
The Mason–Stothers theorem

Manuel Eberl

March 17, 2025

Abstract

This article provides a formalisation of Snyder’s simple and ele-
gant proof of the Mason–Stothers theorem [2, 1], which is the polyno-
mial analogue of the famous abc Conjecture for integers. Remarkably,
Snyder found this very elegant proof when he was still a high-school
student.

In short, the statement of the theorem is that three non-zero co-
prime polynomials A, B, C over a field which sum to 0 and do not
all have vanishing derivatives fulfil max{deg(A), deg(B), deg(C)} <
deg(rad(ABC)) where rad(P) denotes the radical of P , i. e. the product
of all unique irreducible factors of P .

This theorem also implies a kind of polynomial analogue of Fermat’s
Last Theorem for polynomials: except for trivial cases, An+Bn+Cn =
0 implies n ≤ 2 for coprime polynomials A, B, C over a field.

Contents
1 The Mason–Stother’s Theorem 2

1.1 Auxiliary material . 2
1.2 Definition of a radical . 2
1.3 Main result . 4

1

1 The Mason–Stother’s Theorem
theory Mason-Stothers
imports

HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial

begin

1.1 Auxiliary material
hide-const (open) Formal-Power-Series.radical

lemma degree-div:
assumes a dvd b
shows degree (b div a) = degree b − degree a
using assms by (cases a = 0 ; cases b = 0) (auto elim!: dvdE simp: degree-mult-eq)

lemma degree-pderiv-le:
shows degree (pderiv p) ≤ degree p − 1
by (rule degree-le, cases degree p = 0) (auto simp: coeff-pderiv coeff-eq-0)

lemma degree-pderiv-less:
assumes pderiv p 6= 0
shows degree (pderiv p) < degree p

proof −
have degree (pderiv p) ≤ degree p − 1

by (rule degree-pderiv-le)
also have degree p 6= 0

using assms by (auto intro!: Nat.gr0I elim!: degree-eq-zeroE)
hence degree p − 1 < degree p by simp
finally show ?thesis .

qed

lemma pderiv-eq-0 :
assumes degree p = 0
shows pderiv p = 0
using assms by (auto elim!: degree-eq-zeroE)

1.2 Definition of a radical

The following definition of a radical is generic for any factorial semiring.
context factorial-semiring
begin

definition radical :: ′a ⇒ ′a where
radical x = (if x = 0 then 0 else

∏
(prime-factors x))

lemma radical-0 [simp]: radical 0 = 0
by (simp add: radical-def)

2

lemma radical-nonzero: x 6= 0 =⇒ radical x =
∏

(prime-factors x)
by (simp add: radical-def)

lemma radical-eq-0-iff [simp]: radical x = 0 ←→ x = 0
by (auto simp: radical-def)

lemma prime-factorization-radical [simp]:
assumes x 6= 0
shows prime-factorization (radical x) = mset-set (prime-factors x)

proof −
have prime-factorization (radical x) = (

∑
p∈prime-factors x. prime-factorization

p)
unfolding radical-def using assms by (auto intro!: prime-factorization-prod)

also have . . . = (
∑

p∈prime-factors x. {#p#})
by (intro Groups-Big.sum.cong) (auto intro!: prime-factorization-prime)

also have . . . = mset-set (prime-factors x) by simp
finally show ?thesis .

qed

lemma prime-factors-radical [simp]: x 6= 0 =⇒ prime-factors (radical x) = prime-factors
x

by simp

lemma radical-dvd [simp, intro]: radical x dvd x
by (cases x = 0) (force intro: prime-factorization-subset-imp-dvd mset-set-set-mset-msubset)+

lemma multiplicity-radical-prime:
assumes prime p x 6= 0
shows multiplicity p (radical x) = (if p dvd x then 1 else 0)

proof −
have multiplicity p (radical x) = (

∑
q∈prime-factors x. multiplicity p q)

using assms unfolding radical-def
by (auto simp: prime-elem-multiplicity-prod-distrib)

also have . . . = (
∑

q∈prime-factors x. if p = q then 1 else 0)
using assms by (intro Groups-Big.sum.cong) (auto intro!: prime-multiplicity-other)

also have . . . = (if p ∈ prime-factors x then 1 else 0) by simp
also have . . . = (if p dvd x then 1 else 0)

using assms by (auto simp: prime-factors-dvd)
finally show ?thesis .

qed

lemma radical-1 [simp]: radical 1 = 1
by (simp add: radical-def)

lemma radical-unit [simp]: is-unit x =⇒ radical x = 1
by (auto simp: radical-def prime-factorization-unit)

lemma prime-factors-power :

3

assumes n > 0
shows prime-factors (x ^ n) = prime-factors x
using assms by (cases x = 0) (auto simp: prime-factors-dvd zero-power prime-dvd-power-iff)

lemma radical-power [simp]: n > 0 =⇒ radical (x ^ n) = radical x
by (auto simp add: radical-def prime-factors-power)

end

context factorial-semiring-gcd
begin

lemma radical-mult-coprime:
assumes coprime a b
shows radical (a ∗ b) = radical a ∗ radical b

proof (cases a = 0 ∨ b = 0)
case False
with assms have prime-factors a ∩ prime-factors b = {}
using not-prime-unit coprime-common-divisor by (auto simp: prime-factors-dvd)

hence
∏

(prime-factors a ∪ prime-factors b) =
∏

(prime-factors a) ∗
∏

(prime-factors
b)

by (intro prod.union-disjoint) auto
with False show ?thesis by (simp add: radical-def prime-factorization-mult)

qed auto

lemma multiplicity-le-imp-dvd ′:
assumes x 6= 0

∧
p. p ∈ prime-factors x =⇒ multiplicity p x ≤ multiplicity p y

shows x dvd y
proof (rule multiplicity-le-imp-dvd)

fix p assume prime p
thus multiplicity p x ≤ multiplicity p y using assms(1) assms(2)[of p]

by (cases p dvd x) (auto simp: prime-factors-dvd not-dvd-imp-multiplicity-0)
qed fact+

end

1.3 Main result

The following proofs are basically a one-to-one translation of Franz Lemmer-
meyer’s presentation [1] of Snyder’s proof of the Mason–Stothers theorem.
lemma prime-power-dvd-pderiv:

fixes f p :: ′a :: field-gcd poly
assumes prime-elem p
defines n ≡ multiplicity p f − 1
shows p ^ n dvd pderiv f

proof (cases p dvd f ∧ f 6= 0)
case True
hence multiplicity p f > 0 using assms

by (subst prime-multiplicity-gt-zero-iff) auto

4

hence Suc-n: Suc n = multiplicity p f by (simp add: n-def)
define g where g = f div p ^ Suc n
have p ^ Suc n dvd f unfolding Suc-n by (rule multiplicity-dvd)
hence f-eq: f = p ^ Suc n ∗ g by (simp add: g-def)
also have pderiv . . . = p ^ n ∗ (smult (of-nat (Suc n)) (pderiv p ∗ g) + p ∗

pderiv g)
by (simp only: pderiv-mult pderiv-power-Suc) (simp add: algebra-simps)

also have p ^ n dvd . . . by simp
finally show ?thesis .

qed (auto simp: n-def not-dvd-imp-multiplicity-0)

lemma poly-div-radical-dvd-pderiv:
fixes p :: ′a :: field-gcd poly
shows p div radical p dvd pderiv p

proof (cases pderiv p = 0)
case False
hence p 6= 0 by auto
show ?thesis
proof (rule multiplicity-le-imp-dvd ′)

fix q :: ′a poly assume q: q ∈ prime-factors (p div radical p)
hence q dvd p div radical p by auto
also from ‹p 6= 0 › have . . . dvd p by (subst div-dvd-iff-mult) auto
finally have q dvd p .

have p = p div radical p ∗ radical p by simp
also from q and ‹p 6= 0 › have multiplicity q . . . = Suc (multiplicity q (p div

radical p))
by (subst prime-elem-multiplicity-mult-distrib)
(auto simp: dvd-div-eq-0-iff multiplicity-radical-prime ‹q dvd p› prime-factors-dvd)

finally have multiplicity q (p div radical p) ≤ multiplicity q p − 1 by simp
also have . . . ≤ multiplicity q (pderiv p) using ‹pderiv p 6= 0 › and q and ‹p

6= 0 ›
by (intro multiplicity-geI prime-power-dvd-pderiv)

(auto simp: prime-factors-dvd dvd-div-eq-0-iff)
finally show multiplicity q (p div radical p) ≤ multiplicity q (pderiv p) .

qed (insert ‹p 6= 0 ›, auto simp: dvd-div-eq-0-iff)
qed auto

lemma degree-pderiv-mult-less:
assumes pderiv C 6= 0
shows degree (pderiv C ∗ B) < degree B + degree C

proof −
have degree (pderiv C ∗ B) ≤ degree (pderiv C) + degree B

by (rule degree-mult-le)
also from assms have degree (pderiv C) < degree C by (rule degree-pderiv-less)
finally show ?thesis by simp

qed

lemma Mason-Stothers-aux:

5

fixes A B C :: ′a :: field-gcd poly
assumes nz: A 6= 0 B 6= 0 C 6= 0 and sum: A + B + C = 0 and coprime: Gcd
{A, B, C} = 1

and deg-ge: degree A ≥ degree (radical (A ∗ B ∗ C))
shows pderiv A = 0 pderiv B = 0 pderiv C = 0

proof −
have C-eq: C = −A − B −C = A + B using sum by algebra+
from coprime have gcd A (gcd B (−C)) = 1 by simp
also note C-eq(2)
finally have coprime A B by (simp add: gcd.commute add.commute[of A B]

coprime-iff-gcd-eq-1)
hence coprime A (−C) coprime B (−C)

unfolding C-eq by (simp-all add: gcd.commute[of B A] gcd.commute[of B A
+ B]

add.commute coprime-iff-gcd-eq-1)
hence coprime A C coprime B C by simp-all
note coprime = coprime ‹coprime A B› this
have coprime1 : coprime (A div radical A) (B div radical B)
by (rule coprime-divisors[OF - - ‹coprime A B›]) (insert nz, auto simp: div-dvd-iff-mult)

have coprime2 : coprime (A div radical A) (C div radical C)
by (rule coprime-divisors[OF - - ‹coprime A C ›]) (insert nz, auto simp:

div-dvd-iff-mult)
have coprime3 : coprime (B div radical B) (C div radical C)

by (rule coprime-divisors[OF - - ‹coprime B C ›]) (insert nz , auto simp:
div-dvd-iff-mult)

have coprime4 : coprime (A div radical A ∗ (B div radical B)) (C div radical C)
using coprime2 coprime3 by (subst coprime-mult-left-iff) auto

have eq: A ∗ pderiv B − pderiv A ∗ B = pderiv C ∗ B − C ∗ pderiv B
by (simp add: C-eq pderiv-add pderiv-diff pderiv-minus algebra-simps)

have A div radical A dvd (A ∗ pderiv B − pderiv A ∗ B)
using nz by (intro dvd-diff dvd-mult2 poly-div-radical-dvd-pderiv) (auto simp:

div-dvd-iff-mult)
with eq have A div radical A dvd (pderiv C ∗ B − C ∗ pderiv B) by simp
moreover have C div radical C dvd (pderiv C ∗ B − C ∗ pderiv B)

using nz by (intro dvd-diff dvd-mult2 poly-div-radical-dvd-pderiv) (auto simp:
div-dvd-iff-mult)

moreover have B div radical B dvd (pderiv C ∗ B − C ∗ pderiv B)
using nz by (intro dvd-diff dvd-mult poly-div-radical-dvd-pderiv) (auto simp:

div-dvd-iff-mult)
ultimately have (A div radical A) ∗ (B div radical B) ∗ (C div radical C) dvd

(pderiv C ∗ B − C ∗ pderiv B) using coprime coprime1 coprime4
by (intro divides-mult) auto

also have (A div radical A) ∗ (B div radical B) ∗ (C div radical C) =
(A ∗ B ∗ C) div (radical A ∗ radical B ∗ radical C)

by (simp add: div-mult-div-if-dvd mult-dvd-mono)
also have radical A ∗ radical B ∗ radical C = radical (A ∗ B) ∗ radical C

using coprime by (subst radical-mult-coprime) auto

6

also have . . . = radical (A ∗ B ∗ C)
using coprime by (subst radical-mult-coprime [symmetric]) auto

finally have dvd: ((A ∗ B ∗ C) div radical (A ∗ B ∗ C)) dvd (pderiv C ∗ B −
C ∗ pderiv B) .

have pderiv B = 0 ∧ pderiv C = 0
proof (rule ccontr)

assume ¬(pderiv B = 0 ∧ pderiv C = 0)
hence ∗: pderiv B 6= 0 ∨ pderiv C 6= 0 by blast

have degree (pderiv C ∗ B − C ∗ pderiv B) ≤
max (degree (pderiv C ∗ B)) (degree (C ∗ pderiv B)) by (rule de-

gree-diff-le-max)
also have . . . < degree B + degree C

using degree-pderiv-mult-less[of B C] degree-pderiv-mult-less[of C B] ∗
by (cases pderiv B = 0 ; cases pderiv C = 0) (auto simp add: algebra-simps)

also have degree B + degree C = degree (B ∗ C)
using nz by (subst degree-mult-eq) auto

also have . . . = degree (A ∗ (B ∗ C)) − degree A
using nz by (subst (2) degree-mult-eq) auto

also have . . . ≤ degree (A ∗ B ∗ C) − degree (radical (A ∗ B ∗ C)) unfolding
mult.assoc

using assms by (intro diff-le-mono2) (auto simp: mult-ac)
also have . . . = degree ((A ∗ B ∗ C) div radical (A ∗ B ∗ C))

by (intro degree-div [symmetric]) auto
finally have less: degree (pderiv C ∗ B − C ∗ pderiv B) <

degree (A ∗ B ∗ C div radical (A ∗ B ∗ C)) by simp

have eq ′: pderiv C ∗ B − C ∗ pderiv B = 0
proof (rule ccontr)

assume pderiv C ∗ B − C ∗ pderiv B 6= 0
hence degree (A ∗ B ∗ C div radical (A ∗ B ∗ C)) ≤ degree (pderiv C ∗ B −

C ∗ pderiv B)
using dvd by (intro dvd-imp-degree-le) auto

with less show False by linarith
qed
from ∗ show False
proof (elim disjE)

assume [simp]: pderiv C 6= 0
have C dvd C ∗ pderiv B by simp
also from eq ′ have . . . = pderiv C ∗ B by simp
finally have C dvd pderiv C using coprime

by (subst (asm) coprime-dvd-mult-left-iff) (auto simp: coprime-commute)
hence degree C ≤ degree (pderiv C) by (intro dvd-imp-degree-le) auto
moreover have degree (pderiv C) < degree C by (intro degree-pderiv-less)

auto
ultimately show False by simp

next
assume [simp]: pderiv B 6= 0

7

have B dvd B ∗ pderiv C by simp
also from eq ′ have . . . = pderiv B ∗ C by (simp add: mult-ac)
finally have B dvd pderiv B using coprime

by (subst (asm) coprime-dvd-mult-left-iff) auto
hence degree B ≤ degree (pderiv B) by (intro dvd-imp-degree-le) auto
moreover have degree (pderiv B) < degree B by (intro degree-pderiv-less)

auto
ultimately show False by simp

qed
qed
with eq and nz show pderiv A = 0 pderiv B = 0 pderiv C = 0 by auto

qed

theorem Mason-Stothers:
fixes A B C :: ′a :: field-gcd poly
assumes nz: A 6= 0 B 6= 0 C 6= 0 ∃ p∈{A,B,C}. pderiv p 6= 0

and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
shows Max {degree A, degree B, degree C} < degree (radical (A ∗ B ∗ C))

proof −
have degree A < degree (radical (A ∗ B ∗ C))

if ∀ p∈{A,B,C}. p 6= 0 ∃ p∈{A,B,C}. pderiv p 6= 0 sum-mset {#A,B,C#} =
0 Gcd {A, B, C} = 1

for A B C :: ′a poly
proof (rule ccontr)

assume ¬(degree A < degree (radical (A ∗ B ∗ C)))
hence degree A ≥ degree (radical (A ∗ B ∗ C)) by simp
with Mason-Stothers-aux[of A B C] that show False by (auto simp: add-ac)

qed
from this[of A B C] this[of B C A] this[of C A B] assms show ?thesis

by (simp only: insert-commute mult-ac add-ac) (auto simp: add-ac mult-ac)
qed

The result can be simplified a bit more in fields of characteristic 0:
corollary Mason-Stothers-char-0 :

fixes A B C :: ′a :: {field-gcd, field-char-0} poly
assumes nz: A 6= 0 B 6= 0 C 6= 0 and deg: ∃ p∈{A,B,C}. degree p 6= 0

and sum: A + B + C = 0 and coprime: Gcd {A, B, C} = 1
shows Max {degree A, degree B, degree C} < degree (radical (A ∗ B ∗ C))

proof −
from deg have ∃ p∈{A,B,C}. pderiv p 6= 0

by (auto simp: pderiv-eq-0-iff)
from Mason-Stothers[OF assms(1−3) this assms(5−)] show ?thesis .

qed

As a nice corollary, we get a kind of analogue of Fermat’s last theorem for
polynomials: Given non-zero polynomials A, B, C with An + Bn + Cn = 0
on lowest terms, we must either have n ≤ 2 or (An)′ = (Bn)′ = (Cn)′ = 0.
In the case of a field with characteristic 0, this last possibility is equivalent
to A, B, and C all being constant.

8

corollary fermat-poly:
fixes A B C :: ′a :: field-gcd poly
assumes sum: A ^ n + B ^ n + C ^ n = 0 and cop: Gcd {A, B, C} = 1
assumes nz: A 6= 0 B 6= 0 C 6= 0 and deg: ∃ p∈{A,B,C}. pderiv (p ^ n) 6= 0
shows n ≤ 2

proof (rule ccontr)
assume ¬(n ≤ 2)
hence n > 2 by simp
have Max {degree (A ^ n), degree (B ^ n), degree (C ^ n)} <

degree (radical (A ^ n ∗ B ^ n ∗ C ^ n)) (is - < ?d)
using assms by (intro Mason-Stothers) (auto simp: degree-power-eq gcd-exp)

hence Max {degree (A ^ n), degree (B ^ n), degree (C ^ n)} + 1 ≤ ?d by
linarith

hence n ∗ degree A + 1 ≤ ?d n ∗ degree B + 1 ≤ ?d n ∗ degree C + 1 ≤ ?d
using assms by (simp-all add: degree-power-eq)

hence n ∗ (degree A + degree B + degree C) + 3 ≤ 3 ∗ ?d
unfolding ring-distribs by linarith

also have A ^ n ∗ B ^ n ∗ C ^ n = (A ∗ B ∗ C) ^ n by (simp add: mult-ac
power-mult-distrib)

also have radical . . . = radical (A ∗ B ∗ C)
using ‹n > 2 › by simp

also have degree (radical (A ∗ B ∗ C)) ≤ degree (A ∗ B ∗ C)
using nz by (intro dvd-imp-degree-le) auto

also have . . . = degree A + degree B + degree C
using nz by (simp add: degree-mult-eq)

finally have (3 − n) ∗ (degree A + degree B + degree C) ≥ 3
by (simp add: algebra-simps)

hence 3 − n 6= 0 by (intro notI) auto
hence n < 3 by simp
with ‹n > 2 › show False by simp

qed

corollary fermat-poly-char-0 :
fixes A B C :: ′a :: {field-gcd,field-char-0} poly
assumes sum: A ^ n + B ^ n + C ^ n = 0 and cop: Gcd {A, B, C} = 1
assumes nz: A 6= 0 B 6= 0 C 6= 0 and deg: ∃ p∈{A,B,C}. degree p > 0
shows n ≤ 2

proof (rule ccontr)
assume ∗: ¬(n ≤ 2)
with nz and deg have ∃ p∈{A,B,C}. pderiv (p ^ n) 6= 0

by (auto simp: pderiv-eq-0-iff degree-power-eq)
from fermat-poly[OF assms(1−5) this] and ∗ show False by simp

qed

end

9

References

[1] F. Lemmermeyer. Algebraic Geometry (lecture notes). http://www.fen.
bilkent.edu.tr/~franz/ag05/ag-02.pdf, 2005.

[2] N. Snyder. An alternate proof of Mason’s theorem. Elemente der Math-
ematik, 55(3):93–94, Aug 2000.

10

http://www.fen.bilkent.edu.tr/~franz/ag05/ag-02.pdf
http://www.fen.bilkent.edu.tr/~franz/ag05/ag-02.pdf

	The Mason–Stother's Theorem
	Auxiliary material
	Definition of a radical
	Main result

