
The Halting Problem is Soluble in
Malament-Hogarth Spacetimes

Mike Stannett
University of Sheffield, UK

September 13, 2023

Abstract
We provide an Isabelle verification that the (Turing) Halting Prob-

lem can be solved in Malament-Hogarth (MH) spacetimes. Our proof
is quite general – rather than assume the full machinery of general rela-
tivity, we simply assume the existence of a reachability relation, p q,
defined on an abstract space of locations; this captures the idea that a
user (or signal) can travel from one location to another in finite proper
time. An MH spacetime can then be described as a space in which
there exists an unboundedly long path mhline, and a location mhpoint
which is reachable from all points on mhline. Likewise, we use a very
general notion of computation - the ‘current state’ of a computation is
assumed to be representable as a machine configuration containing all
the information required to determine how the system changes with the
execution of each ensuing instruction. To specify a computation you
provide the initial configuration, and the ‘operating system’ (the ac-
tion of which is modeled via an assumed function, getNextConfig , then
computes successor configurations one by one. The program is deemed
to halt if the system enters a configuration which is left unchanged
under getNextConfig . Since this situation is generally detectable by
an operating system, we can use its occurrence to trigger events that
exploit the nature of MH spacetimes, thereby enabling us to detect
whether or not halting will eventually have occurred.

Our verification follows existing arguments in the literature, albeit
translated into this more general setting.

Contents
1 MHComputation 2

1.1 locale: Computation . 2
1.2 locale: ReachabilitySpace 3
1.3 locale: Time . 3
1.4 locale: MHSpacetime . 4
1.5 locale: MHComputation 4

1.5.1 lemma: hpMHDecidable
The halting problem is decidable in MH-Spacetime 5

1

1 MHComputation

In this theory we define five locales

• Computation
• ReachabilitySpace
• Time
• MHSpacetime
• MHComputation

and use them to verify that the Turing halting problem (HP)
can be solved if we are allowed to exploit the physical properties
of so-called Malament-Hogarth spacetimes.
This verification generalises our earlier proof outline [3], which
was itself based on the seminal results of Hogarth [2] and Németi
& Etesi [1].
theory MHComputation

imports Main
begin

1.1 locale: Computation

We think of a computing machine as being placed in an initial
configuration, which includes all of the required details of the
program to be run and its inputs. The machine is equipped with
an operating system which “knows” how to execute one instruc-
tion at a time, thereby moving the system from one configuration
to another as time (measured in discrete “ticks”) passes.
We generally refer to the initial configuration using the variable
name spec (for “specification”). The function configAtTick which
takes two arguments , the initial configuration and the tick num-
ber n, and yields the configuration of the corresponding system
at completion of the n’th tick. This is computed by recursively
iterating calls to getNextConfig.
We say that the program halts if there are two consecutive ticks
at which the configurations are identical.
locale Computation =

fixes halts :: ′machineConfig ⇒ bool
and getNextConfig :: ′machineConfig ⇒ ′machineConfig
and configAtTick :: ′machineConfig ⇒ nat ⇒ ′machineConfig
assumes

halting: halts spec ≡ ∃ n . (configAtTick spec n = configAtTick
spec (n+1))
and configs: configAtTick spec n =

2

(if n = 0 then spec else getNextConfig (configAtTick
spec (n−1)))
begin

abbreviation haltingTick :: ′machineConfig ⇒ nat option
where haltingTick spec ≡

(if (halts spec)
then Some (Min { n . configAtTick spec n = configAtTick

spec (n+1) })
else None)

end

1.2 locale: ReachabilitySpace

Although we think of computations as taking place in a special
type of spacetime, this interpretation is far more constraining
that required for the proof to work. All we need to know is
whether there is a traversible path from one spacetime location
to another. We do not specify what we mean by a “location”,
but we can think of locations as points in a (3+1)-dimensional
spacetime, with traversibility indicating the existence of a time-
like curve from one location to another.
locale ReachabilitySpace =

fixes reachable :: ′location ⇒ ′location ⇒ bool (- -)
begin
end

1.3 locale: Time

We’ll be modelling time using values in a linearly ordered field.
However, such fields can include infinite values. We want to
ensure that the user can solve the halting problem in a known
finite amount of time, so we need some way of saying that a
positive value is finite. The details are unimportant. One way
would be to note that each natural number can be embedded
naturally in the field, and say that a positive value is finite iff it
is bounded above by some natural number.
locale Time = linordered-field +

fixes isFinite :: ′a ⇒ bool
begin

fun embedTick :: nat ⇒ ′a
where embedTick 0 = zero
| embedTick (Suc n) = plus one (embedTick n)

3

end

1.4 locale: MHSpacetime

A Malament-Hogarth spacetime is a spacetime which contains a
point mhpoint and a timelike curve mhline, where mhline has
infinite proper length and mhpoint is reachable from every point
on mhline. If we arrange for the computer to traverse mhline,
this ensures that any program that ought to run forever without
halting will have “enough time” to do so.
We represent mhline as a path comprising locations parame-
terised by proper time, where proper times are assumed to form
a linearly ordered field (in the algebraic sense). Because linearly
ordered fields contain unboundedly large values, this ensures that
the proper length of mhline is infinite.
Since mhpoint is reachable from mhline(0), there exists some
fixed path basePath between the two points, which takes some
finite proper time baseT ime to traverse.
locale MHSpacetime = ReachabilitySpace + Time +

fixes mhpoint :: ′location
and mhline :: ′b ⇒ ′location
and basePath :: ′b ⇒ ′location
and baseTime :: ′b
assumes

mhprop: (mhline t) mhpoint
and baseprop: (basePath zero = mhline zero) ∧ (basePath baseTime
= mhpoint)

∧ (isFinite baseTime)
begin
end

1.5 locale: MHComputation

This locale combines Computation and MHSpacetime by assum-
ing that the computer and user follow special paths while the
program executes. We think of the user being co-located with
the computer at time 0, when some program of interest begins
execution on some specific set of inputs (both the program and
the inputs are provided by the user in the initial configuration).
Our task is to determine (in finite – and program-independent –
time as measured by the user) whether or not the execution will
eventually halt.
To do this, we send the computer along the path mhline, while
the user travels instead to mhpoint via basePath. The machine’s
operating system is equipped with a signalling device, which is

4

triggered if (and only if) the program is found to have halted.
To determine whether the program eventually halts, all the user
has to do is check when they arrive at mhpoint whether or not
a signal is also present. If so, the operating system must have
been been triggered to send it, which means that the program
must have halted at some point. If no signal is present, then
no step of the program triggered the operating system to send
one, which means the program never halted while the computer
traversed mhline. Since this trajectory provided the computer
with enough time to execute an unlimited number of ticks, this
means that the program ran forever.
The runtime, baseT ime, of this procedure is finite, and is the
same for all choices of initial configuration, spec.
locale MHComputation = Computation + MHSpacetime +

fixes machinePath :: ′c ⇒ ′b
and userPath :: ′c ⇒ ′b
and signalSentFrom :: ′a ⇒ ′b ⇒ bool
and signalPresentAt :: ′a ⇒ ′b ⇒ bool
and runtime :: ′c
assumes

pathOfMachine: machinePath = mhline
and pathOfUser : userPath = basePath
and decisionTime: runtime = baseTime
and signalling: (signalSentFrom spec pt) ←→

(∃ n . (haltingTick spec = Some n)
∧ (pt = machinePath (embedTick n)))

and signalReception: (signalPresentAt spec pt ←→
(∃ pt ′ . signalSentFrom spec pt ′ ∧ (pt ′ pt)))

begin

1.5.1 lemma: hpMHDecidable
The halting problem is decidable in MH-Spacetime

We show that the user can determine whether or not any spec-
ified program will eventually halt by checking for the receipt of
a signal after a fixed finite runtime. The same runtime works
regardless of which program is being examined.
abbreviation decisionAtTime :: ′a ⇒ ′c ⇒ bool

where decisionAtTime spec t ≡ signalPresentAt spec (userPath t)

lemma hpMHDecidable: (isFinite runtime) ∧
(∀ spec . (decisionAtTime spec runtime = True) ←→

halts spec)
proof −

5

have part1 : isFinite runtime using baseprop decisionTime by auto

moreover have part2 : ∀ spec . (decisionAtTime spec runtime =
True) ←→ halts spec

proof −
{ fix spec

{ assume case1 : decisionAtTime spec runtime = True
hence signalPresentAt spec (userPath runtime) by simp
then obtain pt ′ where pt ′: (signalSentFrom spec pt ′) ∧ (pt ′

 (userPath runtime))
using signalReception by auto
then obtain n where n: haltingTick spec = Some n using

signalling by auto
hence halts spec by (meson option.distinct(1))

}
hence decisionAtTime spec runtime = True −→ halts spec by

auto

moreover have halts spec −→ decisionAtTime spec runtime =
True

proof −
{ assume case2 : halts spec

obtain m where m: m = Min { n . configAtTick spec n =
configAtTick spec (n+1) }

by auto
define pt where pt: pt = machinePath (embedTick m)
hence (haltingTick spec = Some m) ∧ (pt = machinePath

(embedTick m)) using m case2 by simp
hence signalSentFrom spec pt using signalling by auto
moreover have pt mhpoint by (metis mhprop pathOfMa-

chine pt)
ultimately have signalPresentAt spec (userPath runtime)
using baseprop decisionTime pathOfUser signalReception by

auto
hence decisionAtTime spec runtime = True by simp

}
thus ?thesis by auto

qed

ultimately have (decisionAtTime spec runtime = True) ←→
halts spec

by blast
}
thus ?thesis by blast

qed

ultimately show ?thesis by blast
qed

6

end
end

References
[1] G. Etesi and I. Németi. Non-turing computations via Malament-

Hogarth space-times. Int. J. Theor. Phys., 41:341–370, 2002.
[2] M. Hogarth. Deciding arithmetic using SAD computers. British

Journal for the Philosophy of Science, 55:681–691, 2004.
[3] M. Stannett. Towards formal verification of computations and hy-

percomputations in relativistic physics. In J. Durand-Lose and
B. Nagy, editors, Machines, Computations, and Universality 2015,
09-11 Sep 2015, Famagusta, North Cyprus, number 9288 in Lecture
Notes in Computer Science. Springer Verlag, 2015.

7

	MHComputation
	locale: Computation
	locale: ReachabilitySpace
	locale: Time
	locale: MHSpacetime
	locale: MHComputation
	lemma: hpMHDecidable The halting problem is decidable in MH-Spacetime

