Lovasz Local Lemma

Chelsea Edmonds and Lawrence C. Paulson

September 22, 2023

Abstract

This entry aims to formalise several useful general techniques for using the probabilistic method for combinatorial structures (or discrete spaces more generally). In particular, it focuses on bounding tools, such as the union and complete independence bounds, and the first formalisation of the pivotal Lovász local lemma. The formalisation focuses on the general lemma, however also proves several useful variations, including the more well known symmetric version. Both the original formalisation and several of the variations used dependency graphs, which were formalised using Noschinski's general directed graph library [2]. Additionally, the entry provides several useful existence lemmas, required at the end of most probabilistic proofs on combinatorial structures. Finally, the entry includes several significant extensions to the existing probability libraries, particularly for conditional probability (such as Bayes theorem) and independent events. The formalisation is primarily based on Alon and Spencer's textbook [1], as well as Zhao's course notes [3].

Contents

1 Extensional function extras 2
1.1 Relations and Extensional Function sets 2
1.2 Cardinality Lemmas 6
2 Digraph extensions 7
3 General Event Lemmas 8
4 Conditional Probability Library Extensions 14
4.1 Miscellaneous Set and List Lemmas 14
4.2 Conditional Probability Basics 16
4.3 Bayes Theorem 18
4.4 Conditional Probability Multiplication Rule 20
5 Independent Events 35
5.1 More bijection helpers 35
5.2 Independent Event Extensions 35
5.3 Mutual Independent Events 53
6 The Basic Probabilistic Method Framework 64
6.1 More Set and Multiset lemmas 64
6.2 Existence Lemmas 66
6.3 Basic Bounds 67
7 Lovasz Local Lemma 72
7.1 Random Lemmas on Product Operator 73
7.2 Dependency Graph Concept 74
7.3 Lovasz Local General Lemma 75
7.4 Lovasz Corollaries and Variations 83

1 Extensional function extras

Counting lemmas (i.e. reasoning on cardinality) of sets on the extensional function relation

theory PiE-Rel-Extras imports Card-Partitions.Card-Partitions

begin

1.1 Relations and Extensional Function sets

A number of lemmas to convert between relations and functions for counting purposes. Note, ultimately not needed in this formalisation, but may be of use in the future
lemma Range-unfold: Range $r=\{y . \exists x .(x, y) \in r\}$
by blast
definition fun-to-rel:: 'a set $\Rightarrow{ }^{\prime} b$ set $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \times ' b\right)$ set where
fun-to-rel $A B f \equiv\{(a, b) \mid a b . a \in A \wedge b \in B \wedge f a=b\}$
definition rel-to-fun:: (' $a \times$ 'b) set $\Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ ' b) where
rel-to-fun $R \equiv \lambda a$. (if $a \in$ Domain R then (THE $b .(a, b) \in R)$ else undefined)
lemma fun-to-relI: $a \in A \Longrightarrow b \in B \Longrightarrow f a=b \Longrightarrow(a, b) \in$ fun-to-rel $A B f$
unfolding fun-to-rel-def by auto
lemma fun-to-rel-alt: fun-to-rel $A B f \equiv\{(a, f a) \mid a b . a \in A \wedge f a \in B\}$
unfolding fun-to-rel-def by simp
lemma fun-to-relI2: $a \in A \Longrightarrow f a \in B \Longrightarrow(a, f a) \in$ fun-to-rel $A B f$
using fun-to-rel-alt by fast
lemma rel-to-fun-in $[$ simp $]: a \in$ Domain $R \Longrightarrow($ rel-to-fun $R) a=(T H E b .(a, b)$ $\in R$) unfolding rel-to-fun-def by simp
lemma rel-to-fun-undefined $[$ simp $]: a \notin$ Domain $R \Longrightarrow($ rel-to-fun $R) a=$ undefined unfolding rel-to-fun-def by simp
lemma single-valued-unique-Dom-iff: single-valued $R \longleftrightarrow(\forall x \in$ Domain R. \exists ! $y .(x, y) \in R)$
using single-valued-def by fastforce
lemma rel-to-fun-range:
assumes single-valued R
assumes $a \in$ Domain R
shows (THE $b .(a, b) \in R) \in$ Range R
using single-valued-unique-Dom-iff
by (metis Range-iff assms(1) assms(2) theI')
lemma rel-to-fun-extensional: single-valued $R \Longrightarrow$ rel-to-fun $R \in\left(\right.$ Domain $R \rightarrow_{E}$ Range R)
by (intro PiE-I) (simp-all add: rel-to-fun-range)
lemma single-value-fun-to-rel: single-valued (fun-to-rel ABf) unfolding single-valued-def fun-to-rel-def by simp
lemma fun-to-rel-domain:
assumes $f \in A \rightarrow_{E} B$
shows Domain (fun-to-rel $A B f$) $=A$
unfolding fun-to-rel-def using assms by (auto simp add: subset-antisym subsetI
Domain-unfold)
lemma fun-to-rel-range:
assumes $f \in A \rightarrow_{E} B$
shows Range (fun-to-rel $A B f$) $\subseteq B$
unfolding fun-to-rel-def using assms by (auto simp add: subsetI Range-unfold)
lemma rel-to-fun-to-rel:
assumes $f \in A \rightarrow_{E} B$
shows rel-to-fun (fun-to-rel $A B f$) $=f$
proof (intro ext allI)
fix x
show rel-to-fun (fun-to-rel $A B f$) $x=f x$
proof (cases $x \in A$)
case True
then have ind: $x \in$ Domain (fun-to-rel $A B f$) using fun-to-rel-domain assms by blast
have $(x, f x) \in$ fun-to-rel $A B f$ using fun-to-rel-alt True single-value-fun-to-rel using assms by fastforce
moreover have rel-to-fun (fun-to-rel $A B f) x=(T H E b .(x, b) \in$ (fun-to-rel $A B f)$) by (simp add: ind)
ultimately show?thesis using single-value-fun-to-rel single-valuedD the-equality by (metis (no-types, lifting))
next
case False
then have $x \notin$ Domain (fun-to-rel $A B f$) unfolding fun-to-rel-def by blast
then show ?thesis
using False assms by auto
qed
qed
lemma fun-to-rel-to-fun:
assumes single-valued R
shows fun-to-rel (Domain R) (Range R) (rel-to-fun $R)=R$
proof (intro subset-antisym subsetI)
fix x assume $x \in$ fun-to-rel (Domain R) (Range R) (rel-to-fun R)
then obtain $a b$ where $x=(a, b)$ and $a \in \operatorname{Domain} R$ and $b \in$ Range R and
(rel-to-fun $R a)=b$
using fun-to-rel-def by (smt (verit) mem-Collect-eq)
then have $b=\left(\right.$ THE $\left.b^{\prime} .\left(a, b^{\prime}\right) \in R\right)$ using rel-to-fun-in
by simp
then show $x \in R$
by (metis (no-types, lifting) $\langle a \in$ Domain $R\rangle\langle x=(a, b)\rangle$ assms single-valued-unique-Dom-iff the1-equality)
next
fix x assume $x \in R$
then obtain $a b$ where $x=(a, b)$ and $(a, b) \in R$ and $\forall c .(a, c) \in R \longrightarrow b$

$$
=c
$$

using assms
by (metis prod.collapse single-valued-def)
then have $a \in$ Domain $R \quad b \in$ Range R by blast +
then have $b=\left(\right.$ THE $\left.b^{\prime} .\left(a, b^{\prime}\right) \in R\right)$
by (metis $\langle\forall c .(a, c) \in R \longrightarrow b=c\rangle\langle x=(a, b)\rangle\langle x \in R\rangle$ the-equality)
then have $(a, b) \in$ fun-to-rel (Domain R) (Range R) (rel-to-fun R)
using $\langle a \in$ Domain $R\rangle\langle b \in$ Range $R\rangle$ by (intro fun-to-relI) (simp-all)
then show $x \in$ fun-to-rel (Domain R) (Range R) (rel-to-fun R) using $\langle x=(a$,
b)> by simp
qed
lemma bij-betw-fun-to-rel:
assumes $f \in A \rightarrow_{E} B$
shows bij-betw $(\lambda a .(a, f a)) A(f u n-t o-r e l A B f)$
proof (intro bij-betw-imageI inj-onI)
show $\bigwedge x y . x \in A \Longrightarrow y \in A \Longrightarrow(x, f x)=(y, f y) \Longrightarrow x=y$ by simp
next
show $(\lambda a .(a, f a))$ ' $A=$ fun-to-rel $A B f$
proof (intro subset-antisym subsetI)

```
    fix }x\mathrm{ assume }x\in(\lambdaa.(a,fa))'
    then obtain }a\mathrm{ where }a\inA\mathrm{ and }x=(a,fa)\mathrm{ by blast
    then show }x\in\mathrm{ fun-to-rel A Bf using fun-to-rel-alt assms
        by fastforce
    next
    fix x assume x fun-to-rel A Bf
    then show }x\in(\lambdaa.(a,fa))'A using fun-to-rel-alt
        using image-iff by fastforce
    qed
qed
lemma fun-to-rel-indiv-card:
    assumes }f\inA\mp@subsup{->}{E}{}
    shows card (fun-to-rel A B f) = card A
    using bij-betw-fun-to-rel assms bij-betw-same-card[of (\lambda a. (a,fa)) A (fun-to-rel
A Bf)]
    by (metis)
lemma fun-to-rel-inj:
    assumes }C\subseteqA\mp@subsup{->}{E}{}
    shows inj-on (fun-to-rel A B) C
proof (intro inj-onI ext allI)
    fix fgx assume fin: f\inC and gin: g\inC and eq: fun-to-rel A Bf=fun-to-rel
A Bg
    then show fx=gx
    proof (cases x }\inA\mathrm{ )
        case True
        then have (x, fx) f fun-to-rel A B f using fun-to-rel-alt
            by (smt (verit) PiE-mem assms fin fun-to-rel-def mem-Collect-eq subset-eq)
        moreover have (x,gx) f fun-to-rel A B g using fun-to-rel-alt True
            by (smt (verit) PiE-mem assms fun-to-rel-def gin mem-Collect-eq subset-eq)
        ultimately show ?thesis using eq single-value-fun-to-rel single-valued-def
            by metis
    next
        case False
        then have fx= undefined g x = undefined using fin gin assms by auto
        then show?thesis by simp
    qed
qed
lemma fun-to-rel-ss: fun-to-rel A Bf\subseteqA\timesB
    unfolding fun-to-rel-def by auto
lemma card-fun-to-rel: }C\subseteqA\mp@subsup{->}{E}{}B\Longrightarrow\mathrm{ card C = card (( }\lambdaf.fun-to-rel AB
) 'C)
    using card-image fun-to-rel-inj by metis
```


1.2 Cardinality Lemmas

Lemmas to count variations of filtered sets over the extensional function set relation

```
lemma card-PiE-filter-range-set:
    assumes \(\wedge a . a \in A^{\prime} \Longrightarrow X a \in C\)
    assumes \(A^{\prime} \subseteq A\)
    assumes finite \(A\)
    shows card \(\left\{f \in A \rightarrow_{E} C . \forall a \in A^{\prime} . f a=X a\right\}=(\operatorname{card} C) \wedge(\operatorname{card} A-\operatorname{card}\)
\(A^{\prime}\) )
proof -
    have finA: finite \(A^{\prime}\) using assms(3) finite-subset assms(2) by auto
    have c1: card \(\left(A-A^{\prime}\right)=\) card \(A-\operatorname{card} A^{\prime}\) using assms(2)
    using card-Diff-subset finA by blast
    define \(g::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)\) where \(g \equiv \lambda f\). \(\left(\lambda a^{\prime}\right.\). if \(a^{\prime} \in A^{\prime}\) then
undefined else \(f a^{\prime}\) )
    have bij-betw \(g\left\{f \in A \rightarrow_{E} C . \forall a \in A^{\prime} . f a=X a\right\}\left(\left(A-A^{\prime}\right) \rightarrow_{E} C\right)\)
    proof (intro bij-betw-imageI inj-onI)
    fix \(h h^{\prime}\) assume \(h 1\) in: \(h \in\left\{f \in A \rightarrow_{E} C . \forall a \in A^{\prime} . f a=X a\right\}\) and h2in: \(h^{\prime}\)
\(\in\left\{f \in A \rightarrow_{E} C . \forall a \in A^{\prime} . f a=X a\right\} g h=g h^{\prime}\)
    then have eq: \(\left(\lambda a^{\prime}\right.\). if \(a^{\prime} \in A^{\prime}\) then undefined else \(\left.h a^{\prime}\right)=\left(\lambda a^{\prime}\right.\). if \(a^{\prime} \in A^{\prime}\)
then undefined else \(h^{\prime} a^{\prime}\) )
            using \(g\)-def by simp
    show \(h=h^{\prime}\)
    proof (intro ext allI)
            fix \(x\)
            show \(h x=h^{\prime} x\) using h1in h2in eq by (cases \(x \in A^{\prime}\), simp, meson)
        qed
    next
    show \(g\) ' \(\left\{f \in A \rightarrow_{E} C . \forall a \in A^{\prime} . f a=X a\right\}=A-A^{\prime} \rightarrow_{E} C\)
    proof (intro subset-antisym subsetI)
            fix \(g^{\prime}\) assume \(g^{\prime} \in g^{\prime}\left\{f \in A \rightarrow_{E} C . \forall a \in A^{\prime} . f a=X a\right\}\)
            then obtain \(f^{\prime}\) where geq: \(g^{\prime}=g f^{\prime}\) and \(f i n: f^{\prime} \in A \rightarrow_{E} C\) and \(\forall a \in A^{\prime}\).
\(f^{\prime} a=X a\)
                by blast
            show \(g^{\prime} \in A-A^{\prime} \rightarrow_{E} C\)
                using \(g\)-def fin geq by (intro PiE-I)(auto)
    next
            fix \(g^{\prime}\) assume gin: \(g^{\prime} \in A-A^{\prime} \rightarrow_{E} C\)
            define \(f^{\prime}\) where \(f^{\prime}=\left(\lambda a^{\prime}\right.\). (if \(a^{\prime} \in A^{\prime}\) then \(X a^{\prime}\) else \(\left.\left.g^{\prime} a^{\prime}\right)\right)\)
            then have eqc: \(\forall a^{\prime} \in A^{\prime} . f^{\prime} a^{\prime}=X a^{\prime}\) by auto
            have fin: \(f^{\prime} \in A \rightarrow_{E} C\)
            proof (intro PiE-I)
                fix \(x\) assume \(x \in A\)
                have \(x \notin A^{\prime} \Longrightarrow f^{\prime} x=g^{\prime} x\) using \(f^{\prime}\)-def by auto
                moreover have \(x \in A^{\prime} \Longrightarrow f^{\prime} x=X x\) using \(f^{\prime}\)-def by (simp add: \(\langle x \in\)
A〉)
            ultimately show \(f^{\prime} x \in C\)
                using gin PiE-E \(\langle x \in A\rangle\) assms(1)[of \(x]\) by (metis Diff-iff)
```

```
    next
            fix }x\mathrm{ assume }x\not\in
            then show }\mp@subsup{f}{}{\prime}x=\mathrm{ undefined
                using f'-def gin assms(2) by auto
    qed
    have g}\mp@subsup{g}{}{\prime}=g\mp@subsup{f}{}{\prime}\mathrm{ unfolding f}\mp@subsup{f}{}{\prime}\mathrm{ -def g-def
        by (auto simp add: fun-eq-iff) (metis DiffE PiE-arb gin)
```



```
blast
        qed
    qed
    then have card {f\inA \mp@subsup{->}{E}{}C.\foralla\in\mp@subsup{A}{}{\prime}.fa=Xa}=\operatorname{card}((A-\mp@subsup{A}{}{\prime})\mp@subsup{->}{E}{}C)
        using bij-betw-same-card by blast
    also have ... = (card C)^card (A-A')
        using card-funcsetE assms(3) by (metis finite-Diff)
    finally show ?thesis using c1 by auto
qed
lemma card-PiE-filter-range-indiv: X a}\mp@subsup{a}{}{\prime}\inC\Longrightarrow\mp@subsup{a}{}{\prime}\inA\Longrightarrow\mathrm{ finite }A
    card {f\inA 既C.f fa'=X a}}=(\operatorname{card C)^(card A - 1)
    using card-PiE-filter-range-set[of {\mp@subsup{a}{}{\prime}} X C A] by auto
lemma card-PiE-filter-range-set-const: c }\inC\Longrightarrow\mp@subsup{A}{}{\prime}\subseteqA\Longrightarrow finite A
        card {f\inA -> 
    using card-PiE-filter-range-set[of A'\lambda }\lambda.c]\mathrm{ by auto
lemma card-PiE-filter-range-set-nat:c }\in{0..<n}\Longrightarrow\mp@subsup{A}{}{\prime}\subseteqA\Longrightarrow finite A
    card {f\inA 勆 {0..<n}. \foralla\in A'.fa=c} = n` (card A - card A')
    using card-PiE-filter-range-set-const[of c {0..<n} A' A] by auto
end
```


2 Digraph extensions

Extensions to the existing library for directed graphs, basically neighborhood

```
theory Digraph-Extensions
    imports
        Graph-Theory.Digraph
        Graph-Theory.Pair-Digraph
begin
```

definition (in pre-digraph) neighborhood $::$ ' $a \Rightarrow$ ' a set where
neighborhood $u \equiv\{v \in$ verts G. dominates $G u v\}$
lemma (in wf-digraph) neighborhood-wf: neighborhood $v \subseteq$ verts G
unfolding neighborhood-def by auto
lemma (in pair-pre-digraph) neighborhood-alt:

```
neighborhood u}={v\in\mathrm{ pverts }G.(u,v)\in\mathrm{ parcs }G
    unfolding neighborhood-def by simp
lemma (in fin-digraph) neighborhood-finite: finite (neighborhood v)
    using neighborhood-wf finite-subset finite-verts by fast
lemma (in wf-digraph) neighborhood-edge-iff: y neighborhood }x\longleftrightarrow(x,y)
arcs-ends G
    unfolding neighborhood-def using in-arcs-imp-in-arcs-ends by auto
lemma (in loopfree-digraph) neighborhood-self-not: v & (neighborhood v)
    unfolding neighborhood-def using adj-not-same by auto
lemma (in nomulti-digraph) inj-on-head-out-arcs:inj-on (head G) (out-arcs Gu)
proof (intro inj-onI)
    fix x y assume xin: x\in out-arcs Gu and yin: y f out-arcs G u and heq: head
Gx=head G y
    then have tail Gx=u tail Gy=u
        using out-arcs-def by auto
    then have arc-to-ends Gx= arc-to-ends Gy
        unfolding arc-to-ends-def heq by auto
    then show }x=y\mathrm{ using no-multi-arcs xin yin by simp
qed
lemma (in nomulti-digraph) out-degree-neighborhood: out-degree Gu=card (neighborhood
u)
proof -
    let ?f = \lambdae. head Ge
    have bij-betw ?f (out-arcs G u) (neighborhood u)
    proof (intro bij-betw-imageI)
        show inj-on (head G) (out-arcs G u) using inj-on-head-out-arcs by simp
        show head G' out-arcs Gu= neighborhood u
            unfolding neighborhood-def using in-arcs-imp-in-arcs-ends by auto
    qed
    then show ?thesis unfolding out-degree-def
        by (simp add: bij-betw-same-card)
qed
lemma (in digraph) neighborhood-empty-iff: out-degree \(G u=0 \longleftrightarrow\) neighborhood \(u=\{ \}\)
using out-degree-neighborhood neighborhood-finite by auto
end
```


3 General Event Lemmas

General lemmas for reasoning on events in probability spaces after different operations

```
theory Prob-Events-Extras
    imports
        HOL-Probability.Probability
        PiE-Rel-Extras
begin
context prob-space
begin
lemma prob-sum-Union:
    assumes measurable: finite A A\subseteq events disjoint A
    shows prob (\bigcupA) = (\sume\inA. prob (e))
proof -
    obtain f}\mathrm{ where bb: bij-betw f {0..<card A} A
        using assms(1) ex-bij-betw-nat-finite by auto
    then have eq: f'{0..<card A}=A
        by (simp add: bij-betw-imp-surj-on)
    moreover have inj-on f {0..<card A}
        using bb bij-betw-def by blast
    ultimately have disjoint-family-on f {0..<card A}
        using disjoint-image-disjoint-family-on[of f {0..<card A}] assms by auto
    moreover have (\sume\inA. prob (e)) = (\sumi\in{0..<card A}. prob (f i)) using
sum.reindex bb
    by (simp add: sum.reindex-bij-betw)
    ultimately show ?thesis using finite-measure-finite-Union eq assms(1) assms(2)
        by (metis bb bij-betw-finite)
qed
lemma events-inter:
    assumes finite S
    assumes S\not={}
    shows (\bigwedgeA.A\inS\LongrightarrowA\in events)\Longrightarrow\bigcapS\inevents
using assms proof (induct S rule: finite-ne-induct)
    case (singleton x)
    then show ?case by auto
next
    case (insert x F)
    then show ?case using sets.Int
        by (metis complete-lattice-class.Inf-insert insertCI)
qed
lemma events-union:
    assumes finite S
    shows (\bigwedgeA.A\inS\LongrightarrowA\in events)\Longrightarrow\S\inevents
using assms(1) proof (induct S rule: finite-induct)
    case empty
    then show ?case by auto
next
    case (insert x F)
```

```
    then show ?case using sets.Un
    by (simp add: insertI1)
qed
lemma prob-inter-set-lt-elem: A E events \Longrightarrow prob (A\cap (\bigcapAS))\leqprob A
    by (simp add: finite-measure-mono)
lemma Inter-event-ss: finite }A\LongrightarrowA\subseteq\mathrm{ events }\LongrightarrowA\not={}\Longrightarrow\bigcapA\in\mathrm{ events
    by (simp add: events-inter subset-iff)
lemma prob-inter-ss-lt:
    assumes finite A
    assumes A\subseteq events
    assumes B\not={}
    assumes B\subseteqA
    shows prob (\bigcapA)\leq\operatorname{prob}(\bigcapB)
proof (cases B=A)
    case True
    then show ?thesis by simp
next
    case False
    then obtain C where C=A-B and C\not={}
    using assms(4) by auto
    then have }\capA=\bigcapC\cap\cap
        by (metis Inter-Un-distrib Un-Diff-cancel2 assms(4) sup.orderE)
    moreover have }\bigcapB\in\mathrm{ events using assms(1) assms(3) assms(2) Inter-event-ss
    by (meson assms(2) assms(4) dual-order.trans finite-subset)
    ultimately show ?thesis using prob-inter-set-lt-elem
    by (simp add: inf-commute)
qed
lemma prob-inter-ss-lt-index:
    assumes finite A
    assumes F`' }\\subseteq\mathrm{ events
    assumes B\not={}
    assumes }B\subseteq
    shows prob (\bigcap(F'`A)) \leq prob (\bigcap(F'B))
using prob-inter-ss-lt[of F' A F' B] assms by auto
lemma space-compl-double:
    assumes S\subseteqevents
    shows ((-) (space M))'(((-) (space M))'S)=S
proof (intro subset-antisym subsetI)
    fix x assume x (-) (space M)`(-) (space M)`S
    then obtain }\mp@subsup{x}{}{\prime}\mathrm{ where xeq: x = space M - x' and x' 
blast
    then obtain }\mp@subsup{x}{}{\prime\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}=\mathrm{ space }M-\mp@subsup{x}{}{\prime\prime}\mathrm{ and xin: }\mp@subsup{x}{}{\prime\prime}\inS\mathrm{ by blast
    then have }\mp@subsup{x}{}{\prime\prime}=x\mathrm{ using xeq assms
    by (simp add: Diff-Diff-Int Set.basic-monos(7))
```

```
    then show }x\inS\mathrm{ using xin by simp
next
    fix }x\mathrm{ assume }x\in
    then obtain }\mp@subsup{x}{}{\prime}\mathrm{ where xeq: 和 = space M - x and x' }\in(-)(\mathrm{ space M)'S by
simp
    then have space M - x' }(-)\mathrm{ (space M)'(-) (space M)' S by auto
    moreover have space M - x' = x using xeq assms
        by (simp add: Diff-Diff-Int \langlex \inS\rangle subset-iff)
    ultimately show }x\in(-)(\mathrm{ space M)'(-) (space M)'S by simp
qed
lemma bij-betw-compl-sets:
    assumes S\subseteq events
    assumes }\mp@subsup{S}{}{\prime}=((-)(\mathrm{ space M))'}
    shows bij-betw ((-) (space M)) S'S
proof (intro bij-betwI')
    show }\xy.x\in\mp@subsup{S}{}{\prime}\Longrightarrowy\in\mp@subsup{S}{}{\prime}\Longrightarrow(\mathrm{ space }M-x=\mathrm{ space }M-y)=(x=y
    using assms(2) by blast
next
    show }\bigwedgex.x\in\mp@subsup{S}{}{\prime}\Longrightarrow\mathrm{ space }M-x\inS\mathrm{ using space-compl-double assms by auto
next
    show \y.y }\\\\Longrightarrow\existsx\in\mp@subsup{S}{}{\prime}.y=\mathrm{ space }M-x\mathrm{ using space-compl-double assms
by auto
qed
lemma bij-betw-compl-sets-rev:
    assumes S\subseteqevents
    assumes }\mp@subsup{S}{}{\prime}=((-)(\mathrm{ space M))'}
    shows bij-betw ((-) (space M)) S S'
proof (intro bij-betwI')
    show \x x . x S C\Longrightarrowy\inS\Longrightarrow(space M-x= space M - y) = (x=y)
    using assms by (metis Diff-Diff-Int sets.Int-space-eq1 subset-eq)
next
    show \}\x.x\inS\Longrightarrow\mathrm{ space M-x 和' using space-compl-double assms by auto
next
    show }\bigwedgey.y\in\mp@subsup{S}{}{\prime}\Longrightarrow\existsx\inS.y=\mathrm{ space }M-x\mathrm{ using space-compl-double assms
by auto
qed
lemma prob0-basic-inter: A events \Longrightarrow B events \Longrightarrow prob A=0\Longrightarrow prob
(A\capB)=0
    by (metis Int-lower1 finite-measure-mono measure-le-0-iff)
```

lemma prob0-basic-Inter: $A \in$ events $\Longrightarrow B \subseteq$ events \Longrightarrow prob $A=0 \Longrightarrow$ prob
$(A \cap(\bigcap B))=0$
by (metis Int-lower1 finite-measure-mono measure-le-0-iff)
lemma prob1-basic-inter: $A \in$ events $\Longrightarrow B \in$ events \Longrightarrow prob $A=1 \Longrightarrow$ prob
$(A \cap B)=\operatorname{prob} B$

```
    by (metis inf-commute measure-space-inter prob-space)
lemma prob1-basic-Inter:
    assumes }A\in\mathrm{ events B}\subseteq\mathrm{ events
    assumes prob A=1
    assumes B\not={}
    assumes finite B
    shows prob (A\cap(\capB))=\operatorname{prob}(\bigcapB)
proof -
    have}\bigcapB\in\mathrm{ events using Inter-event-ss assms by auto
    then show ?thesis using assms prob1-basic-inter by auto
qed
lemma compl-identity: A e events \Longrightarrow space M - (space M - A) =A
    by (simp add: double-diff sets.sets-into-space)
lemma prob-addition-rule: }A\in\mathrm{ events }\LongrightarrowB\in\mathrm{ events }
    prob }(A\cupB)=\operatorname{prob}A+\operatorname{prob}B-\operatorname{prob}(A\capB
    by (simp add: finite-measure-Diff' finite-measure-Union' inf-commute)
lemma compl-subset-in-events: S\subseteqevents \Longrightarrow(-) (space M)'S\subseteq events
    by auto
lemma prob-compl-diff-inter: A E events \LongrightarrowB\in events \Longrightarrow
    prob}(A\cap(\mathrm{ space M - B)) = prob A - prob (A }\capB
    by (simp add: Diff-Int-distrib finite-measure-Diff sets.Int)
lemma bij-betw-prod-prob: bij-betw f A B\Longrightarrow(\prodb\inB. prob b) = (\proda\inA. prob (f
a)
    by (simp add: prod.reindex-bij-betw)
definition event-compl :: 'a set }=>\mathrm{ ' 'a set where
event-compl A \equiv space M - A
lemma compl-Union: }A\not={}\Longrightarrow\mathrm{ space }M-(\bigcupA)=(\bigcapa\inA.(\mathrm{ space M - a)}
    by (simp)
lemma compl-Union-fn: A\not={}\Longrightarrow space M-(\bigcup(F'`A))=(\bigcapa\inA.(space
M - Fa))
    by (simp)
end
```

Reasoning on the probability of function sets
lemma card-PiE-val-ss-eq:
assumes finite A
assumes $b \in B$
assumes $d \subseteq A$
assumes $B \neq\{ \}$

assumes finite B

shows card $\left\{f \in\left(A \rightarrow_{E} B\right) .(\forall v \in d . f v=b)\right\} / \operatorname{card}\left(A \rightarrow_{E} B\right)=1 /(($ card B) powi (card d))
(is card $\{f \in ? C .(\forall v \in d . f v=b)\} /$ card ? $C=1 /((\operatorname{card} B)$ powi $(\operatorname{card} d)))$ proof -
have $l t$: card $d \leq \operatorname{card} A$
by (simp add: card-mono assms(1) assms(3))
then have scard: card $\{f \in ? C . \forall v \in d . f v=b\}=(\operatorname{card} B)$ powi $((\operatorname{card} A)$

- card d)
using assms(1) card-PiE-filter-range-set-const[of b B d A] assms(3) assms(2) by fastforce
have Ccard: card ? $C=($ card $B)$ powi $($ card A) using card-funcsetE assms(2) assms(1) by auto
have bgt: card $B \neq 0$ using assms(5) assms(4) by auto
have card $\{f \in ? C . \forall v \in d . f v=b\} /($ card ? $C)=$ $((\operatorname{card} B)$ powi $((\operatorname{card} A)-\operatorname{card} d)) /((\operatorname{card} B)$ powi $(\operatorname{card} A))$
using Ccard scard by simp
also have $\ldots=(\operatorname{card} B)$ powi $(\operatorname{int}(\operatorname{card} A-\operatorname{card} d)-\operatorname{int}(\operatorname{card} A))$
using bgt by (simp add: power-int-diff)
also have $\ldots=(\operatorname{card} B)$ powi $(\operatorname{int}(\operatorname{card} A)-\operatorname{int}(\operatorname{card} d)-\operatorname{int}(\operatorname{card} A))$
using int-ops lt by simp
also have $\ldots=(\operatorname{card} B)$ powi $-($ card d) using assms(1) by (simp add: of-nat-diff)
also have $\ldots=$ inverse $((\operatorname{card} B)$ powi $($ card d $))$
using power-int-minus $[$ of card $B($ int (card d) $)]$ by simp
finally show ?thesis by (simp add: inverse-eq-divide)
qed
lemma card-PiE-val-indiv-eq:
assumes finite A
assumes $b \in B$
assumes $d \in A$
assumes $B \neq\{ \}$
assumes finite B
shows card $\left\{f \in\left(A \rightarrow_{E} B\right) . f d=b\right\} / \operatorname{card}\left(A \rightarrow_{E} B\right)=1 /(\operatorname{card} B)$
(is card $\{f \in ? C . f d=b\} /$ card $? C=1 /(\operatorname{card} B))$
proof -
have $\{d\} \subseteq A$ using $\operatorname{assms}(3)$ by simp
moreover have $\bigwedge f . f \in ? C \Longrightarrow f d=b \longleftrightarrow\left(\forall d^{\prime} \in\{d\} . f d^{\prime}=b\right)$ by auto
ultimately have card $\{f \in$? $C . f d=b\} /$ card $? C=1 /(($ card $B)$ powi (card $\{d\})$)
using card-PiE-val-ss-eq[of AbB\{d\}] assms by auto
also have $\ldots=1 /(($ card $B)$ powi 1) by auto
finally show?thesis by simp
qed
lemma prob-uniform-ex-fun-space:
assumes finite A
assumes $b \in B$
assumes $d \subseteq A$

```
    assumes B\not={}
    assumes }A\not={
    assumes finite B
```



```
v\ind.fv=b)}=
    1/((card B) powi (card d))
proof -
    let ?C = (A ->E B 
    let ?M = uniform-count-measure ?C
    have finC: finite ?C using assms(2) assms(6) assms(1)
        by (simp add: finite-PiE)
    moreover have ?C }\not={}\mathrm{ using assms(4) assms(1)
        by (simp add: PiE-eq-empty-iff)
    ultimately interpret P: prob-space ?M
        using assms(3) by (simp add: prob-space-uniform-count-measure)
    have P.prob {f\in?C.}.\forallv\ind.fv=b}=card {f\in?C.\forallv\ind.fv=b}
(card ?C)
    using measure-uniform-count-measure[of ?C {f \in?C.\forallv\ind.fv=b}]
finC assms(3)
    by fastforce
    then show ?thesis using card-PiE-val-ss-eq assms by (simp)
qed
proposition integrable-uniform-count-measure-finite:
    fixes g:: 'a => 'b::{banach, second-countable-topology}
    shows finite A\Longrightarrow integrable (uniform-count-measure A)g
    unfolding uniform-count-measure-def
    using integrable-point-measure-finite by fastforce
end
```


4 Conditional Probability Library Extensions

```
theory Cond-Prob-Extensions
    imports
        Prob-Events-Extras
        Design-Theory.Multisets-Extras
begin
```


4.1 Miscellaneous Set and List Lemmas

lemma n th-image-tl:
assumes $x s \neq[]$
shows nth $x s$ ' $\{1 . .<$ length $x s\}=\operatorname{set}(t l x s)$
proof -
have set $(t l x s)=\{(t l x s)!i \mid i . i<l e n g t h(t l x s)\}$
using set-conv-nth by metis
then have set $(t l x s)=\{x s!($ Suc $i) \mid i . i<$ length $x s-1\}$
using nth-tl by fastforce

```
        then have set (tl xs) = {xs! j| j.j>0\wedgej< length xs}
    by (smt (verit, best) Collect-cong Suc-diff-1 Suc-less-eq assms length-greater-0-conv
zero-less-Suc)
    thus ?thesis by auto
qed
lemma exists-list-card:
    assumes finite S
    obtains xs where set xs =S and length xs = card S
    by (metis assms distinct-card finite-distinct-list)
lemma bij-betw-inter-empty:
    assumes bij-betw f A B
    assumes }\mp@subsup{A}{}{\prime}\subseteq
    assumes }\mp@subsup{A}{}{\prime\prime}\subseteq
    assumes }\mp@subsup{A}{}{\prime}\cap\mp@subsup{A}{}{\prime\prime}={
```



```
    by (metis assms(1) assms(2) assms(3) assms(4) bij-betw-inter-subsets image-empty)
lemma bij-betw-image-comp-eq:
    assumes bij-betw g T S
    shows (F\circg)`T=F`}
    using assms bij-betw-imp-surj-on by (metis image-comp)
lemma prod-card-image-set-eq:
    assumes bij-betw f {0..<card S} S
    assumes finite S
    shows}(\prodi\in{n..<(card S)} . g(fi))=(\prodi\inf'{n..<card S}.gi
proof (cases n \geq card S)
    case True
    then show ?thesis by simp
next
case False
then show ?thesis using assms
proof (induct card S arbitrary: S)
    case 0
    then show ?case by auto
next
    case (Suc x)
    then have nlt: n<Suc x by simp
    then have split: {n..<Suc x} ={n..<x}\cup{x} by auto
    then have f'{n..<Suc x} = f'({n..< x}\cup{x}) by simp
    then have fsplit: f' {n..<Suc x} = f'{n..<x}\cup{fx}
        by simp
    have {n..<x}\subseteq{0..<card S}
        using Suc(2) by auto
    moreover have {x}\subseteq{0..<card S} using Suc(2) by auto
    moreover have {n..<x}\cap{x}={} by auto
```

ultimately have finter: f ' $\{n . .<x\} \cap\{f x\}=\{ \}$ using Suc.prems(2) Suc.prems(1)
bij-betw-inter-empty[of $f\{0 . .<$ card $S\} S\{n . .<x\}\{x\}]$ by auto
have $\left(\prod i=n . .<\right.$ Suc $\left.x . g(f i)\right)=\left(\prod i=n . .<x . g(f i)\right) * g(f(x))$ using nlt by simp
moreover have $\left(\prod x \in f\right.$ ' $\{n . .<$ Suc $\left.x\} . g x\right)=\left(\prod i \in f '\{n . .<x\} . g i\right) * g(f x)$
using finter fsplit
by (simp add: Groups.mult-ac(2))
moreover have $\left(\prod i \in f\right.$ ' $\left.\{n . .<x\} . g i\right)=\left(\prod i=n . .<x . g(f i)\right)$
proof -
let ? $S^{\prime}=f$ ' $\{0 . .<x\}$
have $\{0 . .<x\} \subseteq\{0 . .<\operatorname{card} S\}$ using $S u c(2)$ by auto
then have bij: bij-betw $f\{0 . .<x\}$? S^{\prime} using Suc.prems(2)
using bij-betw-subset by blast
moreover have card ? $S^{\prime}=x$ using bij-betw-same-card $[$ of $f\{0 . .<x\}$?S'] bij by auto
moreover have finite? S^{\prime} using finite-subset by auto
ultimately show ?thesis
by (metis bij-betw-subset ivl-subset less-eq-nat.simps(1) order-refl prod.reindex-bij-betw)
qed
ultimately show ?case using Suc(2) by auto
qed
qed
lemma set-take-distinct-elem-not:
assumes distinct xs
assumes $i<$ length xs
shows $x s!i \notin$ set (take $i x s$)
by (metis assms(1) assms(2) distinct-take id-take-nth-drop not-distinct-conv-prefix)

4.2 Conditional Probability Basics

context prob-space

begin
Abbreviation to mirror mathematical notations
abbreviation cond-prob-ev :: 'a set $\Rightarrow{ }^{\prime}$ a set \Rightarrow real ($\mathcal{P}^{\prime}\left(-\mid-{ }^{\prime}\right)$) where $\mathcal{P}(B \mid A) \equiv \mathcal{P}(x$ in $M .(x \in B) \mid(x \in A))$
lemma cond-prob-inter: $\mathcal{P}(B \mid A)=\mathcal{P}(\omega$ in $M .(\omega \in B \cap A)) / \mathcal{P}(\omega$ in $M .(\omega \in$ A))
using cond-prob-def by auto
lemma cond-prob-ev-def:
assumes $A \in$ events $B \in$ events
shows $\mathcal{P}(B \mid A)=\operatorname{prob}(A \cap B) / \operatorname{prob} A$
proof -
have $a: \mathcal{P}(B \mid A)=\mathcal{P}(\omega$ in $M .(\omega \in B \cap A)) / \mathcal{P}(\omega$ in $M .(\omega \in A))$
using cond-prob-inter by auto

```
    also have ... = prob {w\in space M.w\inB\capA}/ prob {w\in space M.w\inA}
    by auto
    finally show ?thesis using assms
    by (simp add: Collect-conj-eq a inf-commute)
qed
lemma measurable-in-ev:
    assumes }A\in\mathrm{ events
    shows Measurable.pred M (\lambdax.x\inA)
    using assms by auto
lemma measure-uniform-measure-eq-cond-prob-ev:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events
    shows }\mathcal{P}(A|B)=\mathcal{P}(x\mathrm{ in uniform-measure M {xєspace M. x }\inB}.x\inA
    using assms measurable-in-ev measure-uniform-measure-eq-cond-prob by auto
lemma measure-uniform-measure-eq-cond-prob-ev2:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events
    shows }\mathcal{P}(A|B)=\mathrm{ measure (uniform-measure M {x,space M. x }\inB}\mathrm{ ) A
    using measure-uniform-measure-eq-cond-prob-ev assms
    by (metis Int-def sets.Int-space-eq1 space-uniform-measure)
lemma measure-uniform-measure-eq-cond-prob-ev3:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events
    shows }\mathcal{P}(A|B)=\mathrm{ measure (uniform-measure M B) A
    using measure-uniform-measure-eq-cond-prob-ev assms Int-def sets.Int-space-eq1
space-uniform-measure
    by metis
lemma prob-space-cond-prob-uniform:
    assumes prob ({x\inspace M.Q x})>0
    shows prob-space (uniform-measure M {x\inspace M. Q x})
    using assms by (intro prob-space-uniform-measure) (simp-all add: emeasure-eq-measure)
lemma prob-space-cond-prob-event:
    assumes prob B>0
    shows prob-space (uniform-measure M B)
    using assms by (intro prob-space-uniform-measure) (simp-all add: emeasure-eq-measure)
    Note this case shouldn't be used. Conditional probability should have >
0 assumption
lemma cond-prob-empty: }\mathcal{P}(B|{})=
    using cond-prob-inter[of B {}] by auto
lemma cond-prob-space: }\mathcal{P}(A|\mathrm{ space M)}=\mathcal{P}(w\mathrm{ in M.w 
proof -
    have p1: prob {\omega\in space M.\omega\in space M}=1
    by (simp add: prob-space)
    have }\bigwedgew.w\in\mathrm{ space }M\Longrightarroww\inA\cap(\mathrm{ space }M)\longleftrightarroww\inA\mathrm{ by auto
```

```
    then have prob {\omega\in space M.\omega\inA\cap space M}=\mathcal{P}(w in M.w\inA)
    by meson
    then show ?thesis using cond-prob-inter[of A space M] p1 by auto
qed
lemma cond-prob-space-ev: assumes }A\in\mathrm{ events shows }\mathcal{P}(A|\mathrm{ space M) = prob
A
    using cond-prob-space assms
    by (metis Int-commute Int-def measure-space-inter sets.top)
lemma cond-prob-UNIV:\mathcal{P}(A|UNIV )=\mathcal{P}(w\mathrm{ in M.w }\in\mathcal{A})
proof -
    have p1: prob {\omega\in space M. }\omega\inUNIV}=
    by (simp add: prob-space)
    have }^w.w\in\mathrm{ space }M\Longrightarroww\inA\capUNIV\longleftrightarroww\inA by aut
    then have prob {\omega\in space M. }\omega\inA\capUNIV}=\mathcal{P}(w\mathrm{ in M . w GA)
    by meson
    then show ?thesis using cond-prob-inter[of A UNIV] p1 by auto
qed
lemma cond-prob-UNIV-ev:A \in events \Longrightarrow\mathcal{P}(A|UNIV )= prob A
    using cond-prob-UNIV
    by (metis Int-commute Int-def measure-space-inter sets.top)
lemma cond-prob-neg:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events
    assumes prob A>0
    shows }\mathcal{P}((\mathrm{ space M - B) | A ) =1- P
proof -
    have negB: space M - B\in events using assms by auto
    have prob ((space M - B)\capA) = prob A - prob ( }B\capA
        by (simp add: Diff-Int-distrib2 assms(1) assms(2) finite-measure-Diff sets.Int)
    then have \mathcal{P}((\mathrm{ space M - B)|A) = (prob A - prob (B คA))/prob A}
    using cond-prob-ev-def[of A space M - B] assms negB by (simp add: Int-commute)
    also have ... = ((prob A)/prob A) - ((prob (B\capA))/prob A) by (simp add:
field-simps)
    also have ... = 1-((prob (B\capA))/prob A) using assms(3) by (simp add:
field-simps)
    finally show }\mathcal{P}((\mathrm{ space M - B)|A)=1- P}(B|A)\mathrm{ using cond-prob-ev-def[of
A B] assms
    by (simp add: inf-commute)
qed
```


4.3 Bayes Theorem

lemma prob-intersect- A :
assumes $A \in$ events $B \in$ events
shows $\operatorname{prob}(A \cap B)=\operatorname{prob} A * \mathcal{P}(B \mid A)$
using cond-prob-ev-def assms apply simp
by (metis Int-lower1 finite-measure-mono measure-le-0-iff)
lemma prob-intersect- B :
assumes $A \in$ events $B \in$ events
shows prob $(A \cap B)=\operatorname{prob} B * \mathcal{P}(A \mid B)$
using cond-prob-ev-def assms
by (simp-all add: inf-commute)(metis Int-lower2 finite-measure-mono measure-le-0-iff)

```
theorem Bayes-theorem:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events
    shows prob B*\mathcal{P}(A|B)= prob }A*\mathcal{P}(B|A
    using prob-intersect-A prob-intersect-B assms by simp
corollary Bayes-theorem-div:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events
    shows }\mathcal{P}(A|B)=(\mathrm{ prob A* P}(B|A))/(prob B
    using assms Bayes-theorem
    by (metis cond-prob-ev-def prob-intersect-A)
lemma cond-prob-dual-intersect:
    assumes }A\in\mathrm{ events }B\in\mathrm{ events }C\in\mathrm{ events
    assumes prob C\not=0
    shows}\mathcal{P}(A|(B\capC))=\mathcal{P}(A\capB|C)/\mathcal{P}(B|C)(is ?LHS=?RHS
proof -
    have B\capC\in events using assms by auto
    then have lhs:?LHS = prob (A\capB\capC)/prob ( }B\capC
        using assms cond-prob-ev-def[of B\capC A] inf-commute inf-left-commute by
(metis)
    have }A\capB\in\mathrm{ events using assms by auto
    then have }\mathcal{P}(A\capB|C)=\operatorname{prob}(A\capB\capC)/prob 
            using assms cond-prob-ev-def[of C A\capB] inf-commute by (metis)
    moreover have }\mathcal{P}(B|C)=\operatorname{prob}(B\capC)/prob C using cond-prob-ev-def[of C
B] assms inf-commute by metis
    ultimately have ?RHS = (prob }(A\capB\capC)/\operatorname{prob}C)/(\operatorname{prob}(B\capC)/pro
C)
    by simp
    also have ... = (prob (A\capB\capC)/ prob C)*(prob (C)/prob (B\capC)) by simp
    also have ... = prob ( }A\capB\capC)/\operatorname{prob}(B\capC)\mathrm{ using assms(4) by simp
    finally show ?thesis using lhs by simp
qed
```

lemma cond-prob-ev-double:
assumes $A \in$ events $B \in$ events $C \in$ events
assumes prob $C>0$
shows $\mathcal{P}(x$ in (uniform-measure $M C) .(x \in A) \mid(x \in B))=\mathcal{P}(A \mid(B \cap C))$
proof -
let $? M=$ uniform-measure $M C$
interpret cps: prob-space ?M using assms(4) prob-space-cond-prob-event by auto
have probne: prob $C \neq 0$ using assms(4) by auto
have ev: cps.events $=$ events using sets-uniform-measure by auto
have iev: $A \cap B \in$ events using assms(1) assms(2) by simp
have $0: \mathcal{P}(x$ in (uniform-measure $M C) .(x \in A) \mid(x \in B))=$ cps.cond-prob-ev $A B$ by simp
also have $1: \ldots=($ measure ? $M(A \cap B)) /($ measure ? $M B)$ using cond-prob-ev-def $\operatorname{assms}(1) \operatorname{assms}(2) \mathrm{ev}$
by (metis Int-commute cps.cond-prob-ev-def)
also have 2: $\ldots=\mathcal{P}((A \cap B) \mid C) /($ measure ?M $B)$
using measure-uniform-measure-eq-cond-prob-ev3[of $A \cap B C] \operatorname{assms(3)}$ iev by auto
also have 3: $\ldots=\mathcal{P}((A \cap B) \mid C) / \mathcal{P}(B \mid C)$ using measure-uniform-measure-eq-cond-prob-ev3[of $B C] \operatorname{assms}(3) \operatorname{assms}(2)$ by auto
also have 4: $\ldots=\mathcal{P}(A \mid(B \cap C))$
using cond-prob-dual-intersect[of $A B C] \operatorname{assms}(1) \operatorname{assms(2)} \operatorname{assms}(3)$ probne by presburger
finally show?thesis using 1234 by presburger
qed
lemma cond-prob-inter-set-lt:
assumes $A \in$ events $B \in$ events $A S \subseteq$ events
assumes finite $A S$
shows $\mathcal{P}((A \cap(\bigcap A S)) \mid B) \leq \mathcal{P}(A \mid B)$ (is ?LHS \leq ? RHS $)$
using measure-uniform-measure-eq-cond-prob-ev finite-measure-mono
proof (cases $A S=\{ \}$)
case True
then have $(A \cap(\bigcap A S))=A$ by simp
then show? thesis by simp
next
case False
then have $(\bigcap A S) \in$ events using $\operatorname{assms}(3) \operatorname{assms}(4)$ Inter-event-ss by simp
then have $(A \cap(\bigcap A S)) \in$ events using assms by simp
then have ? $L H S=\operatorname{prob}(A \cap(\cap A S) \cap B) / \operatorname{prob} B$
using assms cond-prob-ev-def $[$ of $B(A \cap(\bigcap A S))]$ inf-commute by metis
moreover have $\operatorname{prob}(A \cap(\bigcap A S) \cap B) \leq \operatorname{prob}(A \cap B)$ using finite-measure-mono $\operatorname{assms}(1)$ inf-commute inf-left-commute by (metis assms(2) inf-sup-ord(1) sets.Int)
ultimately show ?thesis using cond-prob-ev-def $[$ of $B A]$
by (simp add: assms(1) assms(2) divide-right-mono inf-commute)
qed

4.4 Conditional Probability Multiplication Rule

Many list and indexed variations of this lemma
lemma prob-cond-Inter-List:
assumes $x s \neq[]$
assumes $\bigwedge A . A \in$ set $x s \Longrightarrow A \in$ events

```
    shows prob (\bigcap(set xs)) = prob (hd xs)* (\prodi=1..<(length xs).
    P}((xs!i)|(\bigcap(set (take i xs ))))
    using assms(1) assms(2)
proof (induct xs rule: rev-nonempty-induct)
    case (single x)
    then show ?case by auto
next
    case (snoc x xs)
    have xs \not= []
        by (simp add: snoc.hyps(1))
    then have inev: }(\bigcap(\mathrm{ set xs )) E events using events-inter
        by (simp add: snoc.prems)
    have len: (length (xs @ [x])) = length xs + 1 by auto
    have last-p: P
        P}((xs@ @ [x])!length xs |\cap (set (take (length xs) (xs @ [x]))))
    by auto
    have prob (\bigcap(set (xs @ [x]))) = prob (x\cap (\bigcap(set xs)))
    by auto
    also have ... = prob (\bigcap(set xs))*\mathcal{P}(x|(\bigcap(set xs)))
        using prob-intersect-B snoc.prems inev by simp
    also have ... = prob (hd xs)* (\prodi=1..<length xs. }\mathcal{P}(xs!i|\cap(set (take i
xs)))) *
            P}(x|(\bigcap(set xs))
    using snoc.hyps snoc.prems by auto
    finally have prob (\bigcap (set (xs @ [x]))) = prob (hd (xs @ [x])) *
        (\prodi=1..<length xs. P
(\bigcap(set xs)))
    using nth-append[of xs [x]] nth-take by (simp add: snoc.hyps(1))
    then show ?case using last-p by auto
qed
lemma prob-cond-Inter-index:
    fixes n :: nat
    assumes n>0
    assumes F'{0..<n}\subseteq events
    shows prob (\bigcap (F`{0..<n})) = prob (F0)* (\prodi\in{1..<n}.
        P}(Fi|(\cap(F'{0..<i})))
proof -
    define xs where xs \equivmap F [0..<n]
    have prob }(\bigcap(set xs))=\operatorname{prob}(hdxs)*(\prodi=1..<(length xs).
        P}((xs!i)|(\bigcap(set (take i xs ))))) using xs-def assms prob-cond-Inter-List[of
xs] by auto
    then have prob (\bigcap(set xs)) = prob (hd xs)* (\prodi\in{1..<n}.\mathcal{P}((xs!i)|(\bigcap(set
(take i xs )))))
    using xs-def by auto
    moreover have hd xs=F0
    unfolding xs-def by (simp add: assms(1) hd-map)
    moreover have \ i. i\in{1..<n}\LongrightarrowF'{0..<i} = set (take ixs )
    by (metis atLeastLessThan-iff atLeastLessThan-upt image-set less-or-eq-imp-le
```

```
plus-nat.add-0
    take-map take-upt xs-def)
    ultimately show ?thesis using xs-def by auto
qed
lemma prob-cond-Inter-index-compl:
    fixes n :: nat
    assumes n>0
    assumes F' {0..<n}\subseteq events
    shows prob (\bigcapx\in{0..<n} . space M - F x) = prob (space M - F 0) * (\prodi
\in{1..<n}.
    P}(\mathrm{ space M - Fi| (@ jG{0..<i}. space M - Fj)))
proof -
    define }G\mathrm{ where }G\equiv\lambdai\mathrm{ . space M - Fi
    then have G'{0..<n}\subseteq events using assms(2) by auto
    then show ?thesis using prob-cond-Inter-index[of n G] G-def
    using assms(1) by blast
qed
lemma prob-cond-Inter-take-cond:
    assumes xs \not= []
    assumes set xs \subseteq events
    assumes }S\subseteqevent
    assumes S\not={}
    assumes finite S
    assumes prob (\bigcapS)>0
    shows \mathcal{P}((\bigcap(set xs))|(\bigcapS))=(\prodi=0..<(length xs). \mathcal{P}((xs!i)|(\bigcap(set
(take i xs )\cupS))))
proof -
    define }\mp@subsup{M}{}{\prime}\mathrm{ where }\mp@subsup{M}{}{\prime}=\mathrm{ uniform-measure M (}\bigcapS
    interpret cps: prob-space M' using prob-space-cond-prob-event M'-def assms(6)
by auto
    have len: length xs > 0 using assms(1) by simp
    have cps-ev: cps.events = events using sets-uniform-measure M'-def by auto
    have sevents: \bigcapS e events using assms(3) assms(4) Inter-event-ss assms(5) by
auto
    have fin: finite (set xs) by auto
    then have xevents: \bigcap(set xs) \in events using assms(1) assms(2) Inter-event-ss
by blast
    then have peq: \mathcal{P}((\bigcap(set xs))|(\bigcapS))=cps.prob (\bigcap (set xs))
            using measure-uniform-measure-eq-cond-prob-ev3[of \bigcap(set xs) \bigcapS] sevents
M'-def
    by blast
    then have cps.prob (\bigcap (set xs)) = cps.prob (hd xs) * (\prodi=1..<(length xs) .
    cps.cond-prob-ev (xs ! i) (\bigcap(set (take ixs)))) using assms cps.prob-cond-Inter-List
cps-ev
            by blast
    moreover have cps.prob (hd xs) =\mathcal{P}((xs!0)|(\bigcap(set (take 0 xs ) \cupS)))
```

```
proof -
    have ev: hd xs \in events using assms(2) len by auto
    then have cps.prob (hdxs)=\mathcal{P}(hdxs|\capS)
        using ev sevents measure-uniform-measure-eq-cond-prob-ev3[of hd xs \bigcapS]
M'-def by presburger
    then show ?thesis using len by (simp add: hd-conv-nth)
    qed
    moreover have }\bigwedgei.i>0\Longrightarrowi< length xs 
    cps.cond-prob-ev (xs ! i) (\bigcap(set (take i xs ))) = \mathcal{P}((xs!i)|(\bigcap(set (take ixs )
\cupS)))
    proof -
    fix i assume igt:i> 0 and ilt: i<length xs
    then have set (take ixs)\subseteq events using assms(2)
        by (meson set-take-subset subset-trans)
    moreover have set (take i xs) \not={} using len igt ilt by auto
    ultimately have }(\cap(\mathrm{ set (take i xs ))) G events
        using Inter-event-ss fin by auto
    moreover have xs ! i\in events using assms(2)
        using nth-mem subset-iff igt ilt by blast
    moreover have }(\bigcap(\mathrm{ set (take i xs ) US))}=(\bigcap(\mathrm{ set (take i xs ))) }\cap(\capS
        by (simp add: Inf-union-distrib)
    ultimately show cps.cond-prob-ev (xs!i) (\bigcap(set (take i xs )))=\mathcal{P}((xs!i)|
(\cap(set (take i xs )\cupS)))
        using sevents cond-prob-ev-double[of xs !i(\bigcap(set (take i xs ))) \bigcapS] assms(6)
M'-def by presburger
    qed
    ultimately have eq:cps.prob (\bigcap(set xs)) =\mathcal{P}((xs!0)|(\bigcap(set (take 0 xs ) \cup
S)))*(\prodi \in{1..<(length xs)}.
    P}((xs!i)|(\bigcap(set (take i xs )\cupS)))) by sim
    moreover have {1..<length xs }}={0..<\mathrm{ length xs } - {0}
    by (simp add: atLeast1-lessThan-eq-remove0 lessThan-atLeast0)
    moreover have finite {0..<length xs } by auto
    moreover have 0\in{0..<length xs} by (simp add: assms(1))
    ultimately have }\mathcal{P}((xs!0)|(\bigcap(set (take 0 xs )\cupS)))* (\prodi\in{1..<(length
xs)} .
    P}((xs!i)|(\bigcap(set (take i xs )\cupS))))=(\prodi\in{0..<(length xs)}
    P}((xs!i)|(\bigcap(set (take i xs )\cupS)))) using prod.remove[of {0..<length xs} 0
\lambda i. P}((xs!i)|(\bigcap(set (take i xs )\cupS)))
    by presburger
    then have cps.prob }(\bigcap(\mathrm{ set xs))})=(\prodi\in{0..<(length xs) } .
    P}((xs!i)|(\bigcap(set (take ixs)\cupS)))) using eq by simp
    then show ?thesis using peq by auto
qed
lemma prob-cond-Inter-index-cond-set:
    fixes n :: nat
    assumes n>0
    assumes finite E
    assumes E\not={}
```

assumes $E \subseteq$ events
assumes $F^{`}\{0 . .<n\} \subseteq$ events
assumes $\operatorname{prob}(\bigcap E)>0$
shows $\mathcal{P}\left(\left(\bigcap\left(F^{\prime}\{0 . .<n\}\right)\right) \mid(\bigcap E)\right)=\left(\prod i \in\{0 . .<n\} . \mathcal{P}\left(F i \mid\left(\bigcap\left(\left(F^{\prime}\{0 . .<i\}\right)\right.\right.\right.\right.$
$\cup E)$)))
proof -
define M^{\prime} where $M^{\prime}=$ uniform-measure $M(\bigcap E)$
interpret cps: prob-space M^{\prime} using prob-space-cond-prob-event M^{\prime}-def assms(6)
by auto
have cps-ev: cps.events $=$ events $\mathbf{u s i n g}$ sets-uniform-measure M^{\prime}-def by auto
have sevents: $(\bigcap(E)) \in$ events using $\operatorname{assms}(6) \operatorname{assms}(2) \operatorname{assms}(3) \operatorname{assms}(4)$ Inter-event-ss by auto
have fin: finite (F ' $\{0 . .<n\}$) by auto
then have xevents: $\bigcap(F '\{0 . .<n\}) \in$ events using assms Inter-event-ss by auto then have peq: $\mathcal{P}\left(\left(\bigcap\left(F^{\prime}\{0 . .<n\}\right)\right) \mid(\bigcap E)\right)=\operatorname{cps} . p r o b\left(\bigcap\left(F^{\prime}\{0 . .<n\}\right)\right)$
using measure-uniform-measure-eq-cond-prob-ev3[of $\cap(F '\{0 . .<n\}) \cap E]$ sevents M^{\prime}-def
by blast
moreover have F ' $\{0 . .<n\} \subseteq$ cps.events using cps-ev assms(5) by force
ultimately have $\operatorname{cps} . \operatorname{prob}\left(\bigcap\left(F^{\prime}\{0 . .<n\}\right)\right)=\operatorname{cps.prob}(F 0) *\left(\prod i=1 . .<n\right.$. cps.cond-prob-ev (Fi) ($\left.\left.\cap\left(F^{\prime}\{0 . .<i\}\right)\right)\right)$
using assms(1) cps.prob-cond-Inter-index $[$ of $n F]$ by blast
moreover have cps.prob $\left(\begin{array}{ll}F & 0\end{array}\right)=\mathcal{P}\left(\left.\left(\begin{array}{ll}F & 0\end{array}\right) \right\rvert\,(\bigcap E)\right)$
proof -
have ev: F $0 \in$ events using assms(1) assms(5) by auto
then show ?thesis
using ev sevents measure-uniform-measure-eq-cond-prob-ev3[of F $0 \bigcap E]$
M^{\prime}-def by presburger
qed
moreover have $\bigwedge i . i>0 \Longrightarrow i<n \Longrightarrow$
cps.cond-prob-ev $\left(F^{\prime}\right)\left(\bigcap\left(F^{\prime}\{0 . .<i\}\right)\right)=\mathcal{P}\left(\left(F^{\prime}\right) \mid\left(\bigcap\left(\left(F^{\prime}\{0 . .<i\}\right) \cup E\right)\right)\right)$
proof -
fix i assume $i g t: i>0$ and $i l t: i<n$
then have $(\bigcap(F \cdot\{0 . .<i\})) \in$ events
using assms subset-trans igt Inter-event-ss fin by auto
moreover have $F i \in$ events using assms
using subset-iff igt ilt by simp
moreover have $\left(\bigcap\left(\left(F^{\prime}\{0 . .<i\}\right) \cup(E)\right)\right)=\left(\bigcap\left(\left(F^{\prime}\{0 . .<i\}\right)\right)\right) \cap(\bigcap(E))$
by (simp add: Inf-union-distrib)
ultimately show cps.cond-prob-ev $\left(F^{i}\right)\left(\bigcap\left(F^{\prime}\{0 . .<i\}\right)\right)=\mathcal{P}\left(\left(F^{\prime}\right) \mid(\bigcap((F\right.$ ($\{0 . .<i\}) \cup E)$))
using sevents cond-prob-ev-double $\left[\right.$ of $\left.F i\left(\bigcap\left(\left(F^{\prime}\{0 . .<i\}\right)\right)\right) \bigcap E\right]$ assms M^{\prime}-def by presburger
qed
ultimately have eq: cps.prob $\left(\bigcap\left(F^{\prime}\{0 . .<n\}\right)\right)=\mathcal{P}\left(\left(\begin{array}{ll}F & 0) \mid(\bigcap E)) *\left(\prod i \in \neq 1\right.\end{array}\right.\right.$ $\{1 . .<n\}$.
$\left.\mathcal{P}\left(\left(F^{i}\right) \mid(\bigcap((F \cdot\{0 . .<i\}) \cup E))\right)\right)$ by simp
moreover have $\{1 . .<n\}=\{0 . .<n\}-\{0\}$
by (simp add: atLeast1-lessThan-eq-remove0 lessThan-atLeast0)
ultimately have $\mathcal{P}\left(\left(F_{0}\right) \mid(\bigcap E)\right) *\left(\prod i \in\{1 . .<n\} . \mathcal{P}\left((F i) \mid\left(\bigcap\left(\left(F^{\prime}\{0 . .<i\}\right)\right.\right.\right.\right.$ $\cup E))$) $)=$
$\left(\prod i \in\{0 . .<n\} . \mathcal{P}((F i) \mid(\bigcap((F \cdot\{0 . .<i\}) \cup E)))\right)$ using $\operatorname{assms}(1)$ prod.remove $[o f\{0 . .<n\} 0 \lambda$ i. $\mathcal{P}((F i) \mid(\bigcap((F ‘\{0 . .<i\}) \cup E)))]$ by fastforce then show ?thesis using peq eq by auto
qed
lemma prob-cond-Inter-index-cond-compl-set:
fixes $n::$ nat
assumes $n>0$
assumes finite E
assumes $E \neq\{ \}$
assumes $E \subseteq$ events
assumes F ' $\{0 . .<n\} \subseteq$ events
assumes $\operatorname{prob}(\bigcap E)>0$
shows $\mathcal{P}\left(\left(\bigcap\left((-)(\right.\right.\right.$ space $\left.\left.\left.M){ }^{\prime} F^{\prime}\{0 . .<n\}\right)\right) \mid(\bigcap E)\right)=$
$\left(\prod i=0 . .<n . \mathcal{P}((\right.$ space $M-F i) \mid(\bigcap((-)($ space $\left.M) ' F '\{0 . .<i\} \cup E)))\right)$
proof -
define G where $G \equiv \lambda i$. (space $M-F i)$
then have $G \cdot\{0 . .<n\} \subseteq$ events using assms(5) by auto
then have $\mathcal{P}((\bigcap(G \cdot\{0 . .<n\})) \mid(\bigcap E))=\left(\prod i \in\{0 . .<n\} . \mathcal{P}\left(G i \mid\left(\bigcap\left(\left(G{ }^{\prime}\right.\right.\right.\right.\right.$ $\{0 . .<i\}) \cup E))$))
using prob-cond-Inter-index-cond-set $[$ of $n E G]$ assms by blast
moreover have $\left((-)(\text { space } M)^{\prime} F^{\prime}\{0 . .<n\}\right)=(G ‘\{0 . .<n\})$ unfolding
G-def by auto
moreover have $\wedge i . i \in\{0 . .<n\} \Longrightarrow \mathcal{P}(($ space $M-F i) \mid(\bigcap((-)($ space $M)$ ' $\left.\left.F^{\prime}(\{0 . .<i\} \cup E)\right)\right)=$
$\mathcal{P}(G i \mid(\bigcap((G \cdot\{0 . .<i\}) \cup E)))$
proof -
fix i assume iin: $i \in\{0 . .<n\}$
have $(-)(\text { space } M)^{\prime} F^{\prime}\{0 . .<i\}=G '\{0 . .<i\}$ unfolding G-def using iin by auto
then show $\mathcal{P}\left((\right.$ space $M-F i) \mid\left(\bigcap\left((-)(\right.\right.$ space $\left.\left.\left.M){ }^{\prime} F^{\prime}\{0 . .<i\} \cup E\right)\right)\right)=$ $\mathcal{P}(G i \mid(\bigcap((G \cdot\{0 . .<i\}) \cup E)))$ unfolding G-def by auto
qed
ultimately show ?thesis by auto
qed
lemma prob-cond-Inter-index-cond:
fixes n :: nat
assumes $n>0$
assumes $n<m$
assumes F ' $\{0 . .<m\} \subseteq$ events
assumes $\operatorname{prob}(\bigcap j \in\{n . .<m\} . F j)>0$
shows $\mathcal{P}((\bigcap(F ‘\{0 . .<n\})) \mid(\bigcap j \in\{n . .<m\} . F j))=\left(\prod i \in\{0 . .<n\} . \mathcal{P}(F i \mid\right.$
$\left.\left.\left(\bigcap\left((F \cdot\{0 . .<i\}) \cup\left(F^{\prime}\{n . .<m\}\right)\right)\right)\right)\right)$
proof -
let $? E=F \cdot\{n . .<m\}$
have F ' $\{0 . .<n\} \subseteq$ events using assms(2) assms(3) by auto
moreover have ? $E \subseteq$ events using assms(2) assms(3) by auto
moreover have $\operatorname{prob}(\bigcap$? $E)>0$ using $\operatorname{assms}(4)$ by simp
moreover have $? E \neq\{ \}$ using $\operatorname{assms}(2)$ by simp
ultimately show? ?thesis using prob-cond-Inter-index-cond-set $[$ of n ? E F] assms(1)
by blast
qed
lemma prob-cond-Inter-index-cond-compl:
fixes $n::$ nat
assumes $n>0$
assumes $n<m$
assumes F ' $\{0 . .<m\} \subseteq$ events
assumes $\operatorname{prob}(\bigcap j \in\{n . .<m\} . F j)>0$
shows $\mathcal{P}\left(\left(\bigcap\left((-)(\right.\right.\right.$ space $\left.\left.\left.M){ }^{\prime} F^{\prime}\{0 . .<n\}\right)\right) \mid\left(\bigcap\left(F^{\prime}\{n . .<m\}\right)\right)\right)=$
$\left(\prod i=0 . .<n . \mathcal{P}\left((\right.\right.$ space $M-F i) \mid\left(\bigcap\left((-)(\right.\right.$ space $M){ }^{\prime} F^{\prime}\{0 . .<i\} \cup(F '$
$\{n . .<m\}))))$)
proof -
define G where $G \equiv \lambda$ i. if $(i<n)$ then (space $M-F i$) else $F i$
then have G ' $\{0 . .<m\} \subseteq$ events using assms(3) by auto
moreover have $\operatorname{prob}(\bigcap j \in\{n . .<m\} . G j)>0$ using G-def assms(4) by simp
ultimately have $\mathcal{P}\left(\left(\bigcap\left(G^{\prime}\{0 . .<n\}\right)\right) \mid(\bigcap(G \cdot\{n . .<m\}))\right)=\left(\prod i \in\{0 . .<n\}\right.$. $\left.\mathcal{P}\left(G i \mid\left(\bigcap\left(\left(G{ }^{\prime}\{0 . .<i\}\right) \cup\left(G^{\prime}\{n . .<m\}\right)\right)\right)\right)\right)$
using prob-cond-Inter-index-cond $[$ of $n m G] \operatorname{assms}(1) \operatorname{assms}(2)$ by blast
moreover have $\left((-)(\text { space } M)^{\prime} F^{\prime}\{0 . .<n\}\right)=(G \cdot\{0 . .<n\})$ unfolding G-def by auto
moreover have meq: $\left(F^{\prime}\{n . .<m\}\right)=\left(G^{\prime}\{n . .<m\}\right)$ unfolding G-def by auto
moreover have $\wedge i . i \in\{0 . .<n\} \Longrightarrow \mathcal{P}(($ space $M-F i) \mid(\bigcap((-)($ space $M)$ ' $\left.\left.F^{\prime}\{0 . .<i\} \cup(F(\{n . .<m\}))\right)\right)=$
$\mathcal{P}\left(G i \mid\left(\bigcap\left(\left(G^{\prime}\{0 . .<i\}\right) \cup\left(G^{\prime}\{n . .<m\}\right)\right)\right)\right)$
proof -
fix i assume iin: $i \in\{0 . .<n\}$
then have (space $M-F i)=G i$ unfolding G-def by auto
moreover have $(-)(\text { space } M)^{\prime} F^{\prime}\{0 . .<i\}=G^{\prime}\{0 . .<i\}$ unfolding G-def using iin by auto
ultimately show $\mathcal{P}\left((\right.$ space $M-F i) \mid\left(\bigcap\left((-)(\text { space } M)^{\prime} F^{\prime}\{0 . .<i\} \cup(F\right.\right.$ ' $\{n . .<m\})))$) $=$
$\mathcal{P}(G i \mid(\bigcap((G ‘\{0 . .<i\}) \cup(G \cdot\{n . .<m\}))))$ using meq by auto
qed
ultimately show ?thesis by auto
qed
lemma prob-cond-Inter-take-cond-neg:
assumes $x s \neq[]$
assumes set $x s \subseteq$ events
assumes $S \subseteq$ events
assumes $S \neq\{ \}$
assumes finite S

```
    assumes prob (\bigcapS)>0
    shows }\mathcal{P}((\cap((-)(\mathrm{ space M)'(set xs))) | (@S)) =
    (\prodi=0..< (length xs). \mathcal{P}((space M - xs!i) | (\bigcap((-) (space M)'(set (take
i xs )) \cupS))))
proof -
    define ys where ys = map ((-) (space M)) xs
    have set: ((-) (space M)'( set xs)) = set (ys)
    using ys-def by simp
    then have set ys \subseteqevents
    by (metis assms(2) image-subset-iff sets.compl-sets subsetD)
    moreover have ys }\not=[]\mathrm{ using ys-def assms(1) by simp
    ultimately have }\mathcal{P}(\cap(\mathrm{ set ys) | (}\capS))
        (\Pii=0..<(length ys). \mathcal{P}((ys!i)|(\bigcap(set (take i ys )\cupS))))
    using prob-cond-Inter-take-cond assms by auto
    moreover have len: length ys = length xs using ys-def by auto
    moreover have }\bigwedgei.i<length xs \Longrightarrowys!i= space M - xs!i using ys-de
nth-map len by auto
    moreover have \i. i< length xs \Longrightarrow set (take i ys)=(-) (space M)'set (take
i xs)
    using ys-def take-map len by (metis set-map)
    ultimately show ?thesis using set by auto
qed
lemma prob-cond-Inter-List-Index:
    assumes xs \not=[]
    assumes set xs \subseteq events
    shows prob (\bigcap(set xs)) = prob (hd xs)* (\Pii=1..<(length xs).
        \mathcal { P } ( ( x s ! i ) \| ( \bigcap j \in \{ 0 . . < i \} . x s ! j ) ) )
proof -
    have }\bigwedge i. i< length xs \Longrightarrow set (take ixs)=((!) xs' {0..<i}
        by (metis nat-less-le nth-image)
    thus ?thesis using prob-cond-Inter-List[of xs] assms by auto
qed
lemma obtains-prob-cond-Inter-index:
    assumes S\not={}
    assumes S\subseteqevents
    assumes finite S
    obtains xs where set xs =S and length xs = card S and
        prob (\bigcapS)=prob (hd xs)* (\prodi=1..< (length xs). P
. xs ! j)))
    using assms prob-cond-Inter-List-Index exists-list-card
    by (metis (no-types, lifting) set-empty2)
lemma obtain-list-index:
    assumes bij-betw g {0..<card S} S
    assumes finite S
    obtains xs where set xs =S and \ \i.i\in{0..<card S}\Longrightarrowgi=xs!i and
distinct xs
```

```
proof -
    let ?xs=map g[0..<card S]
    have seq: g'{0..<card S}=S using assms(1)
        by (simp add: bij-betw-imp-surj-on)
    then have set-eq: set ?xs =S
        by simp
    moreover have }\i.i\in{0..<card S}\Longrightarrowgi=?xs!
        by auto
    moreover have leneq: length ?xs = card S using seq by auto
    moreover have distinct ?xs using set-eq leneq
        by (simp add: card-distinct)
    ultimately show ?thesis
        using that by blast
qed
lemma prob-cond-inter-fn:
    assumes bij-betw g {0..<card S} S
    assumes finite S
    assumes S\not={}
    assumes S\subseteq events
    shows prob (\bigcapS)=\operatorname{prob}(g0)*(\prodi\in{1..<(card S)}.\mathcal{P}(gi|(\bigcap(g`{0..<i}))))
proof -
    obtain xs where seq: set xs =S and geq: \i. i\in{0..<card S} \Longrightarrowg gi=xs
! i and distinct xs
    using obtain-list-index assms by auto
    then have len: length xs = card S by (metis distinct-card)
    then have prob (\bigcapS)= prob (hd xs)* (\prodi\in{1..<(length xs)}.\mathcal{P}((xs!i)|
(\bigcapj\in{0..<i} . xs ! j)))
    using prob-cond-Inter-List-Index[of xs] assms(3) assms(4) seq by auto
    then have prob }(\capS)=\operatorname{prob}(hdxs)*(\prodi\in{1..<card S}.\mathcal{P}(gi|(\capj
{0..<i} . g j)))
    using geq len by auto
    moreover have hd xs = g0
    proof -
        have length xs >0 using seq assms(3) by auto
        then have hd xs=xs!0
            by (simp add: hd-conv-nth)
        then show ?thesis using geq len
            using <0 < length xs` by auto
    qed
    ultimately show ?thesis by simp
qed
lemma prob-cond-inter-obtain-fn:
    assumes S\not={}
    assumes S\subseteqevents
    assumes finite S
    obtains f}\mathrm{ where bij-betw f {0..<card S} S and
    prob}(\bigcapS)=\operatorname{prob}(f0)*(\prodi\in{1..<(card S)}.\mathcal{P}(fi|(\bigcap(f`{0..<i})))
```

```
proof -
    obtain f}\mathrm{ where bij-betw f{0..<card S} S
        using assms(3) ex-bij-betw-nat-finite by blast
    then show ?thesis using that prob-cond-inter-fn assms by auto
qed
lemma prob-cond-inter-obtain-fn-compl:
    assumes S\not={}
    assumes S\subseteqevents
    assumes finite S
    obtains f where bij-betw f {0..<card S} S and prob (\cap((-) (space M)'S))
=
        prob (space M - f 0)* (\prodi\in{1..<(card S)}.\mathcal{P}(\mathrm{ space M - fi|(\((-)}
(space M)'f`{0..<i}))))
proof -
    let ?c = (-) (space M)
    obtain f}\mathrm{ where bb: bij-betw f {0..<card S} S
        using assms(3) ex-bij-betw-nat-finite by blast
    moreover have bij:bij-betw ?c S ((-) (space M)'S)
        using bij-betw-compl-sets-rev assms(2) by auto
    ultimately have bij-betw (?c \circf) {0..<card S} (?c `S)
        using bij-betw-comp-iff by blast
    moreover have ?c ' }S\not={}\mathrm{ using assms(1) by auto
    moreover have finite (?c 'S ) using assms(3) by auto
    moreover have ?c ' }S\subseteq\mathrm{ events using assms(2) by auto
    moreover have card S = card (?c'S) using bij
        by (simp add: bij-betw-same-card)
    ultimately have prob }(\cap(?c`S))=\operatorname{prob}((?c\circf)0)
        (\prodi\in{1..<(card S)}.\mathcal{P}((?c\circf)i|(\bigcap((?c\circf)'{0..<i}))))
        using prob-cond-inter-fn[of (?c \circf) (?c 'S )] by auto
    then have prob (\cap(?c'S)) = prob (space M - (f 0))*
        (\prodi\in{1..<(card S)}.\mathcal{P}(\mathrm{ space M - (f i)| (\((?c ○f)'{0..<i})))) by simp}<\mp@code{l}
    then show ?thesis using that bb by simp
qed
lemma prob-cond-Inter-index-cond-fn:
    assumes I\not={}
    assumes finite I
    assumes finite E
    assumes }E\not={
    assumes E\subseteq events
    assumes F' I\subseteq events
    assumes prob (\bigcapE) > 0
    assumes bb: bij-betw g {0..<card I} I
    shows}\mathcal{P}((\cap(F'g'{0..<card I}))| (\bigcapE)) 
    (\prodi\in{0..<card I}. P
proof -
    let ?n = card I
```

have eq: $F \cdot I=(F \circ g) '\{0 . .<$ card $I\}$ using bij-betw-image-comp-eq bb by metis
moreover have $0<$? n using assms(1) assms(2) by auto
ultimately have $\mathcal{P}(\bigcap((F \circ g)$ ' $\{0 . .<$ card $I\}) \mid \cap E)=$ $\left(\prod i=0 . .<? n . \mathcal{P}(F(g i) \mid \cap((F \circ g) '\{0 . .<i\} \cup E))\right)$ using prob-cond-Inter-index-cond-set[of ?n $E(F \circ g)] \operatorname{assms}(3) \operatorname{assms}(4)$
$\operatorname{assms}(5) \operatorname{assms}(6)$
$\operatorname{assms}(7)$ by auto
moreover have $\bigwedge i . i \in\{0 . .<? n\} \Longrightarrow(F \circ g) '\{0 . .<i\}=F^{\prime} g{ }^{\prime}\{0 . .<i\}$ using image-comp by auto
ultimately have $\mathcal{P}(\cap(F ' g '\{0 . .<\operatorname{card} I\}) \mid \cap E)=\left(\prod i=0 . .<? n . \mathcal{P}(F(g\right.$
i) $\mid \bigcap(F \cdot g '\{0 . .<i\} \cup E)))$
using image-comp[of $F g\{0 . .<$ card $I\}]$ by auto
then show ?thesis using eq bb assms by blast
qed
lemma prob-cond-Inter-index-cond-obtains:
assumes $I \neq\{ \}$
assumes finite I
assumes finite E
assumes $E \neq\{ \}$
assumes $E \subseteq$ events
assumes $F^{\text {' }} I \subseteq$ events
assumes $\operatorname{prob}(\bar{\bigcap} E)>0$
obtains g where bij-betw $g\{0 . .<$ card $I\} I$ and $\mathcal{P}\left(\left(\cap\left(F^{\prime} g '\{0 . .<\right.\right.\right.$ card $\left.\left.I\}\right)\right) \mid$ $(\bigcap E))=$
$\left(\prod i \in\{0 . .<\right.$ card $\left.I\} . \mathcal{P}\left(F(g i) \mid\left(\bigcap\left(\left(F^{\prime} g^{‘}\{0 . .<i\}\right) \cup E\right)\right)\right)\right)$
proof -
obtain g where bb: bij-betw $g\{0 . .<\operatorname{card} I\} I$ using $\operatorname{assms}(2)$ ex-bij-betw-nat-finite by auto
then show thesis using assms prob-cond-Inter-index-cond-fn[of I E Fg] that by blast
qed
lemma prob-cond-Inter-index-cond-compl-fn:
assumes $I \neq\{ \}$
assumes finite I
assumes finite E
assumes $E \neq\{ \}$
assumes $E \subseteq$ events
assumes $F^{`} I \subseteq$ events
assumes prob $(\bigcap E)>0$
assumes bb: bij-betw $g\{0 . .<$ card $I\} I$
shows $\mathcal{P}((\bigcap A j \in I$. space $M-F A j) \mid(\bigcap E))=$
$\left(\prod i \in\{0 . .<\right.$ card $I\} . \mathcal{P}($ space $M-F(g i) \mid(\bigcap(((\lambda A j$. space $M-F A j)$ ' g ' $\{0 . .<i\}) \cup E))$)
proof -
let $? n=\operatorname{card} I$
let ? $G=\lambda i$. space $M-F i$

```
    have eq: ? \(G ‘ I=(? G \circ g) '\{0 . .<\) card \(I\}\) using bij-betw-image-comp-eq bb by
metis
    then have \((? G \circ g)\) ' \(\{0 . .<\) card \(I\} \subseteq\) events \(\mathbf{u s i n g}\) assms(5)
        by (metis assms(6) compl-subset-in-events image-image)
    moreover have \(0<\) ? \(n\) using \(\operatorname{assms}(1) \operatorname{assms}(2)\) by auto
    ultimately have \(\mathcal{P}(\bigcap((? G \circ g) '\{0 . .<\operatorname{card} I\}) \mid \cap E)=\left(\prod i=0 . .<? n . \mathcal{P}(? G\right.\)
\((g i) \mid \bigcap((? G \circ g) '\{0 . .<i\} \cup E)))\)
        using prob-cond-Inter-index-cond-set[of ?n \(E(? G \circ g)] \operatorname{assms}(3) \operatorname{assms}(4)\)
\(\operatorname{assms}(5) \operatorname{assms}(6)\)
        assms(7) by auto
    moreover have \(\bigwedge i . i \in\{0 . .<? n\} \Longrightarrow(? G \circ g)^{\prime}\{0 . .<i\}=? G{ }^{\prime} g{ }^{\prime}\{0 . .<i\}\)
using image-comp by auto
    ultimately have \(\mathcal{P}(\cap(? G \cdot I) \mid \cap E)=\left(\prod i=0 . .<? n . \mathcal{P}(? G(g i) \mid \cap(? G\right.\)
' \(g\) ' \(\{0 . .<i\} \cup E)\) )
    using image-comp[of? \(G\) g \(\{0 . .<\) card \(I\}]\) eq by auto
    then show ?thesis using \(b b\) by blast
qed
lemma prob-cond-Inter-index-cond-compl-obtains:
    assumes \(I \neq\{ \}\)
    assumes finite \(I\)
    assumes finite \(E\)
    assumes \(E \neq\{ \}\)
    assumes \(E \subseteq\) events
    assumes \(F\) ' \(I \subseteq\) events
    assumes \(\operatorname{prob}(\bigcap E)>0\)
    obtains \(g\) where bij-betw \(g\{0 . .<\) card \(I\} I\) and \(\mathcal{P}((\bigcap A j \in I\). space \(M-F A j)\)
\(\mid(\bigcap E))=\)
    \(\left(\prod i \in\{0 . .<\right.\) card \(I\} . \mathcal{P}(\) space \(M-F(g i) \mid(\bigcap(((\lambda A j\). space \(M-F A j) ' g\) '
\(\{0 . .<i\}) \cup E))\) )
proof -
    let \(? n=\operatorname{card} I\)
    let ? \(G=\lambda i\). space \(M-F i\)
    obtain \(g\) where bb: bij-betw \(g\{0 . .<\) ?n\} I using assms(2) ex-bij-betw-nat-finite
by auto
    then show ?thesis using assms prob-cond-Inter-index-cond-compl-fn \([\) of I E F g]
that by blast
qed
lemma prob-cond-inter-index-fn2:
    assumes \(F\) ' \(S \subseteq\) events
    assumes finite \(S\)
    assumes card \(S>0\)
    assumes bij-betw g \(\{0 . .<\) card \(S\} S\)
    shows \(\operatorname{prob}(\bigcap(F ' S))=\operatorname{prob}(F(g 0)) *\left(\prod i \in\{1 . .<(\operatorname{card} S)\} . \mathcal{P}(F(g i) \mid\right.\)
\(\left.\left.\left(\bigcap\left(F^{\prime} g^{\prime}\{0 . .<i\}\right)\right)\right)\right)\)
proof -
    have 1: \(F \cdot S=(F \circ g) '\{0 . .<\operatorname{card} S\}\) using \(\operatorname{assms}(4)\) bij-betw-image-comp-eq
by metis
```

```
    moreover have prob (\cap ((F\circg)'{0..<card S}))=
        prob (F(g 0))*(\prodi\in{1..<(card S)}.\mathcal{P}(F(gi)|(\bigcap(F'g'{0..<i}))))
    using 1 prob-cond-Inter-index[of card S F\circg] assms(3) assms(1) by auto
    ultimately show ?thesis using assms(4)
    by metis
qed
lemma prob-cond-inter-index-fn:
    assumes F'}S\subseteq\mathrm{ events
    assumes finite S
    assumes S\not={}
    assumes bij-betw g {0..<card S} S
    shows prob (\bigcap(F'S)) = prob (F (g O)) * (\prodi\in{1..< (card S)}.\mathcal{P}(F(gi)|
(\cap(F'g'{0..<i}))))
proof -
    have card S > 0 using assms(3) assms(2)
        by (simp add: card-gt-0-iff)
    moreover have (F\circg)'{0..<card S}\subseteqevents using assms(1) assms(4)
    using bij-betw-imp-surj-on by (metis image-comp)
    ultimately have prob }(\bigcap((F\circg)'{0..<card S}))
        prob (F(g 0))* (\prodi\in{1..<(card S)}.\mathcal{P}(F(gi)|(\bigcap(F'g'{0..<i}))))
        using prob-cond-Inter-index[of card S F\circg] by auto
    moreover have F'S=(F\circg)`{0..<card S} using assms(4)
        using bij-betw-imp-surj-on image-comp by (metis)
    ultimately show ?thesis using assms(4) by presburger
qed
lemma prob-cond-inter-index-obtain-fn:
    assumes F'}S\subseteq\mathrm{ events
    assumes finite S
    assumes S\not={}
    obtains g}\mathrm{ where bij-betw g {0..<card S} S and
    prob (\bigcap(F'S)) = prob (F (g 0))* (\prodi\in{1..< card S)}.\mathcal{P}(F(gi)|(\bigcap(F'
g'{0..<i}))))
proof -
    obtain f}\mathrm{ where bb: bij-betw f {0..<card S} S
    using assms(2) ex-bij-betw-nat-finite by blast
    then show ?thesis using prob-cond-inter-index-fn that assms by blast
qed
lemma prob-cond-inter-index-fn-compl:
    assumes S}={{
    assumes F'S\subseteq events
    assumes finite S
    assumes bij-betw f{0..<card S}S
    shows prob (\bigcap((-) (space M)`}\mp@subsup{\}{}{\prime}S))=\operatorname{prob}(\mathrm{ space M - F (f 0))*
```



```
{0..<i}))))
proof -
```

define G where $G \equiv \lambda i$. space $M-F i$
then have G ' $S \subseteq$ events using G-def assms(2) by auto
then have $\operatorname{prob}(\bigcap(G \cdot S))=\operatorname{prob}(G(f 0)) *\left(\prod i=1 . .<\operatorname{card} S . \mathcal{P}(G(f i) \mid\right.$
$\left.\left.\bigcap\left(G f^{\prime}\{0 . .<i\}\right)\right)\right)$
using prob-cond-inter-index-fn[of GS] assms by auto
moreover have $\left(\bigcap\left((-)(\text { space } M)^{\prime} F^{\prime} S\right)\right)=(\bigcap i \in S$. space $M-F$ i) by auto ultimately show ?thesis unfolding G-def by auto
qed
lemma prob-cond-inter-index-obtain-fn-compl:
assumes $S \neq\{ \}$
assumes F ' $S \subseteq$ events
assumes finite S
obtains f where bij-betw $f\{0 . .<\operatorname{card} S\} S$ and
$\operatorname{prob}\left(\bigcap\left((-)(\right.\right.$ space $\left.\left.M){ }^{\prime} F^{\prime} S\right)\right)=\operatorname{prob}($ space $M-F(f 0)) *$
$\left(\prod i \in\{1 . .<(\right.$ card $S)\} . \mathcal{P}\left(\right.$ space $M-F(f i) \mid\left(\bigcap\left((-)(\right.\right.$ space $M){ }^{\prime} F ‘ f$ ‘
$\{0 . .<i\}))$)
proof -
obtain f where bb: bij-betw $f\{0 . .<$ card $S\} S$
using assms(3) ex-bij-betw-nat-finite by blast
then show ?thesis using prob-cond-inter-index-fn-compl[of SFf] assms that by blast
qed
lemma prob-cond-Inter-take:
assumes $S \neq\{ \}$
assumes $S \subseteq$ events
assumes finite S
obtains $x s$ where set $x s=S$ and length $x s=$ card S and
$\operatorname{prob}(\bigcap S)=\operatorname{prob}(h d x s) *\left(\prod i=1 . .<(\right.$ length $x s) . \mathcal{P}((x s!i) \mid(\bigcap($ set $($ take i xs)))))
using assms prob-cond-Inter-List exists-list-card
by (metis (no-types, lifting) set-empty2 subset-code(1))
lemma prob-cond-Inter-set-bound:
assumes $A \neq\{ \}$
assumes $A \subseteq$ events
assumes finite A
assumes $\bigwedge A i . f A i \geq 0 \wedge f A i \leq 1$
assumes $\bigwedge A i S . A i \in A \Longrightarrow S \subseteq A-\{A i\} \Longrightarrow S \neq\{ \} \Longrightarrow \mathcal{P}(A i \mid(\bigcap S)) \geq f$ Ai
assumes $\bigwedge A i . A i \in A \Longrightarrow$ prob $A i \geq f A i$
shows $\operatorname{prob}(\bigcap A) \geq\left(\prod a^{\prime} \in A . f a^{\prime}\right)$
proof -
obtain $x s$ where eq: set $x s=A$ and seq: length $x s=\operatorname{card} A$ and
pA: prob $(\bigcap A)=\operatorname{prob}(h d x s) *\left(\prod i=1 . .<(\right.$ length $x s) . \mathcal{P}((x s!i) \mid(\bigcap j \in$ $\{0 . .<i\} . x s!j))$)
using assms obtains-prob-cond-Inter-index[of $A]$ by blast
then have dis: distinct xs using card-distinct
by metis
then have $h d x s \in A$ using eq hd-in-set assms(1) by auto
then have $\operatorname{prob}(h d x s) \geq(f(h d x s))$ using assms(6) by blast
have $\bigwedge i . i \in\{1 . .<($ length $x s)\} \Longrightarrow \mathcal{P}((x s!i) \mid(\bigcap j \in\{0 . .<i\} . x s!j)) \geq f(x s$! i)
proof -
fix i assume $i \in\{1 . .<$ length $x s\}$
then have $i l b: i \geq 1$ and iub: $i<$ length $x s$ by auto
then have $x \sin : x s!i \in A$ using eq by auto
define S where $S=(\lambda j$. xs ! $j)$ ' $\{0 . .<i\}$
then have $S=$ set (take ixs)
by (simp add: iub less-or-eq-imp-le nth-image)
then have $x s!i \notin S$ using dis set-take-distinct-elem-not iub by simp
then have $S \subseteq A-\{(x s!i)\}$
using $\langle S=$ set (take i xs) 〉 eq set-take-subset by fastforce
moreover have $S \neq\{ \}$ using S-def ilb by (simp)
moreover have $\mathcal{P}((x s!i) \mid(\bigcap j \in\{0 . .<i\} . x s!j))=\mathcal{P}((x s!i) \mid(\cap A j \in$
$S . A j)$)
using S-def by auto
ultimately show $\mathcal{P}((x s!i) \mid(\bigcap j \in\{0 . .<i\} . x s!j)) \geq f(x s!i)$
using assms(5) xsin by auto
qed
then have $\left(\prod i=1 . .<(\right.$ length $\left.x s) . \mathcal{P}((x s!i) \mid(\bigcap j \in\{0 . .<i\} . x s!j))\right) \geq$ $\left(\prod i=1 . .<(\right.$ length $\left.x s) . f(x s!i)\right)$
by (meson assms(4) prod-mono)
moreover have $\left(\prod i=1 . .<(\right.$ length $\left.x s) . f(x s!i)\right)=\left(\prod a \in A-\{h d x s\} . f a\right)$
proof -
have $n e: x s \neq[]$ using assms(1) eq by auto
have $A=(\lambda j . x s!j)$ ' $\{0 . .<$ length $x s\}$ using $e q$ by (simp add: nth-image)
have $A-\{h d x s\}=\operatorname{set}(t l x s)$ using dis
by (metis Diff-insert-absorb distinct.simps(2) eq list.exhaust-sel list.set(2) ne)
also have $\ldots=(\lambda j$. xs ! j)' $\{1 . .<$ length $x s\}$ using nth-image-tl ne by auto
finally have Ahdeq: $A-\{h d x s\}=(\lambda j . x s!j)$ ' $\{1 . .<$ length $x s\}$ by simp
have io: inj-on (nth $x s$) $\{1 . .<$ length $x s\}$ using inj-on-nth dis by (metis atLeastLessThan-iff)
have $\left(\prod i=1 . .<(\right.$ length $\left.x s) . f(x s!i)\right)=\left(\prod i \in\{1 . .<(\right.$ length $\left.x s)\} . f(x s!i)\right)$
by simp
also have $\ldots=\left(\prod i \in(\lambda j\right.$. xs ! $j)$ ' $\{1 . .<$ length $\left.x s\} . f i\right)$
using io by (simp add: prod.reindex-cong)
finally show ?thesis using Ahdeq using $\left\langle\left(\prod i=1 . .<\right.\right.$ length $\left.x s . f(x s!i)\right)=\operatorname{prod} f((!) x s$ ' $\{1 . .<$ length $x s\})$ 〉
by presburger
qed
ultimately have $\operatorname{prob}(\bigcap A) \geq f(h d x s) *\left(\prod a \in A-\{h d x s\} . f a\right)$
using $p A<f(h d x s) \leq \operatorname{prob}(h d x s)\rangle$ assms(4) ordered-comm-semiring-class.comm-mult-left-mono
by (simp add: mult-mono' prod-nonneg)

```
    then show ?thesis
    by (metis «hd xs \in A` assms(3) prod.remove)
qed
end
end
```


5 Independent Events

```
theory Indep-Events imports Cond-Prob-Extensions
begin
```


5.1 More bijection helpers

lemma bij-betw-obtain-subsetr:
assumes bij-betw f A B
assumes $A^{\prime} \subseteq A$
obtains B^{\prime} where $B^{\prime} \subseteq B$ and $B^{\prime}=f^{\prime} A^{\prime}$
using assms by (metis bij-betw-def image-mono)
lemma bij-betw-obtain-subsetl:
assumes bij-betw f $A B$
assumes $B^{\prime} \subseteq B$
obtains A^{\prime} where $A^{\prime} \subseteq A$ and $B^{\prime}=f^{\prime} A^{\prime}$
using assms
by (metis bij-betw-imp-surj-on subset-imageE)
lemma bij-betw-remove: bij-betw $f A B \Longrightarrow a \in A \Longrightarrow$ bij-betw $f(A-\{a\})(B$
$-\{f a\})$
using bij-betwE notIn-Un-bij-betw3
by (metis Un-insert-right insert-Diff member-remove remove-def sup-bot.right-neutral)

5.2 Independent Event Extensions

Extensions on both the indep_event definition and the indep_events definition
context prob-space
begin
lemma indep-events D : indep-events $A I \Longrightarrow\left(A^{\prime} I \subseteq\right.$ events $) \Longrightarrow J \subseteq I \Longrightarrow J \neq$ $\} \Longrightarrow$ finite $J \Longrightarrow$
$\operatorname{prob}(\bigcap j \in J . A j)=\left(\prod j \in J . \operatorname{prob}(A j)\right)$
using indep-events-def[of A I] by auto
lemma
assumes indep: indep-event $A B$
shows indep-eventD-ev1: $A \in$ events
and indep-eventD-ev2: $B \in$ events
using indep unfolding indep-event-def indep-events-def UNIV-bool by auto
lemma indep-event D :
assumes $i e$: indep-event $A B$
shows $\operatorname{prob}(A \cap B)=\operatorname{prob}(A) * \operatorname{prob}(B)$
using assms indep-eventD-ev1 indep-eventD-ev2 ie[unfolded indep-event-def, THEN indep-eventsD, of UNIV]
by (simp add: ac-simps UNIV-bool)
lemma indep-eventI[intro]:
assumes ev: $A \in$ events $B \in$ events
and indep: $\operatorname{prob}(A \cap B)=\operatorname{prob} A * \operatorname{prob} B$
shows indep-event $A B$
unfolding indep-event-def
proof (intro indep-eventsI)
show $\bigwedge i . i \in U N I V \Longrightarrow($ case i of True $\Rightarrow A \mid$ False $\Rightarrow B) \in$ events
using assms by (auto split: bool.split)
next
fix $J::$ bool set assume $j s s: J \subseteq U N I V$ and $j n e: J \neq\{ \}$ and $f i n J:$ finite J
have $J \in$ Pow UNIV by auto
then have $c: J=U N I V \vee J=\{$ True $\} \vee J=\{$ False $\}$ using jne jss UNIV-bool by (metis (full-types) UNIV-eq-I insert-commute subset-insert subset-singletonD)

```
    then show prob (\bigcapi\inJ. case i of True }=>A|\mathrm{ False }=>B)
            (\prodi\inJ. prob (case i of True }=>A|\mathrm{ False }=>B)\mathrm{ )
        unfolding UNIV-bool using indep by (auto simp: ac-simps)
qed
```

Alternate set definition - when no possibility of duplicate objects
definition indep-events-set :: 'a set set \Rightarrow bool where
indep-events-set $E \equiv(E \subseteq$ events $\wedge(\forall J . J \subseteq E \longrightarrow$ finite $J \longrightarrow J \neq\{ \} \longrightarrow$ prob $(\bigcap J)=\left(\prod i \in J\right.$. prob $\left.\left.\left.i\right)\right)\right)$
lemma indep-events-setI[intro]: $E \subseteq$ events $\Longrightarrow(\bigwedge J . J \subseteq E \Longrightarrow$ finite $J \Longrightarrow J$ $\neq\{ \} \Longrightarrow$
prob $(\bigcap J)=\left(\prod i \in J\right.$. prob $\left.\left.i\right)\right) \Longrightarrow$ indep-events-set E
using indep-events-set-def by simp
lemma indep-events-subset:
indep-events-set $E \longleftrightarrow(\forall J \subseteq E$. indep-events-set $J)$
by (auto simp: indep-events-set-def)
lemma indep-events-subset2:
indep-events-set $E \Longrightarrow J \subseteq E \Longrightarrow$ indep-events-set J
by (auto simp: indep-events-set-def)
lemma indep-events-set-events: indep-events-set $E \Longrightarrow(\bigwedge e . e \in E \Longrightarrow e \in$ events $)$
using indep-events-set-def by auto
lemma indep-events-set-events-ss: indep-events-set $E \Longrightarrow E \subseteq$ events
using indep-events-set-events by auto
lemma indep-events-set-probs: indep-events-set $E \Longrightarrow J \subseteq E \Longrightarrow$ finite $J \Longrightarrow J$ $\neq\{ \} \Longrightarrow$
prob $(\bigcap J)=\left(\prod i \in J\right.$. prob $\left.i\right)$
by (simp add: indep-events-set-def)
lemma indep-events-set-prod-all: indep-events-set $E \Longrightarrow$ finite $E \Longrightarrow E \neq\{ \} \Longrightarrow$ $\operatorname{prob}(\bigcap E)=$ prod prob E
using indep-events-set-probs by simp
lemma indep-events-not-contain-compl:
assumes indep-events-set E
assumes $A \in E$
assumes prob $A>0$ prob $A<1$
shows (space $M-A) \notin E$ (is ? $\left.A^{\prime} \notin E\right)$
proof (rule ccontr)
assume $\neg\left(? A^{\prime}\right) \notin E$
then have $? A^{\prime} \in E$ by auto
then have $\left\{A, ? A^{\prime}\right\} \subseteq E$ using assms(2) by auto
moreover have finite $\left\{A, ? A^{\prime}\right\}$ by simp
moreover have $\left\{A, ? A^{\prime}\right\} \neq\{ \}$
by simp
ultimately have $\operatorname{prob}\left(\bigcap i \in\left\{A, ? A^{\prime}\right\} . i\right)=\left(\prod i \in\left\{A, ? A^{\prime}\right\} . \operatorname{prob} i\right)$ using indep-events-set-probs[of $\left.E\left\{A, ? A^{\prime}\right\}\right]$ assms (1) by auto
then have $\operatorname{prob}\left(A \cap ? A^{\prime}\right)=\operatorname{prob} A * \operatorname{prob} ? A^{\prime}$ by simp
moreover have $\operatorname{prob}\left(A \cap ? A^{\prime}\right)=0$ by simp
moreover have $\operatorname{prob} A * \operatorname{prob} ? A^{\prime}=\operatorname{prob} A *(1-\operatorname{prob} A)$
using assms(1) assms(2) indep-events-set-events prob-compl by auto
moreover have $\operatorname{prob} A *(1-\operatorname{prob} A)>0$ using $\operatorname{assms}(3) \operatorname{assms}(4)$ by (simp
add: algebra-simps)
ultimately show False by auto
qed
lemma indep-events-contain-compl-prob01:
assumes indep-events-set E
assumes $A \in E$
assumes space $M-A \in E$
shows prob $A=0 \vee$ prob $A=1$
proof (rule ccontr)
let ${ }^{2} A^{\prime}=$ space $M-A$
assume $a: \neg($ prob $A=0 \vee \operatorname{prob} A=1)$
then have prob $A>0$
by (simp add: zero-less-measure-iff)
moreover have prob $A<1$
using a measure-ge-1-iff by fastforce
ultimately have ? $A^{\prime} \notin E$ using assms(1) assms(2) indep-events-not-contain-compl
then show False using assms(3) by auto qed
lemma indep-events-set-singleton:
assumes $A \in$ events
shows indep-events-set $\{A\}$
proof (intro indep-events-setI)
show $\{A\} \subseteq$ events using assms by simp
next
fix J assume $J \subseteq\{A\}$ finite $J J \neq\{ \}$
then have $J=\{A\}$ by auto
then show $\operatorname{prob}(\bigcap J)=\operatorname{prod}$ prob J by simp
qed
lemma indep-events-pairs:
assumes indep-events-set S
assumes $A \in S B \in S A \neq B$
shows indep-event $A B$
using assms indep-events-set-probs[of $S\{A, B\}]$
by (intro indep-eventI) (simp-all add: indep-events-set-events)
lemma indep-events-inter-pairs:
assumes indep-events-set S
assumes finite A finite B
assumes $A \neq\{ \} B \neq\{ \}$
assumes $A \subseteq S B \subseteq S A \cap B=\{ \}$
shows indep-event $(\bigcap A)(\bigcap B)$
proof (intro indep-eventI)
have $A \subseteq$ events $B \subseteq$ events using indep-events-set-events assms by auto
then show $\bigcap A \in$ events $\bigcap B \in$ events using Inter-event-ss assms by auto
next
have $A \cup B \subseteq S$ using assms by auto
then have $\operatorname{prob}(\bigcap(A \cup B))=\operatorname{prod} \operatorname{prob}(A \cup B)$ using assms
by (metis Un-empty indep-events-subset infinite-Un prob-space.indep-events-set-prod-all prob-space-axioms)
also have $\ldots=\operatorname{prod}$ prob $A * \operatorname{prod}$ prob B using $\operatorname{assms}(8)$
by (simp add: assms(2) assms(3) prod.union-disjoint)
finally have $\operatorname{prob}(\bigcap(A \cup B))=\operatorname{prob}(\bigcap A) * \operatorname{prob}(\bigcap B)$
using assms indep-events-subset indep-events-set-prod-all by metis
moreover have $\bigcap(A \cup B)=(\bigcap A \cap \bigcap B)$ by auto
ultimately show $\operatorname{prob}(\bigcap A \cap \bigcap B)=\operatorname{prob}(\bigcap A) * \operatorname{prob}(\bigcap B)$
by simp
qed
lemma indep-events-inter-single:
assumes indep-events-set S
assumes finite B

```
    assumes B\not={}
    assumes }A\inSB\subseteqSA\not\in
    shows indep-event A(\bigcapB)
proof -
    have {A}\not={} finite {A} {A}\subseteqS using assms by simp-all
    moreover have {A}\capB={} using assms(6) by auto
    ultimately show ?thesis using indep-events-inter-pairs[of S {A} B] assms by
auto
qed
lemma indep-events-set-prob1:
    assumes }A\in\mathrm{ events
    assumes prob A=1
    assumes }A\not\in
    assumes indep-events-set S
    shows indep-events-set (S\cup{A})
proof (intro indep-events-setI)
    show }S\cup{A}\subseteqevents using assms(1) assms(4) indep-events-set-events by
auto
next
    fix }J\mathrm{ assume jss: J}\subseteqS\cup{A} and finJ: finite J and jne: J\not={
    show prob (\bigcapJ) = prod prob J
    proof (cases A\inJ)
        case t1: True
        then show ?thesis
        proof (cases J ={A})
            case True
            then show ?thesis using indep-events-set-singleton assms(1) by auto
    next
            case False
            then have jun: (J-{A})\cup{A}=J using t1 by auto
            have }J-{A}\subseteqS\mathrm{ using jss by auto
            then have iej: indep-events-set (J - {A}) using indep-events-subset2[of S J
- {A}] assms(4)
            by auto
            have jsse: J-{A}\subseteqevents using indep-events-set-events jss
                using assms(4) by blast
            have jne2: }J-{A}\not={}\mathrm{ using False jss jne by auto
            have split: }(J-{A})\cap{A}={} by aut
            then have prob (\bigcapi\inJ. i)=\operatorname{prob}((\bigcapi\in(J-{A}). i)\capA) using jun
                by (metis Int-commute Inter-insert Un-ac(3) image-ident insert-is-Un)
            also have ... = prob ((\bigcapi\in(J-{A}).i))
                using prob1-basic-Inter[of A J - {A}] jsse assms(2) jne2 assms(1) finJ
                by (simp add: Int-commute)
            also have ... = prob (\bigcap(J-{A}))* prob A using assms(2) by simp
            also have ... =(prod prob (J -{A})) * prob A
                using iej indep-events-set-prod-all[of J - {A}] jne2 finJ finite-subset by
auto
            also have ... = prod prob ((J - {A})\cup{A}) using split
```

```
                by (metis finJ jun mult.commute prod.remove t1)
        finally show ?thesis using jun by auto
        qed
    next
        case False
        then have jss2: J\subseteqS using jss by auto
    then have indep-events-set J using assms(4) indep-events-subset2[of S J] by
auto
    then show ?thesis using indep-events-set-probs finJ jne jss2 by auto
    qed
qed
lemma indep-events-set-prob0:
    assumes }A\in\mathrm{ events
    assumes prob A=0
    assumes A\not\inS
    assumes indep-events-set S
    shows indep-events-set (S\cup{A})
proof (intro indep-events-setI)
    show S\cup{A}\subseteq events using assms(1) assms(4) indep-events-set-events by auto
next
    fix }J\mathrm{ assume jss: J}\subseteqS\cup{A} and finJ: finite J and jne: J\not={
    show prob (\bigcapJ) = prod prob J
    proof (cases A\inJ)
        case t1: True
        then show ?thesis
    proof (cases J={A})
        case True
        then show ?thesis using indep-events-set-singleton assms(1) by auto
    next
        case False
        then have jun: ( }J-{A})\cup{A}=J\mathrm{ using t1 by auto
        have }J-{A}\subseteqS\mathrm{ using jss by auto
        then have iej: indep-events-set ( J - {A}) using indep-events-subset2[of S J
- {A}] assms(4) by auto
        have jsse: J-{A}\subseteqevents using indep-events-set-events jss
            using assms(4) by blast
        have jne2: }J-{A}\not={}\mathrm{ using False jss jne by auto
        have split: }(J-{A})\cap{A}={} by aut
        then have prob ( \bigcapi\inJ. i)= prob ((\bigcapi\in(J-{A}).i)\capA) using jun
            by (metis Int-commute Inter-insert Un-ac(3) image-ident insert-is-Un)
        also have ... = 0
            using prob0-basic-Inter[of A J - {A}] jsse assms(2) jne2 assms(1) finJ
                by (simp add: Int-commute)
        also have ... = prob (\bigcap(J -{A}))* prob A using assms(2) by simp
    also have ... =(prod prob (J -{A})) * prob A using iej indep-events-set-prod-all[of
J - {A}] jne2 finJ finite-subset by auto
        also have ... = prod prob (( }J-{A})\cup{A})\mathrm{ using split
            by (metis finJ jun mult.commute prod.remove t1)
```

```
            finally show ?thesis using jun by auto
        qed
    next
    case False
    then have jss2: J\subseteqS using jss by auto
    then have indep-events-set J using assms(4) indep-events-subset2[of S J] by
auto
    then show ?thesis using indep-events-set-probs finJ jne jss2 by auto
    qed
qed
```

lemma indep-event-commute:
assumes indep-event $A B$
shows indep-event $B A$
using indep-event $I[$ of $B A]$ indep-event $D[$ unfolded $\operatorname{assms}(1)$, of $A B]$
by (metis Groups.mult-ac(2) Int-commute assms indep-eventD-ev1 indep-eventD-ev2)

Showing complement operation maintains independence

```
lemma indep-event-one-compl:
    assumes indep-event A B
    shows indep-event A (space M - B)
proof -
    let ?\mp@subsup{B}{}{\prime}= space M - B
    have }A=(A\capB)\cup(A\cap?\mp@subsup{B}{}{\prime}
    by (metis Int-Diff Int-Diff-Un assms prob-space.indep-eventD-ev1 prob-space-axioms
sets.Int-space-eq2)
    then have prob A = prob ( }A\capB)+\operatorname{prob}(A\cap?\mp@subsup{B}{}{\prime}
    by (metis Diff-Int-distrib Diff-disjoint assms finite-measure-Union indep-eventD-ev1
        indep-eventD-ev2 sets.Int sets.compl-sets)
    then have prob (A\cap?B') = prob A - prob (A\capB) by simp
    also have ... = prob A - prob A* prob B using indep-eventD assms(1) by auto
    also have ... = prob A* (1-prob B)
        by (simp add: vector-space-over-itself.scale-right-diff-distrib)
    finally have prob (A\cap?B')= prob A* prob ? B'
            using prob-compl indep-eventD-ev1 assms(1) indep-eventD-ev2 by presburger
    then show indep-event A?B' using indep-eventI indep-eventD-ev2 indep-eventD-ev1
assms(1)
    by (meson sets.compl-sets)
qed
lemma indep-event-one-compl-rev:
    assumes B\in events
    assumes indep-event A (space M - B)
    shows indep-event A B
proof -
    have space M - B\inevents using indep-eventD-ev2 assms by auto
    have space M - (space M - B)=B using compl-identity assms by simp
```

then show ?thesis using indep-event-one-compl[of A space $M-B] \operatorname{assms}(2)$ by auto
qed
lemma indep-event-double-compl: indep-event $A B \Longrightarrow$ indep-event (space $M-$ A) (space $M-B)$
using indep-event-one-compl indep-event-commute by auto
lemma indep-event-double-compl-rev: $A \in$ events $\Longrightarrow B \in$ events \Longrightarrow
indep-event (space $M-A)($ space $M-B) \Longrightarrow$ indep-event $A B$
using indep-event-double-compl[of space $M-A$ space $M-B]$ compl-identity by auto
lemma indep-events-set-one-compl:
assumes indep-events-set S
assumes $A \in S$
shows indep-events-set $(\{$ space $M-A\} \cup(S-\{A\}))$
proof (intro indep-events-setI)
show $\{$ space $M-A\} \cup(S-\{A\}) \subseteq$ events
using indep-events-set-events assms(1) assms(2) by auto
next
fix J assume $j s s: J \subseteq\{$ space $M-A\} \cup(S-\{A\})$
assume finJ: finite J
assume jne: $J \neq\{ \}$
show prob $(\bigcap J)=$ prod prob J
proof (cases $J-\{$ space $M-A\}=\{ \})$
case True
then have $J=\{$ space $M-A\}$ using jne by blast
then show? ?thesis by simp
next
case jne2: False
have j ss2: $J-\{$ space $M-A\} \subseteq S$ using jss assms(2) by auto
moreover have $A \notin(J-\{$ space $M-A\})$ using $j s s$ by auto
moreover have finite ($J-\{$ space $M-A\}$) using fin J by simp
ultimately have indep-event $A(\bigcap(J-\{$ space $M-A\}))$
using indep-events-inter-single $[$ of $S(J-\{$ space $M-A\}) A]$ assms jne2 by
auto
then have ie: indep-event (space $M-A)(\cap(J-\{$ space $M-A\}))$
using indep-event-one-compl indep-event-commute by auto
have iess: indep-events-set ($J-\{$ space $M-A\}$)
using jss2 indep-events-subset2[of $S J-\{$ space $M-A\}]$ assms(1) by auto
show ?thesis
proof (cases space $M-A \in J$)
case True
then have split: $J=(J-\{$ space $M-A\}) \cup\{$ space $M-A\}$ by auto then have $\operatorname{prob}(\bigcap J)=\operatorname{prob}(\bigcap((J-\{$ space $M-A\}) \cup\{$ space $M-$
$A\})$) by simp
also have $\ldots=\operatorname{prob}((\cap(J-\{$ space $M-A\})) \cap($ space $M-A))$
by (metis Inter-insert True $\langle J=J-\{$ space $M-A\} \cup\{$ space $M-A\}$ 〉

```
inf.commute insert-Diff)
    also have ... = prob ( }\bigcap(J-{\mathrm{ space M - A}))* prob (space M - A)
        using ie indep-eventD[of \bigcap(J-{space M - A}) space M - A] in-
dep-event-commute by auto
    also have ... = (prod prob ((J - {space M - A}))) * prob (space M - A)
        using indep-events-set-prod-all[of J - {space M - A}] iess jne2 finJ by
auto
            finally have prob ( }\capJ)=\operatorname{prod}\mathrm{ prob J using split
                by (metis Groups.mult-ac(2) True finJ prod.remove)
            then show ?thesis by simp
    next
        case False
            then show ?thesis using iess
                by (simp add: assms(1) finJ indep-events-set-prod-all jne)
    qed
    qed
qed
lemma indep-events-set-update-compl:
    assumes indep-events-set E
    assumes }E=A\cup
    assumes }A\capB={
    assumes finite E
    shows indep-events-set (((-) (space M)'A)\cupB)
using assms(2) assms(3) proof (induct card A arbitrary: A B)
    case 0
    then show ?case using assms(1)
    using assms(4) by auto
next
    case (Suc x)
    then obtain a A' where aeq: A= insert a A' and anotin: a}\not\in\mp@subsup{A}{}{\prime
    by (metis card-Suc-eq-finite)
    then have xcard: card A'}=
    using Suc(2) Suc(3) assms(4) by auto
    let ? B'}=B\cup{a
    have E=\mp@subsup{A}{}{\prime}\cup?\mp@subsup{B}{}{\prime}}\mathrm{ using aeq Suc.prems by auto
    moreover have }\mp@subsup{A}{}{\prime}\cap?\mp@subsup{B}{}{\prime}={}\mathrm{ using anotin Suc.prems(2) aeq by auto
    moreover have ? }\mp@subsup{B}{}{\prime}\not={}\mathrm{ by simp
    ultimately have ies: indep-events-set ((-) (space M)' A'\cup ?B')
    using Suc.hyps(1)[of A' ? B] xcard by auto
    then have a\inA\cupB using aeq by auto
    then show ?case
    proof (cases (A\cupB)-{a}={})
    case True
    then have A={a} B={} using Suc.prems aeq by auto
    then have ((-) (space M)'A\cupB)={space M - a} by auto
        moreover have space M -a\inevents using aeq assms(1) Suc.prems in-
dep-events-set-events by auto
    ultimately show ?thesis using indep-events-set-singleton by simp
```


next

case False
have $a \in(-)($ space $M)$ ' $A^{\prime} \cup$? B^{\prime} using aeq by auto
then have $i e$: indep-events-set $\left(\{\right.$ space $M-a\} \cup\left((-)(\right.$ space $M)$ ' $A^{\prime} \cup$? B^{\prime} $-\{a\})$)
using indep-events-set-one-compl $[\text { of (-) (space } M)^{\prime} A^{\prime} \cup ? B^{\prime}$ a] ies by auto show ?thesis
proof (cases $a \in(-)($ space $M)$ ' A^{\prime})
case True
then have space $M-a \in A^{\prime}$
by $\left(\right.$ smt $($ verit $)\left\langle E=A^{\prime} \cup(B \cup\{a\})\right\rangle$ assms(1) compl-identity image-iff indep-events-set-events indep-events-subset2 inf-sup-ord(3))
then have space $M-a \in A$ using aeq by auto
moreover have indep-events-set A using Suc.prems(1) indep-events-subset2 assms (1)
using aeq by blast
moreover have $a \in A$ using aeq by auto
ultimately have probs: prob $a=0 \vee$ prob $a=1$ using indep-events-contain-compl-prob01[of
A a] by auto
have $\left((-)(\right.$ space $\left.M){ }^{\prime} A \cup B\right)=(-)($ space $M){ }^{\prime} A^{\prime} \cup\{$ space $M-a\} \cup B$ using aeq by auto
moreover have $\left((-)(\right.$ space $M)$ ' $\left.A^{\prime} \cup ? B^{\prime}-\{a\}\right)=\left((-)(\text { space } M)^{\prime} A^{\prime}-\right.$ $\{a\}) \cup B$
using Suc.prems(2) aeq by auto
moreover have $(-)(\text { space } M)^{\prime} A^{\prime}=\left((-)(\right.$ space $M)$ ' $\left.A^{\prime}-\{a\}\right) \cup\{a\}$ using True by auto
ultimately have $\left((-)(\right.$ space $\left.M){ }^{\prime} A \cup B\right)=\{$ space $M-a\} \cup((-)$ (space M) ' $\left.A^{\prime} \cup ? B^{\prime}-\{a\}\right) \cup\{a\}$
by (smt (verit) Un-empty-right Un-insert-right Un-left-commute)
moreover have $a \notin\{$ space $M-a\} \cup\left((-)(\right.$ space $M)$ ' $A^{\prime} \cup$? $\left.B^{\prime}-\{a\}\right)$
using Diff-disjoint 〈space $M-a \in A^{\prime}$ 〉 anotin empty-iff insert-iff by fastforce
moreover have $a \in$ events using Suc.prems(1) assms(1) indep-events-set-events aeq by auto
ultimately show ?thesis
using ie indep-events-set-prob0 indep-events-set-prob1 probs by presburger
next
case False
then have $\left(\left((-)(\right.\right.$ space $M)$ ' $\left.\left.A^{\prime} \cup ? B^{\prime}\right)-\{a\}\right)=(-)($ space $M) ' A^{\prime} \cup B$ using Suc.prems(2) aeq by auto
moreover have $(-)($ space $M)$ ' $A=(-)($ space $M){ }^{\prime} A^{\prime} \cup\{$ space $M-a\}$
using aeq
by simp
ultimately have $\left((-)(\right.$ space $\left.M){ }^{\prime} A \cup B\right)=\{$ space $M-a\} \cup((-)$ (space
M) ' $\left.A^{\prime} \cup ? B^{\prime}-\{a\}\right)$
by auto
then show ?thesis using ie by simp
qed

```
    qed
qed
lemma indep-events-set-compl:
    assumes indep-events-set E
    assumes finite E
    shows indep-events-set (( }\lambda\mathrm{ e. space M - e)'E)
    using indep-events-set-update-compl[of E E {}] assms by auto
lemma indep-event-empty:
    assumes }A\in\mathrm{ events
    shows indep-event A {}
    using assms indep-eventI by auto
lemma indep-event-compl-inter:
    assumes indep-event A C
    assumes B\in events
    assumes indep-event A(B\capC)
    shows indep-event A((space M-B)\capC)
proof (intro indep-eventI)
    show A \in events using assms(1) indep-eventD-ev1 by auto
    show (space M - B) \capC\inevents using assms(3) indep-eventD-ev2
    by (metis Diff-Int-distrib2 assms(1) sets.Diff sets.Int-space-eq1)
next
    have ac:A\capC\in events using assms(1) indep-eventD-ev1 indep-eventD-ev2
sets.Int-space-eq1
    by auto
    have prob (A\cap ((space M-B)\capC)) = prob (A\cap (space M - B)\capC)
    by (simp add: inf-sup-aci(2))
    also have ... = prob (A\capC\cap(space M - B))
    by (simp add: ac-simps)
    also have ... = prob ( }A\capC)-\operatorname{prob}(A\capC\capB
    using prob-compl-diff-inter[of A\capC B] ac assms(2) by auto
    also have ... = prob (A)* prob C - (prob A* prob (C\capB))
        using assms(1) assms(3) indep-eventD
        by (simp add: inf-commute inf-left-commute)
    also have ... = prob A* (prob C - prob (C\capB)) by (simp add: algebra-simps)
    finally have prob (A\cap ((space M-B)\capC)) = prob A* (prob (C\cap (space M
- B)))
    using prob-compl-diff-inter[of C B] using assms(1) assms(2)
    by (simp add: indep-eventD-ev2)
    then show prob (A\cap ((space M-B)\capC)) = prob A* prob ((space M - B)
C) by (simp add: ac-simps)
qed
```

lemma indep-events-index-subset:

```
indep-events F E \longleftrightarrow(\forallJ\subseteqE. indep-events FJ)
```

unfolding indep-events-def
by (meson image-mono set-eq-subset subset-trans)
lemma indep-events-index-subset2:
indep-events $F E \Longrightarrow J \subseteq E \Longrightarrow$ indep-events $F J$
using indep-events-index-subset by auto
lemma indep-events-events-ss: indep-events $F E \Longrightarrow F^{\prime} E \subseteq$ events unfolding indep-events-def by (auto)
lemma indep-events-events: indep-events $F E \Longrightarrow(\bigwedge e . e \in E \Longrightarrow F e \in$ events $)$ using indep-events-events-ss by auto
lemma indep-events-probs: indep-events $F E \Longrightarrow J \subseteq E \Longrightarrow$ finite $J \Longrightarrow J \neq\{ \}$ $\Longrightarrow \operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right)=\left(\prod i \in J . \operatorname{prob}(F i)\right)$
unfolding indep-events-def by auto
lemma indep-events-prod-all: indep-events $F E \Longrightarrow$ finite $E \Longrightarrow E \neq\{ \} \Longrightarrow$ prob $\left(\bigcap\left(F^{\prime} E\right)\right)=\left(\prod i \in E . \operatorname{prob}(F i)\right)$
using indep-events-probs by auto
lemma indep-events-ev-not-contain-compl:
assumes indep-events $F E$
assumes $A \in E$
assumes $\operatorname{prob}(F A)>0 \operatorname{prob}(F A)<1$
shows $($ space $M-F A) \notin F^{\prime} E$ (is ? $\left.A^{\prime} \notin F^{\prime} E\right)$
proof (rule ccontr)
assume $\neg ? A^{\prime} \notin F^{\prime} E$
then have $? A^{\prime} \in F^{\prime} E$ by auto
then obtain $A e$ where aeq: ? $A^{\prime}=F A e$ and $A e \in E$ by blast
then have $\{A, A e\} \subseteq E$ using assms(2) by auto
moreover have finite $\{A, A e\}$ by simp
moreover have $\{A, A e\} \neq\{ \}$
by simp
ultimately have $\operatorname{prob}(\bigcap i \in\{A, A e\} . F i)=\left(\prod i \in\{A, A e\} . \operatorname{prob}(F i)\right)$ using indep-events-probs[of $F E\{A, A e\}]$ assms(1) by auto moreover have $A \neq A e$
using subprob-not-empty using aeq by auto
ultimately have $\operatorname{prob}\left(F A \cap ? A^{\prime}\right)=\operatorname{prob}(F A) * \operatorname{prob}\left(? A^{\prime}\right)$ using aeq by simp
moreover have $\operatorname{prob}\left(F A \cap ? A^{\prime}\right)=0$ by simp
moreover have $\operatorname{prob}(F A) * \operatorname{prob} ? A^{\prime}=\operatorname{prob}(F A) *(1-\operatorname{prob}(F A))$
using assms(1) assms(2) indep-events-events prob-compl by metis
moreover have $\operatorname{prob}(F A) *(1-\operatorname{prob}(F A))>0$ using $\operatorname{assms}(3) \operatorname{assms}(4)$
by (simp add: algebra-simps)
ultimately show False by auto
qed

```
lemma indep-events-singleton:
    assumes FA\in events
    shows indep-events F{A}
proof (intro indep-eventsI)
    show }\i.i\in{A}\LongrightarrowFi\in events using assms by sim
next
    fix }J\mathrm{ assume }J\subseteq{A} finite J J\not={
    then have }J={A}\mathrm{ by auto
    then show prob ( }\cap(F'J))=(\prodi\inJ. prob (Fi)) by sim
qed
lemma indep-events-ev-pairs:
    assumes indep-events FS
    assumes }A\inSB\inSA\not=
    shows indep-event (FA) (F B)
    using assms indep-events-probs[of FS {A,B}]
    by (intro indep-eventI) (simp-all add: indep-events-events)
lemma indep-events-ev-inter-pairs:
    assumes indep-events FS
    assumes finite A finite B
    assumes A\not={} B\not={}
    assumes }A\subseteqSB\subseteqSA\capB={
    shows indep-event ( }\cap(F'A))(\cap(F'B)
proof (intro indep-eventI)
    have (F'A)\subseteq events (F' B)\subseteq events using indep-events-events assms(1)
assms(6) assms(7) by fast+
    then show \bigcap(F''A)\in events \bigcap(F'B)\in events using Inter-event-ss assms
by auto
next
    have }A\cupB\subseteqS\mathrm{ using assms by auto
    moreover have finite ( }A\cupB\mathrm{ ) using assms(2) assms(3) by simp
    moreover have }A\cupB\not={}\mathrm{ using assms by simp
    ultimately have prob ( ( (F'(A\cupB))) = (\prodi\inA\cupB.prob (Fi)) using assms
        using indep-events-probs[of FSA\cupB] by simp
    also have ... = (\prodi\inA. prob (Fi))*(\prodi\inB. prob (Fi))
        using assms(8) prod.union-disjoint[of A B \lambda i. prob (F i)] assms(2) assms(3)
by simp
    finally have prob ( }\cap(F'(A\cupB)))=\operatorname{prob}(\cap(\mp@subsup{F}{}{\prime}A))*\operatorname{prob}(\cap(F'B)
        using assms indep-events-index-subset indep-events-prod-all by metis
    moreover have \(F'(A\cupB))=(\cap(F'A)) \cap\cap(F'B) by auto
    ultimately show prob ( \cap (F'A) \cap\cap (F'B)) = prob (\cap (F'A))*\operatorname{prob}(\cap
(F`B))
    by simp
qed
```

lemma indep-events-ev-inter-single:

```
    assumes indep-events FS
    assumes finite }
    assumes }B\not={
    assumes }A\inSB\subseteqSA\not\in
    shows indep-event (FA)(\bigcap(F'B))
proof -
    have {A}\not={} finite {A}{A}\subseteqS using assms by simp-all
    moreover have {A}\capB={} using assms(6) by auto
    ultimately show ?thesis using indep-events-ev-inter-pairs[of F S {A} B] assms
by auto
qed
lemma indep-events-fn-eq:
    assumes }\Ai.Ai\inE\LongrightarrowFAi=GA
    assumes indep-events F E
    shows indep-events G E
proof (intro indep-eventsI)
    show }\bigwedgei.i\inE\LongrightarrowGi\inevents using assms(2) indep-events-events assms(1)
        by metis
next
    fix }J\mathrm{ assume jss: J}\subseteqE finite J J\not={
    moreover have G`J=F'J using assms(1) calculation(1) by auto
    moreover have }\i.i\inJ\Longrightarrow\operatorname{prob}(Gi)=\operatorname{prob}(Fi)\quadusing jss assms(1
by auto
    moreover have (\prodi\inJ. prob (Fi)) = (\prodi\inJ. prob (Gi)) using calculation(5)
by auto
    ultimately show prob (\bigcap (G'J)) =(\prodi\inJ. prob (Gi))
            using assms(2) indep-events-probs[of F E J] by simp
qed
lemma indep-events-fn-eq-iff:
    assumes }\bigwedgeAi.Ai\inE\LongrightarrowFAi=GA
    shows indep-events FE\longleftrightarrow indep-events GE
    using indep-events-fn-eq assms by auto
lemma indep-events-one-compl:
    assumes indep-events FS
    assumes }A\in
    shows indep-events ( }\lambda\mathrm{ i. if (i=A) then (space M - F i) else F i) S (is
indep-events ?G S)
proof (intro indep-eventsI)
    show }\i.i\inS\Longrightarrow(ifi=A then space M-Fi else Fi)\in event
            using indep-events-events assms(1) assms(2)
            by (metis sets.compl-sets)
next
    define G where G}\equiv\mathrm{ ? }
    fix J assume jss: J\subseteqS
    assume finJ: finite J
    assume jne: J\not={}
```

```
    show prob (\bigcapi\inJ. ?G i)}=(\prodi\inJ. prob (?G i))
    proof (cases J={A})
    case True
    then show ?thesis by simp
    next
    case jne2: False
    have jss2: J-{A}\subseteqS using jss assms(2) by auto
    moreover have A\not\in(J-{A}) using jss by auto
    moreover have finite ( }J-{A})\mathrm{ using finJ by simp
    moreover have }J-{A}\not={} using jne2 jne by aut
    ultimately have indep-event (FA) (\bigcap (F'(J - {A})))
        using indep-events-ev-inter-single[of FS (J - {A}) A] assms by auto
    then have ie: indep-event (GA) (\bigcap(G'(J-{A})))
        using indep-event-one-compl indep-event-commute G-def by auto
    have iess: indep-events G (J - {A})
        using jss2 G-def indep-events-index-subset2[of F S J - {A}] assms(1)
            indep-events-fn-eq[of J - {A}] by auto
    show ?thesis
    proof (cases A\inJ)
        case True
        then have split: G'J = insert (GA) (G'`(J - {A})) by auto
        then have prob (\bigcap (G'J)) = prob (\bigcap (insert (GA) (G`(J - {A})))) by
auto
    also have ... = prob ((GA)\cap\bigcap(G'(J-{A})))
                using Inter-insert by simp
        also have ... = prob (GA)* prob (\bigcap (G'(J - {A})))
                using ie indep-eventD[of GA\bigcap(G`(J-{A}))] by auto
        also have ... = prob (GA)* (\prodi\in(J-{A}). prob (Gi))
                using indep-events-prod-all[of GJ-{A}] iess jne2 jne finJ by auto
            finally have prob (\bigcap (G'J)) =(\prodi\inJ. prob (Gi)) using split
                by (metis True finJ prod.remove)
            then show ?thesis using G-def by simp
    next
            case False
            then have prob (\bigcapi\inJ.Gi)=(\prodi\inJ. prob (Gi)) using iess
                by (simp add: assms(1) finJ indep-events-prod-all jne)
            then show ?thesis using G-def by simp
    qed
    qed
qed
lemma indep-events-update-compl:
    assumes indep-events F E
    assumes }E=A\cup
    assumes }A\capB={
    assumes finite E
    shows indep-events ( }\lambda\mathrm{ Ai. if (Ai A A) then (space M - (FAi)) else (FAi)) E
using assms(2) assms(3) proof (induct card A arbitrary: A B)
    case 0
```

```
    let ?G = ( }\lambdaA\mathrm{ i. if Ai }\inA\mathrm{ then space M - F Ai else F Ai)
    have E=B using assms(4)\langleE=A\cupB\rangle\langle0= card A
    by simp
    then have }\bigwedgei.i\inE\LongrightarrowFi=?Gi using<A\capB={}> by aut
    then show ?case using assms(1) indep-events-fn-eq[of E F ?G] by simp
next
    case (Suc x)
    define G where G\equiv( }\lambdaAi\mathrm{ . if Ai }A\mathrm{ A then space M - F Ai else F Ai)
    obtain a A' where aeq: A = insert a A' and anotin: a\not\in A'
        using Suc.hyps by (metis card-Suc-eq-finite)
    then have xcard: card A'}=
        using Suc(2) Suc(3) assms(4) by auto
    define G1 where G1 \equiv( }\lambdaAi\mathrm{ . if Ai }\in\mp@subsup{A}{}{\prime}\mathrm{ then space M - F Ai else F Ai)
    let ? B'= 
    have eeq: E= A'\cup ? B' using aeq Suc.prems by auto
    moreover have }\mp@subsup{A}{}{\prime}\cap?\mp@subsup{B}{}{\prime}={} using anotin Suc.prems(2) aeq by aut
    moreover have ? }\mp@subsup{B}{}{\prime}\not={}\mathrm{ by simp
    ultimately have ies: indep-events G1 ( }\mp@subsup{A}{}{\prime}\cup?\mp@subsup{B}{}{\prime}
    using Suc.hyps(1)[of A' ?B] xcard G1-def by auto
    then have a\inA\cupB using aeq by auto
    define G2 where G2 \equiv \Ai. if Ai=a then (space M - (G1 Ai)) else (G1
Ai)
    have }a\in\mp@subsup{A}{}{\prime}\cup?\mp@subsup{B}{}{\prime}\mathrm{ by auto
    then have ie: indep-events G2 E
    using indep-events-one-compl[of G1 ( }\mp@subsup{A}{}{\prime}\cup?\mp@subsup{B}{}{\prime}) a] ies G2-def eeq by aut
    moreover have \bigwedge i. i\inE\LongrightarrowG2i=Gi
    unfolding G2-def G1-def G-def
    by (simp add: aeq anotin)
    ultimately have indep-events G E using indep-events-fn-eq[of E G\mathcal{O}G] by auto
    then show ?case using G-def by simp
qed
lemma indep-events-compl:
    assumes indep-events F E
    assumes finite E
    shows indep-events ( }\lambda\mathrm{ Ai. space M - FAi) E
proof -
    have indep-events ( }\lambdaAi\mathrm{ . if Ai }\inE\mathrm{ then space M - F Ai else F Ai) E
        using indep-events-update-compl[of F E E {}] assms by auto
    moreover have }\bigwedge i.i\inE\Longrightarrow(\lambdaAi. if Ai E E then space M - F Ai else FAi
i=(\lambdaAi. space M - FAi) i
    by simp
    ultimately show ?thesis
    using indep-events-fn-eq[of E ( }\lambdaA\mathrm{ i. if Ai }\inE\mathrm{ then space M - F Ai else F Ai)]
by auto
qed
lemma indep-events-impl-inj-on:
    assumes finite A
```

```
    assumes indep-events F A
    assumes }\bigwedge\mp@subsup{A}{}{\prime}.\mp@subsup{A}{}{\prime}\inA\Longrightarrow\operatorname{prob}(F\mp@subsup{A}{}{\prime})>0\wedge\operatorname{prob}(F\mp@subsup{A}{}{\prime})<
    shows inj-on F A
proof (intro inj-onI, rule ccontr)
    fix x y assume xin: x\inA and yin: y \inA and feq:Fx=F y
    assume contr: }x\not=
    then have {x,y}\subseteqA{x,y}\not={} finite {x,y} using xin yin by auto
    then have prob (\bigcapj\in{x,y}.Fj)=(\prodj\in{x,y}. prob (Fj))
    using assms(2) indep-events-probs[of FA{x,y}] by auto
    moreover have (\prodj\in{x,y}. prob (Fj))= prob (F x)* prob (Fy) using contr
by auto
    moreover have prob (\bigcapj\in{x,y}.F j) = prob (Fx) using feq by simp
    ultimately have prob (Fx)= prob (Fx)* prob (Fx) using feq by simp
    then show False using assms(3) using xin by fastforce
qed
lemma indep-events-imp-set:
    assumes finite A
    assumes indep-events FA
    assumes }\bigwedge\mp@subsup{A}{}{\prime}.\mp@subsup{A}{}{\prime}\inA\Longrightarrow\operatorname{prob}(F\mp@subsup{A}{}{\prime})>0\wedge\operatorname{prob}(F\mp@subsup{A}{}{\prime})<
    shows indep-events-set (F`A)
proof (intro indep-events-setI)
    show F'A\subseteq events using assms(2) indep-events-events by auto
next
    fix J assume jss: J\subseteqF'`A and finj: finite J and jne:J\not={}
    have bb: bij-betw F A (F'A) using bij-betw-imageI indep-events-impl-inj-on
assms by meson
    then obtain I where iss:I\subseteqA and jeq: J=F'}
            using bij-betw-obtain-subsetl[OF bb] jss by metis
    moreover have I\not={} finite I using finj jeq jne assms(1) finite-subset iss by
blast+
    ultimately have prob (\bigcap (F`I)) = (\prodi\inI. prob (F i))
        using jne finj jss indep-events-probs[of F A I] assms(2) by (simp)
    moreover have bij-betw FI J using jeq iss jss bb by (meson bij-betw-subset)
    ultimately show prob ( }\capJ)=\mathrm{ prod prob J using bij-betw-prod-prob jeq by
(metis)
qed
lemma indep-event-set-equiv-bij:
    assumes bij-betw F A E
    assumes finite E
    shows indep-events-set }E\longleftrightarrow\mathrm{ indep-events F A
proof -
    have im: F' }A=
        using assms(1) by (simp add: bij-betw-def)
    then have ss: (\foralle.e e\inE\longrightarrowe < events)\longleftrightarrow(F'A\subseteq events)
        using image-iff by (simp add: subset-iff)
    have prob: (\forallJ.J\subseteqE\longrightarrow finite }J\longrightarrowJ\not={}\longrightarrow\operatorname{prob}(\bigcapi\inJ.i)=(\prodi\inJ
prob i))}
```

```
            (\forall I.I\subseteqA\longrightarrow finite }I\longrightarrowI\not={}\longrightarrow\operatorname{prob}(\bigcapi\inI.Fi)=(\prodi\inI.pro
(Fi)))
    proof (intro allI impI iffI)
    fix I assume p1: \forallJ\subseteqE. finite J\longrightarrowJ\not={}\longrightarrowprob (\bigcapi\inJ.i) = prod prob
J
        and iss:I\subseteqA and f1: finite I and i1: }I\not={
    then obtain J where jeq: J=F'I and jss: J\subseteqE
        using bij-betw-obtain-subsetr[OF assms(1) iss]by metis
    then have prob ( }\bigcapJ)=\mathrm{ prod prob J using i1 f1 p1 jss by auto
    moreover have bij-betw F I J using jeq jss assms(1) iss
        by (meson bij-betw-subset)
    ultimately show prob (\bigcap (F'I)) = (\prodi\inI.prob (Fi)) using bij-betw-prod-prob
        by (metis jeq)
    next
    fix J assume p2: }\forallI\subseteqA. finite I\longrightarrowI\not={}\longrightarrow\operatorname{prob}(\bigcap(\mp@subsup{\}{}{\prime}I))=(\prodi\inI
prob (Fi))
        and jss: J\subseteqE and f2: finite }J\mathrm{ and j1: J # {}
    then obtain I}\mathrm{ where iss:I}\subseteqA\mathrm{ and jeq: J=F'I
        using bij-betw-obtain-subsetl[[OF assms(1)] by metis
    moreover have finite A using assms(1) assms(2)
        by (simp add: bij-betw-finite)
    ultimately have prob (\bigcap (F'I)) = (\prodi\inI. prob (Fi)) using j1 f2 p2 jss
        by (simp add: finite-subset)
    moreover have bij-betw FIJ using jeq iss assms(1) jss by (meson bij-betw-subset)
    ultimately show prob (\bigcapi\inJ. i) = prod prob J using bij-betw-prod-prob jeq
        by (metis image-ident)
    qed
    have indep-events-set E\Longrightarrow indep-events FA
    proof (intro indep-eventsI)
    show }\i\mathrm{ . indep-events-set }E\Longrightarrowi\inA\LongrightarrowFi\inevent
        using indep-events-set-events ss by auto
    show \J. indep-events-set E\LongrightarrowJ\subseteqA\Longrightarrow finite J\LongrightarrowJ\not={}\Longrightarrow prob (\bigcap
(F'J))}=(\prodi\inJ. prob (Fi)
        using indep-events-set-probs prob by auto
    qed
    moreover have indep-events F A\Longrightarrow indep-events-set E
    proof (intro indep-events-setI)
    have \e. indep-events FA\Longrightarrowe\inE\Longrightarrowe\in events using ss indep-events-def
by metis
    then show indep-events FA\LongrightarrowE\subseteqevents by auto
    show }\J\mathrm{ . indep-events }FA\LongrightarrowJ\subseteqE\Longrightarrow\mathrm{ finite }J\LongrightarrowJ\not={}\Longrightarrow\operatorname{prob}(\bigcapJ
= prod prob J
        using prob indep-events-def by (metis image-ident)
    qed
    ultimately show ?thesis by auto
qed
```


5.3 Mutual Independent Events

Note, set based version only if no duplicates in usage case. The mutual_indep_events definition is more general and recommended

```
definition mutual-indep-set:: 'a set \(\Rightarrow\) 'a set set \(\Rightarrow\) bool
    where mutual-indep-set \(A S \longleftrightarrow A \in\) events \(\wedge S \subseteq\) events \(\wedge(\forall T \subseteq S . T \neq\)
\(\} \longrightarrow \operatorname{prob}(A \cap(\bigcap T))=\operatorname{prob} A * \operatorname{prob}(\bigcap T))\)
```

lemma mutual-indep-setI[intro]: $A \in$ events $\Longrightarrow S \subseteq$ events $\Longrightarrow(\bigwedge T . T \subseteq S$
$\Longrightarrow T \neq\{ \} \Longrightarrow$
$\operatorname{prob}(A \cap(\bigcap T))=\operatorname{prob} A * \operatorname{prob}(\bigcap T)) \Longrightarrow$ mutual-indep-set $A S$
using mutual-indep-set-def by simp
lemma mutual-indep-set $D[$ dest $]$: mutual-indep-set $A S \Longrightarrow T \subseteq S \Longrightarrow T \neq\{ \}$
$\Longrightarrow \operatorname{prob}(A \cap(\bigcap T))=\operatorname{prob} A * \operatorname{prob}(\bigcap T)$
using mutual-indep-set-def by simp
lemma mutual-indep-setD2[dest]: mutual-indep-set $A S \Longrightarrow A \in$ events
using mutual-indep-set-def by simp
lemma mutual-indep-setD3[dest]: mutual-indep-set $A S \Longrightarrow S \subseteq$ events
using mutual-indep-set-def by simp
lemma mutual-indep-subset: mutual-indep-set $A S \Longrightarrow T \subseteq S \Longrightarrow$ mutual-indep-set
A T
using mutual-indep-set-def by auto
lemma mutual-indep-event-set-defD:
assumes mutual-indep-set $A S$
assumes finite T
assumes $T \subseteq S$
assumes $T \neq\{ \}$
shows indep-event $A(\bigcap T)$
proof (intro indep-eventI)
show $A \in$ events using mutual-indep-setD2 assms(1) by auto
show $\bigcap T \in$ events using Inter-event-ss assms mutual-indep-setD3 finite-subset
by blast
show $\operatorname{prob}(A \cap \bigcap T)=\operatorname{prob} A * \operatorname{prob}(\bigcap T)$
using assms(1) mutual-indep-setD assms(3) assms(4) by simp
qed
lemma mutual-indep-event-defI: $A \in$ events $\Longrightarrow S \subseteq$ events $\Longrightarrow(\bigwedge T . T \subseteq S$
$\Longrightarrow T \neq\{ \} \Longrightarrow$
indep-event $A(\bigcap T)) \Longrightarrow$ mutual-indep-set $A S$
using indep-eventD mutual-indep-set-def by simp
lemma mutual-indep-singleton-event: mutual-indep-set $A S \Longrightarrow B \in S \Longrightarrow$ in-
dep-event $A B$
using mutual-indep-event-set-defD empty-subsetI
by (metis Set.insert-mono cInf-singleton finite.emptyI finite-insert insert-absorb insert-not-empty)
lemma mutual-indep-cond:
assumes $A \in$ events and $T \subseteq$ events and finite T
and mutual-indep-set $A S$ and $T \subseteq S$ and $T \neq\{ \}$ and $\operatorname{prob}(\bigcap T) \neq 0$
shows $\mathcal{P}(A \mid(\bigcap T))=\operatorname{prob} A$
proof -
have $\bigcap T \in$ events using assms
by (simp add: Inter-event-ss)
then have $\mathcal{P}(A \mid(\cap T))=\operatorname{prob}((\cap T) \cap A) / \operatorname{prob}(\bigcap T)$ using cond-prob-ev-def assms (1)
by blast
also have $\ldots=\operatorname{prob}(A \cap(\bigcap T)) / \operatorname{prob}(\bigcap T)$
by (simp add: inf-commute)
also have $\ldots=\operatorname{prob} A * \operatorname{prob}(\bigcap T) / \operatorname{prob}(\bigcap T)$ using assms mutual-indep-set D by auto
finally show ?thesis using assms(7) by simp
qed
lemma mutual-indep-cond-full:
assumes $A \in$ events and $S \subseteq$ events and finite S
and mutual-indep-set $A S$ and $S \neq\{ \}$ and $\operatorname{prob}(\bigcap S) \neq 0$
shows $\mathcal{P}(A \mid(\bigcap S))=$ prob A
using mutual-indep-cond[of ASS] assms by auto
lemma mutual-indep-cond-single:
assumes $A \in$ events and $B \in$ events
and mutual-indep-set $A S$ and $B \in S$ and prob $B \neq 0$
shows $\mathcal{P}(A \mid B)=$ prob A
using mutual-indep-cond $[$ of $A\{B\} S]$ assms by auto
lemma mutual-indep-set-empty: $A \in$ events \Longrightarrow mutual-indep-set $A\}$
using mutual-indep-setI by auto
lemma not-mutual-indep-set-itself:
assumes $\operatorname{prob} A>0$ and $\operatorname{prob} A<1$
shows \neg mutual-indep-set $A\{A\}$
proof (rule ccontr)
assume $\neg \neg$ mutual-indep-set $A\{A\}$
then have mutual-indep-set $A\{A\}$
by simp
then have $\bigwedge T . T \subseteq\{A\} \Longrightarrow T \neq\{ \} \Longrightarrow \operatorname{prob}(A \cap(\cap T))=\operatorname{prob} A * \operatorname{prob}$ $(\bigcap T)$
using mutual-indep-setD by simp
then have $e q: \operatorname{prob}(A \cap(\bigcap\{A\}))=\operatorname{prob} A * \operatorname{prob}(\bigcap\{A\})$
by blast

```
    have prob}(A\cap(\bigcap{A}))=\operatorname{prob}A\mathrm{ by simp
    moreover have prob A * (prob (\bigcap{A}))=(prob A)^2
    by (simp add: powerD-eq-square)
    ultimately show False using eq assms by auto
qed
lemma is-mutual-indep-set-itself:
    assumes }A\in\mathrm{ events
    assumes prob }A=0\vee prob A=
    shows mutual-indep-set A {A}
proof (intro mutual-indep-setI)
    show }A\in\mathrm{ events {A} }\subseteq\mathrm{ events using assms(1) by auto
    fix T assume T\subseteq{A} and T\not={}
    then have teq:T={A} by auto
    have }\operatorname{prob}(A\cap(\bigcap{A}))=\operatorname{prob}A\mathrm{ by simp
    moreover have prob A* (prob (\bigcap{A})) = (prob A)`2
    by (simp add: power2-eq-square)
    ultimately show }\operatorname{prob}(A\cap(\capT))=\operatorname{prob}A*\operatorname{prob}(\capT)\mathrm{ using teq assms
by auto
qed
lemma mutual-indep-set-singleton:
    assumes indep-event A B
    shows mutual-indep-set A {B}
    using indep-eventD-ev1 indep-eventD-ev2 assms
    by (intro mutual-indep-event-defI) (simp-all add: subset-singleton-iff)
lemma mutual-indep-set-one-compl:
    assumes mutual-indep-set AS
    assumes finite S
    assumes }B\in
    shows mutual-indep-set A ({space M - B}\cupS)
proof (intro mutual-indep-event-defI)
    show }A\in\mathrm{ events using assms(1) mutual-indep-setD2 by auto
next
    show {space M - B}\cup(S)\subseteqevents
        using assms(1) assms(2) mutual-indep-setD3 assms(3) by blast
next
    fix T assume jss:T\subseteq{space M-B}\cup(S)
    assume tne: T\not={}
    let ?T'}=T-{\mathrm{ space }M-B
    show indep-event A (\bigcapT)
    proof (cases ?T' = {})
    case True
    then have T}={\mathrm{ space }M-B}\mathrm{ using tne by blast
        moreover have indep-event A B using assms(1) assms(3) assms(3) mu-
tual-indep-singleton-event by auto
    ultimately show ?thesis using indep-event-one-compl by auto
    next
```

```
    case tne2: False
    have finT: finite T using jss assms(2) finite-subset by fast
    have tss2: ?T'\subseteqS using jss assms(2) by auto
    show ?thesis proof (cases space M-B\inT)
        case True
        have ?T'\cup{B}\subseteqS using assms(3) tss2 by auto
    then have indep-event A (\bigcap(?T'\cup{B})) using assms(1) mutual-indep-event-set-defD
tne2 finT
            by (meson Un-empty assms(2) finite-subset)
        moreover have indep-event A (\bigcap??')
            using assms(1) mutual-indep-event-set-defD finT finite-subset tss2 tne2 by
auto
    moreover have }\bigcap(?\mp@subsup{T}{}{\prime}\cup{B})=B\cap(\cap?T') by aut
    moreover have }B\in\mathrm{ events using assms(3) assms(1) mutual-indep-setD3 by
auto
            ultimately have indep-event A ((space M - B) \cap (\bigcap?T')) using in-
dep-event-compl-inter by auto
            then show ?thesis
                by (metis Inter-insert True insert-Diff)
    next
            case False
            then have T\subseteqS using jss by auto
            then show ?thesis using assms(1) mutual-indep-event-set-defD finT tne by
auto
    qed
    qed
qed
lemma mutual-indep-events-set-update-compl:
    assumes mutual-indep-set X E
    assumes }E=A\cup
    assumes }A\capB={
    assumes finite E
    shows mutual-indep-set X (((-) (space M)'A)\cupB)
using assms(2) assms(3) proof (induct card A arbitrary: A B)
    case 0
    then show ?case using assms(1)
    using assms(4) by auto
next
    case (Suc x)
    then obtain a A' where aeq: A= insert a A' and anotin: a }\not=\mp@subsup{A}{}{\prime
    by (metis card-Suc-eq-finite)
    then have xcard: card A'}=
    using Suc(2) Suc(3) assms(4) by auto
    let ? B' = B\cup{a}
    have E= A'\cup? ?B' using aeq Suc.prems by auto
    moreover have }\mp@subsup{A}{}{\prime}\cap?\mp@subsup{B}{}{\prime}={}\mathrm{ using anotin Suc.prems(2) aeq by auto
    ultimately have ies: mutual-indep-set X ((-) (space M)' A'\cup ?B')
    using Suc.hyps(1)[of A' ?B] xcard by auto
```

```
    then have }a\inA\cupB\mathrm{ using aeq by auto
    then show ?case
    proof (cases (A\cupB)-{a}={})
    case True
    then have }A={a}B={} using Suc.prems aeq by aut
    moreover have indep-event X a using mutual-indep-singleton-event ies by
auto
    ultimately show ?thesis using mutual-indep-set-singleton indep-event-one-compl
by simp
    next
    case False
    let ?c = (-) (space M)
    have un:?c' 'A\cupB=??c'A'\cup({?c a}) \cup(?B' - {a})
        using Suc(4) aeq by force
    moreover have ? B' - {a}\subseteq?? ', by auto
    moreover have ? B' - {a}\subseteq??c' }\mp@subsup{A}{}{\prime}\cup{?c,a}\cup(?\mp@subsup{B}{}{\prime})\mathrm{ by auto
    moreover have ?c' 'A'\cup{?c a}\subseteq?cc'A'\cup{??c a} \cup(?B') by auto
    ultimately have ss: ?c ' }A\cupB\subseteq{?cca}\cup(?c'A'\cup ?B'
        using Un-least by auto
    have }a\in(-)(\mathrm{ space M) ' A' }\cup\mathrm{ ? ? ' using aeq by auto
    then have ie: mutual-indep-set X ({?c a} \cup (?c ' A'\cup ?B'))
        using mutual-indep-set-one-compl[of X ?c ' A'\cup ? B' a] ies < E = A'\cup (B\cup
{a})>assms(4) by blast
    then show ?thesis using mutual-indep-subset ss by auto
    qed
qed
lemma mutual-indep-events-compl:
    assumes finite S
    assumes mutual-indep-set A S
    shows mutual-indep-set A ((\lambda s. space M - s)'S)
    using mutual-indep-events-set-update-compl[of A SS {}] assms by auto
lemma mutual-indep-set-all:
    assumes A\subseteqevents
    assumes }\Ai.Ai\inA\Longrightarrow(mutual-indep-set Ai (A-{Ai})
    shows indep-events-set A
proof (intro indep-events-setI)
    show }A\subseteq\mathrm{ events
    using assms(1) by auto
next
    fix }J\mathrm{ assume ss: }J\subseteqA\mathrm{ and fin: finite }J\mathrm{ and ne: }J\not={
    from fin ne ss show prob (\bigcapJ) = prod prob J
    proof (induct J rule: finite-ne-induct)
        case (singleton x)
        then show ?case by simp
    next
        case (insert x F)
        then have mutual-indep-set x (A-{x}) using assms(2) by simp
```

moreover have $F \subseteq(A-\{x\})$ using insert.prems insert.hyps by auto ultimately have $\operatorname{prob}(x \cap(\bigcap F))=\operatorname{prob} x * \operatorname{prob}(\bigcap F)$
by (simp add: local.insert(2) mutual-indep-setD)
then show ?case using insert.hyps insert.prems by simp
qed
qed
Prefered version using indexed notation
definition mutual-indep-events:: 'a set \Rightarrow (nat $\Rightarrow{ }^{\prime}$ 'a set $) \Rightarrow$ nat set \Rightarrow bool where mutual-indep-events $A F I \longleftrightarrow A \in$ events $\wedge(F$ ' $I \subseteq$ events $) \wedge(\forall J \subseteq$ $I . J \neq\{ \} \longrightarrow \operatorname{prob}(A \cap(\bigcap j \in J . F j))=\operatorname{prob} A * \operatorname{prob}(\bigcap j \in J . F j))$
lemma mutual-indep-eventsI[intro]: $A \in$ events $\Longrightarrow\left(F^{\prime} I \subseteq\right.$ events $) \Longrightarrow(\bigwedge J . J$ $\subseteq I \Longrightarrow J \neq\{ \} \Longrightarrow$ $\operatorname{prob}(A \cap(\bigcap j \in J . F j))=\operatorname{prob} A * \operatorname{prob}(\bigcap j \in J . F j)) \Longrightarrow m u-$ tual-indep-events AFI
using mutual-indep-events-def by simp
lemma mutual-indep-events $D[$ dest $]:$ mutual-indep-events A FI $I \subseteq I \Longrightarrow J$ $\neq\{ \} \Longrightarrow \operatorname{prob}(A \cap(\bigcap j \in J . F j))=\operatorname{prob} A * \operatorname{prob}(\bigcap j \in J . F j)$ using mutual-indep-events-def by simp
lemma mutual-indep-eventsD2[dest]: mutual-indep-events A FI $\Longrightarrow A \in$ events using mutual-indep-events-def by simp
lemma mutual-indep-eventsD3[dest]: mutual-indep-events A FI F'I events using mutual-indep-events-def by simp
lemma mutual-indep-ev-subset: mutual-indep-events $A F I \Longrightarrow J \subseteq I \Longrightarrow m u$ -tual-indep-events A F J
using mutual-indep-events-def by (meson image-mono subset-trans)
lemma mutual-indep-event-defD:
assumes mutual-indep-events A FI
assumes finite J
assumes $J \subseteq I$
assumes $J \neq\{ \}$
shows indep-event $A(\bigcap j \in J . F j)$
proof (intro indep-eventI)
show $A \in$ events using mutual-indep-setD2 assms(1) by auto
show $\operatorname{prob}\left(A \cap \bigcap\left(F^{\prime} J\right)\right)=\operatorname{prob} A * \operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right)$
using assms(1) mutual-indep-eventsD assms(3) assms(4) by simp
have finite $\left(F^{\prime} J\right)$ using finite-subset assms(2) by simp
then show $(\cap j \in J . F j) \in$ events
using Inter-event-ss[of $\left.F^{‘} J\right]$ assms mutual-indep-eventsD3 by blast qed
lemma mutual-ev-indep-event-defI: $A \in$ events $\Longrightarrow F^{\prime} I \subseteq$ events $\Longrightarrow(\bigwedge J . J$ $\subseteq I \Longrightarrow J \neq\{ \} \Longrightarrow$
indep-event $\left.A\left(\bigcap\left(F^{\prime} J\right)\right)\right) \Longrightarrow$ mutual-indep-events AFI
using indep-eventD mutual-indep-events-def[of A F I] by auto
lemma mutual-indep-ev-singleton-event:
assumes mutual-indep-events A FI
assumes $B \in F^{\prime} I$
showsindep-event $A B$
proof -
obtain J where beq: $B=F J$ and $J \in I$ using $\operatorname{assms(2)}$ by blast
then have $\{J\} \subseteq I$ and finite $\{J\}$ and $\{J\} \neq\{ \}$ by auto
moreover have $B=\bigcap\left(F^{\prime}\{J\}\right)$ using beq by simp
ultimately show ?thesis using mutual-indep-event-defD assms(1)
by meson
qed
lemma mutual-indep-ev-singleton-event2:
assumes mutual-indep-events A FI
assumes $i \in I$
showsindep-event $A(F i)$
using mutual-indep-event-defD[of A FI \{i\}] assms by auto
lemma mutual-indep-iff:
shows mutual-indep-events A FI mutual-indep-set $A\left(F^{\prime} I\right)$
proof (intro iffI mutual-indep-setI mutual-indep-eventsI)
show mutual-indep-events $A F I \Longrightarrow A \in$ events using mutual-indep-eventsD2 by simp
show mutual-indep-set $A\left(F^{\prime} I\right) \Longrightarrow A \in$ events using mutual-indep-setD2 by simp
show mutual-indep-events A FI $I \Longrightarrow F^{`} I \subseteq$ events using mutual-indep-eventsD3 by simp
show mutual-indep-set $A\left(F^{\prime} I\right) \Longrightarrow F^{\prime} I \subseteq$ events using mutual-indep-setD3 by simp
show $\wedge T$. mutual-indep-events $A F I \Longrightarrow T \subseteq F^{\prime} I \Longrightarrow T \neq\{ \} \Longrightarrow \operatorname{prob}(A$ $\cap \bigcap T)=\operatorname{prob} A * \operatorname{prob}(\bigcap T)$
using mutual-indep-eventsD by (metis empty-is-image subset-imageE)
show $\bigwedge J$. mutual-indep-set $A\left(F^{\prime} I\right) \Longrightarrow J \subseteq I \Longrightarrow J \neq\{ \} \Longrightarrow \operatorname{prob}(A \cap \bigcap$ $\left.\left(F^{\prime} J\right)\right)=\operatorname{prob} A * \operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right)$
using mutual-indep-setD by (simp add: image-mono)
qed
lemma mutual-indep-ev-cond:
assumes $A \in$ events and $F^{\prime} J \subseteq$ events and finite J
and mutual-indep-events $A F I$ and $J \subseteq I$ and $J \neq\{ \}$ and $\operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right) \neq 0$
shows $\mathcal{P}\left(A \mid\left(\bigcap\left(F^{\prime} J\right)\right)\right)=\operatorname{prob} A$
proof -
have $\bigcap\left(F^{\prime} J\right) \in$ events using assms
by (simp add: Inter-event-ss)

```
    then have \(\mathcal{P}\left(A \mid\left(\bigcap\left(F^{\prime} J\right)\right)\right)=\operatorname{prob}\left(\left(\bigcap\left(F^{\prime} J\right)\right) \cap A\right) / \operatorname{prob}\left(\bigcap\left(F^{‘} J\right)\right)\)
    using cond-prob-ev-def assms(1) by blast
    also have \(\ldots=\operatorname{prob}\left(A \cap\left(\bigcap\left(F^{\prime} J\right)\right)\right) / \operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right)\)
    by (simp add: inf-commute)
    also have \(\ldots=\operatorname{prob} A * \operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right) / \operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right)\)
    using assms mutual-indep-events \(D\) by auto
    finally show ?thesis using assms(7) by simp
qed
lemma mutual-indep-ev-cond-full:
    assumes \(A \in\) events and \(F^{\prime} I \subseteq\) events and finite \(I\)
    and mutual-indep-events AFI and \(I \neq\{ \}\) and \(\operatorname{prob}\left(\bigcap\left(F^{\prime} I\right)\right) \neq 0\)
shows \(\mathcal{P}\left(A \mid\left(\bigcap\left(F^{‘} I\right)\right)\right)=\operatorname{prob} A\)
    using mutual-indep-ev-cond[of A F I I] assms by auto
lemma mutual-indep-ev-cond-single:
    assumes \(A \in\) events and \(B \in\) events
    and mutual-indep-events \(A F I\) and \(B \in F^{\prime} I\) and prob \(B \neq 0\)
shows \(\mathcal{P}(A \mid B)=\) prob \(A\)
proof -
    obtain \(i\) where \(B=F i\) and \(i \in I\) using assms by blast
    then show ?thesis using mutual-indep-ev-cond[of A F\{i\} I] assms by auto
qed
lemma mutual-indep-ev-empty: \(A \in\) events \(\Longrightarrow\) mutual-indep-events \(A F\}\)
    using mutual-indep-eventsI by auto
lemma not-mutual-indep-ev-itself:
    assumes \(\operatorname{prob} A>0\) and prob \(A<1\) and \(A=F i\)
    shows \(\neg\) mutual-indep-events \(A F\{i\}\)
proof (rule ccontr)
    assume \(\neg \neg\) mutual-indep-events \(A F\{i\}\)
    then have mutual-indep-events \(A F\{i\}\)
        by \(\operatorname{simp}\)
    then have \(\bigwedge J . J \subseteq\{i\} \Longrightarrow J \neq\{ \} \Longrightarrow \operatorname{prob}\left(A \cap\left(\cap\left(F^{\prime} J\right)\right)\right)=\operatorname{prob} A *\)
\(\operatorname{prob}\left(\bigcap\left(F^{\prime} J\right)\right)\)
    using mutual-indep-eventsD by simp
    then have \(e q: \operatorname{prob}\left(A \cap\left(\cap\left(F^{\prime}\{i\}\right)\right)\right)=\operatorname{prob} A * \operatorname{prob}\left(\bigcap\left(F^{\prime}\{i\}\right)\right)\)
    by blast
    have \(\operatorname{prob}(A \cap(\bigcap(F ‘\{i\})))=\operatorname{prob} A\) using \(\operatorname{assms}(3)\) by simp
    moreover have prob \(A *(\operatorname{prob}(\bigcap\{A\}))=(\operatorname{prob} A)^{\wedge} \mathcal{Z}_{2}\)
    by (simp add: power2-eq-square)
    ultimately show False using eq assms by auto
qed
lemma is-mutual-indep-ev-itself:
    assumes \(A \in\) events and \(A=F i\)
    assumes \(\operatorname{prob} A=0 \vee \operatorname{prob} A=1\)
    shows mutual-indep-events \(A F\{i\}\)
```

```
proof (intro mutual-indep-eventsI)
    show }A\in\mathrm{ events }F\mathrm{ ' {i} }\subseteq\mathrm{ events using assms(1) assms(2) by auto
    fix }J\mathrm{ assume }J\subseteq{i}\mathrm{ and }J\not={
    then have teq: J={i} by auto
    have prob (A\cap (\bigcap(F`{i}))) = prob A using assms(2) by simp
    moreover have prob A * (prob (\cap (F`{i}))) = (prob A)^2
        using assms(2) by (simp add: power2-eq-square)
    ultimately show prob}(A\cap\bigcap(\mp@subsup{F}{}{\prime}J))=\operatorname{prob}A*\operatorname{prob}(\cap(\mp@subsup{F}{}{\prime}J))\mathrm{ using teq
assms by auto
qed
lemma mutual-indep-ev-singleton:
    assumes indep-event A (Fi)
    shows mutual-indep-events A F {i}
    using indep-eventD-ev1 indep-eventD-ev2 assms
    by (intro mutual-ev-indep-event-defI) (simp-all add: subset-singleton-iff)
lemma mutual-indep-ev-one-compl:
    assumes mutual-indep-events A F I
    assumes finite I
    assumes i\inI
    assumes space M-Fi=Fj
    shows mutual-indep-events A F ({j} \cup I)
proof (intro mutual-ev-indep-event-defI)
    show A e events using assms(1) mutual-indep-setD2 by auto
next
    show F'( }{j}\cupI)\subseteq\mathrm{ events
        using assms(1) assms(2) mutual-indep-eventsD3 assms(3) assms(4)
    by (metis image-insert image-subset-iff insert-is-Un insert-subset sets.compl-sets)
next
    fix }J\mathrm{ assume jss: J}\subseteq{j}\cup
    assume tne: J\not={}
    let ?J' = J - {j}
    show indep-event A(\bigcap(F'J))
    proof (cases ? 'J'={})
        case True
        then have }J={j}\mathrm{ using tne by blast
        moreover have indep-event A (Fi)
            using assms(1) assms mutual-indep-ev-singleton-event2 by simp
        ultimately show ?thesis using indep-event-one-compl assms(4) by fastforce
    next
        case tne2: False
        have finT: finite J using jss assms(2) finite-subset by fast
        have tss2: ?J' \subseteqI using jss assms(2) by auto
        show ?thesis proof (cases j }\inJ\mathrm{ )
            case True
            have ?J'\cup{i}\subseteqI using assms(3) tss2 by auto
            then have indep-event }A(\bigcap(F'?J'\cup{Fi})
```

using assms(1) mutual-indep-event-defD tne2 finT assms(2) finite-subset by (metis Diff-cancel Un-Diff-cancel Un-absorb Un-insert-right image-insert)
moreover have indep-event $A\left(\bigcap\left(F^{\prime}\right.\right.$? $\left.\left.J^{\prime}\right)\right)$
using assms(1) mutual-indep-event-defD finT finite-subset tss2 tne2 by auto
moreover have $\left(\bigcap\left(F^{\prime} ? J^{\prime} \cup\{F i\}\right)\right)=F i \cap\left(\bigcap\left(F^{\prime} ? J^{\prime}\right)\right)$ by auto
moreover have $F i \in$ events using assms(3) assms(1) mutual-indep-eventsD3 by simp
ultimately have indep-event $A\left(F j \cap\left(\bigcap\left(F^{\prime} ? J^{\prime}\right)\right)\right)$
using indep-event-compl-inter $\left[o f ~ A \bigcap\left(F^{\prime}\right.\right.$? J') $\left.F i\right]$ assms(4) by auto
then show ?thesis using Inter-insert True insert-Diff by (metis image-insert)
next
case False
then have $J \subseteq I$ using jss by auto
then show ?thesis using assms(1) mutual-indep-event-defD finT tne by auto qed
qed
qed
lemma mutual-indep-events-update-compl:
assumes mutual-indep-events X F S
assumes $S=A \cup B$
assumes $A \cap B=\{ \}$
assumes finite S
assumes bij-betw $G A A^{\prime}$
assumes $\bigwedge i . i \in A \Longrightarrow F(G i)=$ space $M-F i$
shows mutual-indep-events $X F\left(A^{\prime} \cup B\right)$
using $\operatorname{assms}(2) \operatorname{assms}(3) \operatorname{assms}(6) \operatorname{assms}(5)$ proof (induct card A arbitrary: $A B$ A^{\prime})
case 0
then have aempty: $A=\{ \}$ using finite-subset assms(4) by simp
then have $A^{\prime}=\{ \}$ using $0 . p r e m s(4)$ by (metis all-not-in-conv bij-betwE bij-betw-inv)
then show ?case using assms(1) using 0.prems(1) aempty by simp
next
case (Suc x)
then obtain $a C$ where aeq: $C=A-\{a\}$ and ain: $a \in A$
by fastforce
then have xcard: card $C=x$
using Suc(2) Suc(3) assms(4) by auto
let ? $C^{\prime}=A^{\prime}-\left\{\begin{array}{l}G a\} \\ \hline\end{array}\right.$
have compl: $(\bigwedge i . i \in C \Longrightarrow F(G i)=$ space $M-F i)$ using Suc.prems aeq by simp
have bb: bij-betw $G C$? C^{\prime} using Suc.prems(4) aeq bij-betw-remove[of $G A A^{\prime}$ a] ain by simp
let $?^{\prime} B^{\prime}=B \cup\{a\}$
have $S=C \cup$? B^{\prime} using aeq Suc.prems ain by auto
moreover have $C \cap ? B^{\prime}=\{ \}$ using ain Suc.prems(2) aeq by auto
ultimately have ies: mutual-indep-events $X F\left(? C^{\prime} \cup ? B^{\prime}\right)$
using Suc.hyps (1)[of C ? B] xcard compl bb by auto
then have $a \in A \cup B$ using ain by auto
then show? case
proof $($ cases $(A \cup B)-\{a\}=\{ \})$
case True
then have aeq: $A=\{a\}$ and beq: $B=\{ \}$ using Suc.prems ain by auto
then have $A^{\prime}=\{G a\}$ using aeq Suc.prems ain aeq bb bij-betwE bij-betw-empty1 insert-Diff
by (metis Un-Int-eq(4) Un-commute $\langle C \cap(B \cup\{a\})=\{ \}\rangle\langle S=C \cup(B \cup$ $\{a\})>$)
moreover have $F\binom{G}{a}=$ space $M-(F a)$ using Suc.prems ain by auto
moreover have indep-event $X(F a)$ using mutual-indep-ev-singleton-event ies by auto
ultimately show ?thesis using mutual-indep-ev-singleton indep-event-one-compl beq by auto
next
case False
have un: $A^{\prime} \cup B=? C^{\prime} \cup\{G a\} \cup\left(? B^{\prime}-\{a\}\right)$ using Suc.prems aeq
by (metis Diff-insert-absorb Un-empty-right Un-insert-right ain bij-betwE disjoint-iff-not-equal insert-Diff)
moreover have ? $B^{\prime}-\{a\} \subseteq ? B^{\prime}$ by auto
moreover have ? $B^{\prime}-\{a\} \subseteq ? C^{\prime} \cup\{G a\} \cup\left(? B^{\prime}\right)$ by auto
moreover have ? $C^{\prime} \cup\{G a\} \subseteq ? C^{\prime} \cup\{G a\} \cup\left(? B^{\prime}\right)$ by auto
ultimately have ss: $A^{\prime} \cup B \subseteq\{G a\} \cup\left(? C^{\prime} \cup\right.$? $\left.B^{\prime}\right)$
using Un-least by auto
have $a \in$? $C^{\prime} \cup$? B^{\prime} using aeq by auto
then have ie: mutual-indep-events $X F\left(\{G a\} \cup\left(? C^{\prime} \cup ? B^{\prime}\right)\right)$
using mutual-indep-ev-one-compl[of X $F\left(? C^{\prime} \cup ? B^{\prime}\right)$ a $\left.G a\right]$ using Suc.prems(3)
by (metis $\langle S=C \cup(B \cup\{a\})\rangle$ ain assms(4) bb bij-betw-finite ies infinite-Un)
then show ?thesis using mutual-indep-ev-subset ss by auto
qed
qed
lemma mutual-indep-ev-events-compl:
assumes finite S
assumes mutual-indep-events $A F S$
assumes bij-betw $G S S^{\prime}$
assumes $\bigwedge i . i \in S \Longrightarrow F(G i)=$ space $M-F i$
shows mutual-indep-events $A F S^{\prime}$
using mutual-indep-events-update-compl[of A FSS\{\}] assms by auto
Important lemma on relation between independence and mutual independence of a set
lemma mutual-indep-ev-set-all:
assumes F ' $I \subseteq$ events
assumes $\bigwedge i . i \in I \Longrightarrow($ mutual-indep-events $(F i) F(I-\{i\}))$
shows indep-events $F I$
proof (intro indep-eventsI)

```
    show }\bigwedgei.i\inI\LongrightarrowFi\inevent
    using assms(1) by auto
next
    fix }J\mathrm{ assume ss: J}\subseteqI\mathrm{ and fin: finite }J\mathrm{ and ne: J #={}
    from fin ne ss show prob (\bigcap (F'J)) = (\prodi\inJ. prob (Fi))
    proof (induct J rule: finite-ne-induct)
        case (singleton x)
        then show?case by simp
    next
        case (insert x X)
        then have mutual-indep-events (Fx)F(I-{x}) using assms(2) by simp
        moreover have X\subseteq(I-{x}) using insert.prems insert.hyps by auto
        ultimately have prob (Fx\cap(\bigcap(F'`X)))=\operatorname{prob}(Fx)*\operatorname{prob}(\cap(F'`X))
            by (simp add: local.insert(2) mutual-indep-eventsD)
        then show ?case using insert.hyps insert.prems by simp
    qed
qed
end
end
```


6 The Basic Probabilistic Method Framework

This theory includes all aspects of step (3) and (4) of the basic method framework, which are purely probabilistic

theory Basic-Method imports Indep-Events
 begin

6.1 More Set and Multiset lemmas

```
lemma card-size-set-mset:card (set-mset A) \leq size A
    using size-multiset-overloaded-eq
    by (metis card-eq-sum count-greater-eq-one-iff sum-mono)
lemma Union-exists:{a\inA.\existsb\inB.Pab}=(\bigcupb\inB.{a\inA.Pab})
    by blast
```

lemma Inter-forall: $B \neq\{ \} \Longrightarrow\{a \in A . \forall b \in B . P a b\}=(\bigcap b \in B .\{a \in A$
. $P a b\}$)
by auto
lemma function-map-multi-filter-size:
assumes image-mset $F($ mset-set $A)=B$ and finite A
shows card $\{a \in A . P(F a)\}=$ size $\{\# b \in \# B . P b \#\}$
using assms(2) assms(1) proof (induct A arbitrary: B rule: finite-induct)
case empty
then show ?case by simp
next

```
    case (insert x C)
    then have beq: B= image-mset F (mset-set C) +{#Fx#} by auto
    then show ?case proof (cases P (Fx))
    case True
    then have filter-mset P B = filter-mset P(image-mset F (mset-set C)) +{#F
x#}
        by (simp add: True beq)
    then have s: size (filter-mset P B)= size (filter-mset P (image-mset F (mset-set
C))) + 1
            using size-single size-union by auto
    have {a\in insert x C.P(Fa)}= insert x {a\inC.P (Fa)} using True by
auto
    moreover have x}\not\in{a\inC.P(Fa)} using insert.hyps(2) by sim
    ultimately have card {a\in insert x C.P(Fa)}=\operatorname{card}{a\inC.P(Fa)}+
1
            using card-insert-disjoint insert.hyps(1) by auto
    then show ?thesis using s insert.hyps(3) by simp
    next
    case False
    then have filter-mset P B = filter-mset P (image-mset F (mset-set C)) using
beq by simp
    moreover have {a\in insert x C.P(Fa)}={a\inC.P(Fa)} using False
by auto
    ultimately show ?thesis using insert.hyps(3) by simp
    qed
qed
lemma bij-mset-obtain-set-elem:
    assumes image-mset F(mset-set A)=B
    assumes b\in#B
    obtains a where }a\inA\mathrm{ and F a=b
    using assms set-image-mset
    by (metis finite-set-mset-mset-set image-iff mem-simps(2) mset-set.infinite set-mset-empty)
lemma bij-mset-obtain-mset-elem:
    assumes finite A
    assumes image-mset F(mset-set A)=B
    assumes }a\in
    obtains b where b\in#B and Fa=b
    using assms by fastforce
lemma prod-fn-le1:
    fixes f :: 'c ('d :: {comm-monoid-mult, linordered-semidom})
    assumes finite }
    assumes }A\not={
    assumes \ y. y\inA\Longrightarrowfy\geq0^fy<1
    shows (\prodx\inA.fx)<1
using assms(1) assms(2) assms(3) proof (induct A rule: finite-ne-induct)
```

```
    case (singleton x)
    then show ?case by auto
next
    case (insert x F)
    then show ?case
    proof (cases x \inF)
        case True
        then show ?thesis using insert.hyps by auto
    next
        case False
        then have prod f(insert x F)=fx* prod f F by (simp add: local.insert(1))
    moreover have prod fF<1 using insert.hyps insert.prems by auto
    moreover have fx<1fx\geq0 using insert.prems by auto
    ultimately show ?thesis
        by (metis basic-trans-rules(20) basic-trans-rules(23) more-arith-simps(6)
            mult-left-less-imp-less verit-comp-simplify1(3))
    qed
qed
context prob-space
begin
```


6.2 Existence Lemmas

lemma prob-lt-one-obtain:
assumes $\{e \in$ space $M . Q e\} \in$ events
assumes prob $\{e \in$ space $M . Q e\}<1$
obtains e where $e \in$ space M and $\neg Q e$
proof -
have sin: $\{e \in$ space $M . \neg Q e\} \in$ events using $\operatorname{assms}(1)$
using sets.sets-Collect-neg by blast
have prob $\{e \in$ space $M . \neg Q e\}=1-\operatorname{prob}\{e \in$ space $M . Q e\}$ using prob-neg
assms by auto
then have prob $\{e \in$ space $M . \neg Q e\}>0$ using $\operatorname{assms}(2)$ by auto
then show? ?thesis using that
by (smt (verit, best) empty-Collect-eq measure-empty)
qed
lemma prob-gt-zero-obtain:
assumes $\{e \in$ space $M . Q e\} \in$ events
assumes prob $\{e \in$ space $M . Q e\}>0$
obtains e where $e \in$ space M and $Q e$
using assms by (smt (verit) empty-Collect-eq inf.strict-order-iff measure-empty)
lemma inter-gt0-event:
assumes F ' $I \subseteq$ events
assumes $\operatorname{prob}(\bigcap i \in I .($ space $M-(F i)))>0$
shows $(\bigcap i \in I .($ space $M-(F i))) \in$ events and $(\bigcap i \in I .($ space $M-(F$
i))) $\neq\{ \}$

```
    using assms using measure-notin-sets by (smt (verit), fastforce)
lemma obtain-intersection:
    assumes F'` I\subseteq events
    assumes prob (\bigcapi\inI.( space M-(Fi)))>0
    obtains e where e\in space M and \ \i.i\inI\Longrightarrowe\not二Fi
proof -
    have ine: ( }\capi\inI.(\mathrm{ space M - (Fi)))}\not={}\mathrm{ using inter-gt0-event[of FI]
assms by fast
    then obtain e where \ \i.i\inI\Longrightarrowe\in space M - Fi by blast
    then show ?thesis
        by (metis Diff-iff ex-in-conv subprob-not-empty that)
qed
lemma obtain-intersection-prop:
    assumes F'I }I\subseteq\mathrm{ events
    assumes \i.i\inI\LongrightarrowFi={e\in space M.P e i}
    assumes prob ( }\capi\inI.(\mathrm{ space M - (Fi)))>0
    obtains e where e\inspace M and \i.i\inI\Longrightarrow\negPei
proof -
    obtain e where ein: e\in space M and \i.i\inI\Longrightarrowe\not=Fi
        using obtain-intersection assms(1) assms(3) by auto
    then have \i.i\inI\Longrightarrowe\in{e\in space M.\negPei} using assms(2) by simp
    then show?thesis using ein that by simp
qed
lemma not-in-big-union:
    assumes \i.i\inA\Longrightarrowe\not\ini
    shows e#(UA)
    using assms by (induct A rule: infinite-finite-induct) auto
lemma not-in-big-union-fn:
    assumes \i.i\inA\Longrightarrowe\not\inFi
    shows e\not\in(Ui\inA.Fi)
    using assms by (induct A rule: infinite-finite-induct) auto
lemma obtain-intersection-union:
    assumes F' I\subseteq events
    assumes prob (\}i\inI.(\mathrm{ space M - (Fi)))>0
    obtains e where e\in space M and e\not\in(\bigcupi\inI.Fi)
proof -
    obtain e where e\in space M and cond: \ i.i\inI\Longrightarrowe\not<Fi
    using obtain-intersection[of FI] assms by blast
    then show ?thesis using not-in-big-union-fn[of I e F] that by blast
qed
```


6.3 Basic Bounds

Lemmas on the Complete Independence and Union bound

```
lemma complete-indep-bound1:
    assumes finite \(A\)
    assumes \(A \neq\{ \}\)
    assumes \(A \subseteq\) events
    assumes indep-events-set \(A\)
    assumes \(\bigwedge a . a \in A \Longrightarrow\) prob \(a<1\)
    shows prob \((\) space \(M-(\bigcap A))>0\)
proof -
    have \(\bigcap A \in\) events using assms(1) assms(2) assms(3) Inter-event-ss by simp
    then have \(\operatorname{prob}(\) space \(M-(\bigcap A))=1-\operatorname{prob}(\bigcap A)\)
        by (simp add: prob-compl)
    then have 1: prob \((\) space \(M-(\bigcap A))=1-\operatorname{prod} \operatorname{prob} A\)
        using indep-events-set-prod-all assms by simp
    moreover have prod prob \(A<1\) using \(\operatorname{assms}(5) \operatorname{assms}(1) \operatorname{assms}(2) \operatorname{assms}(4)\)
indep-events-set-events
    by (metis Inf-lower 〈prob (space \(M-\bigcap A)=1-\operatorname{prob}(\bigcap A)\) 〉
        basic-trans-rules(21) 1 diff-gt-0-iff-gt finite-has-maximal finite-measure-mono
)
    ultimately show?thesis by simp
qed
lemma complete-indep-bound1-index:
    assumes finite \(A\)
    assumes \(A \neq\{ \}\)
    assumes \(F\) ' \(A \subseteq\) events
    assumes indep-events \(F A\)
    assumes \(\bigwedge a . a \in A \Longrightarrow \operatorname{prob}(F a)<1\)
    shows prob \(\left(\right.\) space \(\left.M-\left(\bigcap\left(F^{\prime} A\right)\right)\right)>0\)
proof -
    have pos: \(\bigwedge\) a. \(a \in A \Longrightarrow \operatorname{prob}(F a) \geq 0\) using \(\operatorname{assms}(3)\) by auto
    have \(\bigcap(F ‘ A) \in\) events using assms(1) assms(2) assms(3) Inter-event-ss by
simp
    then have eq: prob \(\left(\operatorname{space} M-\left(\bigcap\left(F^{\prime} A\right)\right)\right)=1-\operatorname{prob}\left(\bigcap\left(F^{\prime} A\right)\right)\)
        by (simp add: prob-compl)
    then have \(\operatorname{prob}\left(\right.\) space \(\left.M-\left(\bigcap\left(F^{\prime} A\right)\right)\right)=1-\left(\prod i \in A . \operatorname{prob}(F i)\right)\)
        using indep-events-prod-all assms by simp
    moreover have \(\left(\prod i \in A . \operatorname{prob}(F i)\right)<1\)
        using \(\operatorname{assms}(5)\) eq assms(2) assms(1) prod-fn-le1[of \(A \lambda i . \operatorname{prob}(F i)]\) by auto
    ultimately show ?thesis by simp
qed
lemma complete-indep-bound2:
    assumes finite \(A\)
    assumes \(A \subseteq\) events
    assumes indep-events-set \(A\)
    assumes \(\bigwedge a . a \in A \Longrightarrow\) prob \(a<1\)
    shows prob (space \(M-(\bigcup A))>0\)
proof (cases \(A=\{ \}\) )
    case True
```

```
    then show ?thesis by (simp add: True prob-space)
next
    case False
    then have prob (space M - \bigcupA) = prob (\bigcapa\inA.(space M - a)) by simp
    moreover have indep-events-set (( }\lambda\mathrm{ a. space M - a)' A)
    using assms(1) assms(3) indep-events-set-compl by auto
    moreover have finite ((\lambda a. space M -a)'A) using assms(1) by auto
    moreover have ((\lambdaa. space M-a)'A)}\not={}\mathrm{ using False by auto
    ultimately have eq: prob (space M - \bigcupA) = prod prob ((\lambdaa. space M - a)'
A)
    using indep-events-set-prod-all[of ((\lambda a. space M - a)' A)] by linarith
    have }\a.a\in((\lambdaa.space M-a)'A)\Longrightarrow prob a>
    proof -
        fix }a\mathrm{ assume }a\in((\lambdaa\mathrm{ . space M - a)'}A
        then obtain }\mp@subsup{a}{}{\prime}\mathrm{ where }a=\mathrm{ space }M-\mp@subsup{a}{}{\prime}\mathrm{ and ain: }\mp@subsup{a}{}{\prime}\inA\mathrm{ by blast
        then have prob a = 1 - prob a' using prob-compl assms(2) by auto
        moreover have prob a'< < using assms(4) ain by simp
        ultimately show prob a>0 by simp
    qed
    then have prod prob ((\lambda a. space M - a)'A)>0 by (meson prod-pos)
    then show?thesis using eq by simp
qed
lemma complete-indep-bound2-index:
    assumes finite A
    assumes F' }A\subseteq\mathrm{ events
    assumes indep-events FA
    assumes \a.a\inA\Longrightarrowprob (Fa)<1
    shows prob (space M - (U(F'A)))>0
proof (cases A={})
    case True
    then show ?thesis by (simp add: True prob-space)
next
    case False
    then have prob (space M-\bigcup(F'A)) = prob (\bigcapa\inA. (space M - Fa)) by
simp
    moreover have indep-events ( }\lambda\mathrm{ a. space M - Fa) A
        using assms(1) assms(3) indep-events-compl by auto
    ultimately have eq: prob (space M - \bigcup(F`A)) = (\prodi\inA. prob ((\lambda a. space
M-Fa) i))
        using indep-events-prod-all[of (\lambda a. space M - Fa) A] assms(1) False by
linarith
    have \a. a \inA\Longrightarrow prob (space M - Fa)>0
        using prob-compl assms(2) assms(4) by auto
    then have (\prodi\inA. prob ((\lambda a. space M - Fa) i)) > 0 by (meson prod-pos)
    then show ?thesis using eq by simp
qed
lemma complete-indep-bound3:
```

```
    assumes finite }
    assumes }A\not={
    assumes F` A\subseteq events
    assumes indep-events F A
    assumes \a.a\inA\Longrightarrowprob (Fa)<1
    shows prob (\bigcapa\inA. space M-Fa)>0
    using complete-indep-bound2-index compl-Union-fn assms by auto
            Combining complete independence with existence step
lemma complete-indep-bound-obtain:
    assumes finite A
    assumes }A\subseteq\mathrm{ events
    assumes indep-events-set A
    assumes \ a . a\inA\Longrightarrow prob a<1
    obtains e where e\in space M and e\not\in\bigcupA
proof -
    have prob (space M - (\bigcupA)) > 0 using complete-indep-bound2 assms by auto
    then show ?thesis
        by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI that)
qed
lemma Union-bound-events:
    assumes finite A
    assumes }A\subseteq\mathrm{ events
    shows prob (\bigcupA)\leq(\suma\inA. prob a)
    using finite-measure-subadditive-finite[of A \lambda x.x] assms by auto
lemma Union-bound-events-fun:
    assumes finite A
    assumes f'A\subseteq events
    shows prob }(\bigcup)(f'A))\leq(\suma\inA.prob (f a)
    by (simp add:assms(1) assms(2) finite-measure-subadditive-finite)
lemma Union-bound-avoid:
    assumes finite A
    assumes (\suma\inA. prob a)< < 
    assumes }A\subseteq\mathrm{ events
    shows prob (space M - \bigcupA) > 0
proof -
    have }\bigcupA\in\mathrm{ events
    by (simp add: assms(1) assms(3) sets.finite-Union)
    then have prob (space M - \bigcupA)=1- prob (\bigcupA)
    using prob-compl by simp
    moreover have prob (\A)<1 using assms Union-bound-events
    by fastforce
    ultimately show ?thesis by simp
qed
```

```
lemma Union-bound-avoid-fun:
    assumes finite A
    assumes (\suma\inA.prob (fa))<1
    assumes f`A}\subseteq\mathrm{ events
    shows prob (space M - \bigcup(f'A)) >0
proof -
    have }\bigcup(f'A)\in event
        by (simp add: assms(1) assms(3) sets.finite-Union)
    then have prob (space M - \bigcup(f'A)) = 1-prob (U(f'A))
        using prob-compl by simp
    moreover have prob ( U(f`A))<1 using assms Union-bound-events-fun
        by (smt (verit, ccfv-SIG) sum.cong)
    ultimately show ?thesis by simp
qed
```

Combining union bound with existance step
lemma Union-bound-obtain:
assumes finite A
assumes $\left(\sum a \in A\right.$. prob $\left.a\right)<1$
assumes $A \subseteq$ events
obtains e where $e \in$ space M and $e \notin \bigcup A$
proof -
have prob (space $M-\bigcup A$) >0 using Union-bound-avoid assms by simp
then show ?thesis using that prob-gt-zero-obtain
by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI)
qed
lemma Union-bound-obtain-fun:
assumes finite A
assumes $\left(\sum a \in A . \operatorname{prob}(f a)\right)<1$
assumes f ' $A \subseteq$ events
obtains e where $e \in$ space M and $e \notin \bigcup\left(f^{\star} A\right)$
proof -
have prob (space $\left.M-\bigcup\left(f^{\star} A\right)\right)>0$ using Union-bound-avoid-fun assms by simp
then show ?thesis using that prob-gt-zero-obtain
by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI)
qed
lemma Union-bound-obtain-compl:
assumes finite A
assumes $\left(\sum a \in A\right.$. prob $\left.a\right)<1$
assumes $A \subseteq$ events
obtains e where $e \in($ space $M-\bigcup A)$
proof -
have prob (space $M-\bigcup A)>0$ using Union-bound-avoid assms by simp
then show ?thesis using that prob-gt-zero-obtain
by (metis all-not-in-conv measure-empty verit-comp-simplify(2) verit-comp-simplify1(3))
qed

```
lemma Union-bound-obtain-compl-fun:
    assumes finite A
    assumes (\suma\inA. prob (fa))<1
    assumes f'A\subseteqevents
    obtains e where e\in(space M-\bigcup(f`A))
proof -
    obtain e where e\in space M and e\not\in\bigcup(f`A)
        using assms Union-bound-obtain-fun by blast
    then have e space M-\bigcup(f'A) by simp
    then show ?thesis by fact
qed
end
end
```


7 Lovasz Local Lemma

theory Lovasz-Local-Lemma
imports
Basic-Method
HOL-Real-Asymp.Real-Asymp
Indep-Events
Digraph-Extensions
begin

```
lemma \(l n\)-add-one-self-less-self:
    fixes \(x::\) real
    assumes \(x>0\)
    shows \(\ln (1+x)<x\)
proof -
    have \(0 \leq x 0<x \exp x>01+x>0\) using assms by simp +
    have \(1+x<1+x+x^{2} / 2\)
        using \(\langle 0<x\rangle\) by auto
    also have \(\ldots \leq \exp x\)
        using exp-lower-Taylor-quadratic \([O F\langle 0 \leq x\rangle]\) by blast
    finally have \(1+x<\exp (x)\) by blast
    then have \(\ln (1+x)<\ln (\exp (x))\)
        using ln-less-cancel-iff \([O F\langle 1+x>0\rangle\langle\exp (x)>0\rangle]\) by auto
    also have \(\ldots=x\) using \(l n-\exp\) by blast
    finally show ?thesis by auto
qed
lemma exp-1-bounds:
    assumes \(x>(0::\) real \()\)
    shows \(\exp 1>(1+1 / x)\) powr \(x\) and \(\exp 1<(1+1 / x)\) powr \((x+1)\)
proof -
```

```
    have \(\ln (1+1 / x)<1 / x\)
    using ln-add-one-self-less-self assms by simp
    thus exp \(1>(1+1 / x)\) powr \(x\) using assms
    by (simp add: field-simps powr-def)
next
    have \(1<(x+1) * \ln ((x+1) / x)\) (is - < ?f \(x)\)
    proof (rule DERIV-neg-imp-decreasing-at-top[where ?f \(=? f]\) )
        fix \(t\) assume \(t: x \leq t\)
        have (?f has-field-derivative \((\ln (1+1 / t)-1 / t)\) ) (at t)
        using \(t\) assms by (auto intro!: derivative-eq-intros simp:divide-simps)
    moreover have \(\ln (1+1 / t)-1 / t<0\)
        using \(l n\)-add-one-self-less-self \([o f 1 / t] t\) assms by auto
        ultimately show \(\exists y .((\lambda t .(t+1) * \ln ((t+1) / t))\) has-real-derivative \(y)\)
(at t) \(\wedge y<0\)
        by blast
    qed real-asymp
    thus \(\exp 1<(1+1 / x)\) powr \((x+1)\)
    using assms by (simp add: powr-def field-simps)
qed
```


7.1 Random Lemmas on Product Operator

```
lemma prod-constant-ge:
    fixes y :: 'b :: {comm-monoid-mult, linordered-semidom}
    assumes card A\leqk
    assumes }y\geq0\mathrm{ and }y<
    shows (\prodx\inA.y)\geq\mp@subsup{y}{}{\wedge}k
using assms(1) proof (induct A rule: infinite-finite-induct)
    case (infinite A)
    then show ?case using assms(2) assms(3) by (simp add: power-le-one)
next
    case empty
    then show ?case using assms(2) assms(3) by (simp add: power-le-one)
next
    case (insert x F)
    then show ?case using assms(2) assms(3)
    by (metis nless-le power-decreasing prod-constant)
qed
lemma (in linordered-idom) prod-mono3:
    assumes finite J I\subseteqJ \bigwedgei.i\inJ\Longrightarrow0\leqfi(\bigwedgei.i\inJ\Longrightarrowfi\leq1)
    shows prod f J\leqprod fI
proof -
    have prod fJ\leq(\prodi\inJ. if i\inI then f i else 1)
        using assms by (intro prod-mono) auto
    also have ... = prod f I
        using <finite }J\rangle\langleI\subseteqJ\rangle\mathrm{ by (simp add: prod.If-cases Int-absorb1)
    finally show ?thesis.
qed
```

lemma bij-on-ss-image:
assumes $A \subseteq B$
assumes bij-betw $g B B^{\prime}$
shows $g^{\prime} A \subseteq B^{\prime}$
using assms by (auto simp add: bij-betw-apply subsetD)
lemma bij-on-ss-proper-image:
assumes $A \subset B$
assumes bij-betw g $B B^{\prime}$
shows $g^{\prime} A \subset B^{\prime}$
proof (intro psubsetI subsetI)
fix x assume $x \in g^{\text {، }} A$
then show $x \in B^{\prime}$ using assms bij-betw-apply subsetD by fastforce
next
show g ' $A \neq B^{\prime}$ using assms by (auto) (smt (verit, best) bij-betw-iff-bijections image E subset-eq)
qed

7.2 Dependency Graph Concept

Uses directed graphs. The pair_digraph locale was sufficient as multi-edges are irrelevant
locale dependency-digraph $=$ pair-digraph $G::$ nat pair-pre-digraph + prob-space M :: 'a measure
for $G M+$ fixes $F::$ nat \Rightarrow 'a set
assumes vss: $F^{\prime}($ pverts $G) \subseteq$ events
assumes mis: $\bigwedge i . i \in($ pverts $G) \Longrightarrow$ mutual-indep-events $(F i) F$ (pverts G)
$-(\{i\} \cup$ neighborhood $i))$
begin
lemma dep-graph-indiv-nh-indep:
assumes $A \in$ pverts $G B \in$ pverts G
assumes $B \notin$ neighborhood A
assumes $A \neq B$
assumes $\operatorname{prob}(F B) \neq 0$
shows $\mathcal{P}((F A) \mid(F B))=\operatorname{prob}(F A)$
proof-
have $B \notin\{A\} \cup$ neighborhood A using assms(3) assms(4) by auto
then have $B \in($ pverts $G-(\{A\} \cup$ neighborhood $A))$ using assms(2) by auto moreover have mutual-indep-events $(F A) F$ (pverts $G-(\{A\} \cup$ neighborhood
A)) using mis assms by auto
ultimately show ?thesis using
$\operatorname{assms}(5) \operatorname{assms}(1) \operatorname{assms}(2)$ vss mutual-indep-ev-cond-single by auto
qed
lemma mis-subset:
assumes $i \in$ pverts G
assumes $A \subseteq$ pverts G

```
    shows mutual-indep-events (F i) F (A-({i} \cup neighborhood i))
proof (cases A\subseteq({i}\cup neighborhood i))
    case True
    then have }A-({i}\cup\mathrm{ neighborhood i)={} by auto
    then show ?thesis using mutual-indep-ev-empty vss assms(1) by blast
next
    case False
    then have A-({i}\cup neighborhood i)\subseteq pverts }G-({i}\cup\mathrm{ neighborhood i)
using assms(2) by auto
    then show ?thesis using mutual-indep-ev-subset mis assms(1) by blast
qed
lemma dep-graph-indep-events:
    assumes A\subseteq pverts }
    assumes }\Ai.Ai\inA\Longrightarrow\mathrm{ out-degree G Ai=0
    shows indep-events F A
proof -
    have }\bigwedgeAi.Ai\inA\Longrightarrow(mutual-indep-events (FAi)F (A-{Ai})
    proof -
            fix Ai assume ain: Ai\inA
            then have (neighborhood Ai)={} using assms(2) neighborhood-empty-iff by
simp
    moreover have mutual-indep-events (FAi) F (A - ({Ai} \cup neighborhood Ai))
            using mis-subset[of Ai A] ain assms(1) by auto
    ultimately show mutual-indep-events (FAi) F (A-{Ai}) by simp
    qed
    then show ?thesis using mutual-indep-ev-set-all[of F A] vss by auto
qed
end
```


7.3 Lovasz Local General Lemma

context prob-space
begin
lemma compl-sets-index:
assumes F ' $A \subseteq$ events
shows $(\lambda i$. space $M-F i)$ ' $A \subseteq$ events
proof (intro subsetI)
fix x assume $x \in(\lambda i$. space $M-F i)$ ' A
then obtain i where xeq: $x=$ space $M-F i$ and $i \in A$ by blast
then have $F i \in$ events using assms by auto
thus $x \in$ events using sets.compl-sets xeq by simp
qed
lemma lovasz-inductive-base:
assumes dependency-digraph G M F

```
    assumes \Ai. Ai\inA\LongrightarrowgAi\geq0^gAi<1
    assumes \bigwedgeAi. Ai 隹\Longrightarrow(prob (FAi)\leq(gAi)*(\PiAj\in pre-digraph.neighborhood
GAi. (1- (g Aj))))
    assumes Ai }\in
    assumes pverts G=A
    shows prob (FAi) \leqgAi
proof -
    have genprod: \}\S.S\subseteqA\Longrightarrow(\prodAj\inS.(1-(gAj)))\leq1 using assms(2)
        by (smt (verit) prod-le-1 subsetD)
    interpret dg: dependency-digraph G M F using assms(1) by simp
    have dg.neighborhood Ai\subseteqA using assms(3) dg.neighborhood-wf assms(5) by
simp
    then show ?thesis
        using genprod assms mult-left-le by (smt (verit))
qed
lemma lovasz-inductive-base-set:
    assumes }N\subseteq
    assumes \Ai. Ai\inA\LongrightarrowgAi\geq0^g Ai<1
    assumes \Ai. Ai A C (prob (FAi)\leq(gAi)* (\prodAj\inN. (1-(gAj))))
    assumes Ai }\in
    shows prob (FAi) \leqgAi
proof -
    have genprod: \}\.S\subseteqA\Longrightarrow(\prodAj\inS.(1-(gAj)))\leq1 using assms(2)
    by (smt (verit) prod-le-1 subsetD)
    then show ?thesis
        using genprod assms mult-left-le by (smt (verit))
qed
lemma split-prob-lt-helper:
    assumes dep-graph: dependency-digraph G M F
    assumes dep-graph-verts: pverts G=A
    assumes fbounds: \bigwedgei.i\inA\Longrightarrowfi\geq0^fi<1
    assumes prob-Ai: \bigwedgeAi. Ai }\A\Longrightarrow\operatorname{prob}(FAi)
    (fAi)*(\prodAj\in pre-digraph.neighborhood GAi. (1-(fAj)))
    assumes aiin: Ai\inA
    assumes N\subseteq pre-digraph.neighborhood G Ai
    assumes \exists P1 P2. P (FAi|\bigcapAj\inS. space M - FAj) = P1/P2 ^
    P1\leqprob (FAi)^P2 \geq (ПAj\inN.(1-(fAj)))
    shows }\mathcal{P}(FAi|\bigcapAj\inS. space M - FAj)\leqfA
proof -
    interpret dg: dependency-digraph GMF using assms(1) by simp
    have lt1: \bigwedgeAj. Aj \inA\Longrightarrow(1-(fAj))\leq1
        using assms(3) by auto
    have gt0: \bigwedgeAj. Aj \inA\Longrightarrow(1-(fAj))>0 using assms(3) by auto
    then have prodgt0: }\\mp@subsup{S}{}{\prime}.\mp@subsup{S}{}{\prime}\subseteqA\Longrightarrow(\prodAj\in\mp@subsup{S}{}{\prime}.(1-fAj))>
    using prod-pos by (metis subsetD)
    obtain P1 P2 where peq: P}(FAi|\capAj\inS. space M - FAj)=P1/P2 and
    P1\leqprob (FAi)
```

and p2gt: $P 2 \geq(\Pi A j \in N .(1-(f A j)))$ using $\operatorname{assms}(7)$ by auto
then have $P 1 \leq(f A i) *\left(\prod A j \in\right.$ pre-digraph.neighborhood $\left.G A i .(1-(f A j))\right)$
using prob-Ai aiin by fastforce
moreover have $P 2 \geq\left(\prod A j \in d g\right.$.neighborhood $\left.A i .(1-(f A j))\right)$ using $\operatorname{assms}(6)$
gt0 dg.neighborhood-wf dep-graph-verts subset-iff lt1 dg.neighborhood-finite p2gt by (smt (verit, ccfv-threshold) prod-mono3)
ultimately have $P 1 / P 2 \leq\left((f A i) *\left(\prod A j \in d g\right.\right.$.neighborhood Ai . $(1-(f$ $\left.A j))) /\left(\prod A j \in d g . n e i g h b o r h o o d A i .(1-(f A j))\right)\right)$
using frac-le[of $(f A i) *\left(\prod A j \in d g\right.$.neighborhood $\left.A i .(1-(f A j))\right) P 1$ (П
$A j \in$ dg.neighborhood $A i .(1-(f A j)))]$
prodgt0[of dg.neighborhood Ai] assms(3) dg.neighborhood-wf[of Ai]
by (simp add: assms(2) bounded-measure finite-measure-compl assms(5))
then show ?thesis using prodgt0[of dg.neighborhood Ai] dg.neighborhood-wf[of Ai] assms(2) peq
by (metis divide-eq-imp rel-simps(70))
qed
lemma lovasz-inequality:
assumes finS: finite S
assumes sevents: F ' $S \subseteq$ events
assumes S-subset: $S \subseteq A-\{A i\}$
assumes prob2: $\operatorname{prob}(\bigcap A j \in S .($ space $M-(F A j)))>0$
assumes irange: $i \in\{0 . .<$ card $S 1\}$
assumes bb: bij-betw $g\{0 . .<$ card S1\} $S 1$
assumes s1-def: $S 1=(S \cap N)$
assumes s2-def: $S 2=S-S 1$
assumes ne-cond: $i>0 \vee S 2 \neq\{ \}$
assumes hyps: $\wedge B . B \subset S \Longrightarrow g i \in A \Longrightarrow B \subseteq A-\{g i\} \Longrightarrow B \neq\{ \} \Longrightarrow$
$0<\operatorname{prob}(\bigcap A j \in B$. space $M-F A j) \Longrightarrow \mathcal{P}(F(g i) \mid \bigcap A j \in B$. space $M-F$ $A j) \leq f(g i)$
shows $\mathcal{P}\left((\right.$ space $M-F(g i)) \mid\left(\bigcap\left((\lambda i\right.\right.$ space $M-F i){ }^{\prime} g{ }^{\prime}\{0 . .<i\} \cup((\lambda i$. space $M-F i)(S 2))$))

$$
\geq(1-f(g i))
$$

proof -
let ${ }^{2} c=(\lambda$. space $M-F i)$
define S1ss where S1ss $=g '\{0 . .<i\}$
have $i \notin\{0 . .<i\}$ by simp
moreover have $\{0 . .<i\} \subseteq\{0 . .<$ card $S 1\}$ using irange by simp
ultimately have ginotin1: $g i \notin S 1 s s$ using bb S1ss-def irange
by (smt (verit, best) bij-betw-iff-bijections image-iff subset-eq)
have ginotin2: $g i \notin S 2$ unfolding s2-def using irange bb by (simp add: bij-betwE)
have giS: g $i \in S$ using irange bij-betw-imp-surj-on imageI Int-iff s1-def bb
by blast
have $\{0 . .<i\} \subset\{0 . .<$ card $S 1\}$ using irange by auto
then have $S 1 s s \subset S 1$ unfolding $S 1 s s-d e f$ using irange bb bij-on-ss-proper-image by meson
then have sss：$S 1 s s \cup S 2 \subset S$ using s1－def s2－def by blast
moreover have xsiin：$g i \in$ Ausing irange
using giS S－subset by（metis Diffe in－mono）
moreover have ne：$S 1 s s \cup S 2 \neq\{ \}$ using ne－cond $S 1 s s$－def by auto
moreover have $S 1 s s \cup S 2 \subseteq A-\{g i\}$ using S－subset sss ginotin1 ginotin2

by auto

moreover have gt02： $0<\operatorname{prob}(\bigcap(? c$＇$(S 1 s s \cup S 2)))$ using finS prob2 sevents prob－inter－ss－lt－index［of S ？c S1ss $\cup S 2]$ ne sss compl－sets－index $[o f ~ F S]$ by fastforce
ultimately have $l t f A i: \mathcal{P}(F(g i) \mid \bigcap(? c$＇$(S 1 s s \cup S 2))) \leq f(g i)$
using hyps［of S1ss \cup S2］by blast
have ？c＇$(S 1 s s \cup S 2) \subseteq$ events using sss 〈S1ss \subset S1〉compl－subset－in－events sevents s1－def s2－def
by fastforce
then have $\bigcap(? c$＇$(S 1 s s \cup S 2)) \in$ events using Inter－event－ss sss by（meson 〈S1ss $\cup S 2 \neq\{ \}\rangle$ finite－imageI finite－subset image－is－empty finS subset－iff－psubset－eq）
moreover have $F(g i) \in$ events using xsiin giS sevents by auto
ultimately have $\mathcal{P}(? c(g i) \mid \cap(? c$＇$(S 1 s s \cup S 2))) \geq 1-f(g i)$
using cond－prob－neg $[$ of $\cap(? c \cdot(S 1 s s \cup S 2)) F(g i)]$ gt02 xsiin ltfAi by simp
then show $\mathcal{P}(? c(g i) \mid(\bigcap(? c$＇$g '\{0 . .<i\} \cup(? c$＇S2 $)))) \geq(1-f(g i))$
by（simp add：S1ss－def image－Un）

qed

The main helper lemma
lemma lovasz－inductive：
assumes finA：finite A
assumes Aevents：F＇$A \subseteq$ events
assumes fbounds：$\bigwedge i . i \in A \Longrightarrow f i \geq 0 \wedge f i<1$
assumes dep－graph：dependency－digraph GMF
assumes dep－graph－verts：pverts $G=A$
assumes prob－Ai：$\bigwedge A i . \quad A i \in A \Longrightarrow \operatorname{prob}(F A i) \leq$
$(f A i) *\left(\prod A j \in\right.$ pre－digraph．neighborhood $\left.G A i .(1-(f A j))\right)$
assumes Ai－in：Ai $\in A$
assumes S－subset：$S \subseteq A-\{A i\}$
assumes S－nempty：$S \neq\{ \}$
assumes prob2： $\operatorname{prob}(\bigcap A j \in S .($ space $M-(F A j)))>0$
shows $\mathcal{P}((F A i) \mid(\bigcap A j \in S .($ space $M-(F A j)))) \leq f A i$
proof－
let ？c $=\lambda i$ ．space $M-F i$
have ceq：$\bigwedge A$ ．？c＇$A=((-)(\text { space } M))^{\prime}\left(F^{\prime} A\right)$ by auto
interpret $d g$ ：dependency－digraph $G M F$ using assms（4）by simp
have finS：finite S using assms finite－subset by（metis finite－Diff）
show $\mathcal{P}((F A i) \mid(\bigcap A j \in S .($ space $M-(F A j)))) \leq f A i$
using finS Ai－in S－subset S－nempty prob2
proof（induct S arbitrary：Ai rule：finite－psubset－induct ）
case（psubset S ）
define $S 1$ where $S 1=(S \cap$ dg．neighborhood Ai）
define $S 2$ where $S 2=S-S 1$
have $\wedge s . s \in S 2 \Longrightarrow s \in A-(\{A i\} \cup$ dg.neighborhood $A i)$
using S1-def S2-def psubset.prems(2) by blast
then have s2ssmis: $S 2 \subseteq A-(\{A i\} \cup d g$.neighborhood $A i)$ by auto
have sevents: F ' $S \subseteq$ events using assms(2) psubset.prems(2) by auto
then have s1events: F ' $S 1 \subseteq$ events using $S 1$-def by auto
have finS2: finite S2 and finS1: finite S1 using S2-def S1-def by (simp-all add: psubset(1))
have mutual-indep-set (FAi) (F'S2) using dg.mis $[$ of Ai] mutual-indep-ev-subset s2ssmis
psubset.prems(1) dep-graph-verts mutual-indep-iff by auto
then have mis2: mutual-indep-set (FAi) (?c 'S2)
using mutual-indep-events-compl[of F'S2 F Ai] finS2 ceq[of S2] by simp
have scompl-ev: ?c' $S \subseteq$ events
using compl-sets-index sevents by simp
then have s2cev: ?c 'S2 \subseteq events using $S 2$-def scompl-ev by blast
have $(\bigcap A j \in S$. space $M-(F A j)) \subseteq(\bigcap A j \in S 2$. space $M-(F A j))$
unfolding S2-def using Diff-subset image-mono Inter-anti-mono by blast
then have $S 2 \neq\{ \} \Longrightarrow \operatorname{prob}(\bigcap A j \in S 2$. space $M-(F A j)) \neq 0$ using psubset.prems(4) s2cev
finS2 Inter-event-ss[of ?c 'S2] finite-measure-mono[of $\cap(? c$ ' $S) \cap(? c$ 'S2)] by simp
then have s2prob-eq:S2 $\neq\{ \} \Longrightarrow \mathcal{P}((F A i) \mid(\bigcap(? c \cdot S 2)))=\operatorname{prob}(F A i)$ using assms(2)
mutual-indep-cond-full[of $F A i$?c'S2] psubset.prems(1) s2cev finS2 mis2 by simp
show ?case
proof (cases S1 $=\{ \}$)
case True
then show? ?thesis using lovasz-inductive-base[of GFAfAi] psubset.prems(3) S2-def
$\operatorname{assms}(3) \operatorname{assms}(4)$ psubset.prems(1) prob-Ai s2prob-eq dep-graph-verts by (simp)
next
case s1F: False
then have csgt 0 : card $S 1>0$ using s1F finS1 card-gt-0-iff by blast
obtain g where bb: bij-betw $g\{0 . .<$ card S1\} S1 using finS1 ex-bij-betw-nat-finite by auto
have igt0: $\bigwedge i . i \in\{0 . .<\operatorname{card} S 1\} \Longrightarrow 1-f(g i) \geq 0$
using S1-def psubset.prems(2) bb bij-betw-apply assms(3) by fastforce
have s1ss: $S 1 \subseteq d g$.neighborhood $A i$ using $S 1$-def by auto
moreover have $\exists P 1 P 2$. $\mathcal{P}(F A i \mid \bigcap A j \in S$. space $M-F A j)=P 1 / P 2 \wedge$ $P 1 \leq \operatorname{prob}(F A i)$
$\wedge P 2 \geq\left(\prod A j \in S 1 .(1-(f A j))\right)$
proof (cases S2 $=\{ \}$)
case True
then have $S e q: S 1=S$ using $S 1-$ def $S 2$-def by auto
have inter-eventsS: $(\bigcap A j \in S .($ space $M-(F A j))) \in$ events using psubset.prems assms
by (meson measure-notin-sets zero-less-measure-iff)
then have peq: $\mathcal{P}((F A i) \mid(\bigcap A j \in S 1$. ?c $A j))=$
$\operatorname{prob}((\cap A j \in S 1$. ?c $A j) \cap(F A i)) / \operatorname{prob}((\cap(? c$ ' $S 1)))$
(is $\mathcal{P}((F A i) \mid(\bigcap A j \in S 1$. ?c $A j))=$? Num/?Den)
using cond-prob-ev-def $[o f(\bigcap A j \in S 1$. (space $M-(F A j))) F A i]$
using Seq psubset.prems(1) assms(2) by blast
have ?Num $\leq \operatorname{prob}(F A i)$ using finite-measure-mono assms(2) psubset.prems(1) by simp
moreover have ? $D e n \geq(\Pi A j \in S 1 .(1-(f A j)))$
proof -
have pcond: $\operatorname{prob}(\bigcap(? c \cdot$ 'S1) $)=$
$\operatorname{prob}(? c(g 0)) *\left(\prod i \in\{1 . .<\operatorname{card} S 1\} . \mathcal{P}(? c(g i) \mid(\cap(? c\right.$ ' g ' $\{0 . .<i\})))$)
using prob-cond-inter-index-fn-compl[of S1 F] Seq s1events psubset(1) s1F bb by auto
have ineq: \wedge i. $i \in\{1 . .<\operatorname{card} S 1\} \Longrightarrow \mathcal{P}(? c(g i) \mid(\cap(? c$ ' $g '\{0 . .<i\})))$ $\geq(1-(f(g i)))$
using lovasz-inequality[of S1 FA Ai-S1g S1 \{\} f] sevents finS psubset.prems(2)
psubset.prems(4) bb psubset.hyps(2)[of -g -] Seq by fastforce
have $(\bigwedge i . i \in\{1 . .<\operatorname{card} S 1\} \Longrightarrow 1-f(g i) \geq 0)$ using igt0 by simp
then have $\left(\prod i \in\{1 . .<(\right.$ card $S 1)\} . \mathcal{P}(? c(g i) \mid(\cap(? c$ ' g ' $\left.\{0 . .<i\})))\right)$
$\geq\left(\prod i \in\{1 . .<(\right.$ card $\left.S 1)\} .(1-(f(g i)))\right)$
using ineq prod-mono by (smt(verit, ccfv-threshold))
moreover have prob $(? c(g 0)) \geq\left(1-f\left(\begin{array}{ll}g & 0\end{array}\right)\right)$
proof -
have g0in: g $0 \in A$ using bb csgt0 using psubset.prems(2) bij-betwE Seq by fastforce
then have $\operatorname{prob}(? c(g 0))=1-\operatorname{prob}(F(g 0))$ using Aevents by $(\operatorname{simp}$ add: prob-compl)
then show ?thesis using lovasz-inductive-base[of $G F A f g 0]$ prob-Ai assms(4) dep-graph-verts fbounds g0in by auto
qed
moreover have $0 \leq\left(\prod i=1 . .<\operatorname{card} S 1.1-f(g i)\right)$ using igt0 by $(\operatorname{simp}$ add: prod-nonneg)
ultimately have $\operatorname{prob}(\bigcap(? c ‘ S 1)) \geq(1-(f(g 0))) *\left(\prod i \in\{1 . .<(\operatorname{card}\right.$ $S 1)\}$. $(1-(f(g i))))$
using pcond igt0 mult-mono' $\left[\right.$ of $\left(1-\left(f\left(\begin{array}{ll}(0)))] \text { by fastforce }\end{array}\right.\right.\right.$
moreover have $\{0 . .<$ card $S 1\}=\{0\} \cup\{1 . .<$ card $S 1\}$ using csgt0 by auto
ultimately have $\operatorname{prob}(\bigcap(? c \cdot S 1)) \geq\left(\prod i \in\{0 . .<(\right.$ card $S 1)\} .(1-(f$ $(g i)))$) by auto
moreover have $\left(\prod i \in\{0 . .<(\right.$ card S1 $\left.)\} .(1-(f(g i)))\right)=\left(\prod i \in S 1\right.$. $(1-(f(i))))$
using prod.reindex-bij-betw bb by simp
ultimately show ?thesis by simp
qed
ultimately show ?thesis using peq Seq by blast
next
case s2F: False
have s2inter: $\bigcap(? c$ ' $S 2) \in$ events using s2F finS2 s2cev Inter-event-ss[of ?c'S2] by auto
have split: $(\bigcap A j \in S .(? c A j))=(\bigcap(? c \quad ' S 1)) \cap(\bigcap(? c$ 'S2) $)$
using S1-def S2-def by auto
then have $\mathcal{P}(F A i \mid(\bigcap A j \in S .(? c A j)))=\mathcal{P}(F A i \mid(\bigcap(? c \quad ' S 1)) \cap(\bigcap$ (?c'S2))) by simp
moreover have $s 2 n 0: \operatorname{prob}(\bigcap(? c$ 'S2) $) \neq 0$ using psubset.prems(4) S2-def
by (metis Int-lower2 split finite-measure-mono measure-le-0-iff s2inter semiring-norm(137))
moreover have $\bigcap(? c$ 'S1) \in events
using finS1 S1-def scompl-ev s1F Inter-event-ss[of (?c 'S1)] by auto
ultimately have peq: $\mathcal{P}(F A i \mid(\bigcap A j \in S .(? c A j)))=\mathcal{P}(F A i \cap(\cap(? c$ $\left.\left.{ }^{\prime} S 1\right)\right) \mid \bigcap(? c$ 'S2) $) /$
$\mathcal{P}(\cap(? c \quad ' S 1) \mid \cap(? c \quad ' S 2))($ is $\mathcal{P}(F A i \mid(\bigcap A j \in S .(? c A j)))=$?Num/?Den)
using cond-prob-dual-intersect[of FAi $\bigcap(? c$ 'S1) $\bigcap(? c$ 'S2)] $\operatorname{assms}(2)$ psubset.prems(1) s2inter by fastforce
have ? Num $\leq \mathcal{P}(F A i \mid \cap$ (?c 'S2)) using cond-prob-inter-set-lt [of $F A i$ $\cap(? c$ 'S2) ?c 'S1]
using s1events finS1 psubset.prems(1) assms(2) s2inter finite-imageI[of
$S 1 F]$ by blast
then have? Num \leq prob ($F A i$) using s2F s2prob-eq by auto
moreover have ?Den $\geq\left(\prod A j \in S 1 .(1-(f A j))\right)$ using psubset.hyps
proof -
have $\operatorname{prob}(\bigcap(? c$ 'S2)) >0 using s2n0 by (meson zero-less-measure-iff)
then have pcond: $\mathcal{P}(\cap(? c$ 'S1) $\mid \cap(? c$ 'S2) $)=$
$\left(\prod i=0 . .<\operatorname{card} S 1 . \mathcal{P}\left(? c(g i) \mid\left(\bigcap\left(? c{ }^{\prime} g{ }^{\prime}\{0 . .<i\} \cup(? c\right.\right.\right.\right.$ 'S2 $\left.\left.\left.\left.)\right)\right)\right)\right)$
using prob-cond-Inter-index-cond-compl-fn[of S1 ?c ‘S2 F] s1F finS1 s2cev finS2 s2F
s1events bb by auto
have $\bigwedge i . i \in\{0 . .<\operatorname{card} S 1\} \Longrightarrow \mathcal{P}\left(? c(g i) \mid\left(\bigcap\left(? c{ }^{\prime} g{ }^{\prime}\{0 . .<i\} \cup(? c\right.\right.\right.$ 'S2))) $) \geq\left(1-f\left(\begin{array}{l}\text { (} i)\end{array}\right)\right.$
using lovasz-inequality[of S F A Ai-S1 g dg.neighborhood Ai S2 f] S1-def S2-def sevents
finS psubset.prems(2) psubset.prems(4) bb psubset.hyps(2)[of - g-] psubset(1) s2F by meson
then have $c 1: \mathcal{P}(\bigcap(? c$ 'S1 $) \mid \bigcap(? c$ 'S2 $)) \geq\left(\prod i=0 . .<\right.$ card $S 1 .(1-f$ $(g i))$)
using prod-mono igt0 pcond bb by (smt(verit, ccfv-threshold))
then have $\mathcal{P}(\cap(? c \cdot S 1) \mid \cap(? c \cdot S 2)) \geq\left(\prod i \in\{0 . .<\operatorname{card} S 1\} .(1-f\right.$ $(g i)))$ by blast
moreover have $\left(\prod i \in\{0 . .<\operatorname{card} S 1\} .(1-f(g i))\right)=\left(\prod x \in S 1 .(1\right.$
$-f x)$) using $b b$
using prod.reindex-bij-betw by fastforce
ultimately show ?thesis by simp
qed
ultimately show ?thesis using peq by blast qed

```
        ultimately show ?thesis by (intro split-prob-lt-helper[of G F A])
            (simp-all add: dep-graph dep-graph-verts fbounds psubset.prems(1) prob-Ai)
        qed
    qed
qed
```

The main lemma
theorem lovasz-local-general:
assumes $A \neq\{ \}$
assumes F ' $A \subseteq$ events
assumes finite A
assumes $\wedge A i . A i \in A \Longrightarrow f A i \geq 0 \wedge f A i<1$
assumes dependency-digraph $G M F$
assumes $\bigwedge A i . A i \in A \Longrightarrow\left(\operatorname{prob}(F A i) \leq(f A i) *\left(\prod A j \in\right.\right.$ pre-digraph.neighborhood GAi. $(1-(f A j))))$
assumes pverts $G=A$
shows $\operatorname{prob}(\bigcap A i \in A .($ space $M-(F A i))) \geq\left(\prod A i \in A .(1-f A i)\right)\left(\prod\right.$
$A i \in A .(1-f A i))>0$
proof -
show gt0: $\left(\prod A i \in A .(1-f A i)\right)>0$ using $\operatorname{assms}(4)$ by (simp add: prod-pos)
let ?c $=\lambda i$. space $M-F i$
interpret dg: dependency-digraph $G M F$ using assms(5) by simp
have general: $\bigwedge A i S . A i \in A \Longrightarrow S \subseteq A-\{A i\} \Longrightarrow S \neq\{ \} \Longrightarrow \operatorname{prob}(\bigcap A j$
$\in S .(? c A j))>0$
$\Longrightarrow \mathcal{P}(F A i \mid(\bigcap A j \in S .(? c A j))) \leq f A i$
using assms lovasz-inductive[of AFfG] by simp
have base: $\bigwedge A i . A i \in A \Longrightarrow \operatorname{prob}(F A i) \leq f A i$
using lovasz-inductive-base assms(4) assms(6) assms(5) assms(7) by blast
show $\operatorname{prob}(\bigcap A i \in A .(? c A i)) \geq\left(\prod A i \in A .(1-f A i)\right)$
using $\operatorname{assms(3)} \operatorname{assms}(1) \operatorname{assms(2)} \operatorname{assms}(4)$ general base
proof (induct A rule: finite-ne-induct)
case (singleton x)
then show ?case using singleton.prems singleton prob-compl by auto
next
case (insert $x X$)
define $A x$ where $A x=? c$ ' (insert $x X)$
have xie: $F x \in$ events using insert.prems by simp
have $A^{\prime} i e: \bigcap(? c$ ' $X) \in$ events using insert.prems insert.hyps by auto
have $(\bigwedge A i S . A i \in$ insert $x X \Longrightarrow S \subseteq$ insert $x X-\{A i\} \Longrightarrow S \neq\{ \} \Longrightarrow$ $\operatorname{prob}(\bigcap A j \in S .(? c A j))>0$
$\Longrightarrow \mathcal{P}(F A i \mid \cap(? c$ 'S $)) \leq f A i)$ using insert.prems by simp
then have $(\bigwedge A i S . A i \in X \Longrightarrow S \subseteq X-\{A i\} \Longrightarrow S \neq\{ \} \Longrightarrow \operatorname{prob}(\cap A j$ $\in S .(? c A j))>0$
$\Longrightarrow \mathcal{P}(F A i \mid \cap(? c$ ' $S)) \leq f A i)$ by auto
then have $A^{\prime} g t:\left(\prod A i \in X .1-f A i\right) \leq \operatorname{prob}\left(\bigcap\left(? c{ }^{\prime} X\right)\right)$
using insert.hyps(4) insert.prems(2) insert.prems(1) insert.prems(4) by auto then have prob $(\bigcap(? c$ ' $X))>0$ using insert.hyps insert.prems prod-pos basic-trans-rules(22)
diff-gt-O-iff-gt by (metis (no-types, lifting) insert-Diff insert-subset sub-

```
set-insertI)
    then have }\mathcal{P}((?c x)|(\bigcap(?c'X)))=1-\mathcal{P}(Fx|(\cap(?c``X))
        using cond-prob-neg[of \bigcap(?c'X)F x] xie A'ie by simp
        moreover have }\mathcal{P}(Fx|(\bigcap(?c ` X)))\leqfx using insert.prems(3)[of x X
insert.hyps(2) insert(3)
                A'gt <0< prob (\bigcap (?c ` X))> by fastforce
    ultimately have pnxgt: \mathcal{P}((?c x)|(\cap(?c'X)))\geq1-fx by simp
    have xgt0: 1-fx\geq0 using insert.prems(2)[of x] by auto
    have prob (\bigcapAx) = prob ((?c x) \cap\bigcap(?c'X)) using Ax-def by simp
    also have ... = prob (\bigcap(?c'X))*\mathcal{P}((?c x)| (\cap(?c'X)))
        using prob-intersect-B xie A'ie by simp
    also have ...\geq(\prodAi\inX. 1-f Ai)* (1-fx) using A'gt pnxgt mult-left-le
            <0< prob (\bigcap(?c`X))>xgt0 mult-mono by (smt(verit))
    finally have prob (\bigcapAx)\geq(\Ai\ininsert x X. 1-f Ai)
        by (simp add: local.insert(1) local.insert(3) mult.commute)
    then show ?case using Ax-def by auto
    qed
qed
```


7.4 Lovasz Corollaries and Variations

corollary lovasz-local-general-positive:
assumes $A \neq\{ \}$
assumes F ' $A \subseteq$ events
assumes finite A
assumes $\wedge A i . A i \in A \Longrightarrow f A i \geq 0 \wedge f A i<1$
assumes dependency-digraph $G M F$
assumes $\bigwedge A i . A i \in A \Longrightarrow(\operatorname{prob}(F A i) \leq$
$(f A i) *\left(\prod A j \in\right.$ pre-digraph.neighborhood $\left.\left.G A i .(1-(f A j))\right)\right)$
assumes pverts $G=A$
shows $\operatorname{prob}(\bigcap A i \in A .($ space $M-(F A i)))>0$
using assms lovasz-local-general(1)[of A FfG] lovasz-local-general(2)[of A Ff
$G]$ by simp
theorem lovasz-local-symmetric-dep-graph:
fixes e :: real
fixes $d::$ nat
assumes $A \neq\{ \}$
assumes F ' $A \subseteq$ events
assumes finite A
assumes dependency-digraph $G M F$
assumes $\bigwedge A i . \quad A i \in A \Longrightarrow$ out-degree $G A i \leq d$
assumes $\wedge A i . A i \in A \Longrightarrow \operatorname{prob}(F A i) \leq p$
assumes $\exp (1) * p *(d+1) \leq 1$
assumes pverts $G=A$
shows $\operatorname{prob}(\bigcap A i \in A .($ space $M-(F A i)))>0$
proof (cases $d=0$)
case True
interpret g : dependency-digraph G M F using assms(4) by simp
have indep-events F A using g.dep-graph-indep-events[of $A] \operatorname{assms}(8) \operatorname{assms}(5)$ True by simp
moreover have $p<1$
proof -
have $\exp (1) * p \leq 1$ using $\operatorname{assms}(7)$ True by simp
then show ?thesis using exp-gt-one less-1-mult linorder-neqE-linordered-idom rel-simps(68)
verit-prod-simplify(2) by (smt (verit) mult-le-cancel-left1)
qed
ultimately show ?thesis
using complete-indep-bound3[of A F] assms(2) assms(1) assms(3) assms(6) by force
next
case False
define $f::$ nat \Rightarrow real where $f \equiv(\lambda A i .1 /(d+1))$
then have fbounds: $\wedge A i . f A i \geq 0 \wedge f A i<1$ using f-def False by simp
interpret $d g$: dependency-digraph $G M F$ using assms(4) by auto
have $\wedge A i . A i \in A \Longrightarrow \operatorname{prob}(F A i) \leq(f A i) *\left(\prod A j \in d g . n e i g h b o r h o o d A i\right.$. $(1-(f A j)))$
proof -
fix $A i$ assume ain: $A i \in A$
have d-boundslt1: $(1 /(d+1))<1$ and d-boundsgt0: $(1 /(d+1))>0$ using False by fastforce+
have d-bounds2: $(1-(1 /(d+1))) \uparrow d<1$ using False
by (simp add: field-simps) (smt (verit) of-nat-0-le-iff power-mono-iff)
have d-bounds 0 : $(1-(1 /(d+1))) \wedge d>0$ using False by (simp)
have $\exp (1)>(1+1 / d)$ powr d using exp-1-bounds(1) False by simp
then have $\exp (1)>(1+1 / d) \wedge d$ using False by (simp add: powr-realpow zero-compare-simps(2))
moreover have $1 /(1+1 / d) \wedge d=(1-(1 /(d+1))) \wedge d$
proof -
have $1 /(1+1 / d) \wedge d=1 /((d / d)+1 / d) \wedge d$ by $(\operatorname{simp}$ add: field-simps $)$
then show?thesis by (simp add: field-simps)
qed
ultimately have $\exp -l t: 1 / \exp (1)<(1-(1 /(d+1))) \wedge d$
by (metis d-bounds0 frac-less2 less-eq-real-def of-nat-zero-less-power-iff power-eq-if zero-less-divide-1-iff)
then have $(1 /(d+1)) *(1-(1 /(d+1))) \wedge d>(1 /(d+1)) *(1 / \exp (1))$
using exp-lt mult-strict-left-mono[of $1 / \exp (1)(1-(1 /(d+1))) \wedge d(1 /(d+1))]$
d-boundslt1
by simp
then have $(1 /(d+1)) *(1-(1 /(d+1))) \wedge d>(1 /((d+1) * \exp (1)))$ by auto
then have $g t p:(1 /(d+1)) *(1-(1 /(d+1))) \wedge d>p$
by (smt (verit, ccfv-SIG) d-boundslt1 d-boundsgt0 assms(7) divide-divide-eq-left divide-less-cancel divide-less-eq divide-nonneg-nonpos nonzero-mult-div-cancel-left not-exp-le-zero)
have card (dg.neighborhood Ai) $\leq d$ using assms(5) dg.out-degree-neighborhood ain by auto
then have $(\Pi A j \in d g . n e i g h b o r h o o d A i .(1-(1 /(d+1)))) \geq(1-(1 /(d$ $+1)))^{\wedge} d$
using prod-constant-ge[of dg.neighborhood Ai d 1 - (1/d+1)] using d-boundslt1 by auto
then have $(1 /(d+1)) *\left(\prod A j \in d g . n e i g h b o r h o o d ~ A i .(1-(1 /(d+1)))\right)$ $\geq(1 /(d+1)) *(1-(1 /(d+1))) \wedge d$
by (simp add: divide-right-mono)
then have $(1 /(d+1)) *\left(\prod A j \in d g\right.$.neighborhood Ai . $\left.(1-(1 /(d+1)))\right)$ $>p$
using $g t p$ by simp
then show $\operatorname{prob}(F A i) \leq f A i *\left(\prod A j \in d g . n e i g h b o r h o o d A i .(1-f A j)\right)$
using $\operatorname{assms}(6)\langle A i \in A\rangle f$-def by force
qed
then show ?thesis using lovasz-local-general-positive[of A FfG]
$\operatorname{assms}(4) \operatorname{assms}(1) \operatorname{assms(2)}$ assms(3) assms(8) fbounds by auto
qed
corollary lovasz-local-symmetric 4 gt :
fixes e :: real
fixes $d::$ nat
assumes $A \neq\{ \}$
assumes F ' $A \subseteq$ events
assumes finite A
assumes dependency-digraph $G M F$
assumes $\bigwedge A i . \quad A i \in A \Longrightarrow$ out-degree $G A i \leq d$
assumes $\bigwedge A i . A i \in A \Longrightarrow \operatorname{prob}(F A i) \leq p$
assumes $4 * p * d \leq 1$
assumes $d \geq 3$
assumes pverts $G=A$
shows $\operatorname{prob}(\bigcap A i \in A .($ space $M-F A i))>0$
proof -
have $\exp (1) * p *(d+1) \leq 1$
proof (cases $p=0$)
case True
then show? ?thesis by simp
next
case False
then have pgt: $p>0$ using $\operatorname{assms}(1) \operatorname{assms}(6) \operatorname{assms}(3)$ ex-min-if-finite less-eq-real-def
by (meson basic-trans-rules(23) basic-trans-rules(24) linorder-neqE-linordered-idom measure-nonneg)
have $3 *(d+1) \leq 4 * d$ by (simp add: field-simps assms(8))
then have $\exp (1) *(d+1) \leq 4 * d$
using exp-le exp-gt-one[of 1] assms(8)
by (smt (verit, del-insts) Num.of-nat-simps(2) Num.of-nat-simps(5) le-add2 le-eq-less-or-eq
mult-right-mono nat-less-real-le numeral.simps(3) numerals(1) of-nat-numeral)

```
    then have }\operatorname{exp}(1)*(d+1)*p\leq4*d*p\mathrm{ using pgt by simp
    then show ?thesis using assms(7) by (simp add: field-simps)
    qed
    then show ?thesis using assms lovasz-local-symmetric-dep-graph[of A F G d p]
by auto
qed
lemma lovasz-local-symmetric4:
    fixes e :: real
    fixes d:: nat
    assumes }A\not={
    assumes }F\mathrm{ ' }A\subseteq\mathrm{ events
    assumes finite A
    assumes dependency-digraph GMF
    assumes \Ai. Ai }\A\Longrightarrow\mathrm{ out-degree G Ai 
    assumes }\Ai.Ai\inA\Longrightarrow\operatorname{prob}(FAi)\leq
    assumes 4*p*d\leq1
    assumes d\geq1
    assumes pverts G=A
    shows prob (\bigcapAi\inA.(space M - FAi))>0
proof (cases d \geq3)
    case True
    then show ?thesis using lovasz-local-symmetric4gt assms
        by presburger
next
    case d3: False
    define f :: nat }=>\mathrm{ real where }f\equiv(\lambdaAi.1/(d+1)
    then have fbounds: \bigwedge Ai.f Ai\geq0^f Ai<1 using f-def assms(8) by simp
    interpret dg: dependency-digraph G M F using assms(4) by auto
    have }\Ai.Ai\inA\Longrightarrow\operatorname{prob}(FAi)\leq(fAi)*(\prodAj\indg.neighborhood Ai
(1 - (f Aj)))
    proof -
            fix Ai assume ain: Ai\inA
            have d-boundslt1:}(1/(d+1))<1\mathrm{ and d-boundsgt0:}(1/(d+1))>0\mathrm{ using
assms by fastforce+
    have plt: 1/(4*d)\geqp using assms(7) assms(8)
    by (metis (mono-tags, opaque-lifting) Num.of-nat-simps(5) bot-nat-0.not-eq-extremum
le-numeral-extra(2)
            more-arith-simps(11) mult-of-nat-commute nat-0-less-mult-iff of-nat-0-less-iff
of-nat-numeral
                pos-divide-less-eq rel-simps(51) verit-comp-simplify(3))
    then have gtp:(1/(d+1))*(1-(1/(d+1)))^d\geqp
    proof (cases d = 1)
    case False
    then have d=2 using d3 assms(8) by auto
    then show ?thesis using plt by (simp add: field-simps)
    qed (simp)
```

have card (dg.neighborhood Ai) $\leq d$ using assms(5) dg.out-degree-neighborhood ain by auto
then have $(\Pi A j \in d g . n e i g h b o r h o o d A i .(1-(1 /(d+1)))) \geq(1-(1 /(d$ $+1)$) へd
using prod-constant-ge[of dg.neighborhood Ai d 1 - (1/d+1)] using d-boundslt1 by auto
then have $(1 /(d+1)) *\left(\prod A j \in d g . n e i g h b o r h o o d A i .(1-(1 /(d+1)))\right)$ $\geq(1 /(d+1)) *(1-(1 /(d+1))) \wedge d$
by (simp add: divide-right-mono)
then have $(1 /(d+1)) *\left(\prod A j \in d g\right.$.neighborhood Ai . $\left.(1-(1 /(d+1)))\right)$ $\geq p$
using $g t p$ by simp
then show $\operatorname{prob}(F A i) \leq f A i *\left(\prod A j \in d g\right.$.neighborhood $\left.A i .(1-f A j)\right)$
using $\operatorname{assms}(6)\langle A i \in A\rangle f$-def by force
qed
then show?thesis
using lovasz-local-general-positive[of A F f G] assms(4) assms(1) assms(2) assms(3) assms(9) fbounds by auto
qed
Converting between dependency graph and indexed set representation of mutual independence

```
lemma (in pair-digraph) \(g\)-Ai-simplification:
    assumes \(A i \in A\)
    assumes \(g A i \subseteq A-\{A i\}\)
    assumes pverts \(G=A\)
    assumes parcs \(G=\{e \in A \times A\). snd \(e \in(A-(\{f s t e\} \cup(g(f s t e))))\}\)
    shows \(g A i=A-(\{A i\} \cup\) neighborhood \(A i)\)
proof -
    have \(g A i=A-(\{A i\} \cup\{v \in A . v \in(A-(\{A i\} \cup(g(A i))))\})\) using
assms(2) by auto
    then have \(g A i=A-(\{A i\} \cup\{v \in A .(A i, v) \in\) parcs \(G\})\)
        using Collect-cong assms(1) mem-Collect-eq assms(3) assms(4) by auto
    then show \(g A i=A-(\{A i\} \cup\) neighborhood \(A i)\) unfolding neighborhood-def
using assms(3) by \(\operatorname{simp}\)
qed
lemma define-dep-graph-set:
    assumes \(A \neq\{ \}\)
    assumes \(F\) ' \(A \subseteq\) events
    assumes finite \(A\)
    assumes \(\wedge A i . A i \in A \Longrightarrow g A i \subseteq A-\{A i\} \wedge\) mutual-indep-events \((F A i) F\)
( \(g A i\) )
    shows dependency-digraph \(\cap\) pverts \(=A\), parcs \(=\{e \in A \times A\). snd \(e \in(A-\)
\((\{f s t e\} \cup(g(f s t e))))\} D M F\)
    (is dependency-digraph ?G M F)
proof -
    interpret \(p d\) : pair-digraph ?G
        using assms(3)by (unfold-locales) auto
```

```
    have \(\bigwedge A i . A i \in A \Longrightarrow g A i \subseteq A-\{A i\}\) using \(\operatorname{assms}(4)\) by \(\operatorname{simp}\)
    then have \(\wedge i . i \in A \Longrightarrow g i=A-(\{i\} \cup\) pd.neighborhood \(i)\)
    using pd.g-Ai-simplification[of - A g] pd.pair-digraph by auto
    then have dependency-digraph ? G M F using assms(2) assms(4) by (unfold-locales)
auto
    then show ?thesis by simp
qed
lemma define-dep-graph-deg-bound:
    assumes \(A \neq\{ \}\)
    assumes \(F\) ‘ \(A \subseteq\) events
    assumes finite \(A\)
    assumes \(\bigwedge A i . A i \in A \Longrightarrow g A i \subseteq A-\{A i\} \wedge \operatorname{card}(g A i) \geq \operatorname{card} A-d-1\)
\(\wedge\)
    mutual-indep-events (FAi) F (g Ai)
    shows \(\bigwedge A i . A i \in A \Longrightarrow\)
    out-degree 0 pverts \(=A\), parcs \(=\{e \in A \times A\). snd \(e \in(A-(\{f s t e\} \cup(g\) (fst
e)) )) \} \(D A i \leq d\)
    (is \(\wedge A i . A i \in A \Longrightarrow\) out-degree (with-proj ?G) \(A i \leq d\) )
proof -
    interpret pd: dependency-digraph ?G M F using assms define-dep-graph-set by
simp
    show \(\wedge A i . A i \in A \Longrightarrow\) out-degree ? \(G A i \leq d\)
    proof -
        fix \(A i\) assume \(a: A i \in A\)
        then have geq: \(g A i=A-(\{A i\} \cup\) pd.neighborhood \(A i)\)
            using assms(4)[of Ai] pd.pair-digraph pd.g-Ai-simplification[of Ai A g] by
simp
    then have pss: \(g A i \subset A\) using \(a\) by auto
        then have \(\operatorname{card}(g A i)=\operatorname{card}(A-(\{A i\} \cup\) pd.neighborhood \(A i))\) using
assms(4) geq by argo
    moreover have ss: \((\{A i\} \cup\) pd.neighborhood \(A i) \subseteq A\) using pd.neighborhood-wf
\(a\) by \(\operatorname{simp}\)
    moreover have finite \((\{A i\} \cup\) pd.neighborhood \(A i)\)
            using calculation(2) assms(3) finite-subset by auto
            moreover have \(A i \notin\) pd.neighborhood Ai using pd.neighborhood-self-not by
simp
            moreover have card \(\{A i\}=1\) using is-singleton-altdef by auto
            moreover have cardss: card \((\{A i\} \cup\) pd.neighborhood Ai) \(=1+\) card (pd.neighborhood
Ai)
            using calculation(5) calculation(4) card-Un-disjoint pd.neighborhood-finite by
auto
            ultimately have eq: card \((g\) Ai) \(=\) card \(A-1-\operatorname{card}\) (pd.neighborhood Ai)
                using card-Diff-subset[of \((\{A i\} \cup\) pd.neighborhood Ai) A] assms(3) by pres-
burger
            have \(g g t: \bigwedge A i . A i \in A \Longrightarrow \operatorname{card}(g A i) \geq \operatorname{int}(\operatorname{card} A)-\operatorname{int} d-1\)
            using \(\operatorname{assms}(4)\) by fastforce
            have \(\operatorname{card}(p d . n e i g h b o r h o o d ~ A i)=\operatorname{card} A-1-\operatorname{card}(g A i)\)
            using cardss assms(3) card-mono diff-add-inverse diff-diff-cancel diff-le-mono
```


ss eq

by (metis (no-types, lifting))
moreover have card $A \geq(1+\operatorname{card}(g A i))$ using pss assms(3) card-seteq not-less-eq-eq by auto
ultimately have card $($ pd.neighborhood $A i)=\operatorname{int}(\operatorname{card} A)-1-\operatorname{int}(\operatorname{card}(g$ Ai)) by auto
moreover have int $(\operatorname{card}(g A i)) \geq(\operatorname{card} A)-($ int $d)-1$ using ggt a by simp
ultimately show out-degree ? $G A i \leq d$ using pd.out-degree-neighborhood by simp qed
qed
lemma obtain-dependency-graph:
assumes $A \neq\{ \}$
assumes F ' $A \subseteq$ events
assumes finite A
assumes $\bigwedge A i . A i \in A \Longrightarrow$
$(\exists S . S \subseteq A-\{A i\} \wedge$ card $S \geq$ card $A-d-1 \wedge$ mutual-indep-events $(F$ Ai) $F S$)
obtains G where dependency-digraph $G M$ perts $G=A \bigwedge A i . A i \in A \Longrightarrow$ out-degree $G A i \leq d$
proof -
obtain g where $g d e f: \wedge A i . A i \in A \Longrightarrow g A i \subseteq A-\{A i\} \wedge \operatorname{card}(g A i) \geq \operatorname{card}$ $A-d-1 \wedge$
mutual-indep-events (FAi) F (g Ai) using assms(4) by metis
then show ?thesis
using define-dep-graph-set[of A F g] define-dep-graph-deg-bound[of A F g d]that assms by auto
qed
This is the variation of the symmetric version most commonly in use

```
theorem lovasz-local-symmetric:
    fixes d :: nat
    assumes A\not={}
    assumes F' }A\subseteq\mathrm{ events
    assumes finite }
    assumes \Ai. Ai }\=A\Longrightarrow(\existsS.S\subseteqA-{Ai}\wedge card S\geqcard A-d - 1
^mutual-indep-events (FAi) FS)
    assumes }\bigwedgeAi.Ai\inA\Longrightarrowprob (FAi)\leq
    assumes }\operatorname{exp}(1)*p*(d+1)\leq
    shows prob (\bigcapAi\inA.(space M-(FAi)))>0
proof -
    obtain G where odg: dependency-digraph G M F pverts G=A \Ai. Ai \inA
out-degree G Ai \leqd
    using assms obtain-dependency-graph by metis
    then show ?thesis using odg assms lovasz-local-symmetric-dep-graph[of A F G
dp] by auto
qed
```

```
lemma lovasz-local-symmetric4-set:
    fixes d :: nat
    assumes }A\not={
    assumes F` A\subseteq events
    assumes finite }
    assumes \Ai. Ai\inA\Longrightarrow(\existsS.S\subseteqA-{Ai}^\operatorname{card}S\geq\operatorname{card}A-d-1
mutual-indep-events (FAi) FS)
    assumes \Ai. Ai }\A\Longrightarrow\operatorname{prob}(FAi)\leq
    assumes 4*p*d\leq1
    assumes d\geq1
    shows prob (\bigcapAi\inA.(space M - FAi))>0
proof -
    obtain G where odg: dependency-digraph G M F pverts G=A \Ai. Ai }\in
\Longrightarrow \text { out-degree G Ai }
    using assms obtain-dependency-graph by metis
    then show ?thesis using odg assms lovasz-local-symmetric4[of A F G d p] by
auto
qed
end
end
theory Lovasz-Local-Root
    imports
        PiE-Rel-Extras
        Digraph-Extensions
    Prob-Events-Extras
    Cond-Prob-Extensions
    Indep-Events
    Basic-Method
    Lovasz-Local-Lemma
begin
end
```


References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken, N.J, 4th edition, 2016.
[2] L. Noschinski. A Graph Library for Isabelle. Mathematics in Computer Science, 9(1):23-39, Mar. 2015.
[3] Y. Zhao. Probabilistic methods in combinatorics, 2020. Lecture notes MIT 18.226, Fall 2020, https://ocw.mit.edu/courses/

18-226-probabilistic-method-in-combinatorics-fall-2020/resources/ mit18_226f20_full_notes/.

