Hall's Marriage Theorem

Dongchen Jiang and Tobias Nipkow

March 17, 2025

Abstract

A proof of Hall's Marriage Theorem due to Halmos and Vaughan [1].

theory Marriage imports Main begin

```
theorem marriage-necessary:

fixes A :: a \Rightarrow b set and I :: a set

assumes finite I and \forall i \in I. finite (A \ i)

and \exists R. (\forall i \in I. R \ i \in A \ i) \land inj-on R \ I (is \exists R. R \ A \& ?inj \ R \ A)

shows \forall J \subseteq I. card J \leq card (\bigcup (A \ J))

\langle proof \rangle
```

The proof by Halmos and Vaughan:

theorem marriage-HV: fixes $A :: a \Rightarrow b$ set and I :: a set assumes finite I and $\forall i \in I$. finite $(A \ i)$ and $\forall J \subseteq I$. card $J \leq card (\bigcup (A \ J))$ (is $?M \ A \ I)$ shows $\exists R$. $(\forall i \in I \ R \ i \in A \ i) \land inj$ -on $R \ I$ (is $?SDR \ A \ I$ is $\exists R$. $?R \ R \ A \ I \ \& ?inj \ R \ A \ I)$ $\langle proof \rangle$

The proof by Rado:

theorem marriage-Rado: **fixes** $A :: 'a \Rightarrow 'b \text{ set and } I :: 'a \text{ set}$ **assumes** finite I and $\forall i \in I$. finite $(A \ i)$ and $\forall J \subseteq I$. card $J \leq card (\bigcup (A \ 'J))$ (is ?M A) **shows** $\exists R$. $(\forall i \in I. R \ i \in A \ i) \land inj$ -on $R \ I$ (is ?SDR A is $\exists R$. ?R $R \ A \&$?inj $R \ A$) $\langle proof \rangle$

 \mathbf{end}

References

[1] P. R. Halmos and H. E. Vaughan. The marriage problem. *American Journal of Mathematics*, 72:214–215, 1950.