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Abstract

This article provides a formalisation of Snyder’s simple and ele-
gant proof of the Mason–Stothers theorem [2, 1], which is the polyno-
mial analogue of the famous abc Conjecture for integers. Remarkably,
Snyder found this very elegant proof when he was still a high-school
student.

In short, the statement of the theorem is that three non-zero co-
prime polynomials A, B, C over a field which sum to 0 and do not
all have vanishing derivatives fulfil max{deg(A), deg(B), deg(C)} <
deg(rad(ABC)) where rad(P ) denotes the radical of P , i. e. the product
of all unique irreducible factors of P .

This theorem also implies a kind of polynomial analogue of Fermat’s
Last Theorem for polynomials: except for trivial cases, An+Bn+Cn =
0 implies n ≤ 2 for coprime polynomials A, B, C over a field.
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1 The Mason–Stother’s Theorem
theory Mason-Stothers
imports

HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial

begin

1.1 Auxiliary material
hide-const (open) Formal-Power-Series.radical

lemma degree-div:
assumes a dvd b
shows degree (b div a) = degree b − degree a
〈proof 〉

lemma degree-pderiv-le:
shows degree (pderiv p) ≤ degree p − 1
〈proof 〉

lemma degree-pderiv-less:
assumes pderiv p 6= 0
shows degree (pderiv p) < degree p
〈proof 〉

lemma pderiv-eq-0 :
assumes degree p = 0
shows pderiv p = 0
〈proof 〉

1.2 Definition of a radical

The following definition of a radical is generic for any factorial semiring.
context factorial-semiring
begin

definition radical :: ′a ⇒ ′a where
radical x = (if x = 0 then 0 else

∏
(prime-factors x))

lemma radical-0 [simp]: radical 0 = 0
〈proof 〉

lemma radical-nonzero: x 6= 0 =⇒ radical x =
∏

(prime-factors x)
〈proof 〉

lemma radical-eq-0-iff [simp]: radical x = 0 ←→ x = 0
〈proof 〉
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lemma prime-factorization-radical [simp]:
assumes x 6= 0
shows prime-factorization (radical x) = mset-set (prime-factors x)
〈proof 〉

lemma prime-factors-radical [simp]: x 6= 0 =⇒ prime-factors (radical x) = prime-factors
x
〈proof 〉

lemma radical-dvd [simp, intro]: radical x dvd x
〈proof 〉

lemma multiplicity-radical-prime:
assumes prime p x 6= 0
shows multiplicity p (radical x) = (if p dvd x then 1 else 0 )
〈proof 〉

lemma radical-1 [simp]: radical 1 = 1
〈proof 〉

lemma radical-unit [simp]: is-unit x =⇒ radical x = 1
〈proof 〉

lemma prime-factors-power :
assumes n > 0
shows prime-factors (x ^ n) = prime-factors x
〈proof 〉

lemma radical-power [simp]: n > 0 =⇒ radical (x ^ n) = radical x
〈proof 〉

end

context factorial-semiring-gcd
begin

lemma radical-mult-coprime:
assumes coprime a b
shows radical (a ∗ b) = radical a ∗ radical b
〈proof 〉

lemma multiplicity-le-imp-dvd ′:
assumes x 6= 0

∧
p. p ∈ prime-factors x =⇒ multiplicity p x ≤ multiplicity p y

shows x dvd y
〈proof 〉

end
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1.3 Main result

The following proofs are basically a one-to-one translation of Franz Lemmer-
meyer’s presentation [1] of Snyder’s proof of the Mason–Stothers theorem.
lemma prime-power-dvd-pderiv:

fixes f p :: ′a :: field-gcd poly
assumes prime-elem p
defines n ≡ multiplicity p f − 1
shows p ^ n dvd pderiv f
〈proof 〉

lemma poly-div-radical-dvd-pderiv:
fixes p :: ′a :: field-gcd poly
shows p div radical p dvd pderiv p
〈proof 〉

lemma degree-pderiv-mult-less:
assumes pderiv C 6= 0
shows degree (pderiv C ∗ B) < degree B + degree C
〈proof 〉

lemma Mason-Stothers-aux:
fixes A B C :: ′a :: field-gcd poly
assumes nz: A 6= 0 B 6= 0 C 6= 0 and sum: A + B + C = 0 and coprime: Gcd
{A, B, C} = 1

and deg-ge: degree A ≥ degree (radical (A ∗ B ∗ C ))
shows pderiv A = 0 pderiv B = 0 pderiv C = 0

〈proof 〉

theorem Mason-Stothers:
fixes A B C :: ′a :: field-gcd poly
assumes nz: A 6= 0 B 6= 0 C 6= 0 ∃ p∈{A,B,C}. pderiv p 6= 0

and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
shows Max {degree A, degree B, degree C} < degree (radical (A ∗ B ∗ C ))

〈proof 〉

The result can be simplified a bit more in fields of characteristic 0:
corollary Mason-Stothers-char-0 :

fixes A B C :: ′a :: {field-gcd, field-char-0} poly
assumes nz: A 6= 0 B 6= 0 C 6= 0 and deg: ∃ p∈{A,B,C}. degree p 6= 0

and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
shows Max {degree A, degree B, degree C} < degree (radical (A ∗ B ∗ C ))

〈proof 〉

As a nice corollary, we get a kind of analogue of Fermat’s last theorem for
polynomials: Given non-zero polynomials A, B, C with An + Bn + Cn = 0
on lowest terms, we must either have n ≤ 2 or (An)′ = (Bn)′ = (Cn)′ = 0.
In the case of a field with characteristic 0, this last possibility is equivalent
to A, B, and C all being constant.
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corollary fermat-poly:
fixes A B C :: ′a :: field-gcd poly
assumes sum: A ^ n + B ^ n + C ^ n = 0 and cop: Gcd {A, B, C} = 1
assumes nz: A 6= 0 B 6= 0 C 6= 0 and deg: ∃ p∈{A,B,C}. pderiv (p ^ n) 6= 0
shows n ≤ 2
〈proof 〉

corollary fermat-poly-char-0 :
fixes A B C :: ′a :: {field-gcd,field-char-0} poly
assumes sum: A ^ n + B ^ n + C ^ n = 0 and cop: Gcd {A, B, C} = 1
assumes nz: A 6= 0 B 6= 0 C 6= 0 and deg: ∃ p∈{A,B,C}. degree p > 0
shows n ≤ 2
〈proof 〉

end
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