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Abstract
A proof of Hall’s Marriage Theorem due to Halmos and Vaughan [1].

theory Marriage
imports Main
begin

theorem marriage-necessary:
fixes A :: 'a = 'b set and I :: 'a set
assumes finite I and V i€l. finite (A 7)
and 3R. (Viel. Ri€ Ai) ANinjon RI (is3R. PRR A & ?%inj R A)
shows VJCI. card J < card (J(4 “J))
proof clarify
fix J
assume J C |
show card J < card (J(A “J))
proof—
from assms(3) obtain R where R R A and ?inj R A by auto
have inj-on R J by(rule subset-inj-on[OF «%inj R A> <JCD)])
moreover have (R ‘J) C (J(A ‘J)) using <JCI) <?R R As by auto
moreover have finite (|J(A ¢ J)) using «JCI» assms
by (metis finite-UN-I finite-subset subsetD)
ultimately show ?thesis by (rule card-inj-on-le)
qed
qed

The proof by Halmos and Vaughan:

theorem marriage-HV:

fixes A :: '‘a = 'b set and I :: 'a set

assumes finite I and V i€l. finite (A 7)

and VJCI. card J < card (J(A “J)) (is M A 1)

shows 3R. (Viel. Ri € Ai) A injron R I

(is 2SDRATis 3R. PRRAT & %inj R A I)

proof—

{fix I

have finite I = Vi€l. finite (A i) = M AT = ?SDR A I



proof (induct arbitrary: A rule: finite-psubset-induct)
case (psubset I)
show ?Zcase
proof (cases)
assume [={} then show ?thesis by simp
next
assume [ # {}
have Viel. A i # {}
proof (rule ccontr)
assume - (Viel. A i#{})
then obtain ¢ where i€l A ¢ = {} by blast
hence {{}C I by auto
from mp|[OF spec[OF psubset.prems(2)] this] <A i={}
show Fulse by simp
qed
show ?thesis
proof cases
assume casel: VKCI. K#{} — card (J(A ‘K)) > card K + 1
show ?thesis
proof—
from </#{}> obtain n where nel by auto
with «Viel. A i # {}» have A n # {} by auto
then obtain z where z € A n by auto
let A" =Xi. Ai — {z}let 2I'=1 — {n}
from «nel> have ?I' C I
by (metis Diff D2 Diff-subset insertl1 psubset-eq)
have fin": Vie?l'. finite (¢?A’ i) using psubset.prems(1) by auto
have ?M ¢A’ 21’
proof clarify
fix J
assume J C 2]’
hence J C I by (metis <I — {n} C I) subset-psubset-trans)
show card J < card (Ji€J. A i — {z})
proof cases
assume J = {} thus ?thesis by auto
next
assume J # {}
hence card J + 1 < card(|J (4 ¢ J)) using casel <JCI» by blast
moreover
have card(|J(4 < J)) — 1 < card (JieJ. A i — {z}) (is 7l < ?r)
proof—
have finite J using <J C I» psubset(1)
by (metis psubset-imp-subset finite-subset)
hence I1: finite(lJ (A ¢ J))
using «Vi€l. finite(A i)y <JCI> by force
have 2l = card(J(A ¢ J)) — card{z} by simp
also have ... < card(|J (A ¢ J) — {z}) using !
by (metis diff-card-le-card-Diff finite.intros)
also have |J(4 ¢ J) — {z} = (UieJ. A i — {z}) by blast



finally show ?thesis .
qed
ultimately show ¢thesis by arith
qed
qed
from psubset(2)[OF <?2I'CIy fin' <?M 24’ 2I%)
obtain R’ where ?R R’ ?A’ 21’ ?inj R’ ?A’ ?I' by auto
let Rz = R'(n := z)
have ?R ?Rx A I using «(z€A n» «?R R’ ?A’ 21"y by force
have Vie?l’. ?Rx i # x using <?R R’ ?A’ 21’y by auto
hence %inj ?Rx A I using «?inj R’ ?A’ 21"
by (auto simp: inj-on-def)
with <?R ?Rxz A I» show ?thesis by auto
qed
next
assume - (VKCI. K#{} — card (J(4 ‘K)) > card K + 1)
then obtain K where
KcI K#{} and cI: —(card (J(4 ‘K)) > card K + 1) by auto
with psubset.prems(2) have card (|J(A ‘ K)) > card K by auto
with c¢1 have case2: card (|J(4 ‘ K))= card K by auto
from «KCI) <finite I» have finite K by (auto intro:finite-subset)
from psubset.prems <KCI»
have VieK. finite (A i) VJCK. card J < card(J (A ‘ J)) by auto
from psubset(2)[OF <KCI) this]
obtain R! where ?R R1 A K %inj R1 A K by auto
let PAK =Xi. Ai — (A ‘K)let ?IK =1 — K
from <K#{}» <KCI> have ?IKCI by auto
have Vi€ ?IK. finite (?AK i) using psubset.prems(1) by auto
have ?M ?AK ?IK
proof clarify
fix J assume J C ?IK
with <finite Iy have finite J by(auto intro: finite-subset)
show card J < card (|J (?AK ‘J))
proof—
from <JC?IK» have J N K = {} by auto
have card J = card(JUK) — card K
using «finite J» «finite K> «<JNK={}
by (auto simp: card-Un-disjoint)
also have card(JUK) < card(|J (4 ¢ (JUK)))
proof —
from «JC?IK) <KCI> have J U K C I by auto
with psubset.prems(2) show ?Zthesis by blast
qged
also have ... — card K = card(|J (?AK ‘J)UJ(A ‘K)) — card K
proof—
have | J(A  (JUK)) = (?AK “J)UU (A ‘ K)
using «JC?IK» by auto
thus ?thesis by simp
qged



also have ... = card (U (?AK ‘J)) + card(J(4 ‘ K)) — card K
proof—
have finite (| (?AK J)) using «finite J> «(JC?IK) psubset(3)
by (blast intro: finite- UN-I finite-Diff)
moreover have finite (J(A ‘ K))
using «finite K> «Vi€K. finite (A i)» by auto
moreover have | (7AK ‘J)NJ(A ‘ K) = {} by auto
ultimately show ?thesis
by (simp add: card-Un-disjoint del: Un-Diff-cancel2)

qged
also have ... = card (U (?AK ¢ J)) using case2 by simp
finally show ?thesis by simp
qed
qed

from psubset(2)[OF «?IKCI> «Vi€?IK. finite (?AK i)y <V JC?IK. card
J < card (JieJ. Ai—J (A ‘K)))
obtain R2 where R R2 ?AK ?IK ?inj R2 ?AK ?IK by auto
let R12 = Xi. if i€K then R1 i else R2 i
have Viel. R12i € A i using <?R R1 A K»<?R R2 ?AK ?IK> by auto
moreover have Vicl. Vjel. i#£j—?R12 i # ?R12j
proof clarify
fix ¢ j assume i€l jel i#j ?R12{ = ?R12j
show Fulse
proof—
{ assume €K A jeK V i¢ KAj¢K
with «%inj R1 A K» <%inj R2 ?AK ?IK> <?R12i=%?R12 j> <i#j i€l
jel
have ?thesis by (fastforce simp: inj-on-def)
} moreover
{ assume €K A j¢K V i¢K N jeK
with <?R R1 A K> <?R R2 ?AK ?IK» <?R12 i=%R12 j» ey <iel)
have ?thesis by auto (metis Diff-iff)
} ultimately show ?thesis by blast
qed
qed
ultimately show ?thesis unfolding inj-on-def by fast
qged
qed
qed
}
with assms <?M A Iy show ?thesis by auto
qed

The proof by Rado:

theorem marriage- Rado:
fixes A :: ‘a = 'b set and I :: 'a set
assumes finite I and V i€l. finite (A 7)
and VJCI. card J < card (J(A ¢ J)) (is ?M A)
shows JR. (Viel. Ri € A i) A inj-on R I



(is ?SDR Ais IR. PR R A & ?inj R A)
proof—
{ have Vi€l. finite (A i) = ?M A = ?SDR A
proof (induct n == 3" i€l. card(A i) — 1 arbitrary: A)
case (
have Viel.3a. A(i) = {a}
proof (rule ccontr)
assume - (Viel.3a. A i={a})
then obtain ¢ where i: i:] Va. A i # {a} by blast
hence {i}C I by auto
from 0(1—2) mp[OF spec[OF 0.prems(2)] «{i}CD] «finite I i
show Fualse by (auto simp: card-le-Suc-iff)
qed
then obtain R where R: Viel. A { = {R i} by metis
then have Viel. R i € A i by blast
moreover have inj-on R [
proof (auto simp: inj-on-def)
fixcryassumez cIye IRz =Ry
with R spec|OF 0.prems(2), of {z,y}] show z=y
by (simp add:le-Suc-eq card-insert-if split: if-splits)
qed
ultimately show Zcase by blast
next
case (Suc n)
from Suc.hyps(2)[symmetric, THEN sum-SucD]
obtain ¢ where i: i:] 2 < card(A i) by auto
then obtain =7 z2 where z1 : A {22 : A i x1 # 22
using Suc(3) by (fastforce simp: card-le-Suc-iff eval-nat-numeral)
let Aix = A i — {a} let 24 o = A(i:=%Ai z)
let 2UJ =J(A “J)let Ui Jx=2?UJ U ?Aiz
have n1: n = (> je€l. card (?A x1 j) — 1)
using Suc.hyps(2) Suc.prems(1) i <finite I» <xl:A 0
by (auto simp: sum.remove card-Diff-singleton)
have n2: n = (3> jel. card (YA 22 j) — 1)
using Suc.hyps(2) Suc.prems(1) i <finite I» <x2:A 0
by (auto simp: sum.remove card-Diff-singleton)
have finz1: Vjel. finite (?A x1 j) by (simp add: Suc(3))
have finz2: Vjel. finite (?A 22 j) by (simp add: Suc(3))
{ fix z assume — ?M (A(i:= ?4i z))
with Suc.prems(2) obtain J
where J: J C I card J > card({J ((A(i:= 24i z) “ J)))
by (auto simp add:not-less-eq-eq Suc-le-eq)
note fJi = finite-Diff [OF finite-subset|OF <JCI» «finite I+], of {i}]
have fU: finite(?U (J—{i})) using «JCI»
by (metis Diff-iff Suc(8) finite-UN[OF' fJi] subsetD)
have ¢ € J using J Suc.prems(2)
by (simp-all add: UNION-fun-upd not-le[symmetric] del: fun-upd-apply
split: if-splits)
hence card(J—{i}) > card(?Ui (J—{i}) z)



using fJi J by(simp add: UNION-fun-upd del: fun-upd-apply)
hence 3JCI. i ¢ J A card(J) > card(?Ui J x) A finite(2U J)
by (metis DiffD2 J(1) fU «i € J» insertll subset-insertI2 subset-insert-iff)
} note lem = this
have ?M (?A z1) VvV ?M (?A z2) — Rado’s Lemma
proof (rule ccontr)
assume - (?M (?A z1) V ?M (?A 22))
with lem obtain JI J2 where
J1: JICIi¢J1 card J1 > card(?Ui J1 z1) finite(?U J1) and
J2: J2CT i¢J2 card J2 > card(?Ui J2 x2) finite(?U J2)
by metis
note finl = finite-subset[OF <J1CI» assms(1)]
note fin2 = finite-subset[OF <J2CI» assms(1)]
have finUil: finite(?Ui J1 z1) using Suc(3) by(blast intro: JI1(4) i(1))
have finUi2: finite(?Ui J2 x2) using Suc(3) by(blast intro: J2(4) i(1))
have card J1 + card J2 + 1 = card(J1 U J2) + 1 + card(J1 N J2)
by simp (metis card-Un-Int finl fin2)
also have card(J1 U J2) + 1 = card(insert ¢ (J1 U J2))
using «i¢J1» «<i¢J2 finl fin2 by simp
also have ... < card (U (A ‘insert i (J1 U J2))) (is - < card ?M)
by (metis J1(1) J2(1) Suc(4) Un-least i(1) insert-subset)
also have ?M = ?Ui J1 z1 U ?Ui J2 x2 using <zl #z2> by auto
also have card(J1 N J2) < card(J(A “ (J1 N J2)))
by (metis J2(1) Suc(4) le-infI2)
also have ... < card(?U JI N 2U J2) by(blast intro: card-mono J1(4))
also have ... < card(?Ui JI x1 N ?Ui J2 z2)
using Suc(3) «iel> by(blast intro: card-mono J1(4))
finally show Fulse using J1(3) J2(3)
by(auto simp add: card-Un-Int[symmetric, OF finUil finUi2))
qed
thus ?case using Suc.hyps(1)[OF nl finxl] Suc.hyps(1)[OF n2 finz2]
by (metis Diff D1 fun-upd-def)
qed
} with assms <M Ay show ?thesis by auto
qed

end
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