nil
have row-length M= 0

using row-length-def by (metis Nil)
moreover have length M = 0

by (metis Nil list.size(3 ))
moreover have mat 0 0 M

using zero-matrix Nil by auto
ultimately show ?thesis

using mat-empty-row-length row-length-def mat-def by metis
next
case (Cons a N )
have 1 : mat nr nc (a#N )

using assms Cons by auto
from this have (x ∈ set (a #N )) −→ (x = a) ∨ (x ∈ (set N ))

using hd-set by auto
from this and 1 have 2 :vec nr a

using mat-def by (metis Ball-set-list-all list-all-simps(1 ))
have row-length (a#N ) = length a

using row-length-def Cons list.distinct(1 ) by auto
from this have vec (row-length (a#N )) a

using vec-def by auto
from this and 2 have 3 :(row-length M ) = nr

using vec-uniqueness Cons by auto
have nc = (length M )

using 1 and mat-def and assms by metis
with 3

have mat (row-length M ) (length M ) M
using assms by auto

from this show ?thesis by auto
qed

lemma reduct-matrix:
assumes mat (row-length (a#M )) (length (a#M )) (a#M )
shows mat (row-length M ) (length M ) M

proof(cases M )

8



case Nil
show ?thesis

using row-length-def zero-matrix Nil list.size(3 ) by (metis)
next
case (Cons b N )
fix x
have 1 : b ∈ (set M )

using set-def Cons ListMem-iff elem by auto
have mat (row-length (a#M )) (length (a#M )) (a#M )

using assms by auto
then have (x ∈ (set (a#M ))) −→ ((x = a) ∨ (x ∈ set M ))

by auto
then have (x ∈ (set (a#M ))) −→ (vec (row-length (a#M )) x)

using mat-def Ball-def assms
by metis

then have (x ∈ (set (a#M ))) −→ (vec (length a) x)
using row-length-def list.distinct(1 )
by auto

then have 2 :x ∈ (set M ) −→ (vec (length a) x)
by auto

with 1 have 3 :(vec (length a) b)
using assms in-set-member mat-def member-rec(1 ) vec-def
by metis

have 5 : (vec (length b) b)
using vec-def by auto

with 3 have (length a) = (length b)
using vec-uniqueness by auto

with 2 have 4 : x ∈ (set M ) −→ (vec (length b) x)
by auto

have 6 : row-length M = (length b)
using row-length-def Cons list.distinct(1 )
by auto

with 4 have x ∈ (set M ) −→ (vec (row-length M ) x)
by auto

then have (∀ x. (x ∈ (set M ) −→ (vec (row-length M ) x)))
using Cons 5 6 assms in-set-member mat-def member-rec(1 )
vec-uniqueness
by metis

then have Ball (set M ) (vec (row-length M ))
using Ball-def by auto

then have (mat (row-length M ) (length M ) M )
using mat-def by auto

then show ?thesis by auto
qed

theorem well-defined-vec-mat-Tensor :
(mat (row-length M ) (length M ) M ) =⇒

(mat

9



((row-length M )∗(length v))
(length M )

(vec-mat-Tensor v M ))
proof(induct M )
case Nil
have (vec-mat-Tensor v []) = []

using vec-mat-Tensor .simps(1 ) Nil
by simp

moreover have (row-length [] = 0 )
using row-length-def Nil
by metis

moreover have (length []) = 0
using Nil by simp

ultimately have
mat ((row-length [])∗(length v)) (length []) (vec-mat-Tensor v [])

using zero-matrix by (metis mult-zero-left)
then show ?case by simp

next
fix a M
assume hyp :
(mat (row-length M ) (length M ) M

=⇒ mat (row-length M ∗ length v) (length M ) (vec-mat-Tensor v M ))
mat (row-length (a#M )) (length (a#M )) (a#M )

let ?case =
mat (row-length (a#M ) ∗ length v) (length (a#M )) (vec-mat-Tensor v (a#M ))

have step1 : mat (row-length M ) (length M ) M
using hyp(2 ) reduct-matrix by auto

then have step2 :
mat (row-length M ∗ length v) (length M ) (vec-mat-Tensor v M )

using hyp(1 ) by auto
have
mat

(row-length (a#M ) ∗ length v)
(length (a#M ))

(vec-mat-Tensor v (a#M ))
proof (cases M )
case Nil
fix x
have 1 :(vec-mat-Tensor v (a#M )) = [vec-vec-Tensor v a]

using vec-mat-Tensor .simps Nil by auto
have (x ∈ (set [vec-vec-Tensor v a])) −→ x = (vec-vec-Tensor v a)

using set-def by auto
then have 2 :

(x ∈ (set [vec-vec-Tensor v a]))
−→ (vec (length (vec-vec-Tensor v a)) x)

using vec-def by metis
have 3 :length (vec-vec-Tensor v a) = (length v)∗(length a)

using vec-vec-Tensor-length by auto
then have 4 :

10



length (vec-vec-Tensor v a) = (length v)∗(row-length (a#M ))
using row-length-def list.distinct(1 )
by auto

have 6 : length (vec-mat-Tensor v (a#M )) = (length (a#M ))
using vec-mat-Tensor-length by auto

hence mat (length (vec-vec-Tensor v a)) (length (a # M )) [vec-vec-Tensor v a]
by (simp add: Nil mat-def vec-def )

hence
mat (row-length (a#M ) ∗ length v)

(length (vec-mat-Tensor v (a#M )))
(vec-mat-Tensor v (a#M ))

using 1 4 6 by (simp add: mult.commute)
then show ?thesis using 6 by auto

next
case (Cons b L)
fix x
have 1 :x ∈ (set (a#M )) −→ ((x=a) ∨ (x ∈ (set M )))

using hd-set by auto
have mat (row-length (a#M )) (length (a#M )) (a#M )

using hyp by auto
then have x∈ (set (a#M )) −→ (vec (row-length (a#M )) x)

using mat-def Ball-def by metis
then have x∈ (set (a#M ))−→ (vec (length a) x)

using row-length-def list.distinct(1 )
by auto

with 1 have x∈ (set M )−→ (vec (length a) x)
by auto

moreover have b ∈ (set M )
using Cons by auto

ultimately have vec (length a) b
using hyp(2 ) in-set-member mat-def member-rec(1 ) vec-def by (metis)

then have (length b) = (length a)
using vec-def vec-uniqueness by auto

then have 2 :row-length M = (length a)
using row-length-def Cons list.distinct(1 ) by auto

have mat (row-length M ∗ length v) (length M ) (vec-mat-Tensor v M )
using step2 by auto

then have 3 :
Ball (set (vec-mat-Tensor v M )) (vec ((row-length M )∗(length v)))
using mat-def by auto

then have (x ∈ set (vec-mat-Tensor v M ))
−→ (vec ((row-length M )∗(length v)) x)

using mat-def Ball-def by auto
then have 4 :(x ∈ set (vec-mat-Tensor v M ))

−→ (vec ((length a)∗(length v)) x)
using 2 by auto

have 5 :length (vec-vec-Tensor v a) = (length a)∗(length v)
using vec-vec-Tensor-length by auto

then have 6 : vec ((length a)∗(length v)) (vec-vec-Tensor v a)

11



using vec-vec-Tensor-length vec-def by (metis (full-types))
have 7 :(length a) = (row-length (a#M ))

using row-length-def list.distinct(1 ) by auto
have vec-mat-Tensor v (a#M )

= (vec-vec-Tensor v a)#(vec-mat-Tensor v M )
using vec-mat-Tensor .simps(2 ) by auto

then have (x ∈ set (vec-mat-Tensor v (a#M )))
−→ ((x = (vec-vec-Tensor v a))

∨ (x ∈ (set (vec-mat-Tensor v M ))))
using hd-set by auto

with 4 6 have (x ∈ set (vec-mat-Tensor v (a#M )))
−→ vec ((length a)∗(length v)) x

by auto
with 7 have (x ∈ set (vec-mat-Tensor v (a#M )))

−→ vec ((row-length (a#M ))∗(length v)) x
by auto

then have ∀ x.((x ∈ set (vec-mat-Tensor v (a#M )))
−→ vec ((row-length (a#M ))∗(length v)) x)

using 2 3 6 7 hd-set vec-mat-Tensor .simps(2 ) by auto
then have 7 :

Ball
(set (vec-mat-Tensor v (a#M )))
(vec ((row-length (a#M ))∗(length v)))

using Ball-def by auto
have 8 : length (vec-mat-Tensor v (a#M )) = length (a#M )

using vec-mat-Tensor-length by auto
with 6 7 have

mat
((row-length (a#M ))∗(length v))
(length (a#M ))

(vec-mat-Tensor v (a#M ))
using mat-def 5 length-code
by (metis (opaque-lifting, no-types))

then show ?thesis by auto
qed
with hyp show ?case by auto

qed

The following theorem gives length of tensor product of two matrices
lemma length-Tensor : (length (M1⊗M2 )) = (length M1 )∗(length M2 )
proof(induct M1 )
case Nil
show ?case by auto

next
case (Cons a M1 )
have ((a # M1 ) ⊗ M2 ) = (vec-mat-Tensor a M2 )@(M1 ⊗ M2 )

using Tensor .simps(2 ) by auto
then have 1 :

length ((a # M1 ) ⊗ M2 ) = length ((vec-mat-Tensor a M2 )@(M1 ⊗ M2 ))

12



by auto
have 2 :length ((vec-mat-Tensor a M2 )@(M1 ⊗ M2 ))

= length (vec-mat-Tensor a M2 )+ length (M1 ⊗ M2 )
using append-def
by auto

have 3 :(length (vec-mat-Tensor a M2 )) = length M2
using vec-mat-Tensor-length by (auto)

have 4 :length (M1 ⊗ M2 ) = (length M1 )∗(length M2 )
using Cons.hyps by auto

with 2 3 have length ((vec-mat-Tensor a M2 )@(M1 ⊗ M2 ))
= (length M2 ) + (length M1 )∗(length M2 )

by auto
then have 5 :

length ((vec-mat-Tensor a M2 )@(M1 ⊗ M2 )) = (1 + (length M1 ))∗(length
M2 )

by auto
with 1 have length ((a # M1 ) ⊗ M2 ) = ((length (a # M1 )) ∗ (length M2 ))

by auto
then show ?case by auto

qed

lemma append-reduct-matrix:
(mat (row-length (M1@M2 )) (length (M1@M2 )) (M1@M2 ))
=⇒(mat (row-length M2 ) (length M2 ) M2 )
proof(induct M1 )
case Nil
show ?thesis using Nil append.simps(1 ) by auto

next
case (Cons a M1 )
have mat (row-length (M1 @ M2 )) (length (M1 @ M2 )) (M1 @ M2 )

using reduct-matrix Cons.prems append-Cons by metis
from this have (mat (row-length M2 ) (length M2 ) M2 )

using Cons.hyps by auto
from this show?thesis by simp

qed

The following theorem proves that tensor product of two valid matrices is a
valid matrix
theorem well-defined-Tensor :
(mat (row-length M1 ) (length M1 ) M1 )
∧ (mat (row-length M2 ) (length M2 ) M2 )
=⇒(mat ((row-length M1 )∗(row-length M2 )) ((length M1 )∗(length M2 )) (M1⊗M2 ))
proof(induct M1 )
case Nil

have (row-length []) ∗ (row-length M2 ) = 0
using row-length-def mult-zero-left by (metis)

moreover have (length []) ∗ (length M2 ) = 0

13



using mult-zero-left list.size(3 ) by auto
moreover have [] ⊗ M2 = []

using Tensor .simps(1 ) by auto
ultimately have

mat (row-length []∗row-length M2 ) (length []∗length M2 ) ([] ⊗ M2 )
using zero-matrix by metis

then show ?case by simp
next
case (Cons a M1 )
have step1 : mat (row-length (a # M1 )) (length (a # M1 )) (a # M1 )

using Cons.prems by auto
then have mat (row-length (M1 )) (length (M1 )) (M1 )

using reduct-matrix by auto
moreover have mat (row-length (M2 )) (length (M2 )) (M2 )

using Cons.prems by auto
ultimately have step2 :

mat (row-length M1 ∗ row-length M2 ) (length M1 ∗ length M2 ) (M1 ⊗ M2 )
using Cons.hyps by auto

have 0 :row-length (a#M1 ) = length a
using row-length-def list.distinct(1 ) by auto

have mat
(row-length (a # M1 )∗row-length M2 )
(length (a # M1 )∗length M2 )

(a # M1 ⊗ M2 )
proof(cases M1 )
case Nil
have (mat ((row-length M2 )∗(length a)) (length M2 ) (vec-mat-Tensor a M2 ))

using Cons.prems well-defined-vec-mat-Tensor by auto
moreover have (length (a # M1 )) ∗ (length M2 ) = length M2

using Nil by auto
moreover have (a#M1 )⊗M2 = (vec-mat-Tensor a M2 )

using Nil Tensor .simps append.simps(1 ) by auto
ultimately have

(mat
((row-length M2 )∗(row-length (a#M1 )))
((length (a # M1 )) ∗ (length M2 ))

((a#M1 )⊗M2 ))
using 0 by auto

then show ?thesis by (simp add: mult.commute)
next
case (Cons b N1 )
fix x
have 1 :x ∈ (set (a#M1 )) −→ ((x=a) ∨ (x ∈ (set M1 )))

using hd-set by auto
have mat (row-length (a#M1 )) (length (a#M1 )) (a#M1 )

using Cons.prems by auto
then have x∈ (set (a#M1 )) −→ (vec (row-length (a#M1 )) x)

using mat-def Ball-def by metis
then have x∈ (set (a#M1 ))−→ (vec (length a) x)

14



using row-length-def list.distinct(1 )
by auto

with 1 have x∈ (set M1 )−→ (vec (length a) x)
by auto

moreover have b ∈ (set M1 )
using Cons by auto

ultimately have vec (length a) b
using Cons.prems in-set-member mat-def member-rec(1 ) vec-def
by metis

then have (length b) = (length a)
using vec-def vec-uniqueness by auto

then have 2 :row-length M1 = (length a)
using row-length-def Cons by auto

then have mat
((length a) ∗ row-length M2 )
(length M1 ∗ length M2 )

(M1 ⊗ M2 )
using step2 by auto

then have Ball (set (M1⊗M2 )) (vec ((length a)∗(row-length M2 )))
using mat-def by auto

from this have 3 :
∀ x. x ∈ (set (M1 ⊗ M2 )) −→ (vec ((length a)∗(row-length M2 )) x)

using Ball-def by auto
have mat

((row-length M2 )∗(length a))
(length M2 )

(vec-mat-Tensor a M2 )
using well-defined-vec-mat-Tensor Cons.prems
by auto

then have Ball
(set (vec-mat-Tensor a M2 ))
(vec ((row-length M2 )∗(length a)))

using mat-def
by auto

then have 4 :
∀ x. x ∈ (set (vec-mat-Tensor a M2 ))

−→ (vec ((length a)∗(row-length M2 )) x)
using mult.commute by metis

with 3 have 5 : ∀ x. (x ∈ (set (vec-mat-Tensor a M2 )))
∨(x ∈ (set (M1 ⊗ M2 )))

−→ (vec ((length a)∗(row-length M2 )) x)
by auto

have 6 :(a # M1 ⊗ M2 ) = (vec-mat-Tensor a M2 )@(M1 ⊗M2 )
using Tensor .simps(2 ) by auto

then have x ∈ (set (a # M1 ⊗ M2 ))
−→ (x ∈ (set (vec-mat-Tensor a M2 )))∨(x ∈ (set (M1 ⊗ M2 )))
using set-def append-def by auto

with 5 have 7 :∀ x. (x ∈ (set (a # M1 ⊗ M2 )))

15



−→ (vec ((length a)∗(row-length M2 )) x)
by auto

then have 8 :
Ball (set (a # M1 ⊗ M2 )) (vec ((row-length (a#M1 ))∗(row-length M2 )))

using Ball-def 0 by auto
have (length ((a#M1 )⊗M2 )) = (length (a#M1 ))∗(length M2 )

using length-Tensor by metis
with 7 8

have mat
(row-length (a # M1 ) ∗ row-length M2 )
(length (a # M1 ) ∗ length M2 )

(a # M1 ⊗ M2 )
using mat-def by (metis 0 length-Tensor)

then show ?thesis by auto
qed

then show ?case by auto
qed

theorem effective-well-defined-Tensor :
assumes (mat (row-length M1 ) (length M1 ) M1 )

and (mat (row-length M2 ) (length M2 ) M2 )
shows mat

((row-length M1 )∗(row-length M2 ))
((length M1 )∗(length M2 ))

(M1⊗M2 )
using well-defined-Tensor assms by auto

definition natmod::nat ⇒ nat ⇒ nat (infixl ‹nmod› 50 )
where
natmod x y = nat ((int x) mod (int y))

theorem times-elements:
∀ i.((i<(length v)) −→ (times a v)!i = f a (v!i))
apply(rule allI )
proof(induct v)
case Nil
have (length [] = 0 )

by auto
then have i <(length []) =⇒ False

by auto
moreover have (times a []) = []

using times.simps(1 ) by auto
ultimately have (i<(length [])) −→ (times a [])!i = f a ([]!i)

by auto
then have ∀ i. ((i<(length [])) −→ (times a [])!i = f a ([]!i))

by auto
then show ?case by auto

next

16



case (Cons x xs)
have ∀ i.((x#xs)!(i+1 ) = (xs)!i)

by auto
have 0 :((i<length (x#xs))−→ ((i<(length xs)) ∨ (i = (length xs))))

by auto
have 1 : ((i<length xs) −→((times a xs)!i = f a (xs!i)))

by (metis Cons.hyps)
have ∀ i.((x#xs)!(i+1 ) = (xs)!i) by auto
have ((i <length (x#xs)) −→(times a (x#xs))!i = f a ((x#xs)!i))
proof(cases i)
case 0
have ((times a (x#xs))!i) = f a x

using 0 times.simps(2 ) by auto
then have (times a (x#xs))!i = f a ((x#xs)!i)

using 0 by auto
then show ?thesis by auto

next
case (Suc j)
have 1 :(times a (x#xs))!i = ((f a x)#(times a xs))!i

using times.simps(2 ) by auto
have 2 :((f a x)#(times a xs))!i = (times a xs)!j

using Suc by auto
have 3 :(i <length (x#xs)) −→ (j<length xs)

using One-nat-def Suc Suc-eq-plus1 list.size(4 ) not-less-eq
by metis

have 4 :(j<length xs) −→ ((times a xs)!j = (f a (xs!j)))
using 1 by (metis Cons.hyps)

have 5 :(x#xs)!i = (xs!j)
using Suc by (metis nth-Cons-Suc)

with 1 2 4 have (j<length xs)
−→ ((times a (x#xs))!i = (f a ((x#xs)!i)))

by auto
with 3 have (i <length (x#xs))

−→ ((times a (x#xs))!i = (f a ((x#xs)!i)))
by auto

then show ?thesis by auto
qed
then show ?case by auto

qed

lemma simpl-times-elements:
assumes (i<length xs)
shows ((i<(length v)) −→ (times a v)!i = f a (v!i))
using times-elements by auto

lemma append-simpl: i<(length xs) −→ (xs@ys)!i = (xs!i)
using nth-append by metis

17



lemma append-simpl2 : i ≥(length xs) −→ (xs@ys)!i = (ys!(i− (length xs)))
using nth-append less-asym leD by metis

lemma append-simpl3 :
assumes i > (length y)
shows (i <((length (z#zs))∗(length y)))

−→ (i − (length y))< (length zs)∗(length y)
proof−
have length (z#zs) = (length zs)+1

by auto
then have i <((length (z#zs))∗(length y))

−→ i <((length zs)+1 )∗(length y)
by auto

then have 1 : i <((length (z#zs))∗(length y))
−→ (i <((length zs)∗(length y)+ (length y)))

by auto
have i <((length zs)∗(length y)+ (length y))

= ((i − (length y)) <((length zs)∗(length y)))
using assms by auto

then have (i <((length (z#zs))∗(length y)))
−→ ((i − (length y)) <((length zs)∗(length y)))

by auto
then show ?thesis by auto

qed

lemma append-simpl4 :
(i > (length y))

−→ ((i <((length (z#zs))∗(length y))))
−→ ((i − (length y))< (length zs)∗(length y))

using append-simpl3 by auto

lemma vec-vec-Tensor-simpl:
i<(length y) −→ (vec-vec-Tensor (z#zs) y)!i = (times z y)!i

proof−
have a: vec-vec-Tensor (z#zs) y = (times z y)@(vec-vec-Tensor zs y)

by auto
have b: length (times z y) = (length y) using preserving-length by auto
have i<(length (times z y))

−→ ((times z y)@(vec-vec-Tensor zs y))!i = (times z y)!i
using append-simpl by metis

with b have i<(length y)
−→ ((times z y)@(vec-vec-Tensor zs y))!i = (times z y)!i

by auto
with a have i<(length y)

−→ (vec-vec-Tensor (z#zs) y)!i = (times z y)!i
by auto

then show ?thesis by auto
qed

18



lemma vec-vec-Tensor-simpl2 :
(i ≥ (length y))
−→ ((vec-vec-Tensor (z#zs) y)!i = (vec-vec-Tensor zs y)!(i− (length y)))

using vec-vec-Tensor .simps(2 ) append-simpl2 preserving-length
by metis

lemma division-product:
assumes (b::int)>0
and a ≥b
shows (a div b) = ((a − b) div b) + 1

proof−
fix c
have a −b ≥0

using assms(2 ) by auto
have 1 : a − b = a + (−1 )∗b

by auto
have (b 6= 0 ) −→ ((a + b ∗ (−1 )) div b = (−1 ) + a div b)

using div-mult-self2 by metis
with 1 assms(1 ) have ((a − b) div b) = (−1 ) + a div b

using less-int-code(1 ) by auto
then have (a div b) = ((a − b) div b) + 1

by auto
then show ?thesis

by auto
qed

lemma int-nat-div:
(int a) div (int b) = int ((a::nat) div b)

by (metis zdiv-int)

lemma int-nat-eq:
assumes int (a::nat) = int b
shows a = b
using assms of-nat-eq-iff by auto

lemma nat-div:
assumes (b::nat) > 0

and a > b
shows (a div b) = ((a − b) div b) + 1

proof−
fix x
have 1 :(int b)>0

using assms(1 ) division-product by auto
moreover have (int a)>(int b)

using assms(2 ) by auto
with 1 have 2 : ((int a) div (int b))

= (((int a) − (int b)) div (int b)) + 1
using division-product by auto

19



from int-nat-div have 3 : ((int a) div (int b)) = int ( a div b)
by auto

from int-nat-div assms(2 ) have 4 :
(((int a) − (int b)) div (int b)) = int ((a − b) div b)

by (metis (full-types) less-asym not-less of-nat-diff )
have (int x) + 1 = int (x +1 )

by auto
with 2 3 4 have int (a div b) = int (((a − b) div b) + 1 )

by auto
with int-nat-eq have (a div b) = ((a − b) div b) + 1

by auto
then show ?thesis by auto

qed

lemma mod-eq:
(m::int) mod n = (m + (−1 )∗n) mod n
using mod-mult-self1 by metis

lemma nat-mod-eq: int m mod int n = int (m mod n)
by (simp add: of-nat-mod)

lemma nat-mod:
assumes (m::nat) > n
shows (m::nat) mod n = (m −n) mod n
using assms mod-if not-less-iff-gr-or-eq by auto

lemma logic:
assumes A −→ B

and ¬A −→ B
shows B
using assms(1 ) assms(2 ) by auto

theorem vec-vec-Tensor-elements:
assumes (y 6= [])
shows
∀ i.((i<((length x)∗(length y)))

−→ ((vec-vec-Tensor x y)!i)
= f (x!(i div (length y))) (y!(i mod (length y))))

apply(rule allI )
proof(induct x)
case Nil
have (length [] = 0 )

by auto
also have length (vec-vec-Tensor [] y) = 0

using vec-vec-Tensor .simps(1 ) by auto
then have i <(length (vec-vec-Tensor [] y)) =⇒ False

by auto
moreover have (vec-vec-Tensor [] y) = []

by auto

20



moreover have
(i<(length (vec-vec-Tensor [] y))) −→
((vec-vec-Tensor x y)!i) = f (x!(i div (length y))) (y!(i mod (length y)))

by auto
then show ?case

by auto
next
case (Cons z zs)
have 1 :vec-vec-Tensor (z#zs) y = (times z y)@(vec-vec-Tensor zs y)

by auto
have 2 :i<(length y)−→((times z y)!i = f z (y!i))

using times-elements by auto
moreover have 3 :

i<(length y)
−→ (vec-vec-Tensor (z#zs) y)!i = (times z y)!i

using vec-vec-Tensor-simpl by auto
moreover have 35 :

i<(length y) −→ (vec-vec-Tensor (z#zs) y)!i = f z (y!i)
using calculation(1 ) calculation(2 ) by metis

have 4 :(y 6= []) −→ (length y) >0
by auto

have (i <(length y)) −→ ((i div (length y)) = 0 )
by auto

then have 6 :(i <(length y)) −→ (z#zs)!(i div (length y)) = z
using nth-Cons-0 by auto

then have 7 :(i <(length y)) −→ (i mod (length y)) = i
by auto

with 2 6
have (i < (length y))

−→ (times z y)!i
= f ((z#zs)!(i div (length y))) (y! (i mod (length y)))

by auto
with 3 have step1 :

((i < (length y))
−→ ((i<((length x)∗(length y))
−→ ((vec-vec-Tensor (z#zs) y)!i

= f
((z#zs)!(i div (length y)))
(y! (i mod (length y)))))))

by auto
have ((length y) ≤ i) −→ (i − (length y)) ≥ 0

by auto
have step2 :

((length y) < i)
−→ ((i < (length (z#zs)∗(length y)))
−→((vec-vec-Tensor (z#zs) y)!i)

= f
((z#zs)!(i div (length y)))
(y!(i mod (length y))))

21



proof−
have (length y)>0

using assms by auto
then have 1 :

(i > (length y))
−→(i div (length y)) = ((i−(length y)) div (length y)) + 1

using nat-div by auto
have zs!j = (z#zs)!(j+1 )

by auto
then have

(zs!((i − (length y)) div (length y)))
= (z#zs)!(((i − (length y)) div (length y))+1 )

by auto
with 1 have 2 :

(i > (length y))
−→ (zs!((i − (length y)) div (length y))

= (z#zs)!(i div (length y)))
by auto

have (i > (length y))
−→((i mod (length y))

= ((i − (length y)) mod (length y)))
using nat-mod by auto

then have 3 :
(i > (length y))

−→((y! (i mod (length y)))
= (y! ((i − (length y)) mod (length y))))

by auto
have 4 :(i > (length y))

−→(vec-vec-Tensor (z#zs) y)!i
= (vec-vec-Tensor zs y)!(i− (length y))

using vec-vec-Tensor-simpl2 by auto
have 5 : (i > (length y))

−→((i <((length (z#zs))∗(length y))))
= (i − (length y)< (length zs)∗(length y))

by auto
then have 6 :

∀ i.((i<((length zs)∗(length y)))
−→ ((vec-vec-Tensor zs y)!i)

= f
(zs!(i div (length y)))
(y!(i mod (length y))))

using Cons.hyps by auto
with 5 have (i > (length y))

−→ ((i<((length (z#zs))∗(length y)))
−→ ((vec-vec-Tensor zs y)!(i −(length y)))

= f
(zs!((i −(length y)) div (length y)))
(y!((i −(length y)) mod (length y))))
= ((i<((length zs)∗(length y)))

22



−→ ((vec-vec-Tensor zs y)!i)
= f

(zs!(i div (length y)))
(y!(i mod (length y))))

by auto
with 6 have

(i > (length y))
−→((i<((length (z#zs))∗(length y)))
−→ ((vec-vec-Tensor zs y)!(i −(length y)))

= f
(zs!((i −(length y)) div (length y)))
(y!((i −(length y)) mod (length y))))

by auto
with 2 3 4 have

(i > (length y))
−→((i<((length (z#zs))∗(length y)))
−→((vec-vec-Tensor (z#zs) y)!i)

= f
((z#zs)!(i div (length y)))
(y!(i mod (length y))))

by auto
then show ?thesis by auto

qed
have ((length y) = i)

−→ ((i < (length (z#zs)∗(length y)))
−→ ((vec-vec-Tensor (z#zs) y)!i)

= f
((z#zs)!(i div (length y)))
(y!(i mod (length y))))

proof−
have 1 :(i = (length y))

−→ ((vec-vec-Tensor (z#zs) y)!i)
= (vec-vec-Tensor zs y)!0

using vec-vec-Tensor-simpl2 by auto
have 2 :(i = length y) −→ (i mod (length y)) = 0

by auto
have 3 :(i = length y) −→ (i div (length y)) = 1

using 4 assms div-self less-numeral-extra(3 )
by auto

have 4 : (i = length y)
−→ ((i < (length (z#zs))∗(length y))

= (0 < (length zs)∗(length y)))
by auto

have (z#zs)!1 = (zs!0 )
by auto

with 3 have 5 : (i = length y)
−→ ((z#zs)!(i div (length y))) = (zs!0 )

by auto
have ∀ i.((i < (length zs)∗(length y))

23



−→((vec-vec-Tensor (zs) y)!i)
= f

((zs)!(i div (length y)))
(y!(i mod (length y))))

using Cons.hyps by auto
with 4 have 6 :(i = length y)

−→ ((0 < ((length zs)∗(length y)))
−→ (((vec-vec-Tensor (zs) y)!0 )

= f ((zs)!0 ) (y!0 )))
= ((i < ((length zs)∗(length y)))

−→(((vec-vec-Tensor zs y)!i)
= f

((zs)!(i div (length y)))
(y!(i mod (length y)))))

by auto
have 7 : (0 div (length y)) = 0

by auto
have 8 : (0 mod (length y)) = 0

by auto
have 9 : (0 < ((length zs)∗(length y)))

−→ ((vec-vec-Tensor zs y)!0 )
= f (zs!0 ) (y!0 )

using 7 8 Cons.hyps by auto
with 4 5 8 have (i = length y)

−→ ((i < (length (z#zs))∗(length y))
−→ (((vec-vec-Tensor (zs) y)!0 )

= f ((zs)!0 ) (y!0 )))
by auto

with 1 2 5 have (i = length y)
−→ ((i < (length (z#zs))∗(length y))

−→ (((vec-vec-Tensor ((z#zs)) y)!i)
= f

((z#zs)!(i div (length y)))
(y!(i mod (length y)))))

by auto
then show ?thesis by auto

qed
with step2 have step4 :

(i ≥ (length y))
−→ ((i < (length (z#zs))∗(length y))
−→ (((vec-vec-Tensor ((z#zs)) y)!i)

= f
((z#zs)!(i div (length y)))
(y!(i mod (length y)))))

by auto
have (i < (length y)) ∨ (i ≥ (length y))

by auto
with step1 step4 have

((i < (length (z#zs))∗(length y))

24



−→ (((vec-vec-Tensor ((z#zs)) y)!i)
= f

((z#zs)!(i div (length y)))
(y!(i mod (length y)))))

using logic by (metis 6 7 35 )
then show ?case by auto

qed

a few more results that will be used later on
lemma nat-int: nat (int x + int y) = x + y
using nat-int of-nat-add by auto

lemma int-nat-equiv: (x > 0 ) −→ (nat ((int x) + −1 )+1 ) = x
proof−
have 1 = nat (int 1 )

by auto
have −1 = −int 1

by auto
then have 1 :(nat ((int x) + −1 )+1 )

= (nat ((int x) + −1 ) + (nat (int 1 )))
by auto

then have 2 :(x > 0 )
−→ nat ((int x) + −1 ) + (nat (int 1 ))

= (nat (((int x) + −1 ) + (int 1 )))
using of-nat-add nat-int by auto

have (nat (((int x) + −1 ) + (int 1 ))) = (nat ((int x) + −1 + (int 1 )))
by auto

then have (nat (((int x) + −1 ) + (int 1 ))) = (nat ((int x)))
by auto

then have (nat (((int x) + −1 ) + (int 1 ))) = x
by auto

with 1 2 have (x > 0 ) −→ nat ((int x) + −1 ) + 1 = x
by auto

then show ?thesis by auto
qed

lemma list-int-nat: (k>0 ) −→ ((x#xs)!k = xs!(nat ((int k)+−1 )))
proof−
fix j
have ((x#xs)!(k+1 ) = xs!k)

by auto
have j = (k+1 ) −→ (nat ((int j)+−1 )) = k

by auto
moreover have (nat ((int j)+−1 )) = k

−→ ((nat ((int j)+−1 )) + 1 ) = (k +1 )
by auto

moreover have (j>0 )−→(((nat ((int j)+−1 )) + 1 ) = j)
using int-nat-equiv by (auto)

moreover have (k>0 ) −→ ((x#xs)!k = xs!(nat ((int k)+−1 )))

25



using Suc-eq-plus1 int-nat-equiv nth-Cons-Suc by (metis)
from this show ?thesis by auto

qed

lemma row-length-eq:
(mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))
−→
(row-length (a#b#N ) = (row-length (b#N )))

proof−
have (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))

−→ (b ∈ set (a#b#M ))
by auto

moreover have
(mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))

−→ (Ball (set (a#b#N )) (vec (row-length (a#b#N ))))
using mat-def by metis

moreover have (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))
−→ (b ∈ (set (a#b#N )))
−→ (vec (row-length (a#b#N )) b)

by (metis calculation(2 ))
then have (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))

−→ (length b) = (row-length (a#b#N ))
using vec-def by auto

then have (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))
−→ (row-length (b#N ))

= (row-length (a#b#N ))
using row-length-def by auto

then show ?thesis by auto
qed

The following theorem tells us the relationship between entries of vec_mat_Ten-
sor v M and entries of v and M respectivety
theorem vec-mat-Tensor-elements:
∀ i.∀ j.
(((i<((length v)∗(row-length M )))
∧(j < (length M )))
∧(mat (row-length M ) (length M ) M )
−→ ((vec-mat-Tensor v M )!j!i)

= f (v!(i div (row-length M ))) (M !j!(i mod (row-length M ))))
apply(rule allI )
apply(rule allI )
proof(induct M )
case Nil
have row-length [] = 0

using row-length-def by auto
from this

have (length v)∗(row-length []) = 0

26



by auto
from this

have ((i<((length v)∗(row-length [])))∧(j < (length []))) −→ False
by auto

moreover have vec-mat-Tensor v [] = []
by auto

moreover have (((i<((length v)∗(row-length [])))∧(j < (length [])))
−→ ((vec-mat-Tensor v [])!j!i)

= f (v!(i div (row-length []))) ([]!j!(i mod (row-length []))))
by auto

from this
show ?case by auto

next
case (Cons a M )
have (((i<((length v)∗(row-length (a#M ))))

∧(j < (length (a#M ))))
∧(mat (row-length (a#M )) (length (a#M )) (a#M ))

−→ ((vec-mat-Tensor v (a#M ))!j!i)
= f

(v!(i div (row-length (a#M ))))
((a#M )!j!(i mod (row-length (a#M )))))

proof(cases a)
case Nil
have row-length ([]#M ) = 0

using row-length-def by auto
then have 1 :(length v)∗(row-length ([]#M )) = 0

by auto
then have ((i<((length v)∗(row-length ([]#M ))))

∧(j < (length ([]#M )))) −→ False
by auto

moreover have
(((i<((length v)∗(row-length ([]#M ))))
∧(j < (length ([]#M ))))

−→ ((vec-mat-Tensor v ([]#M ))!j!i) =
f

(v!(i div (row-length ([]#M ))))
([]!j!(i mod (row-length ([]#M )))))

using calculation by auto
then show ?thesis using Nil 1 less-nat-zero-code by (metis )

next
case (Cons x xs)
have 1 :(a#M )!(j+1 ) = M !j by auto
have (((i<((length v)∗(row-length M )))

∧(j < (length M )))
∧(mat (row-length M ) (length M ) M )
−→ ((vec-mat-Tensor v M )!j!i) = f

(v!(i div (row-length M )))
(M !j!(i mod (row-length M ))))

using Cons.hyps by auto

27



have 2 : (row-length (a#M )) = (length a)
using row-length-def by auto

then have 3 :(i< (row-length (a#M ))∗(length v))
= (i < (length a)∗(length v))

by auto
have a 6= []

using Cons by auto
then have 4 :

∀ i.((i < (length a)∗(length v))
−→ ((vec-vec-Tensor v a)!i) = f

(v!(i div (length a)))
(a!(i mod (length a))))

using vec-vec-Tensor-elements Cons.hyps mult.commute
by (simp add: mult.commute vec-vec-Tensor-elements)

have (vec-mat-Tensor v (a#M ))!0 = (vec-vec-Tensor v a)
using vec-mat-Tensor .simps(2 ) by auto

with 2 4 have 5 :
∀ i.((i < (row-length (a#M ))∗(length v))

−→ ((vec-mat-Tensor v (a#M ))!0 !i)
= f

(v!(i div (row-length (a#M ))))
((a#M )!0 !(i mod (row-length (a#M )))))

by auto
have length (a#M )>0

by auto
with 5 have 6 :
(j = 0 )−→

((((i < (row-length (a#M ))∗(length v))
∧(j < (length (a#M ))))
∧(mat (row-length (a#M )) (length (a#M )) (a#M ))

−→ ((vec-mat-Tensor v (a#M ))!j!i)
= f

(v!(i div (row-length (a#M ))))
((a#M )!j!(i mod (row-length (a#M ))))))

by auto
have (((i < (row-length (a#M ))∗(length v))

∧(j < (length (a#M ))))
∧(mat (row-length (a#M )) (length (a#M )) (a#M ))
−→
((vec-mat-Tensor v (a#M ))!j!i) =

f
(v!(i div (row-length (a#M ))))
((a#M )!j!(i mod (row-length (a#M )))))

proof(cases M )
case Nil
have (length (a#[])) = 1

by auto
then have (j<(length (a#[]))) = (j = 0 )

by auto

28



then have ((((i < (row-length (a#[]))∗(length v))
∧(j < (length (a#[]))))
∧ (mat (row-length (a#[])) (length (a#[])) (a#[]))

−→ ((vec-mat-Tensor v (a#[]))!j!i)
= f

(v!(i div (row-length (a#[]))))
((a#[])!j!(i mod (row-length (a#[]))))))

using 6 Nil by auto
then show ?thesis using Nil by auto

next
case (Cons b N )
have 7 :(mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))

−→ row-length (a#b#N ) = (row-length (b#N ))
using row-length-eq by metis

have 8 : (j>0 )
−→ ((vec-mat-Tensor v (b#N ))!(nat ((int j)+−1 )))

= (vec-mat-Tensor v (a#b#N ))!j
using vec-mat-Tensor .simps(2 ) using list-int-nat by metis

have 9 : (j>0 )
−→ (((i < (row-length (b#N ))∗(length v))

∧((nat ((int j)+−1 )) < (length (b#N ))))
∧(mat (row-length (b#N )) (length (b#N )) (b#N ))
−→

((vec-mat-Tensor v (b#N ))!(nat ((int j)+−1 ))!i)
= f
(v!(i div (row-length (b#N ))))
((b#N )!(nat ((int j)+−1 ))!(i mod (row-length (b#N )))))

using Cons.hyps Cons mult.commute by metis
have (j>0 ) −→ ((nat ((int j) + −1 )) < (length (b#N )))

−→ ((nat ((int j) + −1 ) + 1 ) < length (a#b#N ))
by auto

then have
(j>0 )

−→ ((nat ((int j) + −1 )) < (length (b#N ))) = (j < length (a#b#N ))
by auto

then have
(j>0 )
−→ (((i < (row-length (b#N ))∗(length v)) ∧ (j < length (a#b#N )))

∧(mat (row-length (b#N )) (length (b#N )) (b#N )) −→
((vec-mat-Tensor v (b#N ))!(nat ((int j)+−1 ))!i)

= f
(v!(i div (row-length (b#N ))))
((b#N )!(nat ((int j)+−1 ))!(i mod (row-length (b#N )))))

using Cons.hyps Cons mult.commute by metis
with 8 have (j>0 )

−→ (((i < (row-length (b#N ))∗(length v))
∧ (j < length (a#b#N )))
∧ (mat (row-length (b#N )) (length (b#N )) (b#N ))
−→

29



((vec-mat-Tensor v (a#b#N ))!j!i)
= f

(v!(i div (row-length (b#N ))))
((b#N )!(nat ((int j)+−1 ))!(i mod (row-length (b#N )))))

by auto
also have (j>0 ) −→ (b#N )!(nat ((int j)+−1 )) = (a#b#N )!j

using list-int-nat by metis
moreover have (j>0 ) −→

(((i < (row-length (b#N ))∗(length v))
∧ (j < length (a#b#N )))
∧ (mat (row-length (b#N )) (length (b#N )) (b#N ))
−→

((vec-mat-Tensor v (a#b#N ))!j!i)
= f

(v!(i div (row-length (b#N ))))
((a#b#N )!j!(i mod (row-length (b#N )))))

by (metis calculation(1 ) calculation(2 ))
then have

(j>0 )
−→ (((i < (row-length (b#N ))∗(length v))

∧ (j < length (a#b#N )))
∧ (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))
−→

((vec-mat-Tensor v (a#b#N ))!j!i)
= f

(v!(i div (row-length (b#N ))))
((a#b#N )!j!(i mod (row-length (b#N )))))

using reduct-matrix by (metis)
moreover have (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))

−→(row-length (b#N )) = (row-length (a#b#N ))
by (metis 7 Cons)

moreover have 10 :(j>0 )
−→ (((i < (row-length (a#b#N ))∗(length v))

∧(j < length (a#b#N )))
∧(mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))

−→
((vec-mat-Tensor v (a#b#N ))!j!i)

= f (v!(i div (row-length (a#b#N ))))
((a#b#N )!j!(i mod (row-length (a#b#N )))))

by (metis calculation(3 ) calculation(4 ))
have (j = 0 ) ∨ (j > 0 )

by auto
with 6 10 logic have

(((i < (row-length (a#b#N ))∗(length v))
∧ (j < length (a#b#N )))
∧ (mat (row-length (a#b#N )) (length (a#b#N )) (a#b#N ))
−→

((vec-mat-Tensor v (a#b#N ))!j!i)
= f

30



(v!(i div (row-length (a#b#N ))))
((a#b#N )!j!(i mod (row-length (a#b#N )))))

using Cons by metis
from this show ?thesis by (metis Cons)

qed
from this show ?thesis by (metis mult.commute)

qed
from this show ?case by auto
qed

The following theorem tells us about the relationship between entries of
tensor products of two matrices and the entries of matrices
theorem matrix-Tensor-elements:
fixes M1 M2

shows
∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )))

∧(j < (length M1 )∗(length M2 )))
∧(mat (row-length M1 ) (length M1 ) M1 )
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ ((M1 ⊗ M2 )!j!i) =
f

(M1 !(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod length M2 )!(i mod (row-length M2 ))))

apply(rule allI )
apply(rule allI )
proof(induct M1 )
case Nil
have (row-length []) = 0

using row-length-def by auto
then have (i< ((row-length [])∗(row-length M2 ))) −→ False

by auto
from this have ((i<((row-length [])∗(row-length M2 )))

∧(j < (length [])∗(length M2 )))
∧(mat (row-length []) (length []) [])
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ False
by auto

moreover have ([] ⊗ M2 ) = []
by auto

moreover have
((i<((row-length [])∗(row-length M2 )))
∧(j < (length [])∗(length M2 )))
∧(mat (row-length []) (length []) [])
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ (([] ⊗ M2 )!j!i) =
f
([]!(j div (length []))!(i div (row-length M2 )))
(M2 !(j mod length [])!(i mod (row-length M2 )))

by auto

31



then show ?case by auto
next
case (Cons v M )
fix a
have 0 :(v#M ) ⊗ M2 = (vec-mat-Tensor v M2 )@(Tensor M M2 )

by auto
then have 1 :

(j<(length M2 )) −→ ( ((v#M ) ⊗ M2 )!j = (vec-mat-Tensor v M2 )!j)
using append-simpl vec-mat-Tensor-length by metis

have (((i<((length a)∗(row-length M2 )))
∧(j < (length M2 )))∧(mat (row-length M2 ) (length M2 ) M2 )

−→ ((vec-mat-Tensor a M2 )!j!i) = f (a!(i div (row-length M2 ))) (M2 !j!(i mod
(row-length M2 ))))

using vec-mat-Tensor-elements by auto
have (j < (length M2 )) −→ (j div (length M2 )) = 0

by auto
then have 2 :(j < (length M2 )) −→ (v#M )!(j div (length M2 )) = v

by auto
have (j < (length M2 )) −→ (j mod (length M2 )) = j

by auto
moreover have (j < (length M2 )) −→ (v#M )!(j mod (length M2 )) = (v#M )!j

by auto
have step0 :
(j < (length M2 )) −→

(((i<((length v)∗(row-length M2 )))
∧(j < (length M2 ) ∗ (length (v#M ))))
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ ((Tensor (v#M ) M2 )!j!i)
= f

((v#M )!(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod (length M2 ))!(i mod (row-length M2 ))))

using 2 1 calculation(1 ) vec-mat-Tensor-elements by auto
have step1 :

(j < (length M2 ))
−→ (((i<((row-length (v#M ))∗(row-length M2 )))

∧(j < (length (v#M ))∗(length M2 )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ ((Tensor (v#M ) M2 )!j!i) =
f
((v#M )!(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod (length M2 ))!(i mod (row-length M2 ))))

using row-length-def step0 by auto
from 0 have 3 :

(j ≥ (length M2 )) −→ ((v#M ) ⊗ M2 )!j = (M ⊗ M2 )!(j − (length M2 ))
using vec-mat-Tensor-length add.commute append-simpl2 by metis

have 4 :
(j ≥ (length M2 )) −→

32



(((i<((row-length M )∗(row-length M2 )))
∧((j−(length M2 )) < (length M )∗(length M2 )))
∧(mat (row-length M ) (length M ) M )
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ ((M ⊗ M2 )!(j−(length M2 ))!i)
= f

(M !((j−(length M2 )) div (length M2 ))!(i div (row-length M2 )))
(M2 !((j−(length M2 )) mod length M2 )!(i mod (row-length M2 ))))

using Cons.hyps by auto
moreover have (mat (row-length (v#M )) (length (v#M )) (v#M ))

−→(mat (row-length M ) (length M ) M )
using reduct-matrix by auto

moreover have 5 :
(j ≥ (length M2 ))
−→ (((i<((row-length M )∗(row-length M2 )))
∧((j−(length M2 )) < (length M )∗(length M2 )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length M2 ) (length M2 ) M2 )
−→ ((M ⊗ M2 )!(j−(length M2 ))!i)

= f
(M !((j−(length M2 )) div (length M2 ))!(i div (row-length M2 )))
(M2 !((j−(length M2 )) mod length M2 )!(i mod (row-length M2 ))))

using 4 calculation(3 ) by metis
have (((j−(length M2 )) < (length M )∗(length M2 )))

−→ (j < ((length M )+1 )∗(length M2 ))
by auto

then have 6 :
(((j−(length M2 )) < (length M )∗(length M2 )))

−→
(j < ((length (v#M ))∗(length M2 )))

by auto
have 7 :

(j ≥ (length M2 ))
−→
((j−(length M2 )) div (length M2 )) = ((j div (length M2 )) − 1 )
using add-diff-cancel-left ′ div-add-self1 div-by-0

le-imp-diff-is-add add.commute zero-diff
by metis

then have 8 :
(j ≥ (length M2 ))

−→
M !((j−(length M2 )) div (length M2 ))

= M !((j div (length M2 )) − 1 )
by auto

have step2 :
(j ≥ (length M2 ))

−→
(((i<((row-length (v#M ))∗(row-length M2 )))
∧(j < (length (v#M ))∗(length M2 )))

33



∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length M2 ) (length M2 ) M2 ))
−→(((v#M ) ⊗ M2 )!j!i) =

f
((v#M )!(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod length M2 )!(i mod (row-length M2 )))

proof(cases M2 )
case Nil
have (0 = ((row-length (v#M ))∗(row-length M2 )))

using row-length-def Nil mult-0-right by auto
then have (i < ((row-length (v#M ))∗(row-length M2 ))) −→ False

by auto
then have (j ≥ (length M2 ))

−→(((i<((row-length (v#M ))∗(row-length M2 )))
∧(j < (length (v#M ))∗(length M2 )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length M2 ) (length M2 ) M2 ))

−→ False
by auto

then show ?thesis by auto
next
case (Cons w N )
fix k
have (k < (length M ))∧ (k ≥ 1 ) −→ M !(k − 1 ) = (v#M )!k

using not-one-le-zero nth-Cons ′ by auto
have (j ≥ (length (w#N ))) −→ (j div (length (w#N ))) ≥ 1

using div-le-mono div-self length-0-conv neq-Nil-conv by metis
moreover have (j ≥ (length (w#N ))) −→ (j div (length (w#N )))− 1 ≥ 0

by auto
moreover have (j ≥ (length (w#N )))

−→ M !((j div (length (w#N )))− 1 )
= (v#M )!(j div (length (w#N )))

using calculation(1 ) not-one-le-zero nth-Cons ′ by auto
from this 7 have 9 : (j ≥ (length (w#N )))

−→ M !((j−(length (w#N ))) div (length (w#N )))
= (v#M )!(j div (length (w#N )))

using Cons by auto
have 10 : (j ≥ (length (w#N )))

−→ ((j−(length (w#N ))) mod (length (w#N )))
= (j mod(length (w#N )))

using mod-if not-less by auto
with 5 9 have
(j ≥ (length (w#N ))) −→
((i<((row-length M )∗(row-length (w#N ))))
∧((j−(length (w#N ))) < (length M )∗(length (w#N )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length (w#N )) (length (w#N )) (w#N )))
−→ (((M ⊗ (w#N ))!(j−(length (w#N )))!i)

= f

34



((v#M )!(j div (length (w#N )))!(i div (row-length (w#N ))))
((w#N )!(j mod length (w#N ))!(i mod (row-length (w#N )))))

using Cons by auto
then have
(j ≥ (length (w#N ))) −→

((i<((row-length M )∗(row-length (w#N ))))
∧(j <(length (v#M ))∗(length (w#N )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length (w#N )) (length (w#N )) (w#N )))
−→ (((M ⊗ (w#N ))!(j−(length (w#N )))!i)
= f

((v#M )!(j div (length (w#N )))!(i div (row-length (w#N ))))
((w#N )!(j mod length (w#N ))!(i mod (row-length (w#N )))))

using 6 by auto
then have 11 :
(j ≥ (length (w#N ))) −→

((i<((row-length M )∗(row-length (w#N ))))
∧(j <(length (v#M ))∗(length (w#N )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length (w#N )) (length (w#N )) (w#N )))
−→ (((v#M ) ⊗ (w#N ))!j!i) =

f
((v#M )!(j div (length (w#N )))!(i div (row-length (w#N ))))
((w#N )!(j mod length (w#N ))!(i mod (row-length (w#N ))))

using 3 Cons by auto
have
(j ≥ (length (w#N ))) −→

((i<((row-length (v#M ))∗(row-length (w#N ))))
∧(j <(length (v#M ))∗(length (w#N )))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length (w#N )) (length (w#N )) (w#N )))

−→ (((v#M ) ⊗ (w#N ))!j!i)
= f

((v#M )!(j div (length (w#N )))!(i div (row-length (w#N ))))
((w#N )!(j mod length (w#N ))!(i mod (row-length (w#N ))))

proof(cases M )
case Nil
have Nil0 :(length (v#[])) = 1

by auto
then have Nil1 :

(j <(length (v#[]))∗(length (w#N ))) = (j< (length (w#N )))
by (metis Nil nat-mult-1 )

have
row-length (v#[]) = (length v)

using row-length-def by auto
then have Nil2 :

(i<((row-length (v#M ))∗(row-length (w#N ))))
= (i<((length v)∗(row-length (w#N ))))

using Nil by auto

35



then have (j< (length (w#N ))) −→ (j div (length (w#N ))) = 0
by auto

from this have Nil3 :
(j< (length (w#N ))) −→ (v#M )!(j div (length (w#N ))) = v

using Nil by auto
then have Nil4 :

(j< (length (w#N ))) −→ (j mod (length (w#N ))) = j
by auto

then have Nil5 :(v#M ) ⊗ (w#N ) = vec-mat-Tensor v (w#N )
using Nil Tensor .simps(2 ) Tensor .simps(1 )
by auto

from vec-mat-Tensor-elements have
(((i<((length v)∗(row-length (w#N ))))
∧(j < (length (w#N ))))
∧(mat (row-length (w#N )) (length (w#N )) (w#N ))

−→ ((vec-mat-Tensor v (w#N ))!j!i)
= f

(v!(i div (row-length (w#N ))))
((w#N )!j!(i mod (row-length (w#N )))))

by metis
then have

((i<((row-length (v#M ))∗(row-length (w#N ))))
∧(j < ((length (v#M ))∗(length (w#N ))))
∧(mat (row-length (w#N )) (length (w#N )) (w#N ))

−→ ((vec-mat-Tensor v (w#N ))!j!i)
= f (v!(i div (row-length (w#N ))))

((w#N )!j!(i mod (row-length (w#N )))))
using Nil1 Nil2 Nil by auto

then have
((i<((row-length (v#M ))∗(row-length (w#N ))))
∧(j < ((length (v#M ))∗(length (w#N ))))
∧(mat (row-length (w#N )) (length (w#N )) (w#N ))

−→ (((v#M )⊗(w#N ))!j!i)
= f

((v#M )!(j div (length (w#N )))!(i div (row-length (w#N ))))
((w#N )!(j mod (length (w#N )))!(i mod (row-length (w#N )))))

using Nil3 Nil4 Nil5 Nil by auto
then have

((i<((row-length (v#M ))∗(row-length (w#N ))))
∧(j < ((length (v#M ))∗(length (w#N ))))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length (w#N )) (length (w#N )) (w#N ))

−→ (((v#M )⊗(w#N ))!j!i)
= f
((v#M )!(j div (length (w#N )))!(i div (row-length (w#N ))))

((w#N )!(j mod (length (w#N )))!(i mod (row-length (w#N )))))
by auto

from this show ?thesis by auto
next

36



case (Cons u P)
have (mat (row-length (v#M )) (length (v#M )) (v#M )) −→ (row-length

(v#M )) = (row-length M )
using Cons row-length-eq by metis

from this 11 show ?thesis by auto
qed
from this show ?thesis using Cons by auto

qed
have (j<(length M2 )) ∨ (j ≥ (length M2 )) by auto
from this step1 step2 logic have
(((i<((row-length (v#M ))∗(row-length M2 )))
∧(j < (length M2 ) ∗ (length (v#M ))))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length M2 ) (length M2 ) M2 )
−→ ( ((v#M ) ⊗ M2 )!j!i)

= f
((v#M )!(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod (length M2 ))!(i mod (row-length M2 ))))

using mult.commute by metis
from this show ?case by (metis mult.commute)

qed

we restate the theorem in two different forms for convenience of reuse
theorem effective-matrix-tensor-elements:

(((i<((row-length M1 )∗(row-length M2 )))
∧(j < (length M1 )∗(length M2 )))
∧(mat (row-length M1 ) (length M1 ) M1 )
∧(mat (row-length M2 ) (length M2 ) M2 )
=⇒ ((M1 ⊗ M2 )!j!i)
= f (M1 !(j div (length M2 ))!(i div (row-length M2 )))

(M2 !(j mod length M2 )!(i mod (row-length M2 ))))
using matrix-Tensor-elements by auto

theorem effective-matrix-tensor-elements2 :
assumes i<(row-length M1 )∗(row-length M2 )
and j < (length M1 )∗(length M2 )
and mat (row-length M1 ) (length M1 ) M1
and mat (row-length M2 ) (length M2 ) M2
shows (M1 ⊗ M2 )!j!i =

(M1 !(j div (length M2 ))!(i div (row-length M2 )))
∗ (M2 !(j mod length M2 )!(i mod (row-length M2 )))

using assms matrix-Tensor-elements by auto

the following lemmas are useful in proving associativity of tensor products
lemma div-left-ineq:
assumes (x::nat) < y∗z
shows (x div z) < y

proof(rule ccontr)
assume 0 : ¬((x div z) < y)

37



then have 1 : x div z ≥ y
by auto

then have 2 :(x div z)∗z ≥ y∗z
by auto

then have 3 :(x div z)∗z + (x mod z) = z
using div-mult-mod-eq

add-leD1 assms minus-mod-eq-div-mult [symmetric] le-diff-conv2 mod-less-eq-dividend
not-less

by metis
then have 4 :(x div z)∗z ≤ z

by auto
then have 5 :z ≥ y∗z

using 2 by auto
then have 6 :z div z ≥ (y∗z) div z

by auto
then have (y∗z) div z ≤ 1

by auto
with 6 have 1 ≥ y

using 1 3 assms div-self less-nat-zero-code mult-zero-left
mult.commute mod-div-mult-eq
by auto

then have 7 :(y = 0 ) ∨ (y = 1 )
by auto

have (y = 0 ) =⇒ x<0
using assms by auto

moreover have x ≥ 0
by auto

then have 8 :(y = 0 ) =⇒ False
using calculation less-nat-zero-code by auto

moreover have (y = 1 ) =⇒ ( x < z)
using assms by auto

then have (y = 1 ) =⇒ (x div z) = 0
by (metis div-less)

then have (y = 1 ) =⇒(x div z) < y
by auto

then have (y = 1 ) =⇒ False
using 0 by auto

then show False using 7 8 by auto
qed

lemma div-right-ineq:
assumes (x::nat) < y∗z
shows (x div y) < z
using assms div-left-ineq mult.commute by (metis)

In the following theorem, we obtain columns of vec_mat_Tensor of a vector
v and a matrix M in terms of the vector v and columns of the matrix M
lemma col-vec-mat-Tensor-prelim:
∀ j.(j < (length M )

38



−→
col (vec-mat-Tensor v M ) j = vec-vec-Tensor v (col M j))

unfolding col-def
apply(rule allI )
proof(induct M )
case Nil
show ?case using Nil by auto

next
case (Cons w N )
have Cons-1 :vec-mat-Tensor v (w#N )

= (vec-vec-Tensor v w)#(vec-mat-Tensor v N )
using vec-mat-Tensor .simps Cons by auto

then show ?case
proof(cases j)
case 0
have vec-mat-Tensor v (w#N )!0 = (vec-vec-Tensor v w)

by auto
then show ?thesis using 0 by auto

next
case (Suc k)
have vec-mat-Tensor v (w#N )!j = (vec-mat-Tensor v N )!(k)

using Cons-1 Suc by auto
moreover have j < length (w#N ) =⇒ k < length N

using Suc by (metis length-Suc-conv not-less-eq)
moreover then have k < length (N )

=⇒ (vec-mat-Tensor v N )!k = vec-vec-Tensor v (N !k)
using Cons.hyps by auto

ultimately show ?thesis using Suc by auto
qed

qed

lemma col-vec-mat-Tensor :fixes j M v
assumes j < (length M )
shows col (vec-mat-Tensor v M ) j = vec-vec-Tensor v (col M j)
using col-vec-mat-Tensor-prelim assms by auto

lemma col-formula:
fixes M1 and M2
shows ∀ j.((j < (length M1 )∗(length M2 ))

∧ (mat (row-length M1 ) (length M1 ) M1 )
∧ (mat (row-length M2 ) (length M2 ) M2 )
−→ col (M1 ⊗ M2 ) j

= vec-vec-Tensor
(col M1 (j div length M2 ))
(col M2 (j mod length M2 )))

apply (rule allI )
proof(induct M1 )
case Nil
show ?case using Nil by auto

39



next
case (Cons v M )
have j < (length (v#M ))∗(length M2 )

∧ mat (row-length (v # M )) (length (v # M )) (v # M )
∧ mat (row-length M2 ) (length M2 ) M2 =⇒
(col (v # M ⊗ M2 ) j

= vec-vec-Tensor
(col (v # M ) (j div length M2 ))
(col M2 (j mod length M2 )))

proof−
fix k
assume 0 :j < (length (v#M ))∗(length M2 )

∧ mat (row-length (v # M )) (length (v # M )) (v # M )
∧ mat (row-length M2 ) (length M2 ) M2

then have 1 :mat (row-length M ) (length M ) M
by (metis reduct-matrix)

have j < (1+ length M )∗(length M2 )
using 0 by auto

then have j < (length M2 )+ (length M )∗(length M2 )
by auto

then have 2 :j ≥ (length M2 )
=⇒ j− (length M2 ) < (length M )∗(length M2 )

using add-0-iff add-diff-inverse diff-is-0-eq
less-diff-conv less-imp-le linorder-cases add.commute
neq0-conv

by (metis (opaque-lifting, no-types))
have 3 :(v#M )⊗M2 = (vec-mat-Tensor v M2 )@(M ⊗ M2 )

using Tensor .simps by auto
have (col ((v#M )⊗M2 ) j) = (col ((vec-mat-Tensor v M2 )@(M ⊗ M2 )) j)

using col-def by auto
then have j < length (vec-mat-Tensor v M2 )

=⇒ (col ((v#M )⊗M2 ) j) = (col (vec-mat-Tensor v M2 ) j)
unfolding col-def using append-simpl by auto

then have 4 :j < length M2 =⇒
(col ((v#M )⊗M2 ) j) = (col (vec-mat-Tensor v M2 ) j)

using vec-mat-Tensor-length by simp
then have j < length M2 =⇒

(col (vec-mat-Tensor v M2 ) j)
= vec-vec-Tensor v (col M2 j)

using col-vec-mat-Tensor by auto
then have

j< length M2 =⇒
(col (vec-mat-Tensor v M2 ) j)

= vec-vec-Tensor
((v#M )!(j div length M2 ))
(col M2 (j mod (length M2 )))

by auto
then have step-1 :j< length M2 =⇒

(col ((v#M )⊗ M2 ) j)

40



= vec-vec-Tensor
((v#M )!(j div length M2 ))
(col M2 (j mod (length M2 )))

using 4 by auto
have 4 :j ≥ length M2

=⇒ (col ((v#M )⊗M2 ) j)= (M ⊗ M2 )!(j− (length M2 ))
unfolding col-def using 3 append-simpl2 vec-mat-Tensor-length
by metis

then have 5 :
j ≥ length M2 =⇒

col (M ⊗ M2 ) (j−length M2 )
= vec-vec-Tensor

(col M ((j−length M2 ) div length M2 ))
(col M2 ((j− length M2 ) mod length M2 ))

using 1 0 2 Cons by auto
then have 6 :

j ≥ length M2 =⇒
(j − length M2 ) div (length M2 ) + 1 = j div (length M2 )

using 2 div-0 div-self
le-neq-implies-less less-nat-zero-code
monoid-add-class.add.right-neutral mult-0 mult-cancel2

add.commute nat-div neq0-conv div-add-self1 le-add-diff-inverse
by metis

then have
j ≥ length M2 =⇒

((j− length M2 ) mod length M2 ) = j mod (length M2 )
using le-mod-geq by metis

with 6 have 7 :
j ≥ length M2 =⇒

col (M ⊗ M2 ) (j−length M2 )
= vec-vec-Tensor (col M ((j−length M2 ) div length M2 ))

(col M2 (j mod length M2 ))
using 5 by auto

moreover have k<(length M ) =⇒ (col M k) = (col (v#M ) (k+1 ))
unfolding col-def by auto

ultimately have j ≥ length M2 =⇒
col (M ⊗ M2 ) (j−length M2 )

= vec-vec-Tensor (col (v#M ) (j div length M2 ))
(col M2 (j mod length M2 ))

proof−
assume temp:j ≥ length M2
have j− (length M2 ) < (length M )∗(length M2 )

using 2 temp by auto
then have (j− (length M2 )) div (length M2 ) < (length M )

using div-right-ineq mult.commute by metis
moreover have

((j− (length M2 )) div (length M2 )<(length M )
−→ (col M ((j− (length M2 )) div (length M2 )))

= (col (v#M ) ((j− (length M2 )) div (length M2 )+1 )))

41



unfolding col-def by auto
ultimately have temp1 :

(col (v#M ) (((j−length M2 ) div length M2 )+1 ))
= (col M (((j−length M2 ) div length M2 )))

by auto
then have (col (v#M ) (((j−length M2 ) div length M2 )+1 ))

= (col (v#M ) (j div length M2 ))
using 6 temp by auto

then show ?thesis using temp1 7 by (metis temp)
qed
then have j ≥ length M2 =⇒

col ((v#M ) ⊗ M2 ) j
= vec-vec-Tensor (col (v#M ) (j div length M2 ))

(col M2 (j mod length M2 ))
using col-def 4 by metis

then show ?thesis
using step-1 col-def le-refl nat-less-le nat-neq-iff
by (metis)

qed
then show ?case by auto

qed

lemma row-Cons:row (v#M ) i = (v!i)#(row M i)
unfolding row-def map-def by auto

lemma row-append:row (A@B)i = (row A i)@(row B i)
unfolding row-def map-append by auto

lemma row-empty:row [] i = []
unfolding row-def by auto

lemma vec-vec-Tensor-right-empty:vec-vec-Tensor x [] = []
using vec-vec-Tensor .simps times.simps length-0-conv mult-0-right vec-vec-Tensor-length

by (metis)

lemma vec-mat-Tensor v ([]#[]) = [[]]
using vec-mat-Tensor .simps by (metis vec-vec-Tensor-right-empty)

lemma i<0 −→ [[]!i] = []
by auto

lemma row-vec-mat-Tensor-prelim:
∀ i.

((i < (length v)∗(row-length M ))∧(mat nr (length M ) M )
−→ row (vec-mat-Tensor v M ) i

= times (v!(i div row-length M )) (row M (i mod row-length M )))
apply(rule allI )
proof(induct M )

42



case Nil
show ?case using Nil by (metis less-nat-zero-code mult-0-right row-length-Nil)

next
case (Cons w N )
have row (vec-mat-Tensor v (w#N )) i

= row ((vec-vec-Tensor v w)#(vec-mat-Tensor v N )) i
using vec-mat-Tensor .simps by auto

then have 1 :... = ((vec-vec-Tensor v w)!i)#(row (vec-mat-Tensor v N ) i)
using row-Cons by auto

have 2 :row-length (w#N ) = length w
using row-length-def by auto

then have 3 :(mat nr (length (w#N )) (w#N )) =⇒ nr = length w
using hd-in-set list.distinct(1 ) mat-uniqueness matrix-row-length by metis

then have ((i < (length v)∗(row-length (w#N )))
∧ (mat nr (length (w#N )) (w#N ))
=⇒ row (vec-mat-Tensor v (w#N )) i

= times
(v!(i div row-length (w#N )))
(row (w#N ) (i mod row-length (w#N ))))

proof−
assume assms: i < (length v)∗(row-length (w#N ))

∧ (mat nr (length (w#N )) (w#N ))
show ?thesis
proof(cases N )
case Nil
have row (vec-mat-Tensor v (w#N )) i = [(vec-vec-Tensor v w)!i]

using 1 vec-mat-Tensor .simps Nil row-empty by auto
then show ?thesis
proof(cases w)
case Nil
have (vec-vec-Tensor v w) = []

using Nil vec-vec-Tensor-right-empty by auto
moreover have (length v)∗(row-length (w#N )) = 0

using Nil row-length-def by auto
then have [(vec-vec-Tensor v [])!i] = []

using assms less-nat-zero-code by metis
ultimately show ?thesis

using vec-vec-Tensor .simps row-empty Nil assms list.distinct(1 ) by
(metis)

next
case (Cons a w1 )
have 1 :w 6= []

using Cons by auto
then have i < (length v)∗(length w)

using assms row-length-def by auto
then have (vec-vec-Tensor v w)!i

= f
(v!(i div (length w)))
(w!(i mod (length w)))

43



using vec-vec-Tensor-elements 1 allI by auto
then have (row (vec-mat-Tensor v (w#N )) i)

= times
(v!(i div row-length (w#N )))
(row (w#N ) (i mod (length w)))

using Cons vec-mat-Tensor .simps row-def row-length-def 2 Nil row-Cons

row-empty times.simps(1 ) times.simps(2 ) by metis
then show ?thesis using row-def 2 by metis

qed
next
case (Cons w1 N1 )
have Cons-0 :row-length N = length w1

using Cons row-length-def by auto
have mat nr (length (w#w1#N1 )) (w#w1#N1 )

using assms Cons by auto
then have Cons-1 :

mat (row-length (w#w1#N1 )) (length (w#w1#N1 )) (w#w1#N1 )

by (metis matrix-row-length)
then have Cons-2 :

mat (row-length (w1#N1 )) (length (w1#N1 )) (w1#N1 )
by (metis reduct-matrix)

then have Cons-3 :(length w1 = length w)
using Cons-1
unfolding mat-def row-length-def Ball-def vec-def
by (metis 2 Cons-0 Cons-1 local.Cons row-length-eq)

then have Cons-4 :mat nr (length (w1#N1 )) (w1#N1 )
using 3 Cons-2 assms hd-conv-nth list.distinct(1 ) nth-Cons-0 row-length-def

by metis
moreover have i < (length v)∗(row-length (w1#N1 ))

using assms Cons-3 row-length-def by auto
ultimately have Cons-5 :row (vec-mat-Tensor v N ) i

= times
(v ! (i div row-length N ))
(row N (i mod row-length N ))

using Cons Cons.hyps by auto
then show ?thesis
proof(cases w)
case Nil
have (vec-vec-Tensor v w) = []

using Nil vec-vec-Tensor-right-empty by auto
moreover have (length v)∗(row-length (w#N )) = 0

using Nil row-length-def by auto
then have [(vec-vec-Tensor v [])!i] = []

using assms by (metis less-nat-zero-code)
ultimately show ?thesis

using vec-vec-Tensor .simps row-empty Nil assms
by (metis list.distinct(1 ))

44



next
case (Cons a w2 )
have 1 :w 6= []

using Cons by auto
then have i < (length v)∗(length w)

using assms row-length-def by auto
then have ConsCons-2 :

(vec-vec-Tensor v w)!i = f
(v!(i div (length w)))
(w!(i mod (length w)))

using vec-vec-Tensor-elements 1 allI by auto
moreover have

times
(v!(i div row-length (w#N )))
(row (w#N ) (i mod row-length (w#N )))
= (f

(v!(i div (length w)))
(w!(i mod (length w))))
#(times (v ! (i div row-length N ))

(row N (i mod row-length N )))
proof−
have temp:row-length (w#N ) = (row-length N )

using row-length-def 2 Cons-3 Cons-0 by auto
have (row (w#N ) (i mod row-length (w#N )))

= (w!(i mod (row-length (w#N ))))
#(row N (i mod row-length (w#N )))

unfolding row-def by auto
then have ...

= (w!(i mod (length w)))
#(row N (i mod row-length N ))

using Cons-3 3 assms 2 neq-Nil-conv row-Cons row-empty
row-length-eq by (metis (opaque-lifting, no-types))

then have times
(v!(i div row-length (w#N )))
((w!(i mod (length w)))
#(row N (i mod row-length N )))
= (f

(v!(i div row-length (w#N )))
(w!(i mod (length w))))

#(times (v!(i div row-length (w#N )))
(row N (i mod row-length N )))

by auto
then have ... = (f

(v!(i div length w))
(w!(i mod (length w))))
#(times (v!(i div row-length N ))

(row N (i mod row-length N )))
using 3 Cons-3 assms temp row-length-def by auto

then show ?thesis using times.simps 2 row-Cons temp by metis

45



qed
then show ?thesis using Cons-5 ConsCons-2 1

row-Cons vec-mat-Tensor .simps(2 ) by (metis)
qed

qed
qed
then show ?case by auto

qed

The following lemma gives us a formula for the row of a tensor of two
matrices
lemma row-formula:
fixes M1 and M2
shows ∀ i.((i < (row-length M1 )∗(row-length M2 ))

∧(mat (row-length M1 ) (length M1 ) M1 )
∧(mat (row-length M2 ) (length M2 ) M2 )

−→ row (M1 ⊗ M2 ) i
= vec-vec-Tensor

(row M1 (i div row-length M2 ))
(row M2 (i mod row-length M2 )))

apply(rule allI )
proof(induct M1 )
case Nil
show ?case using Nil by (metis less-nat-zero-code mult-0 row-length-Nil)

next
case (Cons v M )
have
((i < (row-length (v#M ))∗(row-length M2 ))
∧ (mat (row-length (v#M )) (length (v#M )) (v#M ))
∧ (mat (row-length M2 ) (length M2 ) M2 )
=⇒ row ((v#M ) ⊗ M2 ) i = vec-vec-Tensor

(row (v#M ) (i div row-length M2 ))
(row M2 (i mod row-length M2 )))

proof−
assume assms:

(i < (row-length (v#M ))∗(row-length M2 ))
∧(mat (row-length (v#M )) (length (v#M )) (v#M ))
∧(mat (row-length M2 ) (length M2 ) M2 )

have 0 :i < (length v)∗(row-length M2 )
using assms row-length-def by auto

have 1 :mat (row-length M ) (length M ) M
using assms reduct-matrix by (metis)

have row ((v#M )⊗M2 ) i = row ((vec-mat-Tensor v M2 )@(M ⊗ M2 )) i
by auto

then have 2 :... = (row (vec-mat-Tensor v M2 ) i)@(row (M ⊗ M2 ) i)
using row-append by auto

then show ?thesis
proof(cases M )
case Nil

46



have row ((v#M )⊗M2 ) i = (row (vec-mat-Tensor v M2 ) i)
using Nil 2 by auto

moreover have row (vec-mat-Tensor v M2 ) i = times
(v!(i div row-length M2 ))
(row M2 (i mod row-length M2 ))

using row-vec-mat-Tensor-prelim assms 0 by auto
ultimately show ?thesis using vec-vec-Tensor-def

Nil append-Nil2 vec-vec-Tensor .simps(1 )
vec-vec-Tensor .simps(2 ) row-Cons row-empty by (metis)

next
case (Cons w N )
have Cons-Cons-1 :mat (row-length M ) (length M ) M

using assms reduct-matrix by auto
then have row-length (w#N ) = row-length (v#M )

using assms Cons unfolding mat-def Ball-def vec-def
using append-Cons hd-in-set list.distinct(1 )
rotate1 .simps(2 ) set-rotate1
by auto

then have Cons-Cons-2 :i < (row-length M )∗(row-length M2 )
using assms Cons by auto

then have Cons-Cons-3 :(row (M ⊗ M2 ) i) = vec-vec-Tensor
(row M (i div row-length M2 ))
(row M2 (i mod row-length M2 ))

using Cons.hyps Cons-Cons-1 assms by auto
moreover have row (vec-mat-Tensor v M2 ) i

= times
(v!(i div row-length M2 ))
(row M2 (i mod row-length M2 ))

using row-vec-mat-Tensor-prelim assms 0 by auto
then have row ((v#M )⊗M2 ) i =

(times
(v!(i div row-length M2 ))
(row M2 (i mod row-length M2 )))
@(vec-vec-Tensor

(row M (i div row-length M2 ))
(row M2 (i mod row-length M2 )))

using 2 Cons-Cons-3 by auto
moreover have ... = (vec-vec-Tensor

((v!(i div row-length M2 ))
#(row M (i div row-length M2 )))

(row M2 (i mod row-length M2 )))
using vec-vec-Tensor .simps(2 ) by auto

moreover have ... = (vec-vec-Tensor (row (v#M ) (i div row-length M2 ))
(row M2 (i mod row-length M2 )))

using row-Cons by metis
ultimately show ?thesis by metis

qed
qed
then show ?case by auto

47



qed

lemma effective-row-formula:
fixes M1 and M2
assumes i < (row-length M1 )∗(row-length M2 )

and (mat (row-length M1 ) (length M1 ) M1 )
and (mat (row-length M2 ) (length M2 ) M2 )

shows row (M1 ⊗ M2 ) i
= vec-vec-Tensor

(row M1 (i div row-length M2 ))
(row M2 (i mod row-length M2 ))

using assms row-formula by auto

lemma alt-effective-matrix-tensor-elements:
(((i<((row-length M2 )∗(row-length M3 )))
∧(j < (length M2 )∗(length M3 )))
∧(mat (row-length M2 ) (length M2 ) M2 )
∧(mat (row-length M3 ) (length M3 ) M3 )
=⇒ ((M2 ⊗ M3 )!j!i) = f (M2 !(j div (length M3 ))!(i div (row-length M3 )))
(M3 !(j mod length M3 )!(i mod (row-length M3 ))))

using matrix-Tensor-elements by auto

lemma trans-impl:(∀ i j.(P i j −→ Q i j))∧(∀ i j. (Q i j −→ R i j))
=⇒ (∀ i j. (P i j −→ R i j))

by auto

lemma ((x::nat) div y) div z = (x div (y∗z))
using div-mult2-eq by auto

lemma (¬((a::nat) < b)) =⇒ (a ≥ b)
by auto

lemma not-null: xs 6= [] =⇒ ∃ y ys. xs = y#ys
by (metis neq-Nil-conv)

lemma (y::nat) 6= 0 =⇒ (x mod y) < y
using mod-less-divisor by auto

lemma mod-prop1 :((a::nat) mod (b∗c)) mod c = (a mod c)
proof(cases c = 0 )
case True
have b∗c = 0

by (metis True mult-0-right)
then have (a::nat) mod (b∗c) = a

by auto
then have ((a::nat) mod (b∗c)) mod c = a mod c

by auto

48



then show ?thesis by auto
next
case False
let ?x = (a::nat) mod (b∗c)
let ?z = ?x mod c
have ∃m. a = m∗(b∗c) + ?x

by (metis div-mult-mod-eq)
then obtain m1 where a = m1∗(b∗c) + ?x

by auto
then have ?x = (a − m1∗(b∗c))

by auto
then have ∃m.( ?x = m∗c + ?z)

using mod-div-decomp by blast
then obtain m where ( ?x = m∗c + ?z)

by auto
then have (a − m1∗(b∗c)) = m∗c + ?z

using ‹a mod (b ∗ c) = a − m1 ∗ (b ∗ c)› by (metis)
then have a = m1∗b∗c + m∗c + ?z

using ‹a = m1 ∗ (b ∗ c) + a mod (b ∗ c)› ‹a mod (b ∗ c)
= m ∗ c + a mod (b ∗ c) mod c›
by (metis ab-semigroup-add-class.add-ac(1 )
ab-semigroup-mult-class.mult-ac(1 ))

then have 1 :a = (m1∗b + m)∗c + ?z
by (metis add-mult-distrib2 mult.commute)

let ?y = (a mod c)
have ∃n. a = n∗(c) + ?y

by (metis 1 ‹a mod (b ∗ c) = m ∗ c + a mod (b ∗ c) mod c› mod-mult-self3 )

then obtain n where a = n∗(c) + ?y
by auto

with 1 have (m1∗b + m)∗c + ?z = n∗c + ?y
by auto

then have (m1∗b + m)∗c − (n∗c) = ?y − ?z
by auto

then have (m1∗b + m − n)∗c = (?y − ?z)
by (metis diff-mult-distrib2 mult.commute)

then have c dvd (?y − ?z)
by (metis dvd-triv-right)

moreover have ?y < c
using mod-less-divisor False by auto

moreover have ?z < c
using mod-less-divisor False by auto

moreover have ?y − ?z < c
using calculation(2 ) less-imp-diff-less by blast

ultimately have ?y − ?z = 0
by (metis dvd-imp-mod-0 mod-less)

then show ?thesis using False
by (metis 1 mod-add-right-eq mod-mult-self2 add.commute mult.commute)

qed

49



lemma mod-div-relation:((a::nat) mod (b∗c)) div c = (a div c) mod b
proof(cases b∗c = 0 )
case True
have T-1 :(b = 0 )∨(c = 0 )

using True by auto
show ?thesis
proof(cases (b = 0 ))
case True
have a mod (b∗c) = a

using True by auto
then show ?thesis using True by auto

next
case False
have c = 0

using T-1 False by auto
then show ?thesis by auto

qed
next
case False
have F-1 :(b > 0 )∧ (c > 0 )

using False by auto
have ∃ x. a = x∗(b∗c) + (a mod (b∗c))

using mod-div-decomp by blast
then obtain x where a = x∗(b∗c) + (a mod (b∗c))

by auto
then have a div c = ((x∗(b∗c)) div c) + ((a mod (b∗c)) div c)

using div-add1-eq mod-add-self1 mod-add-self2
mod-by-0 mod-div-trivial mod-prop1 mod-self
by (metis)

then have a div c = (((x∗b)∗c) div c) + ((a mod (b∗c)) div c)
by auto

then have F-2 :a div c = (x∗b) + ((a mod (b∗c)) div c)
by (metis F-1 nonzero-mult-div-cancel-left mult.commute neq0-conv)

have ∃ y. a div c = (y∗b) + ((a div c) mod b)
by (metis add.commute mod-div-mult-eq)

then obtain y where a div c = (y∗b) + ((a div c) mod b)
by auto

with F-2 have F-3 : (x∗b) + ((a mod (b∗c)) div c) = (y∗b) + ((a div c) mod b)
by auto

then have (x∗b) − (y ∗ b) = ((a div c) mod b) − ((a mod (b∗c)) div c)
by auto

then have (x − y) ∗ b = ((a div c) mod b) − ((a mod (b∗c)) div c)
by (metis diff-mult-distrib2 mult.commute)

then have F-4 :b dvd (((a div c) mod b) − ((a mod (b∗c)) div c))
by (metis dvd-eq-mod-eq-0 mod-mult-self1-is-0 mult.commute)

have F-5 :b > ((a div c) mod b)
by (metis F-1 mod-less-divisor)

have b∗c > (a mod (b∗c))

50



by (metis False mod-less-divisor neq0-conv)
moreover then have (b∗c) div c > (a mod (b∗c)) div c

by (metis F-1 div-left-ineq nonzero-mult-div-cancel-right neq0-conv)
then have b > (a mod (b∗c)) div c

by (metis calculation div-right-ineq mult.commute)
with F-4 F-5
have F-6 :((a div c) mod b)−((a mod (b∗c)) div c) = 0

using less-imp-diff-less nat-dvd-not-less by blast
from F-3 have (y ∗ b) − (x∗b)

= ((a mod (b∗c)) div c) − ((a div c) mod b)
by auto

then have (y − x) ∗ b = ((a mod (b∗c)) div c) − ((a div c) mod b)
by (metis diff-mult-distrib2 mult.commute)

then have F-7 :b dvd (((a mod (b∗c)) div c) − ((a div c) mod b))
by (metis dvd-eq-mod-eq-0 mod-mult-self1-is-0 mult.commute)

have F-8 :b > ((a div c) mod b)
by (metis F-1 mod-less-divisor)

have b∗c > (a mod (b∗c))
by (metis False mod-less-divisor neq0-conv)

moreover then have (b∗c) div c > (a mod (b∗c)) div c
by (metis F-1 div-left-ineq nonzero-mult-div-cancel-right neq0-conv)

then have b > (a mod (b∗c)) div c
by (metis calculation div-right-ineq mult.commute)

with F-7 F-8
have ((a mod (b∗c)) div c) − ((a div c) mod b) = 0
by (metis F-2 cancel-comm-monoid-add-class.diff-cancel mod-if mod-mult-self3 )

with F-6 have ((a mod (b∗c)) div c) = ((a div c) mod b)
by auto

then show ?thesis using False by auto
qed

The following lemma proves that the tensor product of matrices is associative
lemma associativity:
fixes M1 M2 M3
shows

(mat (row-length M1 ) (length M1 ) M1 )
∧ (mat (row-length M2 ) (length M2 ) M2 )
∧ (mat (row-length M3 ) (length M3 ) M3 )
=⇒

M1 ⊗ (M2 ⊗ M3 ) = (M1 ⊗ M2 ) ⊗ M3 (is ?x =⇒?l = ?r)
proof−
fix j
assume 0 : (mat (row-length M1 ) (length M1 ) M1 )

∧ (mat (row-length M2 ) (length M2 ) M2 )
∧ (mat (row-length M3 ) (length M3 ) M3 )

have 1 :length ((M1 ⊗ M2 ) ⊗ M3 )
= (length M1 )∗(length M2 )∗ (length M3 )

proof−
have length (M2 ⊗ M3 ) = (length M2 )∗ (length M3 )

51



by (metis length-Tensor)
then have length (M1 ⊗ (M2 ⊗ M3 ))

= (length M1 )∗(length M2 )∗ (length M3 )
using mult.assoc length-Tensor by auto

moreover have length (M1 ⊗ M2 ) = (length M1 )∗ (length M2 )
by (metis length-Tensor)

ultimately show ?thesis using mult.assoc length-Tensor by auto
qed
have 2 :row-length ((M1 ⊗ M2 ) ⊗ M3 )

= (row-length M1 )∗(row-length M2 )∗ (row-length M3 )
proof−
have row-length (M2 ⊗ M3 ) = (row-length M2 )∗ (row-length M3 )

using row-length-mat assoc by auto
then have row-length (M1 ⊗ (M2 ⊗ M3 ))

= (row-length M1 )∗(row-length M2 )∗ (row-length M3 )
using row-length-mat assoc by auto

moreover have row-length (M1 ⊗ M2 )
= (row-length M1 )∗ (row-length M2 )

using row-length-mat by auto
ultimately show ?thesis using row-length-mat assoc by auto

qed
have 3 :

∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
(((M1 ⊗ M2 ) ⊗ M3 )!j!i)

= f
((M1 ⊗ M2 )!(j div (length M3 ))!(i div (row-length M3 )))
(M3 !(j mod length M3 )!(i mod (row-length M3 ))))

using 0 matrix-Tensor-elements 1 2 effective-well-defined-Tensor
length-Tensor row-length-mat

by auto
moreover have

∀ j.(j < (length M1 )∗(length M2 )∗(length M3 ))
−→ (j div (length M3 )) < (length M1 )∗(length M2 )

apply(rule allI )
apply(simp add:div-left-ineq)
done

moreover have ∀ i.(i < (row-length M1 )∗(row-length M2 )∗(row-length M3 ))
−→ (i div (row-length M3 ))

< (row-length M1 )∗(row-length M2 )
apply(rule allI )
apply(simp add:div-left-ineq)
done

ultimately have 4 :∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length
M3 )))

∧(j < (length M1 )∗(length M2 )∗(length M3 )))
−→

((i div (row-length M3 )) < (row-length M1 )∗(row-length M2 ))

52



∧ ((j div (length M3 )) < (length M1 )∗(length M2 )))
using allI 0 by auto

have (mat (row-length M1 ) (length M1 ) M1 )
∧ (mat (row-length M2 ) (length M2 ) M2 )

using 0 by auto
then have ∀ i.∀ j.(((i div (row-length M3 )) < (row-length M1 )∗(row-length M2 ))

∧ ((j div (length M3 )) < (length M1 )∗(length M2 ))
−→

(((M1 ⊗ M2 ))!(j div (length M3 ))!(i div row-length M3 ))
= f

((M1 )!((j div (length M3 )) div (length M2 ))
!((i div (row-length M3 )) div (row-length M2 )))

(M2 !((j div (length M3 )) mod (length M2 ))
!((i div (row-length M3 )) mod (row-length M2 ))))

using effective-matrix-tensor-elements by auto
with 4 have 5 :∀ i j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))

∧(j < (length M1 )∗(length M2 )∗(length M3 )))
−→ (((M1 ⊗ M2 ))!(j div (length M3 ))!(i div row-length M3 ))

= f
((M1 )!((j div (length M3 )) div (length M2 ))

!((i div (row-length M3 )) div (row-length M2 )))
(M2 !((j div (length M3 )) mod (length M2 ))

!((i div (row-length M3 )) mod (row-length M2 ))))
by auto

with 3 have 6 :
∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
(((M1 ⊗ M2 ) ⊗ M3 )!j!i)

= f
(f
((M1 )!((j div (length M3 )) div (length M2 ))

!((i div (row-length M3 )) div (row-length M2 )))
(M2 !((j div (length M3 )) mod (length M2 ))

!((i div (row-length M3 )) mod (row-length M2 ))))
(M3 !(j mod length M3 )!(i mod (row-length M3 ))))

by auto
have (j div (length M3 ))div (length M2 ) = (j div ((length M3 )∗(length M2 )))

using div-mult2-eq by auto
moreover have ((i div (row-length M3 )) div (row-length M2 )) = (i div ((row-length
M3 )∗(row-length M2 )))

using div-mult2-eq by auto
ultimately have step1 :∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length
M3 )))

∧(j < (length M1 )∗(length M2 )∗(length M3 )))
−→

(((M1 ⊗ M2 ) ⊗ M3 )!j!i)
= f

(f

53



((M1 )!(j div ((length M3 )∗(length M2 )))! (i div ((row-length M3 )∗(row-length
M2 ))))

(M2 !((j div (length M3 )) mod (length M2 ))!((i div (row-length M3 )) mod
(row-length M2 ))))

(M3 !(j mod length M3 )!(i mod (row-length M3 ))))
using 6 by (metis 3 5 div-mult2-eq)

then have step1 :∀ i j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
(((M1 ⊗ M2 ) ⊗ M3 )!j!i)

= f
(f

((M1 )!(j div ((length M2 )∗(length M3 )))! (i div ((row-length M2 )∗(row-length
M3 ))))

(M2 !((j div (length M3 )) mod (length M2 ))!((i div (row-length M3 )) mod
(row-length M2 ))))

(M3 !(j mod length M3 )!(i mod (row-length M3 ))))
by (metis mult.commute)

have 7 :
∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
((M1 ⊗ (M2 ⊗ M3 ))!j!i)

= f
((M1 )!(j div (length (M2 ⊗ M3 )))!(i div (row-length (M2 ⊗ M3 ))))

((M2 ⊗ M3 )!(j mod length (M2 ⊗M3 ))!(i mod (row-length (M2 ⊗
M3 )))))

using 0 matrix-Tensor-elements 1 2 effective-well-defined-Tensor
length-Tensor row-length-mat

by auto
then have

∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
((M1 ⊗ (M2 ⊗ M3 ))!j!i)

= f
((M1 )!(j div ((length M2 )∗(length M3 )))!(i div ((row-length

M2 )∗(row-length M3 ))))
((M2 ⊗ M3 )!(j mod length (M2 ⊗M3 ))!(i mod (row-length (M2 ⊗

M3 )))))
using length-Tensor row-length-mat by auto

then have
∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
((M1 ⊗ (M2 ⊗ M3 ))!j!i)

= f
((M1 )!(j div ((length M3 )∗(length M2 )))

54



!(i div ((row-length M3 )∗(row-length M2 ))))
((M2 ⊗ M3 )!(j mod length (M2 ⊗M3 ))

!(i mod (row-length (M2 ⊗ M3 )))))
using mult.commute by (metis)

have 8 :
∀ j.((j < (length M1 )∗(length M2 )∗(length M3 )))

−→ (j mod (length (M2 ⊗ M3 ))) < (length (M2 ⊗ M3 ))
proof(cases length (M2 ⊗ M3 ) = 0 )
case True
have (length M2 )∗(length M3 ) = 0

using length-Tensor True by auto
then have (length M1 )∗(length M2 )∗(length M3 ) = 0

by auto
then show ?thesis by (metis less-nat-zero-code)

next
case False
have length (M2 ⊗ M3 ) > 0

using False by auto
then show ?thesis using mod-less-divisor by auto

qed
then have 9 :

∀ i.((i < (row-length M1 )∗(row-length M2 )∗(row-length M3 )))
−→ (i mod (row-length (M2 ⊗ M3 ))) < (row-length (M2 ⊗ M3 ))

proof(cases row-length (M2 ⊗ M3 ) = 0 )
case True
have (row-length M2 )∗(row-length M3 ) = 0

using True by (metis row-length-mat)
then have (row-length M1 )∗(row-length M2 )∗(row-length M3 ) = 0

by auto
then show ?thesis by (metis less-nat-zero-code)

next
case False
have row-length (M2 ⊗ M3 ) > 0

using False by auto
then show ?thesis using mod-less-divisor by auto

qed
with 8 have 10 :∀ i.∀ j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))

∧(j < (length M1 )∗(length M2 )∗(length M3 )))
−→

(i mod (row-length (M2 ⊗ M3 ))) < (row-length (M2 ⊗ M3 ))
∧ (j mod (length (M2 ⊗ M3 ))) < (length (M2 ⊗ M3 )))

by auto
then have 11 :∀ i j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))

∧(j < (length M1 )∗(length M2 )∗(length M3 )))
−→

(i mod (row-length (M2 ⊗ M3 )))
< (row-length M2 )∗(row-length M3 )

∧(j mod (length (M2 ⊗ M3 ))) < (length M2 )∗(length M3 ))
using length-Tensor row-length-mat by auto

55



have (mat (row-length M2 ) (length M2 ) M2 )
∧ (mat (row-length M3 ) (length M3 ) M3 )
using 0 by auto

then have ∀ i j.(((i mod (row-length (M2 ⊗ M3 )))
< (row-length M2 )∗(row-length M3 ))

∧((j mod (length (M2⊗M3 ))) < (length M2 )∗(length M3 ))
−→
(((M2 ⊗ M3 ))!(j mod (length (M2 ⊗ M3 )))!(i mod row-length (M2 ⊗ M3 )))

= f
((M2 )!((j mod (length (M2 ⊗ M3 ))) div (length M3 ))

!((i mod (row-length (M2 ⊗ M3 ))) div (row-length M3 )))
(M3 !((j mod (length (M2 ⊗ M3 ))) mod (length M3 ))

!((i mod (row-length (M2 ⊗ M3 ))) mod (row-length M3 ))))
using matrix-Tensor-elements by auto

then have ∀ i j.
((i < (row-length M1 )∗(row-length M2 )∗(row-length M3 ))

∧(j < (length M1 )∗(length M2 )∗(length M3 ) )
−→

(((M2 ⊗ M3 ))!(j mod (length (M2 ⊗ M3 )))
!(i mod row-length (M2 ⊗ M3 )))

=
f
((M2 )!((j mod (length (M2 ⊗ M3 ))) div (length M3 ))

!((i mod (row-length (M2 ⊗ M3 ))) div (row-length M3 )))
(M3 !((j mod (length (M2 ⊗ M3 ))) mod (length M3 ))

!((i mod (row-length (M2 ⊗ M3 ))) mod (row-length M3 ))))
using 11 by auto

moreover then have ∀ j.(j mod (length (M2 ⊗ M3 ))) mod (length M3 )
= j mod (length M3 )

proof
have ∀ j.((j mod (length (M2 ⊗ M3 )))

= (j mod ((length M2 ) ∗(length M3 ))))
using length-Tensor by auto

moreover have
∀ j.((j mod ((length M2 ) ∗(length M3 ))) mod (length M3 )

= (j mod (length M3 )))
using mod-prop1 by auto

ultimately show ?thesis by auto
qed
moreover then have ∀ i.(i mod (row-length (M2 ⊗ M3 ))) mod (row-length M3 )

= i mod (row-length M3 )
proof
have ∀ i.((i mod (row-length (M2 ⊗ M3 )))

= (i mod ((row-length M2 ) ∗(row-length M3 ))))
using row-length-mat by auto

moreover have ∀ i.((i mod ((row-length M2 )∗(row-length M3 )))
mod (row-length M3 )

= (i mod (row-length M3 )))

56



using mod-prop1 by auto
ultimately show ?thesis by auto

qed
ultimately have 12 :∀ i j.((i < (row-length M1 )

∗(row-length M2 )
∗(row-length M3 ))
∧(j < (length M1 )∗(length M2 )∗(length M3 ) )

−→
(((M2 ⊗ M3 ))!(j mod (length (M2 ⊗ M3 )))

!(i mod row-length (M2 ⊗ M3 )))
= f

((M2 )!((j mod (length (M2 ⊗ M3 ))) div (length M3 ))
!((i mod (row-length (M2 ⊗ M3 ))) div (row-length M3 )))

(M3 !(j mod (length M3 ))!(i mod (row-length M3 ))))
by auto

moreover have ∀ j.(j mod (length (M2 ⊗ M3 ))) div (length M3 )
= (j div (length M3 )) mod (length M2 )

proof−
have ∀ j.((j mod (length (M2 ⊗ M3 )))

= (j mod ((length M2 )∗(length M3 ))))
using length-Tensor by auto

then show ?thesis using mod-div-relation by auto
qed
moreover have ∀ i.(i mod (row-length (M2 ⊗ M3 ))) div (row-length M3 )

= (i div (row-length M3 )) mod (row-length M2 )
proof−
have ∀ i.((i mod (row-length (M2 ⊗ M3 )))

= (i mod ((row-length M2 )∗(row-length M3 ))))
using row-length-mat by auto

then show ?thesis using mod-div-relation by auto
qed
ultimately have ∀ i j.

((i < (row-length M1 )∗(row-length M2 )∗(row-length M3 ))
∧(j < (length M1 )∗(length M2 )∗(length M3 ) )

−→
(((M2 ⊗ M3 ))!(j mod (length (M2 ⊗ M3 )))

!(i mod row-length (M2 ⊗ M3 )))
= f

((M2 )!((j div (length M3 )) mod (length M2 ))
!((i div (row-length M3 )) mod (row-length M2 )))

(M3 !(j mod (length M3 ))!(i mod (row-length M3 ))))
by auto

with 7 have 13 :∀ i j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
((M1 ⊗ (M2 ⊗ M3 ))!j!i)

= f
((M1 )!(j div ((length M2 )∗(length M3 )))

!(i div ((row-length M2 )∗(row-length M3 ))))

57



(f
((M2 )!((j div (length M3 )) mod (length M2 ))!((i div (row-length M3 )) mod

(row-length M2 )))
(M3 !(j mod (length M3 ))

!(i mod (row-length M3 )))))
using length-Tensor row-length-mat by auto

moreover have ∀ i j.( f
((M1 )!(j div ((length M2 )∗(length M3 )))

!(i div ((row-length M2 )∗(row-length M3 ))))
(f
((M2 )!((j div (length M3 )) mod (length M2 ))!((i div (row-length

M3 )) mod (row-length M2 )))
(M3 !(j mod (length M3 ))

!(i mod (row-length M3 )))))
= f (f

((M1 )!(j div ((length M2 )∗(length M3 )))
!(i div ((row-length M2 )∗(row-length M3 ))))

((M2 )!((j div (length M3 )) mod (length M2 ))
!((i div (row-length M3 )) mod (row-length M2 ))))

(M3 !(j mod (length M3 ))
!(i mod (row-length M3 )))

using assoc by auto
with 13 have ∀ i j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))

∧(j < (length M1 )∗(length M2 )∗(length M3 )))
−→

((M1 ⊗ (M2 ⊗ M3 ))!j!i)
= f (f

((M1 )!(j div ((length M2 )∗(length M3 )))
!(i div ((row-length M2 )∗(row-length M3 ))))

((M2 )!((j div (length M3 )) mod (length M2 ))
!((i div (row-length M3 )) mod (row-length M2 ))))

(M3 !(j mod (length M3 ))
!(i mod (row-length M3 ))))

by auto
with step1 have step2 :

∀ i j.(((i<((row-length M1 )∗(row-length M2 )∗(row-length M3 )))
∧(j < (length M1 )∗(length M2 )∗(length M3 )))

−→
((M1 ⊗ (M2 ⊗ M3 ))!j!i) = (((M1 ⊗ M2 ) ⊗ M3 )!j!i))
by auto

moreover have mat ((row-length M1 )∗(row-length M2 )∗(row-length M3 ))
((length M1 )∗(length M2 )∗(length M3 ))

(M1 ⊗ (M2 ⊗ M3 ))
proof−
have mat ((row-length M2 )∗(row-length M3 )) ((length M2 )∗(length M3 )) (M2

⊗ M3 )
using 0 effective-well-defined-Tensor row-length-mat length-Tensor
by auto

moreover have mat ((row-length M1 )∗((row-length (M2 ⊗ M3 ))))

58



((length M1 )∗((length (M2 ⊗ M3 ))))
(M1 ⊗ (M2 ⊗ M3 ))

using 0 effective-well-defined-Tensor row-length-mat length-Tensor
by metis

ultimately show ?thesis using row-length-mat length-Tensor mult.assoc
by (simp add: length-Tensor row-length-mat semigroup-mult-class.mult.assoc)

qed
moreover have mat ((row-length M1 )∗(row-length M2 )∗(row-length M3 ))

((length M1 )∗(length M2 )∗(length M3 ))
((M1 ⊗ M2 ) ⊗ M3 )

proof−
have mat ((row-length M1 )∗(row-length M2 )) ((length M1 )∗(length M2 )) (M1

⊗ M2 )
using 0 effective-well-defined-Tensor row-length-mat length-Tensor by

auto
moreover have mat ((row-length (M1 ⊗ M2 ))∗(row-length M3 ))

((length (M1 ⊗ M2 ))∗(length M3 ))
((M1 ⊗ M2 )⊗ M3 )

using 0 effective-well-defined-Tensor row-length-mat length-Tensor by
metis
ultimately show ?thesis using row-length-mat length-Tensor by (metis mult.assoc)
qed
ultimately show ?thesis using mat-eqI by blast

qed

end

lemma
∧
(a::nat) b.(times a b) =(times b a)

by auto

1.2 Associativity and Distributive properties
locale plus-mult =
mult +
fixes zer :: ′a
fixes g:: ′a ⇒ ′a ⇒ ′a (infixl ‹+› 60 )
fixes inver :: ′a ⇒ ′a
assumes plus-comm: g a b = g b a
assumes plus-assoc: (g (g a b) c) = (g a (g b c))
assumes plus-left-id: g zer x = x
assumes plus-right-id:g x zer = x
assumes plus-left-distributivity: f a (g b c) = g (f a b) (f a c)
assumes plus-right-distributivity: f (g a b) c = g (f a c) (f b c)
assumes plus-left-inverse: (g x (inver x)) = zer

assumes plus-right-inverse: (g (inver x) x) = zer

context plus-mult
begin

59



lemma fixes M1 M2 M3
shows (mat (row-length M1 ) (length M1 ) M1 )

∧(mat (row-length M2 ) (length M2 ) M2 )
∧(mat (row-length M3 ) (length M3 ) M3 )
=⇒ (M1 ⊗ (M2 ⊗ M3 )) = ((M1 ⊗ M2 ) ⊗ M3 )

using associativity by auto

matrix_mult refers to multiplication of matrices in the locale plus_mult
abbreviation matrix-mult:: ′a mat ⇒ ′a mat ⇒ ′a mat (infixl ‹◦› 65 )
where

matrix-mult M1 M2 ≡ (mat-multI zer g f (row-length M1 ) M1 M2 )

definition scalar-product :: ′a vec ⇒ ′a vec ⇒ ′a where
scalar-product v w = scalar-prodI zer g f v w

lemma ma :
assumes wf1 : mat nr n m1

and wf2 : mat n nc m2
and i: i < nr
and j: j < nc

shows mat-multI zer g f nr m1 m2 ! j ! i
= scalar-prodI zer g f (row m1 i) (col m2 j)

using mat-mult-index i j wf1 wf2 by metis

lemma matrix-index:
assumes wf1 : mat (row-length m1 ) n m1

and wf2 : mat n nc m2
and i: i < (row-length m1 )
and j: j < nc

shows matrix-mult m1 m2 ! j ! i
= scalar-product (row m1 i) (col m2 j)

using wf1 wf2 i j ma scalar-product-def by auto

lemma unique-row-col:
assumes mat nr1 nc1 M and mat nr2 nc2 M and M 6= []
shows nr1 = nr2 and nc1 = nc2

proof(cases M )
case Nil
show nr1 = nr2 using assms(3 ) Nil by auto

next
case (Cons v M )
have 1 :v ∈ set (v#M )

using Cons by auto
then have length v = nr1

using assms(1 ) mat-def Ball-def vec-def Cons by metis
moreover then have length v = nr2

using 1 assms(2 ) mat-def Ball-def vec-def Cons by metis

60



ultimately show nr1 = nr2
by auto

next
have length M = nc1

using mat-def assms(1 ) by auto
moreover have length M = nc2

using mat-def assms(2 ) by auto
ultimately show nc1 = nc2

by auto
qed

lemma matrix-mult-index:
assumes m1 6= []
and wf1 : mat nr n m1
and wf2 : mat n nc m2

and i: i < nr
and j: j < nc

shows matrix-mult m1 m2 ! j ! i = scalar-product (row m1 i) (col m2 j)
using matrix-index unique-row-col assms by (metis matrix-row-length)

the following definition checks if the given four matrices are such that the
compositions in the mixed-product property which will be proved, hold true.
It further checks that the matrices are non empty and valid
definition matrix-match:: ′a mat ⇒ ′a mat ⇒ ′a mat ⇒ ′a mat ⇒ bool
where
matrix-match A1 A2 B1 B2 ≡

(mat (row-length A1 ) (length A1 ) A1 )
∧(mat (row-length A2 ) (length A2 ) A2 )
∧(mat (row-length B1 ) (length B1 ) B1 )
∧(mat (row-length B2 ) (length B2 ) B2 )
∧ (length A1 = row-length A2 )
∧ (length B1 = row-length B2 )
∧(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])

lemma non-empty-mat-mult:
assumes wf1 :mat nr n A

and wf2 :mat n nc B
and A 6= [] and B 6= []

shows A ◦ B 6= []
proof−
have mat nr nc (A ◦ B)

using assms(1 ) assms(2 ) mat-mult assms(3 ) matrix-row-length unique-row-col(1 )
by (metis)
then have length (A ◦ B) = nc

using mat-def by auto
moreover have nc > 0
proof−
have length B = nc

61



using assms(2 ) mat-def by auto
then show ?thesis using assms(4 ) by auto

qed
moreover then have length (A ◦ B) > 0

by (metis calculation(1 ))
then show ?thesis by auto

qed

lemma tensor-compose-distribution1 :
assumes wf1 :mat (row-length A1 ) (length A1 ) A1

and wf2 :mat (row-length A2 ) (length A2 ) A2
and wf3 :mat (row-length B1 ) (length B1 ) B1
and wf4 :mat (row-length B2 ) (length B2 ) B2
and matchAA:length A1 = row-length A2
and matchBB:length B1 = row-length B2
and non-Nil:(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])

shows mat ((row-length A1 )∗(row-length B1 ))
((length A2 )∗(length B2 ))

((A1◦A2 )⊗(B1◦B2 ))
proof−
have 0 :mat (row-length A1 ) (length A2 ) (matrix-mult A1 A2 )

using wf1 wf2 mat-mult matchAA by auto
then have 1 :mat (row-length (A1 ◦ A2 )) (length (A1 ◦ A2 )) (matrix-mult A1

A2 )
by (metis matrix-row-length)

then have 2 : (row-length (A1 ◦ A2 )) = (row-length A1 ) and length (A1 ◦ A2 )
= length A2

using non-empty-mat-mult unique-row-col 0
apply (metis length-0-conv mat-empty-column-length non-Nil)
by (metis 0 1 mat-empty-column-length unique-row-col(2 ))

moreover have 3 :mat (row-length B1 ) (length B2 ) (matrix-mult B1 B2 )
using wf3 wf4 matchBB mat-mult by auto

then have 4 :mat (row-length (B1 ◦ B2 )) (length (B1 ◦ B2 )) (matrix-mult B1
B2 )

by (metis matrix-row-length)
then have 5 : (row-length (B1 ◦ B2 )) = (row-length B1 ) and length (B1 ◦ B2 )
= length B2

using non-empty-mat-mult unique-row-col 3
apply (metis length-0-conv mat-empty-column-length non-Nil)
by (metis 3 4 mat-empty-column-length unique-row-col(2 ))

then show ?thesis using 1 4 5 well-defined-Tensor
by (metis 2 calculation(2 ))

qed

lemma effective-tensor-compose-distribution1 :
matrix-match A1 A2 B1 B2 =⇒ mat ((row-length A1 )∗(row-length B1 ))

((length A2 )∗(length B2 ))
((A1◦A2 )⊗(B1◦B2 ))

using tensor-compose-distribution1 unfolding matrix-match-def by auto

62



lemma tensor-compose-distribution2 :
assumes wf1 :mat (row-length A1 ) (length A1 ) A1

and wf2 :mat (row-length A2 ) (length A2 ) A2
and wf3 :mat (row-length B1 ) (length B1 ) B1
and wf4 :mat (row-length B2 ) (length B2 ) B2
and matchAA:length A1 = row-length A2
and matchBB:length B1 = row-length B2
and non-Nil:(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])

shows mat ((row-length A1 )∗(row-length B1 ))
((length A2 )∗(length B2 ))

((A1 ⊗ B1 ) ◦(A2 ⊗B2 ))
proof−
have mat

((row-length A1 )∗(row-length B1 ))
((length A1 )∗(length B1 ))
(A1 ⊗ B1 )

using wf1 wf3 well-defined-Tensor by auto
moreover have mat

((row-length A2 )∗(row-length B2 ))
((length A2 )∗(length B2 ))

(A2⊗ B2 )
using wf2 wf4 well-defined-Tensor by auto

moreover have ((length A1 )∗(length B1 ))
= ((row-length A2 )∗(row-length B2 ))

using matchAA matchBB by auto
ultimately show ?thesis using mat-mult row-length-mat by simp

qed

theorem tensor-non-empty: assumes A 6= [] and B 6= []
shows A ⊗ B 6= []
using assms(1 ) assms(2 ) length-0-conv length-Tensor mult-is-0 by metis

theorem non-empty-distribution:
assumes mat nr1 n1 A1

and mat n1 nc1 A2
and mat nr2 n2 B1
and mat n2 nc2 B2
and A1 6= [] and B1 6= [] and A2 6= [] and B2 6= []

shows ((A1◦A2 )⊗(B1◦B2 )) 6= []
proof−
have A1 ◦ A2 6= []

using assms non-empty-mat-mult by auto
moreover have B1 ◦ B2 6= []

using assms non-empty-mat-mult by auto
ultimately show ?thesis using tensor-non-empty by auto

qed

63



lemma effective-tensor-compose-distribution2 :matrix-match A1 A2 B1 B2 =⇒
mat ((row-length A1 )∗(row-length B1 ))

((length A2 )∗(length B2 ))
((A1 ⊗ B1 ) ◦(A2 ⊗B2 ))

using tensor-compose-distribution2 unfolding matrix-match-def by auto

theorem effective-matrix-Tensor-elements:
fixes M1 M2 i j
assumes i<((row-length M1 )∗(row-length M2 ))

and j < (length M1 )∗(length M2 )
and mat (row-length M1 ) (length M1 ) M1
and mat (row-length M2 ) (length M2 ) M2

shows
((M1 ⊗ M2 )!j!i) = f (M1 !(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod length M2 )!(i mod (row-length M2 )))
using matrix-Tensor-elements assms by auto

theorem effective-matrix-Tensor-elements2 :
fixes M1 M2
assumes mat (row-length M1 ) (length M1 ) M1

and mat (row-length M2 ) (length M2 ) M2
shows
(∀ i <((row-length M1 )∗(row-length M2 )).
∀ j < ((length M1 )∗(length M2 ))

.((M1 ⊗ M2 )!j!i) = f (M1 !(j div (length M2 ))!(i div (row-length M2 )))
(M2 !(j mod length M2 )!(i mod (row-length M2 ))))

using matrix-Tensor-elements assms by auto

definition matrix-compose-cond:: ′a mat ⇒ ′a mat ⇒ ′a mat ⇒ ′a mat ⇒ nat ⇒
nat ⇒ bool
where
matrix-compose-cond A1 A2 B1 B2 i j ≡

(mat (row-length A1 ) (length A1 ) A1 )
∧(mat (row-length A2 ) (length A2 ) A2 )

∧(mat (row-length B1 ) (length B1 ) B1 )
∧(mat (row-length B2 ) (length B2 ) B2 )

∧ (length A1 = row-length A2 )
∧ (length B1 = row-length B2 )
∧(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])

∧(i<(row-length A1 )∗(row-length B1 ))∧(j< (length A2 )∗(length B2 ))

theorem elements-matrix-distribution-1 :
assumes wf1 :mat (row-length A1 ) (length A1 ) A1

and wf2 :mat (row-length A2 ) (length A2 ) A2
and wf3 :mat (row-length B1 ) (length B1 ) B1
and wf4 :mat (row-length B2 ) (length B2 ) B2

64



and matchAA:length A1 = row-length A2
and matchBB:length B1 = row-length B2
and non-Nil:(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])
and i<(row-length A1 )∗(row-length B1 ) and j< (length A2 )∗(length B2 )

shows
((matrix-mult A1 A2 )⊗(matrix-mult B1 B2 ))!j!i
= f (scalar-product (row A1 (i div (row-length B1 )))

(col A2 (j div (length B2 ))))
(scalar-product (row B1 (i mod (row-length B1 )))

(col B2 (j mod (length B2 ))))
proof−
have 0 :((matrix-mult A1 A2 )⊗(matrix-mult B1 B2 )) 6= []

using non-empty-distribution assms by auto
then have 1 :mat ((row-length A1 )∗(row-length B1 ))

((length A2 )∗(length B2 ))
((A1◦A2 )⊗(B1◦B2 ))

using tensor-compose-distribution1 assms by auto
then have 2 :mat (row-length ((A1◦A2 )⊗(B1◦B2 )))

(length ((A1◦A2 )⊗(B1◦B2 )))
((A1◦A2 )⊗(B1◦B2 ))

by (metis matrix-row-length)
then have 3 :((row-length A1 )∗(row-length B1 ))

= (row-length ((A1◦A2 )⊗(B1◦B2 )))
and ((length A2 )∗(length B2 )) = (length ((A1◦A2 )⊗(B1◦B2 )))

using 0 1 unique-row-col
apply metis
using 0 1 2 unique-row-col by metis

then have i:(i < ((row-length A1 )∗(row-length B1 )))
= (i < (row-length ((A1◦A2 )⊗(B1◦B2 ))))

by auto
moreover have j:(j < ((length A2 )∗(length B2 )))

= (j < (length ((A1◦A2 )⊗(B1◦B2 ))))
using 3 ‹length A2 ∗ length B2 = length (A1 ◦ A2 ⊗ B1 ◦ B2 )›
by (metis)

have 4 :mat (row-length A1 ) (length A2 ) (A1 ◦ A2 )
using assms mat-mult by auto

then have 5 :mat (row-length (A1 ◦ A2 )) (length (A1 ◦ A2 )) (A1 ◦ A2 )
using matrix-row-length by (metis)

with 4 have 6 :row-length A1 = row-length (A1 ◦ A2 )
by (metis 0 Tensor .simps(1 ) unique-row-col(1 ))

with 4 5 have 7 :length A2 = length (A1 ◦ A2 )
by (metis mat-empty-column-length unique-row-col(2 ))

then have 8 :mat (row-length B1 ) (length B2 ) (B1 ◦ B2 )
using assms mat-mult by auto

then have 9 :mat (row-length (B1 ◦ B2 )) (length (B1 ◦ B2 )) (B1 ◦ B2 )
using matrix-row-length by (metis)

with 7 8 have 10 :row-length B1 = row-length (B1 ◦ B2 )
by (metis 3 6 assms(8 ) less-nat-zero-code mult-cancel2 mult-is-0 mult.commute

row-length-mat)

65



with 7 8 9 have 11 :length B2 = length (B1 ◦ B2 )
by (metis mat-empty-column-length unique-row-col(2 ))

from 6 10 have 12 :
(i < ((row-length A1 )∗(row-length B1 )))

= (i < (row-length (A1◦A2 ))∗(row-length (B1◦B2 )))
by auto

then have 13 : (i < (row-length (A1◦A2 ))∗(row-length (B1◦B2 )))
using assms by auto

from 7 11 have 14 :
(j < ((length A2 )∗(length B2 )))

= (j < (length (A1◦A2 ))∗(length (B1◦B2 )))
by auto

then have 15 :(j < (length (A1◦A2 ))∗(length (B1◦B2 )))
using assms by auto

then have step-1 :((A1◦A2 )⊗(B1◦B2 ))!j!i
= f ((A1◦A2 )!(j div (length (B1◦B2 )))

!(i div (row-length (B1◦B2 ))))
((B1◦B2 )!(j mod length (B1◦B2 ))

!(i mod (row-length (B1◦B2 ))))
using 5 9 13 15 effective-matrix-Tensor-elements by auto

then have ((A1◦A2 )⊗(B1◦B2 ))!j!i
= f ((A1◦A2 )!(j div (length B2 ))!(i div (row-length B1 )))

((B1◦B2 )!(j mod length B2 )!(i mod (row-length B1 )))
using 10 11 by auto

moreover have ((A1◦A2 )!(j div (length B2 ))!(i div (row-length B1 )))
= (scalar-product (row A1 (i div (row-length B1 )) ) (col A2 (j div

(length B2 )) ))
proof−
have j div (length B2 ) < (length A2 )

using div-left-ineq assms by auto
moreover have i div (row-length B1 ) < (row-length A1 )

using assms div-left-ineq by auto
moreover have mat (length A1 ) (length A2 ) A2

using wf2 matchAA by auto
ultimately show ?thesis using wf1 non-Nil matrix-mult-index by blast

qed
moreover have ((B1◦B2 )!(j mod (length B2 ))!(i mod (row-length B1 )))

= (scalar-product
(row B1 (i mod (row-length B1 )) )
(col B2 (j mod (length B2 ))))

proof−
have j <(length A2 )∗(length B2 )

using assms by auto
then have j mod (length B2 ) < (length B2 )

by (metis calculation less-nat-zero-code mod-less-divisor mult-is-0
neq0-conv)

moreover have i mod (row-length B1 ) < (row-length B1 )
by (metis assms(8 ) less-nat-zero-code mod-less-divisor mult-is-0

neq0-conv)

66



moreover have mat (length B1 ) (length B2 ) B2
using wf4 matchBB by auto

ultimately show ?thesis
using wf3 non-Nil matrix-mult-index by blast

qed
ultimately show ?thesis by auto

qed

lemma effective-elements-matrix-distribution1 :
matrix-compose-cond A1 A2 B1 B2 i j =⇒
((matrix-mult A1 A2 )⊗(matrix-mult B1 B2 ))!j!i
= f (scalar-product (row A1 (i div (row-length B1 ))) (col A2 (j div (length

B2 ))))
(scalar-product (row B1 (i mod (row-length B1 ))) (col B2 (j mod (length

B2 ))))
using elements-matrix-distribution-1 matrix-compose-cond-def by auto

lemma matrix-match-condn-1 :
matrix-match A1 A2 B1 B2

∧((i<(row-length A1 )∗(row-length B1 ))
∧(j<(length A2 )∗(length B2 )))
=⇒ ((matrix-mult A1 A2 )⊗(matrix-mult B1 B2 ))!j!i

= f
(scalar-product

(row A1 (i div (row-length B1 )))
(col A2 (j div (length B2 ))))

(scalar-product
(row B1 (i mod (row-length B1 )))
(col B2 (j mod (length B2 ))))

using elements-matrix-distribution-1 unfolding matrix-match-def by auto

lemma effective-matrix-match-condn-1 :
assumes (matrix-match A1 A2 B1 B2 )
shows ∀ i j.((i<(row-length A1 )∗(row-length B1 ))

∧(j<(length A2 )∗(length B2 ))
−→ ((A1 ◦ A2 )⊗(B1 ◦ B2 ))!j!i

= f
(scalar-product

(row A1 (i div (row-length B1 )))
(col A2 (j div (length B2 ))))

(scalar-product
(row B1 (i mod (row-length B1 )))
(col B2 (j mod (length B2 )))))

using assms matrix-match-condn-1 unfolding matrix-match-def
by auto

theorem elements-matrix-distribution2 :
fixes A1 A2 B1 B2 i j
assumes wf1 :mat (row-length A1 ) (length A1 ) A1

67



and wf2 :mat (row-length A2 ) (length A2 ) A2
and wf3 :mat (row-length B1 ) (length B1 ) B1
and wf4 :mat (row-length B2 ) (length B2 ) B2
and matchAA:length A1 = row-length A2
and matchBB:length B1 = row-length B2
and non-Nil:(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])

and i:i<(row-length A1 )∗(row-length B1 ) and j:j< (length A2 )∗(length
B2 )
shows
((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i
= scalar-product

(vec-vec-Tensor
(row A1 (i div row-length B1 ))
(row B1 (i mod row-length B1 )))

(vec-vec-Tensor
(col A2 (j div length B2 ))
(col B2 (j mod length B2 )))

proof−
have 1 :mat

((row-length A1 )∗(row-length B1 ))
((length A1 )∗(length B1 ))

(A1 ⊗ B1 )
using wf1 wf3 well-defined-Tensor by auto

moreover have 2 :mat
((row-length A2 )∗(row-length B2 ))
((length A2 )∗(length B2 ))

(A2 ⊗ B2 )
using wf2 wf4 well-defined-Tensor by auto

moreover have 3 :((length A1 )∗(length B1 ))
= ((row-length A2 )∗(row-length B2 ))

using matchAA matchBB by auto
ultimately have 4 :((A1⊗B1 )◦(A2⊗B2 ))!j!i

= scalar-product (row (A1 ⊗ B1 ) i) (col (A2 ⊗ B2 ) j)
using i j matrix-mult-index non-Nil mat-mult-index

row-length-mat scalar-product-def
by auto

moreover have (row (A1 ⊗ B1 ) i)
= vec-vec-Tensor

(row A1 (i div row-length B1 ))
(row B1 (i mod row-length B1 ))

using wf1 wf3 i effective-row-formula by auto
moreover have col (A2 ⊗ B2 ) j = vec-vec-Tensor (col A2 (j div length B2 ))
(col B2 (j mod length B2 ))

using wf2 wf4 j col-formula by auto
ultimately show ?thesis by auto
qed

lemma matrix-match-condn-2 :
matrix-match A1 A2 B1 B2

68



∧((i<(row-length A1 )∗(row-length B1 ))
∧(j<(length A2 )∗(length B2 )))
=⇒ ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i

= scalar-product
(vec-vec-Tensor

(row A1 (i div row-length B1 ))
(row B1 (i mod row-length B1 )))

(vec-vec-Tensor
(col A2 (j div length B2 ))
(col B2 (j mod length B2 )))

using elements-matrix-distribution2 unfolding matrix-match-def by auto

lemma effective-matrix-match-condn-2 :
assumes (matrix-match A1 A2 B1 B2 )
shows ∀ i j.((i<(row-length A1 )∗(row-length B1 ))

∧(j<(length A2 )∗(length B2 ))
−→ ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i
= scalar-product

(vec-vec-Tensor
(row A1 (i div row-length B1 ))
(row B1 (i mod row-length B1 )))

(vec-vec-Tensor
(col A2 (j div length B2 ))
(col B2 (j mod length B2 ))))

using assms matrix-match-condn-2 unfolding matrix-match-def by auto

lemma zip-Nil:zip [] [] = []
using zip-def by auto

lemma zer-left-mult:f zer x = zer
proof−
have g zer zer = zer

using plus-left-id by auto
then have f zer x = f (g zer zer) x

by auto
then have f zer x = (f zer x) + (f zer x)

using plus-right-distributivity by auto
then have (f zer x) + (inver (f zer x)) = (f zer x) + (f zer x) + (inver (f zer x))

by auto
then have zer = (f zer x) + zer

using plus-left-inverse plus-assoc by (metis)
then show ?thesis

using plus-right-id by simp
qed

lemma zip-Cons:(length v = length w) =⇒ zip (a#v) (b#w) = (a,b)#(zip v w)
unfolding zip-def by auto

69



lemma scalar-product-times:
∀w1 w2 .(length w1 = length w2 ) ∧(length w1 = n) −→

(f (x∗y) (scalar-product w1 w2 ))
= (scalar-product

(times x w1 )
(times y w2 ))

apply(rule allI )
apply (rule allI )
proof(induct n)
case 0
have (length w1 = length w2 ) ∧(length w1 = 0 ) =⇒ ?case
proof−
assume assms:(length w1 = length w2 ) ∧(length w1 = 0 )
have 1 : w1 = []

using assms by auto
moreover have 2 :(length w1 = length w2 ) ∧(length w1 = 0 ) −→ w2 = []

by auto
ultimately have (length w1 = length w2 ) ∧(length w1 = 0 )

−→ scalar-product w1 w2 = zer
unfolding scalar-product-def scalar-prodI-def by auto

then have 3 :(length w1 = length w2 ) ∧(length w1 = 0 )
−→ (f (x∗y) (scalar-product w1 w2 )) = zer

using comm zer-left-mult by metis
then have times x w1 = []

using 1 by auto
moreover have times y w2 = []

using 2 assms by auto
ultimately have (scalar-product (times x w1 ) ( times y w2 )) = zer

unfolding scalar-product-def scalar-prodI-def by auto
with 3 show ?thesis by auto

qed
then show ?case by auto
next
case (Suc k)
have (length w1 = length w2 ) ∧(length w1 = (Suc k)) =⇒ ?case
proof−
assume assms:(length w1 = length w2 ) ∧(length w1 = (Suc k))
have ∃ a1 u1 .(w1 = a1#u1 )∧(length u1 = k)

using assms by (metis length-Suc-conv)
then obtain a1 u1 where (w1 = a1#u1 )∧(length u1 = k)

by auto
then have Cons-1 :(w1 = a1#u1 )∧(length u1 = k)

by auto
have length w2 = (Suc k)

using assms by auto
then have ∃ a2 u2 .(w2 = a2#u2 )∧(length u2 = k)

using assms by (metis length-Suc-conv)
then obtain a2 u2 where (w2 = a2#u2 )∧(length u2 = k)

70



by auto
then have Cons-2 :(w2 = a2#u2 )∧(length u2 = k)

by auto
then have (length u1 = length u2 )∧(length u1 = k)

using Cons-1 by auto
then have Cons-3 :x ∗ y ∗ scalar-product u1 u2

= scalar-product (times x u1 ) (times y u2 )
using Suc assms by auto

have scalar-product (a1#u1 ) (a2#u2 ) = (a1∗a2 ) + (scalar-product u1 u2 )
unfolding scalar-product-def scalar-prodI-def zip-def by auto

then have scalar-product w1 w2 = (a1∗a2 ) + (scalar-product u1 u2 )
using Cons-1 Cons-2 by auto

then have (x∗y)∗(scalar-product w1 w2 )
= ((x∗y)∗(a1∗a2 )) + ((x∗y)∗(scalar-product u1 u2 ))

using plus-right-distributivity by (metis plus-left-distributivity)
then have Cons-4 :(x∗y)∗(scalar-product w1 w2 )

= (x∗a1∗y∗a2 )+ ((x∗y)∗(scalar-product u1 u2 ))
using comm assoc by metis

have (times x w1 ) = (x∗a1 )#(times x u1 )
using times.simps Cons-1 by auto

moreover have (times y w2 ) = (y∗a2 )#(times y u2 )
using times.simps Cons-2 by auto

ultimately have Cons-5 :scalar-product (times x w1 ) (times y w2 )
= scalar-product

((x∗a1 )#(times x u1 ))
((y∗a2 )#(times y u2 ))

by auto
then have ... = ((x∗a1 )∗(y∗a2 ))

+ scalar-product (times x u1 ) (times y u2 )
unfolding scalar-product-def scalar-prodI-def zip-def by auto

with Cons-3 Cons-4 Cons-5 show ?thesis using assoc by auto
qed
then show ?case by auto

qed

lemma effective-scalar-product-times:
assumes (length w1 = length w2 )
shows (f (x∗y) (scalar-product w1 w2 ))

= (scalar-product (times x w1 ) ( times y w2 ))
using scalar-product-times assms by auto

lemma zip-append:(length zs = length ws)∧(length xs = length ys)
=⇒ (zip (xs@zs) (ys@ws)) = (zip xs ys)@(zip zs ws)

using zip-append1 zip-append2 by auto

lemma scalar-product-append:

71



∀ xs ys zs ws.(length zs = length ws)
∧(length xs = length ys)
∧(length xs = n) −→

(scalar-product (xs@zs) (ys@ws))
= (scalar-product xs ys)

+(scalar-product zs ws)
apply(rule allI )
apply(rule allI )
apply(rule allI )
apply(rule allI )
proof(induct n)
case 0
have (length zs = length ws) ∧(length xs = length ys) ∧(length xs = 0 )

=⇒
(scalar-product (xs@zs) (ys@ws))

= (scalar-product xs ys)
+(scalar-product zs ws)

proof−
assume assms:(length zs = length ws)∧(length xs = length ys)

∧(length xs = 0 )
have 1 :xs = []

using assms by auto
moreover have 2 :ys = []

using assms by auto
ultimately have scalar-product xs ys = zer

unfolding scalar-product-def scalar-prodI-def zip-def by auto
then have (scalar-product xs ys)+(scalar-product zs ws)

= (scalar-product zs ws)
using plus-left-id by auto

moreover have (scalar-product (xs@zs) (ys@ws)) = (scalar-product zs ws)
using 1 2 by auto

ultimately show ?thesis by auto
qed

then show ?case by auto
next
case (Suc k)
have (length zs = length ws)∧(length xs = length ys)∧(length xs = (Suc k)) =⇒

(scalar-product (xs@zs) (ys@ws))
= (scalar-product xs ys)

+(scalar-product zs ws)
proof−
assume assms:(length zs = length ws)

∧(length xs = length ys)
∧(length xs = (Suc k))

have ∃ x xss.(xs = x#xss)∧(length xss = k)
using assms by (metis Suc-length-conv)

then obtain x xss where (xs = x#xss)∧(length xss = k)
by auto

then have 1 :(xs = x#xss)∧(length xss = k)

72



by auto
have ∃ y yss.(ys = y#yss)∧(length yss = k)

using assms by (metis Suc-length-conv)
then obtain y yss where (ys = y#yss)∧(length yss = k)

by auto
then have 2 :(ys = y#yss)∧(length yss = k)

by auto
with 1 have length xss = length yss ∧ length xss = k

by auto
then have 3 :(scalar-product (xss@zs) (yss@ws))

= (scalar-product xss yss)
+(scalar-product zs ws)

using 1 2 assms Suc by auto
then have 4 :(scalar-product ((x#xss)@zs) ((y#yss)@ws)) =

(scalar-product (x#(xss@zs)) (y#(yss@ws)))
by auto

then have ... = (x∗y) + (scalar-product (xss@zs) (yss@ws))
unfolding scalar-product-def scalar-prodI-def
using zip-Cons scalar-prodI-def scalar-prod-cons
by (metis)

with 4 have 5 :(scalar-product (xs@zs) ((ys)@ws))
= (x∗y) + (scalar-product (xss@zs) (yss@ws))

using 1 2 by auto
moreover have (scalar-product xs ys) = (x∗y) + (scalar-product xss yss)

unfolding scalar-product-def scalar-prodI-def
using zip-Cons
by (metis 1 2 scalar-prodI-def scalar-prod-cons)

moreover then have (scalar-product xs ys)+(scalar-product zs ws)
= (x∗y)

+ (scalar-product xss yss)
+ (scalar-product zs ws)

by auto
ultimately show ?thesis using 3 plus-assoc by auto

qed
then show ?case by auto

qed

lemma effective-scalar-product-append:
assumes length zs = length ws and (length xs = length ys)
shows (scalar-product (xs@zs) (ys@ws)) = (scalar-product xs ys)+(scalar-product

zs ws)
using scalar-product-append assms by auto

lemma scalar-product-distributivity:
∀ v1 v2 w1 w2 .((length v1 = length v2 )∧(length v1 = n)∧ (length w1 = length w2 )

−→ (scalar-product v1 v2 )∗(scalar-product w1 w2 )
= scalar-product (vec-vec-Tensor v1 w1 ) (vec-vec-Tensor v2 w2 ))

apply (rule allI )
apply (rule allI )

73



apply (rule allI )
apply (rule allI )
proof(induct n)
case 0
have ((length v1 = length v2 )∧(length v1 = 0 )∧ (length w1 = length w2 ))

−→length v1 = 0
using 0 by auto

then have 1 :((length v1 = length v2 )
∧(length v1 = 0 )
∧(length w1 = length w2 ))

−→v1 = []
by auto

moreover have ((length v1 = length v2 )
∧(length v1 = 0 )
∧(length w1 = length w2 ))

−→length v2 = 0
using 0 by auto

moreover then have 2 :((length v1 = length v2 )
∧(length v1 = 0 )
∧(length w1 = length w2 ))

−→v2 = []
by auto

ultimately have 3 :
((length v1 = length v2 )∧(length v1 = 0 )∧ (length w1 = length w2 ))
−→scalar-product v1 v2 = zer

unfolding scalar-product-def scalar-prodI-def using zip-Nil by auto
then have 4 :f zer (scalar-product w1 w2 ) = zer

using zer-left-mult by auto
have ((length v1 = length v2 )∧(length v1 = 0 )∧ (length w1 = length w2 ))

−→vec-vec-Tensor v1 w1 = []
using 1 by auto

moreover have ((length v1 = length v2 )
∧(length v1 = 0 )
∧(length w1 = length w2 ))
−→vec-vec-Tensor v2 w2 = []

using 2 by auto
ultimately have ((length v1 = length v2 )

∧(length v1 = 0 )
∧(length w1 = length w2 ))

−→ scalar-product
(vec-vec-Tensor v1 w1 )
(vec-vec-Tensor v2 w2 ) = zer

unfolding scalar-product-def scalar-prodI-def using zip-Nil by auto
with 3 4 show ?case by auto

next
case (Suc k)
have ((length v1 = length v2 )∧(length v1 = Suc k)

∧ (length w1 = length w2 ))
=⇒ f (scalar-product v1 v2 ) (scalar-product w1 w2 )

74



= scalar-product (vec-vec-Tensor v1 w1 ) (vec-vec-Tensor v2 w2 )
proof−
assume assms:((length v1 = length v2 )∧(length v1 = Suc k)

∧ (length w1 = length w2 ))
have length v1 = Suc k

using Suc assms by auto
then have (∃ a1 u1 .(v1 = a1#u1 )∧(length u1 = k))

using assms Suc-length-conv by metis
then obtain a1 u1 where (v1 = a1#u1 )∧(length u1 = k)

using assms by auto
then have Cons-1 :(v1 = a1#u1 )∧(length u1 = k)

by auto
moreover have length v2 = Suc k

using assms Suc by auto
then have (∃ a2 u2 .(v2 = a2#u2 )∧(length u2 = k))

using Suc-length-conv by metis
then obtain a2 u2 where (v2 = a2#u2 )∧(length u2 = k)

by auto
then have Cons-2 : (v2 = a2#u2 )∧(length u2 = k)

by simp
then have length u1 = length u2

using Cons-1 by auto
then have Cons-3 :(scalar-product u1 u2 ) ∗ scalar-product w1 w2 =

scalar-product (vec-vec-Tensor u1 w1 ) (vec-vec-Tensor u2 w2 )
using Suc Cons-1 Cons-2 assms by auto

then have zip v1 v2 = (a1 ,a2 )#(zip u1 u2 )
using zip-Cons Cons-1 Cons-2 by auto

then have Cons-4 :scalar-product v1 v2 = (a1∗a2 )+ (scalar-product u1 u2 )
unfolding scalar-product-def scalar-prodI-def by auto

then have f (scalar-product v1 v2 ) (scalar-product w1 w2 )
= ((a1∗a2 )+ (scalar-product u1 u2 ))∗(scalar-product w1 w2 )

by auto
then have ... = ((a1∗a2 )∗(scalar-product w1 w2 ))

+ ((scalar-product u1 u2 )∗(scalar-product w1 w2 ))
using plus-right-distributivity by auto

then have Cons-5 :... = ((a1∗a2 )∗(scalar-product w1 w2 ))
+ scalar-product (vec-vec-Tensor u1 w1 ) (vec-vec-Tensor u2 w2 )

using Cons-3 by auto
then have Cons-6 :... = (scalar-product (times a1 w1 ) (times a2 w2 ))

+ scalar-product (vec-vec-Tensor u1 w1 ) (vec-vec-Tensor u2 w2 )
using assms effective-scalar-product-times by auto

then have scalar-product (vec-vec-Tensor v1 w1 ) (vec-vec-Tensor v2 w2 )
= scalar-product (vec-vec-Tensor (a1#u1 ) w1 ) (vec-vec-Tensor

(a2#u2 ) w2 )
using Cons-1 Cons-2 by auto

moreover have (vec-vec-Tensor (a1#u1 ) w1 ) = (times a1 w1 )@(vec-vec-Tensor
u1 w1 )

using vec-vec-Tensor .simps by auto
moreover have (vec-vec-Tensor (a2#u2 ) w2 ) = (times a2 w2 )@(vec-vec-Tensor

75



u2 w2 )
using vec-vec-Tensor .simps by auto

ultimately have Cons-7 :scalar-product (vec-vec-Tensor v1 w1 ) (vec-vec-Tensor
v2 w2 )

= scalar-product ((times a1 w1 )@(vec-vec-Tensor u1 w1 ))
((times a2 w2 )@(vec-vec-Tensor u2 w2 ))

by auto
moreover have length (vec-vec-Tensor u2 w2 ) = length (vec-vec-Tensor u1

w1 )
using assms by (metis Cons-1 Cons-2 vec-vec-Tensor-length)

moreover have length (times a1 w1 ) = (length (times a2 w2 ))
using assms by (metis preserving-length)

ultimately have scalar-product ((times a1 w1 )@(vec-vec-Tensor u1 w1 ))
((times a2 w2 )@(vec-vec-Tensor u2 w2 )) =

(scalar-product (times a1 w1 ) (times a2 w2 ))
+ scalar-product (vec-vec-Tensor u1 w1 ) (vec-vec-Tensor u2 w2 )

using effective-scalar-product-append by auto
then show ?thesis

using Cons-6 Cons-7 ‹a1 ∗ a2 + scalar-product u1 u2 ∗ scalar-product
w1 w2

= a1 ∗ a2 ∗ scalar-product w1 w2
+ (scalar-product u1 u2 ∗ scalar-product w1 w2 )›

by (metis Cons-3 Cons-4 )
qed
then show ?case by auto

qed

lemma effective-scalar-product-distributivity:
assumes length v1 = length v2 and length w1 = length w2
shows (scalar-product v1 v2 )∗(scalar-product w1 w2 )

= scalar-product (vec-vec-Tensor v1 w1 ) (vec-vec-Tensor v2 w2 )
using assms scalar-product-distributivity by auto

lemma row-length-constant:assumes mat nr nc A and j < length A
shows length (A!j) = (row-length A)

proof(cases A)
case Nil

have length (A!j) = 0
using assms(2 ) Nil by auto

then show ?thesis using assms(2 ) Nil row-length-Nil by (metis)
next
case (Cons v B)
have 1 :∀ x. ((x ∈ set A) −→ length x = nr)

using assms unfolding mat-def Ball-def vec-def by auto
moreover have (A!j) ∈ set A

using assms(2 ) by auto
ultimately have 2 :length (A!j) = nr

by auto

76



have hd A ∈ set A
using hd-def Cons by auto

then have row-length A = nr
using row-length-def 1 by auto

then show ?thesis using 2 by auto
qed

theorem row-col-match:
fixes A1 A2 B1 B2 i j
assumes wf1 :mat (row-length A1 ) (length A1 ) A1

and wf2 :mat (row-length A2 ) (length A2 ) A2
and wf3 :mat (row-length B1 ) (length B1 ) B1
and wf4 :mat (row-length B2 ) (length B2 ) B2
and matchAA:length A1 = row-length A2
and matchBB:length B1 = row-length B2
and non-Nil:(A1 6= [])∧(A2 6= [])∧(B1 6= [])∧(B2 6= [])
and i:i<(row-length A1 )∗(row-length B1 ) and j:j< (length A2 )∗(length B2 )

shows length (row A1 (i div (row-length B1 )))
= length (col A2 (j div (length B2 )))

and length (row B1 (i mod (row-length B1 )))
= length (col B2 (j mod (length B2 )))

proof−
have i div (row-length B1 ) < row-length A1

using i by (metis div-left-ineq)
then have 1 :length (row A1 (i div (row-length B1 ))) = length A1

unfolding row-def by auto
have j div (length B2 )< length A2

using j by (metis div-left-ineq)
then have 2 :length (col A2 (j div (length B2 ))) = row-length A2

using row-length-constant wf2 unfolding col-def by auto
with 1 matchAA show length (row A1 (i div (row-length B1 )))=length (col A2
(j div (length B2 )))

by auto
have i mod (row-length B1 ) < row-length B1

using i by (metis less-nat-zero-code mod-less-divisor mult-is-0 neq0-conv)
then have 2 :length (row B1 (i mod (row-length B1 ))) = length B1

unfolding row-def by auto
have j mod (length B2 ) < length B2

using j by (metis less-nat-zero-code mod-less-divisor mult-is-0 neq0-conv)
then have length (col B2 (j mod (length B2 ))) = row-length B2

using row-length-constant wf4 unfolding col-def by auto
with 2 matchBB show length (row B1 (i mod (row-length B1 ))) = length (col

B2 (j mod (length B2 )))
by auto

qed

77



lemma effective-row-col-match: assumes matrix-match A1 A2 B1 B2
shows ∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length A2 )∗(length B2 )))

−→length (row A1 (i div (row-length B1 ))) = length (col A2 (j div (length
B2 )))
∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length A2 )∗(length B2 )))

−→length (row B1 (i mod (row-length B1 ))) = length (col B2 (j mod
(length B2 )))
using assms row-col-match unfolding matrix-match-def by auto

theorem prelim-element-match:
matrix-match A1 A2 B1 B2 =⇒ (∀ i j.((i<(row-length A1 )∗(row-length B1 ))

∧(j<(length A2 )∗(length B2 )))
−→

(((A1 ◦ A2 )⊗(B1 ◦ B2 ))!j!i
= ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i))

proof−
assume assms:matrix-match A1 A2 B1 B2
have 1 :matrix-match A1 A2 B1 B2

using assms matrix-compose-cond-def by auto
then have 2 :

∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length A2 )∗(length B2 )))
−→
(((A1 ◦ A2 )⊗(B1 ◦ B2 ))!j!i

= (scalar-product
(row A1 (i div (row-length B1 ))) (col A2 (j div (length B2 ))))
∗(scalar-product
(row B1 (i mod (row-length B1 ))) (col B2 (j mod (length B2 )))))

using effective-matrix-match-condn-1 assms by metis
moreover from 1 have 3 :∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length
A2 )∗(length B2 ))) −→

((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i =
scalar-product

(vec-vec-Tensor (row A1 (i div row-length B1 )) (row B1 (i mod row-length
B1 )))

(vec-vec-Tensor (col A2 (j div length B2 )) (col B2 (j mod length B2 )))
using effective-matrix-match-condn-2 by auto

have ∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length A2 )∗(length B2 )))

−→length (row A1 (i div (row-length B1 )))
= length (col A2 (j div (length B2 )))

and ∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length A2 )∗(length B2 )))
−→ length (row B1 (i mod (row-length B1 )))

= length (col B2 (j mod (length B2 )))
using assms effective-row-col-match by auto

then have ∀ i j. ((i<(row-length A1 )∗(row-length B1 ))∧(j<(length A2 )∗(length
B2 )))

−→

78



(scalar-product (row A1 (i div (row-length B1 ))) (col A2 (j div (length
B2 ))))

∗(scalar-product (row B1 (i mod (row-length B1 ))) (col B2 (j mod
(length B2 ))))

= scalar-product
(vec-vec-Tensor (row A1 (i div row-length B1 )) (row B1 (i mod row-length

B1 )))
(vec-vec-Tensor (col A2 (j div length B2 )) (col B2 (j mod length B2 )))

using effective-scalar-product-distributivity by auto
then show ?thesis using 2 3 by auto

qed

theorem element-match:
matrix-match A1 A2 B1 B2 =⇒(∀ i<((row-length A1 )∗(row-length B1 )).

∀ j<((length A2 )∗(length B2 )).
(((A1 ◦ A2 )⊗(B1 ◦ B2 ))!j!i

= ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i))
using prelim-element-match by auto

lemma application: fixes m1 m2
shows ∀m1 m2 .(mat nr nc m1 )

∧(mat nr nc m2 )
∧(∀ j < nc. ∀ i < nr . m1 ! j ! i = m2 ! j ! i)

−→ (m1 = m2 )
using mat-eqI by blast

theorem tensor-compose-condn:
assumes wf1 :mat nr nc ((A1◦A2 )⊗(B1◦B2 ))

and wf2 :mat nr nc ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))
and wf3 :∀ j<nc.∀ i<nr .(((A1 ◦ A2 )⊗(B1 ◦B2 ))!j!i

= ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i)
shows ((A1 ◦ A2 ) ⊗ (B1 ◦ B2 ))

= ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))
using application wf1 wf2 wf3 by blast

The following theorem gives us the distributivity relation of tensor product
with matrix multiplication
theorem distributivity:
assumes matrix-match A1 A2 B1 B2
shows ((A1 ◦ A2 )⊗(B1◦B2 )) = ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))

proof−
let ?nr = ((row-length A1 )∗(row-length B1 ))
let ?nc = ((length A2 )∗(length B2 ))
have mat ?nr ?nc ((A1◦A2 )⊗(B1◦B2 ))

by (metis assms effective-tensor-compose-distribution1 )
moreover have mat ?nr ?nc ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))

using assms by (metis effective-tensor-compose-distribution2 )
moreover have ∀ j<?nc.∀ i<?nr .

79



(((A1 ◦ A2 )⊗(B1 ◦B2 ))!j!i
= ((A1 ⊗ B1 )◦(A2 ⊗ B2 ))!j!i)

using element-match assms by auto
ultimately show ?thesis

using application by blast
qed

end

end

80


	Tensor Product of Matrices
	Defining the Tensor Product
	Associativity and Distributive properties


