Lucas’s Theorem

Chelsea Edmonds
March 17, 2025

Abstract

This work presents a formalisation of a generating function proof
for Lucas’s theorem. We first outline extensions to the existing For-
mal Power Series (FPS) library, including an equivalence relation for
coefficients modulo n, an alternate binomial theorem statement, and a
formalised proof of the Freshman’s dream (mod p) lemma.

The second part of the work presents the formal proof of Lucas’s
Theorem. Working backwards, the formalisation first proves a well
known corollary of the theorem which is easier to formalise and then
applies induction to prove the original theorem statement. The proof of
the corollary aims to provide a good example of a formalised generating
function equivalence proof using the FPS library. The final theorem
statement is intended to be integrated into the formalised proof of
Hilbert’s 10th Problem [1].

Contents

1

Extensions on Formal Power Series (FPS) Library

1.1 FPS Equivalence Relation
1.2 Binomial Coefficients
1.3 Freshman’s Dream Lemma on FPS

Lucas’s Theorem Proof
2.1 Reasoning about Coefficients Helpers
2.2 Lucas Theorem Proof

2.2.1 Proof of the Corollary
2.2.2 Proof of the Theorem

theory Lucas-Theorem

imports Main HOL— Computational-Algebra. Computational-Algebra

begin

notation fps-nth (infixl <$» 75)

= w NN

© 00 o O Gt

1 Extensions on Formal Power Series (FPS) Li-
brary

This section presents a few extensions on the Formal Power Series (FPS)
library, described in [2]

1.1 FPS Equivalence Relation

This proof requires reasoning around the equivalence of coefficients mod
some prime number. This section defines an equivalence relation on FPS
using the pattern described by Paulson in [4], as well as some basic lemmas
for reasoning around how the equivalence holds after common operations
are applied

definition fpsmodrel p = { (f, 9). ¥V n. (f $ n) mod p = (¢ $ n) mod p }

lemma fpsrel-iff [simpl: (f, g) € fpsmodrel p +— (Vn. (f $ n) mod p = (¢ $ n)
mod p)
by (simp add: fpsmodrel-def)

lemma fps-equiv: equiv UNIV (fpsmodrel p)
proof (rule equivl)
show refl (fpsmodrel p) by (simp add: refl-on-def fpsmodrel-def)
show sym (fpsmodrel p) by (simp add: sym-def fpsmodrel-def)
show trans (fpsmodrel p) by (intro transl) (simp add: fpsmodrel-def)
qed

Equivalence relation over multiplication

lemma fps-mult-equiv-coeff:
fixes f g :: ('a :: {euclidean-ring-cancel}) fps
assumes (f, g) € fpsmodrel p
shows (f*h)$n mod p = (gxh)$n mod p
proof —
have ((f*xh) $ n) mod p =3 i=0..n. (f$i mod p * h$(n — i) mod p) mod p)
mod p
using mod-sum-eq mod-mult-left-eq
by (simp add: fps-mult-nth mod-sum-eq mod-mult-left-eq)

also have ... = (>_i=0..n. (987 mod p x h¥(n — i) mod p) mod p) mod p
using assms by auto
also have ... = ((gxh) $ n) mod p

by (simp add: mod-mult-left-eq mod-sum-eq fps-mult-nth)
thus ?thesis by (simp add: calculation)
qed

lemma fps-mult-equiv:
fixes f g :: ('a :: {euclidean-ring-cancel}) fps
assumes (f, g) € fpsmodrel p
shows (f*h, gxh) € fpsmodrel p

using fpsmodrel-def fps-mult-equiv-coeff assms by blast

Equivalence relation over power operator

lemma fps-power-equiv:
fixes f g :: ('a :: {euclidean-ring-cancel}) fps
fixes = :: nat
assumes (f, g) € fpsmodrel p
shows (f"z, ¢7x) € fpsmodrel p
using assms
proof (induct x)
case ()
thus ?case by (simp add: fpsmodrel-def)
next
case (Suc)
then have hyp: Vn. fx$nmodp=g 8% nmodp
using fpsrel-iff by blast
thus ?case
proof —
have fact: Vn h. (g x h) $ n mod p = (f x h) $ n mod p
by (metis assms fps-mult-equiv-coeff)
have Vn h. (¢ "z« h) $nmodp = (f "z *h)$ nmodp
by (simp add: fps-mult-equiv-coeff hyp)
then have Vn h. (h*x g "z) $ nmodp = (h*f " z) 3% nmodp
by (simp add: mult.commute)
thus ?thesis
using fact by force
qed
qed

1.2 Binomial Coeflicients

The fps-binomial definition in the formal power series uses the n gchoose
k operator. It’s defined as being of type ‘a fps, however the equivalence
relation requires a type ‘a that supports the modulo operator. The proof
of the binomial theorem based on FPS coefficients below uses the choose
operator and does not put bounds on the type of fps-X.

lemma binomial-coeffs-induct:
fixes n k :: nat
shows (1 + fps-X)™n $ k = of-nat(n choose k)
proof (induct n arbitrary: k)
case ()
thus Zcase
by (metis binomial-eq-0-iff binomial-n-0 fps-nth-of-nat not-gr-zero of-nat-0
of-nat-1 power-0)
next
case h: (Suc n)
have start: (1 + fps-X)(n + 1) = (1 + fps-X) x (I + fps-X) "n by auto
show ?Zcase

using One-nat-def Suc-eq-plusl Suc-pred add.commute binomial-Suc-Suc bino-
mial-n-0
fps-mult-fps-X-plus-1-nth h.hyps neq0-conv start
by (smt (verit, del-insts) of-nat-add)
qed

1.3 Freshman’s Dream Lemma on FPS

The Freshman’s dream lemma modulo a prime number p is a well known
proof that (14 2P) = (1 + z)? mod p

First prove that (p]:) =0 mod p for k> 1 and k£ < p"™. The eventual proof
only ended up requiring this with n =1

lemma pn-choose-k-modp-0:
fixes n k::nat
assumes prime p
E>1NkE<pm-—1
n >0
shows (p™n choose k) mod p = 0
proof —
have inequality: k < p~n using assms (2) by arith
have choose-take-1: ((p"n — 1) choose (k — 1))= fact (p"n — 1) div (fact (k
— 1) % fact (p7n — k))
using binomial-altdef-nat diff-le-mono inequality assms(2) by auto
have k x (p™n choose k) = k x ((fact (p™n)) div (fact k * fact((p™n) — k)))
using assms binomial-fact’|OF inequality] by auto
also have ... = k x fact (p™n) div (fact k = fact((p™n) — k))
using binomial-fact-lemma div-mult-self-is-m fact-gt-zero inequality mult.assoc
mault.commute
nat-0-less-mult-iff
by (simp add: choose-dvd div-mult-swap)
also have ... = k x fact (p7n) div (k x fact (k — 1) x fact((p™n) — k))
by (metis assms(2) fact-nonzero fact-num-eq-if le0 le-antisym of-nat-id)
also have ... = fact (p™n) div (fact (k — 1) * fact((p™n) — k))
using assms by auto
also have ... = ((p™n) * fact (p™n — 1)) div (fact (k — 1) * fact((p"n) — k))
by (metis assms(2) fact-nonzero fact-num-eq-if inequality le0 le-antisym of-nat-id)
also have ... = (p™n) * (fact (p™n — 1) div (fact (k — 1) * fact((p”™n) — k)))
by (metis assms(2) calculation choose-take-1 neq0-conv not-one-le-zero times-binomial-minusi-eq)
finally have equality: k * (p"n choose k) = p™n % ((p"n — 1) choose (k — 1))
using assms(2) times-binomial-minusl-eq by auto
then have dvd-result: p™n dvd (k * (p~n choose k)) by simp
have - (p™n dvd k)
using assms (2) binomial-n-0 diff-diff-cancel nat-dvd-not-less neq0-conv by auto

then have p dvd (p™n choose k)

using mult.commute prime-imp-prime-elem prime-power-dvd-multD assms dvd-result
by metis

thus ?thesis by simp

qed

Applying the above lemma to the coefficients of (1 + X)P, it is easy to show
that all coefficients other than the Oth and pth will be 0

lemma fps-middle-coeffs:
assumes prime p
n#0An#p
shows ((1 + fps-X :: int fps) "p) $ n mod p = 0 mod p
proof —
let 2f = (1 + fps-X :: int fps) p
haveV n.n > 0 A n < p — (p choose n) mod p = 0
using pn-choose-k-modp-0 [of p - 1] <prime p> by auto
then have middle-0: ¥V n.n> 0 An<p— (?f$n) modp =10
using binomial-coeffs-induct by (metis of-nat-0 zmod-int)
haveV n.n>p — 2/ $nmodp=10
using binomial-eq-0-iff binomial-coeffs-induct mod-0 by (metis of-nat-eq-0-iff)

thus ?thesis using middle-0 assms(2) nat-neq-iff by auto
qed

It follows that (1 + X)P is equivalent to (1 + XP) under our equivalence
relation, as required to prove the freshmans dream lemma.

lemma fps-freshmans-dream:
assumes prime p
shows (((1 + fps-X == int fps) "p), (1 + (fps-X) (p))) € fpsmodrel p
proof —
let 2f = (1 + fps-X :: int fps) p
let ?2g = (1 + (fps-X :: int fps) p)
have all-f-coeffs: ¥V n.n# 0 An#p— 2f $ nmodp = 0modp
using fps-middle-coeffs assms by blast
have ?g $ 0 = 1 using assms by auto
then have 79 $ 0 mod p = 1 mod p
using int-ops(2) zmod-int assms by presburger
then have 29 $§ p mod p = 1 mod p using assms by auto
then have V n . 2/ $ n mod p = %9 $ n mod p
using all-f-coeffs by (simp add: binomial-coeffs-induct)
thus “thesis using fpsrel-iff by blast
qed

2 Lucas’s Theorem Proof

A formalisation of Lucas’s theorem based on a generating function proof
using the existing formal power series (FPS) Isabelle library

2.1 Reasoning about Coefficients Helpers

A generating function proof of Lucas’s theorem relies on direct comparison
between coefficients of FPS which requires a number of helper lemmas to
prove formally. In particular it compares the coefficients of (1+ X)™ mod p
to (1 + XP)N % (1 + X)"n mod p, where N = n/p, and rn = n mod p.
This section proves that the kth coefficient of (1 + XP)V % (1 + X)'n =
(NchooseK) * (rnchooserk)

Applying the (00) operator enables reasoning about the coefficients of (1 +
XP)™ using the existing binomial theorem proof with X? instead of X.

lemma fps-binomial-p-compose:
assumes p # 0
shows (1 + (fps-X:: (Ya :: {idom} fps)) ™») n = ((1 + fps-X) n) oo (fps-X"p)
proof —
have (1::a fps) + fps-X “p =1 + fps-X oo fps-X " p
by (simp add: assms fps-compose-add-distrib)
then show ?thesis
by (simp add: assms fps-compose-power)
qged

Next the proof determines the value of the kth coefficient of (1 + XP)V.

lemma fps-X-pow-binomial-coeffs:
assumes prime p
shows (1 + (fps-X ::int fps) p) "N $k = (if p dvd k then (N choose (k div p))
else 0)
proof —
let ?fx = (fps-X :: int fps)
have (1 + 2z p) "N $ k = ((I + 2fz)"N) oo (?fz7p)) $k
by (metis assms fps-binomial-p-compose not-prime-0)
also have ... = (3 i=0..k.((1 + %fx) "N)$i = ((?fz"p) "i%k))
by (simp add: fps-compose-nith)
finally have coeffs: (1 + 2fz"p) "N $ k= (> i=0..k. (N choose i) = ((2fx (pxi))$k))
using binomial-coeffs-induct sum.cong by (metis (no-types, lifting) power-mult)

thus ?thesis
proof (cases p dvd k)
case False — p does not divide k implies the kth term has a coefficient of 0
have V . =(p dvd k) — (2fz (p*i)) $ k=0
by auto
thus ?thesis using coeffs by (simp add: False)
next
case True — p divides k implies the kth term has a non-zero coefficient
have contained: k div p € {0.. k} by simp
have V i. i # k div p — (2fz7(pxi)) $ k = 0 using assms by auto
then have notdivpis0: V i € ({0 .. k} — {k div p}). (?fz(pxi)) $ k = 0 by
simp
have (1 + %fx"p) "N $ k = (N choose (k div p)) * (?fx(p * (k divp))) $ k +
(>~ ie({0..k} —{k div p}). (N choose i) * ((?fz (p*i))$k))

using contained coeffs sum.remove by (metis (no-types, lifting) finite-atLeastAtMost)
thus ?thesis using notdivpisO True by simp
qed
qed

The final helper lemma proves the kth coefficient is equivalent to (Z%) * (Z:Z)
as required.

lemma fps-div-rep-coeffs:
assumes prime p
shows ((1 + (fps-X::int fps) p) (n div p) x (1 + fps-X) (n mod p)) $ k =
((n div p) choose (k div p)) * ((n mod p) choose (k mod p))
(is ((1 + (fps-X::int fps) p) ¢N x (1 + fps-X)"?rn) $ k = (?N choose ?K) x
(rn choose ?rk))
proof —
— Initial facts with results around representation and 0 valued terms
let ?fr = fps-X :: int fps
have krep: k — %rk = ?Kxp
by (simp add: minus-mod-eq-mult-div)
have rk-in-range: ?rk € {0..k} by simp
have V i > p. (?rn choose i) = 0
using binomial-eq-0-iff
by (metis assms(1) leD le-less-trans linorder-cases mod-le-divisor mod-less-divisor
prime-gt-0-nat)
then have ptok0:V i € {p..k}. ((?rn choose i) x (1 + 2fx"p) " ?N $ (k — i) =
0
by simp
then have notrkis0: Vi € {0.. k}. i # ?rk — (9rn choose ©) x (1 + ?fx"p) ?N
$ (k-9 =0
proof (cases k < p)
case True — When k < p, it presents a side case with regards to range of
reasoning
then have k-value: k = ?rk by simp
then have V ¢ < k. = (p dvd (k — ©))
using True by (metis diff-diff-cancel diff-is-0-eq dvd-imp-mod-0 less-imp-diff-less
less-irrefl-nat mod-less)
then show ?thesis using fps-X-pow-binomial-coeffs assms(1) k-value by simp
next
case Fulse
then have V ¢ < p. i # %k — —(p dvd (k — 7))
using mod-nat-eql by auto
then have V i € {0.<p}. i # 2rk — (1 + 2%z p) 2N S (k—149) =0
using assms fps-X-pow-binomial-coeffs by simp
then show ?thesis using ptok0 by auto
qed
— Main body of the proof, using helper facts above
have ((1 + fps-X"p) 2N x (1 + fps-X) "%rn) $ k= (((1 + fps-X) "%rn) = (1 +
fps-X"p)"?N) $ k
by (metis (no-types, opaque-lifting) distrib-left distrib-right fps-mult-fps-X-commute
fps-one-mult(1)

fps-one-mult(2) power-commuting-commutes)
also have ... = (> i=0..k.(of-nat(?rn choose 7)) * ((1 + (fps-X) p) "?N § (k —
1))
by (simp add: fps-mult-nth binomial-coeffs-induct)
also have ... = ((?rn choose ?rk) x (1 + 2fz7p) "?N $ (k — 2rk)) + (> i€({0..k}
— {?rk}). (?rn choose i) x (1 + ?fx"p) " ?N $ (k — 1))
using rk-in-range sum.remove by (metis (no-types, lifting) finite-atLeastAtMost)
finally have ((1 + ?2fx"p) ?N * (1 + %) %rn) $§ k = ((?rn choose ?rk) x (1
+ ?2fx"p) N $ (k — ?rk))
using notrkis0 by simp
thus ?thesis using fps-X-pow-binomial-coeffs assms krep by auto
qed

2.2 Lucas Theorem Proof

The proof of Lucas’s theorem combines a generating function approach,
based off [3] with induction. For formalisation purposes, it was easier to
first prove a well known corollary of the main theorem (also often presented
as an alternative statement for Lucas’s theorem), which can itself be used
to backwards prove the the original statement by induction. This approach
was adapted from P. Cameron’s lecture notes on combinatorics [5]

2.2.1 Proof of the Corollary

This step makes use of the coefficient equivalence arguments proved in the
previous sections

corollary lucas-corollary:
fixes n k :: nat
assumes prime p
shows (n choose k) mod p = (((n div p) choose (k div p)) * ((n mod p) choose
(k mod p))) mod p
(is (n choose k) mod p = ((?N choose ?K) x (?rn choose ?rk)) mod p)
proof —
let ?fz = fps-X :: int fps
have n-rep: n = ?N xp + ?rn
by simp
have k-rep: k =?K x p + ?rk by simp
have rhs-coeffs: ((1 + 2fx"p) (?N) = (1 + 2fx) (?rn)) $ k = (2N choose ?K) x
(#rn choose ?rk)
using assms fps-div-rep-coeffs k-rep n-rep by blast — Application of coefficient
reasoning
have ((((1 + 2fx)"p) (?N) = (1 + ?fz) (%rn)),
((1 + #fz7p) (#N) * (1 + #fr) (#rn))) € fpsmodrel p
using fps-freshmans-dream assms fps-mult-equiv fps-power-equiv by blast —
Application of equivalence facts and freshmans dream lemma
then have modrel2: ((1 + ?fz) n, (1 + 2fx"p) (?N) % (1 + 2fz) (%rn)))
€ fpsmodrel p

by (metis (mono-tags, opaque-lifting) mult-div-mod-eq power-add power-mult)
thus ?thesis
using fpsrel-iff binomial-coeffs-induct rhs-coeffs by (metis of-nat-eq-iff zmod-int)

qed

2.2.2 Proof of the Theorem

The theorem statement requires a formalised way of referring to the base p
representation of a number. We use a definition that specifies the ¢th digit
of the base p representation. This definition is originally from the Hilbert’s
10th Problem Formalisation project [1] which this work contributes to.

definition nth-digit-general :: nat = nat = nat = nat where
nth-digit-general num i base = (num div (base ~ %)) mod base

Applying induction on d, where d is the highest power required in either n
or k’s base p representation, prime ¢p = (n choose ?k) mod ?p = (?n div
?p choose %k div ?p) x (?n mod ?p choose ?k mod ?p) mod ?p can be used
to prove the original theorem.

theorem lucas-theorem:
fixes n k d::nat
assumes n < p ~ (Suc d)
assumes k£ < p ~ (Suc d)
assumes prime p
shows (n choose k) mod p = (][] i<d. ((nth-digit-general n i p) choose (nth-digit-general
ki p))) mod p
using assms
proof (induct d arbitrary: n k)
case (
thus ?case using nth-digit-general-def assms by simp
next
case (Suc d)
— Representation Variables
let 2N = n divp
let 2K = k div p
let ?nr = n mod p
let ?kr = k mod p
— Required assumption facts
have Mlessthan: ?N < p ~ (Suc d)
using less-mult-imp-div-less power-Suc2 assms(3) prime-ge-2-nat Suc.prems(1)
by metis
have Nliessthan: ?K < p ~ (Suc d)
using less-mult-imp-div-less power-Suc2 prime-ge-2-nat Suc.prems(2) assms(3)
by metis
have shift-bounds-fact: ([] i=(Suc 0)..(Suc (d)). ((nth-digit-general n i p) choose
(nth-digit-general k i p))) =
(IT#=0..(d). (nth-digit-general n (Suc i) p) choose
(nth-digit-general k (Suc @) p))

using prod.shift-bounds-cl-Suc-ivl by blast — Product manipulation helper fact
have (n choose k) mod p = ((?N choose ?K) * (?nr choose ?kr)) mod p
using lucas-corollary assms(3) by blast — Application of corollary
also have ...= ((J]i<d. ((nth-digit-general ?N i p) choose (nth-digit-general ?K
ip))) * (?nr choose ?kr)) mod p
using Mlessthan Nlessthan Suc.hyps mod-mult-cong assms(3) by blast — Using
Inductive Hypothesis
— Product manipulation steps
also have ... = (([] i=0..(d). (nth-digit-general n (Suc ©) p) choose (nth-digit-general
k (Suc @) p)) * (?nr choose ?kr)) mod p
using atMost-atLeast0 nth-digit-general-def div-mult2-eq by auto
also have ... = (([[i=1..(d+1). (nth-digit-general n i p) choose (nth-digit-general
kip)) x
((nth-digit-general n 0 p) choose (nth-digit-general k 0 p)))
mod p
using nth-digit-general-def shift-bounds-fact by simp
finally have (n choose k) mod p = ((J[i=0..(d+1). (nth-digit-general n i p)
choose (nth-digit-general k i p))) mod p
using One-nat-def atMost-atLeast0 mult.commute prod.atLeast1-atMost-eq prod.atMost-shift
by (smt (verit, ccfu-threshold))
thus Zcase
using Suc-eq-plusl atMost-atLeast0 by presburger
qed

end

References

[1] J. Bayer, M. David, A. Pal, B. Stock, and D. Schleicher. The DPRM
Theorem in Isabelle (Short Paper). In J. Harrison, J. O’Leary, and
A. Tolmach, editors, 10th International Conference on Interactive The-
orem Proving (ITP 2019), volume 141 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 33:1-33:7, Dagstuhl, Germany, 2019.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

[2] A. Chaieb. Formal power series. Journal of Automated Reasoning,
47(3):291-318, Oct. 2011.

[3] N. J. Fine. Binomial coefficients modulo a prime. The American Math-
ematical Monthly, 54(10):589-592, 1947.

[4] L. C. Paulson. Defining Functions on Equivalence Classes. ACM Trans-
actions on Computational Logic (TOCL), 7(4):658-675, Oct. 2006.

[5] Peter Cameron. Notes on Combinatorics. http://www.maths.qmul.ac.
uk/~pjc/notes/comb.pdf, 2007.

10

http://www.maths.qmul.ac.uk/~pjc/notes/comb.pdf
http://www.maths.qmul.ac.uk/~pjc/notes/comb.pdf

	Extensions on Formal Power Series (FPS) Library
	FPS Equivalence Relation
	Binomial Coefficients
	Freshman's Dream Lemma on FPS

	Lucas's Theorem Proof
	Reasoning about Coefficients Helpers
	Lucas Theorem Proof
	Proof of the Corollary
	Proof of the Theorem

