The Mason—Stothers theorem

Manuel Eberl
March 17, 2025

Abstract

This article provides a formalisation of Snyder’s simple and ele-
gant proof of the Mason—Stothers theorem [2, 1], which is the polyno-
mial analogue of the famous abc Conjecture for integers. Remarkably,
Snyder found this very elegant proof when he was still a high-school
student.

In short, the statement of the theorem is that three non-zero co-
prime polynomials A, B, C over a field which sum to 0 and do not
all have vanishing derivatives fulfil max{deg(A), deg(B),deg(C)} <
deg(rad(ABC)) where rad(P) denotes the radical of P, i. e. the product
of all unique irreducible factors of P.

This theorem also implies a kind of polynomial analogue of Fermat’s
Last Theorem for polynomials: except for trivial cases, A"+ B"+C"™ =
0 implies n < 2 for coprime polynomials A, B, C over a field.

Contents

1 The Mason—Stother’s Theorem
1.1 Auxiliary material Lo o
1.2 Definition of aradical
1.3 Mainresult

=N NN

1 The Mason—Stother’s Theorem

theory Mason-Stothers
imports
HOL—- Computational-Algebra. Computational-Algebra
HOL—- Computational-Algebra. Polynomial- Factorial
begin

1.1 Auxiliary material

hide-const (open) Formal-Power-Series.radical

lemma degree-div:
assumes a dvd b
shows degree (b div a) = degree b — degree a
using assms by (cases a = 0; cases b = 0) (auto elim!: dvdE simp: degree-mult-eq)

lemma degree-pderiv-le:
shows degree (pderiv p) < degree p — 1
by (rule degree-le, cases degree p = 0) (auto simp: coeff-pderiv coeff-eq-0)

lemma degree-pderiv-less:
assumes pderiv p # 0
shows degree (pderiv p) < degree p
proof —
have degree (pderiv p) < degree p — 1
by (rule degree-pderiv-le)
also have degree p # 0
using assms by (auto introl: Nat.grOI elim!: degree-eq-zeroE)
hence degree p — 1 < degree p by simp
finally show ?thesis .
qed

lemma pderiv-eq-0:
assumes degree p = 0
shows pderivp = 0
using assms by (auto elim!: degree-eq-zeroE)

1.2 Definition of a radical

The following definition of a radical is generic for any factorial semiring.
context factorial-semiring

begin

definition radical :: 'a = 'a where
radical x = (if x = 0 then 0 else [[(prime-factors x))

lemma radical-0 [simp]: radical 0 = 0
by (simp add: radical-def)

lemma radical-nonzero: x # 0 = radical x = [[(prime-factors x)
by (simp add: radical-def)

lemma radical-eq-0-iff [simp]: radical t = 0 «— z = 0
by (auto simp: radical-def)

lemma prime-factorization-radical [simp]:
assumes z # 0
shows prime-factorization (radical) = mset-set (prime-factors x)
proof —
have prime-factorization (radical) = (3. p€prime-factors x. prime-factorization

p)
unfolding radical-def using assms by (auto introl: prime-factorization-prod)

also have ... = (3 peprime-factors x. {#p#})
by (intro Groups-Big.sum.cong) (auto intro!: prime-factorization-prime)
also have ... = mset-set (prime-factors z) by simp
finally show ?thesis .
qed

lemma prime-factors-radical [simpl: © # 0 = prime-factors (radical) = prime-factors
x
by simp

lemma radical-dvd [simp, introl: radical z dvd x
by (cases x = 0) (force intro: prime-factorization-subset-imp-dvd mset-set-set-mset-msubset)+

lemma multiplicity-radical-prime:
assumes prime p x % 0
shows multiplicity p (radical) = (if p dvd x then 1 else 0)
proof —
have multiplicity p (radical ©) = (> q€prime-factors x. multiplicity p q)
using assms unfolding radical-def
by (auto simp: prime-elem-multiplicity-prod-distrib)

also have ... = (3 g€prime-factors x. if p = q then 1 else 0)

using assms by (intro Groups-Big.sum.cong) (auto introl: prime-multiplicity-other)
also have ... = (if p € prime-factors x then 1 else 0) by simp

also have ... = (if p dvd z then 1 else 0)

using assms by (auto simp: prime-factors-dvd)
finally show ?thesis .
qed

lemma radical-1 [simp]: radical 1 = 1
by (simp add: radical-def)

lemma radical-unit [simp]: is-unit © = radical x = 1
by (auto simp: radical-def prime-factorization-unit)

lemma prime-factors-power:

assumes n > (
shows prime-factors (x ~ n) = prime-factors =
using assms by (cases x = 0) (auto simp: prime-factors-dvd zero-power prime-dvd-power-iff)

lemma radical-power [simpl: n > 0 = radical (z ~ n) = radical =
by (auto simp add: radical-def prime-factors-power)

end

context factorial-semiring-ged
begin

lemma radical-mult-coprime:
assumes coprime a b
shows radical (a * b) = radical a * radical b
proof (casesa =0V b= 0)
case Fulse
with assms have prime-factors a N prime-factors b = {}
using not-prime-unit coprime-common-divisor by (auto simp: prime-factors-dvd)
hence [] (prime-factors a U prime-factors b) = [| (prime-factors a) * [| (prime-factors
b)
by (intro prod.union-disjoint) auto
with False show ?thesis by (simp add: radical-def prime-factorization-mult)
qed auto

lemma multiplicity-le-imp-dvd”:

assumes z # 0 A\p. p € prime-factors x = multiplicity p © < multiplicity p y

shows z dvd y
proof (rule multiplicity-le-imp-dvd)

fix p assume prime p

thus multiplicity p x < multiplicity p y using assms(1) assms(2)[of p]

by (cases p dvd z) (auto simp: prime-factors-dvd not-dvd-imp-multiplicity-0)

qed fact+

end

1.3 Main result

The following proofs are basically a one-to-one translation of Franz Lemmer-
meyer’s presentation [1] of Snyder’s proof of the Mason—Stothers theorem.

lemma prime-power-dvd-pderiv:
fixes fp :: 'a :: field-gcd poly
assumes prime-elem p
defines n = multiplicity p f — 1
shows p ~n dvd pderiv f
proof (cases p dvd f A f # 0)
case True
hence multiplicity p f > 0 using assms
by (subst prime-multiplicity-gt-zero-iff) auto

hence Suc-n: Suc n = multiplicity p f by (simp add: n-def)

define g where g = fdivp ~ Sucn

have p = Suc n dvd f unfolding Suc-n by (rule multiplicity-dvd)

hence f-eq: f = p ~ Suc n * g by (simp add: g-def)

also have pderiv ... = p ~ n x (smult (of-nat (Suc n)) (pderiv p x g) + p *
pderiv g)

by (simp only: pderiv-mult pderiv-power-Suc) (simp add: algebra-simps)

also have p ~n dvd ... by simp

finally show ?thesis .
qed (auto simp: n-def not-dvd-imp-multiplicity-0)

lemma poly-div-radical-dvd-pderiv:
fixes p :: ‘a :: field-gcd poly
shows p div radical p dvd pderiv p
proof (cases pderiv p = 0)
case Fulse
hence p # 0 by auto
show ?thesis
proof (rule multiplicity-le-imp-dvd’)
fix ¢ :: 'a poly assume ¢: q € prime-factors (p div radical p)
hence ¢ dvd p div radical p by auto
also from «p # 0> have ... dvd p by (subst div-dvd-iff-mult) auto
finally have ¢ dvd p .

have p = p div radical p * radical p by simp
also from ¢ and «p # 0> have multiplicity q ... = Suc (multiplicity q (p div
radical p))

by (subst prime-elem-multiplicity-mult-distrib)

(auto simp: dvd-div-eq-0-iff multiplicity-radical-prime <q dvd p> prime-factors-dvd)
finally have multiplicity q (p div radical p) < multiplicity ¢ p — 1 by simp
also have ... < multiplicity q (pderiv p) using «pderiv p # 0> and ¢ and «p

0y
by (intro multiplicity-gel prime-power-dvd-pderiv)
(auto simp: prime-factors-dvd dvd-div-eq-0-iff)
finally show multiplicity q (p div radical p) < multiplicity q (pderiv p) .
qged (insert <p # 0», auto simp: dvd-div-eq-0-iff)
qed auto

lemma degree-pderiv-mult-less:
assumes pderiv C' # 0
shows degree (pderiv C' * B) < degree B + degree C
proof —
have degree (pderiv C x B) < degree (pderiv C) + degree B
by (rule degree-mult-le)
also from assms have degree (pderiv C') < degree C by (rule degree-pderiv-less)
finally show ?thesis by simp
qed

lemma Mason-Stothers-aux:

fixes A B C :: 'a :: field-ged poly
assumes nz: A # 0B # 0 C # 0 and sum: A + B + C = 0 and coprime: Ged
{4, B, C} =1
and deg-ge: degree A > degree (radical (A x B x C))
shows pderiv A = 0 pderiv B = 0 pderiv C = 0
proof —
have C-eq: C = —A — B —C = A + B using sum by algebra+
from coprime have ged A (ged B (—C)) = 1 by simp
also note C-eq(2)
finally have coprime A B by (simp add: ged.commute add.commute[of A B
coprime-iff-gcd-eg-1)
hence coprime A (—C') coprime B (—C)
unfolding C-eq by (simp-all add: ged.commute[of B A] gcd.commute[of B A
+ B
add.commute coprime-iff-gcd-eq-1)
hence coprime A C coprime B C by simp-all
note coprime = coprime <coprime A B) this
have coprimel: coprime (A div radical A) (B div radical B)
by (rule coprime-divisors|OF - - <coprime A B»]) (insert nz, auto simp: div-dvd-iff-mult)
have coprime2: coprime (A div radical A) (C div radical C)
by (rule coprime-divisors|OF - - <coprime A Cb]) (insert nz, auto simp:
div-dvd-iff-mult)
have coprime3: coprime (B div radical B) (C div radical C)
by (rule coprime-divisors|OF - - <coprime B C)]) (insert nz, auto simp:
div-dvd-iff-mult)
have coprimej: coprime (A div radical A x (B div radical B)) (C div radical C)
using coprime2 coprime3 by (subst coprime-mult-left-iff) auto

have eq: A x pderiv B — pderiv A x B = pderiv C x B — C * pderiv B
by (simp add: C-eq pderiv-add pderiv-diff pderiv-minus algebra-simps)

have A div radical A dvd (A * pderiv B — pderiv A x B)
using nz by (intro dvd-diff dvd-mult2 poly-div-radical-dvd-pderiv) (auto simp:
div-dvd-iff-mult)
with eq have A div radical A dvd (pderiv C * B — C % pderiv B) by simp
moreover have C div radical C dvd (pderiv C x B — C * pderiv B)
using nz by (intro dvd-diff dvd-mult2 poly-div-radical-dvd-pderiv) (auto simp:
div-dvd-iff-mult)
moreover have B div radical B dvd (pderiv C * B — C * pderiv B)
using nz by (intro dvd-diff dvd-mult poly-div-radical-dvd-pderiv) (auto simp:
div-dvd-iff-mult)
ultimately have (A div radical A) * (B div radical B) x (C div radical C) dvd
(pderiv C * B — C x pderiv B) using coprime coprimel coprime
by (intro divides-mult) auto
also have (A div radical A) x (B div radical B) x (C div radical C) =
(A x B x C) div (radical A x radical B * radical C)
by (simp add: div-mult-div-if-dvd mult-dvd-mono)
also have radical A x radical B * radical C' = radical (A x B) x radical C
using coprime by (subst radical-mult-coprime) auto

also have ... = radical (A x B * C)
using coprime by (subst radical-mult-coprime [symmetric]) auto
finally have dvd: ((A * B = C) div radical (A * B = C)) dvd (pderiv C « B —
C * pderiv B) .

have pderiv B = 0 A pderiv C = 0

proof (rule ccontr)
assume —(pderiv B = 0 A pderiv C = 0)
hence *: pderiv B # 0 V pderiv C # 0 by blast

have degree (pderiv C x B — C * pderiv B) <
maz (degree (pderiv C * B)) (degree (C x pderiv B)) by (rule de-
gree-diff-le-max)
also have ... < degree B + degree C
using degree-pderiv-mult-less|of B C)] degree-pderiv-mult-less[of C B]
by (cases pderiv B = 0; cases pderiv C = 0) (auto simp add: algebra-simps)
also have degree B + degree C' = degree (B x C)
using nz by (subst degree-mult-eq) auto
also have ... = degree (A % (B % C)) — degree A
using nz by (subst (2) degree-mult-eq) auto
also have ... < degree (A * B x C') — degree (radical (A * B * C)) unfolding
mult.assoc
using assms by (intro diff-le-mono2) (auto simp: mult-ac)
also have ... = degree ((A * B x C) div radical (A * B % C))
by (intro degree-div [symmetric]) auto
finally have less: degree (pderiv C * B — C x pderiv B) <
degree (A * B % C div radical (A * B x C)) by simp

have eq”: pderiv C + B — C % pderiv B = 0
proof (rule ccontr)
assume pderiv C * B — C x pderiv B # 0
hence degree (A x B x C div radical (A * B x C)) < degree (pderiv C x B —
C * pderiv B)
using dvd by (intro dvd-imp-degree-le) auto
with less show Fualse by linarith
qed
from * show Fulse
proof (elim disjE)
assume [simp]: pderiv C # 0
have C dvd C * pderiv B by simp
also from eq’ have ... = pderiv C * B by simp
finally have C dvd pderiv C' using coprime
by (subst (asm) coprime-dvd-mult-left-iff) (auto simp: coprime-commute)
hence degree C' < degree (pderiv C') by (intro dvd-imp-degree-le) auto
moreover have degree (pderiv C) < degree C by (intro degree-pderiv-less)
auto
ultimately show Fulse by simp
next
assume [simp]: pderiv B # 0

have B dvd B x pderiv C by simp
also from eq’ have ... = pderiv B x C by (simp add: mult-ac)
finally have B dvd pderiv B using coprime
by (subst (asm) coprime-dvd-mult-left-iff) auto
hence degree B < degree (pderiv B) by (intro dvd-imp-degree-le) auto
moreover have degree (pderiv B) < degree B by (intro degree-pderiv-less)
auto
ultimately show Fulse by simp
qed
qged
with eq and nz show pderiv A = 0 pderiv B = 0 pderiv C = 0 by auto
qed

theorem Mason-Stothers:
fixes A B C :: 'a :: field-ged poly
assumes nz: A # 0B # 0 C # 0 3pe{A,B,C}. pderivp # 0
and sum: A + B+ C = 0 and coprime: Ged {A, B, C} = 1
shows Maz {degree A, degree B, degree C'} < degree (radical (A * B % C))
proof —
have degree A < degree (radical (A * B x (')
if Vpe{A,B,C}. p # 0 Ipe{A,B,C}. pderiv p # 0 sum-mset {#A,B,C#} =
0 Ged {A, B, C} = 1
for A B C :: 'a poly
proof (rule ccontr)
assume —(degree A < degree (radical (A *+ B * C)))
hence degree A > degree (radical (A *x B % C)) by simp
with Mason-Stothers-auz[of A B C] that show False by (auto simp: add-ac)
qed
from this[of A B C] this[of B C A] this[of C A B] assms show ?thesis
by (simp only: insert-commute mult-ac add-ac) (auto simp: add-ac mult-ac)
qed

The result can be simplified a bit more in fields of characteristic 0:

corollary Mason-Stothers-char-0:
fixes A B C :: 'a :: {field-gcd, field-char-0} poly
assumes nz: A # 0 B # 0 C # 0 and deg: 3pe{A,B,C}. degree p # 0
and sum: A + B + C = 0 and coprime: Ged {4, B, C} = 1
shows Mazx {degree A, degree B, degree C'} < degree (radical (A * B x C))
proof —
from deg have 3pe{A,B,C}. pderivp # 0
by (auto simp: pderiv-eq-0-iff)
from Mason-Stothers|OF assms(1—3) this assms(5—)] show ?Zthesis .
qed

As a nice corollary, we get a kind of analogue of Fermat’s last theorem for
polynomials: Given non-zero polynomials A, B, C with A" + B" + C" =
on lowest terms, we must either have n < 2 or (4")" = (B™) = (C")' = 0.
In the case of a field with characteristic 0, this last possibility is equivalent
to A, B, and C all being constant.

corollary fermat-poly:
fixes A B C :: 'a :: field-ged poly
assumes sum: A “n+ B "n+ C " n=0and cop: Ged {4, B, C} =1
assumes nz: A# 0B +#0C # 0 and deg: 3pe{A,B,C}. pderiv (p " n) # 0
shows n < 2
proof (rule ccontr)
assume —(n < 2)
hence n > 2 by simp
have Maz {degree (A ~n), degree (B ~ n), degree (C ~n)} <
degree (radical (A “nx B "nx C " n)) (is - < d)
using assms by (intro Mason-Stothers) (auto simp: degree-power-eq ged-exp)
hence Max {degree (A ~ n), degree (B ~ n), degree (C " n)} + 1 < ?d by
linarith
hence n * degree A + 1 < ?d n x degree B+ 1 < ?d n * degree C + 1 < 2d
using assms by (simp-all add: degree-power-eq)
hence n * (degree A + degree B + degree C) + 3 < 8 * 2d
unfolding ring-distribs by linarith
alsohave A "n+x B "n*x C "n= (4% Bx C) nby (simp add: mult-ac
power-mult-distrib)
also have radical ... = radical (A * B % C)
using «n > 2) by simp
also have degree (radical (A * B x C)) < degree (A x B x C)
using nz by (intro dvd-imp-degree-le) auto
also have ... = degree A + degree B + degree C
using nz by (simp add: degree-mult-eq)
finally have (3 — n) * (degree A + degree B + degree C') > 3
by (simp add: algebra-simps)
hence 3 — n # 0 by (intro notl) auto
hence n < & by simp
with <n > 2) show Fualse by simp
qed

corollary fermat-poly-char-0:
fixes A B C :: 'a :: {field-gcd, field-char-0} poly
assumes sum: A “n+ B "n+ C " n=0and cop: Ged {4, B, C} =1
assumes nz: A £ 0B # 0C # 0 and deg: Ipe{A,B,C}. degree p > 0
shows n < 2
proof (rule ccontr)
assume *: —(n < 2)
with nz and deg have 3pe{A,B,C}. pderiv (p " n) # 0
by (auto simp: pderiv-eq-0-iff degree-power-eq)
from fermat-poly[OF assms(1—5) this] and x show Fulse by simp
qed

end

References

[1] F. Lemmermeyer. Algebraic Geometry (lecture notes). http://www.fen.
bilkent.edu.tr /~franz/ag05/ag-02.pdf, 2005.

[2] N. Snyder. An alternate proof of Mason’s theorem. Elemente der Math-
ematik, 55(3):93-94, Aug 2000.

10

http://www.fen.bilkent.edu.tr/~franz/ag05/ag-02.pdf
http://www.fen.bilkent.edu.tr/~franz/ag05/ag-02.pdf

	The Mason–Stother's Theorem
	Auxiliary material
	Definition of a radical
	Main result

