Lovasz Local Lemma

Chelsea Edmonds and Lawrence C. Paulson

September 22, 2023

Abstract

This entry aims to formalise several useful general techniques for using the probabilistic method for combinatorial structures (or discrete spaces more generally). In particular, it focuses on bounding tools, such as the union and complete independence bounds, and the first formalisation of the pivotal Lovász local lemma. The formalisation focuses on the general lemma, however also proves several useful variations, including the more well known symmetric version. Both the original formalisation and several of the variations used dependency graphs, which were formalised using Noschinski's general directed graph library [2]. Additionally, the entry provides several useful existence lemmas, required at the end of most probabilistic proofs on combinatorial structures. Finally, the entry includes several significant extensions to the existing probability libraries, particularly for conditional probability (such as Bayes theorem) and independent events. The formalisation is primarily based on Alon and Spencer's textbook [1], as well as Zhao's course notes [3].

Contents

1	Extensional function extras	2	
	1.1 Relations and Extensional Function sets	. 2	
	1.2 Cardinality Lemmas	. 6	
2	Digraph extensions	7	
3	General Event Lemmas		
4	Conditional Probability Library Extensions	14	
	4.1 Miscellaneous Set and List Lemmas	. 14	
	4.2 Conditional Probability Basics	. 16	
	4.3 Bayes Theorem	. 18	
	4.4 Conditional Probability Multiplication Rule	. 20	

5	Ind	ependent Events	35
	5.1	More bijection helpers	35
	5.2	Independent Event Extensions	35
	5.3	Mutual Independent Events	53
6	The	e Basic Probabilistic Method Framework	64
	6.1	More Set and Multiset lemmas	64
	6.2	Existence Lemmas	66
	6.3	Basic Bounds	67
7	Lov	asz Local Lemma	72
	7.1	Random Lemmas on Product Operator	73
	7.2	Dependency Graph Concept	74
	7.3	Lovasz Local General Lemma	75
	7.4	Lovasz Corollaries and Variations	83

1 Extensional function extras

Counting lemmas (i.e. reasoning on cardinality) of sets on the extensional function relation

theory PiE-Rel-Extras imports Card-Partitions. Card-Partitions begin

1.1 Relations and Extensional Function sets

A number of lemmas to convert between relations and functions for counting purposes. Note, ultimately not needed in this formalisation, but may be of use in the future

```
lemma Range-unfold: Range r = \{y. \exists x. (x, y) \in r\} by blast
```

definition fun-to-rel:: 'a set
$$\Rightarrow$$
 'b set \Rightarrow ('a \Rightarrow 'b) \Rightarrow ('a \times 'b) set where fun-to-rel A B f \equiv {(a, b) | a b . a \in A \wedge b \in B \wedge f $a = b$ }

definition rel-to-fun::
$$('a \times 'b)$$
 set \Rightarrow $('a \Rightarrow 'b)$ where rel-to-fun $R \equiv \lambda$ a . (if $a \in Domain \ R$ then $(THE \ b \ . \ (a, \ b) \in R)$ else undefined)

lemma fun-to-relI: $a \in A \Longrightarrow b \in B \Longrightarrow f \ a = b \Longrightarrow (a, b) \in fun-to-rel \ A \ B \ f$ unfolding fun-to-rel-def by auto

lemma fun-to-rel-alt: fun-to-rel A B f \equiv { $(a, f \ a) \mid a \ b \ . \ a \in A \land f \ a \in B$ } unfolding fun-to-rel-def by simp

lemma fun-to-relI2: $a \in A \Longrightarrow f \ a \in B \Longrightarrow (a, f \ a) \in fun-to-rel \ A \ B \ f$ using fun-to-rel-alt by fast

```
lemma rel-to-fun-in[simp]: a \in Domain R \Longrightarrow (rel-to-fun R) a = (THE b. (a, b)
\in R
 unfolding rel-to-fun-def by simp
lemma rel-to-fun-undefined[simp]: a \notin Domain R \Longrightarrow (rel-to-fun R) a = undefined
 unfolding rel-to-fun-def by simp
lemma single-valued-unique-Dom-iff: single-valued R \longleftrightarrow (\forall x \in Domain \ R. \exists !
y \cdot (x, y) \in R
 using single-valued-def by fastforce
lemma rel-to-fun-range:
 assumes single-valued R
 assumes a \in Domain R
 shows (THE\ b\ .\ (a,\ b)\in R)\in Range\ R
 using single-valued-unique-Dom-iff
 by (metis\ Range-iff\ assms(1)\ assms(2)\ theI')
lemma rel-to-fun-extensional: single-valued R \Longrightarrow rel-to-fun R \in (Domain \ R \rightarrow_E
Range R)
 by (intro PiE-I) (simp-all add: rel-to-fun-range)
lemma single-value-fun-to-rel: single-valued (fun-to-rel A B f)
  unfolding single-valued-def fun-to-rel-def
 by simp
lemma fun-to-rel-domain:
 assumes f \in A \rightarrow_E B
 shows Domain (fun\text{-}to\text{-}rel\ A\ B\ f) = A
 unfolding fun-to-rel-def using assms by (auto simp add: subset-antisym subsetI
Domain-unfold)
lemma fun-to-rel-range:
 assumes f \in A \to_E B
 shows Range (fun-to-rel A B f) \subseteq B
 unfolding fun-to-rel-def using assms by (auto simp add: subsetI Range-unfold)
lemma rel-to-fun-to-rel:
 assumes f \in A \rightarrow_E B
 shows rel-to-fun (fun\text{-}to\text{-}rel\ A\ B\ f) = f
proof (intro ext allI)
  \mathbf{fix} \ x
 show rel-to-fun (fun-to-rel A B f) x = f x
 proof (cases \ x \in A)
   {\bf case}\  \, True
   then have ind: x \in Domain (fun-to-rel \ A \ B \ f) using fun-to-rel-domain assms
   have (x, f x) \in fun\text{-}to\text{-}rel \ A \ B \ f \ using fun\text{-}to\text{-}rel\text{-}alt \ True \ single\text{-}value\text{-}fun\text{-}to\text{-}rel}
     using assms by fastforce
```

```
moreover have rel-to-fun (fun-to-rel A B f) x = (THE b. (x, b) \in (fun-to-rel
A B f) by (simp \ add: ind)
  ultimately show ?thesis using single-value-fun-to-rel single-valuedD the-equality
      by (metis (no-types, lifting))
  next
    case False
    then have x \notin Domain (fun-to-rel \ A \ B \ f) unfolding fun-to-rel-def
      bv blast
    then show ?thesis
      using False assms by auto
  qed
qed
lemma fun-to-rel-to-fun:
  assumes single-valued R
  shows fun-to-rel (Domain R) (Range R) (rel-to-fun R) = R
proof (intro subset-antisym subsetI)
  fix x assume x \in fun\text{-}to\text{-}rel \ (Domain \ R) \ (Range \ R) \ (rel\text{-}to\text{-}fun \ R)
  then obtain a b where x = (a, b) and a \in Domain R and b \in Range R and
(rel-to-fun R a) = b
    using fun-to-rel-def by (smt (verit) mem-Collect-eq)
  then have b = (THE \ b'. \ (a, b') \in R) using rel-to-fun-in
    by simp
  then show x \in R
  by (metis\ (no\text{-}types,\ lifting)\ \langle a\in Domain\ R\rangle\ \langle x=(a,b)\rangle\ assms\ single-valued-unique-Dom-iff
the1-equality)
next
  fix x assume x \in R
  then obtain a b where x=(a, b) and (a, b) \in R and \forall c: (a, c) \in R \longrightarrow b
    using assms
    by (metis prod.collapse single-valued-def)
  then have a \in Domain \ R \ b \in Range \ R by blast+
  then have b = (THE \ b' \ . \ (a, \ b') \in R)
    by (metis \ \forall \ c. \ (a, \ c) \in R \longrightarrow b = c \land \langle x = (a, \ b) \rangle \ \langle x \in R \rangle \ the\text{-equality})
  then have (a, b) \in fun\text{-}to\text{-}rel (Domain R) (Range R) (rel\text{-}to\text{-}fun R)
    using \langle a \in Domain \ R \rangle \ \langle b \in Range \ R \rangle by (intro \ fun-to-relI) \ (simp-all)
  then show x \in fun\text{-}to\text{-}rel \ (Domain \ R) \ (Range \ R) \ (rel\text{-}to\text{-}fun \ R) \ using \ \langle x = (a, b) \rangle
b) \rightarrow \mathbf{by} \ simp
qed
lemma bij-betw-fun-to-rel:
 assumes f \in A \rightarrow_E B
 shows bij-betw (\lambda \ a \ . \ (a, f \ a)) \ A \ (fun-to-rel \ A \ B \ f)
proof (intro bij-betw-imageI inj-onI)
 show \bigwedge x \ y. \ x \in A \Longrightarrow y \in A \Longrightarrow (x, f \ x) = (y, f \ y) \Longrightarrow x = y \ \textbf{by} \ simp
  show (\lambda a. (a, f a)) ' A = fun\text{-}to\text{-}rel A B f
  proof (intro subset-antisym subsetI)
```

```
fix x assume x \in (\lambda a. (a, f a)) ' A
   then obtain a where a \in A and x = (a, f a) by blast
   then show x \in fun\text{-}to\text{-}rel \ A \ B \ f \ using \ fun\text{-}to\text{-}rel\text{-}alt \ assms}
     by fastforce
  \mathbf{next}
   fix x assume x \in fun\text{-}to\text{-}rel\ A\ B\ f
   then show x \in (\lambda a. (a, f a)) ' A using fun-to-rel-alt
     using image-iff by fastforce
  qed
qed
lemma fun-to-rel-indiv-card:
  assumes f \in A \rightarrow_E B
 shows card (fun-to-rel\ A\ B\ f) = card\ A
 using bij-betw-fun-to-rel assms bij-betw-same-card of (\lambda \ a \ . \ (a, f \ a)) A (fun-to-rel
A B f
 by (metis)
lemma fun-to-rel-inj:
 assumes C \subseteq A \rightarrow_E B
  shows inj-on (fun-to-rel A B) C
proof (intro inj-onI ext allI)
 fix f g x assume fin: f \in C and gin: g \in C and eq: fun-to-rel A B f = fun-to-rel
A B g
  then show f x = g x
  proof (cases x \in A)
   case True
   then have (x, f x) \in fun\text{-}to\text{-}rel \ A \ B \ f using fun-to\text{-}rel\text{-}alt
     by (smt (verit) PiE-mem assms fin fun-to-rel-def mem-Collect-eq subset-eq)
   moreover have (x, g x) \in fun\text{-}to\text{-}rel \ A \ B \ g \text{ using } fun\text{-}to\text{-}rel\text{-}alt \ True
     by (smt (verit) PiE-mem assms fun-to-rel-def gin mem-Collect-eq subset-eq)
   ultimately show ?thesis using eq single-value-fun-to-rel single-valued-def
     by metis
  next
   case False
   then have f x = undefined q x = undefined using fin qin assms by auto
   then show ?thesis by simp
  qed
qed
lemma fun-to-rel-ss: fun-to-rel A B f \subseteq A \times B
  unfolding fun-to-rel-def by auto
lemma card-fun-to-rel: C \subseteq A \rightarrow_E B \Longrightarrow card \ C = card \ ((\lambda \ f \ . \ fun-to-rel \ A \ B \ f
(C)
  using card-image fun-to-rel-inj by metis
```

1.2 Cardinality Lemmas

Lemmas to count variations of filtered sets over the extensional function set relation

```
lemma card-PiE-filter-range-set:
  assumes \bigwedge a. \ a \in A' \Longrightarrow X \ a \in C
 assumes A' \subseteq A
 assumes finite A
 shows card \{f \in A \rightarrow_E C : \forall a \in A' : f a = X a\} = (card C) (card A - card C)
A'
proof -
  have finA: finite A' using assms(3) finite-subset assms(2) by auto
 have c1: card (A - A') = card A - card A' using assms(2)
  using card-Diff-subset finA by blast
  define g:('a \Rightarrow 'b) \Rightarrow ('a \Rightarrow 'b) where g \equiv \lambda f. (\lambda a' . if a' \in A' then
undefined else f a')
  have bij-betw g \{ f \in A \rightarrow_E C : \forall a \in A' : f a = X a \} ((A - A') \rightarrow_E C)
  proof (intro bij-betw-imageI inj-onI)
    fix h h' assume h1in: h \in \{f \in A \rightarrow_E C. \forall a \in A'. fa = Xa\} and h2in: h'
\in \{f \in A \rightarrow_E C. \ \forall \ a \in A'. f \ a = X \ a\} \ g \ h = g \ h'
    then have eq: (\lambda \ a' \ . \ if \ a' \in A' \ then \ undefined \ else \ h \ a') = (\lambda \ a' \ . \ if \ a' \in A'
then undefined else h' a')
      using g-def by simp
    show h = h'
   proof (intro ext allI)
      \mathbf{fix} \ x
      show h x = h' x using h1in \ h2in \ eq by (cases \ x \in A', simp, meson)
    qed
  next
    show g' \{ f \in A \rightarrow_E C. \ \forall \ a \in A'. f \ a = X \ a \} = A - A' \rightarrow_E C
    proof (intro subset-antisym subsetI)
      fix g' assume g' \in g' \{ f \in A \rightarrow_E C. \forall a \in A'. fa = Xa \}
     then obtain f' where geq: g' = g f' and fin: f' \in A \rightarrow_E C and \forall a \in A'.
f'a = Xa
        by blast
     show g' \in A - A' \rightarrow_E C
        using g-def fin geq by (intro PiE-I)(auto)
      fix g' assume gin: g' \in A - A' \rightarrow_E C
      define f' where f' = (\lambda \ a' \ . \ (if \ a' \in A' \ then \ X \ a' \ else \ g' \ a'))
      then have eqc: \forall a' \in A'. f'a' = X a' by auto
      have fin: f' \in A \rightarrow_E C
      proof (intro PiE-I)
        fix x assume x \in A
       have x \notin A' \Longrightarrow f' x = g' x using f'-def by auto
        moreover have x \in A' \Longrightarrow f' = X \times x \text{ using } f' - def \text{ by } (simp \text{ add: } x \in A')
A \rightarrow)
        ultimately show f' x \in C
          using gin PiE-E \langle x \in A \rangle assms(1)[of x] by (metis Diff-iff)
```

```
\mathbf{next}
       fix x assume x \notin A
       then show f' x = undefined
          using f'-def gin \ assms(2) by auto
      ged
      have g' = g f' unfolding f'-def g-def
       by (auto simp add: fun-eq-iff) (metis DiffE PiE-arb gin)
      then show g' \in g '\{f \in A \rightarrow_E C. \ \forall \ a \in A' \ . \ f \ a = X \ a\} using fin eqc by
blast
   qed
  qed
 then have card \{ f \in A \rightarrow_E C : \forall a \in A' : fa = X a \} = card ((A - A') \rightarrow_E C)
   using bij-betw-same-card by blast
 also have ... = (card\ C) \hat{} (A - A')
   using card-funcsetE assms(3) by (metis finite-Diff)
  finally show ?thesis using c1 by auto
qed
lemma card-PiE-filter-range-indiv: X \ a' \in C \Longrightarrow a' \in A \Longrightarrow finite A \Longrightarrow
   card \{ f \in A \rightarrow_E C : f a' = X a' \} = (card C) \cap (card A - 1)
  using card-PiE-filter-range-set[of \{a'\}\ X\ C\ A\ ] by auto
lemma card-PiE-filter-range-set-const: c \in C \Longrightarrow A' \subseteq A \Longrightarrow finite A \Longrightarrow
    card \{ f \in A \rightarrow_E C : \forall a \in A' : fa = c \} = (card C) (card A - card A')
  using card-PiE-filter-range-set[of A' \lambda a . c] by auto
lemma card-PiE-filter-range-set-nat: c \in \{0... < n\} \implies A' \subseteq A \implies finite A \implies
    card \{ f \in A \rightarrow_E \{ 0 ... < n \} : \forall a \in A' : fa = c \} = n \cap (card A - card A')
  using card-PiE-filter-range-set-const[of c \{0...< n\} A'A] by auto
```

2 Digraph extensions

end

Extensions to the existing library for directed graphs, basically neighborhood

```
theory Digraph-Extensions imports Graph-Theory.Digraph Graph-Theory.Pair-Digraph begin definition (in pre-digraph) neighborhood :: 'a \Rightarrow 'a set where neighborhood u \equiv \{v \in verts \ G \ . \ dominates \ G \ u \ v\} lemma (in wf-digraph) neighborhood-wf: neighborhood v \subseteq verts \ G unfolding neighborhood-def by auto lemma (in pair-pre-digraph) neighborhood-alt:
```

```
neighborhood\ u = \{v \in pverts\ G\ .\ (u,\ v) \in parcs\ G\}
  unfolding neighborhood-def by simp
lemma (in fin-digraph) neighborhood-finite: finite (neighborhood v)
 using neighborhood-wf finite-subset finite-verts by fast
lemma (in wf-digraph) neighborhood-edge-iff: y \in neighborhood \ x \longleftrightarrow (x, y) \in
arcs-ends G
 unfolding neighborhood-def using in-arcs-imp-in-arcs-ends by auto
lemma (in loopfree-digraph) neighborhood-self-not: v \notin (neighborhood \ v)
  unfolding neighborhood-def using adj-not-same by auto
\mathbf{lemma} \ (\mathbf{in} \ nomulti\text{-}digraph) \ inj\text{-}on\text{-}head\text{-}out\text{-}arcs:} \ inj\text{-}on \ (head \ G) \ (out\text{-}arcs \ G \ u)
proof (intro inj-onI)
 fix x y assume xin: x \in out-arcs G u and yin: y \in out-arcs G u and heq: head
G x = head G y
 then have tail G x = u \text{ tail } G y = u
   using out-arcs-def by auto
  then have arc-to-ends G x = arc-to-ends G y
   unfolding arc-to-ends-def heq by auto
  then show x = y using no-multi-arcs xin yin by simp
qed
lemma (in nomulti-digraph) out-degree-neighborhood: out-degree Gu = card (neighborhood)
u)
proof -
 let ?f = \lambda \ e. \ head \ G \ e
 have bij-betw ?f (out-arcs G u) (neighborhood u)
 proof (intro bij-betw-imageI)
   show inj-on (head G) (out-arcs G u) using inj-on-head-out-arcs by simp
   show head G 'out-arcs G u = neighborhood u
     unfolding neighborhood-def using in-arcs-imp-in-arcs-ends by auto
 then show ?thesis unfolding out-degree-def
   by (simp add: bij-betw-same-card)
qed
lemma (in digraph) neighborhood-empty-iff: out-degree G u = 0 \longleftrightarrow neighborhood
 using out-degree-neighborhood neighborhood-finite by auto
end
```

3 General Event Lemmas

General lemmas for reasoning on events in probability spaces after different operations

```
theory Prob-Events-Extras
 imports
   HOL-Probability.Probability
   PiE-Rel-Extras
begin
context prob-space
begin
lemma prob-sum-Union:
 assumes measurable: finite A A \subseteq events \ disjoint \ A
 shows prob (\bigcup A) = (\sum e \in A. prob (e))
proof -
  obtain f where bb: bij-betw f {0..<card A} A
   using assms(1) ex-bij-betw-nat-finite by auto
  then have eq: f \cdot \{0.. < card A\} = A
   by (simp add: bij-betw-imp-surj-on)
 moreover have inj-on f \{0..< card A\}
   using bb bij-betw-def by blast
  ultimately have disjoint-family-on f \{0..< card A\}
   using disjoint-image-disjoint-family-on[of f {0..<card A}] assms by auto
  moreover have (\sum e \in A. \ prob \ (e)) = (\sum i \in \{0... < card \ A\}. \ prob \ (f \ i)) using
sum.reindex bb
   by (simp add: sum.reindex-bij-betw)
 ultimately show ?thesis using finite-measure-finite-Union eq assms(1) assms(2)
   by (metis bb bij-betw-finite)
qed
\mathbf{lemma}\ \textit{events-inter}:
 assumes finite S
 assumes S \neq \{\}
 shows (\bigwedge A. A \in S \Longrightarrow A \in events) \Longrightarrow \bigcap S \in events
using assms proof (induct S rule: finite-ne-induct)
 case (singleton x)
 then show ?case by auto
next
 case (insert x F)
 then show ?case using sets.Int
   by (metis complete-lattice-class.Inf-insert insertCI)
qed
lemma events-union:
 assumes finite S
 shows (\bigwedge A. A \in S \Longrightarrow A \in events) \Longrightarrow \bigcup S \in events
using assms(1) proof (induct S rule: finite-induct)
 case empty
  then show ?case by auto
next
 case (insert x F)
```

```
then show ?case using sets.Un
   by (simp add: insertI1)
qed
lemma prob-inter-set-lt-elem: A \in events \Longrightarrow prob \ (A \cap (\bigcap AS)) \le prob \ A
 by (simp add: finite-measure-mono)
lemma Inter-event-ss: finite A \Longrightarrow A \subseteq events \Longrightarrow A \neq \{\} \Longrightarrow \bigcap A \in events
 by (simp add: events-inter subset-iff)
lemma prob-inter-ss-lt:
 assumes finite A
 assumes A \subseteq events
 assumes B \neq \{\}
 assumes B \subseteq A
 shows prob (\bigcap A) \leq prob (\bigcap B)
proof (cases B = A)
 case True
  then show ?thesis by simp
next
  case False
 then obtain C where C = A - B and C \neq \{\}
   using assms(4) by auto
  then have \bigcap A = \bigcap C \cap \bigcap B
   by (metis Inter-Un-distrib Un-Diff-cancel2 assms(4) sup.orderE)
 moreover have \bigcap B \in events \text{ using } assms(1) \ assms(2) \ assms(2) \ Inter-event-ss
   by (meson assms(2) assms(4) dual-order.trans finite-subset)
  ultimately show ?thesis using prob-inter-set-lt-elem
   by (simp add: inf-commute)
qed
lemma prob-inter-ss-lt-index:
 assumes finite A
 assumes F ' A \subseteq events
 assumes B \neq \{\}
 assumes B \subseteq A
 shows prob (\bigcap (F 'A)) \leq prob (\bigcap (F 'B))
using prob-inter-ss-lt[of F ' A F ' B] assms by auto
lemma space-compl-double:
 assumes S \subseteq events
 shows ((-) (space M)) \cdot (((-) (space M)) \cdot S) = S
proof (intro subset-antisym subsetI)
 fix x assume x \in (-) (space M) '(-) (space M) 'S
 then obtain x' where xeq: x = space M - x' and x' \in (-) (space M) 'S by
blast
  then obtain x'' where x' = space M - x'' and xin: x'' \in S by blast
  then have x'' = x using xeq assms
   by (simp add: Diff-Diff-Int Set.basic-monos(7))
```

```
then show x \in S using xin by simp
next
  fix x assume x \in S
  then obtain x' where xeq: x' = space M - x and x' \in (-) (space M) 'S by
  then have space M - x' \in (-) (space M) '(-) (space M) 'S by auto
  moreover have space M - x' = x using xeq assms
   by (simp add: Diff-Diff-Int \langle x \in S \rangle subset-iff)
  ultimately show x \in (-) (space M) '(-) (space M) 'S by simp
\mathbf{qed}
lemma bij-betw-compl-sets:
  assumes S \subseteq events
 assumes S' = ((-) (space M)) \cdot S
 shows bij-betw ((-) (space\ M)) S' S
proof (intro bij-betwI')
  show \bigwedge x \ y. \ x \in S' \Longrightarrow y \in S' \Longrightarrow (space \ M - x = space \ M - y) = (x = y)
   using assms(2) by blast
 show \bigwedge x. \ x \in S' \Longrightarrow space \ M - x \in S using space-compl-double assms by auto
  show \bigwedge y. \ y \in S \Longrightarrow \exists x \in S'. \ y = space \ M - x \ using \ space-compl-double \ assms
by auto
qed
\mathbf{lemma}\ bij\text{-}betw\text{-}compl\text{-}sets\text{-}rev:
  assumes S \subseteq events
 assumes S' = ((-) (space M)) \cdot S
 shows bij-betw ((-) (space M)) S S'
proof (intro bij-betwI')
  show \bigwedge x \ y. \ x \in S \Longrightarrow y \in S \Longrightarrow (space \ M - x = space \ M - y) = (x = y)
   using assms by (metis Diff-Diff-Int sets.Int-space-eq1 subset-eq)
 show \bigwedge x. \ x \in S \Longrightarrow space \ M - x \in S' using space-compl-double assms by auto
  show \[ \] \] y \in S' \Longrightarrow \exists x \in S. \] y = space M - x \] using space-compl-double assms
by auto
qed
lemma prob 0-basic-inter: A \in events \Longrightarrow B \in events \Longrightarrow prob A = 0 \Longrightarrow prob
(A \cap B) = 0
 by (metis Int-lower1 finite-measure-mono measure-le-0-iff)
lemma prob0-basic-Inter: A \in events \Longrightarrow B \subseteq events \Longrightarrow prob A = 0 \Longrightarrow prob
(A \cap (\bigcap B)) = 0
 by (metis Int-lower1 finite-measure-mono measure-le-0-iff)
lemma prob1-basic-inter: A \in events \Longrightarrow B \in events \Longrightarrow prob A = 1 \Longrightarrow prob
(A \cap B) = prob B
```

```
by (metis inf-commute measure-space-inter prob-space)
\mathbf{lemma}\ prob1\text{-}basic\text{-}Inter:
  assumes A \in events \ B \subseteq events
  assumes prob A = 1
 assumes B \neq \{\}
 assumes finite B
  shows prob (A \cap (\bigcap B)) = prob (\bigcap B)
proof -
  have \bigcap B \in events \text{ using } Inter-event-ss \ assms \ \text{by } auto
  then show ?thesis using assms prob1-basic-inter by auto
qed
lemma compl-identity: A \in events \Longrightarrow space M - (space M - A) = A
 by (simp add: double-diff sets.sets-into-space)
lemma prob-addition-rule: A \in events \Longrightarrow B \in events \Longrightarrow
    prob (A \cup B) = prob A + prob B - prob (A \cap B)
  by (simp add: finite-measure-Diff' finite-measure-Union' inf-commute)
\mathbf{lemma}\ \textit{compl-subset-in-events}\colon S\subseteq \textit{events} \Longrightarrow (-)\ (\textit{space}\ M)\ \text{`}\ S\subseteq \textit{events}
 by auto
lemma prob-compl-diff-inter: A \in events \Longrightarrow B \in events \Longrightarrow
    prob\ (A \cap (space\ M-B)) = prob\ A - prob\ (A \cap B)
  by (simp add: Diff-Int-distrib finite-measure-Diff sets.Int)
lemma bij-betw-prod-prob: bij-betw f A B \Longrightarrow (\prod b \in B. \ prob \ b) = (\prod a \in A. \ prob \ (f \in B. \ prob \ b))
 by (simp add: prod.reindex-bij-betw)
definition event-compl :: 'a set \Rightarrow 'a set where
event\text{-}compl\ A \equiv space\ M-A
lemma compl-Union: A \neq \{\} \Longrightarrow space M - (\bigcup A) = (\bigcap a \in A \cdot (space M - a))
 by (simp)
lemma compl-Union-fn: A \neq \{\} \Longrightarrow space \ M - (\bigcup (F \ `A)) = (\bigcap a \in A \ . \ (space \ A)) = (\bigcap a \in A \ . \ . \ (space \ A))
M - F(a)
 by (simp)
end
    Reasoning on the probability of function sets
lemma card-PiE-val-ss-eq:
  assumes finite A
  assumes b \in B
 assumes d \subseteq A
  assumes B \neq \{\}
```

```
assumes finite B
    shows card \{f \in (A \to_E B) : (\forall v \in d : f v = b)\}/card (A \to_E B) = 1/((card \otimes_E B)) = 1/((card \otimes_E B))
B) powi (card d))
        (is card \{f \in ?C : (\forall v \in d : fv = b)\}/card ?C = 1/((card B) powi (card d)))
proof -
    have lt: card d \leq card A
        by (simp\ add:\ card-mono\ assms(1)\ assms(3))
    then have scard: card \{f \in C : \forall v \in d : fv = b\} = (card B) powi ((card A))
- card d)
         using assms(1) card-PiE-filter-range-set-const[of b B d A] assms(3) assms(2)
by fastforce
    have Ccard: card ?C = (card B) powi (card A) using card-funcsetE assms(2)
assms(1) by auto
   have bgt: card B \neq 0 using assms(5) assms(4) by auto
   have card \{f \in ?C : \forall v \in d : fv = b\}/(card ?C) =
            ((card\ B)\ powi\ ((card\ A) - card\ d))/((card\ B)\ powi\ (card\ A))
        using Ccard scard by simp
    also have ... = (card \ B) powi (int \ (card \ A - card \ d) - int \ (card \ A))
        using bgt by (simp add: power-int-diff)
    also have ... = (card B) powi (int (card A) - int (card d) - int (card A))
        using int-ops lt by simp
   also have ... = (card B) powi - (card d) using assms(1) by (simp add: of-nat-diff)
   also have ... = inverse ((card B) powi (card d))
        using power-int-minus[of card B (int (card d))] by simp
    finally show ?thesis by (simp add: inverse-eq-divide)
qed
lemma card-PiE-val-indiv-eq:
    assumes finite A
   assumes b \in B
   assumes d \in A
   assumes B \neq \{\}
    assumes finite B
   shows card \{f \in (A \to_E B) : f d = b\}/card (A \to_E B) = 1/(card B)
        (is card \{f \in ?C : f : d = b\}/card ?C = 1/(card B))
proof -
    have \{d\} \subseteq A \text{ using } assms(3) \text{ by } simp
    moreover have \bigwedge f \cdot f \in ?C \Longrightarrow f d = b \longleftrightarrow (\forall d' \in \{d\}. f d' = b) by auto
     ultimately have card \{f \in C : f \mid d = b\}/card \mid C = 1/((card \mid B) \mid powi \mid (card \mid B
\{d\}))
        using card-PiE-val-ss-eq[of A b B \{d\}] assms by auto
    also have ... = 1/((card B) powi 1) by auto
   finally show ?thesis by simp
qed
lemma prob-uniform-ex-fun-space:
    assumes finite A
    assumes b \in B
   assumes d \subseteq A
```

```
assumes B \neq \{\}
        assumes A \neq \{\}
       assumes finite B
       shows prob-space.prob (uniform-count-measure (A \rightarrow_E B)) \{f \in (A \rightarrow_E B) : (\forall A \rightarrow_
v \in d . f v = b =
                  1/((card\ B)\ powi\ (card\ d))
proof -
        let ?C = (A \rightarrow_E B)
        let ?M = uniform\text{-}count\text{-}measure ?C
       have finC: finite ?C using assms(2) assms(6) assms(1)
                \mathbf{by}\ (simp\ add:\ finite\text{-}PiE)
        moreover have ?C \neq \{\} using assms(4) assms(1)
                by (simp add: PiE-eq-empty-iff)
        ultimately interpret P: prob-space ?M
                using assms(3) by (simp add: prob-space-uniform-count-measure)
       have P.prob \{ f \in ?C : \forall v \in d : fv = b \} = card \{ f \in ?C : \forall v \in d : fv = b \} / card \}
(card ?C)
                  using measure-uniform-count-measure of ?C \{ f \in ?C : \forall v \in d : fv = b \} 
finC \ assms(3)
                by fastforce
         then show ?thesis using card-PiE-val-ss-eq assms by (simp)
qed
proposition integrable-uniform-count-measure-finite:
         fixes g :: 'a \Rightarrow 'b :: \{banach, second-countable-topology\}
        shows finite A \Longrightarrow integrable (uniform-count-measure A) g
        unfolding uniform-count-measure-def
        using integrable-point-measure-finite by fastforce
```

\mathbf{end}

4 Conditional Probability Library Extensions

```
theory Cond-Prob-Extensions
imports
Prob-Events-Extras
Design-Theory.Multisets-Extras
begin
```

4.1 Miscellaneous Set and List Lemmas

```
lemma nth-image-tl:
   assumes xs \neq []
   shows nth xs ' \{1...< length xs\} = set(tl xs)

proof -
   have set (tl xs) = \{(tl xs)!i | i. i < length (tl xs)\}
   using set-conv-nth by metis
   then have set (tl xs) = \{xs! (Suc i) | i. i < length xs - 1\}
   using nth-tl by fastforce
```

```
then have set (tl \ xs) = \{xs \ ! \ j \mid j. \ j > 0 \land j < length \ xs\}
  by (smt (verit, best) Collect-cong Suc-diff-1 Suc-less-eq assms length-greater-0-conv
zero-less-Suc)
 thus ?thesis by auto
ged
lemma exists-list-card:
 assumes finite S
 obtains xs where set xs = S and length xs = card S
 by (metis assms distinct-card finite-distinct-list)
lemma bij-betw-inter-empty:
 assumes bij-betw f A B
 assumes A' \subseteq A
 assumes A'' \subseteq A
 assumes A' \cap A'' = \{\}
 shows f 'A' \cap f 'A'' = \{\}
 by (metis\ assms(1)\ assms(2)\ assms(3)\ assms(4)\ bij-betw-inter-subsets\ image-empty)
lemma bij-betw-image-comp-eq:
 assumes bij-betw g T S
 \mathbf{shows}\ (F\,\circ\,g)\ `\ T\ =\,F\ `S
 using assms bij-betw-imp-surj-on by (metis image-comp)
lemma prod-card-image-set-eq:
 assumes bij-betw f \{0... < card S\} S
 assumes finite S
 shows (\prod i \in \{n..<(card\ S)\}\ .\ g\ (f\ i)) = (\prod i \in f\ `\{n..< card\ S\}\ .\ g\ i)
proof (cases n \ge card S)
 case True
  then show ?thesis by simp
next
 {\bf case}\ \mathit{False}
 then show ?thesis using assms
 proof (induct card S arbitrary: S)
   case \theta
   then show ?case by auto
  next
   case (Suc \ x)
   then have nlt: n < Suc \ x \ by \ simp
   then have split: \{n.. < Suc\ x\} = \{n.. < x\} \cup \{x\} by auto
   then have f' \{n.. < Suc\ x\} = f' (\{n.. < x\} \cup \{x\}) by simp
   then have fsplit: f' \{n.. < Suc \ x\} = f' \{n.. < x\} \cup \{f \ x\}
     \mathbf{by} \ simp
   have \{n..< x\} \subseteq \{0..< card\ S\}
     using Suc(2) by auto
   moreover have \{x\} \subseteq \{0... < card S\} using Suc(2) by auto
   moreover have \{n..< x\} \cap \{x\} = \{\} by auto
```

```
ultimately have finter: f' \{n < x\} \cap \{f \ x\} = \{\} \text{ using } Suc.prems(2)
Suc.prems(1)
       bij-betw-inter-empty[of f \{0..< card S\} S \{n..< x\} \{x\}] by auto
   have (\prod i = n.. < Suc \ x. \ g \ (f \ i)) = (\prod i = n.. < x. \ g \ (f \ i)) * g \ (f(\ x)) using nlt
   moreover have (\prod x \in f ' \{n.. < Suc \ x\}. \ g \ x) = (\prod i \in f ' \{n.. < x\}. \ g \ i) * g \ (f \ x)
using finter fsplit
     by (simp add: Groups.mult-ac(2))
   moreover have (\prod i \in f \ `\{n.. < x\}. \ g \ i) = (\prod i = n.. < x. \ g \ (f \ i))
   proof -
     let ?S' = f ` \{0..< x\}
     have \{0..< x\} \subseteq \{0..< card S\} using Suc(2) by auto
     then have bij: bij-betw f \{0...< x\} ?S' using Suc.prems(2)
       using bij-betw-subset by blast
     moreover have card ?S' = x using bij-betw-same-card[of f \{0... < x\} ?S'] bij
by auto
     moreover have finite ?S' using finite-subset by auto
     ultimately show ?thesis
     by (metis \ bij-betw-subset \ ivl-subset \ less-eq-nat.simps(1) \ order-refl \ prod.reindex-bij-betw)
   ultimately show ?case using Suc(2) by auto
  qed
qed
lemma set-take-distinct-elem-not:
  assumes distinct xs
 assumes i < length xs
 shows xs ! i \notin set (take i xs)
 by (metis\ assms(1)\ assms(2)\ distinct-take\ id-take-nth-drop\ not-distinct-conv-prefix)
       Conditional Probability Basics
context prob-space
begin
    Abbreviation to mirror mathematical notations
abbreviation cond-prob-ev :: 'a set \Rightarrow 'a set \Rightarrow real (\mathcal{P}'(-\mid -')) where
\mathcal{P}(B \mid A) \equiv \mathcal{P}(x \text{ in } M. (x \in B) \mid (x \in A))
lemma cond-prob-inter: \mathcal{P}(B \mid A) = \mathcal{P}(\omega \text{ in } M. (\omega \in B \cap A)) / \mathcal{P}(\omega \text{ in } M. (\omega \in B \cap A))
  using cond-prob-def by auto
lemma cond-prob-ev-def:
  assumes A \in events \ B \in events
  shows \mathcal{P}(B \mid A) = prob (A \cap B) / prob A
proof -
  have a: \mathcal{P}(B \mid A) = \mathcal{P}(\omega \text{ in } M. (\omega \in B \cap A)) / \mathcal{P}(\omega \text{ in } M. (\omega \in A))
   using cond-prob-inter by auto
```

```
also have ... = prob \{ w \in space \ M : w \in B \cap A \} / prob \{ w \in space \ M : w \in A \}
   by auto
 finally show ?thesis using assms
   by (simp add: Collect-conj-eq a inf-commute)
ged
lemma measurable-in-ev:
 assumes A \in events
 shows Measurable.pred M (\lambda x . x \in A)
 using assms by auto
lemma measure-uniform-measure-eq-cond-prob-ev:
  assumes A \in events B \in events
 shows \mathcal{P}(A \mid B) = \mathcal{P}(x \text{ in uniform-measure } M \{x \in space M. x \in B\}. x \in A)
 using assms measurable-in-ev measure-uniform-measure-eq-cond-prob by auto
lemma measure-uniform-measure-eq-cond-prob-ev2:
 assumes A \in events \ B \in events
 shows \mathcal{P}(A \mid B) = measure \ (uniform\text{-}measure \ M \ \{x \in space \ M. \ x \in B\}) \ A
 using measure-uniform-measure-eq-cond-prob-ev assms
 by (metis Int-def sets.Int-space-eq1 space-uniform-measure)
\mathbf{lemma}\ \textit{measure-uniform-measure-eq-cond-prob-ev3}:
  assumes A \in events \ B \in events
 shows \mathcal{P}(A \mid B) = measure (uniform-measure M B) A
 using measure-uniform-measure-eq-cond-prob-ev assms Int-def sets.Int-space-eq1
space-uniform-measure
 by metis
lemma prob-space-cond-prob-uniform:
 assumes prob (\{x \in space M. Q x\}) > 0
 shows prob-space (uniform-measure M {x \in space M. Q x})
 using assms by (intro prob-space-uniform-measure) (simp-all add: emeasure-eq-measure)
lemma prob-space-cond-prob-event:
 assumes prob B > 0
 shows prob-space (uniform-measure M B)
 using assms by (intro prob-space-uniform-measure) (simp-all add: emeasure-eq-measure)
    Note this case shouldn't be used. Conditional probability should have >
0 assumption
lemma cond-prob-empty: \mathcal{P}(B \mid \{\}) = 0
 using cond-prob-inter[of B {}] by auto
lemma cond-prob-space: \mathcal{P}(A \mid space M) = \mathcal{P}(w \text{ in } M \cdot w \in A)
proof -
 have p1: prob \{\omega \in space M. \ \omega \in space M\} = 1
   by (simp add: prob-space)
 have \bigwedge w. \ w \in space \ M \Longrightarrow w \in A \cap (space \ M) \longleftrightarrow w \in A \ \text{by} \ auto
```

```
then have prob \{\omega \in space \ M.\ \omega \in A \cap space \ M\} = \mathcal{P}(w \ in \ M.\ w \in A)
   by meson
 then show ?thesis using cond-prob-inter[of A space M] p1 by auto
lemma cond-prob-space-ev: assumes A \in events shows \mathcal{P}(A \mid space\ M) = prob
 using cond-prob-space assms
 by (metis Int-commute Int-def measure-space-inter sets.top)
lemma cond-prob-UNIV: \mathcal{P}(A \mid UNIV) = \mathcal{P}(w \text{ in } M \cdot w \in A)
proof -
 have p1: prob \{\omega \in space \ M.\ \omega \in UNIV\} = 1
   by (simp add: prob-space)
 have \bigwedge w. \ w \in space \ M \Longrightarrow w \in A \cap UNIV \longleftrightarrow w \in A \ by \ auto
 then have prob \{\omega \in space \ M.\ \omega \in A \cap UNIV\} = \mathcal{P}(w \ in \ M.\ w \in A)
   bv meson
 then show ?thesis using cond-prob-inter[of A UNIV] p1 by auto
lemma cond-prob-UNIV-ev: A \in events \Longrightarrow \mathcal{P}(A \mid UNIV) = prob A
 using cond-prob-UNIV
 by (metis Int-commute Int-def measure-space-inter sets.top)
lemma cond-prob-neg:
 assumes A \in events B \in events
 assumes prob A > 0
 shows \mathcal{P}((space\ M-B)\mid A)=1-\mathcal{P}(B\mid A)
proof -
 have negB: space M - B \in events using assms by auto
 have prob ((space M - B) \cap A) = prob A - prob (B \cap A)
   by (simp add: Diff-Int-distrib2 assms(1) assms(2) finite-measure-Diff sets.Int)
  then have \mathcal{P}((space\ M-B)\mid A)=(prob\ A-prob\ (B\cap A))/prob\ A
  using cond-prob-ev-def[of A space M-B] assms negB by (simp\ add: Int-commute)
  also have ... = ((prob\ A)/prob\ A) - ((prob\ (B \cap A))/prob\ A) by (simp\ add:
field-simps)
  also have ... = 1 - ((prob (B \cap A))/prob A) using assms(3) by (simp add:
field-simps)
 finally show \mathcal{P}((space\ M-B)\mid A)=1-\mathcal{P}(B\mid A) using cond-prob-ev-def[of
A B assms
   by (simp add: inf-commute)
qed
4.3
       Bayes Theorem
\mathbf{lemma}\ prob\text{-}intersect\text{-}A:
 assumes A \in events \ B \in events
 shows prob (A \cap B) = prob \ A * \mathcal{P}(B \mid A)
```

```
using cond-prob-ev-def assms apply simp
 by (metis Int-lower1 finite-measure-mono measure-le-0-iff)
lemma prob-intersect-B:
 assumes A \in events \ B \in events
 shows prob (A \cap B) = prob \ B * \mathcal{P}(A \mid B)
 using cond-prob-ev-def assms
 by (simp-all add: inf-commute) (metis Int-lower2 finite-measure-mono measure-le-0-iff)
theorem Bayes-theorem:
  assumes A \in events \ B \in events
 shows prob \ B * \mathcal{P}(A \mid B) = prob \ A * \mathcal{P}(B \mid A)
 using prob-intersect-A prob-intersect-B assms by simp
corollary Bayes-theorem-div:
  assumes A \in events B \in events
 shows \mathcal{P}(A \mid B) = (prob \ A * \mathcal{P}(B \mid A))/(prob \ B)
 using assms Bayes-theorem
 by (metis cond-prob-ev-def prob-intersect-A)
lemma cond-prob-dual-intersect:
 assumes A \in events \ B \in events \ C \in events
 assumes prob C \neq 0
 shows \mathcal{P}(A \mid (B \cap C)) = \mathcal{P}(A \cap B \mid C) / \mathcal{P}(B \mid C) (is ?LHS = ?RHS)
proof -
 have B \cap C \in events using assms by auto
  then have lhs: ?LHS = prob (A \cap B \cap C)/prob (B \cap C)
   using assms cond-prob-ev-def[of B \cap CA] inf-commute inf-left-commute by
(metis)
 have A \cap B \in events using assms by auto
 then have \mathcal{P}(A \cap B \mid C) = prob (A \cap B \cap C) / prob C
   using assms cond-prob-ev-def [of CA \cap B] inf-commute by (metis)
 moreover have P(B \mid C) = prob (B \cap C)/prob C using cond-prob-ev-def[of C]
B assms inf-commute by metis
 ultimately have ?RHS = (prob\ (A \cap B \cap C) \ / \ prob\ C)/(\ prob\ (B \cap C)/prob
C
   by simp
 also have ... = (prob\ (A \cap B \cap C) \ / \ prob\ C)*(\ prob\ (C)/prob\ (B \cap C)) by simp
 also have ... = prob (A \cap B \cap C)/prob (B \cap C) using assms(4) by simp
  finally show ?thesis using lhs by simp
qed
lemma cond-prob-ev-double:
 assumes A \in events \ B \in events \ C \in events
 assumes prob C > 0
 shows \mathcal{P}(x \text{ in (uniform-measure } M C), (x \in A) \mid (x \in B)) = \mathcal{P}(A \mid (B \cap C))
proof -
 let ?M = uniform\text{-}measure\ M\ C
```

```
interpret cps: prob-space ?M using assms(4) prob-space-cond-prob-event by
auto
 have probne: prob C \neq 0 using assms(4) by auto
 have ev: cps.events = events using sets-uniform-measure by auto
 have iev: A \cap B \in events \text{ using } assms(1) \ assms(2) \text{ by } simp
 have 0: \mathcal{P}(x \text{ in (uniform-measure } M C). (x \in A) \mid (x \in B)) = cps.cond-prob-ev
A B  by simp
 also have 1: ... = (measure ?M (A \cap B))/(measure ?M B) using cond-prob-ev-def
assms(1) \ assms(2) \ ev
   by (metis Int-commute cps.cond-prob-ev-def)
 also have 2: ... = \mathcal{P}((A \cap B) \mid C)/(measure ?M B)
   using measure-uniform-measure-eq-cond-prob-ev3[of A \cap B C] assms(3) iev by
auto
 also have 3: ... = \mathcal{P}((A \cap B) \mid C) / \mathcal{P}(B \mid C) using measure-uniform-measure-eq-cond-prob-ev3[of
B \ C| \ assms(3) \ assms(2) \ \mathbf{by} \ auto
 also have 4: ... = \mathcal{P}(A \mid (B \cap C))
   using cond-prob-dual-intersect[of A B C] assms(1) assms(2) assms(3) probne
by presburger
 finally show ?thesis using 1 2 3 4 by presburger
qed
lemma cond-prob-inter-set-lt:
  assumes A \in events B \in events AS \subseteq events
 assumes finite AS
 shows \mathcal{P}((A \cap (\bigcap AS)) \mid B) \leq \mathcal{P}(A|B) (is ?LHS \leq ?RHS)
using measure-uniform-measure-eq-cond-prob-ev finite-measure-mono
proof (cases\ AS = \{\})
 case True
 then have (A \cap (\bigcap AS)) = A by simp
 then show ?thesis by simp
next
  case False
 then have (\bigcap AS) \in events \text{ using } assms(3) \ assms(4) \ Inter-event-ss \ by \ simp
 then have (A \cap (\bigcap AS)) \in events \text{ using } assms \text{ by } simp
 then have ?LHS = prob (A \cap (\bigcap AS) \cap B)/prob B
   using assms cond-prob-ev-def[of B (A \cap (\bigcap AS))] inf-commute by metis
 moreover have prob\ (A \cap (\bigcap AS) \cap B) \leq prob\ (A \cap B) using finite-measure-mono
      assms(1) inf-commute inf-left-commute by (metis assms(2) inf-sup-ord(1)
sets.Int)
  ultimately show ?thesis using cond-prob-ev-def[of B A]
   by (simp add: assms(1) assms(2) divide-right-mono inf-commute)
qed
```

4.4 Conditional Probability Multiplication Rule

Many list and indexed variations of this lemma

```
lemma prob-cond-Inter-List: assumes xs \neq [] assumes \bigwedge A. A \in set \ xs \Longrightarrow A \in events
```

```
shows prob (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i = 1.. < (length \ xs) .
        \mathcal{P}((xs ! i) \mid (\bigcap (set (take i xs )))))
     using assms(1) assms(2)
proof (induct xs rule: rev-nonempty-induct)
     case (single x)
     then show ?case by auto
\mathbf{next}
     case (snoc \ x \ xs)
    have xs \neq []
        by (simp \ add: snoc.hyps(1))
     then have inev: (\bigcap (set \ xs)) \in events \ using \ events-inter
        by (simp add: snoc.prems)
    have len: (length (xs @ [x])) = length xs + 1 by auto
    have last-p: \mathcal{P}(x \mid (\bigcap (set \ xs))) =
        \mathcal{P}((xs @ [x]) ! length xs | \bigcap (set (take (length xs) (xs @ [x]))))
    have prob \ (\bigcap \ (set \ (xs \ @ \ [x]))) = prob \ (x \cap (\bigcap \ (set \ xs)))
        by auto
     also have ... = prob (\bigcap (set \ xs)) * \mathcal{P}(x \mid (\bigcap (set \ xs)))
        using prob-intersect-B snoc.prems inev by simp
     also have ... = prob (hd xs) * (\prod i = 1... < length xs. P(xs ! i \mid \bigcap (set (take i)))
(xs))))) *
             \mathcal{P}(x \mid (\bigcap (set \ xs)))
         using snoc.hyps snoc.prems by auto
    finally have prob \ (\bigcap \ (set \ (xs @ [x]))) = prob \ (hd \ (xs @ [x])) *
             (\prod i = 1.. < length \ xs. \ \mathcal{P}((xs @ [x]) ! i | \bigcap (set \ (take \ i \ (xs @ [x]))))) * \mathcal{P}(x | 
(\bigcap (set \ xs)))
        using nth-append[of xs [x]] nth-take by (simp \ add: snoc.hyps(1))
    then show ?case using last-p by auto
qed
lemma prob-cond-Inter-index:
    fixes n :: nat
    assumes n > 0
    assumes F ` \{0..< n\} \subseteq events
    shows prob (\bigcap (F \{0..< n\})) = prob (F 0) * (\prod i \in \{1..< n\}).
        \mathcal{P}(F \mid (\bigcap (F'\{0..< i\}))))
proof -
     define xs where xs \equiv map \ F \ [0..< n]
     have prob (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i = 1.. < (length \ xs)).
         \mathcal{P}((xs \mid i) \mid (\bigcap (set (take \mid i \mid xs ))))) using xs-def assms prob-cond-Inter-List[of
xs] by auto
   then have prob (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i \in \{1... < n\} \cdot \mathcal{P}((xs!\ i) \mid (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = prob (hd \ xs) * (\bigcap (set \ xs)) = 
(take\ i\ xs\ )))))
        using xs-def by auto
     moreover have hd xs = F \theta
        unfolding xs-def by (simp add: assms(1) hd-map)
    moreover have \bigwedge i. i \in \{1... < n\} \Longrightarrow F ` \{0... < i\} = set (take i xs)
         by (metis atLeastLessThan-iff atLeastLessThan-upt image-set less-or-eq-imp-le
```

```
plus-nat.add-0
       take-map take-upt xs-def)
 ultimately show ?thesis using xs-def by auto
lemma prob-cond-Inter-index-compl:
  fixes n :: nat
 assumes n > 0
 assumes F ` \{0..< n\} \subseteq events
 shows prob (\bigcap x \in \{0..< n\} \text{ . space } M - F x) = prob (space M - F 0) * (\prod i)
\in \{1... < n\}.
   \mathcal{P}(space\ M-F\ i\mid (\bigcap\ j\in\{0...< i\}.\ space\ M-F\ j)))
proof -
 define G where G \equiv \lambda i. space M - F i
 then have G ` \{0... < n\} \subseteq events using assms(2) by auto
 then show ?thesis using prob-cond-Inter-index[of n G] G-def
   using assms(1) by blast
qed
lemma prob-cond-Inter-take-cond:
 assumes xs \neq []
 assumes set xs \subseteq events
 assumes S \subseteq events
 assumes S \neq \{\}
 assumes finite S
 assumes prob (\cap S) > 0
  shows \mathcal{P}((\bigcap (set \ xs)) \mid (\bigcap \ S)) = (\prod i = 0... < (length \ xs) \ . \ \mathcal{P}((xs! \ i) \mid (\bigcap (set \ xs))) = (i) = 0... < (i)
(take\ i\ xs\ )\ \cup\ S))))
proof -
  define M' where M' = uniform-measure M \cap S
 interpret cps: prob-space M' using prob-space-cond-prob-event M'-def assms(6)
by auto
 have len: length xs > 0 using assms(1) by simp
 have cps-ev: cps.events = events using sets-uniform-measure M'-def by auto
 have sevents: \bigcap S \in events \text{ using } assms(3) \ assms(4) \ Inter-event-ss \ assms(5) \ by
auto
 have fin: finite (set xs) by auto
  then have xevents: \bigcap (set \ xs) \in events \ using \ assms(1) \ assms(2) \ Inter-event-ss
 then have peq: \mathcal{P}((\bigcap (set \ xs)) \mid (\bigcap \ S)) = cps.prob (\bigcap \ (set \ xs))
     using measure-uniform-measure-eq-cond-prob-ev3[of \bigcap (set xs) \bigcap S] sevents
M'-def
   by blast
 then have cps.prob (\bigcap (set xs)) = cps.prob (hd xs) * (\prod i = 1..<(length xs).
  cps.cond-prob-ev(xs!i)(\bigcap (set(take\ ixs)))) using assms\ cps.prob-cond-Inter-List
cps-ev
   by blast
 moreover have cps.prob (hd xs) = \mathcal{P}((xs ! 0) | (\bigcap (set (take 0 xs) \cup S)))
```

```
proof -
    have ev: hd xs \in events using assms(2) len by auto
    then have cps.prob\ (hd\ xs) = \mathcal{P}(hd\ xs \mid \bigcap S)
       using ev sevents measure-uniform-measure-eq-cond-prob-ev3[of hd xs \cap S]
M'-def by presburger
    then show ?thesis using len by (simp add: hd-conv-nth)
  qed
  moreover have \bigwedge i. i > 0 \Longrightarrow i < length xs \Longrightarrow
    cps.cond-prob-ev~(xs~!~i)~(\bigcap(set~(take~i~xs~))) = \mathcal{P}((xs~!~i)~|~(\bigcap(set~(take~i~xs~))))
\cup S)))
  proof -
    fix i assume igt: i > 0 and ilt: i < length xs
    then have set (take i xs) \subseteq events using assms(2)
      by (meson set-take-subset subset-trans)
    moreover have set (take i xs) \neq {} using len igt ilt by auto
    ultimately have (\bigcap (set (take \ i \ xs))) \in events
      using Inter-event-ss fin by auto
    moreover have xs ! i \in events \text{ using } assms(2)
      using nth-mem subset-iff igt ilt by blast
    moreover have (\bigcap (set (take \ i \ xs ) \cup S)) = (\bigcap (set (take \ i \ xs ))) \cap (\bigcap S)
      by (simp add: Inf-union-distrib)
    ultimately show cps.cond-prob-ev (xs ! i) <math>(\bigcap (set (take \ i \ xs ))) = \mathcal{P}((xs ! i) | i)
(\bigcap (set (take \ i \ xs ) \cup S)))
     using sevents cond-prob-ev-double of xs! i (\cap (set (take \ i \ xs))) \cap S \ assms(6)
M'-def by presburger
  qed
  ultimately have eq. cps.prob (\bigcap (set \ xs)) = \mathcal{P}((xs \ ! \ \theta) \mid (\bigcap (set \ (take \ \theta \ xs \ ) \cup (in \ (take \ \theta \ xs \ )))))
S))) * (\prod i \in \{1..<(length xs)\}\}.
    \mathcal{P}((xs \mid i) \mid (\bigcap (set (take i xs) \cup S)))) by simp
  moreover have \{1..< length \ xs\} = \{0..< length \ xs\} - \{0\}
    by (simp\ add:\ atLeast1-lessThan-eq-remove0\ lessThan-atLeast0)
  moreover have finite \{0..< length \ xs\} by auto
  moreover have 0 \in \{0..< length \ xs\}by (simp \ add: \ assms(1))
  ultimately have \mathcal{P}((xs \mid 0) \mid (\bigcap (set \ (take \ 0 \ xs \ ) \cup S))) * (\prod i \in \{1..<(length)\})
xs) .
    \mathcal{P}((xs \mid i) \mid (\bigcap (set (take \mid xs ) \cup S)))) = (\prod i \in \{0..<(length \mid xs)\}\}.
    \mathcal{P}((xs \mid i) \mid (\bigcap (set \ (take \ i \ xs \ ) \cup S)))) using prod.remove[of \{0... < length \ xs\} \ 0
\lambda i. \mathcal{P}((xs \mid i) \mid (\bigcap (set (take i xs) \cup S)))]
    by presburger
  then have cps.prob \ (\bigcap \ (set \ xs)) = (\prod i \in \{0..<(length \ xs)\}\ .
    \mathcal{P}((xs \mid i) \mid (\bigcap (set (take \mid ixs ) \cup S)))) using eq by simp
  then show ?thesis using peq by auto
qed
lemma prob-cond-Inter-index-cond-set:
  fixes n :: nat
  assumes n > 0
  assumes finite E
  assumes E \neq \{\}
```

```
assumes E \subseteq events
  assumes F : \{0..< n\} \subseteq events
  assumes prob (\bigcap E) > 0
 shows \mathcal{P}((\bigcap (F ' \{0... < n\})) \mid (\bigcap E)) = (\prod i \in \{0... < n\}\}. \ \mathcal{P}(F i \mid (\bigcap ((F ' \{0... < i\}))) \mid (\bigcap E)) = (\prod i \in \{0... < n\}\}).
\cup E))))
proof -
  define M' where M' = uniform-measure M \cap E
  interpret cps: prob-space M' using prob-space-cond-prob-event M'-def assms(6)
by auto
  have cps-ev: cps.events = events using sets-uniform-measure M'-def by auto
  have sevents: (\bigcap(E)) \in events \text{ using } assms(6) \ assms(2) \ assms(3) \ assms(4)
Inter-event-ss by auto
  have fin: finite (F ` \{0..< n\}) by auto
 then have xevents: \bigcap (F' \{0... < n\}) \in events \text{ using } assms \text{ Inter-event-ss by } auto
  then have peq: \mathcal{P}((\bigcap (F ` \{0..< n\})) \mid (\bigcap E)) = cps.prob (\bigcap (F ` \{0..< n\}))
    using measure-uniform-measure-eq-cond-prob-ev3[of \bigcap (F ` \{0..< n\}) \bigcap E] sev-
ents M'-def
    by blast
  moreover have F'\{0...< n\} \subseteq cps.events using cps-ev assms(5) by force
  ultimately have cps.prob \ (\bigcap \ (F \ `\{0..< n\})) = cps.prob \ (F \ 0) * (\prod i = 1..< n \ .
    cps.cond-prob-ev (F i) <math>(\bigcap (F ` \{0..< i\})))
    using assms(1) cps.prob-cond-Inter-index[of n F] by blast
  moreover have cps.prob (F \ \theta) = \mathcal{P}((F \ \theta) \mid (\bigcap E))
  proof -
    have ev: F \ \theta \in events \ \mathbf{using} \ assms(1) \ assms(5) \ \mathbf{by} \ auto
    then show ?thesis
         using ev sevents measure-uniform-measure-eq-cond-prob-ev3[of F 0 \cap E]
M'-def by presburger
  moreover have \bigwedge i. i > 0 \Longrightarrow i < n \Longrightarrow
    \textit{cps.cond-prob-ev} \ (\textit{F} \ i) \ (\bigcap (\textit{F} \ `\{\textit{0}..{<}i\})) = \mathcal{P}((\textit{F} \ i) \ | \ (\bigcap ((\textit{F} \ `\{\textit{0}..{<}i\}) \ \cup \ \textit{E})))
  proof -
    fix i assume igt: i > 0 and ilt: i < n
    then have (\bigcap (F ' \{0..< i\})) \in events
      using assms subset-trans igt Inter-event-ss fin by auto
    moreover have F i \in events using assms
      using subset-iff igt ilt by simp
    \mathbf{moreover\ have}\ (\bigcap ((F\ `\{\theta..{<}i\})\ \cup\ (E))) = (\bigcap ((F\ `\{\theta..{<}i\})))\ \cap\ (\bigcap\ (E))
      by (simp add: Inf-union-distrib)
    ultimately show cps.cond-prob-ev (F\ i) (\bigcap (F\ `\{0...< i\})) = \mathcal{P}((F\ i)\ |\ (\bigcap ((F\ i))) = \mathcal{P}((F\ i))) = \mathcal{P}((F\ i))
(\{0..< i\}) \cup E)))
    using sevents cond-prob-ev-double of Fi (\cap ((F' \{0...< i\}))) \cap E assms M'-def
by presburger
  qed
  ultimately have eq: cps.prob (\bigcap (F ` \{0..< n\})) = \mathcal{P}((F \ 0) \mid (\bigcap E)) * (\prod i \in I)
\{1...< n\}.
    \mathcal{P}((F\ i)\ |\ (\bigcap((F\ `\{0..< i\})\cup E)))) by simp
  moreover have \{1..< n\} = \{0..< n\} - \{0\}
    by (simp add: atLeast1-lessThan-eq-remove0 lessThan-atLeast0)
```

```
ultimately have \mathcal{P}((F \ \theta) \mid (\bigcap E)) * (\prod i \in \{1...< n\} \ . \ \mathcal{P}((F \ i) \mid (\bigcap ((F \ `\{\theta...< i\})) 
\cup E)))) =
                       (\prod i \in \{0...< n\} \cdot \mathcal{P}((F\ i) \mid (\bigcap ((F\ `\{0...< i\}) \cup E)))) using assms(1)
                prod.remove[of \{0...< n\} \ 0 \ \lambda \ i. \ \mathcal{P}((F \ i) \mid (\bigcap ((F \ (0...< i\}) \cup E)))]  by fastforce
        then show ?thesis using peq eq by auto
qed
lemma prob-cond-Inter-index-cond-compl-set:
         fixes n :: nat
        assumes n > 0
       assumes finite E
        assumes E \neq \{\}
        assumes E \subseteq events
        assumes F ` \{0..< n\} \subseteq events
        assumes prob \ (\bigcap E) > 0
        shows \mathcal{P}((\bigcap ((-) (space M) `F `\{0..< n\})) | (\bigcap E)) =
               (\prod i = 0.. < n \cdot \mathcal{P}((space\ M - F\ i) \mid (\bigcap ((-)\ (space\ M)\ 'F' \{0.. < i\} \cup E))))
proof -
        define G where G \equiv \lambda i. (space M - Fi)
         then have G' \{0... < n\} \subseteq events \text{ using } assms(5) \text{ by } auto
         then have \mathcal{P}((\bigcap (G : \{0..< n\})) \mid (\bigcap E)) = (\prod i \in \{0..< n\}. \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}. \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap E))) = (\prod i \in \{0..< n\}). \mathcal{P}(G i \mid (\bigcap ((G : \{0..< n\})) \mid (\bigcap ((G : \{0..
\{\theta...< i\}) \cup E))))
                using prob-cond-Inter-index-cond-set[of n \ E \ G] assms by blast
          moreover have ((-) (space M) \cdot F \cdot \{0..< n\}) = (G \cdot \{0..< n\}) unfolding
 G-def by auto
      moreover have \bigwedge i. i \in \{0... < n\} \Longrightarrow \mathcal{P}((space\ M - F\ i) \mid (\bigcap ((-)\ (space\ M)\ '
F ` \{0..< i\} \cup E))) =
               \mathcal{P}(G \ i \mid (\bigcap ((G \ `\{\theta..< i\}) \cup E)))
       proof -
               fix i assume iin: i \in \{0...< n\}
               have (-) (space\ M) ' F ' \{0...< i\} = G ' \{0...< i\} unfolding G-def using iin
               then show \mathcal{P}((space\ M-F\ i)\mid (\bigcap ((-)\ (space\ M)\ `F\ `\{0...< i\}\cup E)))=
               \mathcal{P}(G \ i \mid (\bigcap ((G \ `\{0..< i\}) \cup E))) unfolding G\text{-}def by auto
       ultimately show ?thesis by auto
qed
lemma prob-cond-Inter-index-cond:
         fixes n :: nat
        assumes n > 0
       assumes n < m
       assumes F ` \{0..< m\} \subseteq events
        assumes prob \ (\bigcap j \in \{n..< m\}. \ F \ j) > 0
       shows \mathcal{P}((\bigcap (F ' \{0..< n\})) \mid (\bigcap j \in \{n..< m\} . F j)) = (\prod i \in \{0..< n\}. \mathcal{P}(F i \mid n)\}
(\bigcap \left( (F \ ` \{ \theta... {<} i \}) \ \cup \ (F \ ` \{ n.. {<} m \})))))
proof -
       let ?E = F ` \{n.. < m\}
       have F ` \{0... < n\} \subseteq events using assms(2) assms(3) by auto
```

```
moreover have ?E \subseteq events \text{ using } assms(2) \ assms(3) \text{ by } auto
  moreover have prob(\bigcap ?E) > 0 using assms(4) by simp
 moreover have ?E \neq \{\} using assms(2) by simp
 ultimately show ?thesis using prob-cond-Inter-index-cond-set[of n ?E F] assms(1)
by blast
\mathbf{qed}
lemma prob-cond-Inter-index-cond-compl:
  fixes n :: nat
  assumes n > 0
 assumes n < m
  assumes F ` \{0..< m\} \subseteq events
 assumes prob (\bigcap j \in \{n..< m\}. \ F \ j) > 0
  \begin{array}{l} \mathbf{shows} \ \mathcal{P}((\bigcap((-) \ (space \ M) \ \ F \ \ (\{0..< n\})) \ | \ (\bigcap(\ F \ \ (n..< m\}))) = \\ (\prod i = 0..< n \ . \ \mathcal{P}((space \ M \ - F \ i) \ | \ (\bigcap((-) \ (space \ M) \ \ F \ \ (\{0..< i\}) \ \cup \ (F \ \ )) \end{array} ) 
\{n..< m\})))))
proof -
  define G where G \equiv \lambda i. if (i < n) then (space M - F i) else F i
  then have G' \{0... < m\} \subseteq events \text{ using } assms(3) \text{ by } auto
  moreover have prob \ (\bigcap j \in \{n... < m\}. \ G \ j) > 0 \ using \ G-def \ assms(4) \ by \ simp
  ultimately have \mathcal{P}((\bigcap (G ` \{0..< n\})) \mid (\bigcap (G ` \{n..< m\}))) = (\prod i \in \{0..< n\}.
\mathcal{P}(G \ i \mid (\bigcap ((G \ `\{0..< i\}) \cup (G \ `\{n..< m\})))))
    using prob\text{-}cond\text{-}Inter\text{-}index\text{-}cond[of\ n\ m\ G]\ assms(1)\ assms(2) by blast
  moreover have ((-) (space M) \cdot F \cdot \{0...< n\}) = (G \cdot \{0...< n\}) unfolding
G-def by auto
  moreover have meq: (F' \{n.. < m\}) = (G' \{n.. < m\})  unfolding G-def by
 moreover have \bigwedge i. i \in \{0... < n\} \Longrightarrow \mathcal{P}((space\ M - F\ i) \mid (\bigcap ((-)\ (space\ M)\ '
F ` \{0..< i\} \cup (F ` \{n..< m\})))) =
    \mathcal{P}(G \ i \mid (\bigcap ((G \ (0..< i\}) \cup (G \ (n..< m\}))))
  proof -
    fix i assume iin: i \in \{0...< n\}
    then have (space\ M-F\ i)=G\ i unfolding G\text{-}def by auto
    moreover have (-) (space M) 'F' \{0...< i\} = G' \{0...< i\} unfolding G-def
using iin by auto
    ultimately show \mathcal{P}((space\ M-F\ i)\mid (\bigcap ((-)\ (space\ M)\ `F`\{0...< i\})\cup (F`
\{n..< m\})))) =
    \mathcal{P}(G \ i \mid (\bigcap ((G \ (0..< i\}) \cup (G \ (n..< m\})))) using meq by auto
  ultimately show ?thesis by auto
qed
lemma prob-cond-Inter-take-cond-neg:
  assumes xs \neq []
  assumes set xs \subseteq events
  assumes S \subseteq events
  assumes S \neq \{\}
  assumes finite S
```

```
assumes prob (\bigcap S) > 0
   shows \mathcal{P}((\bigcap ((-) (space M) (set xs))) | (\bigcap S)) =
       (\prod i = 0..<(length\ xs)\ .\ \mathcal{P}((space\ M\ -\ xs\ !\ i)\ |\ (\bigcap ((-)\ (space\ M)\ `(set\ (take\ xs)\ ))\ |\ (i)\ |\ 
i \ xs \ )) \cup S))))
proof -
    define ys where ys = map((-) (space M)) xs
   have set: ((-) (space M) (set xs)) = set (ys)
       using ys-def by simp
    then have set ys \subseteq events
       by (metis assms(2) image-subset-iff sets.compl-sets subsetD)
   moreover have ys \neq [] using ys-def assms(1) by simp
    ultimately have \mathcal{P}(\bigcap (set\ ys) \mid (\bigcap S)) =
           (\prod i = 0..<(length\ ys)\ .\ \mathcal{P}((ys\ !\ i)\ |\ (\bigcap (set\ (take\ i\ ys\ )\cup S))))
       using prob-cond-Inter-take-cond assms by auto
   moreover have len: length ys = length xs using ys-def by auto
    moreover have \bigwedge i. i < length \ xs \implies ys \mid i = space \ M - xs \mid i \ using \ ys - def
nth-map len by auto
   moreover have \bigwedge i. i < length \ xs \Longrightarrow set \ (take \ i \ ys) = (-) \ (space \ M) 'set (take \ i \ ys) = (-)
       using ys-def take-map len by (metis set-map)
    ultimately show ?thesis using set by auto
qed
lemma prob-cond-Inter-List-Index:
   assumes xs \neq []
   assumes set xs \subseteq events
   shows prob (\bigcap (set \ xs)) = prob (hd \ xs) * (\prod i = 1.. < (length \ xs)).
       \mathcal{P}((xs ! i) \mid (\bigcap j \in \{0...< i\} . xs ! j)))
proof -
   have \bigwedge i. i < length \ xs \Longrightarrow set \ (take \ i \ xs) = ((!) \ xs \ `\{0...< i\})
       by (metis nat-less-le nth-image)
   thus ?thesis using prob-cond-Inter-List[of xs] assms by auto
qed
lemma obtains-prob-cond-Inter-index:
   assumes S \neq \{\}
   assumes S \subseteq events
   assumes finite S
   obtains xs where set xs = S and length xs = card S and
      prob \ (\bigcap S) = prob \ (hd \ xs) * (\prod i = 1.. < (length \ xs) \ . \ \mathcal{P}((xs! \ i) \mid (\bigcap \ j \in \{0.. < i\}))
. xs ! j)))
   using assms prob-cond-Inter-List-Index exists-list-card
   by (metis (no-types, lifting) set-empty2)
\mathbf{lemma}\ obtain\textit{-list-index}:
   assumes bij-betw g \{0..< card S\} S
   assumes finite S
   obtains xs where set xs = S and \bigwedge i. i \in \{0.. < card S\} \Longrightarrow g \ i = xs \mid i and
distinct xs
```

```
proof -
  let ?xs = map \ g \ [0.. < card \ S]
  have seq: g ` \{0.. < card S\} = S using assms(1)
   by (simp add: bij-betw-imp-surj-on)
  then have set-eq: set ?xs = S
   by simp
  moreover have \bigwedge i . i \in \{0..< card S\} \Longrightarrow g \ i = ?xs ! i
  moreover have length ?xs = card S using seq by auto
  moreover have distinct ?xs using set-eq leneq
   by (simp add: card-distinct)
  ultimately show ?thesis
   using that by blast
qed
lemma prob-cond-inter-fn:
  assumes bij-betw g \{0..< card S\} S
  assumes finite S
 assumes S \neq \{\}
 assumes S \subseteq events
 shows prob(\cap S) = prob(g \theta) * (\prod i \in \{1..<(card S)\} \cdot \mathcal{P}(g i \mid (\bigcap (g `\{\theta..< i\}))))
proof -
  obtain xs where seq: set xs = S and geq: \land i : i \in \{0... < card S\} \Longrightarrow g \ i = xs
! i and distinct xs
    using obtain-list-index assms by auto
  then have len: length xs = card S by (metis distinct-card)
  then have prob \ (\bigcap S) = prob \ (hd \ xs) * (\prod i \in \{1..<(length \ xs)\} \ . \ \mathcal{P}((xs \ ! \ i) \ |
(\bigcap j \in \{0...< i\} . xs! j)))
   using prob-cond-Inter-List-Index[of xs] assms(3) assms(4) seq by auto
  then have prob \ (\bigcap S) = prob \ (hd \ xs) * (\prod i \in \{1.. < card \ S\} \ . \ \mathcal{P}(g \ i \mid (\bigcap \ j \in \{1,.. < card \ S\}) \}
\{0..< i\} . g j)))
   using geq len by auto
  moreover have hd xs = g \theta
  proof -
   have length xs > 0 using seq \ assms(3) by auto
   then have hd xs = xs ! \theta
     by (simp add: hd-conv-nth)
   then show ?thesis using qeq len
     using \langle \theta \rangle \langle length | xs \rangle by auto
  ultimately show ?thesis by simp
qed
lemma prob-cond-inter-obtain-fn:
  assumes S \neq \{\}
  assumes S \subseteq events
  assumes finite S
  obtains f where bij-betw f {0..<card S} S and
   prob \ (\bigcap S) = prob \ (f \ 0) * (\prod i \in \{1..<(card \ S)\} \ . \ \mathcal{P}(f \ i \mid (\bigcap (f \ `\{0..< i\}))))
```

```
proof -
 obtain f where bij-betw f {0..<card S} S
   using assms(3) ex-bij-betw-nat-finite by blast
  then show ?thesis using that prob-cond-inter-fn assms by auto
qed
lemma prob-cond-inter-obtain-fn-compl:
 assumes S \neq \{\}
 assumes S \subseteq events
 assumes finite S
  obtains f where bij-betw f \{0...< card S\} S and prob (\bigcap ((-) (space M) 'S))
     prob (space M - f 0) * (\prod i \in \{1..<(card S)\}). \mathcal{P}(space M - f i \mid (\bigcap ((-)
(space\ M)\ `f` \{0..< i\}))))
proof -
 let ?c = (-) (space M)
 obtain f where bb: bij-betw f \{0..< card S\} S
   using assms(3) ex-bij-betw-nat-finite by blast
  moreover have bij: bij-betw ?c S((-)(space\ M) \cdot S)
   using bij-betw-compl-sets-rev assms(2) by auto
  ultimately have bij-betw (?c \circ f) {0..< card S} (?c \circ S)
    using bij-betw-comp-iff by blast
  moreover have ?c 	ildot S \neq \{\} using assms(1) by auto
  moreover have finite (?c 'S) using assms(3) by auto
  moreover have ?c : S \subseteq events \text{ using } assms(2) \text{ by } auto
  moreover have card S = card (?c `S) using bij
   by (simp add: bij-betw-same-card)
  ultimately have prob (\bigcap (?c \cdot S)) = prob ((?c \circ f) \ \theta) *
   (\prod i \in \{1..<(card\ S)\}\ .\ \mathcal{P}((?c \circ f)\ i \mid (\bigcap ((?c \circ f)\ `\{0..< i\}))))
   using prob-cond-inter-fn[of (?c \circ f) (?c \circ S)] by auto
  then have prob (\bigcap (?c `S)) = prob (space M - (f 0)) *
   (\prod i \in \{1..<(card\ S)\}\ .\ \mathcal{P}(space\ M-\ (f\ i)\mid (\bigcap ((?c\circ f)\ `\{0..< i\})))) by simp
  then show ?thesis using that bb by simp
qed
lemma prob-cond-Inter-index-cond-fn:
 assumes I \neq \{\}
 assumes finite I
 assumes finite E
 assumes E \neq \{\}
 assumes E \subseteq events
 assumes F ' I \subseteq events
 assumes prob \ (\bigcap E) > 0
 assumes bb: bij-betw g \{0..< card I\} I
 \mathbf{shows}\ \mathcal{P}((\bigcap (F\ `g\ `\{\theta...{<}\mathit{card}\ I\}))\ |\ (\bigcap E)) =
   (\prod i \in \{0.. < card\ I\}.\ \mathcal{P}(F(g\ i) \mid (\bigcap ((F'g'\{0.. < i\}) \cup E))))
proof -
 let ?n = card I
```

```
have eq: F \cdot I = (F \circ g) \cdot \{0... < card I\} using bij-betw-image-comp-eq bb by
metis
  moreover have 0 < ?n \text{ using } assms(1) \ assms(2) \text{ by } auto
  ultimately have \mathcal{P}(\bigcap ((F \circ g) : \{0..< card I\}) \mid \bigcap E) =
      (\prod i = 0.. < ?n. \mathcal{P}(F(g i) \mid \bigcap ((F \circ g) ` \{0.. < i\} \cup E)))
      using prob\text{-}cond\text{-}Inter\text{-}index\text{-}cond\text{-}set[of\ ?n\ E\ (F\ \circ\ g)]\ assms(3)\ assms(4)
assms(5) \ assms(6)
      assms(7) by auto
 moreover have \bigwedge i. i \in \{0...<?n\} \Longrightarrow (F \circ g) '\{0...< i\} = F' g '\{0...< i\} using
image-comp by auto
  ultimately have \mathcal{P}(\bigcap (F \cdot g \cdot \{0... < card I\}) \mid \bigcap E) = (\prod i = 0... < ?n. \mathcal{P}(F (g \mid i)))
i) \mid \bigcap (F \cdot g \cdot \{\theta ... < i\} \cup E)))
    using image\text{-}comp[of\ F\ g\ \{0...< card\ I\}] by auto
 then show ?thesis using eq bb assms by blast
qed
lemma prob-cond-Inter-index-cond-obtains:
 assumes I \neq \{\}
 assumes finite I
 assumes finite E
  assumes E \neq \{\}
 assumes E \subseteq events
 assumes F ' I \subseteq events
 assumes prob \ (\bigcap E) > 0
  obtains g where bij-betw g \{0...< card\ I\}\ I and \mathcal{P}((\bigcap (F \ 'g \ '\{0...< card\ I\}))\ |
(\bigcap E)) =
    (\prod i \in \{0..< card\ I\}.\ \mathcal{P}(F(g\ i) \mid (\bigcap ((F'g'\{0..< i\}) \cup E))))
proof -
 obtain g where bb: bij-betw g { 0... < card I} I using assms(2) ex-bij-betw-nat-finite
 then show thesis using assms prob-cond-Inter-index-cond-fn[of I E F g] that by
blast
\mathbf{qed}
lemma prob-cond-Inter-index-cond-compl-fn:
  assumes I \neq \{\}
 assumes finite\ I
  assumes finite E
  assumes E \neq \{\}
  assumes E \subseteq events
  assumes F ' I \subseteq events
  assumes prob \ (\bigcap E) > 0
  assumes bb: bij-betw g \{0..< card I\} I
  shows \mathcal{P}((\bigcap Aj \in I \text{ . space } M - F Aj) \mid (\bigcap E)) =
    (\prod i \in \{0..< card\ I\}.\ \mathcal{P}(space\ M-F\ (g\ i)\ |\ (\bigcap (((\lambda Aj.\ space\ M-F\ Aj)\ 'g\ '
\{0..< i\}) \cup E))))
proof -
 \mathbf{let}~?n=\mathit{card}~I
 let ?G = \lambda i. space M - F i
```

```
metis
  then have (?G \circ g) '\{0..< card\ I\} \subseteq events\ using\ assms(5)
   by (metis assms(6) compl-subset-in-events image-image)
 moreover have 0 < ?n \text{ using } assms(1) \ assms(2) \text{ by } auto
 ultimately have \mathcal{P}(\bigcap ((?G \circ g) \land \{0..< card\ I\}) \mid \bigcap E) = (\prod i = 0..<?n.\ \mathcal{P}(?G \land G) \mid f = 0...
(g\ i)\ |\ \bigcap\ ((?G\circ g)\ `\{0..< i\}\cup E)))
     using prob-cond-Inter-index-cond-set[of ?n E (?G \circ g)] assms(3) assms(4)
assms(5) \ assms(6)
     assms(7) by auto
  moreover have \bigwedge i. i \in \{0... < ?n\} \Longrightarrow (?G \circ g) ` \{0... < i\} = ?G ` g ` \{0... < i\}
using image-comp by auto
 ultimately have \mathcal{P}(\bigcap (?G `I) \mid \bigcap E) = (\prod i = 0..<?n. \mathcal{P}(?G (g i) \mid \bigcap (?G )))
' g ' \{0...< i\} \cup E)))
   using image-comp[of ?G \ g \ \{0... < card \ I\}] \ eq \ by \ auto
  then show ?thesis using bb by blast
qed
lemma prob-cond-Inter-index-cond-compl-obtains:
 assumes I \neq \{\}
  assumes finite I
 assumes finite E
  assumes E \neq \{\}
  assumes E \subseteq events
  assumes F ' I \subseteq events
  assumes prob \ (\bigcap E) > 0
 obtains q where bij-betw q \{0..< card\ I\}\ I and \mathcal{P}((\bigcap Aj \in I . space\ M-F\ Aj)
|(\bigcap E)| =
   (\prod i \in \{0.. < card\ I\}.\ \mathcal{P}(space\ M-F\ (g\ i)\ |\ (\bigcap (((\lambda Aj.\ space\ M-F\ Aj)\ `g\ `
\{\theta ... < i\}) \cup E))))
proof -
  let ?n = card I
 let ?G = \lambda i. space M - Fi
  obtain g where bb: bij-betw g \{0...<?n\} I using assms(2) ex-bij-betw-nat-finite
by auto
 then show ?thesis using assms prob-cond-Inter-index-cond-compl-fn[of I E F q]
that by blast
qed
lemma prob-cond-inter-index-fn2:
  assumes F 'S \subseteq events
 assumes finite S
 assumes card S > 0
  assumes bij-betw g \{0..< card S\} S
  shows prob (\bigcap (F 'S)) = prob (F (g 0)) * (\prod i \in \{1..<(card S)\} . \mathcal{P}(F (g i) \mid i \in \{1..<(card S)\}) 
(\bigcap \left(F \ `g \ `\left\{\theta..{<}i\right\}))))
proof -
 have 1: F \cdot S = (F \circ g) \cdot \{0.. < card S\} using assms(4) bij-betw-image-comp-eq
by metis
```

```
moreover have prob (\bigcap ((F \circ g) ` \{0.. < card S\})) =
     prob\ (F\ (g\ 0)) * (\prod i \in \{1...<(card\ S)\}\ .\ \mathcal{P}(F\ (g\ i)\ |\ (\bigcap (F\ 'g\ '\{0...< i\}))))
   using 1 prob-cond-Inter-index[of card S F \circ g] assms(3) assms(1) by auto
  ultimately show ?thesis using assms(4)
   by metis
\mathbf{qed}
lemma prob-cond-inter-index-fn:
  assumes F : S \subseteq events
  assumes finite S
 assumes S \neq \{\}
  assumes bij-betw g \{0..< card S\} S
  shows prob (\bigcap (F 'S)) = prob (F (g 0)) * (\prod i \in \{1..<(card S)\} . \mathcal{P}(F (g i) \mid i \in \{1..<(card S)\}) .
(\bigcap (F 'g '\{\theta..< i\})))
proof -
  have card S > 0 using assms(3) assms(2)
   by (simp add: card-gt-0-iff)
  moreover have (F \circ g) '\{0... < card S\} \subseteq events  using assms(1) assms(4)
   using bij-betw-imp-surj-on by (metis image-comp)
  ultimately have prob (\cap ((F \circ g) ` \{0.. < card S\})) =
     prob\ (F\ (g\ 0)) * (\prod i \in \{1...<(card\ S)\}\ .\ \mathcal{P}(F\ (g\ i)\ |\ (\bigcap (F\ 'g\ '\{0...< i\}))))
    using prob\text{-}cond\text{-}Inter\text{-}index[of\ card\ S\ F\ \circ\ g] by auto
  moreover have F : S = (F \circ g) : \{0.. < card S\} \text{ using } assms(4)
    using bij-betw-imp-surj-on image-comp by (metis)
  ultimately show ?thesis using assms(4) by presburger
qed
\mathbf{lemma}\ prob\text{-}cond\text{-}inter\text{-}index\text{-}obtain\text{-}fn\text{:}
  assumes F 'S \subseteq events
 assumes finite S
 assumes S \neq \{\}
  obtains g where bij-betw g \{0..< card S\} S and
   prob (\bigcap (F 'S)) = prob (F (g 0)) * (\prod i \in \{1..<(card S)\} . \mathcal{P}(F (g i) \mid (\bigcap (F 'S))\})
g ` \{0..< i\})))
proof -
  obtain f where bb: bij-betw f {0..<card S} S
   using assms(2) ex-bij-betw-nat-finite by blast
  then show ?thesis using prob-cond-inter-index-fn that assms by blast
qed
lemma prob-cond-inter-index-fn-compl:
  assumes S \neq \{\}
  assumes F 'S \subseteq events
  assumes finite S
 assumes bij-betw f \{0..< card S\} S
 shows prob (\bigcap ((-) (space M) `F `S)) = prob (space M - F (f 0)) *
    (\prod i \in \{1..<(card\ S)\}\ .\ \mathcal{P}(space\ M\ -\ F\ (f\ i)\ |\ (\bigcap ((-)\ (space\ M)\ `F\ `f\ `
\{0..< i\}))))
proof -
```

```
define G where G \equiv \lambda i. space M - F i
  then have G 'S \subseteq events using G-def assms(2) by auto
  then have prob \ (\bigcap \ (G \ `S)) = prob \ (G \ (f \ 0)) * (\prod i = 1.. < card \ S. \ \mathcal{P}(G \ (f \ i) \ |
\bigcap (G'f'(\{0..< i\})))
    \mathbf{using} \ \mathit{prob-cond-inter-index-fn} [\mathit{of} \ \mathit{G} \ \mathit{S}] \ \mathit{assms} \ \mathbf{by} \ \mathit{auto}
 moreover have (\bigcap ((-) (space M) `F `S)) = (\bigcap i \in S. space M - F i) by auto
  ultimately show ?thesis unfolding G-def by auto
qed
lemma prob-cond-inter-index-obtain-fn-compl:
  assumes S \neq \{\}
  assumes F 'S \subseteq events
 assumes finite S
  obtains f where bij-betw f \{0..< card S\} S and
    prob (\bigcap ((-) (space M) 'F' S)) = prob (space M - F (f 0)) *
      (\prod i \in \{1..<(card\ S)\}\ .\ \mathcal{P}(space\ M\ -\ F\ (f\ i)\ |\ (\bigcap ((-)\ (space\ M)\ `F\ `f\ `
\{\theta...< i\}))))
proof -
  obtain f where bb: bij-betw f {0..< card S} S
    using assms(3) ex-bij-betw-nat-finite by blast
 then show ?thesis using prob-cond-inter-index-fn-compl[of S F f] assms that by
blast
qed
lemma prob-cond-Inter-take:
  assumes S \neq \{\}
 assumes S \subseteq events
 assumes finite\ S
  obtains xs where set xs = S and length xs = card S and
    prob(\bigcap S) = prob(hd xs) * (\prod i = 1.. < (length xs) . \mathcal{P}((xs!i) \mid (\bigcap (set (take i) + i + i) + i)))
xs))))))
  {\bf using} \ assms \ prob{-}cond{-}Inter{-}List \ exists{-}list{-}card
  by (metis (no-types, lifting) set-empty2 subset-code(1))
lemma prob-cond-Inter-set-bound:
  assumes A \neq \{\}
  assumes A \subseteq events
 assumes finite A
 assumes \bigwedge Ai \cdot f Ai \geq 0 \wedge f Ai \leq 1
 assumes \bigwedge Ai S. Ai \in A \Longrightarrow S \subseteq A - \{Ai\} \Longrightarrow S \neq \{\} \Longrightarrow \mathcal{P}(Ai \mid (\bigcap S)) \geq f
  assumes \bigwedge Ai. Ai \in A \Longrightarrow prob Ai \ge f Ai
 shows prob \ (\bigcap A) \ge (\prod a' \in A \ . \ f \ a')
proof -
  obtain xs where eq: set xs = A and seq: length xs = card A and
    pA: prob \ (\bigcap A) = prob \ (hd \ xs) * (\prod i = 1.. < (length \ xs) \ . \ \mathcal{P}((xs!i) \mid (\bigcap j \in A))
\{\theta ... < i\} . xs ! j)))
```

```
using assms obtains-prob-cond-Inter-index[of A] by blast
  then have dis: distinct xs using card-distinct
   by metis
  then have hd xs \in A using eq hd-in-set assms(1) by auto
  then have prob (hd xs) > (f (hd xs)) using assms(6) by blast
 have \land i. i \in \{1..<(length\ xs)\} \Longrightarrow \mathcal{P}((xs\ !\ i)\ |\ (\bigcap\ j \in \{0..< i\}\ .\ xs\ !\ j)) \ge f\ (xs
! i)
  proof -
   fix i assume i \in \{1..< length xs\}
   then have ilb: i \ge 1 and iub: i < length xs by auto
   then have xsin: xs! i \in A using eq by auto
   define S where S = (\lambda j. xs! j) ` \{0... < i\}
   then have S = set (take \ i \ xs)
     by (simp add: iub less-or-eq-imp-le nth-image)
   then have xs \mid i \notin S using dis set-take-distinct-elem-not into by simp
   then have S \subseteq A - \{(xs ! i)\}
     using \langle S = set (take \ i \ xs) \rangle eq set-take-subset by fastforce
   moreover have S \neq \{\} using S-def ilb by (simp)
   S . Aj)
     using S-def by auto
   ultimately show \mathcal{P}((xs ! i) \mid (\bigcap j \in \{0...< i\} . xs ! j)) \geq f(xs ! i)
     using assms(5) xsin by auto
  qed
  then have (\prod i = 1.. < (length \ xs) \cdot \mathcal{P}((xs \mid i) \mid (\bigcap j \in \{0.. < i\} \cdot xs \mid j))) \ge
   (\prod i = 1..<(length xs) \cdot f(xs!i))
   by (meson \ assms(4) \ prod-mono)
 moreover have (\prod i = 1.. < (length \ xs) \cdot f \ (xs ! i)) = (\prod a \in A - \{hd \ xs\} \cdot f \ a)
 proof -
   have ne: xs \neq [] using assms(1) eq by auto
   have A = (\lambda j. xs ! j) ` \{0.. < length xs\}  using eq
     by (simp add: nth-image)
   have A - \{hd \ xs\} = set \ (tl \ xs) using dis
    by (metis Diff-insert-absorb distinct.simps(2) eq list.exhaust-sel list.set(2) ne)
   also have ... = (\lambda j. xs! j) '\{1... < length xs\} using nth-image-tl ne by auto
   finally have Ahdeq: A - \{hd \ xs\} = (\lambda \ j. \ xs \ ! \ j) \ `\{1... < length \ xs\} \ by \ simp
   have io: inj-on (nth xs) {1..<length xs} using inj-on-nth dis
     by (metis atLeastLessThan-iff)
   have (\prod i = 1.. < (length \ xs) \ . \ f(xs!i)) = (\prod i \in \{1.. < (length \ xs)\} \ . \ f(xs!i))
by simp
   also have ... = (\prod i \in (\lambda j. xs! j) ` \{1..< length xs\} . f i)
     using io by (simp add: prod.reindex-cong)
   finally show ?thesis using Ahdeq
      using \langle (\prod i = 1.. \langle length \ xs. \ f \ (xs! \ i)) = prod \ f \ ((!) \ xs \ ' \{1.. \langle length \ xs\} ) \rangle
by presburger
  qed
  ultimately have prob (\bigcap A) \ge f (hd xs) * (\prod a \in A - \{hd xs\} . f a)
  using pA \langle f(hd xs) \leq prob(hd xs) \rangle assms(4) ordered-comm-semiring-class.comm-mult-left-mono
   by (simp add: mult-mono' prod-nonneg)
```

```
then show ?thesis by (metis \land hd \ xs \in A) \ assms(3) \ prod.remove) qed end
```

5 Independent Events

theory Indep-Events imports Cond-Prob-Extensions begin

5.1 More bijection helpers

```
lemma bij-betw-obtain-subsetr:
   assumes bij-betw f A B
   assumes A' \subseteq A
   obtains B' where B' \subseteq B and B' = f ' A'
   using assms by (metis\ bij-betw-def image-mono)

lemma bij-betw-obtain-subsetl:
   assumes bij-betw f A B
   assumes B' \subseteq B
   obtains A' where A' \subseteq A and B' = f ' A'
   using assms
   by (metis\ bij-betw-imp-surj-on subset-imageE)

lemma bij-betw-remove: bij-betw f A B \implies a \in A \implies bij-betw f A - \{a\}) B
   - B
   using B
   bij-betw-B
   inequality B
   using B
   bij-betw-B
   inequality B
   inequality B
```

5.2 Independent Event Extensions

Extensions on both the indep_event definition and the indep_events definition

```
context prob-space begin  \begin{aligned} & \textbf{lemma} \ indep\text{-}eventsD\text{:}\ indep\text{-}events\ A\ I \implies (A`I \subseteq events) \implies J \subseteq I \implies J \neq \\ \{\} \implies finite\ J \implies \\ & prob\ (\bigcap j \in J.\ A\ j) = (\prod j \in J.\ prob\ (A\ j)) \\ & \textbf{using} \ indep\text{-}events\text{-}def[of\ A\ I]\ \textbf{by}\ auto \end{aligned}
```

```
egin{array}{c} \mathbf{lemma} \\ \mathbf{assumes} \ indep \end{array}
```

assumes indep: indep-event A B shows indep-event D-ev1: $A \in events$ and indep-event D-ev2: $B \in events$

```
using indep unfolding indep-event-def indep-events-def UNIV-bool by auto
```

```
lemma indep-eventD:
  assumes ie: indep-event A B
  shows prob (A \cap B) = prob (A) * prob (B)
   using assms indep-eventD-ev1 indep-eventD-ev2 ie[unfolded indep-event-def,
THEN\ indep-eventsD, of\ UNIV
  by (simp add: ac-simps UNIV-bool)
lemma indep-eventI[intro]:
  assumes ev: A \in events B \in events
    and indep: prob (A \cap B) = prob A * prob B
 shows indep-event A B
 unfolding indep-event-def
proof (intro indep-eventsI)
  show \bigwedge i. i \in UNIV \Longrightarrow (case \ i \ of \ True \Rightarrow A \mid False \Rightarrow B) \in events
    using assms by (auto split: bool.split)
\mathbf{next}
  fix J :: bool \ set \ assume \ jss: J \subseteq UNIV \ and \ jne: J \neq \{\} \ and \ finJ: finite \ J
  have J \in Pow\ UNIV\ by\ auto
 then have c: J = UNIV \lor J = \{True\} \lor J = \{False\}  using jne jss UNIV-bool
  by (metis (full-types) UNIV-eq-I insert-commute subset-insert subset-singletonD)
  then show prob (\bigcap i \in J. \ case \ i \ of \ True \Rightarrow A \mid False \Rightarrow B) =
      (\prod i \in J. \ prob \ (case \ i \ of \ True \Rightarrow A \mid False \Rightarrow B))
    unfolding UNIV-bool using indep by (auto simp: ac-simps)
qed
     Alternate set definition - when no possibility of duplicate objects
definition indep-events-set :: 'a set set \Rightarrow bool where
indep\text{-}events\text{-}set\ E \equiv (E \subseteq events \land (\forall\ J.\ J \subseteq E \longrightarrow finite\ J \longrightarrow J \neq \{\} \longrightarrow prob
(\bigcap J) = (\prod i \in J. \ prob \ i))
lemma indep-events-setI[intro]: E \subseteq events \Longrightarrow (\bigwedge J. \ J \subseteq E \Longrightarrow finite \ J \Longrightarrow J
\neq \{\} \Longrightarrow
    prob \ (\bigcap J) = (\prod i \in J. \ prob \ i)) \Longrightarrow indep-events-set \ E
  using indep-events-set-def by simp
\mathbf{lemma}\ indep\text{-}events\text{-}subset:
  indep-events-set E \longleftrightarrow (\forall J \subseteq E. indep-events-set J)
  by (auto simp: indep-events-set-def)
\mathbf{lemma}\ indep\text{-}events\text{-}subset 2\text{:}
  indep-events-set E \Longrightarrow J \subseteq E \Longrightarrow indep-events-set J
  by (auto simp: indep-events-set-def)
lemma indep-events-set-events: indep-events-set E \Longrightarrow (\bigwedge e. \ e \in E \Longrightarrow e \in events)
  using indep-events-set-def by auto
```

```
lemma indep-events-set-events-set indep-events-set E \Longrightarrow E \subseteq events
 using indep-events-set-events by auto
lemma indep-events-set-probs: indep-events-set E \Longrightarrow J \subseteq E \Longrightarrow finite J \Longrightarrow J
\neq \{\} \Longrightarrow
   prob (\bigcap J) = (\prod i \in J. prob i)
 by (simp add: indep-events-set-def)
lemma indep-events-set-prod-all: indep-events-set E \Longrightarrow finite E \Longrightarrow E \neq \{\} \Longrightarrow
    prob (\bigcap E) = prod prob E
 using indep-events-set-probs by simp
lemma indep-events-not-contain-compl:
  assumes indep-events-set E
 assumes A \in E
 assumes prob A > 0 prob A < 1
 shows (space\ M-A)\notin E\ (is\ ?A'\notin E)
proof (rule ccontr)
 assume \neg (?A') \notin E
  then have ?A' \in E by auto
  then have \{A, ?A'\} \subseteq E \text{ using } assms(2) \text{ by } auto
  moreover have finite \{A, ?A'\} by simp
 moreover have \{A, ?A'\} \neq \{\}
   by simp
  ultimately have prob \ (\bigcap i \in \{A, ?A'\}. \ i) = (\prod i \in \{A, ?A'\}. \ prob \ i)
   using indep-events-set-probs[of E \{A, ?A'\}] \ assms(1) by auto
  then have prob (A \cap ?A') = prob A * prob ?A' by simp
 moreover have prob\ (A \cap ?A') = 0 by simp
 moreover have prob \ A * prob \ ?A' = prob \ A * (1 - prob \ A)
   using assms(1) assms(2) indep-events-set-events prob-compl by auto
 moreover have prob \ A * (1 - prob \ A) > 0  using assms(3) \ assms(4) by (simp
add: algebra-simps)
 ultimately show False by auto
qed
\mathbf{lemma}\ indep-events-contain-compl-prob01:
 assumes indep-events-set E
 assumes A \in E
 assumes space M - A \in E
 shows prob A = 0 \lor prob A = 1
proof (rule ccontr)
 let ?A' = space M - A
 assume a: \neg (prob \ A = 0 \lor prob \ A = 1)
 then have prob A > 0
   by (simp add: zero-less-measure-iff)
 moreover have prob A < 1
   using a measure-ge-1-iff by fastforce
 ultimately have ?A' \notin E using assms(1) assms(2) indep-events-not-contain-compl
```

```
by auto
 then show False using assms(3) by auto
qed
lemma indep-events-set-singleton:
 assumes A \in events
 shows indep-events-set \{A\}
proof (intro indep-events-setI)
  \mathbf{show}\ \{A\}\subseteq \textit{events}\ \mathbf{using}\ \textit{assms}\ \mathbf{by}\ \textit{simp}
 fix J assume J \subseteq \{A\} finite J J \neq \{\}
 then have J = \{A\} by auto
 then show prob (\bigcap J) = prod prob J by simp
qed
lemma indep-events-pairs:
 assumes indep-events-set S
 assumes A \in S B \in S A \neq B
 shows indep-event A B
 using assms indep-events-set-probs[of S {A, B}]
 by (intro indep-eventI) (simp-all add: indep-events-set-events)
lemma indep-events-inter-pairs:
 assumes indep-events-set S
 assumes finite A finite B
 assumes A \neq \{\} B \neq \{\}
 assumes A \subseteq S B \subseteq S A \cap B = \{\}
 shows indep-event (\bigcap A) (\bigcap B)
proof (intro indep-eventI)
 have A \subseteq events \ B \subseteq events \ using \ indep-events-set-events \ assms \ by \ auto
 then show \bigcap A \in events \bigcap B \in events using Inter-event-ss assms by auto
next
 have A \cup B \subseteq S using assms by auto
 then have prob (\bigcap (A \cup B)) = prod \ prob \ (A \cup B) \ using \ assms
  by (metis Un-empty indep-events-subset infinite-Un prob-space.indep-events-set-prod-all
prob-space-axioms)
  also have ... = prod \ prob \ A * prod \ prob \ B \ using \ assms(8)
   by (simp add: assms(2) assms(3) prod.union-disjoint)
  finally have prob (\bigcap (A \cup B)) = prob (\bigcap A) * prob (\bigcap B)
   using assms indep-events-subset indep-events-set-prod-all by metis
  moreover have \bigcap (A \cup B) = (\bigcap A \cap \bigcap B) by auto
  ultimately show prob (\bigcap A \cap \bigcap B) = prob (\bigcap A) * prob (\bigcap B)
   by simp
qed
lemma indep-events-inter-single:
 assumes indep-events-set S
 assumes finite B
```

```
assumes B \neq \{\}
 assumes A \in S B \subseteq S A \notin B
 shows indep-event A \cap B
proof -
  have \{A\} \neq \{\} finite \{A\} \{A\} \subseteq S using assms by simp-all
 moreover have \{A\} \cap B = \{\} using assms(6) by auto
  ultimately show ?thesis using indep-events-inter-pairs[of S \{A\} B] assms by
qed
lemma indep-events-set-prob1:
 assumes A \in events
 assumes prob A = 1
 assumes A \notin S
 assumes indep-events-set S
 shows indep-events-set (S \cup \{A\})
proof (intro indep-events-setI)
  show S \cup \{A\} \subseteq events \text{ using } assms(1) \ assms(4) \ indep-events-set-events by
auto
next
 fix J assume jss: J \subseteq S \cup \{A\} and finJ: finite J and jne: J \neq \{\}
 show prob (\bigcap J) = prod prob J
 proof (cases A \in J)
   case t1: True
   then show ?thesis
   proof (cases J = \{A\})
     case True
     then show ?thesis using indep-events-set-singleton assms(1) by auto
   next
     case False
     then have jun: (J - \{A\}) \cup \{A\} = J using t1 by auto
     have J - \{A\} \subseteq S using jss by auto
     then have iej: indep-events-set (J - \{A\}) using indep-events-subset 2[of S J]
-\{A\}] assms(4)
       by auto
     have jsse: J - \{A\} \subseteq events using indep-events-set-events jss
       using assms(4) by blast
     have jne2: J - \{A\} \neq \{\} using False jss\ jne by auto have split: (J - \{A\}) \cap \{A\} = \{\} by auto
     then have prob \ (\bigcap i \in J. \ i) = prob \ ((\bigcap i \in (J - \{A\}). \ i) \cap A) using jun
       by (metis Int-commute Inter-insert Un-ac(3) image-ident insert-is-Un)
     also have ... = prob ((\bigcap i \in (J - \{A\}). i))
       using prob1-basic-Inter[of\ A\ J\ -\ \{A\}] jsse\ assms(2)\ jne2\ assms(1)\ finJ
       by (simp add: Int-commute)
     also have ... = prob (\bigcap (J - \{A\})) * prob A using assms(2) by simp
     also have ... = (prod \ prob \ (J - \{A\})) * prob \ A
        using iej\ indep-events-set-prod-all[of\ J-\{A\}]\ jne2\ finJ\ finite-subset\ by
auto
     also have ... = prod\ prob\ ((J - \{A\}) \cup \{A\})\ using\ split
```

```
by (metis finJ jun mult.commute prod.remove t1)
     finally show ?thesis using jun by auto
   qed
  next
   case False
   then have jss2: J \subseteq S using jss by auto
   then have indep-events-set J using assms(4) indep-events-subset2[of S J] by
   then show ?thesis using indep-events-set-probs finJ jne jss2 by auto
 qed
qed
lemma indep-events-set-prob\theta:
 assumes A \in events
 assumes prob A = 0
 assumes A \notin S
 assumes indep-events-set S
 shows indep-events-set (S \cup \{A\})
proof (intro indep-events-setI)
 show S \cup \{A\} \subseteq events \text{ using } assms(1) \ assms(4) \ indep-events-set-events by auto
  fix J assume jss: J \subseteq S \cup \{A\} and finJ: finite\ J and jne:\ J \neq \{\}
 show prob (\bigcap J) = prod prob J
  proof (cases A \in J)
   case t1: True
   then show ?thesis
   proof (cases J = \{A\})
     case True
     then show ?thesis using indep-events-set-singleton assms(1) by auto
   next
     case False
     then have jun: (J - \{A\}) \cup \{A\} = J using t1 by auto
     have J - \{A\} \subseteq S using jss by auto
     then have iej: indep-events-set (J - \{A\}) using indep-events-subset 2[of S J]
-\{A\}] assms(4) by auto
     have jsse: J - \{A\} \subseteq events using indep-events-set-events jss
       using assms(4) by blast
     have jne2: J - \{A\} \neq \{\} using False jss\ jne by auto have split: (J - \{A\}) \cap \{A\} = \{\} by auto
     then have prob \ (\bigcap i \in J. \ i) = prob \ ((\bigcap i \in (J - \{A\}). \ i) \cap A) using jun
       by (metis Int-commute Inter-insert Un-ac(3) image-ident insert-is-Un)
     also have \dots = \theta
       using prob0-basic-Inter[of A \ J - \{A\}] jsse \ assms(2) \ jne2 \ assms(1) \ finJ
       by (simp add: Int-commute)
     also have ... = prob (\bigcap (J - \{A\})) * prob A using assms(2) by simp
   also have ... = (prod\ prob\ (J - \{A\})) * prob\ A using iej\ indep-events-set-prod-all[of\ also
J - \{A\} jne2 finJ finite-subset by auto
     also have ... = prod\ prob\ ((J - \{A\}) \cup \{A\})\ using\ split
       by (metis finJ jun mult.commute prod.remove t1)
```

```
finally show ?thesis using jun by auto
   qed
 next
   case False
   then have jss2: J \subseteq S using jss by auto
   then have indep-events-set J using assms(4) indep-events-subset2[of S J] by
auto
   then show ?thesis using indep-events-set-probs finJ jne jss2 by auto
 qed
qed
\mathbf{lemma}\ indep\text{-}event\text{-}commute:
 assumes indep-event A B
 shows indep-event B A
 using indep-eventI[of B A] indep-eventD[unfolded assms(1), of A B]
 by (metis Groups.mult-ac(2) Int-commute assms indep-eventD-ev1 indep-eventD-ev2)
   Showing complement operation maintains independence
lemma indep-event-one-compl:
 assumes indep-event A B
 shows indep-event A (space M-B)
proof -
 let ?B' = space M - B
 have A = (A \cap B) \cup (A \cap ?B')
  by (metis Int-Diff Int-Diff-Un assms prob-space.indep-eventD-ev1 prob-space-axioms
sets.Int-space-eq2)
 then have prob A = prob (A \cap B) + prob (A \cap ?B')
  by (metis Diff-Int-distrib Diff-disjoint assms finite-measure-Union indep-eventD-ev1
      indep-eventD-ev2 sets.Int sets.compl-sets)
 then have prob\ (A \cap ?B') = prob\ A - prob\ (A \cap B) by simp
 also have ... = prob A - prob A * prob B using indep-eventD \ assms(1) by auto
 also have \dots = prob \ A * (1 - prob \ B)
   \mathbf{by}\ (\mathit{simp}\ \mathit{add}:\ \mathit{vector-space-over-itself}. \mathit{scale-right-diff-distrib})
 finally have prob (A \cap ?B') = prob A * prob ?B'
   using prob-compl indep-eventD-ev1 assms(1) indep-eventD-ev2 by presburger
 then show indep-event\ A\ ?B' using indep-event\ I indep-event\ D-ev2 indep-event\ D-ev1
assms(1)
   by (meson sets.compl-sets)
qed
\mathbf{lemma}\ indep\text{-}event\text{-}one\text{-}compl\text{-}rev\text{:}
 assumes B \in events
 assumes indep-event A (space M-B)
 shows indep-event A B
proof -
 have space M - B \in events using indep-eventD-ev2 assms by auto
 have space M - (space M - B) = B using compl-identity assms by simp
```

```
then show ?thesis using indep-event-one-compl[of A space M - B] assms(2)
by auto
qed
lemma indep-event-double-compl: indep-event A B \Longrightarrow indep-event (space M –
A) (space M-B)
 using indep-event-one-compl indep-event-commute by auto
lemma indep-event-double-compl-rev: A \in events \Longrightarrow B \in events \Longrightarrow
   indep\text{-}event\ (space\ M\ -\ A)\ (space\ M\ -\ B) \implies indep\text{-}event\ A\ B
 using indep-event-double-compl[of space M-A space M-B] compl-identity by
auto
lemma indep-events-set-one-compl:
 assumes indep-events-set S
 assumes A \in S
 shows indep-events-set (\{space\ M-A\} \cup (S-\{A\})\})
proof (intro indep-events-setI)
 show \{space\ M-A\} \cup (S-\{A\}) \subseteq events
   using indep-events-set-events assms(1) assms(2) by auto
  fix J assume jss: J \subseteq \{space M - A\} \cup (S - \{A\})
 assume finJ: finite J
 assume jne: J \neq \{\}
 show prob (\bigcap J) = prod prob J
  \mathbf{proof}\ (cases\ J - \{space\ M - A\} = \{\})
   then have J = \{space M - A\} using jne by blast
   then show ?thesis by simp
  next
   case jne2: False
   have jss2: J - \{space M - A\} \subseteq S \text{ using } jss \ assms(2) \text{ by } auto
   moreover have A \notin (J - \{space M - A\}) using jss by auto
   moreover have finite (J - \{space M - A\}) using finJ by simp
   ultimately have indep-event A ( \cap (J - \{space M - A\}))
     using indep-events-inter-single of S(J - \{space M - A\}) A assms jne2 by
auto
   then have ie: indep-event (space M-A) (\bigcap (J-\{space M-A\}))
     using indep-event-one-compl indep-event-commute by auto
   have iess: indep-events-set (J - \{space M - A\})
     using jss2 indep-events-subset2[of SJ - \{space M - A\}] assms(1) by auto
   show ?thesis
   proof (cases space M - A \in J)
     {\bf case}\ {\it True}
     then have split: J = (J - \{space M - A\}) \cup \{space M - A\} by auto
     then have prob \ (\bigcap \ J) = prob \ (\bigcap \ ((J - \{space \ M - A\}) \cup \{space \ M - A\})) \cup \{space \ M - A\} \}
     also have ... = prob ((\bigcap (J - \{space M - A\})) \cap (space M - A))
       by (metis Inter-insert True \langle J = J - \{ space \ M - A \} \cup \{ space \ M - A \} \rangle
```

```
inf.commute insert-Diff)
    also have ... = prob (\bigcap (J - \{space M - A\})) * prob (space M - A)
        using ie indep-eventD[of \bigcap (J - \{space M - A\}) space M - A] in-
dep-event-commute by auto
    also have ... = (prod\ prob\ ((J - \{space\ M - A\}))) * prob\ (space\ M - A)
       using indep-events-set-prod-all[of J - \{space M - A\}] iess jne2 finJ by
auto
    finally have prob \ (\bigcap \ J) = prod \ prob \ J \ using \ split
      by (metis Groups.mult-ac(2) True finJ prod.remove)
    then show ?thesis by simp
   next
    case False
    then show ?thesis using iess
      by (simp add: assms(1) finJ indep-events-set-prod-all jne)
 qed
qed
lemma indep-events-set-update-compl:
 assumes indep-events-set E
 assumes E = A \cup B
 assumes A \cap B = \{\}
 assumes finite E
 shows indep-events-set (((-) (space M) `A) \cup B)
using assms(2) assms(3) proof (induct card A arbitrary: A B)
 case \theta
 then show ?case using assms(1)
   using assms(4) by auto
\mathbf{next}
 case (Suc \ x)
 then obtain a A' where aeq: A = insert \ a \ A' and anotin: a \notin A'
   by (metis card-Suc-eq-finite)
 then have xcard: card A' = x
   using Suc(2) Suc(3) assms(4) by auto
 let ?B' = B \cup \{a\}
 have E = A' \cup ?B' using aeq Suc.prems by auto
 moreover have A' \cap ?B' = \{\} using anotin Suc.prems(2) aeq by auto
 moreover have ?B' \neq \{\} by simp
 ultimately have ies: indep-events-set ((-) (space M) : A' \cup ?B')
   using Suc.hyps(1)[of A' ?B'] xcard by auto
 then have a \in A \cup B using aeq by auto
 then show ?case
 \mathbf{proof} \ (cases \ (A \cup B) - \{a\} = \{\})
   case True
   then have A = \{a\} B = \{\} using Suc.prems and by auto
   then have ((-) (space M) \cdot A \cup B) = \{space M - a\} by auto
    moreover have space M - a \in events using aeq assms(1) Suc.prems in-
dep-events-set-events by auto
   ultimately show ?thesis using indep-events-set-singleton by simp
```

```
next
          {\bf case}\ \mathit{False}
          have a \in (-) (space M) 'A' \cup ?B' using aeq by auto
           then have ie: indep-events-set (\{space\ M-a\}\cup((-)\ (space\ M)\ `A'\cup\ ?B'
               using indep-events-set-one-compl[of (-) (space M) 'A' \cup ?B' a] ies by auto
          show ?thesis
          proof (cases a \in (-) (space M) ' A')
                case True
                then have space M - a \in A'
                         by (smt\ (verit)\ \langle E=A'\cup (B\cup \{a\})\rangle\ assms(1)\ compl-identity\ image-iff
indep-events-set-events
                                 indep-events-subset2 inf-sup-ord(3))
                then have space M - a \in A using aeq by auto
               moreover have indep-events-set A using Suc.prems(1) indep-events-subset2
assms(1)
                     using aeq by blast
                moreover have a \in A using aeq by auto
          ultimately have probs: prob a = 0 \lor prob \ a = 1 using indep-events-contain-compl-prob01[of
A \ a by auto
                have ((-) (space M) \cdot A \cup B) = (-) (space M) \cdot A' \cup \{space M - a\} \cup B
using aeq by auto
                moreover have ((-) (space M) 'A' \cup ?B' - \{a\}) = ((-) (space M) 'A' - (-) (space M) '
\{a\}) \cup B
                     using Suc.prems(2) and by auto
                   moreover have (-) (space\ M) ' A' = ((-)\ (space\ M) ' A' - \{a\}) \cup \{a\}
using True by auto
                 ultimately have ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space 
M) ' A' \cup ?B' - \{a\}) \cup \{a\}
                    by (smt (verit) Un-empty-right Un-insert-right Un-left-commute)
                \mathbf{moreover} \ \mathbf{have} \ a \notin \{\mathit{space} \ M - \ a\} \ \cup \ ((-) \ (\mathit{space} \ M) \ \ `A' \cup \ ?B' - \{a\})
                 using Diff-disjoint \langle space M - a \in A' \rangle anotin empty-iff insert-iff by fastforce
          moreover have a \in events using Suc.prems(1) assms(1) indep-events-set-events
aeq by auto
                ultimately show ?thesis
                     using ie indep-events-set-prob0 indep-events-set-prob1 probs by presburger
          next
                case False
                then have (((-) (space M) 'A' \cup ?B') - \{a\}) = (-) (space M) 'A' \cup B
                      using Suc.prems(2) aeq by auto
                moreover have (-) (space\ M) ' A = (-) (space\ M) ' A' \cup \{space\ M - a\}
using aeq
                 ultimately have ((-) (space M) \cdot A \cup B) = \{space M - a\} \cup ((-) (space M) + a\}
M) ' A' \cup ?B' - \{a\})
                    by auto
                then show ?thesis using ie by simp
          qed
```

```
qed
qed
lemma indep-events-set-compl:
 assumes indep-events-set E
 assumes finite\ E
 shows indep-events-set ((\lambda \ e. \ space \ M - e) \ `E)
 using indep-events-set-update-compl[of\ E\ E\ \{\}] assms by auto
lemma indep-event-empty:
 assumes A \in events
 shows indep-event A \{\}
 using assms indep-eventI by auto
lemma indep-event-compl-inter:
 assumes indep-event A C
 assumes B \in events
 assumes indep-event A (B \cap C)
 shows indep-event A ((space M-B) \cap C)
proof (intro indep-eventI)
 show A \in events \text{ using } assms(1) \text{ } indep-eventD-ev1 \text{ by } auto
 show (space\ M-B)\cap C\in events\ \mathbf{using}\ assms(3)\ indep-eventD-ev2
   by (metis Diff-Int-distrib2 assms(1) sets.Diff sets.Int-space-eq1)
  have ac: A \cap C \in events \text{ using } assms(1) indep-eventD-ev1 indep-eventD-ev2
sets.Int-space-eq1
   by auto
 have prob (A \cap ((space M - B) \cap C)) = prob (A \cap (space M - B) \cap C)
   by (simp \ add: inf-sup-aci(2))
 also have ... = prob (A \cap C \cap (space M - B))
   by (simp add: ac-simps)
 also have ... = prob (A \cap C) - prob (A \cap C \cap B)
   using prob-compl-diff-inter[of A \cap C B] ac assms(2) by auto
 also have ... = prob(A) * prob(C - (prob(A * prob(C \cap B)))
   using assms(1) assms(3) indep-eventD
   by (simp add: inf-commute inf-left-commute)
 also have ... = prob \ A*(prob \ C-prob \ (C\cap B)) by (simp \ add: \ algebra-simps)
 finally have prob (A \cap ((space\ M - B) \cap C)) = prob\ A * (prob\ (C \cap (space\ M)))
-B)))
   using prob-compl-diff-inter[of CB] using assms(1) assms(2)
   by (simp add: indep-eventD-ev2)
 then show prob\ (A \cap ((space\ M-B) \cap C)) = prob\ A * prob\ ((space\ M-B)
\cap C) by (simp add: ac-simps)
qed
```

 $\mathbf{lemma}\ indep\text{-}events\text{-}index\text{-}subset:$

```
indep-events F \ E \longleftrightarrow (\forall \ J \subseteq E. \ indep-events F \ J)
  unfolding indep-events-def
  by (meson image-mono set-eq-subset subset-trans)
lemma indep-events-index-subset2:
  indep-events F E \Longrightarrow J \subseteq E \Longrightarrow indep-events F J
  using indep-events-index-subset by auto
lemma indep-events-events-ss: indep-events F \to F 'E \subseteq events
  unfolding indep-events-def by (auto)
lemma indep-events-events: indep-events F E \Longrightarrow (\bigwedge e. e \in E \Longrightarrow F e \in events)
 using indep-events-events-ss by auto
lemma indep-events-probs: indep-events F \to J \subseteq E \Longrightarrow finite J \Longrightarrow J \neq \{\}
\implies prob (\bigcap (F 'J)) = (\prod i \in J. prob (F i))
 unfolding indep-events-def by auto
lemma indep-events-prod-all: indep-events F \to finite E \Longrightarrow E \neq \{\} \Longrightarrow prob
(\bigcap (F 'E)) = (\prod i \in E. prob (F i))
 using indep-events-probs by auto
lemma indep-events-ev-not-contain-compl:
  assumes indep-events F E
 assumes A \in E
 assumes prob (F A) > 0 prob (F A) < 1
 shows (space\ M - F\ A) \notin F ' E (is ?A' \notin F ' E)
proof (rule ccontr)
 assume \neg ?A' \notin F ' E
 then have ?A' \in F ' E by auto
 then obtain Ae where aeq: ?A' = F Ae and Ae \in E by blast
  then have \{A, Ae\} \subseteq E using assms(2) by auto
 moreover have finite \{A, Ae\} by simp
 moreover have \{A, Ae\} \neq \{\}
   by simp
  ultimately have prob \ (\bigcap i \in \{A, Ae\}. \ F \ i) = (\prod i \in \{A, Ae\}. \ prob \ (F \ i)) using
indep-events-probs[of\ F\ E\ \{A,\ Ae\}]\ assms(1)\ \mathbf{by}\ auto
  moreover have A \neq Ae
   using subprob-not-empty using aeq by auto
  ultimately have prob (F A \cap ?A') = prob (F A) * prob (?A') using aeq by
simp
  moreover have prob (FA \cap ?A') = 0 by simp
 moreover have prob (F A) * prob ?A' = prob (F A) * (1 - prob (F A))
   using assms(1) assms(2) indep-events-events prob-compl by metis
  moreover have prob(FA) * (1 - prob(FA)) > 0 using assms(3) assms(4)
by (simp add: algebra-simps)
 ultimately show False by auto
qed
```

```
lemma indep-events-singleton:
 assumes FA \in events
 shows indep-events F \{A\}
proof (intro indep-eventsI)
  show \bigwedge i. i \in \{A\} \Longrightarrow F \ i \in events \ using \ assms \ by \ simp
  fix J assume J \subseteq \{A\} finite J J \neq \{\}
 then have J = \{A\} by auto
  then show prob (\cap (F 'J)) = (\prod i \in J. prob (F i)) by simp
\mathbf{qed}
{f lemma}\ indep\mbox{-}ev\mbox{-}pairs:
 assumes indep-events F S
 assumes A \in S B \in S A \neq B
 shows indep-event (F A) (F B)
 using assms indep-events-probs[of F S \{A, B\}]
 by (intro indep-eventI) (simp-all add: indep-events-events)
lemma indep-events-ev-inter-pairs:
 assumes indep-events F S
 assumes finite A finite B
 assumes A \neq \{\} B \neq \{\}
 assumes A \subseteq S B \subseteq S A \cap B = \{\}
 shows indep\text{-}event (\bigcap (F `A)) (\bigcap (F `B))
proof (intro indep-eventI)
  have (F 'A) \subseteq events (F 'B) \subseteq events using indep-events-events assms(1)
assms(6) \ assms(7) \ \mathbf{by} \ fast+
 then show \bigcap (F 'A) \in events \bigcap (F 'B) \in events using Inter-event-ss assms
by auto
next
 have A \cup B \subseteq S using assms by auto
 moreover have finite (A \cup B) using assms(2) assms(3) by simp
 moreover have A \cup B \neq \{\} using assms by simp
 ultimately have prob\left(\bigcap\left(F'(A\cup B)\right)\right)=\left(\prod i\in A\cup B.\ prob\left(Fi\right)\right) using assms
   using indep-events-probs of F S A \cup B by simp
 also have ... = (\prod i \in A. prob (F i)) * (\prod i \in B. prob (F i))
   using assms(8) prod.union-disjoint[of\ A\ B\ \lambda\ i.\ prob\ (F\ i)] assms(2) assms(3)
by simp
 finally have prob (\bigcap (F `(A \cup B))) = prob (\bigcap (F `A)) * prob (\bigcap (F `B))
   using assms indep-events-index-subset indep-events-prod-all by metis
 moreover have \bigcap (F \cdot (A \cup B)) = (\bigcap (F \cdot A)) \cap \bigcap (F \cdot B) by auto
 ultimately show prob \cap (F'A) \cap (F'B) = prob \cap (F'A) * prob \cap
(F'B)
   by simp
qed
```

 $\mathbf{lemma}\ indep-events-ev-inter-single:$

```
assumes indep-events F S
    assumes finite B
    assumes B \neq \{\}
   assumes A \in S B \subseteq S A \notin B
    shows indep-event (F A) (\bigcap (F `B))
proof -
    have \{A\} \neq \{\} finite \{A\} \{A\} \subseteq S using assms by simp-all
    moreover have \{A\} \cap B = \{\} using assms(6) by auto
   ultimately show ?thesis using indep-events-ev-inter-pairs[of F S \{A\} B] assms
\mathbf{by} auto
qed
lemma indep-events-fn-eq:
    assumes \bigwedge Ai. Ai \in E \Longrightarrow FAi = GAi
   assumes indep-events F E
    shows indep-events G E
proof (intro indep-eventsI)
    show \bigwedge i. i \in E \Longrightarrow G i \in events using assms(2) indep-events-events assms(1)
next
    fix J assume jss: J \subseteq E finite J J \neq \{\}
   moreover have G : J = F : J \text{ using } assms(1) \ calculation(1) \ by \ auto
    moreover have \bigwedge i . i \in J \Longrightarrow prob (G i) = prob (F i) using jss \ assms(1)
by auto
   moreover have (\prod i \in J. \ prob \ (F \ i)) = (\prod i \in J. \ prob \ (G \ i)) using calculation(5)
by auto
    ultimately show prob \ (\bigcap \ (G \ 'J)) = (\prod i \in J. \ prob \ (G \ i))
       using assms(2) indep-events-probs[of F E J] by simp
\mathbf{qed}
lemma indep-events-fn-eq-iff:
    assumes \bigwedge Ai. Ai \in E \Longrightarrow F Ai = G Ai
   shows indep-events F \to indep-events G \to indep-
    using indep-events-fn-eq assms by auto
lemma indep-events-one-compl:
    assumes indep-events F S
   assumes A \in S
     shows indep-events (\lambda i. if (i = A) then (space M - F i) else F i) S (is
indep-events ?GS)
proof (intro indep-eventsI)
    show \bigwedge i. i \in S \Longrightarrow (if \ i = A \ then \ space \ M - F \ i \ else \ F \ i) \in events
       using indep-events-events assms(1) assms(2)
       by (metis sets.compl-sets)
\mathbf{next}
    define G where G \equiv ?G
    fix J assume jss: J \subseteq S
    assume finJ: finite J
    assume jne: J \neq \{\}
```

```
show prob (\bigcap i \in J. ?G i) = (\prod i \in J. prob (?G i))
 proof (cases J = \{A\})
   {\bf case}\  \, True
   then show ?thesis by simp
 next
   case jne2: False
   have jss2: J - \{A\} \subseteq S using jss assms(2) by auto
   moreover have A \notin (J - \{A\}) using jss by auto
   moreover have finite (J - \{A\}) using finJ by simp
   moreover have J - \{A\} \neq \{\} using jne2 jne by auto
   ultimately have indep-event (F A) (\cap (F (J - \{A\})))
     using indep-events-ev-inter-single [of F S (J - \{A\}) A] assms by auto
   then have ie: indep-event (G \ A) \ (\bigcap \ (G \ (J - \{A\})))
     using indep-event-one-compl indep-event-commute G-def by auto
   have iess: indep-events G(J - \{A\})
     using jss2 G-def indep-events-index-subset2[of F S J - {A}] assms(1)
       indep-events-fn-eq[of J - \{A\}] by auto
   \mathbf{show}~? the sis
   proof (cases A \in J)
     case True
     then have split: G' J = insert(GA)(G'(J - \{A\})) by auto
     then have prob (\bigcap (G 'J)) = prob (\bigcap (insert (G A) (G '(J - \{A\})))) by
auto
     also have ... = prob ((G A) \cap \bigcap (G (J - \{A\})))
      using Inter-insert by simp
     also have \dots = prob(GA) * prob(\bigcap(G'(J - \{A\})))
      using ie indep-eventD[of G A \cap (G'(J - \{A\}))] by auto
     also have ... = prob (G A) * (\prod i \in (J - \{A\}). prob (G i))
      using indep-events-prod-all[of G J - \{A\}] iess jne2 jne finJ by auto
     finally have prob \ (\bigcap \ (G \ 'J)) = (\prod i \in J. \ prob \ (G \ i)) using split
      by (metis True finJ prod.remove)
     then show ?thesis using G-def by simp
   next
     {f case}\ {\it False}
     then have prob \ (\bigcap i \in J. \ G \ i) = (\prod i \in J. \ prob \ (G \ i)) using iess
      by (simp add: assms(1) finJ indep-events-prod-all jne)
     then show ?thesis using G-def by simp
   qed
 qed
qed
lemma indep-events-update-compl:
 assumes indep-events F E
 assumes E = A \cup B
 assumes A \cap B = \{\}
 assumes finite E
 shows indep-events (\lambda Ai. if (Ai \in A) then (space M - (F Ai)) else (F Ai)) E
using assms(2) assms(3) proof (induct card A arbitrary: A B)
 case \theta
```

```
let ?G = (\lambda Ai. if Ai \in A then space M - F Ai else F Ai)
 by simp
 then have \bigwedge i. i \in E \Longrightarrow F i = ?G i using \langle A \cap B = \{\} \rangle by auto
 then show ?case using assms(1) indep-events-fn-eq[of E F ?G] by simp
next
 case (Suc \ x)
 define G where G \equiv (\lambda Ai. if Ai \in A then space M - F Ai else F Ai)
 obtain a A' where aeq: A = insert \ a \ A' and anotin: a \notin A'
   using Suc.hyps by (metis card-Suc-eq-finite)
 then have xcard: card A' = x
   using Suc(2) Suc(3) assms(4) by auto
 define G1 where G1 \equiv (\lambda Ai. if Ai \in A' then space M - F Ai else F Ai)
 let ?B' = B \cup \{a\}
 have eeq: E = A' \cup ?B' using aeq Suc.prems by auto
 moreover have A' \cap ?B' = \{\} using anotin Suc.prems(2) and by auto
 moreover have ?B' \neq \{\} by simp
 ultimately have ies: indep-events G1 (A' \cup ?B')
   using Suc.hyps(1)[of A'?B'] xcard G1-def by auto
 then have a \in A \cup B using aeq by auto
 define G2 where G2 \equiv \lambda \ Ai. \ if \ Ai = a \ then \ (space \ M - (G1 \ Ai)) \ else \ (G1 \ Ai)
Ai
 have a \in A' \cup ?B' by auto
 then have ie: indep-events G2 E
   using indep-events-one-compl[of G1 (A' \cup ?B') a] ies G2-def eeg by auto
 moreover have \bigwedge i. i \in E \Longrightarrow G2 \ i = G \ i
   unfolding G2-def G1-def G-def
   by (simp add: aeg anotin)
 ultimately have indep-events G E using indep-events-fn-eq[of E G2 G] by auto
 then show ?case using G-def by simp
qed
lemma indep-events-compl:
 assumes indep-events F E
 assumes finite E
 shows indep-events (\lambda Ai. space M - F Ai) E
proof -
 have indep-events (\lambda Ai. if Ai \in E then space M - F Ai else F Ai) E
   using indep-events-update-compl[of F \ E \ E \ \{\}] assms by auto
 moreover have \bigwedge i. i \in E \Longrightarrow (\lambda Ai. if Ai \in E then space M - F Ai else F Ai)
i = (\lambda \ Ai. \ space \ M - F \ Ai) \ i
   by simp
 ultimately show ?thesis
   using indep-events-fn-eq[of E (\lambda Ai. if Ai \in E then space M - F Ai else F Ai)]
by auto
qed
lemma indep-events-impl-inj-on:
 assumes finite A
```

```
assumes indep-events F A
  assumes \bigwedge A'. A' \in A \Longrightarrow prob (F A') > 0 \land prob (F A') < 1
  shows inj-on F A
proof (intro inj-onI, rule ccontr)
  fix x y assume xin: x \in A and yin: y \in A and feq: F x = F y
  assume contr: x \neq y
  then have \{x, y\} \subseteq A \{x, y\} \neq \{\} finite \{x, y\} using xin yin by auto
  then have prob (\bigcap j \in \{x, y\}. \ F \ j) = (\prod j \in \{x, y\}. \ prob \ (F \ j))
    using assms(2) indep-events-probs[of F A \{x, y\}] by auto
 moreover have (\prod j \in \{x, y\}. prob(Fj)) = prob(Fx) * prob(Fy) using contr
by auto
  moreover have prob \ (\bigcap j \in \{x, y\}. \ F \ j) = prob \ (F \ x) using feq by simp
  ultimately have prob(F x) = prob(F x) * prob(F x) using feq by simp
 then show False using assms(3) using xin by fastforce
qed
lemma indep-events-imp-set:
 assumes finite A
  assumes indep-events F A
 assumes \bigwedge A'. A' \in A \Longrightarrow prob (F A') > 0 \land prob (F A') < 1
  shows indep-events-set (F 'A)
proof (intro indep-events-setI)
  show F 'A \subseteq events using assms(2) indep-events-events by auto
next
  fix J assume jss: J \subseteq F ' A and finj: finite <math>J and jne: J \neq \{\}
  have bb: bij-betw F A (F 'A) using bij-betw-imageI indep-events-impl-inj-on
assms by meson
  then obtain I where iss: I \subseteq A and jeq: J = F 'I
   using bij-betw-obtain-subsetl[OF bb] jss by metis
  moreover have I \neq \{\} finite I using finj jeq jne assms(1) finite-subset iss by
  ultimately have prob (\bigcap (F 'I)) = (\prod i \in I. prob (F i))
   using jne finj jss indep-events-probs[of F A I] assms(2) by (simp)
  \mathbf{moreover} \ \mathbf{have} \ \mathit{bij-betw} \ \mathit{F} \ \mathit{I} \ \mathit{J} \ \mathbf{using} \ \mathit{jeq} \ \mathit{iss} \ \mathit{jss} \ \mathit{bb} \ \mathbf{by} \ (\mathit{meson} \ \mathit{bij-betw-subset})
  ultimately show prob \ (\bigcap \ J) = prod \ prob \ J \ using \ bij-betw-prod-prob \ jeq \ by
(metis)
qed
lemma indep-event-set-equiv-bij:
  assumes bij-betw F A E
  assumes finite\ E
  shows indep-events-set E \longleftrightarrow indep-events F A
proof -
  have im: F ' A = E
   using assms(1) by (simp\ add:\ bij-betw-def)
  then have ss: (\forall e. e \in E \longrightarrow e \in events) \longleftrightarrow (F \cdot A \subseteq events)
   using image-iff by (simp add: subset-iff)
 have prob: (\forall J. J \subseteq E \longrightarrow finite J \longrightarrow J \neq \{\} \longrightarrow prob \ (\bigcap i \in J. i) = (\prod i \in J. i)
prob i)) \longleftrightarrow
```

```
(\forall \ I. \ I \subseteq A \longrightarrow finite \ I \longrightarrow I \neq \{\} \longrightarrow prob \ (\bigcap i \in I. \ F \ i) = (\prod i \in I. \ prob )
(F i)))
 proof (intro allI impI iffI)
   fix I assume p1: \forall J \subseteq E. finite J \longrightarrow J \neq \{\} \longrightarrow prob \ (\bigcap i \in J.\ i) = prod\ prob
      and iss: I \subseteq A and f1: finite I and i1: I \neq \{\}
    then obtain J where jeq: J = F ' I and jss: J \subseteq E
      using bij-betw-obtain-subsetr[OF assms(1) iss]by metis
    then have prob \ (\bigcap J) = prod \ prob \ J \ using \ i1 \ f1 \ p1 \ jss \ by \ auto
    moreover have bij-betw F I J using jeq jss \ assms(1) \ iss
      by (meson bij-betw-subset)
  ultimately show prob (\bigcap (F'I)) = (\prod i \in I. prob (F'i)) using bij-betw-prod-prob
      by (metis jeq)
  next
    fix J assume p2: \forall I \subseteq A. finite I \longrightarrow I \neq \{\} \longrightarrow prob \ (\bigcap (F'I)) = (\prod i \in I).
prob(F i)
      and jss: J \subseteq E and f2: finite J and j1: J \neq \{\}
    then obtain I where iss: I \subseteq A and jeq: J = F 'I
      using bij-betw-obtain-subsetl[OF assms(1)] by metis
    moreover have finite A using assms(1) assms(2)
      by (simp add: bij-betw-finite)
    ultimately have prob \ (\bigcap \ (F \ `I)) = (\prod i \in I. \ prob \ (F \ i)) using j1 f2 p2 jss
      by (simp add: finite-subset)
  moreover have bij-betw F I J using jeq iss assms(1) jss by (meson bij-betw-subset)
    ultimately show prob \ (\bigcap i \in J. \ i) = prod \ prob \ J \ using \ bij-betw-prod-prob \ jeq
      by (metis image-ident)
  qed
  have indep-events-set E \Longrightarrow indep-events F A
  proof (intro indep-eventsI)
    show \bigwedge i. indep-events-set E \Longrightarrow i \in A \Longrightarrow F \ i \in events
      using indep-events-set-events ss by auto
   show \bigwedge J. indep-events-set E \Longrightarrow J \subseteq A \Longrightarrow finite <math>J \Longrightarrow J \neq \{\} \Longrightarrow prob \ (\bigcap
(F 'J) = (\prod i \in J. prob (F i))
      using indep-events-set-probs prob by auto
  qed
  moreover have indep-events F A \Longrightarrow indep-events-set E
 proof (intro indep-events-setI)
   have \bigwedge e. indep-events FA \Longrightarrow e \in E \Longrightarrow e \in events using ss indep-events-def
by metis
    then show indep-events F A \Longrightarrow E \subseteq events by auto
   show \bigwedge J. indep-events F A \Longrightarrow J \subseteq E \Longrightarrow finite <math>J \Longrightarrow J \neq \{\} \Longrightarrow prob \ (\bigcap J)
= prod prob J
      using prob indep-events-def by (metis image-ident)
 ultimately show ?thesis by auto
qed
```

5.3 Mutual Independent Events

Note, set based version only if no duplicates in usage case. The mutual_in-dep_events definition is more general and recommended

```
\textbf{definition} \ \textit{mutual-indep-set} :: \ 'a \ \textit{set} \ \Rightarrow \ 'a \ \textit{set} \ set \ \Rightarrow \ \textit{bool}
  where mutual-indep-set A \ S \longleftrightarrow A \in events \land S \subseteq events \land (\forall \ T \subseteq S \ . \ T \neq S )
\{\} \longrightarrow prob \ (A \cap (\bigcap T)) = prob \ A * prob \ (\bigcap T))
lemma mutual-indep-setI[intro]: A \in events \Longrightarrow S \subseteq events \Longrightarrow (\bigwedge T. T \subseteq S)
\Longrightarrow T \neq \{\} \Longrightarrow
    prob\ (A\cap (\bigcap T)) = prob\ A*prob\ (\bigcap T)) \Longrightarrow mutual-indep-set\ A\ S
  using mutual-indep-set-def by simp
\textbf{lemma} \ \textit{mutual-indep-setD}[\textit{dest}] : \textit{mutual-indep-set} \ A \ S \Longrightarrow \ T \subseteq S \Longrightarrow \ T \neq \{\}
\implies prob \ (A \cap (\bigcap T)) = prob \ A * prob \ (\bigcap T)
  using mutual-indep-set-def by simp
lemma mutual-indep-setD2[dest]: mutual-indep-set A S \Longrightarrow A \in events
  using mutual-indep-set-def by simp
lemma mutual-indep-setD3[dest]: mutual-indep-set A <math>S \Longrightarrow S \subseteq events
  using mutual-indep-set-def by simp
lemma mutual-indep-subset: mutual-indep-set AS \Longrightarrow T \subseteq S \Longrightarrow mutual-indep-set
  using mutual-indep-set-def by auto
\mathbf{lemma} mutual-indep-event-set-defD:
  assumes mutual-indep-set A S
  assumes finite T
  assumes T \subseteq S
  assumes T \neq \{\}
  shows indep-event A \cap T
proof (intro indep-eventI)
  show A \in events using mutual-indep-setD2 assms(1) by auto
 show \bigcap T \in events using Inter-event-ss assms mutual-indep-setD3 finite-subset
by blast
  show prob (A \cap \bigcap T) = prob A * prob (\bigcap T)
    using assms(1) mutual-indep-setD assms(3) assms(4) by simp
qed
lemma mutual-indep-event-defI: A \in events \Longrightarrow S \subseteq events \Longrightarrow (\bigwedge T. T \subseteq S)
\Longrightarrow T \neq \{\} \Longrightarrow
    indep-event A \cap T) \Longrightarrow mutual-indep-set A \cap T
  using indep-eventD mutual-indep-set-def by simp
```

 $\textbf{lemma} \ \textit{mutual-indep-singleton-event:} \ \textit{mutual-indep-set} \ \textit{A} \ \textit{S} \implies \textit{B} \in \textit{S} \implies \textit{in-supervisor}$

```
dep-event A B
  using mutual-indep-event-set-defD empty-subsetI
  by (metis Set.insert-mono cInf-singleton finite.emptyI finite-insert insert-absorb
insert-not-empty)
lemma mutual-indep-cond:
  \textbf{assumes} \ A \in \textit{events} \ \textbf{and} \ T \subseteq \textit{events} \ \textbf{and} \ \textit{finite} \ T
  and mutual-indep-set A S and T \subseteq S and T \neq \{\} and prob (\bigcap T) \neq \emptyset
shows \mathcal{P}(A \mid (\bigcap T)) = prob A
proof -
  have \bigcap T \in events \text{ using } assms
   by (simp add: Inter-event-ss)
 then have \mathcal{P}(A \mid (\bigcap T)) = prob ((\bigcap T) \cap A)/prob(\bigcap T) using cond-prob-ev-def
assms(1)
   by blast
  also have ... = prob (A \cap (\bigcap T))/prob(\bigcap T)
   by (simp add: inf-commute)
 also have ... = prob \ A * prob \ (\bigcap T)/prob(\bigcap T) using assms mutual-indep-setD
by auto
  finally show ?thesis using assms(7) by simp
qed
lemma mutual-indep-cond-full:
  assumes A \in events and S \subseteq events and finite S
  and mutual-indep-set A S and S \neq \{\} and prob (\bigcap S) \neq \emptyset
shows \mathcal{P}(A \mid (\bigcap S)) = prob A
  using mutual-indep-cond[of A S S] assms by auto
{\bf lemma}\ \textit{mutual-indep-cond-single}:
  assumes A \in events and B \in events
  and mutual-indep-set A S and B \in S and prob B \neq 0
 shows \mathcal{P}(A \mid B) = prob A
 using mutual-indep-cond[of A \{B\} S] assms by auto
lemma mutual-indep-set-empty: A \in events \Longrightarrow mutual-indep-set A \{ \}
  using mutual-indep-setI by auto
lemma not-mutual-indep-set-itself:
  assumes prob A > 0 and prob A < 1
  shows \neg mutual-indep-set A \{A\}
proof (rule ccontr)
  assume \neg \neg mutual\text{-}indep\text{-}set A \{A\}
  then have mutual-indep-set A \{A\}
   by simp
 then have \bigwedge T : T \subseteq \{A\} \Longrightarrow T \neq \{\} \Longrightarrow prob (A \cap (\bigcap T)) = prob A * prob
   using mutual-indep-setD by simp
  then have eq: prob (A \cap (\bigcap \{A\})) = prob \ A * prob (\bigcap \{A\})
   by blast
```

```
have prob (A \cap (\bigcap \{A\})) = prob A by simp
  moreover have prob \ A * (prob \ (\bigcap \ \{A\})) = (prob \ A)^2
   by (simp add: power2-eq-square)
  ultimately show False using eq assms by auto
qed
lemma is-mutual-indep-set-itself:
 assumes A \in events
 assumes prob A = 0 \lor prob A = 1
 shows mutual-indep-set A \{A\}
proof (intro mutual-indep-setI)
 show A \in events \{A\} \subseteq events using assms(1) by auto
 fix T assume T \subseteq \{A\} and T \neq \{\}
 then have teq: T = \{A\} by auto
 have prob (A \cap (\bigcap \{A\})) = prob A by simp
 moreover have prob \ A * (prob \ (\bigcap \ \{A\})) = (prob \ A) ^2
   by (simp add: power2-eq-square)
  ultimately show prob (A \cap (\bigcap T)) = prob A * prob (\bigcap T) using teq \ assms
by auto
qed
lemma mutual-indep-set-singleton:
  assumes indep-event A B
 shows mutual-indep-set A \{B\}
 using indep-eventD-ev1 indep-eventD-ev2 assms
 by (intro mutual-indep-event-defI) (simp-all add: subset-singleton-iff)
\mathbf{lemma}\ mutual\text{-}indep\text{-}set\text{-}one\text{-}compl:
 assumes mutual-indep-set A S
 assumes finite S
 assumes B \in S
 shows mutual-indep-set A (\{space M - B\} \cup S)
proof (intro mutual-indep-event-defI)
 show A \in events \text{ using } assms(1) \text{ } mutual\text{-}indep\text{-}setD2 \text{ by } auto
 show \{space\ M-B\}\cup (S)\subseteq events
   using assms(1) assms(2) mutual-indep-setD3 assms(3) by blast
  fix T assume jss: T \subseteq \{space M - B\} \cup (S)
 assume tne: T \neq \{\}
 let ?T' = T - \{space M - B\}
 show indep-event A \cap T
 proof (cases ?T' = \{\})
   case True
   then have T = \{space M - B\} using the by blast
    moreover have indep\text{-}event\ A\ B\ using\ assms(1)\ assms(3)\ assms(3)\ mu
tual-indep-singleton-event by auto
   ultimately show ?thesis using indep-event-one-compl by auto
 next
```

```
case tne2: False
   have finT: finite T using jss assms(2) finite-subset by fast
   have tss2: ?T' \subseteq S using jss assms(2) by auto
   show ?thesis proof (cases space M - B \in T)
     have ?T' \cup \{B\} \subseteq S \text{ using } assms(3) tss2 by auto
   then have indep-event A (\bigcap (?T' \cup \{B\})) using assms(1) mutual-indep-event-set-defD
tne2 finT
      \mathbf{by}\ (\mathit{meson}\ \mathit{Un-empty}\ \mathit{assms}(2)\ \mathit{finite-subset})
     moreover have indep-event A (\bigcap ?T')
       using assms(1) mutual-indep-event-set-defD finT finite-subset tss2 tne2 by
     moreover have \bigcap (?T' \cup \{B\}) = B \cap (\bigcap ?T') by auto
    moreover have B \in events \text{ using } assms(3) \text{ } assms(1) \text{ } mutual\text{-}indep\text{-}setD3 \text{ } by
auto
       ultimately have indep-event A ((space M-B) \cap (\bigcap?T')) using in-
dep-event-compl-inter by auto
     then show ?thesis
      by (metis Inter-insert True insert-Diff)
   \mathbf{next}
     case False
     then have T \subseteq S using jss by auto
     then show ?thesis using assms(1) mutual-indep-event-set-defD finT the by
auto
   qed
 qed
qed
\mathbf{lemma}\ mutual-indep-events-set-update-compl:
 assumes mutual-indep-set X E
 assumes E = A \cup B
 assumes A \cap B = \{\}
 assumes finite\ E
 shows mutual-indep-set X (((-) (space M) ' A) \cup B)
using assms(2) assms(3) proof (induct card A arbitrary: A B)
 then show ?case using assms(1)
   using assms(4) by auto
next
  case (Suc \ x)
  then obtain a A' where aeq: A = insert \ a \ A' and anotin: a \notin A'
   by (metis card-Suc-eq-finite)
  then have xcard: card A' = x
   using Suc(2) Suc(3) assms(4) by auto
 let ?B' = B \cup \{a\}
 have E = A' \cup ?B' using aeq Suc.prems by auto
  moreover have A' \cap ?B' = \{\} using anotin Suc.prems(2) and by auto
  ultimately have ies: mutual-indep-set X ((-) (space M) ' A' \cup ?B')
   using Suc.hyps(1)[of A'?B'] xcard by auto
```

```
then have a \in A \cup B using aeq by auto
  then show ?case
 proof (cases\ (A \cup B) - \{a\} = \{\})
   case True
   then have A = \{a\} B = \{\} using Suc. prems and by auto
    moreover have indep-event X a using mutual-indep-singleton-event ies by
auto
  ultimately show ?thesis using mutual-indep-set-singleton indep-event-one-compl
by simp
 next
   {f case} False
   let ?c = (-) (space M)
   have un: ?c `A \cup B = ?c `A' \cup (\{?c \ a\}) \cup (?B' - \{a\})
     using Suc(4) and by force
   moreover have ?B' - \{a\} \subseteq ?B' by auto moreover have ?B' - \{a\} \subseteq ?c \cdot A' \cup \{?c \ a\} \cup (?B') by auto
   moreover have ?c \cdot A' \cup \{?c \ a\} \subseteq ?c \cdot A' \cup \{?c \ a\} \cup (?B') by auto
   ultimately have ss: ?c \cdot A \cup B \subseteq \{?c \ a\} \cup (?c \cdot A' \cup ?B')
     using Un-least by auto
   have a \in (-) (space M) 'A' \cup ?B' using aeq by auto
   then have ie: mutual-indep-set X (\{?c\ a\} \cup (?c\ `A' \cup ?B'))
     using mutual-indep-set-one-compl[of X ? c `A' \cup ?B' a] ies \langle E = A' \cup (B \cup A') \rangle = A' \cup (B \cup A')
\{a\})> assms(4) by blast
   then show ?thesis using mutual-indep-subset ss by auto
  qed
qed
lemma mutual-indep-events-compl:
 assumes finite S
 assumes mutual-indep-set A S
 shows mutual-indep-set A ((\lambda s . space M-s) 'S)
 using mutual-indep-events-set-update-compl[of A S S \{\}] assms by auto
\mathbf{lemma}\ mutual	ext{-}indep	ext{-}set	ext{-}all:
 assumes A \subseteq events
 assumes \bigwedge Ai. Ai \in A \Longrightarrow (mutual\text{-}indep\text{-}set\ Ai\ (A - \{Ai\}))
 shows indep-events-set A
proof (intro indep-events-setI)
 show A \subseteq events
   using assms(1) by auto
next
  fix J assume ss: J \subseteq A and fin: finite J and ne: J \neq \{\}
 from fin ne ss show prob (\bigcap J) = prod prob J
 proof (induct J rule: finite-ne-induct)
   case (singleton \ x)
   then show ?case by simp
   case (insert x F)
   then have mutual-indep-set x (A - \{x\}) using assms(2) by simp
```

```
moreover have F \subseteq (A - \{x\}) using insert.prems insert.hyps by auto
   ultimately have prob\ (x\cap (\bigcap F))=prob\ x*prob\ (\bigcap F)
     by (simp add: local.insert(2) mutual-indep-setD)
   then show ?case using insert.hyps insert.prems by simp
  ged
\mathbf{qed}
    Prefered version using indexed notation
definition mutual-indep-events:: 'a \ set \Rightarrow (nat \Rightarrow 'a \ set) \Rightarrow nat \ set \Rightarrow bool
 where mutual-indep-events A \ F \ I \longleftrightarrow A \in events \land (F \ `I \subseteq events) \land (\forall \ J \subseteq events)
I: J \neq \{\} \longrightarrow prob \ (A \cap (\bigcap j \in J: Fj)) = prob \ A * prob \ (\bigcap j \in J: Fj))
lemma mutual-indep-eventsI[intro]: A \in events \Longrightarrow (F : I \subseteq events) \Longrightarrow (\bigwedge J. J
\subseteq I \Longrightarrow J \neq \{\} \Longrightarrow
     prob\ (A\ \cap\ (\bigcap j\in J\ .\ F\ j))=prob\ A*prob\ (\bigcap j\in J\ .\ F\ j))\Longrightarrow mu-prob\ (A\cap (\bigcap j\in J\ .\ F\ j))
tual-indep-events A F I
  using mutual-indep-events-def by simp
lemma mutual-indep-eventsD[dest]: mutual-indep-events A F I \Longrightarrow J \subseteq I \Longrightarrow J
\neq \{\} \Longrightarrow prob \ (A \cap (\bigcap j \in J . F j)) = prob \ A * prob \ (\bigcap j \in J . F j)
  using mutual-indep-events-def by simp
lemma mutual-indep-eventsD2[dest]: mutual-indep-events A \ F \ I \Longrightarrow A \in events
  using mutual-indep-events-def by simp
lemma mutual-indep-eventsD3[dest]: mutual-indep-events A F I \Longrightarrow F 'I \subseteq events
  using mutual-indep-events-def by simp
lemma mutual-indep-ev-subset: mutual-indep-events A \ F \ I \Longrightarrow J \subseteq I \Longrightarrow mu
tual-indep-events A F J
 using mutual-indep-events-def by (meson image-mono subset-trans)
lemma mutual-indep-event-defD:
  assumes mutual-indep-events A F I
  assumes finite J
  assumes J \subseteq I
  assumes J \neq \{\}
  shows indep-event A (\bigcap j \in J \cdot F j)
proof (intro indep-eventI)
  show A \in events using mutual-indep-setD2 assms(1) by auto
  show prob (A \cap \bigcap (F 'J)) = prob A * prob (\bigcap (F 'J))
   using assms(1) mutual-indep-eventsD assms(3) assms(4) by simp
  have finite (F 'J) using finite-subset assms(2) by simp
  then show (\bigcap j \in J : F j) \in events
   using Inter-event-ss[of F 'J] assms mutual-indep-eventsD3 by blast
qed
```

```
lemma mutual-ev-indep-event-defI: A \in events \Longrightarrow F : I \subseteq events \Longrightarrow (\bigwedge J. J)
\subseteq I \Longrightarrow J \neq \{\} \Longrightarrow
    indep-event A (\bigcap (F' J))) \Longrightarrow mutual-indep-events A F I
  using indep-eventD mutual-indep-events-def[of A F I] by auto
\mathbf{lemma} mutual-indep-ev-singleton-event:
  assumes mutual-indep-events A F I
 assumes B \in F ' I
  showsindep-event A B
proof -
  obtain J where beq: B = F J and J \in I using assms(2) by blast
  then have \{J\} \subseteq I and finite \{J\} and \{J\} \neq \{\} by auto
  moreover have B = \bigcap (F ` \{J\})  using beq by simp
  ultimately show ?thesis using mutual-indep-event-defD assms(1)
   by meson
qed
\mathbf{lemma} \ \mathit{mutual-indep-ev-singleton-event2}:
 assumes mutual-indep-events A F I
  assumes i \in I
 shows indep-event A (F i)
  using mutual-indep-event-defD[of A F I \{i\}] assms by auto
lemma mutual-indep-iff:
  shows mutual-indep-events A F I \longleftrightarrow mutual-indep-set A (F 'I)
proof (intro iffI mutual-indep-setI mutual-indep-eventsI)
  show mutual-indep-events A F I \Longrightarrow A \in events \text{ using } mutual\text{-}indep\text{-}eventsD2
bv simp
 show mutual-indep-set A(F') \Longrightarrow A \in events using mutual-indep-set D2 by
 show mutual-indep-events A F I \Longrightarrow F 'I \subseteq events using mutual-indep-events D3
 show mutual-indep-set A (F 'I) \Longrightarrow F 'I \subseteq events using mutual-indep-setD3
by simp
  show \bigwedge T. mutual-indep-events A \ F \ I \Longrightarrow T \subseteq F \ `I \Longrightarrow T \neq \{\} \Longrightarrow prob \ (A
\cap \cap T = prob A * prob (\cap T)
   using mutual-indep-eventsD by (metis empty-is-image subset-imageE)
  show \bigwedge J. mutual-indep-set A (F \cdot I) \Longrightarrow J \subseteq I \Longrightarrow J \neq \{\} \Longrightarrow prob (A \cap \bigcap I)
(F \cdot J)) = prob \ A * prob \ (\bigcap \ (F \cdot J))
    using mutual-indep-setD by (simp add: image-mono)
qed
lemma mutual-indep-ev-cond:
  assumes A \in events and F ' J \subseteq events and finite J
 and mutual-indep-events A F I and J \subseteq I and J \neq \{\} and prob (\bigcap (F 'J)) \neq \emptyset
shows \mathcal{P}(A \mid (\bigcap (\bar{F} \cdot J))) = prob A
proof -
  have \bigcap (F, J) \in events \text{ using } assms
   by (simp add: Inter-event-ss)
```

```
then have \mathcal{P}(A \mid (\bigcap (F 'J))) = prob ((\bigcap (F 'J)) \cap A)/prob(\bigcap (F 'J))
   using cond-prob-ev-def assms(1) by blast
 also have ... = prob (A \cap (\bigcap (F 'J)))/prob(\bigcap (F 'J))
   by (simp add: inf-commute)
 also have ... = prob \ A * prob \ (\bigcap (F \ 'J))/prob(\bigcap (F \ 'J))
   using assms mutual-indep-eventsD by auto
  finally show ?thesis using assms(7) by simp
qed
lemma mutual-indep-ev-cond-full:
 assumes A \in events and F \cdot I \subseteq events and finite I
 and mutual-indep-events A F I and I \neq \{\} and prob(\bigcap (F'I)) \neq \emptyset
shows \mathcal{P}(A \mid (\bigcap (F : I))) = prob A
 using mutual-indep-ev-cond[of A F I I] assms by auto
lemma mutual-indep-ev-cond-single:
 assumes A \in events and B \in events
 and mutual-indep-events A \ F \ I and B \in F ' I and prob \ B \neq 0
shows \mathcal{P}(A \mid B) = prob A
proof -
 obtain i where B = F i and i \in I using assms by blast
 then show ?thesis using mutual-indep-ev-cond[of A F \{i\} I] assms by auto
qed
lemma mutual-indep-ev-empty: A \in events \Longrightarrow mutual-indep-events A F \{\}
 using mutual-indep-events by auto
lemma not-mutual-indep-ev-itself:
 assumes prob A > 0 and prob A < 1 and A = F i
 shows \neg mutual-indep-events A F \{i\}
proof (rule ccontr)
 assume \neg \neg mutual\text{-}indep\text{-}events A F \{i\}
  then have mutual-indep-events A F \{i\}
   by simp
 then have \bigwedge J \cdot J \subseteq \{i\} \Longrightarrow J \neq \{\} \Longrightarrow prob (A \cap (\bigcap (F'J))) = prob A *
prob (\bigcap (F 'J))
   using mutual-indep-eventsD by simp
  then have eq. prob (A \cap (\bigcap (F `\{i\}))) = prob \ A * prob (\bigcap (F `\{i\}))
   by blast
 have prob \ (A \cap (\bigcap (F \ \{i\}))) = prob \ A \ \mathbf{using} \ assms(3) \ \mathbf{by} \ simp
 moreover have prob \ A * (prob \ (\bigcap \ \{A\})) = (prob \ A)^2
   by (simp add: power2-eq-square)
  ultimately show False using eq assms by auto
qed
lemma is-mutual-indep-ev-itself:
 assumes A \in events and A = F i
 assumes prob A = 0 \lor prob A = 1
 shows mutual-indep-events A F \{i\}
```

```
proof (intro mutual-indep-eventsI)
 show A \in events \ F '\{i\} \subseteq events \ \mathbf{using} \ assms(1) \ assms(2) \ \mathbf{by} \ auto
 fix J assume J \subseteq \{i\} and J \neq \{\}
 then have teq: J = \{i\} by auto
 have prob\ (A \cap (\bigcap (F \{i\}))) = prob\ A \ using \ assms(2) \ by \ simp
 moreover have prob \ A * (prob \ (\bigcap \ (F `\{i\}))) = (prob \ A) ^2
   \mathbf{using} \ assms(2) \ \mathbf{by} \ (simp \ add: \ power2\text{-}eq\text{-}square)
 ultimately show prob (A \cap \bigcap (F 'J)) = prob A * prob (\bigcap (F 'J)) using teq
assms by auto
qed
lemma mutual-indep-ev-singleton:
 assumes indep-event A (F i)
 shows mutual-indep-events A F \{i\}
 using indep-eventD-ev1 indep-eventD-ev2 assms
 by (intro mutual-ev-indep-event-defI) (simp-all add: subset-singleton-iff)
lemma mutual-indep-ev-one-compl:
 assumes mutual-indep-events A F I
 assumes finite I
 assumes i \in I
 assumes space M - F i = F j
 shows mutual-indep-events A F (\{j\} \cup I)
proof (intro mutual-ev-indep-event-defI)
  show A \in events \text{ using } assms(1) \text{ } mutual\text{-}indep\text{-}setD2 \text{ by } auto
next
 show F '(\{j\} \cup I) \subseteq events
   using assms(1) assms(2) mutual-indep-eventsD3 assms(3) assms(4)
  \mathbf{by}\ (\textit{metis image-insert image-subset-iff insert-is-} \textit{Un insert-subset sets.compl-sets})
next
 fix J assume jss: J \subseteq \{j\} \cup I
 assume tne: J \neq \{\}
 let ?J' = J - \{j\}
 show indep\text{-}event\ A\ (\bigcap\ (F\ '\ J))
 proof (cases ?J' = \{\})
   \mathbf{case} \ \mathit{True}
   then have J = \{j\} using the by blast
   moreover have indep-event A (F i)
     using assms(1) assms mutual-indep-ev-singleton-event2 by simp
   ultimately show ?thesis using indep-event-one-compl assms(4) by fastforce
  \mathbf{next}
   case tne2: False
   have finT: finite\ J\ using\ jss\ assms(2)\ finite-subset\ by\ fast
   have tss2: ?J' \subseteq I using jss assms(2) by auto
   show ?thesis proof (cases j \in J)
     case True
     have ?J' \cup \{i\} \subseteq I using assms(3) tss2 by auto
     then have indep-event A (\bigcap (F '?J' \cup \{F i\}))
```

```
using assms(1) mutual-indep-event-defD tne2 finT assms(2) finite-subset
     by (metis Diff-cancel Un-Diff-cancel Un-absorb Un-insert-right image-insert)
    moreover have indep-event A (\bigcap (F : ?J'))
     using assms(1) mutual-indep-event-defD finT finite-subset tss2 tne2 by auto
    moreover have (\bigcap (F : ?J' \cup \{F : i\})) = F : i \cap (\bigcap (F : ?J')) by auto
    moreover have F i \in events \ \mathbf{using} \ assms(3) \ assms(1) \ mutual-indep-eventsD3
by simp
    ultimately have indep-event A (F j \cap (\bigcap (F '?J')))
      using indep-event-compl-inter [of A \cap (F \circ ?J') F i] assms(4) by auto
   then show ?thesis using Inter-insert True insert-Diff by (metis image-insert)
   \mathbf{next}
    {f case}\ {\it False}
    then have J \subseteq I using jss by auto
    then show ?thesis using assms(1) mutual-indep-event-defD finT tne by auto
   qed
 qed
qed
lemma mutual-indep-events-update-compl:
 assumes mutual-indep-events X F S
 assumes S = A \cup B
 assumes A \cap B = \{\}
 assumes finite S
 assumes bij-betw G A A'
 assumes \bigwedge i. i \in A \Longrightarrow F(G i) = space M - F i
 shows mutual-indep-events X F (A' \cup B)
using assms(2) assms(3) assms(6) assms(5) proof (induct card A arbitrary: A B
A'
 case \theta
 then have aempty: A = \{\} using finite-subset assms(4) by simp
 then have A' = \{\} using 0.prems(4) by (metis\ all-not-in-conv\ bij-betwE\ bij-betw-inv)
 then show ?case using assms(1) using 0.prems(1) aempty by simp
next
 case (Suc \ x)
 then obtain a C where aeq: C = A - \{a\} and ain: a \in A
   by fastforce
 then have xcard: card C = x
   using Suc(2) Suc(3) assms(4) by auto
 let ?C' = A' - \{G \ a\}
 by simp
 have bb: bij-betw G C ?C' using Suc.prems(4) aeq bij-betw-remove[of G A A' a]
ain by simp
 let ?B' = B \cup \{a\}
 have S = C \cup ?B' using aeq Suc.prems ain by auto
 moreover have C \cap ?B' = \{\} using ain Suc.prems(2) aeq by auto
 ultimately have ies: mutual-indep-events X F (?C' \cup ?B')
```

```
using Suc.hyps(1)[of \ C ?B'] \ xcard \ compl \ bb \ by auto
     then have a \in A \cup B using ain by auto
     then show ?case
     proof (cases (A \cup B) - \{a\} = \{\})
         \mathbf{case} \ \mathit{True}
         then have aeq: A = \{a\} and beq: B = \{\} using Suc.prems ain by auto
       then have A' = \{G \ a\} using aeq Suc. prems ain aeq bb bij-betwE bij-betw-empty1
              by (metis Un-Int-eq(4) Un-commute \langle C \cap (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{a\}) = \{\} \rangle \langle S = C \cup (B \cup \{
\{a\}\rangle\rangle\rangle
         moreover have F(G a) = space M - (F a) using Suc. prems ain by auto
       moreover have indep-event X(Fa) using mutual-indep-ev-singleton-event ies
by auto
      ultimately show ?thesis using mutual-indep-ev-singleton indep-event-one-compl
beg by auto
    next
         case False
         have un: A' \cup B = ?C' \cup \{G \ a\} \cup (?B' - \{a\}) using Suc.prems aeq
              by (metis Diff-insert-absorb Un-empty-right Un-insert-right ain bij-betwE
                        disjoint-iff-not-equal insert-Diff)
        moreover have ?B' - \{a\} \subseteq ?B' by auto
        moreover have ?B' - \{a\} \subseteq ?C' \cup \{G \ a\} \cup (?B') by auto
         moreover have ?C' \cup \{G \ a\} \subseteq ?C' \cup \{G \ a\} \cup (?B') by auto
         ultimately have ss: A' \cup B \subseteq \{G \ a\} \cup (?C' \cup ?B')
              using Un-least by auto
         have a \in ?C' \cup ?B' using aeq by auto
         then have ie: mutual-indep-events X F (\{G a\} \cup (?C' \cup ?B'))
         using mutual-indep-ev-one-compl[of X F (?C' \cup ?B') a G a] using Suc.prems(3)
           by (metis \ \langle S = C \cup (B \cup \{a\}) \rangle \ ain \ assms(4) \ bb \ bij-betw-finite \ ies \ infinite-Un)
         then show ?thesis using mutual-indep-ev-subset ss by auto
     qed
qed
lemma mutual-indep-ev-events-compl:
    assumes finite S
    assumes mutual-indep-events A F S
    assumes bij-betw G S S'
    assumes \bigwedge i. i \in S \Longrightarrow F(G i) = space M - F i
    shows mutual-indep-events A F S'
     using mutual-indep-events-update-compl[of A \ F \ S \ S \ \{\}] assms by auto
           Important lemma on relation between independence and mutual inde-
pendence of a set
{f lemma} mutual-indep-ev-set-all:
    assumes F ' I \subseteq events
    assumes \bigwedge i. i \in I \Longrightarrow (mutual\text{-}indep\text{-}events\ (F\ i)\ F\ (I - \{i\}))
     shows indep-events F I
proof (intro indep-eventsI)
```

```
show \bigwedge i. i \in I \Longrightarrow F \ i \in events
   using assms(1) by auto
\mathbf{next}
  fix J assume ss: J \subseteq I and fin: finite J and ne: J \neq \{\}
 from fin ne ss show prob (\bigcap (F 'J)) = (\prod i \in J. prob (F i))
 proof (induct J rule: finite-ne-induct)
   case (singleton \ x)
   then show ?case by simp
  next
   case (insert x X)
   then have mutual-indep-events (F x) F (I - \{x\}) using assms(2) by simp
   moreover have X \subseteq (I - \{x\}) using insert.prems insert.hyps by auto
   ultimately have prob (F x \cap (\bigcap (F X))) = prob (F x) * prob (\bigcap (F X))
     by (simp add: local.insert(2) mutual-indep-eventsD)
   then show ?case using insert.hyps insert.prems by simp
 qed
qed
end
end
```

6 The Basic Probabilistic Method Framework

This theory includes all aspects of step (3) and (4) of the basic method framework, which are purely probabilistic

 ${\bf theory} \ Basic\text{-}Method \ {\bf imports} \ Indep\text{-}Events \\ {\bf begin}$

6.1 More Set and Multiset lemmas

```
lemma card-size-set-mset: card (set-mset A) \leq size A using size-multiset-overloaded-eq by (metis card-eq-sum count-greater-eq-one-iff sum-mono)

lemma Union-exists: \{a \in A : \exists b \in B : P \ a \ b\} = (\bigcup b \in B : \{a \in A : P \ a \ b\}) by blast

lemma Inter-forall: B \neq \{\} \Longrightarrow \{a \in A : \forall b \in B : P \ a \ b\} = (\bigcap b \in B : \{a \in A : P \ a \ b\}) by auto

lemma function-map-multi-filter-size:
assumes image-mset F (mset-set A) = B and finite A shows card \{a \in A : P \ (F \ a)\} = \text{size} \{\# \ b \in \# \ B : P \ b \ \#\} using assms(2) assms(1) proof (induct A arbitrary: B rule: finite-induct) case empty then show ?case by simp next
```

```
case (insert x C)
 then have beq: B = image\text{-mset } F \text{ (mset-set } C) + \{\#F x\#\} \text{ by } auto
 then show ?case proof (cases P(F x))
   case True
   then have filter-mset P B = filter-mset P (image-mset F (mset-set C)) + {\#F
x\#
     by (simp add: True beq)
  then have s: size (filter-mset PB) = size (filter-mset P (image-mset F (mset-set
(C))) + 1
     using size-single size-union by auto
   have \{a \in insert \ x \ C. \ P \ (F \ a)\} = insert \ x \ \{a \in C. \ P \ (F \ a)\} using True by
   moreover have x \notin \{a \in C. \ P \ (F \ a)\} using insert.hyps(2) by simp
   ultimately have card \{a \in insert \ x \ C. \ P \ (F \ a)\} = card \ \{a \in C. \ P \ (F \ a)\} +
1
     using card-insert-disjoint insert.hyps(1) by auto
   then show ?thesis using s insert.hyps(3) by simp
 next
   case False
   then have filter-mset P B = filter-mset P (image-mset F (mset-set C)) using
beq by simp
   moreover have \{a \in insert \ x \ C. \ P \ (F \ a)\} = \{a \in C. \ P \ (F \ a)\} using False
by auto
   ultimately show ?thesis using insert.hyps(3) by simp
 qed
qed
lemma bij-mset-obtain-set-elem:
 assumes image-mset F (mset-set A) = B
 assumes b \in \# B
 obtains a where a \in A and F = a
 using assms set-image-mset
 by (metis\ finite-set-mset-mset-set\ image-iff\ mem-simps(2)\ mset-set\ infinite\ set-mset-empty)
lemma bij-mset-obtain-mset-elem:
 assumes finite A
 assumes image-mset\ F\ (mset-set\ A) = B
 assumes a \in A
 obtains b where b \in \# B and F a = b
 using assms by fastforce
lemma prod-fn-le1:
 fixes f :: 'c \Rightarrow ('d :: \{comm-monoid-mult, linordered-semidom\})
 assumes finite A
 assumes A \neq \{\}
 assumes \bigwedge y. y \in A \Longrightarrow f y \ge 0 \land f y < 1
 shows (\prod x \in A. fx) < 1
using assms(1) assms(2) assms(3) proof (induct A rule: finite-ne-induct)
```

```
case (singleton x)
    then show ?case by auto
\mathbf{next}
    case (insert x F)
    then show ?case
    proof (cases x \in F)
        {\bf case}\  \, True
        then show ?thesis using insert.hyps by auto
    next
        case False
        then have prod f (insert x F) = f x * prod f F by (simp add: local.insert(1))
        moreover have prod f F < 1 using insert.hyps insert.prems by auto
        moreover have f x < 1 f x \ge 0 using insert.prems by auto
       ultimately show ?thesis
            by (metis\ basic-trans-rules(20)\ basic-trans-rules(23)\ more-arith-simps(6)
                     mult-left-less-imp-less verit-comp-simplify I(3)
    qed
qed
context prob-space
begin
6.2
                Existence Lemmas
lemma prob-lt-one-obtain:
    assumes \{e \in space M : Q e\} \in events
    assumes prob \{e \in space M : Q e\} < 1
    obtains e where e \in space M and \neg Q e
proof -
    have sin: \{e \in space \ M \ . \ \neg \ Q \ e\} \in events \ \mathbf{using} \ assms(1)
        using sets.sets-Collect-neg by blast
   have prob \{e \in space \ M \ . \ \neg \ Q \ e\} = 1 - prob \ \{e \in space \ M \ . \ Q \ e\} using prob-neg
assms by auto
    then have prob \{e \in space \ M : \neg Q \ e\} > 0 \ using \ assms(2) \ by \ auto
    then show ?thesis using that
        by (smt (verit, best) empty-Collect-eq measure-empty)
qed
lemma prob-gt-zero-obtain:
    assumes \{e \in space M : Q e\} \in events
   assumes prob \{e \in space M : Q e\} > 0
   obtains e where e \in space M and Q e
   using assms by (smt (verit) empty-Collect-eq inf.strict-order-iff measure-empty)
lemma inter-gt\theta-event:
    assumes F ' I \subseteq events
   assumes prob (\bigcap i \in I \cdot (space M - (F i))) > 0
    shows (\bigcap i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) \in events \ {\bf and} \ (\bigcap \ i \in I \ . \ (space \ M
i))) \neq \{\}
```

```
using assms using measure-notin-sets by (smt (verit), fastforce)
{\bf lemma}\ obtain-intersection:
  assumes F : I \subseteq events
 assumes prob \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) > 0
  obtains e where e \in space\ M and \bigwedge\ i.\ i \in I \Longrightarrow e \notin F\ i
proof -
  have ine: (\bigcap i \in I : (space M - (F i))) \neq \{\} using inter-gt0-event[of F I]
assms by fast
  then obtain e where \bigwedge i. i \in I \implies e \in space M - F i by blast
  then show ?thesis
   by (metis Diff-iff ex-in-conv subprob-not-empty that)
qed
lemma obtain-intersection-prop:
  assumes F ' I \subseteq events
  assumes \bigwedge i. i \in I \Longrightarrow F \ i = \{e \in space \ M \ . \ P \ e \ i\}
 assumes prob \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) > 0
  obtains e where e \in space M and \bigwedge i. i \in I \Longrightarrow \neg P e i
proof -
  obtain e where ein: e \in space M and \bigwedge i. i \in I \Longrightarrow e \notin F i
    using obtain-intersection assms(1) assms(3) by auto
 then have \bigwedge i. i \in I \Longrightarrow e \in \{e \in space M : \neg P e i\} using assms(2) by simp
  then show ?thesis using ein that by simp
qed
lemma not-in-big-union:
  assumes \bigwedge i : i \in A \Longrightarrow e \notin i
  shows e \notin (\bigcup A)
 using assms by (induct A rule: infinite-finite-induct) auto
lemma not-in-big-union-fn:
  assumes \bigwedge i : i \in A \Longrightarrow e \notin F i
 shows e \notin (\bigcup i \in A . F i)
 using assms by (induct A rule: infinite-finite-induct) auto
{f lemma} obtain-intersection-union:
  assumes F 'I \subseteq events
 assumes prob \ (\bigcap \ i \in I \ . \ (space \ M - (F \ i))) > 0
  obtains e where e \in space\ M and e \notin (\bigcup i \in I.\ F\ i)
proof -
  obtain e where e \in space \ M and cond: \bigwedge i. \ i \in I \implies e \notin F i
  using obtain-intersection[of F I] assms by blast
  then show ?thesis using not-in-big-union-fn[of I e F] that by blast
qed
```

6.3 Basic Bounds

Lemmas on the Complete Independence and Union bound

```
lemma complete-indep-bound1:
 assumes finite A
 assumes A \neq \{\}
 assumes A \subseteq events
 assumes indep-events-set A
 assumes \bigwedge a \cdot a \in A \Longrightarrow prob \ a < 1
 shows prob (space M - (\bigcap A)) > \theta
proof -
  have \bigcap A \in events \text{ using } assms(1) \ assms(2) \ assms(3) \ Inter-event-ss \ by \ simp
  then have prob (space M - (\bigcap A)) = 1 - prob (\bigcap A)
   by (simp add: prob-compl)
  then have 1: prob (space M - (\bigcap A)) = 1 - prod prob A
   using indep-events-set-prod-all assms by simp
  moreover have prod prob A < 1 using assms(5) assms(1) assms(2) assms(4)
indep-events-set-events
   by (metis Inf-lower \langle prob \ (space \ M - \bigcap A) = 1 - prob \ (\bigcap A) \rangle
      basic-trans-rules(21) 1 diff-gt-0-iff-gt finite-has-maximal finite-measure-mono
 ultimately show ?thesis by simp
qed
lemma complete-indep-bound1-index:
 assumes finite A
 assumes A \neq \{\}
 assumes F ' A \subseteq events
 assumes indep-events F A
 assumes \bigwedge a : a \in A \Longrightarrow prob (F a) < 1
 shows prob (space M - (\bigcap (F'A)) > 0
proof -
 have pos: \bigwedge a. \ a \in A \Longrightarrow prob \ (F \ a) \ge 0 \ \mathbf{using} \ assms(3) \ \mathbf{by} \ auto
  have \bigcap (F \cdot A) \in events \text{ using } assms(1) \ assms(2) \ assms(3) \ Inter-event-ss \ by
  then have eq: prob (space M - (\bigcap (F 'A))) = 1 - prob (\bigcap (F 'A))
   by (simp add: prob-compl)
 then have prob (space M - (\bigcap (F'A)) = 1 - (\prod i \in A. prob (F'i))
   using indep-events-prod-all assms by simp
 moreover have (\prod i \in A. prob (F i)) < 1
   using assms(5) eq assms(2) assms(1) prod-fn-le1[of\ A\ \lambda\ i.\ prob\ (F\ i)] by auto
  ultimately show ?thesis by simp
qed
lemma complete-indep-bound2:
 assumes finite A
 assumes A \subseteq events
 assumes indep-events-set A
 assumes \bigwedge a : a \in A \Longrightarrow prob \ a < 1
 shows prob (space M - (\lfloor \rfloor A)) > 0
proof (cases A = \{\})
 case True
```

```
then show ?thesis by (simp add: True prob-space)
next
  case False
  then have prob (space M - \bigcup A) = prob (\bigcap a \in A . (space M - a)) by simp
 moreover have indep-events-set ((\lambda \ a. \ space \ M - a) \ `A)
   using assms(1) assms(3) indep-events-set-compl by auto
  moreover have finite ((\lambda \ a. \ space \ M - a) \ `A) using assms(1) by auto
 moreover have ((\lambda \ a. \ space \ M - a) \ `A) \neq \{\} \ using \ False \ by \ auto
  ultimately have eq. prob (space M - \bigcup A) = prod prob ((\lambda a. space M - a) '
A)
   using indep-events-set-prod-all[of ((\lambda \ a. \ space \ M-a) \ `A)] by linarith
 have \bigwedge a. \ a \in ((\lambda \ a. \ space \ M - a) \ `A) \Longrightarrow prob \ a > 0
 proof -
   fix a assume a \in ((\lambda \ a. \ space \ M - a) \ `A)
   then obtain a' where a = space M - a' and ain: a' \in A by blast
   then have prob \ a = 1 - prob \ a' using prob-compl assms(2) by auto
   moreover have prob a' < 1 using assms(4) ain by simp
   ultimately show prob a > \theta by simp
  then have prod prob ((\lambda \ a. \ space \ M - a) \ `A) > 0 \ by \ (meson \ prod-pos)
  then show ?thesis using eq by simp
qed
\mathbf{lemma}\ complete	ext{-}indep	ext{-}bound2	ext{-}index:
 assumes finite A
 assumes F ' A \subseteq events
 assumes indep-events F A
 assumes \bigwedge a : a \in A \Longrightarrow prob (F a) < 1
 shows prob (space M - (\bigcup (F `A))) > 0
proof (cases A = \{\})
  case True
  then show ?thesis by (simp add: True prob-space)
next
 {\bf case}\ \mathit{False}
 then have prob (space M - \bigcup (F A) = prob \cap a \in A. (space M - F a) by
 moreover have indep-events (\lambda a. space M - F a) A
   using assms(1) assms(3) indep-events-compl by auto
  ultimately have eq. prob (space M - \bigcup (F \cdot A) = (\prod i \in A. prob ((\lambda a. space)))
M - F(a)(i)
    using indep-events-prod-all[of (\lambda a. space M – F a) A] assms(1) False by
linarith
 have \bigwedge a. \ a \in A \Longrightarrow prob \ (space \ M - F \ a) > 0
   using prob-compl \ assms(2) \ assms(4) by auto
 then have (\prod i \in A. \ prob \ ((\lambda \ a. \ space \ M - F \ a) \ i)) > 0 \ by \ (meson \ prod-pos)
 then show ?thesis using eq by simp
```

 $\mathbf{lemma}\ complete\text{-}indep\text{-}bound 3:$

```
assumes finite A
 assumes A \neq \{\}
 assumes F ' A \subseteq events
 assumes indep-events F A
 assumes \bigwedge a : a \in A \Longrightarrow prob (F a) < 1
 shows prob (\bigcap a \in A. space M - F a) > 0
 using complete-indep-bound2-index compl-Union-fn assms by auto
    Combining complete independence with existence step
lemma complete-indep-bound-obtain:
 assumes finite A
 assumes A \subseteq events
 assumes indep-events-set A
 assumes \land a : a \in A \Longrightarrow prob \ a < 1
 obtains e where e \in space M and e \notin \bigcup A
proof -
 have prob (space M - (\bigcup A)) > 0 using complete-indep-bound2 assms by auto
 then show ?thesis
   by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI that)
qed
lemma Union-bound-events:
 assumes finite A
 assumes A \subseteq events
 shows prob (\bigcup A) \leq (\sum a \in A. prob a)
 using finite-measure-subadditive-finite[of A \lambda x. x] assms by auto
lemma Union-bound-events-fun:
 assumes finite A
 \mathbf{assumes}\ f\ `A\subseteq events
 shows prob (\bigcup (f \cdot A)) \leq (\sum a \in A. prob (f a))
 by (simp add: assms(1) assms(2) finite-measure-subadditive-finite)
lemma Union-bound-avoid:
  assumes finite A
 assumes (\sum a \in A. prob \ a) < 1
 assumes A \subseteq events
 shows prob (space M - \bigcup A) > \theta
proof -
 have \bigcup A \in events
   by (simp add: assms(1) assms(3) sets.finite-Union)
 then have prob (space M - \bigcup A) = 1 - prob (\bigcup A)
   using prob-compl by simp
  moreover have prob (\bigcup A) < 1 using assms Union-bound-events
   by fastforce
  ultimately show ?thesis by simp
qed
```

```
lemma Union-bound-avoid-fun:
 assumes finite A
 assumes (\sum a \in A. \ prob \ (f \ a)) < 1
 assumes f \overline{A} \subseteq events
 shows prob (space M - \bigcup (f \cdot A)) > 0
proof -
 have \bigcup (f 'A) \in events
   by (simp add: assms(1) assms(3) sets.finite-Union)
 then have prob (space M - \bigcup (f'A) = 1 - prob (\bigcup (f'A))
   using prob-compl by simp
 moreover have prob (\bigcup (f \cdot A)) < 1 using assms Union-bound-events-fun
   by (smt\ (verit,\ ccfv\text{-}SIG)\ sum.cong)
 ultimately show ?thesis by simp
qed
    Combining union bound with existence step
lemma Union-bound-obtain:
 assumes finite A
 assumes (\sum a \in A. prob \ a) < 1
 assumes \overline{A} \subseteq events
 obtains e where e \in space M and e \notin \bigcup A
proof -
 have prob (space M - \bigcup A) > 0 using Union-bound-avoid assms by simp
 then show ?thesis using that prob-qt-zero-obtain
   by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI)
qed
lemma Union-bound-obtain-fun:
 assumes finite A
 assumes (\sum a \in A. prob (f a)) < 1
 assumes f ' A \subseteq events
 obtains e where e \in space\ M and e \notin \bigcup (f'A)
proof -
 have prob (space M - \bigcup (f'A)) > 0 using Union-bound-avoid-fun assms by
simp
 then show ?thesis using that prob-qt-zero-obtain
   by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subset I)
qed
lemma Union-bound-obtain-compl:
 assumes finite A
 assumes (\sum a \in A. prob \ a) < 1
 assumes A \subseteq events
 obtains e where e \in (space\ M - \bigcup A)
proof -
 have prob (space M - \bigcup A) > 0 using Union-bound-avoid assms by simp
 then show ?thesis using that prob-qt-zero-obtain
  by (metis all-not-in-conv measure-empty verit-comp-simplify (2) verit-comp-simplify 1(3))
qed
```

```
\mathbf{lemma} \ \mathit{Union-bound-obtain-compl-fun:}
 assumes finite A
 assumes (\sum a \in A. \ prob \ (f \ a)) < 1
 \mathbf{assumes}\ f\ `A\subseteq\mathit{events}
 obtains e where e \in (space\ M - \bigcup (f'\ A))
proof -
 obtain e where e \in space M and e \notin \bigcup (f'A)
   using assms Union-bound-obtain-fun by blast
 then have e \in space M - \bigcup (f \cdot A) by simp
 then show ?thesis by fact
qed
end
end
     Lovasz Local Lemma
7
theory Lovasz-Local-Lemma
 imports
   Basic-Method
   HOL-Real-Asymp.Real-Asymp
   Indep	ext{-}Events
   Digraph-Extensions
begin
lemma ln-add-one-self-less-self:
 fixes x :: real
 assumes x > 0
 shows ln(1+x) < x
proof -
 have 0 \le x \ 0 < x \ exp \ x > 0 \ 1+x > 0 using assms by simp+
 have 1 + x < 1 + x + x^2 / 2
   using \langle \theta < x \rangle by auto
 also have \dots \leq exp \ x
   using exp-lower-Taylor-quadratic[OF \langle 0 \leq x \rangle] by blast
 finally have 1 + x < exp(x) by blast
 then have ln(1+x) < ln(exp(x))
   using ln-less-cancel-iff [OF \langle 1+x > 0 \rangle \langle exp(x) > 0 \rangle] by auto
 also have \dots = x using ln\text{-}exp by blast
 finally show ?thesis by auto
qed
lemma exp-1-bounds:
 assumes x > (\theta::real)
 shows exp \ 1 > (1 + 1 / x) \ powr \ x \ and \ exp \ 1 < (1 + 1 / x) \ powr \ (x+1)
```

proof -

```
have ln(1 + 1 / x) < 1 / x
   using ln-add-one-self-less-self assms by simp
 thus exp \ 1 > (1 + 1 / x) \ powr \ x \ using \ assms
   by (simp add: field-simps powr-def)
 have 1 < (x + 1) * ln ((x + 1) / x) (is - < ?f x)
 proof (rule DERIV-neg-imp-decreasing-at-top[where ?f = ?f])
   fix t assume t: x \leq t
   have (?f has-field-derivative (ln (1 + 1 / t) - 1 / t)) (at t)
     using t assms by (auto intro!: derivative-eq-intros simp:divide-simps)
   moreover have ln(1+1/t)-1/t<0
     using ln-add-one-self-less-self[of 1 / t] t assms by auto
   ultimately show \exists y. ((\lambda t. (t + 1) * ln ((t + 1) / t)) has-real-derivative y)
(at\ t) \land y < 0
    by blast
 qed real-asymp
 thus exp \ 1 < (1 + 1 / x) \ powr \ (x + 1)
   using assms by (simp add: powr-def field-simps)
qed
```

7.1 Random Lemmas on Product Operator

```
lemma prod-constant-ge:
 fixes y :: 'b :: \{comm-monoid-mult, linordered-semidom\}
 assumes card A \leq k
 assumes y \ge 0 and y < 1
 shows (\prod x \in A. y) \ge y \hat{k}
using assms(1) proof (induct A rule: infinite-finite-induct)
  case (infinite A)
 then show ?case using assms(2) assms(3) by (simp add: power-le-one)
next
 case empty
 then show ?case using assms(2) assms(3) by (simp add: power-le-one)
 case (insert x F)
 then show ?case using assms(2) assms(3)
   by (metis nless-le power-decreasing prod-constant)
qed
lemma (in linordered-idom) prod-mono3:
 assumes finite J I \subseteq J \land i. i \in J \Longrightarrow 0 \le f i \ (\land i. \ i \in J \Longrightarrow f \ i \le 1)
 shows prod f J \leq prod f I
proof -
 have prod f J \leq (\prod i \in J. \ if \ i \in I \ then \ f \ i \ else \ 1)
   using assms by (intro prod-mono) auto
 also have \dots = prod f I
   using \langle finite \ J \rangle \ \langle I \subseteq J \rangle by (simp \ add: prod.If\text{-}cases \ Int\text{-}absorb1)
 finally show ?thesis.
qed
```

```
lemma bij-on-ss-image:
 assumes A \subseteq B
 assumes bij-betw q B B'
 shows g' A \subseteq B'
 using assms by (auto simp add: bij-betw-apply subsetD)
lemma bij-on-ss-proper-image:
 assumes A \subset B
 assumes bij-betw g B B'
 shows g ' A \subset B'
proof (intro psubsetI subsetI)
 fix x assume x \in g ' A
 then show x \in B' using assms bij-betw-apply subsetD by fastforce
next
 show q 'A \neq B' using assms by (auto) (smt (verit, best) bij-betw-iff-bijections
imageE\ subset-eq)
qed
7.2
      Dependency Graph Concept
Uses directed graphs. The pair_digraph locale was sufficient as multi-edges
are irrelevant
locale dependency-digraph = pair-digraph G :: nat pair-pre-digraph + prob-space
M :: 'a measure
 for GM + fixes F :: nat \Rightarrow 'a set
 assumes vss: F (pverts G) \subseteq events
 assumes mis: \bigwedge i. i \in (pverts\ G) \Longrightarrow mutual\text{-}indep\text{-}events\ (F\ i)\ F\ ((pverts\ G))
-(\{i\} \cup neighborhood\ i))
begin
lemma dep-graph-indiv-nh-indep:
 assumes A \in pverts \ G \ B \in pverts \ G
 assumes B \notin neighborhood A
 assumes A \neq B
 assumes prob (F B) \neq 0
 shows \mathcal{P}((F A) \mid (F B)) = prob (F A)
proof-
 have B \notin \{A\} \cup neighborhood A using assms(3) assms(4) by auto
 then have B \in (pverts\ G - (\{A\} \cup neighborhood\ A)) using assms(2) by auto
 moreover have mutual-indep-events (F A) F (pverts G - (\{A\} \cup neighborhood)
A)) using mis assms by auto
 ultimately show ?thesis using
     assms(5) \ assms(1) \ assms(2) \ vss \ mutual-indep-ev-cond-single \ by \ auto
qed
lemma mis-subset:
 assumes i \in pverts G
```

assumes $A \subseteq pverts G$

```
shows mutual-indep-events (F \ i) \ F \ (A - (\{i\} \cup neighborhood \ i))
proof (cases A \subseteq (\{i\} \cup neighborhood i))
 {\bf case}\ {\it True}
  then have A - (\{i\} \cup neighborhood\ i) = \{\} by auto
  then show ?thesis using mutual-indep-ev-empty vss assms(1) by blast
  case False
  then have A - (\{i\} \cup neighborhood\ i) \subseteq pverts\ G - (\{i\} \cup neighborhood\ i)
using assms(2) by auto
 then show ?thesis using mutual-indep-ev-subset mis assms(1) by blast
qed
{f lemma} dep-graph-indep-events:
 assumes A \subseteq pverts G
 assumes \bigwedge Ai. Ai \in A \Longrightarrow out\text{-}degree \ G \ Ai = 0
 shows indep-events F A
proof -
 have \bigwedge Ai. Ai \in A \Longrightarrow (mutual\text{-}indep\text{-}events (F Ai) F (A - {Ai}))
   fix Ai assume ain: Ai \in A
   then have (neighborhood\ Ai) = \{\}\ using\ assms(2)\ neighborhood-empty-iff\ by
simp
  moreover have mutual-indep-events (FAi) F(A - (\{Ai\} \cup neighborhood\ Ai))
     using mis-subset[of Ai A] ain assms(1) by auto
   ultimately show mutual-indep-events (F Ai) F (A - \{Ai\}) by simp
 then show ?thesis using mutual-indep-ev-set-all[of F A] vss by auto
qed
end
       Lovasz Local General Lemma
7.3
context prob-space
begin
lemma compl-sets-index:
 assumes F ' A \subseteq events
 shows (\lambda i. space M - F i) 'A \subseteq events
proof (intro subsetI)
  fix x assume x \in (\lambda i. space M - F i) ' A
 then obtain i where xeq: x = space M - F i and i \in A by blast
 then have F i \in events using assms by auto
 thus x \in events using sets.compl-sets xeq by simp
qed
\mathbf{lemma}\ lovas z\text{-}inductive\text{-}base:
 assumes dependency-digraph G M F
```

```
assumes \bigwedge Ai. Ai \in A \Longrightarrow g Ai \ge 0 \land g Ai < 1
 assumes \bigwedge Ai. Ai ∈ A \Longrightarrow (prob\ (FAi) ≤ (gAi) * (\prod Aj ∈ pre-digraph.neighborhood)
G Ai. (1 - (g Aj)))
  assumes Ai \in A
 assumes pverts G = A
  shows prob (F Ai) \leq g Ai
proof -
  have genprod: \bigwedge S. S \subseteq A \Longrightarrow (\prod Aj \in S. (1 - (g Aj))) \le 1 \text{ using } assms(2)
   by (smt (verit) prod-le-1 subsetD)
  interpret dg: dependency-digraph G M F using assms(1) by simp
  have dg.neighborhood Ai \subseteq A using assms(3) dg.neighborhood-wf assms(5) by
  then show ?thesis
   using genprod assms mult-left-le by (smt (verit))
lemma lovasz-inductive-base-set:
 assumes N \subseteq A
 assumes \bigwedge Ai. Ai \in A \Longrightarrow g Ai \geq 0 \land g Ai < 1
 assumes \bigwedge Ai. Ai \in A \Longrightarrow (prob (FAi) \le (gAi) * (\prod Aj \in N. (1 - (gAj))))
 assumes Ai \in A
  shows prob (F Ai) \leq g Ai
proof -
  have genprod: \bigwedge S. S \subseteq A \Longrightarrow (\prod Aj \in S. (1 - (g Aj))) \le 1 using assms(2)
   by (smt (verit) prod-le-1 subsetD)
  then show ?thesis
    using genprod assms mult-left-le by (smt (verit))
qed
lemma split-prob-lt-helper:
  assumes dep-graph: dependency-digraph G M F
  assumes dep-graph-verts: pverts G = A
 assumes fbounds: \bigwedge i . i \in A \Longrightarrow f i \geq 0 \land f i < 1
  assumes prob-Ai: \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \le
   (fAi) * (\prod Aj \in pre\text{-}digraph.neighborhood GAi . (1 - (fAj)))
  assumes aiin: Ai \in A
  assumes N \subseteq pre-digraph.neighborhood G Ai
  assumes \exists P1 P2. \mathcal{P}(F Ai \mid \bigcap Aj \in S. space M - F Aj) = P1/P2 \land
    P1 \leq prob \ (F \ Ai) \land \ P2 \geq (\prod \ Aj \in N \ . \ (1 - (f \ Aj)))
  shows \mathcal{P}(F Ai \mid \bigcap Aj \in S. \ space M - F Aj) \leq f Ai
proof -
  interpret dg: dependency-digraph \ G \ M \ F \ using \ assms(1) by simp
  have lt1: \land Aj. Aj \in A \Longrightarrow (1 - (f Aj)) \leq 1
   using assms(3) by auto
  have gt\theta: \bigwedge Aj. Aj \in A \Longrightarrow (1 - (fAj)) > \theta using assms(3) by auto
  then have prodgt\theta: \bigwedge S'. S' \subseteq A \Longrightarrow (\prod Aj \in S' . (1 - fAj)) > 0
   using prod-pos by (metis subsetD)
  obtain P1 P2 where peq: \mathcal{P}(F \ Ai \mid \bigcap Aj \in S. \ space \ M - F \ Aj) = P1/P2 and
  P1 \leq prob \ (F \ Ai)
```

```
and p2gt: P2 \ge (\prod Aj \in N \cdot (1 - (fAj))) using assms(7) by auto
   then have P1 \leq (f Ai) * (\prod Aj \in pre\text{-}digraph.neighborhood } G Ai . (1 - (f Aj)))
       using prob-Ai aiin by fastforce
  moreover have P2 \geq (\prod Aj \in dq.neighborhood Ai \cdot (1 - (fAj))) using assms(6)
        gt0 dq.neighborhood-wf dep-graph-verts subset-iff lt1 dq.neighborhood-finite p2gt
      by (smt (verit, ccfv-threshold) prod-mono3)
    (Aj))/(\prod Aj \in dg.neighborhood Ai \cdot (1 - (f Aj))))
       using frac-le[of (f Ai) * (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f Aj))) P1 (\prod Aj \in dg.neighborhood Ai . (1 - (f A
Aj \in dg.neighborhood Ai \cdot (1 - (f Aj)))
          prodgt0[of\ dg.neighborhood\ Ai]\ assms(3)\ dg.neighborhood\ wf[of\ Ai]
      by (simp\ add:\ assms(2)\ bounded-measure\ finite-measure-compl\ assms(5))
    then show ?thesis using prodgt0[of dg.neighborhood Ai] dg.neighborhood-wf[of
Ai assms(2) peq
      by (metis divide-eq-imp rel-simps(70))
qed
lemma lovasz-inequality:
   assumes finS: finite S
   assumes sevents: F : S \subseteq events
   assumes S-subset: S \subseteq A - \{Ai\}
   assumes prob2: prob (\bigcap Aj \in S \cdot (space M - (F Aj))) > 0
   assumes irange: i \in \{0.. < card S1\}
   assumes bb: bij-betw g \{0..< card S1\} S1
   assumes s1-def: S1 = (S \cap N)
   assumes s2-def: S2 = S - S1
   assumes ne-cond: i > 0 \lor S2 \neq \{\}
   assumes hyps: \bigwedge B. B \subset S \Longrightarrow g \ i \in A \Longrightarrow B \subseteq A - \{g \ i\} \Longrightarrow B \neq \{\} \Longrightarrow
       0 < prob \ (\bigcap Aj \in B. \ space \ M - F \ Aj) \Longrightarrow \mathcal{P}(F \ (g \ i) \ | \bigcap Aj \in B. \ space \ M - F \ Aj)
Aj) \leq f(gi)
   shows \mathcal{P}((space\ M-F\ (g\ i))\mid (\bigcap\ ((\lambda\ i.\ space\ M-F\ i)\ `g\ `\{\theta...< i\}\cup ((\lambda\ i.\ f))\mid (\bigcap\ ((\lambda\ i.\ space\ M-F\ i)\ `g\ `f\})))
space\ M-F\ i)\ `S2))))
       \geq (1 - f(g i))
proof -
   let ?c = (\lambda \ i. \ space \ M - F \ i)
    define S1ss where S1ss = g '\{0...< i\}
   have i \notin \{0...< i\} by simp
    moreover have \{0..< i\} \subseteq \{0..< card\ S1\} using irange by simp
    ultimately have ginotin1: g \ i \notin S1ss using bb \ S1ss-def irange
      by (smt (verit, best) bij-betw-iff-bijections image-iff subset-eq)
     have ginotin2: g i \notin S2 unfolding s2-def using irange bb by (simp add):
bij-betwE)
   have giS: g \ i \in S using irange bij-betw-imp-surj-on imageI Int-iff s1-def bb
      by blast
   have \{0...< i\} \subset \{0...< card S1\} using irange by auto
   then have S1ss \subset S1 unfolding S1ss-def using irange bb bij-on-ss-proper-image
by meson
```

```
then have sss: S1ss \cup S2 \subset S using s1-def s2-def by blast
  moreover have xsiin: g \ i \in Ausing \ irange
   using giS S-subset by (metis DiffE in-mono)
  moreover have ne: S1ss \cup S2 \neq \{\} using ne-cond S1ss-def by auto
  moreover have S1ss \cup S2 \subseteq A - \{g \ i\} using S-subset sss ginotin1 ginotin2
 moreover have gt02: 0 < prob (\bigcap (?c `(S1ss \cup S2))) using finS prob2 sevents
    prob-inter-ss-lt-index[of S ?c S1ss \cup S2] ne sss compl-sets-index[of F S] by
fastforce
  ultimately have ltfAi: \mathcal{P}(F(g\ i) \mid \bigcap (?c\ `(S1ss \cup S2))) \leq f(g\ i)
   using hyps[of S1ss \cup S2] by blast
  have ?c \cdot (S1ss \cup S2) \subseteq events \text{ using } sss \langle S1ss \subset S1 \rangle compl-subset-in-events
sevents s1-def s2-def
   by fastforce
  then have \bigcap (?c '(S1ss \cup S2)) \in events using Inter-event-ss sss
    by (meson \ \langle S1ss \cup S2 \neq \{\}) \ finite-imageI \ finite-subset \ image-is-empty \ finS
subset-iff-psubset-eq)
 moreover have F(g|i) \in events using xsiin giS sevents by auto
  ultimately have \mathcal{P}(?c\ (g\ i)\ |\ \bigcap\ (?c\ `(S1ss \cup S2))) \geq 1 - f\ (g\ i)
   using cond-prob-neg[of \cap (?c `(S1ss \cup S2)) F (g i)] gt02 xsiin ltfAi by <math>simp
  then show \mathcal{P}(?c\ (g\ i)\ |\ (\bigcap\ (?c\ 'g\ '\{0...< i\}\cup (?c\ 'S2)))) \ge (1-f\ (g\ i))
   by (simp add: S1ss-def image-Un)
qed
    The main helper lemma
lemma lovasz-inductive:
 assumes finA: finite A
 assumes Aevents: F 'A \subseteq events
 assumes fbounds: \bigwedge i . i \in A \Longrightarrow f i \geq 0 \land f i < 1
 assumes dep-graph: dependency-digraph G M F
 assumes dep-graph-verts: pverts G = A
 assumes prob-Ai: \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \le
   (fAi) * (\prod Aj \in pre\text{-}digraph.neighborhood GAi . (1 - (fAj)))
 assumes Ai-in: Ai \in A
 assumes S-subset: S \subseteq A - \{Ai\}
 assumes S-nempty: S \neq \{\}
 assumes prob2: prob (\bigcap Aj \in S . (space M - (FAj))) > 0
 shows \mathcal{P}((F Ai) \mid (\bigcap Aj \in S \cdot (space M - (F Aj)))) \leq f Ai
proof -
 let ?c = \lambda i. space M - F i
 have ceq: \bigwedge A. ?c 'A = ((-) (space M)) '(F 'A) by auto
  interpret dg: dependency-digraph G M F using assms(4) by simp
 have finS: finite S using assms finite-subset by (metis finite-Diff)
 show \mathcal{P}((FAi) \mid (\bigcap Aj \in S : (space M - (FAj)))) \leq fAi
   using finS Ai-in S-subset S-nempty prob2
  proof (induct S arbitrary: Ai rule: finite-psubset-induct)
   case (psubset S)
   define S1 where S1 = (S \cap dg.neighborhood Ai)
   define S2 where S2 = S - S1
```

```
have \bigwedge s \cdot s \in S2 \Longrightarrow s \in A - (\{Ai\} \cup dg.neighborhood Ai)
     using S1-def S2-def psubset.prems(2) by blast
   then have s2smis: S2 \subseteq A - (\{Ai\} \cup dg.neighborhood Ai) by auto
   have sevents: F : S \subseteq events \text{ using } assms(2) \text{ } psubset.prems(2) \text{ by } auto
   then have s1events: F : S1 \subseteq events using S1-def by auto
    have finS2: finite S2 and finS1: finite S1 using S2-def S1-def by (simp-all
add: psubset(1)
  have mutual-indep-set (FAi) (F 	ildot S2) using dq.mis[ofAi] mutual-indep-ev-subset
s2smis
     psubset.prems(1) dep-graph-verts mutual-indep-iff by auto
   then have mis2: mutual-indep-set (FAi) (?c `S2)
     using mutual-indep-events-compl[of F 'S2 F Ai] finS2 ceq[of S2] by simp
   have scompl-ev: ?c `S \subseteq events
     using compl-sets-index sevents by simp
   then have s2cev: ?c 'S2 \subseteq events using S2-def scompl-ev by blast
   have (\bigcap Aj \in S \text{ . space } M - (FAj)) \subseteq (\bigcap Aj \in S2 \text{ . space } M - (FAj))
     unfolding S2-def using Diff-subset image-mono Inter-anti-mono by blast
    then have S2 \neq \{\} \implies prob \ (\bigcap Aj \in S2 \ . \ space \ M - (FAj)) \neq 0 \ using
psubset.prems(4) s2cev
    finS2 Inter-event-ss[of ?c 'S2] finite-measure-mono[of \bigcap (?c 'S) \bigcap (?c 'S2)]
   then have s2prob-eq: S2 \neq \{\} \Longrightarrow \mathcal{P}((FAi) \mid (\bigcap (?c `S2))) = prob (FAi)
using assms(2)
      mutual-indep-cond-full[of F Ai ?c ' S2] psubset.prems(1) s2cev finS2 mis2
by simp
   show ?case
   proof (cases S1 = \{\})
     case True
   then show ?thesis using lovasz-inductive-base[of G F A f Ai] psubset.prems(3)
S2-def
         assms(3) assms(4) psubset.prems(1) prob-Ai s2prob-eq dep-graph-verts by
(simp)
   next
     case s1F: False
     then have csgt0: card S1 > 0 using s1F finS1 card-gt-0-iff by blast
   obtain q where bb: bij-betw q {0...< card S1} S1 using finS1 ex-bij-betw-nat-finite
by auto
     have igt\theta: \bigwedge i. i \in \{0.. < card\ S1\} \Longrightarrow 1 - f\ (g\ i) \ge 0
       using S1-def psubset.prems(2) bb bij-betw-apply assms(3) by fastforce
     have s1ss: S1 \subseteq dg.neighborhood Ai using S1-def by auto
     moreover have \exists P1 P2. \mathcal{P}(F Ai \mid \bigcap Aj \in S. space M - F Aj) = P1/P2 \land
P1 \leq prob \ (F \ Ai)
       \land P2 \ge (\prod Aj \in S1 \cdot (1 - (fAj)))
     proof (cases S2 = \{\})
       case True
       then have Seq: S1 = S using S1-def S2-def by auto
         have inter-eventsS: (\bigcap Aj \in S : (space M - (F Aj))) \in events using
psubset.prems assms
         by (meson measure-notin-sets zero-less-measure-iff)
```

```
then have peq: \mathcal{P}((F Ai) \mid (\bigcap Aj \in S1 . ?c Aj)) =
           prob \ ((\bigcap Aj \in S1 . ?c Aj) \cap (F Ai))/prob \ ((\bigcap (?c `S1)))
           (is \mathcal{P}((F \ Ai) \mid (\bigcap \ Aj \in S1 \ . \ ?c \ Aj)) = ?Num/?Den)
         using cond-prob-ev-def[of (\bigcap Aj \in S1 . (space M - (FAj))) FAi]
         using Seq psubset.prems(1) assms(2) by blast
         have ?Num \le prob \ (F \ Ai) using finite-measure-mono assms(2) psub-
set.prems(1) by simp
       moreover have ?Den \ge (\prod Aj \in S1 \cdot (1 - (f Aj)))
       proof -
         have pcond: prob (\bigcap (?c `S1)) =
               \{0..< i\}))))
            using prob-cond-inter-index-fn-compl[of S1 F] Seq s1events psubset(1)
s1F \ bb \ \mathbf{by} \ auto
        have ineq: \land i. i \in \{1... < card S1\} \Longrightarrow \mathcal{P}(?c (g i) \mid (\bigcap (?c `g `\{0... < i\})))
\geq (1 - (f(g i)))
              using lovasz-inequality[of S1 F A Ai - S1 g S1 {} f] sevents finS
psubset.prems(2)
            psubset.prems(4) bb psubset.hyps(2)[of - g -] Seq by fastforce
         have (   i. i \in \{1... < card S1\} \implies 1 - f (g i) \ge 0 ) using igt0 by simp
         then have (\prod i \in \{1..<(card\ S1)\}\ .\ \mathcal{P}(?c\ (g\ i) \mid (\bigcap (?c\ 'g\ '\{0..< i\}))))
           \geq (\prod i \in \{1..<(card\ S1)\}\ .\ (1-(f\ (g\ i))))
           using ineq prod-mono by (smt(verit, ccfv-threshold))
         moreover have prob \ (?c \ (g \ \theta)) \ge (1 - f \ (g \ \theta))
         proof -
         have g0in: g \ 0 \in A \text{ using } bb \ csgt0 \text{ using } psubset.prems(2) \ bij-betwE \ Seq
by fastforce
         then have prob \ (?c \ (q \ 0)) = 1 - prob \ (F \ (q \ 0))  using Aevents by (simp)
add: prob-compl)
          then show ?thesis using lovasz-inductive-base[of G F A f g 0]
              prob-Ai \ assms(4) \ dep-graph-verts \ fbounds \ g0in \ by \ auto
        moreover have 0 \le (\prod i = 1... < card S1. 1 - f(g i)) using igt0 by (simp)
add: prod-nonneg)
        ultimately have prob (\bigcap (?c `S1)) \ge (1 - (f (g \theta))) * (\prod i \in \{1..<(card \theta)\}) 
S1) . (1 - (f(qi)))
           using pcond igt0 mult-mono'[of (1 - (f(g \theta)))] by fastforce
          moreover have \{0..< card\ S1\} = \{0\} \cup \{1..< card\ S1\} using csgt0 by
auto
          ultimately have prob (\bigcap (?c \cdot S1)) \ge (\prod i \in \{0..<(card S1)\} \cdot (1-(f))
(g \ i)))) by auto
         moreover have (\prod i \in \{0..<(card\ S1)\}\ .\ (1-(f\ (g\ i))))=(\prod i \in S1\ .
(1 - (f(i)))
           using prod.reindex-bij-betw bb by simp
         ultimately show ?thesis by simp
       ultimately show ?thesis using peg Seg by blast
     next
       case s2F: False
```

```
using s2F finS2 s2cev Inter-event-ss[of ?c 'S2] by auto
             have split: (\bigcap Aj \in S \cdot (?c Aj)) = (\bigcap (?c `S1)) \cap (\bigcap (?c `S2))
                 using S1-def S2-def by auto
             then have \mathcal{P}(F Ai \mid (\bigcap Aj \in S . (?c Aj))) = \mathcal{P}(F Ai \mid (\bigcap (?c `S1)) \cap (\bigcap Aj \in S))
(?c `S2)) by simp
                 moreover have s2n0: prob ( (?c 'S2)) \neq 0 using psubset.prems(4)
S2-def
                      by (metis Int-lower2 split finite-measure-mono measure-le-0-iff s2inter
semiring-norm(137))
             moreover have \bigcap (?c 'S1) \in events
                 using finS1 S1-def scompl-ev s1F Inter-event-ss[of (?c 'S1)] by auto
             ultimately have peq: \mathcal{P}(F \ Ai \mid (\bigcap \ Aj \in S \ . \ (?c \ Aj))) = \mathcal{P}(F \ Ai \cap (\bigcap \ (?c \ Aj)))
 (S1) | \bigcap (?c 'S2))/
                      \mathcal{P}(\bigcap (?c \ `S1) \mid \bigcap (?c \ `S2)) \text{ (is } \mathcal{P}(F \ Ai \mid (\bigcap Aj \in S \ . \ (?c \ Aj))) =
 ?Num/?Den)
                using cond-prob-dual-intersect[of F Ai \cap (?c `S1) \cap (?c `S2)] assms(2)
                    psubset.prems(1) s2inter by fastforce
               have ?Num \leq P(F Ai \mid \bigcap (?c `S2)) using cond-prob-inter-set-lt[of F Ai
\bigcap (?c 'S2) ?c ' S1]
                   using s1events finS1 psubset.prems(1) assms(2) s2inter finite-imageI[of
S1 F by blast
             then have ?Num \le prob \ (F \ Ai) using s2F \ s2prob-eq by auto
              moreover have ?Den \ge (\prod Aj \in S1 \cdot (1 - (f Aj))) using psubset.hyps
             proof -
               have prob (\bigcap (?c `S2)) > 0 using s2n0 by (meson zero-less-measure-iff)
                 then have pcond: \mathcal{P}(\bigcap (?c 'S1) | \bigcap (?c 'S2)) =
                        (\prod i = 0.. < card S1 \cdot \mathcal{P}(?c (g i) \mid (\bigcap (?c 'g '\{0.. < i\} \cup (?c 'S2)))))
                       using prob-cond-Inter-index-cond-compl-fn[of S1 ?c 'S2 F] s1F finS1
s2cev finS2 s2F
                        s1events bb by auto
                 have \bigwedge i. i \in \{0.. < card S1\} \Longrightarrow \mathcal{P}(?c (g i) | (\bigcap (?c `g `\{0.. < i\}) \cup (?c
 (S2))) \geq (1 - f(g i))
                  using lovasz-inequality[of S F A Ai - S1 g dg.neighborhood Ai S2 f] S1-def
S2-def sevents
                            finS psubset.prems(2) psubset.prems(4) bb psubset.hyps(2)[of - q - ]
psubset(1) s2F by meson
                then have c1: \mathcal{P}(\bigcap (?c 'S1) \mid \bigcap (?c 'S2)) \geq (\prod i = 0... < card S1 . (1 - f))
(q i))
                     using prod-mono igt0 pcond bb by (smt(verit, ccfv-threshold))
                  then have \mathcal{P}(\bigcap (?c \ `S1) \mid \bigcap (?c \ `S2)) \ge (\prod i \in \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S1\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S2\} \ . \ (1 - f) = \{0... < card \ S3\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f) = \{0... < card \ S4\} \ . \ (1 - f
(g \ i)) by blast
                  moreover have (\prod i \in \{0.. < card S1\} . (1 - f (g i))) = (\prod x \in S1 . (1 - f (g i)))
-f(x)) using bb
                    using prod.reindex-bij-betw by fastforce
                 ultimately show ?thesis by simp
              ultimately show ?thesis using peq by blast
          qed
```

have $s2inter: \bigcap (?c `S2) \in events$

```
ultimately show ?thesis by (intro split-prob-lt-helper[of G F A])
        (simp-all add: dep-graph dep-graph-verts fbounds psubset.prems(1) prob-Ai)
   qed
 qed
qed
    The main lemma
theorem lovasz-local-general:
  assumes A \neq \{\}
  assumes F ' A \subseteq events
  assumes finite A
  assumes \bigwedge Ai \cdot Ai \in A \implies f Ai \geq 0 \land f Ai < 1
 assumes dependency-digraph G M F
 assumes \bigwedge Ai. Ai \in A \Longrightarrow (prob\ (F\ Ai) \le (f\ Ai) * (\prod\ Aj \in pre-digraph.neighborhood)
G \ Ai. \ (1 - (f \ Aj)))
  assumes pverts G = A
  shows prob (\bigcap Ai \in A : (space M - (FAi))) \geq (\prod Ai \in A : (1 - fAi)) (\prod Ai)
Ai \in A \cdot (1 - fAi) > 0
proof -
 show gt0: (\prod Ai \in A \cdot (1 - fAi)) > 0 using assms(4) by (simp \ add: \ prod-pos)
  let ?c = \lambda i. space M - F i
  interpret dg: dependency-digraph \ G \ M \ F \ using \ assms(5) by simp
  have general: \bigwedge Ai \ S. \ Ai \in A \Longrightarrow S \subseteq A - \{Ai\} \Longrightarrow S \neq \{\} \Longrightarrow prob \ (\bigcap Aj)
\in S . (?c Aj)) > 0
    \implies \mathcal{P}(F \ Ai \mid (\bigcap \ Aj \in S \ . \ (?c \ Aj))) \leq f \ Ai
   using assms lovasz-inductive[of A F f G] by simp
  have base: \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \le fAi
   using lovasz-inductive-base assms(4) assms(6) assms(5) assms(7) by blast
  show prob (\bigcap Ai \in A . (?c Ai)) \ge (\prod Ai \in A . (1 - f Ai))
   using assms(3) assms(1) assms(2) assms(4) general base
  proof (induct A rule: finite-ne-induct)
   case (singleton x)
   then show ?case using singleton.prems singleton prob-compl by auto
   case (insert x X)
   define Ax where Ax = ?c '(insert x X)
   have xie: F x \in events using insert.prems by simp
   have A'ie: \bigcap (?c 'X) \in events \text{ using } insert.prems \ insert.hyps \ \text{by } auto
    have (\bigwedge Ai \ S. \ Ai \in insert \ x \ X \Longrightarrow S \subseteq insert \ x \ X - \{Ai\} \Longrightarrow S \neq \{\} \Longrightarrow
prob \ (\bigcap Aj \in S \ . \ (?c \ Aj)) > 0
      \implies \mathcal{P}(F \ Ai \mid \bigcap \ (?c \ `S)) \leq f \ Ai) \ \mathbf{using} \ insert.prems \ \mathbf{by} \ simp
   then have (\bigwedge Ai \ S. \ Ai \in X \Longrightarrow S \subseteq X - \{Ai\} \Longrightarrow S \neq \{\} \Longrightarrow prob (\bigcap Aj)
\in S \cdot (?c Aj)) > 0
      \implies \mathcal{P}(F \ Ai \mid \bigcap \ (?c \ `S)) \leq f \ Ai) \ \mathbf{by} \ auto
   then have A'gt: (\prod Ai \in X. \ 1 - fAi) \leq prob (\bigcap (?c `X))
     using insert.hyps(4) insert.prems(2) insert.prems(1) insert.prems(4) by auto
     then have prob (\bigcap (?c 'X)) > 0 using insert.hyps insert.prems prod-pos
basic-trans-rules(22)
         diff-qt-0-iff-qt by (metis (no-types, lifting) insert-Diff insert-subset sub-
```

```
set-insertI)
   then have \mathcal{P}((?c\ x)\mid (\bigcap (?c\ `X)))=1-\mathcal{P}(F\ x\mid (\bigcap (?c\ `X)))
     using cond-prob-neg[of \cap (?c 'X) F x] xie A'ie by simp
    moreover have \mathcal{P}(F \mid (\bigcap (?c \mid X))) \leq f \mid x \text{ using } insert.prems(3)[of \mid x \mid X]
insert.hyps(2) insert(3)
        A'gt \langle 0 < prob ( \cap (?c 'X) ) \rangle by fastforce
   ultimately have pnxgt: \mathcal{P}((?c\ x) \mid (\bigcap (?c\ `X))) \geq 1 - f\ x\ \text{by } simp
   have xgt\theta: 1 - f x \ge 0 using insert.prems(2)[of x] by auto
   have prob \ (\bigcap Ax) = prob \ ((?c \ x) \cap \bigcap (?c \ `X)) using Ax-def by simp
   also have ... = prob (\bigcap (?c `X)) * \mathcal{P}((?c x) | (\bigcap (?c `X)))
     using prob-intersect-B xie A'ie by simp
   also have ... \geq (\prod Ai \in X. \ 1 - fAi) * (1 - fx) using A'gt \ pnxgt \ mult-left-le
        \langle 0 < prob (\bigcap (?c 'X)) \rangle xgt0 mult-mono by (smt(verit))
   finally have prob \ (\bigcap Ax) \ge (\prod Ai \in insert \ x \ X. \ 1 - f \ Ai)
     by (simp add: local.insert(1) local.insert(3) mult.commute)
   then show ?case using Ax-def by auto
  qed
qed
     Lovasz Corollaries and Variations
corollary lovasz-local-general-positive:
  assumes A \neq \{\}
  assumes F ' A \subseteq events
  assumes finite A
  assumes \bigwedge Ai \cdot Ai \in A \implies f Ai \geq 0 \land f Ai < 1
  assumes dependency-digraph G M F
  assumes \bigwedge Ai. Ai \in A \Longrightarrow (prob \ (F \ Ai) \le
   (f Ai) * (\prod Aj \in pre\text{-}digraph.neighborhood } G Ai. (1 - (f Aj))))
  assumes pverts G = A
  shows prob \ (\bigcap Ai \in A \ . \ (space \ M - (F \ Ai))) > 0
  using assms lovasz-local-general(1)[of A \ F \ f \ G] lovasz-local-general(2)[of A \ F \ f
G by simp
theorem lovasz-local-symmetric-dep-graph:
  fixes e :: real
  fixes d :: nat
  assumes A \neq \{\}
  assumes F ' A \subseteq events
  assumes finite A
  assumes dependency-digraph G M F
  assumes \bigwedge Ai. Ai \in A \Longrightarrow out\text{-}degree \ G \ Ai \leq d
  assumes \bigwedge Ai. Ai \in A \Longrightarrow prob (F Ai) \le p
  assumes exp(1)* p* (d + 1) \le 1
  assumes pverts G = A
  shows prob \ (\bigcap Ai \in A \ . \ (space M - (FAi))) > 0
proof (cases d = 0)
  case True
  interpret q: dependency-digraph G M F using assms(4) by simp
```

```
have indep-events F A using g.dep-graph-indep-events [of A] assms(8) assms(5)
True by simp
 moreover have p < 1
 proof -
   have exp(1) * p \le 1 using assms(7) True by simp
  then show ?thesis using exp-qt-one less-1-mult linorder-neqE-linordered-idom
     verit-prod-simplify(2) by (smt (verit) mult-le-cancel-left1)
 qed
 ultimately show ?thesis
  using complete-indep-bound3[of A F] assms(2) assms(1) assms(3) assms(6) by
force
next
 case False
 define f :: nat \Rightarrow real where f \equiv (\lambda Ai \cdot 1/(d+1))
 then have flounds: \bigwedge Ai. f Ai \ge 0 \land f Ai < 1 using f-def False by simp
 interpret dg: dependency-digraph G M F using assms(4) by auto
 have \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \leq (fAi) * (\prod Aj \in dq.neighborhood Ai.
(1 - (f Aj))
 proof -
   fix Ai assume ain: Ai \in A
   have d-boundslt1: (1/(d+1)) < 1 and d-boundsgt0: (1/(d+1)) > 0 using
False by fastforce+
   have d-bounds2: (1 - (1/(d+1)))^d < 1 using False
    by(simp add: field-simps) (smt (verit) of-nat-0-le-iff power-mono-iff)
   have d-bounds0: (1 - (1/(d+1)))^d > 0 using False by (simp)
   have exp(1) > (1 + 1/d) powr d using exp-1-bounds(1) False by simp
   then have exp(1) > (1 + 1/d)^{\hat{}} d using False by (simp add: powr-realpow
zero-compare-simps(2))
   moreover have 1/(1+1/d)\hat{d} = (1-(1/(d+1)))\hat{d}
   proof -
    have 1/(1+1/d)\hat{d} = 1/((d/d) + 1/d)\hat{d} by (simp add: field-simps)
    then show ?thesis by (simp add: field-simps)
   ultimately have exp-lt: 1/exp(1) < (1 - (1/(d+1)))^d
   by (metis d-bounds0 frac-less2 less-eq-real-def of-nat-zero-less-power-iff power-eq-if
zero-less-divide-1-iff)
   then have (1/(d+1))*(1-(1/(d+1)))^d > (1/(d+1))*(1/exp(1))
    using exp-lt mult-strict-left-mono[of 1/\exp(1) (1 - (1/(d+1)))^d (1/(d+1))]
d-boundslt1
    by simp
   then have (1/(d+1))*(1-(1/(d+1)))^d > (1/((d+1)*exp(1))) by auto
   then have gtp: (1/(d+1))*(1-(1/(d+1)))^d > p
   by (smt (verit, ccfv-SIG) d-boundslt1 d-boundsgt0 assms(7) divide-divide-eq-left
divide-less-cancel
     divide-less-eq divide-nonneg-nonpos nonzero-mult-div-cancel-left not-exp-le-zero)
```

```
have card (dg.neighborhood Ai) \leq d using assms(5) dg.out-degree-neighborhood
ain by auto
   then have (\prod Aj \in dg.neighborhood Ai \cdot (1 - (1/(d+1)))) \ge (1 - (1/(d+1)))
+ 1)))^d
   using prod\text{-}constant\text{-}ge[of\ dg.neighborhood\ Ai\ d\ 1-(1/d+1)]\ using\ d\text{-}boundslt1
by auto
   then have (1/(d+1)) * (\prod Aj \in dg.neighborhood Ai . (1-(1/(d+1))))
\geq (1/(d+1))*(1-(1/(d+1)))^d
     by (simp add: divide-right-mono)
   then have (1/(d+1)) * (\prod Aj \in dg.neighborhood Ai . (1-(1/(d+1))))
     using gtp by simp
   then show prob (F Ai) \le f Ai * (\prod Aj \in dg.neighborhood Ai . (1 - f Aj))
     using assms(6) \langle Ai \in A \rangle f-def by force
 then show ?thesis using lovasz-local-general-positive[of A F f G]
     assms(4) \ assms(1) \ assms(2) \ assms(3) \ assms(8) \ fbounds \ by \ auto
qed
corollary lovasz-local-symmetric4gt:
 fixes e :: real
 fixes d :: nat
 assumes A \neq \{\}
 assumes F : A \subseteq events
 assumes finite A
 assumes dependency-digraph G M F
 assumes \bigwedge Ai. Ai \in A \Longrightarrow out\text{-}degree \ G \ Ai \leq d
 assumes \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \le p
 assumes 4 * p * d \leq 1
 assumes d \geq 3
 assumes pverts G = A
 shows prob (\bigcap Ai \in A : (space M - F Ai)) > 0
proof -
 have exp(1)* p* (d + 1) \leq 1
 proof (cases p = \theta)
   \mathbf{case} \ \mathit{True}
   then show ?thesis by simp
 next
   case False
    then have pgt: p > 0 using assms(1) assms(6) assms(3) ex-min-if-finite
less-eq-real-def
   by (meson basic-trans-rules(23) basic-trans-rules(24) linorder-neqE-linordered-idom
measure-nonneg)
   have 3*(d+1) \le 4*d by (simp\ add:\ field\ simps\ assms(8))
   then have exp(1) * (d + 1) \le 4 * d
     using exp-le exp-gt-one[of 1] assms(8)
     by (smt (verit, del-insts) Num.of-nat-simps(2) Num.of-nat-simps(5) le-add2
le-eq-less-or-eq
     mult-right-mono nat-less-real-le numeral.simps(3) numerals(1) of-nat-numeral)
```

```
then have exp(1)*(d+1)*p \le 4*d*p using pgt by simp
   then show ?thesis using assms(7) by (simp add: field-simps)
 then show ?thesis using assms lovasz-local-symmetric-dep-graph[of A F G d p]
by auto
\mathbf{qed}
\mathbf{lemma}\ lovasz\text{-}local\text{-}symmetric 4\text{:}
 fixes e :: real
 fixes d :: nat
 assumes A \neq \{\}
 assumes F ' A \subseteq events
 assumes finite A
 assumes dependency-digraph G M F
 assumes \bigwedge Ai. Ai \in A \Longrightarrow out\text{-}degree \ G \ Ai \le d
 assumes \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \leq p
 assumes 4 * p * d \leq 1
 assumes d \geq 1
 assumes pverts G = A
 shows prob \ (\bigcap Ai \in A \ . \ (space M - F Ai)) > 0
proof (cases d \geq 3)
 case True
  then show ?thesis using lovasz-local-symmetric4gt assms
   by presburger
next
 case d3: False
 define f :: nat \Rightarrow real where f \equiv (\lambda \ Ai \ . \ 1 \ / (d + 1))
 then have flounds: \bigwedge Ai. f Ai \ge 0 \land f Ai < 1 using f-def assms(8) by simp
 interpret dg: dependency-digraph G M F using <math>assms(4) by auto
  have \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \leq (fAi) * (\prod Aj \in dg.neighborhood Ai).
(1-(fAj)))
 proof -
   fix Ai assume ain: Ai \in A
    have d-boundst1: (1/(d+1)) < 1 and d-boundsqt0: (1/(d+1)) > 0 using
assms by fastforce+
   have plt: 1/(4*d) \ge p using assms(7) assms(8)
   by (metis (mono-tags, opaque-lifting) Num.of-nat-simps(5) bot-nat-0.not-eq-extremum
le-numeral-extra(2)
      more-arith-simps(11) mult-of-nat-commute nat-0-less-mult-iff of-nat-0-less-iff
of-nat-numeral
        pos-divide-less-eq\ rel-simps(51)\ verit-comp-simplify(3))
   then have gtp: (1/(d+1))* (1-(1/(d+1)))^d \ge p
   proof (cases d = 1)
     case False
     then have d = 2 using d\beta assms(8) by auto
     then show ?thesis using plt by (simp add: field-simps)
   qed (simp)
```

```
have card (dg.neighborhood Ai) \leq d using assms(5) dg.out-degree-neighborhood
ain by auto
   then have (\prod Aj \in dg.neighborhood Ai \cdot (1 - (1/(d+1)))) \ge (1 - (1/(d+1)))
   using prod-constant-ge[of dq.neighborhood Ai d 1 - (1/d+1)] using d-boundslt1
   then have (1/(d+1)) * (\prod Aj \in dg.neighborhood Ai . (1-(1/(d+1))))
\geq (1/(d+1))*(1-(1/(d+1)))^d
     by (simp add: divide-right-mono)
   then have (1/(d+1)) * (\prod Aj \in dg.neighborhood Ai . (1-(1/(d+1))))
     using gtp by simp
   then show prob (F Ai) \le f Ai * (\prod Aj \in dg.neighborhood Ai . (1 - f Aj))
     using assms(6) \langle Ai \in A \rangle f-def by force
 qed
 then show ?thesis
    using lovasz-local-general-positive[of\ A\ F\ f\ G]\ assms(4)\ assms(1)\ assms(2)
assms(3) \ assms(9) \ fbounds \ by \ auto
    Converting between dependency graph and indexed set representation
of mutual independence
lemma (in pair-digraph) g-Ai-simplification:
 assumes Ai \in A
 assumes g Ai \subseteq A - \{Ai\}
 assumes pverts G = A
 assumes parcs G = \{e \in A \times A : snd \ e \in (A - (\{fst \ e\} \cup (g \ (fst \ e))))\}
 shows g Ai = A - (\{Ai\} \cup neighborhood Ai)
proof -
  have g \ Ai = A - (\{Ai\} \cup \{v \in A \ . \ v \in (A - (\{Ai\} \cup (g \ (Ai))))\}) using
assms(2) by auto
 then have g Ai = A - (\{Ai\} \cup \{v \in A : (Ai, v) \in parcs G\})
   using Collect-cong assms(1) mem-Collect-eq assms(3) assms(4) by auto
 then show g Ai = A - (\{Ai\} \cup neighborhood Ai) unfolding neighborhood-def
using assms(3) by simp
qed
lemma define-dep-graph-set:
 assumes A \neq \{\}
 assumes F ' A \subseteq events
 assumes finite A
 assumes \bigwedge Ai. Ai \in A \Longrightarrow g \ Ai \subseteq A - \{Ai\} \land mutual\text{-}indep\text{-}events (F \ Ai) \ F
 shows dependency-digraph (| pverts = A, parcs = \{e \in A \times A : snd \ e \in (A - A) \}
(\{fst\ e\} \cup (g\ (fst\ e))))\}\ \ M\ F
   (is dependency-digraph ?GMF)
proof -
 interpret pd: pair-digraph ?G
   using assms(3)by (unfold-locales) auto
```

```
have \bigwedge Ai. Ai \in A \Longrightarrow g \ Ai \subseteq A - \{Ai\} \ \mathbf{using} \ assms(4) \ \mathbf{by} \ simp
    then have \bigwedge i. i \in A \Longrightarrow g \ i = A - (\{i\} \cup pd.neighborhood \ i)
       using pd.g-Ai-simplification[of - A g] pd.pair-digraph by auto
  then have dependency-digraph ?G M F using assms(2) assms(4) by (unfold-locales)
    then show ?thesis by simp
qed
lemma define-dep-graph-deg-bound:
   assumes A \neq \{\}
   assumes F ' A \subseteq events
   assumes finite A
   assumes \bigwedge Ai. Ai \in A \Longrightarrow g Ai \subseteq A - \{Ai\} \land card (g Ai) \ge card A - d - 1
        mutual-indep-events (F Ai) F (q Ai)
   shows \bigwedge Ai. Ai \in A \Longrightarrow
       out-degree () pverts = A, parcs = \{e \in A \times A : snd \ e \in (A - (\{fst \ e\} \cup (g \ (fst \ e) \cup (g \ (fst \ 
(e)))))) Ai \leq d
       (is \bigwedge Ai. Ai \in A \Longrightarrow out\text{-}degree (with\text{-}proj ?G) Ai \le d)
proof -
   interpret pd: dependency-digraph ?G M F using assms define-dep-graph-set by
   show \bigwedge Ai. Ai \in A \Longrightarrow out\text{-}degree ?G Ai \leq d
   proof -
       fix Ai assume a: Ai \in A
       then have geq: g \ Ai = A - (\{Ai\} \cup pd.neighborhood \ Ai)
            using assms(4)[of Ai] pd.pair-digraph pd.g-Ai-simplification[of Ai A g] by
simp
      then have pss: g Ai \subset A  using a  by auto
         then have card (g Ai) = card (A - (\{Ai\} \cup pd.neighborhood Ai)) using
assms(4) geq by argo
      moreover have ss: (\{Ai\} \cup pd.neighborhood.Ai) \subseteq A using pd.neighborhood.wf
a by simp
       moreover have finite (\{Ai\} \cup pd.neighborhood Ai)
           using calculation(2) assms(3) finite-subset by auto
        moreover have Ai \notin pd.neighborhood Ai using pd.neighborhood-self-not by
simp
       moreover have card \{Ai\} = 1 using is-singleton-altdef by auto
    moreover have cardss: card(\{Ai\} \cup pd.neighborhood Ai) = 1 + card(pd.neighborhood
Ai
         using calculation(5) calculation(4) card-Un-disjoint pd.neighborhood-finite by
auto
       ultimately have eq. card (q Ai) = card A - 1 - card (pd.neighborhood Ai)
           using card-Diff-subset[of (\{Ai\} \cup pd.neighborhood Ai) A] assms(3) by pres-
       have ggt: \bigwedge Ai. Ai \in A \Longrightarrow card (g Ai) \ge int (card A) - int d - 1
           using assms(4) by fastforce
       have card\ (pd.neighborhood\ Ai) = card\ A - 1 - card\ (q\ Ai)
         using cardss assms(3) card-mono diff-add-inverse diff-diff-cancel diff-le-mono
```

```
ss eq
     by (metis (no-types, lifting))
    moreover have card A \ge (1 + card (g Ai)) using pss assms(3) card-seteq
not-less-eq-eq by auto
   ultimately have card (pd.neighborhood Ai) = int (card A) - 1 - int (card (g
Ai)) by auto
   moreover have int (card (g Ai)) \ge (card A) - (int d) - 1 using ggt \ a by
   ultimately show out-degree ?G Ai \leq d using pd.out-degree-neighborhood by
simp
 qed
qed
{\bf lemma}\ obtain-dependency-graph:
 assumes A \neq \{\}
 assumes F : A \subseteq events
 assumes finite A
 assumes \bigwedge Ai. Ai \in A \Longrightarrow
   (\exists S . S \subseteq A - \{Ai\} \land card S \geq card A - d - 1 \land mutual-indep-events (F)\}
 obtains G where dependency-digraph G M F pverts G = A \land Ai. Ai \in A \Longrightarrow
out-degree G Ai \leq d
proof -
 obtain g where gdef: \bigwedge Ai. Ai \in A \Longrightarrow g Ai \subseteq A - \{Ai\} \land card (g Ai) \ge card
A - d - 1 \wedge
   mutual-indep-events (F Ai) F (g Ai)  using assms(4) by metis
 then show ?thesis
   using define-dep-graph-set[of A F g] define-dep-graph-deg-bound[of A F g d]that
assms by auto
qed
    This is the variation of the symmetric version most commonly in use
{\bf theorem}\ {\it lovasz-local-symmetric}:
 fixes d :: nat
 assumes A \neq \{\}
 assumes F : A \subseteq events
 assumes finite A
 assumes \bigwedge Ai. Ai \in A \Longrightarrow (\exists S . S \subseteq A - \{Ai\} \land card S \ge card A - d - 1)
\land mutual-indep-events (F Ai) F S)
 assumes \bigwedge Ai. Ai \in A \Longrightarrow prob (FAi) \leq p
 assumes exp(1)*p*(d+1) \leq 1
 shows prob (\bigcap Ai \in A : (space M - (F Ai))) > 0
proof -
 obtain G where odg: dependency-digraph G M F pverts G = A \land Ai. Ai \in A
\implies out\text{-}degree\ G\ Ai \leq d
   using assms obtain-dependency-graph by metis
  then show ?thesis using odg assms lovasz-local-symmetric-dep-graph[of A F G
d p by auto
qed
```

```
\mathbf{lemma}\ lovasz\text{-}local\text{-}symmetric 4\text{-}set:
 fixes d :: nat
 assumes A \neq \{\}
 assumes F ' A \subseteq events
 assumes finite A
 assumes \bigwedge Ai. Ai \in A \Longrightarrow (\exists S . S \subseteq A - \{Ai\} \land card S \ge card A - d - 1)
\land mutual-indep-events (F Ai) F S)
  assumes \bigwedge Ai. Ai \in A \Longrightarrow prob (F Ai) \le p
 assumes 4 * p * d \leq 1
 assumes d \geq 1
 shows prob \ (\bigcap \ Ai \in A \ . \ (space \ M - F \ Ai)) > 0
proof
 obtain G where odg: dependency-digraph G M F pverts G = A \land Ai. Ai \in A
\implies out\text{-}degree \ G \ Ai \leq d
   using assms obtain-dependency-graph by metis
  then show ?thesis using odg assms lovasz-local-symmetric4[of A F G d p] by
auto
qed
end
end
theory Lovasz-Local-Root
 imports
    PiE-Rel-Extras
    Digraph-Extensions
    Prob-Events-Extras
    Cond	ext{-}Prob	ext{-}Extensions
    Indep-Events
    Basic-Method
   Lovasz-Local-Lemma
begin
\mathbf{end}
```

References

- [1] N. Alon and J. H. Spencer. *The Probabilistic Method*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken, N.J, 4th edition, 2016.
- [2] L. Noschinski. A Graph Library for Isabelle. *Mathematics in Computer Science*, 9(1):23–39, Mar. 2015.
- [3] Y. Zhao. Probabilistic methods in combinatorics, 2020. Lecture notes MIT 18.226, Fall 2020, https://ocw.mit.edu/courses/

 $18-226-probabilistic-method-in-combinatorics-fall-2020/resources/\\mit18_226f20_full_notes/.$