Lucas's Theorem

Chelsea Edmonds

March 17, 2025

Abstract

This work presents a formalisation of a generating function proof for Lucas's theorem. We first outline extensions to the existing Formal Power Series (FPS) library, including an equivalence relation for coefficients modulo n, an alternate binomial theorem statement, and a formalised proof of the Freshman's dream (mod p) lemma.

The second part of the work presents the formal proof of Lucas's Theorem. Working backwards, the formalisation first proves a well known corollary of the theorem which is easier to formalise and then applies induction to prove the original theorem statement. The proof of the corollary aims to provide a good example of a formalised generating function equivalence proof using the FPS library. The final theorem statement is intended to be integrated into the formalised proof of Hilbert's 10th Problem [1].

Contents

begin

	1.2	FPS Equivalence Relation
	1.3	Freshman's Dream Lemma on FPS
2	Luc	as's Theorem Proof
	2.1	Reasoning about Coefficients Helpers
	2.2	Lucas Theorem Proof
		2.2.1 Proof of the Corollary
		2.2.2 Proof of the Theorem

notation fps-nth (infixl $\langle \$ \rangle$ 75)

1 Extensions on Formal Power Series (FPS) Library

This section presents a few extensions on the Formal Power Series (FPS) library, described in [2]

1.1 FPS Equivalence Relation

This proof requires reasoning around the equivalence of coefficients mod some prime number. This section defines an equivalence relation on FPS using the pattern described by Paulson in [4], as well as some basic lemmas for reasoning around how the equivalence holds after common operations are applied

```
definition fpsmodrel p \equiv \{ (f, g). \forall n. (f \$ n) \mod p = (g \$ n) \mod p \}
lemma fpsrel-iff [simp]: (f, g) \in fpsmodrel \ p \longleftrightarrow (\forall n. (f \ n) \ mod \ p = (g \ n)
 by (simp add: fpsmodrel-def)
lemma fps-equiv: equiv UNIV (fpsmodrel p)
proof (rule\ equivI)
 show refl (fpsmodrel p) by (simp add: refl-on-def fpsmodrel-def)
 show sym (fpsmodrel p) by (simp add: sym-def fpsmodrel-def)
 show trans (fpsmodrel p) by (intro transI) (simp add: fpsmodrel-def)
qed
Equivalence relation over multiplication
lemma fps-mult-equiv-coeff:
 fixes fg :: ('a :: \{euclidean-ring-cancel\}) fps
 assumes (f, g) \in fpsmodrel p
 \mathbf{shows}\ (f{*}h)\$n\ mod\ p=(g{*}h)\$n\ mod\ p
 have ((f*h) \ \$ \ n) \mod p = (\sum i=0..n. (f\$i \mod p * h\$(n-i) \mod p) \mod p)
mod p
   using mod-sum-eq mod-mult-left-eq
   by (simp add: fps-mult-nth mod-sum-eq mod-mult-left-eq)
 also have ... = (\sum i=0..n. (g\$i \bmod p * h\$(n-i) \bmod p) \bmod p)
   using assms by auto
 also have \dots = ((g*h) \$ n) \mod p
   by (simp add: mod-mult-left-eq mod-sum-eq fps-mult-nth)
 thus ?thesis by (simp add: calculation)
qed
lemma fps-mult-equiv:
 fixes f g :: ('a :: \{euclidean-ring-cancel\}) fps
 assumes (f, g) \in fpsmodrel p
 shows (f*h, g*h) \in fpsmodrel p
```

Equivalence relation over power operator

```
\mathbf{lemma}\ \mathit{fps-power-equiv}:
  fixes f g :: ('a :: \{euclidean-ring-cancel\}) fps
  fixes x :: nat
  assumes (f, g) \in fpsmodrel p
  shows (f\hat{x}, g\hat{x}) \in fpsmodrel\ p
  using assms
proof (induct \ x)
  case \theta
  thus ?case by (simp add: fpsmodrel-def)
next
  case (Suc \ x)
  then have hyp: \forall n. f \hat{x} \ \ n \ mod \ p = g \hat{x} \ \ n \ mod \ p
    using fpsrel-iff by blast
  thus ?case
  proof -
   have fact: \forall n \ h. \ (g * h) \ \$ \ n \ mod \ p = (f * h) \ \$ \ n \ mod \ p
      by (metis assms fps-mult-equiv-coeff)
   have \forall n \ h. \ (g \ \hat{\ } x * h) \ \$ \ n \ mod \ p = (f \ \hat{\ } x * h) \ \$ \ n \ mod \ p
     by (simp add: fps-mult-equiv-coeff hyp)
   then have \forall n \ h. (h * g \hat{x}) \ n \ mod \ p = (h * f \hat{x}) \ n \ mod \ p
     by (simp add: mult.commute)
   thus ?thesis
      using fact by force
  qed
qed
```

1.2 Binomial Coefficients

The fps-binomial definition in the formal power series uses the n gchoose k operator. It's defined as being of type 'a fps, however the equivalence relation requires a type 'a that supports the modulo operator. The proof of the binomial theorem based on FPS coefficients below uses the choose operator and does not put bounds on the type of fps-X.

 ${\bf using} \ One-nat-def \ Suc-eq-plus 1 \ Suc-pred \ add. commute \ binomial-Suc-Suc \ binomial-n-0$

 $fps\text{-}mult\text{-}fps\text{-}X\text{-}plus\text{-}1\text{-}nth\ h.hyps\ neq0\text{-}conv\ start}$ $\mathbf{by}\ (smt\ (verit,\ del\text{-}insts)\ of\text{-}nat\text{-}add)$ \mathbf{qed}

1.3 Freshman's Dream Lemma on FPS

The Freshman's dream lemma modulo a prime number p is a well known proof that $(1+x^p) \equiv (1+x)^p \mod p$

First prove that $\binom{p^n}{k} \equiv 0 \mod p$ for $k \geq 1$ and $k < p^n$. The eventual proof only ended up requiring this with n = 1

```
lemma pn-choose-k-mod p-\theta:
   fixes n \ k::nat
   assumes prime p
                 k \ge 1 \land k \le p \hat{\ } n - 1
   shows (p \hat{n} \ choose \ k) \ mod \ p = 0
proof -
   have inequality: k \leq p \hat{\ } n using assms (2) by arith
   have choose-take-1: ((p\hat{n}-1) \ choose \ (k-1))=fact \ (p\hat{n}-1) \ div \ (fact \ (k-1))=fact \ (p\hat{n}-1)
(-1) * fact (p \hat{n} - k)
       using binomial-altdef-nat diff-le-mono inequality assms(2) by auto
   have k * (p \hat{n} \ choose \ k) = k * ((fact \ (p \hat{n})) \ div \ (fact \ k * fact((p \hat{n}) - k)))
       using assms binomial-fact'[OF inequality] by auto
   also have ... = k * fact (p \hat{n}) div (fact k * fact((p \hat{n}) - k))
       using binomial-fact-lemma div-mult-self-is-m fact-qt-zero inequality mult.assoc
mult.commute
                 nat-0-less-mult-iff
       by (simp add: choose-dvd div-mult-swap)
   also have ... = k * fact (p^n) div (k * fact (k - 1) * fact((p^n) - k))
       by (metis assms(2) fact-nonzero fact-num-eq-if le0 le-antisym of-nat-id)
    also have ... = fact (p\hat{n}) div (fact (k-1) * fact((p\hat{n}) - k))
       using assms by auto
    also have ... = ((p\widehat{n}) * fact (p\widehat{n} - 1)) div (fact (k - 1) * fact (p\widehat{n}) - k))
    by (metis assms(2) fact-nonzero fact-num-eq-if inequality le0 le-antisym of-nat-id)
    also have ... = (p\hat{n}) * (fact (p\hat{n} - 1) div (fact (k - 1) * fact ((p\hat{n} - k))))
    by (metis assms(2) calculation choose-take-1 neg0-conv not-one-le-zero times-binomial-minus1-eq)
    finally have equality: k * (p \hat{n} \ choose \ k) = p \hat{n} * ((p \hat{n} - 1) \ choose \ (k - 1))
       using assms(2) times-binomial-minus1-eq by auto
    then have dvd-result: p \hat{\ } n \ dvd \ (k * (p \hat{\ } n \ choose \ k)) by simp
    have \neg (p \widehat{} n dvd k)
     using assms (2) binomial-n-0 diff-diff-cancel nat-dvd-not-less neg0-conv by auto
    then have p \ dvd \ (p \hat{\ } n \ choose \ k)
    \mathbf{using}\ mult.commute\ prime-imp-prime-elem\ prime-power-dvd-multD\ assms\ dvd-result
by metis
   thus ?thesis by simp
```

```
qed
```

Applying the above lemma to the coefficients of $(1+X)^p$, it is easy to show that all coefficients other than the 0th and pth will be 0

```
lemma fps-middle-coeffs:
 assumes prime p
        n \neq 0 \land n \neq p
 shows ((1 + fps-X :: int fps) \hat{p}) $ n mod p = 0 mod p
proof -
 let ?f = (1 + fps-X :: int fps) \hat{p}
 have \forall n. n > 0 \land n 
   using pn-choose-k-modp-\theta [of p - 1] \langle prime p \rangle by auto
 then have middle - \theta : \forall n. n > 0 \land n 
   using binomial-coeffs-induct by (metis of-nat-0 zmod-int)
 have \forall n. n > p \longrightarrow ?f \$ n \mod p = 0
   using binomial-eq-0-iff binomial-coeffs-induct mod-0 by (metis of-nat-eq-0-iff)
 thus ?thesis using middle-0 assms(2) nat-neq-iff by auto
qed
It follows that (1+X)^p is equivalent to (1+X^p) under our equivalence
relation, as required to prove the freshmans dream lemma.
lemma fps-freshmans-dream:
 assumes prime p
 shows (((1 + fps-X :: int fps) \hat{p}), (1 + (fps-X) \hat{p})) \in fpsmodrel p
proof -
 let ?f = (1 + fps - X :: int fps) \hat{p}
 let ?q = (1 + (fps-X :: int fps)^p)
 have all-f-coeffs: \forall n. n \neq 0 \land n \neq p \longrightarrow ?f \$ n \mod p = 0 \mod p
   using fps-middle-coeffs assms by blast
 have ?g \$ \theta = 1 using assms by auto
 then have ?g \$ 0 \mod p = 1 \mod p
   using int-ops(2) zmod-int assms by presburger
 then have ?g \ \ p \ mod \ p = 1 \ mod \ p \ using \ assms \ by \ auto
 then have \forall n : ?f \$ n \mod p = ?g \$ n \mod p
   using all-f-coeffs by (simp add: binomial-coeffs-induct)
 thus ?thesis using fpsrel-iff by blast
qed
```

2 Lucas's Theorem Proof

A formalisation of Lucas's theorem based on a generating function proof using the existing formal power series (FPS) Isabelle library

2.1 Reasoning about Coefficients Helpers

A generating function proof of Lucas's theorem relies on direct comparison between coefficients of FPS which requires a number of helper lemmas to prove formally. In particular it compares the coefficients of $(1+X)^n \mod p$ to $(1+X^p)^N*(1+X)^r n \mod p$, where N=n/p, and $rn=n \mod p$. This section proves that the kth coefficient of $(1+X^p)^N*(1+X)^r n = (NchooseK)*(rnchooserk)$

Applying the (oo) operator enables reasoning about the coefficients of $(1 + X^p)^n$ using the existing binomial theorem proof with X^p instead of X.

```
lemma fps-binomial-p-compose:
 assumes p \neq 0
 shows (1 + (fps-X): ('a :: \{idom\} fps))^p)^n = ((1 + fps-X)^n) oo (fps-X^p)
 have (1::'a fps) + fps-X \cap p = 1 + fps-X oo fps-X \cap p
   by (simp add: assms fps-compose-add-distrib)
 then show ?thesis
   by (simp add: assms fps-compose-power)
Next the proof determines the value of the kth coefficient of (1+X^p)^N.
lemma fps-X-pow-binomial-coeffs:
 assumes prime p
  shows (1 + (fps-X :: int fps)^p)^N $k = (if p dvd k then (N choose (k div p)))
else 0)
proof -
 let ?fx = (fps-X :: int fps)
 have (1 + ?fx^p)^N   k = (((1 + ?fx)^N) oo (?fx^p))   k
   by (metis assms fps-binomial-p-compose not-prime-0)
 also have ... = (\sum i=0..k.((1 + ?fx)^N)\$i * ((?fx^p)^i\$k))
   by (simp add: fps-compose-nth)
 finally have coeffs: (1 + ?fx^p)^N  k = (\sum i=0..k. (N \ choose \ i) * ((?fx^p*i)) 
   using binomial-coeffs-induct sum.cong by (metis (no-types, lifting) power-mult)
  thus ?thesis
  proof (cases \ p \ dvd \ k)
   case False - p does not divide k implies the kth term has a coefficient of 0
   have \forall i. \neg (p \ dvd \ k) \longrightarrow (?fx \widehat{\ }(p*i)) \ \$ \ k = 0
     by auto
   thus ?thesis using coeffs by (simp add: False)
  next
   case True - p divides k implies the kth term has a non-zero coefficient
   have contained: k \text{ div } p \in \{0...k\} by simp
   have \forall i. i \neq k \ div \ p \longrightarrow (?fx \hat{\ }(p*i)) \ \$ \ k = 0 \ using \ assms \ by \ auto
   then have notdivpis\theta: \forall i \in (\{0 ... k\} - \{k \ div \ p\}). \ (?fx \hat{\ } p*i)) \ \ k = 0 \ by
   have (1 + ?fx^p)^N  $ k = (N \ choose \ (k \ div \ p)) * (?fx^p * (k \ div \ p))) $ k + (k \ div \ p) 
(\sum i \in (\{0..k\} - \{k \ div \ p\}). \ (N \ choose \ i) * ((?fx^(p*i))$k))
```

```
using contained coeffs sum.remove by (metis (no-types, lifting) finite-atLeastAtMost)
   thus ?thesis using notdivpis0 True by simp
 qed
qed
The final helper lemma proves the kth coefficient is equivalent to \binom{?N}{?K} * \binom{?rn}{?rk}
as required.
lemma fps-div-rep-coeffs:
 assumes prime p
 shows ((1 + (fps-X::int fps)^p)^n(n \ div \ p) * (1 + fps-X)^n(n \ mod \ p)) \$ k =
        ((n \ div \ p) \ choose \ (k \ div \ p)) * ((n \ mod \ p) \ choose \ (k \ mod \ p))
   (is ((1 + (fps-X::int fps)^p)^?N * (1 + fps-X)^?rn) $ k = (?N \ choose \ ?K) *
(?rn choose ?rk))
proof -

    Initial facts with results around representation and 0 valued terms

 let ?fx = fps-X :: int fps
 have krep: k - ?rk = ?K*p
   \mathbf{by}\ (simp\ add\colon minus\text{-}mod\text{-}eq\text{-}mult\text{-}div)
 have rk-in-range: ?rk \in \{0..k\} by simp
 have \forall i \geq p. (?rn choose i) = 0
   using binomial-eq-0-iff
  by (metis assms(1) leD le-less-trans linorder-cases mod-le-divisor mod-less-divisor
prime-qt-0-nat)
 then have ptok0: \forall i \in \{p..k\}. ((?rn\ choose\ i) * (1 + ?fx^p)^?N \$ (k-i)) =
0
   by simp
 then have notrkis\theta: \forall i \in \{0...k\}.\ i \neq ?rk \longrightarrow (?rn\ choose\ i) * (1 + ?fx^p)^?N
(k - i) = 0
 proof (cases k < p)
    case True — When k < p, it presents a side case with regards to range of
reasoning
   then have k-value: k = ?rk by simp
   then have \forall i < k. \neg (p \ dvd \ (k-i))
    using True by (metis diff-diff-cancel diff-is-0-eq dvd-imp-mod-0 less-imp-diff-less
less-irrefl-nat mod-less)
   then show ?thesis using fps-X-pow-binomial-coeffs assms(1) k-value by simp
 next
   case False
   then have \forall i < p. i \neq ?rk \longrightarrow \neg(p \ dvd \ (k-i))
     using mod-nat-eqI by auto
   then have \forall i \in \{0..< p\}. i \neq ?rk \longrightarrow (1 + ?fx^p)^?N \$ (k - i) = 0
     using assms fps-X-pow-binomial-coeffs by simp
   then show ?thesis using ptok0 by auto
 qed
  — Main body of the proof, using helper facts above
 have ((1 + fps-X^p)^?N * (1 + fps-X)^?rn) $ k = (((1 + fps-X)^?rn) * (1 + fps-X)^?rn) 
fps-X^p)^N \
  by (metis (no-types, opaque-lifting) distrib-left distrib-right fps-mult-fps-X-commute
fps-one-mult(1)
```

```
\begin{array}{c} \textit{fps-one-mult}(2) \; \textit{power-commuting-commutes}) \\ \textbf{also have} \; ... = (\sum i = 0..k.(\textit{of-nat}(?\textit{rn choose i})) * ((1 + (\textit{fps-X})^p)^?N \$ (k - i))) \\ \textbf{by} \; (\textit{simp add: fps-mult-nth binomial-coeffs-induct}) \\ \textbf{also have} \; ... = \; ((?\textit{rn choose ?rk}) * (1 + ?\textit{fx}^p)^?N \$ (k - ?\textit{rk})) + (\sum i \in (\{0..k\} - \{?\textit{rk}\}). \; (?\textit{rn choose i}) * (1 + ?\textit{fx}^p)^?N \$ (k - i)) \\ \textbf{using } \textit{rk-in-range sum.remove by } (\textit{metis (no-types, lifting) finite-atLeastAtMost)} \\ \textbf{finally have} \; ((1 + ?\textit{fx}^p)^?N * (1 + ?\textit{fx})^?\textit{rn}) \$ k = ((?\textit{rn choose ?rk}) * (1 + ?\textit{fx}^p)^?N \$ (k - ?\textit{rk})) \\ \textbf{using } \textit{notrkis0} \; \textbf{by } \textit{simp} \\ \textbf{thus } ?\textit{thesis } \textbf{using } \textit{fps-X-pow-binomial-coeffs } \textit{assms krep by auto} \\ \textbf{qed} \end{array}
```

2.2 Lucas Theorem Proof

The proof of Lucas's theorem combines a generating function approach, based off [3] with induction. For formalisation purposes, it was easier to first prove a well known corollary of the main theorem (also often presented as an alternative statement for Lucas's theorem), which can itself be used to backwards prove the the original statement by induction. This approach was adapted from P. Cameron's lecture notes on combinatorics [5]

2.2.1 Proof of the Corollary

This step makes use of the coefficient equivalence arguments proved in the previous sections

```
corollary lucas-corollary:
 fixes n k :: nat
 assumes prime p
 shows (n \ choose \ k) \ mod \ p = (((n \ div \ p) \ choose \ (k \ div \ p)) * ((n \ mod \ p) \ choose
(k \bmod p))) \bmod p
   (is (n \ choose \ k) \ mod \ p = ((?N \ choose \ ?K) * (?rn \ choose \ ?rk)) \ mod \ p)
proof -
 let ?fx = fps-X :: int fps
 have n-rep: n = ?N * p + ?rn
   bv simp
 have k-rep: k = ?K * p + ?rk by simp
 have rhs-coeffs: ((1 + ?fx^p)^?N) * (1 + ?fx)^?(?rn)) $ k = (?N \text{ choose } ?K) *
(?rn choose ?rk)
   using assms fps-div-rep-coeffs k-rep n-rep by blast — Application of coefficient
reasoning
 have ((((1 + ?fx)^p)^(?N) * (1 + ?fx)^(?rn)),
        ((1 + ?fx^p)^(?N) * (1 + ?fx)^(?rn))) \in fpsmodrel p
    using fps-freshmans-dream assms fps-mult-equiv fps-power-equiv by blast —
Application of equivalence facts and freshmans dream lemma
 then have modrel2: ((1 + ?fx)^n, ((1 + ?fx^p)^n, (?N) * (1 + ?fx)^n, (?rn)))
                      \in fpsmodrel p
```

```
by (metis (mono-tags, opaque-lifting) mult-div-mod-eq power-add power-mult) thus ?thesis
using fpsrel-iff binomial-coeffs-induct rhs-coeffs by (metis of-nat-eq-iff zmod-int)
```

qed

2.2.2 Proof of the Theorem

The theorem statement requires a formalised way of referring to the base p representation of a number. We use a definition that specifies the ith digit of the base p representation. This definition is originally from the Hilbert's 10th Problem Formalisation project [1] which this work contributes to.

```
definition nth-digit-general :: nat \Rightarrow nat \Rightarrow nat \Rightarrow nat where nth-digit-general num i base = (num div (base ^ i)) mod base
```

Applying induction on d, where d is the highest power required in either n or k's base p representation, $prime ?p \Longrightarrow (?n \ choose ?k) \ mod ?p = (?n \ div ?p) \ toose ?k \ div ?p) * (?n \ mod ?p \ choose ?k \ mod ?p) \ mod ?p \ can be used to prove the original theorem.$

```
theorem lucas-theorem:
 fixes n \ k \ d::nat
assumes n 
assumes k 
assumes prime p
shows (n \ choose \ k) \ mod \ p = (\prod i \le d. \ ((nth-digit-general \ n \ i \ p) \ choose \ (nth-digit-general \ n \ i \ p))
k \ i \ p))) \ mod \ p
 using assms
proof (induct d arbitrary: n k)
 thus ?case using nth-digit-general-def assms by simp
next
  case (Suc \ d)
   - Representation Variables
 let ?N = n \ div \ p
 let ?K = k \ div \ p
 let ?nr = n \mod p
 let ?kr = k \mod p
  — Required assumption facts
 have Mlessthan: ?N 
  using less-mult-imp-div-less power-Suc2 assms(3) prime-ge-2-nat Suc.prems(1)
by metis
 have Nlessthan: ?K 
  using less-mult-imp-div-less power-Suc2 prime-ge-2-nat Suc.prems(2) assms(3)
by metis
 have shift-bounds-fact: (\prod i=(Suc\ 0)..(Suc\ (d\ )).\ ((nth-digit-general\ n\ i\ p)\ choose
(nth\text{-}digit\text{-}general\ k\ i\ p))) =
                               (\prod i = \theta..(d). \quad (nth\text{-}digit\text{-}general \ n \ (Suc \ i) \ p) \ choose
(nth-digit-general\ k\ (Suc\ i)\ p))
```

```
using prod.shift-bounds-cl-Suc-ivl by blast — Product manipulation helper fact
     have (n \ choose \ k) \ mod \ p = ((?N \ choose \ ?K) * (?nr \ choose \ ?kr)) \ mod \ p
         using lucas-corollary assms(3) by blast — Application of corollary
     also have ...= ((\prod i \le d. ((nth-digit-general ?N i p) choose (nth-digit-general ?K
(i p))) * (?nr choose ?kr)) mod p
        using Mlessthan Nlessthan Suc.hyps mod-mult-cong assms(3) by blast — Using
Inductive Hypothesis
         - Product manipulation steps
   also have ... = ((\prod i=0..(d). (nth-digit-general n (Suc i) p) choose (nth-digit-general n (Suc
k (Suc i) p)) * (?nr choose ?kr)) mod p
         using atMost-atLeast0 nth-digit-general-def div-mult2-eq by auto
   also have ... = ((\prod i=1..(d+1), (nth-digit-general \ n \ i \ p) \ choose \ (nth-digit-general \ n \ i \ p))
k i p)) *
                                                                ((nth\text{-}digit\text{-}general\ n\ 0\ p)\ choose\ (nth\text{-}digit\text{-}general\ k\ 0\ p)))
mod p
         using nth-digit-general-def shift-bounds-fact by simp
     finally have (n \ choose \ k) \ mod \ p = ((\prod i = 0..(d+1). \ (nth-digit-general \ n \ i \ p))
choose\ (nth-digit-general\ k\ i\ p)))\ mod\ p
      \textbf{using} \ One-nat-def \ at Most-at Least0 \ mult. commute \ prod. at Least1-at Most-eq \ prod. at Most-shift
         by (smt (verit, ccfv-threshold))
     thus ?case
         using Suc-eq-plus1 atMost-atLeast0 by presburger
qed
end
```

References

- [1] J. Bayer, M. David, A. Pal, B. Stock, and D. Schleicher. The DPRM Theorem in Isabelle (Short Paper). In J. Harrison, J. O'Leary, and A. Tolmach, editors, 10th International Conference on Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:7, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
- [2] A. Chaieb. Formal power series. *Journal of Automated Reasoning*, 47(3):291–318, Oct. 2011.
- [3] N. J. Fine. Binomial coefficients modulo a prime. The American Mathematical Monthly, 54(10):589–592, 1947.
- [4] L. C. Paulson. Defining Functions on Equivalence Classes. *ACM Transactions on Computational Logic (TOCL)*, 7(4):658–675, Oct. 2006.
- [5] Peter Cameron. Notes on Combinatorics. http://www.maths.qmul.ac.uk/~pjc/notes/comb.pdf, 2007.