
Hall’s Marriage Theorem

Dongchen Jiang and Tobias Nipkow

September 13, 2023

Abstract
A proof of Hall’s Marriage Theorem due to Halmos and Vaughan [1].

theory Marriage
imports Main
begin

theorem marriage-necessary:
fixes A :: ′a ⇒ ′b set and I :: ′a set
assumes finite I and ∀ i∈I . finite (A i)
and ∃R. (∀ i∈I . R i ∈ A i) ∧ inj-on R I (is ∃R. ?R R A & ?inj R A)
shows ∀ J⊆I . card J ≤ card (

⋃
(A ‘ J ))

proof clarify
fix J
assume J ⊆ I
show card J ≤ card (

⋃
(A ‘ J ))

proof−
from assms(3 ) obtain R where ?R R A and ?inj R A by auto
have inj-on R J by(rule subset-inj-on[OF ‹?inj R A› ‹J⊆I ›])
moreover have (R ‘ J ) ⊆ (

⋃
(A ‘ J )) using ‹J⊆I › ‹?R R A› by auto

moreover have finite (
⋃

(A ‘ J )) using ‹J⊆I › assms
by (metis finite-UN-I finite-subset subsetD)

ultimately show ?thesis by (rule card-inj-on-le)
qed

qed

The proof by Halmos and Vaughan:
theorem marriage-HV :

fixes A :: ′a ⇒ ′b set and I :: ′a set
assumes finite I and ∀ i∈I . finite (A i)
and ∀ J⊆I . card J ≤ card (

⋃
(A ‘ J )) (is ?M A I )

shows ∃R. (∀ i∈I . R i ∈ A i) ∧ inj-on R I
(is ?SDR A I is ∃R. ?R R A I & ?inj R A I )

proof−
{ fix I

have finite I =⇒ ∀ i∈I . finite (A i) =⇒ ?M A I =⇒ ?SDR A I

1



proof(induct arbitrary: A rule: finite-psubset-induct)
case (psubset I )
show ?case
proof (cases)

assume I={} then show ?thesis by simp
next

assume I 6= {}
have ∀ i∈I . A i 6= {}
proof (rule ccontr)

assume ¬ (∀ i∈I . A i 6={})
then obtain i where i∈I A i = {} by blast
hence {i}⊆ I by auto
from mp[OF spec[OF psubset.prems(2 )] this] ‹A i={}›
show False by simp

qed
show ?thesis
proof cases

assume case1 : ∀K⊂I . K 6={} −→ card (
⋃
(A ‘ K )) ≥ card K + 1

show ?thesis
proof−

from ‹I 6={}› obtain n where n∈I by auto
with ‹∀ i∈I . A i 6= {}› have A n 6= {} by auto
then obtain x where x ∈ A n by auto
let ?A ′ = λi. A i − {x} let ?I ′ = I − {n}
from ‹n∈I › have ?I ′ ⊂ I

by (metis DiffD2 Diff-subset insertI1 psubset-eq)
have fin ′: ∀ i∈?I ′. finite (?A ′ i) using psubset.prems(1 ) by auto
have ?M ?A ′ ?I ′

proof clarify
fix J
assume J ⊆ ?I ′

hence J ⊂ I by (metis ‹I − {n} ⊂ I › subset-psubset-trans)
show card J ≤ card (

⋃
i∈J . A i − {x})

proof cases
assume J = {} thus ?thesis by auto

next
assume J 6= {}
hence card J + 1 ≤ card(

⋃
(A ‘ J )) using case1 ‹J⊂I › by blast

moreover
have card(

⋃
(A ‘ J )) − 1 ≤ card (

⋃
i∈J . A i − {x}) (is ?l ≤ ?r)

proof−
have finite J using ‹J ⊂ I › psubset(1 )

by (metis psubset-imp-subset finite-subset)
hence 1 : finite(

⋃
(A ‘ J ))

using ‹∀ i∈I . finite(A i)› ‹J⊂I › by force
have ?l = card(

⋃
(A ‘ J )) − card{x} by simp

also have . . . ≤ card(
⋃
(A ‘ J ) − {x}) using 1

by (metis diff-card-le-card-Diff finite.intros)
also have

⋃
(A ‘ J ) − {x} = (

⋃
i∈J . A i − {x}) by blast

2



finally show ?thesis .
qed
ultimately show ?thesis by arith

qed
qed
from psubset(2 )[OF ‹?I ′⊂I › fin ′ ‹?M ?A ′ ?I ′›]
obtain R ′ where ?R R ′ ?A ′ ?I ′ ?inj R ′ ?A ′ ?I ′ by auto
let ?Rx = R ′(n := x)
have ?R ?Rx A I using ‹x∈A n› ‹?R R ′ ?A ′ ?I ′› by force
have ∀ i∈?I ′. ?Rx i 6= x using ‹?R R ′ ?A ′ ?I ′› by auto
hence ?inj ?Rx A I using ‹?inj R ′ ?A ′ ?I ′›

by(auto simp: inj-on-def )
with ‹?R ?Rx A I › show ?thesis by auto

qed
next

assume ¬ (∀K⊂I . K 6={} −→ card (
⋃
(A ‘ K )) ≥ card K + 1 )

then obtain K where
K⊂I K 6={} and c1 : ¬(card (

⋃
(A ‘ K )) ≥ card K + 1 ) by auto

with psubset.prems(2 ) have card (
⋃

(A ‘ K )) ≥ card K by auto
with c1 have case2 : card (

⋃
(A ‘ K ))= card K by auto

from ‹K⊂I › ‹finite I › have finite K by (auto intro:finite-subset)
from psubset.prems ‹K⊂I ›
have ∀ i∈K . finite (A i) ∀ J⊆K . card J ≤ card(

⋃
(A ‘ J )) by auto

from psubset(2 )[OF ‹K⊂I › this]
obtain R1 where ?R R1 A K ?inj R1 A K by auto
let ?AK = λi. A i −

⋃
(A ‘ K ) let ?IK = I − K

from ‹K 6={}› ‹K⊂I › have ?IK⊂I by auto
have ∀ i∈?IK . finite (?AK i) using psubset.prems(1 ) by auto
have ?M ?AK ?IK
proof clarify

fix J assume J ⊆ ?IK
with ‹finite I › have finite J by(auto intro: finite-subset)
show card J ≤ card (

⋃
(?AK ‘ J ))

proof−
from ‹J⊆?IK › have J ∩ K = {} by auto
have card J = card(J∪K ) − card K

using ‹finite J › ‹finite K › ‹J∩K={}›
by (auto simp: card-Un-disjoint)

also have card(J∪K ) ≤ card(
⋃
(A ‘ (J∪K )))

proof −
from ‹J⊆?IK › ‹K⊂I › have J ∪ K ⊆ I by auto
with psubset.prems(2 ) show ?thesis by blast

qed
also have . . . − card K = card(

⋃
(?AK ‘ J ) ∪

⋃
(A ‘ K )) − card K

proof−
have

⋃
(A ‘ (J∪K )) =

⋃
(?AK ‘ J ) ∪

⋃
(A ‘ K )

using ‹J⊆?IK › by auto
thus ?thesis by simp

qed

3



also have . . . = card (
⋃

(?AK ‘ J )) + card(
⋃

(A ‘ K )) − card K
proof−

have finite (
⋃

(?AK ‘ J )) using ‹finite J › ‹J⊆?IK › psubset(3 )
by(blast intro: finite-UN-I finite-Diff )

moreover have finite (
⋃

(A ‘ K ))
using ‹finite K › ‹∀ i∈K . finite (A i)› by auto

moreover have
⋃

(?AK ‘ J ) ∩
⋃

(A ‘ K ) = {} by auto
ultimately show ?thesis

by (simp add: card-Un-disjoint del:Un-Diff-cancel2 )
qed
also have . . . = card (

⋃
(?AK ‘ J )) using case2 by simp

finally show ?thesis by simp
qed

qed
from psubset(2 )[OF ‹?IK⊂I › ‹∀ i∈?IK . finite (?AK i)› ‹∀ J⊆?IK . card

J ≤ card (
⋃

i∈J . A i −
⋃

(A ‘ K ))›]
obtain R2 where ?R R2 ?AK ?IK ?inj R2 ?AK ?IK by auto
let ?R12 = λi. if i∈K then R1 i else R2 i
have ∀ i∈I . ?R12 i ∈ A i using ‹?R R1 A K ›‹?R R2 ?AK ?IK › by auto
moreover have ∀ i∈I . ∀ j∈I . i 6=j−→?R12 i 6= ?R12 j
proof clarify

fix i j assume i∈I j∈I i 6=j ?R12 i = ?R12 j
show False
proof−

{ assume i∈K ∧ j∈K ∨ i /∈K∧j /∈K
with ‹?inj R1 A K › ‹?inj R2 ?AK ?IK › ‹?R12 i=?R12 j› ‹i 6=j› ‹i∈I ›

‹j∈I ›
have ?thesis by (fastforce simp: inj-on-def )

} moreover
{ assume i∈K ∧ j /∈K ∨ i /∈K ∧ j∈K

with ‹?R R1 A K › ‹?R R2 ?AK ?IK › ‹?R12 i=?R12 j› ‹j∈I › ‹i∈I ›
have ?thesis by auto (metis Diff-iff )

} ultimately show ?thesis by blast
qed

qed
ultimately show ?thesis unfolding inj-on-def by fast

qed
qed

qed
}
with assms ‹?M A I › show ?thesis by auto

qed

The proof by Rado:
theorem marriage-Rado:

fixes A :: ′a ⇒ ′b set and I :: ′a set
assumes finite I and ∀ i∈I . finite (A i)
and ∀ J⊆I . card J ≤ card (

⋃
(A ‘ J )) (is ?M A)

shows ∃R. (∀ i∈I . R i ∈ A i) ∧ inj-on R I

4



(is ?SDR A is ∃R. ?R R A & ?inj R A)
proof−

{ have ∀ i∈I . finite (A i) =⇒ ?M A =⇒ ?SDR A
proof(induct n ==

∑
i∈I . card(A i) − 1 arbitrary: A)

case 0
have ∀ i∈I .∃ a. A(i) = {a}
proof (rule ccontr)

assume ¬ (∀ i∈I .∃ a. A i = {a})
then obtain i where i: i:I ∀ a. A i 6= {a} by blast
hence {i}⊆ I by auto
from 0 (1−2 ) mp[OF spec[OF 0 .prems(2 )] ‹{i}⊆I ›] ‹finite I › i
show False by (auto simp: card-le-Suc-iff )

qed
then obtain R where R: ∀ i∈I . A i = {R i} by metis
then have ∀ i∈I . R i ∈ A i by blast
moreover have inj-on R I
proof (auto simp: inj-on-def )

fix x y assume x ∈ I y ∈ I R x = R y
with R spec[OF 0 .prems(2 ), of {x,y}] show x=y

by (simp add:le-Suc-eq card-insert-if split: if-splits)
qed
ultimately show ?case by blast

next
case (Suc n)
from Suc.hyps(2 )[symmetric, THEN sum-SucD]
obtain i where i: i:I 2 ≤ card(A i) by auto
then obtain x1 x2 where x1 : A i x2 : A i x1 6= x2

using Suc(3 ) by (fastforce simp: card-le-Suc-iff eval-nat-numeral)
let ?Ai x = A i − {x} let ?A x = A(i:=?Ai x)
let ?U J =

⋃
(A ‘ J ) let ?Ui J x = ?U J ∪ ?Ai x

have n1 : n = (
∑

j∈I . card (?A x1 j) − 1 )
using Suc.hyps(2 ) Suc.prems(1 ) i ‹finite I › ‹x1 :A i›
by (auto simp: sum.remove card-Diff-singleton)

have n2 : n = (
∑

j∈I . card (?A x2 j) − 1 )
using Suc.hyps(2 ) Suc.prems(1 ) i ‹finite I › ‹x2 :A i›
by (auto simp: sum.remove card-Diff-singleton)

have finx1 : ∀ j∈I . finite (?A x1 j) by (simp add: Suc(3 ))
have finx2 : ∀ j∈I . finite (?A x2 j) by (simp add: Suc(3 ))
{ fix x assume ¬ ?M (A(i:= ?Ai x))

with Suc.prems(2 ) obtain J
where J : J ⊆ I card J > card(

⋃
((A(i:= ?Ai x) ‘ J )))

by (auto simp add:not-less-eq-eq Suc-le-eq)
note fJi = finite-Diff [OF finite-subset[OF ‹J⊆I › ‹finite I ›], of {i}]
have fU : finite(?U (J−{i})) using ‹J⊆I ›

by (metis Diff-iff Suc(3 ) finite-UN [OF fJi] subsetD)
have i ∈ J using J Suc.prems(2 )

by (simp-all add: UNION-fun-upd not-le[symmetric] del: fun-upd-apply
split: if-splits)

hence card(J−{i}) ≥ card(?Ui (J−{i}) x)

5



using fJi J by(simp add: UNION-fun-upd del: fun-upd-apply)
hence ∃ J⊆I . i /∈ J ∧ card(J ) ≥ card(?Ui J x) ∧ finite(?U J )
by (metis DiffD2 J (1 ) fU ‹i ∈ J › insertI1 subset-insertI2 subset-insert-iff )

} note lem = this
have ?M (?A x1 ) ∨ ?M (?A x2 ) — Rado’s Lemma
proof(rule ccontr)

assume ¬ (?M (?A x1 ) ∨ ?M (?A x2 ))
with lem obtain J1 J2 where

J1 : J1⊆I i /∈J1 card J1 ≥ card(?Ui J1 x1 ) finite(?U J1 ) and
J2 : J2⊆I i /∈J2 card J2 ≥ card(?Ui J2 x2 ) finite(?U J2 )
by metis

note fin1 = finite-subset[OF ‹J1⊆I › assms(1 )]
note fin2 = finite-subset[OF ‹J2⊆I › assms(1 )]
have finUi1 : finite(?Ui J1 x1 ) using Suc(3 ) by(blast intro: J1 (4 ) i(1 ))
have finUi2 : finite(?Ui J2 x2 ) using Suc(3 ) by(blast intro: J2 (4 ) i(1 ))
have card J1 + card J2 + 1 = card(J1 ∪ J2 ) + 1 + card(J1 ∩ J2 )

by simp (metis card-Un-Int fin1 fin2 )
also have card(J1 ∪ J2 ) + 1 = card(insert i (J1 ∪ J2 ))

using ‹i /∈J1 › ‹i /∈J2 › fin1 fin2 by simp
also have . . . ≤ card (

⋃
(A ‘ insert i (J1 ∪ J2 ))) (is - ≤ card ?M )

by (metis J1 (1 ) J2 (1 ) Suc(4 ) Un-least i(1 ) insert-subset)
also have ?M = ?Ui J1 x1 ∪ ?Ui J2 x2 using ‹x1 6=x2 › by auto
also have card(J1 ∩ J2 ) ≤ card(

⋃
(A ‘ (J1 ∩ J2 )))

by (metis J2 (1 ) Suc(4 ) le-infI2 )
also have . . . ≤ card(?U J1 ∩ ?U J2 ) by(blast intro: card-mono J1 (4 ))
also have . . . ≤ card(?Ui J1 x1 ∩ ?Ui J2 x2 )

using Suc(3 ) ‹i∈I › by(blast intro: card-mono J1 (4 ))
finally show False using J1 (3 ) J2 (3 )

by(auto simp add: card-Un-Int[symmetric, OF finUi1 finUi2 ])
qed
thus ?case using Suc.hyps(1 )[OF n1 finx1 ] Suc.hyps(1 )[OF n2 finx2 ]

by (metis DiffD1 fun-upd-def )
qed

} with assms ‹?M A› show ?thesis by auto
qed

end

References
[1] P. R. Halmos and H. E. Vaughan. The marriage problem. American

Journal of Mathematics, 72:214–215, 1950.

6


