Abstract

This article provides a formalisation of Snyder’s simple and elegant proof of the Mason–Stothers theorem [2, 1], which is the polynomial analogue of the famous abc Conjecture for integers. Remarkably, Snyder found this very elegant proof when he was still a high-school student.

In short, the statement of the theorem is that three non-zero co-prime polynomials A, B, C over a field which sum to 0 and do not all have vanishing derivatives fulfil $\max\{\deg(A), \deg(B), \deg(C)\} < \deg(\text{rad}(ABC))$ where rad(P) denotes the radical of P, i.e. the product of all unique irreducible factors of P.

This theorem also implies a kind of polynomial analogue of Fermat’s Last Theorem for polynomials: except for trivial cases, $A^n + B^n + C^n = 0$ implies $n \leq 2$ for coprime polynomials A, B, C over a field.
1 The Mason–Stother’s Theorem

theory Mason-Stothers
imports HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial
begin

1.1 Auxiliary material
hide-const (open) Formal-Power-Series.radical

lemma degree-div:
 assumes a dvd b
 shows \text{degree}\ (b \text{ div } a) = \text{degree } b - \text{degree } a
⟨proof⟩

lemma degree-pderiv-le:
 shows \text{degree } (\text{pderiv } p) \leq \text{degree } p - 1
⟨proof⟩

lemma degree-pderiv-less:
 assumes pderiv p \neq 0
 shows \text{degree } (\text{pderiv } p) < \text{degree } p
⟨proof⟩

lemma pderiv-eq-0:
 assumes degree p = 0
 shows pderiv p = 0
⟨proof⟩

1.2 Definition of a radical
The following definition of a radical is generic for any factorial semiring.
context factorial-semiring
begin

definition radical :: 'a ⇒ 'a where
 radical x = (if x = 0 then 0 else \prod (prime-factors x))

lemma radical-0 [simp]: radical 0 = 0
⟨proof⟩

lemma radical-nonzero: x \neq 0 ⇒ radical x = \prod (prime-factors x)
⟨proof⟩

lemma radical-eq-0-iff [simp]: radical x = 0 ⇔ x = 0
⟨proof⟩
lemma prime-factorization-radical [simp]:
 assumes x ≠ 0
 shows prime-factorization (radical x) = mset-set (prime-factors x)
 (proof)

lemma prime-factors-radical [simp]: x ≠ 0 ⟹ prime-factors (radical x) = prime-factors x
 (proof)

lemma radical-dvd [simp, intro]: radical x dvd x
 (proof)

lemma multiplicity-radical-prime:
 assumes prime p x ≠ 0
 shows multiplicity p (radical x) = (if p dvd x then 1 else 0)
 (proof)

lemma radical-1 [simp]: radical 1 = 1
 (proof)

lemma radical-unit [simp]: is-unit x ⟹ radical x = 1
 (proof)

lemma prime-factors-power:
 assumes n > 0
 shows prime-factors (x ^ n) = prime-factors x
 (proof)

lemma radical-power [simp]: n > 0 ⟹ radical (x ^ n) = radical x
 (proof)

end

context factorial-semiring-gcd

begin

lemma radical-mult-coprime:
 assumes coprime a b
 shows radical (a * b) = radical a * radical b
 (proof)

lemma multiplicity-le-imp-dvd':
 assumes x ≠ 0 /\ p. p ∈ prime-factors x ⟹ multiplicity p x ≤ multiplicity p y
 shows x dvd y
 (proof)

end
1.3 Main result

The following proofs are basically a one-to-one translation of Franz Lemmermeyer’s presentation [1] of Snyder’s proof of the Mason–Stothers theorem.

lemma prime-power-dvd-pderiv:
 fixes f p :: 'a :: {factorial-ring-gcd, field} poly
 assumes prime-elem p
defines n ≡ multiplicity p f - 1
shows p ^ n dvd pderiv f
 ⟨proof⟩

lemma poly-div-radical-dvd-pderiv:
 fixes p :: 'a :: {factorial-ring-gcd, field} poly
shows p div radical p dvd pderiv p
 ⟨proof⟩

lemma degree-pderiv-mult-less:
 assumes pderiv C ≠ 0
shows degree (pderiv C * B) < degree B + degree C
 ⟨proof⟩

lemma Mason-Stothers-aux:
 fixes A B C :: 'a :: {factorial-ring-gcd, field} poly
 assumes nz: A ≠ 0 B ≠ 0 C ≠ 0 and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
 and deg-ge: degree A ≥ degree (radical (A * B * C))
s shows pderiv A = 0 pderiv B = 0 pderiv C = 0
 ⟨proof⟩

corollary Mason-Stothers-char-0:
 fixes A B C :: 'a :: {factorial-ring-gcd, field-char-0} poly
 assumes nz: A ≠ 0 B ≠ 0 C ≠ 0 and deg: ∃p∈{A,B,C}. degree p ≠ 0
 and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
 shows Max {degree A, degree B, degree C} < degree (radical (A * B * C))
 ⟨proof⟩

The result can be simplified a bit more in fields of characteristic 0:

corollary Mason-Stothers-char-0:
 fixes A B C :: 'a :: {factorial-ring-gcd, field-char-0} poly
 assumes nz: A ≠ 0 B ≠ 0 C ≠ 0 and deg: ∃p∈{A,B,C}. degree p ≠ 0
 and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
 shows Max {degree A, degree B, degree C} < degree (radical (A * B * C))
 ⟨proof⟩

As a nice corollary, we get a kind of analogue of Fermat’s last theorem for polynomials: Given non-zero polynomials A, B, C with \(A^n + B^n + C^n = 0 \) on lowest terms, we must either have \(n ≤ 2 \) or \((A^n)' = (B^n)' = (C^n)' = 0 \).

In the case of a field with characteristic 0, this last possibility is equivalent to A, B, and C all being constant.
corollary fermat-poly:
 fixes A B C :: 'a :: {factorial-ring-gcd, field} poly
 assumes sum: A ° n + B ° n + C ° n = 0 and cop: Gcd \{A, B, C\} = 1
 assumes nz: A ≠ 0 B ≠ 0 C ≠ 0 and deg: \exists p \in \{A,B,C\}. pderiv (p ° n) ≠ 0
 shows n ≤ 2
\langle proof \rangle
end

\corollary fermat-poly-char-0:
 fixes A B C :: 'a :: {factorial-ring-gcd, field-char-0} poly
 assumes sum: A ° n + B ° n + C ° n = 0 and cop: Gcd \{A, B, C\} = 1
 assumes nz: A ≠ 0 B ≠ 0 C ≠ 0 and deg: \exists p \in \{A,B,C\}. degree p > 0
 shows n ≤ 2
\langle proof \rangle
end
References
