
Lucas’s Theorem

Chelsea Edmonds

March 17, 2025

Abstract

This work presents a formalisation of a generating function proof
for Lucas’s theorem. We first outline extensions to the existing For-
mal Power Series (FPS) library, including an equivalence relation for
coefficients modulo n, an alternate binomial theorem statement, and a
formalised proof of the Freshman’s dream (mod p) lemma.

The second part of the work presents the formal proof of Lucas’s
Theorem. Working backwards, the formalisation first proves a well
known corollary of the theorem which is easier to formalise and then
applies induction to prove the original theorem statement. The proof of
the corollary aims to provide a good example of a formalised generating
function equivalence proof using the FPS library. The final theorem
statement is intended to be integrated into the formalised proof of
Hilbert’s 10th Problem [1].
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theory Lucas-Theorem
imports Main HOL−Computational-Algebra.Computational-Algebra

begin

notation fps-nth (infixl ‹$› 75 )
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1 Extensions on Formal Power Series (FPS) Li-
brary

This section presents a few extensions on the Formal Power Series (FPS)
library, described in [2]

1.1 FPS Equivalence Relation

This proof requires reasoning around the equivalence of coefficients mod
some prime number. This section defines an equivalence relation on FPS
using the pattern described by Paulson in [4], as well as some basic lemmas
for reasoning around how the equivalence holds after common operations
are applied
definition fpsmodrel p ≡ { (f , g). ∀ n. (f $ n) mod p = (g $ n) mod p }

lemma fpsrel-iff [simp]: (f , g) ∈ fpsmodrel p ←→ (∀n. (f $ n) mod p = (g $ n)
mod p)
〈proof 〉

lemma fps-equiv: equiv UNIV (fpsmodrel p)
〈proof 〉

Equivalence relation over multiplication
lemma fps-mult-equiv-coeff :

fixes f g :: ( ′a :: {euclidean-ring-cancel}) fps
assumes (f , g) ∈ fpsmodrel p
shows (f ∗h)$n mod p = (g∗h)$n mod p
〈proof 〉

lemma fps-mult-equiv:
fixes f g :: ( ′a :: {euclidean-ring-cancel}) fps
assumes (f , g) ∈ fpsmodrel p
shows (f ∗h, g∗h) ∈ fpsmodrel p
〈proof 〉

Equivalence relation over power operator
lemma fps-power-equiv:

fixes f g :: ( ′a :: {euclidean-ring-cancel}) fps
fixes x :: nat
assumes (f , g) ∈ fpsmodrel p
shows (f^x, g^x) ∈ fpsmodrel p
〈proof 〉

1.2 Binomial Coefficients

The fps-binomial definition in the formal power series uses the n gchoose
k operator. It’s defined as being of type ′a fps, however the equivalence
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relation requires a type ′a that supports the modulo operator. The proof
of the binomial theorem based on FPS coefficients below uses the choose
operator and does not put bounds on the type of fps-X.
lemma binomial-coeffs-induct:

fixes n k :: nat
shows (1 + fps-X)^n $ k = of-nat(n choose k)
〈proof 〉

1.3 Freshman’s Dream Lemma on FPS

The Freshman’s dream lemma modulo a prime number p is a well known
proof that (1 + xp) ≡ (1 + x)p mod p

First prove that
(
pn

k

)
≡ 0 mod p for k ≥ 1 and k < pn. The eventual proof

only ended up requiring this with n = 1

lemma pn-choose-k-modp-0 :
fixes n k::nat
assumes prime p

k ≥ 1 ∧ k ≤ p^n − 1
n > 0

shows (p^n choose k) mod p = 0
〈proof 〉

Applying the above lemma to the coefficients of (1+X)p, it is easy to show
that all coefficients other than the 0th and pth will be 0

lemma fps-middle-coeffs:
assumes prime p

n 6= 0 ∧ n 6= p
shows ((1 + fps-X :: int fps) ^p) $ n mod p = 0 mod p
〈proof 〉

It follows that (1 + X)p is equivalent to (1 + Xp) under our equivalence
relation, as required to prove the freshmans dream lemma.
lemma fps-freshmans-dream:

assumes prime p
shows (((1 + fps-X :: int fps ) ^p), (1 + (fps-X)^(p))) ∈ fpsmodrel p
〈proof 〉

2 Lucas’s Theorem Proof

A formalisation of Lucas’s theorem based on a generating function proof
using the existing formal power series (FPS) Isabelle library
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2.1 Reasoning about Coefficients Helpers

A generating function proof of Lucas’s theorem relies on direct comparison
between coefficients of FPS which requires a number of helper lemmas to
prove formally. In particular it compares the coefficients of (1+X)n mod p
to (1 + Xp)N ∗ (1 + X)rn mod p, where N = n/p, and rn = n mod p.
This section proves that the kth coefficient of (1 + Xp)N ∗ (1 + X)rn =
(NchooseK) ∗ (rnchooserk)

Applying the (oo) operator enables reasoning about the coefficients of (1 +
Xp)n using the existing binomial theorem proof with Xp instead of X.
lemma fps-binomial-p-compose:

assumes p 6= 0
shows (1 + (fps-X :: ( ′a :: {idom} fps))^p)^n = ((1 + fps-X)^n) oo (fps-X^p)
〈proof 〉

Next the proof determines the value of the kth coefficient of (1 +Xp)N .
lemma fps-X-pow-binomial-coeffs:

assumes prime p
shows (1 + (fps-X ::int fps)^p)^N $k = (if p dvd k then (N choose (k div p))

else 0 )
〈proof 〉

The final helper lemma proves the kth coefficient is equivalent to
(
?N
?K

)
∗
(
?rn
?rk

)
as required.
lemma fps-div-rep-coeffs:

assumes prime p
shows ((1 + (fps-X ::int fps)^p)^(n div p) ∗ (1 + fps-X)^(n mod p)) $ k =

((n div p) choose (k div p)) ∗ ((n mod p) choose (k mod p))
(is ((1 + (fps-X ::int fps)^p)^?N ∗ (1 + fps-X)^?rn) $ k = (?N choose ?K ) ∗

(?rn choose ?rk))
〈proof 〉

2.2 Lucas Theorem Proof

The proof of Lucas’s theorem combines a generating function approach,
based off [3] with induction. For formalisation purposes, it was easier to
first prove a well known corollary of the main theorem (also often presented
as an alternative statement for Lucas’s theorem), which can itself be used
to backwards prove the the original statement by induction. This approach
was adapted from P. Cameron’s lecture notes on combinatorics [5]

2.2.1 Proof of the Corollary

This step makes use of the coefficient equivalence arguments proved in the
previous sections
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corollary lucas-corollary:
fixes n k :: nat
assumes prime p
shows (n choose k) mod p = (((n div p) choose (k div p)) ∗ ((n mod p) choose

(k mod p))) mod p
(is (n choose k) mod p = ((?N choose ?K ) ∗ (?rn choose ?rk)) mod p)

〈proof 〉

2.2.2 Proof of the Theorem

The theorem statement requires a formalised way of referring to the base p
representation of a number. We use a definition that specifies the ith digit
of the base p representation. This definition is originally from the Hilbert’s
10th Problem Formalisation project [1] which this work contributes to.
definition nth-digit-general :: nat ⇒ nat ⇒ nat ⇒ nat where

nth-digit-general num i base = (num div (base ^ i)) mod base

Applying induction on d, where d is the highest power required in either n
or k’s base p representation, prime ?p =⇒ (?n choose ?k) mod ?p = (?n div
?p choose ?k div ?p) ∗ (?n mod ?p choose ?k mod ?p) mod ?p can be used
to prove the original theorem.
theorem lucas-theorem:

fixes n k d::nat
assumes n < p ^ (Suc d)
assumes k < p ^ (Suc d)
assumes prime p
shows (n choose k) mod p = (

∏
i≤d. ((nth-digit-general n i p) choose (nth-digit-general

k i p))) mod p
〈proof 〉

end
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