Local Lexing

Steven Obua

September 13, 2023

Abstract

This formalisation accompanies the paper Local Lexing ${ }^{1}$, which introduces a novel parsing concept of the same name. The paper also gives a high-level algorithm for local lexing as an extension of Earley's algorithm. This formalisation proves the algorithm to be correct with respect to its local lexing semantics. As a special case, this formalisation thus also contains a proof of the correctness of Earley's algorithm. The paper contains a short outline of how this formalisation is organised.

Contents

[^0]

```
theory CFG
imports Main
begin
typedecl symbol
type-synonym rule = symbol }\times\mathrm{ symbol list
type-synonym sentence = symbol list
locale CFG=
    fixes }\mathfrak{N}:: symbol se
    fixes }\mathfrak{T}::: symbol se
    fixes }\Re:: rule se
    fixes \mathfrak{S :: symbol}
    assumes disjunct-symbols: }\mathfrak{N}\cap\mathfrak{T}={
    assumes startsymbol-dom: }\mathfrak{S}\in\mathfrak{N
    assumes validRules: }\forall(N,\alpha)\in\mathfrak{R}.N\in\mathfrak{N}\wedge(\foralls\in\mathrm{ set }\alpha.s\in\mathfrak{N}\cup\mathfrak{T}
begin
definition is-terminal :: symbol }=>\mathrm{ bool
where
    is-terminal }s=(s\in\mathfrak{T}
definition is-nonterminal :: symbol }=>\mathrm{ bool
where
    is-nonterminal s=(s\in\mathfrak{N})
lemma is-nonterminal-startsymbol:is-nonterminal S
    by (simp add: is-nonterminal-def startsymbol-dom)
definition is-symbol :: symbol }=>\mathrm{ bool
where
    is-symbol s = (is-terminal s\vee is-nonterminal s)
definition is-sentence :: sentence }=>\mathrm{ bool
where
    is-sentence s = list-all is-symbol s
definition is-word :: sentence }=>\mathrm{ bool
where
    is-word s= list-all is-terminal s
definition derives1 :: sentence }=>\mathrm{ sentence }=>\mathrm{ bool
where
    derives1 u v =
        (\exists x y N \alpha.
            u=x@ @ N]@y
    \wedgev=x@\alpha@y
```

$\wedge i s$-sentence x
$\wedge i s$-sentence y
$\wedge(N, \alpha) \in \mathfrak{R})$

```
definition derivations1 :: (sentence }\times\mathrm{ sentence) set
where
    derivations1 ={(u,v)|uv. derives1 uv}
definition derivations :: (sentence }\times\mathrm{ sentence) set
where
    derivations = derivations1^*
definition derives :: sentence }=>\mathrm{ sentence }=>\mathrm{ bool
where
    derives u v = ((u,v) \in derivations)
definition is-derivation :: sentence }=>\mathrm{ bool
where
    is-derivation }u=\mathrm{ derives [S] u
definition \mathcal{L :: sentence set}
where
    L}={v|v.is-word v\wedgeis-derivation v
definition }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ :: sentence set
where
    \mathcal{L}
end
end
theory LocalLexing
imports CFG
begin
typedecl character
type-synonym lexer = character list }=>\mathrm{ nat }=>\mathrm{ nat set
type-synonym token = symbol }\times\mathrm{ character list
type-synonym tokens = token list
definition terminal-of-token :: token }=>\mathrm{ symbol
where
    terminal-of-token t=fst t
definition terminals :: tokens }=>\mathrm{ sentence
where
```

```
    terminals \(t s=\) map terminal-of-token ts
definition chars-of-token \(::\) token \(\Rightarrow\) character list
where
    chars-of-token \(t=\) snd \(t\)
fun chars :: tokens \(\Rightarrow\) character list
where
    chars [] = []
\(\mid\) chars \((t \# t s)=(\) chars-of-token \(t) @(\) chars ts \()\)
fun charslength :: tokens \(\Rightarrow\) nat
where
    charslength \(c s=\) length \((\) chars \(c s)\)
definition is-lexer :: lexer \(\Rightarrow\) bool
where
    is-lexer lexer \(=\)
        \((\forall\) Dpl. \((p \leq\) length \(D \wedge l \in\) lexer \(D p \longrightarrow p+l \leq\) length \(D) \wedge\)
                        \((p>\) length \(D \longrightarrow\) lexer \(D p=\{ \})\) )
type-synonym selector \(=\) token set \(\Rightarrow\) token set \(\Rightarrow\) token set
definition is-selector :: selector \(\Rightarrow\) bool
where
    is-selector sel \(=(\forall A B . A \subseteq B \longrightarrow(A \subseteq\) sel \(A B \wedge\) sel \(A B \subseteq B))\)
fun by-length :: nat \(\Rightarrow\) tokens set \(\Rightarrow\) tokens set
where
    by-length ltss \(=\{\) ts. \(\mathrm{ts} \in\) tss \(\wedge\) length \((\) chars \(t s)=l\}\)
fun funpower : : \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow n a t \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right)\)
where
    funpower f \(0 x=x\)
\(\mid\) funpower \(f(\) Suc \(n) x=f(\) funpower \(f n x)\)
definition natUnion \(::\left(\right.\) nat \(\Rightarrow{ }^{\prime} a\) set \() \Rightarrow{ }^{\prime}\) a set
where
    natUnion \(f=\bigcup\{f n \mid n\). True \(\}\)
definition limit \(::\left({ }^{\prime} a\right.\) set \(\Rightarrow{ }^{\prime}\) a set \() \Rightarrow\) 'a set \(\Rightarrow{ }^{\prime}\) a set
where
    limit \(f x=\) natUnion ( \(\lambda\) n. funpower \(f n x\) )
locale LocalLexing \(=C F G+\)
fixes Lex :: symbol \(\Rightarrow\) lexer
fixes \(S e l::\) selector
assumes Lex-is-lexer: \(\forall t \in \mathfrak{T}\). is-lexer \((\) Lex \(t)\)
assumes Sel-is-selector: is-selector Sel
```

fixes Doc :: character list
begin
definition admissible :: tokens \Rightarrow bool
where
admissible ts $=\left(\right.$ terminals $\left.t s \in \mathcal{L}_{P}\right)$
definition Append $::$ token set \Rightarrow nat \Rightarrow tokens set \Rightarrow tokens set
where
Append $Z k P=P \cup$
$\{p @[t] \mid p t . p \in$ by-length $k P \wedge t \in Z \wedge$ admissible $(p @[t])\}$
definition \mathcal{X} :: nat \Rightarrow token set
where

$$
\mathcal{X} k=\{(t, \omega) \mid t l \omega \cdot t \in \mathfrak{T} \wedge l \in \operatorname{Lex} t \operatorname{Doc} k \wedge \omega=\text { take } l(\text { drop } k D o c)\}
$$

definition $\mathcal{W}::$ tokens set \Rightarrow nat \Rightarrow token set
where
$\mathcal{W} P k=\{u . u \in \mathcal{X} k \wedge(\exists p \in$ by-length k P. admissible $(p @[u]))\}$
definition $\mathcal{Y}::$ token set \Rightarrow tokens set \Rightarrow nat \Rightarrow token set
where
$\mathcal{Y} T P k=\operatorname{Sel} T(\mathcal{W} P k)$
fun $\mathcal{P}::$ nat \Rightarrow nat \Rightarrow tokens set
and $\mathcal{Q}::$ nat \Rightarrow tokens set
and $\mathcal{Z}::$ nat \Rightarrow nat \Rightarrow token set
where

```
\(\mathcal{P} 00=\{[]\}\)
\(\mid \mathcal{P} k(\) Suc \(u)=\operatorname{limit}(\) Append \((\mathcal{Z} k(\) Suc \(u)) k)(\mathcal{P} k u)\)
\(\mid \mathcal{P}(\) Suc \(k) 0=\mathcal{Q} k\)
| \(\mathcal{Z} k 0=\{ \}\)
\(\mid \mathcal{Z} k(\) Suc \(u)=\mathcal{Y}(\mathcal{Z} k u)(\mathcal{P} k u) k\)
\(\mid \mathcal{Q} k=\) natUnion \((\mathcal{P} k)\)
```

definition \mathfrak{P} :: tokens set
where

```
P}=\mathcal{Q}\mathrm{ (length Doc)
```

definition $l l::$ tokens set where

$$
l l=\{p . p \in \mathfrak{P} \wedge \text { charslength } p=\text { length Doc } \wedge \text { terminals } p \in \mathcal{L}\}
$$

end
end
theory LLEarleyParsing
imports LocalLexing
begin

```
datatype item =
    Item
        (item-rule: rule)
        (item-dot : nat)
        (item-origin : nat)
        (item-end : nat)
type-synonym items = item set
definition item-nonterminal :: item }=>\mathrm{ symbol
where
    item-nonterminal }x=f\mathrm{ st (item-rule }x
definition item-rhs :: item }=>\mathrm{ sentence
where
    item-rhs x = snd (item-rule x)
definition item-\alpha :: item }=>\mathrm{ sentence
where
    item-\alpha x = take (item-dot x)(item-rhs x)
definition item- }\beta\mathrm{ :: item }=>\mathrm{ sentence
where
    item- }\betax=drop(item-dot x)(item-rhs x
definition init-item :: rule => nat }=>\mathrm{ item
where
    init-item r k = Item r 0 k k
definition is-complete :: item }=>\mathrm{ bool
where
    is-complete x = (item-dot x length (item-rhs x)}
definition next-symbol :: item }=>\mathrm{ symbol option
where
    next-symbol x = (if is-complete x then None else Some ((item-rhs x)! (item-dot
x)))
definition inc-item :: item }=>\mathrm{ nat }=>\mathrm{ item
where
    inc-item x k = Item(item-rule x)(item-dot x + 1)(item-origin x) k
definition bin :: items => nat => items
where
    bin I k ={ x. x 位^ item-end x = k }
context LocalLexing begin
```

```
definition Init :: items
where
    Init \(=\{\) init-item \(r 0 \mid r . r \in \mathfrak{R} \wedge f s t r=\mathfrak{S}\}\)
definition Predict :: nat \(\Rightarrow\) items \(\Rightarrow\) items
where
    Predict \(k I=I \cup\)
    \(\{\) init-item \(r k \mid r x . r \in \Re \wedge x \in \operatorname{bin} I k \wedge\)
        next-symbol \(x=\operatorname{Some}(f s t r)\}\)
definition Complete \(::\) nat \(\Rightarrow\) items \(\Rightarrow\) items
where
    Complete \(k I=I \cup\{\) inc-item \(x k \mid x y\).
        \(x \in \operatorname{bin} I\) (item-origin \(y) \wedge y \in \operatorname{bin} I k \wedge\) is-complete \(y \wedge\)
        next-symbol \(x=\) Some (item-nonterminal \(y)\}\)
definition TokensAt :: nat \(\Rightarrow\) items \(\Rightarrow\) token set
where
    TokensAt \(k I=\{(t, s) \mid t s x l . x \in \operatorname{bin} I k \wedge\)
        next-symbol \(x=\) Some \(t \wedge\) is-terminal \(t \wedge\)
        \(l \in \operatorname{Lex} t \operatorname{Doc} k \wedge s=\) take \(l(\) drop \(k D o c)\}\)
definition Tokens :: nat \(\Rightarrow\) token set \(\Rightarrow\) items \(\Rightarrow\) token set
where
    Tokens \(k T I=\) Sel \(T(\) TokensAt \(k I)\)
definition Scan \(::\) token set \(\Rightarrow\) nat \(\Rightarrow\) items \(\Rightarrow\) items
where
    Scan \(T k I=I \cup\)
    \(\{\) inc-item \(x(k+\) length \(c) \mid x t c . x \in \operatorname{bin} I k \wedge(t, c) \in T \wedge\)
        next-symbol \(x=\) Some \(t\}\)
definition \(\pi\) :: nat \(\Rightarrow\) token set \(\Rightarrow\) items \(\Rightarrow\) items
where
    \(\pi k T I=\)
    limit \((\lambda I\). Scan \(T k(\) Complete \(k(\) Predict \(k I))) I\)
fun \(\mathcal{J}::\) nat \(\Rightarrow\) nat \(\Rightarrow\) items
and \(\mathcal{I}::\) nat \(\Rightarrow\) items
and \(\mathcal{T}::\) nat \(\Rightarrow\) nat \(\Rightarrow\) token set
where
    \(\mathcal{J} 00=\pi 0\{ \}\) Init
\(\mid \mathcal{J} k(\) Suc \(u)=\pi k(\mathcal{T} k(\) Suc \(u))(\mathcal{J} k u)\)
\(\mid \mathcal{J}(\) Suc \(k) 0=\pi(\) Suc \(k)\{ \}(\mathcal{I} k)\)
| \(\mathcal{T} k 0=\{ \}\)
\(\mid \mathcal{T} k(\) Suc \(u)=\) Tokens \(k(\mathcal{T} k u)(\mathcal{J} k u)\)
\(\mid \mathcal{I} k=\) natUnion \((\mathcal{J} k)\)
definition \(\mathfrak{I}\) :: items
```


where

$$
\mathfrak{I}=\mathcal{I}(\text { length } D o c)
$$

definition is-finished :: item \Rightarrow bool where

```
    is-finished \(x=(\) item-nonterminal \(x=\mathfrak{S} \wedge\) item-origin \(x=0 \wedge\) item-end \(x=\)
```

length Doc \wedge
is-complete x)
definition earley-recognised :: bool
where
earley-recognised $=(\exists x \in \mathfrak{I}$. is-finished $x)$
end
end
theory Limit
imports LocalLexing
begin
definition setmonotone $::\left({ }^{\prime} a\right.$ set $\Rightarrow{ }^{\prime}$ a set) \Rightarrow bool
where
setmonotone $f=(\forall X . X \subseteq f X)$
lemma setmonotone-funpower: setmonotone $f \Longrightarrow$ setmonotone (funpower $f n$)
by (induct n, auto simp add: setmonotone-def)
lemma subset-setmonotone: setmonotone $f \Longrightarrow X \subseteq f X$
by (simp add: setmonotone-def)
lemma elem-setmonotone: setmonotone $f \Longrightarrow x \in X \Longrightarrow x \in f X$
by (auto simp add: setmonotone-def)
lemma elem-natUnion: $(\forall n . x \in f n) \Longrightarrow x \in \operatorname{natUnion~} f$
by (auto simp add: natUnion-def)
lemma subset-natUnion: $(\forall n . X \subseteq f n) \Longrightarrow X \subseteq$ natUnion f
by (auto simp add: natUnion-def)
lemma setmonotone-limit:
assumes fmono: setmonotone f
shows setmonotone (limit f)
proof -
show setmonotone (limit f)
apply (auto simp add: setmonotone-def limit-def)
apply (rule elem-natUnion, auto)
apply (rule elem-setmonotone [OF setmonotone-funpower])
by (auto simp add: fmono)
qed

```
lemma \([\) simp \(]\) : funpower id \(n=i d\)
    by (rule ext, induct \(n\), simp-all)
lemma [simp]: limit \(i d=i d\)
    by (rule ext, auto simp add: limit-def natUnion-def)
lemma natUnion-decompose[consumes 1, case-names Decompose]:
    assumes \(p: p \in\) natUnion \(S\)
    assumes decompose: \(\bigwedge n p . p \in S n \Longrightarrow P p\)
    shows \(P\) p
proof -
    from \(p\) have \(\exists n . p \in S n\)
        by (auto simp add: natUnion-def)
    then obtain \(n\) where \(p \in S n\) by blast
    from decompose [OF this] show ?thesis.
qed
lemma limit-induct[consumes 1, case-names Init Iterate]:
    assumes \(p:\left(p::{ }^{\prime} a\right) \in\) limit \(f X\)
    assumes init: \(\Lambda p . p \in X \Longrightarrow P p\)
    assumes iterate: \(\bigwedge p Y .(\bigwedge q . q \in Y \Longrightarrow P q) \Longrightarrow p \in f Y \Longrightarrow P p\)
    shows \(P\) p
proof -
    from \(p\) have \(p\)-in-natUnion: \(p \in \operatorname{natUnion}(\lambda n\). funpower \(f n X\) )
        by (simp add: limit-def)
    \{
        fix \(p::{ }^{\prime} a\)
        fix \(n::\) nat
        have \(p \in\) funpower \(f n X \Longrightarrow P p\)
        proof (induct \(n\) arbitrary: \(p\) )
            case 0 thus ?case using init[OF 0 [simplified]] by simp
        next
            case (Suc n) show ?case
                using iterate[OF Suc(1) Suc(2)[simplified], simplified] by simp
            qed
    \}
        with \(p\)-in-natUnion show ?thesis
            by (induct rule: natUnion-decompose)
qed
definition chain \(::\left(\right.\) nat \(\Rightarrow{ }^{\prime}\) a set \() \Rightarrow\) bool
where
    chain \(C=(\forall i . C i \subseteq C(i+1))\)
definition continuous :: ('a set \(\Rightarrow\) 'b set) \(\Rightarrow\) bool
where
    continuous \(f=(\forall C\). chain \(C \longrightarrow(\) chain \((f o C) \wedge f(\) natUnion \(C)=\) natUnion
\((f \circ C)))\)
```

```
lemma continuous-apply:
    continuous f\Longrightarrow chain C\Longrightarrowf(natUnion C)=natUnion ( }f\mathrm{ o C 
by (simp add: continuous-def)
lemma continuous-imp-mono:
    assumes continuous: continuous f
    shows mono f
proof -
    {
        fix A :: 'a set
        fix B :: 'a set
        assume sub: A\subseteqB
        let ?C = ( }i::\mathrm{ nat). if (i=0) then A else B
        have chain ?C by (simp add: chain-def sub)
        then have fC: chain (f o ?C) using continuous continuous-def by blast
        then have f(?C 0)\subseteqf(?C (0+1))
        proof -
            have \fn.\neg chain f\vee(f n::'b set )\subseteqf(Suc n)
                by (metis Suc-eq-plus1 chain-def)
            then show ?thesis using fC by fastforce
        qed
        then have fA\subseteqfB by auto
    }
    then show mono f by (simp add: monoI)
qed
lemma mono-maps-chain-to-chain:
    assumes f: mono f
    assumes C: chain C
    shows chain (forC)
by (metis C comp-def f chain-def mono-def)
lemma natUnion-upperbound:
    (\bigwedgen.fn\subseteqG)\Longrightarrow(natUnion f)\subseteqG
by (auto simp add: natUnion-def)
lemma funpower-upperbound:
    (\bigwedgeI.I\subseteqG\LongrightarrowfI\subseteqG)\LongrightarrowI\subseteqG\Longrightarrowfunpower f n I\subseteqG
proof (induct n)
    case 0 thus ?case by simp
next
    case (Suc n) thus ?case by simp
qed
lemma limit-upperbound:
    (\bigwedgeI.I\subseteqG\LongrightarrowfI\subseteqG)\LongrightarrowI\subseteqG\Longrightarrowlimit f I\subseteqG
by (simp add: funpower-upperbound limit-def natUnion-upperbound)
lemma elem-limit-simp: x \in limit f X =( }\exists\mathrm{ n. x f funpower f n X)
```

```
by (auto simp add: limit-def natUnion-def)
definition pointwise :: ('a set }=>\mathrm{ 'b set) }=>\mathrm{ bool where
    pointwise }f=(\forallX.fX=\bigcup{f{x}|x.x\inX}
lemma pointwise-simp:
    assumes f: pointwise f
    shows fX=\bigcup{f {x}|x.x\inX}
proof -
    from f have }\forallX.fX=\bigcup{f{x}|x.x\inX
        by (rule iffD1[OF pointwise-def[where f=f]])
    then show ?thesis by blast
qed
lemma natUnion-elem: }x\infn\Longrightarrowx\in\mathrm{ natUnion }
using natUnion-def by fastforce
lemma limit-elem: }x\in\mathrm{ funpower f }nX\Longrightarrowx\in\operatorname{limit f X
by (simp add: limit-def natUnion-elem)
lemma limit-step-pointwise:
```



```
    assumes f: pointwise f
    assumes y: y \inf {x}
    shows }y\inlimit f
proof -
    from }x\mathrm{ have }\existsn.x\in\mathrm{ funpower f n X
        by (simp add: elem-limit-simp)
    then obtain n}\mathrm{ where n: }x\in\mathrm{ funpower }fnX\mathrm{ by blast
    have }y\in\mathrm{ funpower f (Suc n) X
        apply simp
        apply (subst pointwise-simp[OF f])
        using y n by auto
    then show y limit f X by (meson limit-elem)
qed
definition pointbase :: ('a set }=>\mathrm{ 'b set) }=>\mathrm{ ' 'a set }=>\mathrm{ 'b set where
    pointbase FI=\bigcup{FX|X. finite X ^X\subseteqI}
definition pointbased :: ('a set }=>\mathrm{ 'b set) }=>\mathrm{ bool where
    pointbased f}=(\existsF.f=\mathrm{ pointbase }F
lemma pointwise-implies-pointbased:
    assumes pointwise: pointwise f
    shows pointbased f
proof -
    let ?F = \lambda X.fX
    {
        fix I :: 'a set
```

```
    fix }x:: '
    have lr: x 者ointbase ?F I \Longrightarrowx\infI
    proof -
    assume x: x\in pointbase ?F I
    have }\existsX.x\infX\wedgeX\subseteq
        proof -
            have }x\in\bigcup{fA|A. finite A\wedgeA\subseteqI
                by (metis pointbase-def x)
            then show ?thesis
                by blast
            qed
    then obtain }X\mathrm{ where }X:x\infX\wedgeX\subseteqI\mathrm{ by blast
    have }\existsy.y\inI\wedgex\inf{y
            using X apply (simp add: pointwise-simp[OF pointwise, where X=X])
            by blast
    then show }x\inf
            apply (simp add: pointwise-simp[OF pointwise, where X=I])
            by blast
    qed
    have rl: }x\infI\Longrightarrowx\in\mathrm{ pointbase ?F I
    proof -
    assume x: x \infI
    have }\existsy.y\inI\wedgex\inf{y
            using }x\mathrm{ apply (simp add: pointwise-simp[OF pointwise, where X=I])
            by blast
    then obtain y where }y\inI\wedgex\inf{y}\mathrm{ by blast
    then have }\existsX.x\infX\wedge finite X ^ X\subseteqI by blas
    then show }x\in\mathrm{ pointbase f I
        apply (simp add: pointbase-def)
        by blast
    qed
    note lr rl
}
then have ^I. pointbase fI=fI by blast
then have pointbase f}=f\mathrm{ by blast
then show ?thesis by (metis pointbased-def)
qed
lemma pointbase-is-mono:
    mono (pointbase f)
proof -
    {
    fix A :: 'a set
    fix B :: 'a set
    assume subset: A\subseteqB
    have (pointbase f)A}\subseteq(\mathrm{ pointbase f) }
        apply (simp add: pointbase-def)
        using subset by fastforce
    }
```

```
    then show ?thesis by (simp add: mono-def)
qed
lemma chain-implies-mono: chain \(C \Longrightarrow\) mono \(C\)
by (simp add: chain-def mono-iff-le-Suc)
lemma chain-cover-witness: finite \(X \Longrightarrow\) chain \(C \Longrightarrow X \subseteq\) natUnion \(C \Longrightarrow \exists\).
\(X \subseteq C n\)
proof (induct rule: finite.induct)
    case emptyI thus ?case by blast
next
    case (insertI X \(x\) )
    then have \(X \subseteq\) natUnion \(C\) by simp
    with insertI have \(\exists n . X \subseteq C n\) by blast
    then obtain \(n\) where \(n: X \subseteq C n\) by blast
    have \(x: x \in\) natUnion \(C\) using insertI.prems(2) by blast
    then have \(\exists m . x \in C m\)
    proof -
    have \(x \in \bigcup\{A . \exists n . A=C n\}\) by (metis \(x\) natUnion-def)
    then show? ?thesis by blast
    qed
    then obtain \(m\) where \(m: x \in C m\) by blast
    have mono- \(C\) : \(\bigwedge i j . i \leq j \Longrightarrow C i \subseteq C j\)
    using chain-implies-mono insertI(3) mono-def by blast
    show ?case
    apply (rule-tac \(x=\max n m\) in \(e x I\) )
    apply auto
    apply (meson contra-subsetD m max.cobounded2 mono-C)
    by (metis max-def mono-C n subsetCE)
qed
lemma pointbase-is-continuous:
    continuous (pointbase f)
proof -
    \{
        fix \(C\) :: nat \(\Rightarrow{ }^{\prime}\) a set
        assume \(C\) : chain \(C\)
        have mono: chain ((pointbase f) o C)
            by (simp add: C mono-maps-chain-to-chain pointbase-is-mono)
    have subset1: natUnion \(((\) pointbase \(f)\) o \(C) \subseteq(\) pointbase \(f)(\) natUnion \(C)\)
    proof (auto)
            fix \(y\) :: 'b
            assume \(y \in\) natUnion ((pointbase \(f\) ) o \(C\) )
            then show \(y \in(\) pointbase \(f)(\) natUnion \(C)\)
            proof (induct rule: natUnion-decompose)
                    case (Decompose \(n\) p)
                    thus? ?ase by (metis comp-apply contra-subsetD mono-def natUnion-elem
                    pointbase-is-mono subsetI)
            qed
```

```
    qed
    have subset2: (pointbase f) (natUnion C)\subseteq natUnion ((pointbase f) o C)
    proof (auto)
        fix }y\mathrm{ :: 'b
        assume y: y (pointbase f) (natUnion C)
        have }\existsX\mathrm{ . finite }X\wedgeX\subseteq\mathrm{ natUnion C ^ y f f X
        proof -
            have }y\in\bigcup{fA|A. finite A\wedgeA\subseteq natUnion C
            by (metis y pointbase-def)
            then show ?thesis by blast
        qed
        then obtain }X\mathrm{ where X: finite }X\wedgeX\subseteq\mathrm{ natUnion C ^ y ff X by blast
        then have \exists n. X\subseteqC n using chain-cover-witness C by blast
        then obtain n where X-sub-C:X\subseteqC n by blast
        show }y\in\mathrm{ natUnion ((pointbase f) o C)
            apply (rule-tac natUnion-elem[where n=n])
            proof -
            have }y\in\bigcup{fA|A. finite A\wedgeA\subseteqCn
            using X X-sub-C by blast
            then show }y\in(\mathrm{ pointbase }f\circC)n\mathrm{ by (simp add: pointbase-def)
        qed
    qed
    note mono subset1 subset2
}
    then show ?thesis by (simp add: continuous-def subset-antisym)
qed
lemma pointbased-implies-continuous:
    pointbased f}\Longrightarrow\mathrm{ continuous f
    using pointbase-is-continuous pointbased-def by force
lemma setmonotone-implies-chain-funpower:
    assumes setmonotone: setmonotone f
    shows chain ( }\lambda\mathrm{ n.funpower f n I)
by (simp add: chain-def setmonotone subset-setmonotone)
lemma natUnion-subset:(\bigwedgen.\exists m.fn\subseteqgm)\Longrightarrow natUnion f\subseteqnatUnion g
    by (meson natUnion-elem natUnion-upperbound subset-iff)
lemma natUnion-eq[case-names Subset Superset]:
    (\bigwedgen.\existsm.fn\subseteqgm)\Longrightarrow(\bigwedgen.\existsm.gn\subseteqfm)\LongrightarrownatUnion }f=n=natUnio
g
by (simp add: natUnion-subset subset-antisym)
lemma natUnion-shift[symmetric]:
    assumes chain: chain C
    shows natUnion C = natUnion ( }\lambdan.C(n+m)
proof (induct rule: natUnion-eq)
    case (Subset n)
```

```
    show ?case using chain chain-implies-mono le-add1 mono-def by blast
next
    case (Superset n)
        show ?case by blast
qed
definition regular :: ('a set }=>\mp@subsup{)}{}{\prime}\mathrm{ 'a set) }=>\mathrm{ bool
where
    regular f}=(\mathrm{ setmonotone f ^ continuous f)
lemma regular-fixpoint:
    assumes regular: regular f
    shows f(limitfI)= limit fI
proof -
    have setmonotone: setmonotone f using regular regular-def by blast
    have continuous: continuous f using regular regular-def by blast
    let ?C = \lambda n. funpower f n I
    have chain: chain ?C
    by (simp add: setmonotone setmonotone-implies-chain-funpower)
    have f(limit fI)=f(natUnion ?C)
    using limit-def by metis
    also have f(natUnion ?C) = natUnion (f o ?C)
    by (metis continuous continuous-def chain)
    also have natUnion (fo?C) = natUnion ( }\lambda\mathrm{ n. f(funpower f n I )
    by (meson comp-apply)
    also have natUnion (\lambdan.f(funpower f n I )) = natUnion (\lambdan.?C (n+1))
        by simp
    also have natUnion (\lambda n. ?C(n+1)) = natUnion ?C
        apply (subst natUnion-shift)
        using chain by (blast+)
    finally show ?thesis by (simp add: limit-def)
qed
lemma fix-is-fix-of-limit:
    assumes fixpoint: fI=I
    shows limit f I=I
proof -
    have funpower: \ n. funpower f n I=I
    proof -
        fix n :: nat
        from fixpoint show funpower f n I =I
            by (induct n, auto)
    qed
    show ?thesis by (simp add: limit-def funpower natUnion-def)
qed
lemma limit-is-idempotent: regular f \Longrightarrowlimit f(limit f I) = limit f I
by (simp add: fix-is-fix-of-limit regular-fixpoint)
```

```
definition \(m k\)-regular \(1::\left(' b \Rightarrow{ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow\left(' b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime}\) a set
where
    \(m k\)-regular1 P F \(I=I \cup\{F q x \mid q x . x \in I \wedge P q x\}\)
definition mk-regular2 :: (' \(b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool \() \Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow^{\prime} a\) set
\(\Rightarrow\) 'a set where
    \(m k\)-regular2 \(P F I=I \cup\{F q x y \mid q x y . x \in I \wedge y \in I \wedge P q x y\}\)
```

lemma setmonotone-mk-regular1: setmonotone ($m k$-regular1 P F)
by (simp add: mk-regular1-def setmonotone-def)
lemma setmonotone-mk-regular2: setmonotone ($m k$-regular2 P F)
by (simp add: mk-regular2-def setmonotone-def)
lemma pointbased-mk-regular1: pointbased (mk-regular1 P F)
proof -
let ?f $=\lambda X . X \cup\{F q x \mid q x . x \in X \wedge P q x\}$
\{
fix I :: 'a set
have 1: pointbase ?f $I \subseteq m k$-regular1 P F I
by (auto simp add: pointbase-def mk-regular1-def)
have 2: mk-regular1 P FI pointbase ?f I
apply (simp add: pointbase-def $m k$-regular1-def)
apply blast
done
from 12 have pointbase ?f $I=m k$-regular1 P F I by blast
\}
then show ?thesis
apply (subst pointbased-def)
apply (rule-tac $x=$? f in exI)
by blast
qed
lemma pointbased-mk-regular2: pointbased ($m k$-regular2 P F)
proof -
let ?f $=\lambda X . X \cup\{F q x y \mid q x y . x \in X \wedge y \in X \wedge P q x y\}$
\{
fix I :: 'a set
have 1: pointbase ?f $I \subseteq m k$-regular2 P F I
by (auto simp add: pointbase-def $m k$-regular2-def)
have 2: mk-regular2 P FI pointbase ?f I
apply (auto simp add: pointbase-def $m k$-regular2-def)
apply blast
proof -
fix $q x y$
assume $x: x \in I$
assume $y: y \in I$
assume $P: P q x y$

```
            let ? }X={x,y
            let ?A = ? X \cup{Fqxy|qxy. x\in?X ^ y\in?X\wedgePqxy}
            show \exists A. (\existsX.A=X\cup{Fqx y |qxy.x\inX\wedge y\inX\wedgePqxy}^
            finite }X\wedgeX\subseteqI)\wedgeFqxy\in
            apply (rule-tac x=? A in exI)
            apply (rule conjI)
            apply (rule-tac x=?X in exI)
            apply (auto simp add: x y)[1]
            using x y P by blast
            qed
    from 1 2 have pointbase ?f I =mk-regular2 P F I by blast
}
then show ?thesis
    apply (subst pointbased-def)
    apply (rule-tac x=?f in exI)
    by blast
qed
lemma regular1:regular ( mk-regular1 P F)
by (simp add: pointbased-implies-continuous pointbased-mk-regular1 regular-def
    setmonotone-mk-regular1)
lemma regular2: regular ( mk-regular2 P F)
by (simp add: pointbased-implies-continuous pointbased-mk-regular2 regular-def
    setmonotone-mk-regular2)
lemma continuous-comp:
    assumes f: continuous f
    assumes g: continuous g
    shows continuous (gof)
by (metis (no-types, lifting) comp-assoc comp-def continuous-def f g)
lemma setmonotone-comp:
    assumes f: setmonotone f
    assumes g: setmonotone g
    shows setmonotone (g of)
by (metis (mono-tags, lifting) comp-def f g rev-subsetD setmonotone-def subsetI)
lemma regular-comp:
    assumes f: regular f
    assumes g: regular g
    shows regular ( }g\circf\mathrm{ )
using continuous-comp f g regular-def setmonotone-comp by blast
lemma setmonotone-id[simp]: setmonotone id
    by (simp add: id-def setmonotone-def)
lemma continuous-id[simp]: continuous id
    by (simp add: continuous-def)
```

```
lemma regular-id[simp]: regular id
    by (simp add: regular-def)
lemma regular-funpower: regular f}\Longrightarrow\mathrm{ regular (funpower f n)
proof (induct n)
    case 0 thus?case by (simp add: id-def[symmetric])
next
    case (Suc n)
    have funpower: funpower f(Suc n)=fo(funpower f n)
        apply (rule ext)
        by simp
    with Suc show ?case
        by (auto simp only: funpower regular-comp)
qed
lemma mono-id[simp]: mono id
    by (simp add: mono-def id-def)
lemma mono-funpower:
    assumes mono: mono f
    shows mono (funpower f n)
proof (induct n)
    case 0 thus ?case by (simp add: id-def[symmetric])
next
    case (Suc n)
    show ?case by (simp add: Suc.hyps mono monoD monoI)
qed
lemma mono-limit:
    assumes mono: mono f
    shows mono (limit f)
proof(auto simp add: mono-def limit-def)
    fix A :: 'a set
    fix }B:: 'a se
    fix }
    assume subset:A\subseteqB
    assume }x\in\mathrm{ natUnion ( }\lambdan\mathrm{ . funpower f n A)
    then have }\existsn.x\in\mathrm{ funpower f n A using elem-limit-simp limit-def by fastforce
    then obtain n}\mathrm{ where }n\mathrm{ : }x\in\mathrm{ funpower }fnA\mathrm{ by blast
    then have mono: mono (funpower f n) by (simp add: mono mono-funpower)
    then have }x\in\mathrm{ funpower f n B by (meson contra-subsetD monoD n subset)
    then show }x\in\mathrm{ natUnion ( }\lambdan\mathrm{ . funpower f n B) by (simp add: natUnion-elem)
qed
lemma continuous-funpower:
    assumes continuous: continuous }
    shows continuous (funpower f n)
```

```
proof (induct \(n\) )
    case 0 thus ?case by (simp add: id-def[symmetric])
next
    case (Suc n)
    have mono: mono (funpower f (Suc n))
        by (simp add: continuous continuous-imp-mono mono-funpower)
    have chain: \(\forall C\). chain \(C \longrightarrow\) chain ( \((\) funpower \(f(S u c n)\) ) o C)
        by (simp del: funpower.simps add: mono mono-maps-chain-to-chain)
    have limit: \(\bigwedge C\). chain \(C \Longrightarrow(\) funpower \(f(\) Suc n)) (natUnion \(C)=\)
        natUnion \(((\) funpower \(f(\) Suc \(n))\) o \(C\) )
        apply simp
        apply (subst continuous-apply[OF Suc])
        apply simp
        apply (subst continuous-apply[OF continuous])
        apply (simp add: Suc.hyps continuous-imp-mono mono-maps-chain-to-chain)
        apply (rule arg-cong[where \(f=\) natUnion])
        apply (rule ext)
        by \(\operatorname{simp}\)
    from chain limit show ?case using continuous-def by blast
qed
lemma natUnion-swap:
    natUnion ( \(\lambda i\). natUnion \((\lambda j . f i j))=\) natUnion \((\lambda j\). natUnion \((\lambda i . f i j))\)
by (metis (no-types, lifting) natUnion-elem natUnion-upperbound subsetI subset-antisym)
lemma continuous-limit:
    assumes continuous: continuous \(f\)
    shows continuous (limit f)
proof -
    have mono: mono (limit f)
    by (simp add: continuous continuous-imp-mono mono-limit)
    have chain: \(\wedge C\). chain \(C \Longrightarrow\) chain \(((\) limit \(f)\) o \(C)\)
    by (simp add: mono mono-maps-chain-to-chain)
    have \(\wedge C\). chain \(C \Longrightarrow(\) limit \(f)(\) natUnion \(C)=\) natUnion \(((\) limit f) o \(C)\)
    proof -
    fix \(C\) :: nat \(\Rightarrow{ }^{\prime}\) a set
    assume chain- \(C\) : chain \(C\)
    have contpower: \(\bigwedge n\). continuous (funpower f \(n\) )
        by (simp add: continuous continuous-funpower)
    have comp: \(\bigwedge n F . F o C=(\lambda i . F(C i))\)
        by auto
    have \((\) limit \(f)(\) natUnion \(C)=\operatorname{natUnion}(\lambda n\).funpower \(f n(\) natUnion \(C))\)
        by (simp add: limit-def)
    also have natUnion \((\lambda\) n. funpower \(f n(\) natUnion \(C))=\)
                    natUnion ( \(\lambda\) n. natUnion \(((f u n p o w e r f n) o C))\)
        apply (subst continuous-apply[OF contpower \(]\) )
        apply (simp add: chain- \(C\) ) +
        done
    also have natUnion \((\lambda\) n. natUnion \(((f u n p o w e r f n) o C))=\)
```

```
        natUnion ( }\lambda\mathrm{ n. natUnion ( }\lambda\mathrm{ i. funpower f n (C i)))
        apply (subst comp)
        apply blast
        done
    also have natUnion ( }\lambda\mathrm{ n. natUnion ( }\lambda\mathrm{ i. funpower f n (C i))) =
        natUnion ( }\lambdai.natUnion ( \lambda n.funpower f n (C i))
        apply (subst natUnion-swap)
        apply blast
        done
    also have natUnion ( }\lambda\mathrm{ i.natUnion ( }\lambda\mathrm{ n n.funpower f n (C i)})\mathrm{ ) =
        (natUnion (\lambda i. limit f (C i)))
        apply (simp add: limit-def)
        done
    also have natUnion ( }\lambda\mathrm{ i. limit f (Ci)) = natUnion ((limit f) o C)
        apply (subst comp)
        apply simp
        done
    finally show (limit f) (natUnion C) = natUnion ((limit f) o C) by blast
qed
with chain show ?thesis by (simp add: continuous-def)
qed
lemma regular-limit: regular f \Longrightarrow regular (limit f)
by (simp add: continuous-limit regular-def setmonotone-limit)
lemma regular-implies-mono: regular }f\Longrightarrow\mathrm{ mono }
by (simp add: continuous-imp-mono regular-def)
lemma regular-implies-setmonotone: regular f \Longrightarrow setmonotone f
by (simp add: regular-def)
lemma regular-implies-continuous: regular }f\Longrightarrow\mathrm{ continuous }
by (simp add: regular-def)
end
theory LocalLexingLemmas
imports LocalLexing Limit
begin
context LocalLexing begin
lemma[simp]: setmonotone (Append Z k) by (auto simp add: Append-def setmono-
tone-def)
lemma subset-\mathcal{PSuc: \mathcal{P ku}\subseteq\mathcal{P}k(Suc u)}
    by (simp add: subset-setmonotone[OF setmonotone-limit])
lemma subset-fSuc-strict:
    assumes f: \u.fu\subseteqf(Suc u)
```

```
    shows }u<v\Longrightarrowfu\subseteqf
proof (induct v)
    show }u<0\Longrightarrowfu\subseteqf
        by auto
next
    fix v
    assume a:(u<v\Longrightarrowfu\subseteqfv)
    assume b:u<Sucv
    from b have c:fu\subseteqfv
        apply (case-tac u<v)
        apply (simp add: a)
        apply (case-tac u = v)
        apply simp
        by auto
    show fu\subseteqf(Suc v)
    apply (rule subset-trans[OF c])
    by (rule f)
qed
lemma subset-fSuc:
    assumes f: \u.fu\subseteqf(Suc u)
    shows u\leqv\Longrightarrowfu\subseteqfv
    apply (case-tac u<v)
    apply (rule subset-fSuc-strict[where f=f,OF f])
    by auto
lemma subset-\mathcal{P}k:u\leqv\Longrightarrow\mathcal{P}ku\subseteq\mathcal{P}kv
    by (rule subset-fSuc, rule subset-P Suc)
lemma subset-\mathcal{PQ}k:\mathcal{P}ku\subseteq\mathcal{Q}k\mathrm{ by (auto simp add: natUnion-def)}
lemma subset-\mathcal{QPSuc: \mathcal{ }k\subseteq\mathcal{P}(Suc k)u}
proof -
    have a:\mathcal{Q}k\subseteq\mathcal{P}(Suck)0 by simp
    show ?thesis
        apply (case-tac u=0)
        apply (simp add: a)
        apply (rule subset-trans[OF a subset-\mathcal{Pk])}
        by auto
qed
lemma subset-QSuc:\mathcal{Q k}\subseteq\mathcal{Q}(Suc k)
    by (rule subset-trans[OF subset-\mathcal{QPSuc subset-PQR])}
lemma subset-\mathcal{Q: }i\leqj\Longrightarrow\mathcal{Q}i\subseteq\mathcal{Q}j
    by (rule subset-fSuc[where }u=i\mathrm{ and }v=j\mathrm{ and }f=\mathcal{Q},\mathrm{ OF subset-QSuc])
lemma empty-\mathcal{X}[simp]: k> length Doc \Longrightarrow\mathcal{X k}={}
    apply (simp add: \mathcal{X-def)}
```

```
    apply (insert Lex-is-lexer)
    by (simp add: is-lexer-def)
lemma Sel-empty[simp]: Sel {} {} = {}
    apply (insert Sel-is-selector)
    by (auto simp add: is-selector-def)
lemma empty-\mathcal{Z [simp]: k> length Doc \Longrightarrow\mathcal{Z ku}={}}}={\mp@code{lom}
    apply (induct u)
    by (simp-all add: Y-def \mathcal{W-def)}
lemma[simp]: Append {} k=id by (auto simp add: Append-def)
lemma[simp]: k> length Doc \Longrightarrow\mathcal{P}kv=\mathcal{P}k0
    by (induct v, simp-all add: \mathcal{Y}-def \mathcal{W}\mathrm{ -def)}
lemma \mathcal{QSucEq: }k\geq\mathrm{ length Doc }\Longrightarrow\mathcal{Q}(\mathrm{ Suc k) = Q k}
    by (simp add: natUnion-def)
lemma \mathcal{Q-converges:}
    assumes k: k\geq length Doc
    shows \mathcal{Q }k=\mathfrak{P}
proof -
    {
        fix n
        have \mathcal{Q (length Doc + n)=\mathfrak{P}}\mathbf{~}=\mp@code{l}
        proof (induct n)
        show \mathcal{Q (length Doc +0) = \mathfrak{P}}\mathrm{ by (simp add: }\mathfrak{P}\mathrm{ -def)})
        next
            fix n
            assume hyp:\mathcal{Q}}(\mathrm{ length Doc + n) = }\mathfrak{P
            have \mathcal{Q (Suc (length Doc + n)) = \mathfrak{P}}\mathbf{~})
                by (rule trans[OF QSucEq hyp], auto)
            then show \mathcal{Q}}\mathrm{ (length Doc + Suc n) = }\mathfrak{P
                by auto
        qed
    }
    note helper = this
    from }k\mathrm{ have }\existsn.k=length Doc + n by presburger
    then obtain n where n: k= length Doc + n by blast
    then show ?thesis
        apply (simp only: n)
        by (rule helper)
qed
lemma \mathfrak{P}\mathrm{ -covers-Q: Q k}\subseteq\mathfrak{P}
proof (case-tac k\geq length Doc)
    assume k\geq length Doc
    then have \mathcal{Q: \mathcal{Q }}=\mathfrak{P}\mathrm{ by (rule }\mathcal{Q}\mathrm{ -converges)}
```

```
    then show \mathcal{Q k}\subseteq\mathfrak{P}\mathrm{ by (simp only: Q)}
next
    assume \neg length Doc \leqk
    then have k< length Doc by auto
    then show ?thesis
        apply (simp only: }\mathfrak{P}\mathrm{ -def)
        apply (rule subset-Q)
        by auto
qed
lemma Sel-upper-bound: A\subseteqB\LongrightarrowSel A B\subseteqB
    by (metis Sel-is-selector is-selector-def)
lemma Sel-lower-bound: A\subseteqB\LongrightarrowA\subseteq Sel A B
    by (metis Sel-is-selector is-selector-def)
lemma \mathfrak{P}\mathrm{ -covers-P:P }\mathcal{P}u\subseteq\mathfrak{P}
    by (rule subset-trans[OF subset-\mathcal{PQk}\mathfrak{P}\mathrm{ -covers-Q])}
lemma \mathcal{W}\mathrm{ -montone: }P\subseteqQ\Longrightarrow\mathcal{W}Pk\subseteq\mathcal{W}Qk
    by (auto simp add: \mathcal{W}-def)
lemma Sel-precondition:
    Z ku\subseteq\mathcal{W}(\mathcal{P}ku)k
proof (induct u)
    case 0 thus ?case by simp
next
    case (Suc u)
```



```
        apply (simp add: \mathcal{-def)}
        apply (rule-tac Sel-upper-bound)
        using Suc by simp
    have 2: \mathcal{W}(\mathcal{P}ku)k\subseteq\mathcal{W}(\mathcal{P}k(Sucu))k
        by (metis \mathcal{W}\mathrm{ -montone subset-P Suc)}
    show ?case
        apply (rule-tac subset-trans[where B=\mathcal{W}(\mathcal{P}
        apply (simp add: 1)
        apply (simp only: 2)
        done
qed
lemma \mathcal{W-bounded-by-\mathcal{X}:\mathcal{W}P}\mp@subsup{P}{k}{}\subseteq\mathcal{X}k
    by (metis (no-types, lifting) \mathcal{W}\mathrm{ -def mem-Collect-eq subsetI)}
```



```
    by (metis Sel-precondition \mathcal{W}
```



```
apply (induct n)
```

```
apply simp
by (metis Sel-lower-bound Sel-precondition \mathcal{Y-def \mathcal{Z.simps(2))}}\mathbf{(2)}
lemma \mathcal{Y}\mathrm{ -upper-bound: Y (Z k u)(P ku)k}\subseteq\mathcal{W}(\mathcal{P}ku)k
    apply (simp add: \mathcal{Y-def)}
    by (metis Sel-precondition Sel-upper-bound)
lemma \mathfrak{P}-induct[consumes 1, case-names Base Induct]:
    assumes p:p\in\mathfrak{P}
    assumes base: P []
    assumes induct: \bigwedge pku.(\bigwedgeq. q\in\mathcal{P}ku\LongrightarrowPq)\Longrightarrowp\in\mathcal{P}k(Sucu)\Longrightarrow
P p
    shows P p
proof -
    {
    fix p :: tokens
    fix }k:: na
    fix u :: nat
    have }p\in\mathcal{P}ku\LongrightarrowP
    proof (induct k arbitrary: p u)
        case 0
            have p}\in\mathcal{P}0u\LongrightarrowP
            proof (induct u arbitrary: p)
                    case 0 thus ?case using base by simp
                next
                        case (Suc u) show ?case
                        apply (rule induct[OF - Suc(2)])
                            apply (rule Suc(1))
                    by simp
                qed
                with 0 show ?case by simp
    next
                case (Suc k)
                have p \in\mathcal{P}(Suc k) u\LongrightarrowPp
                proof (induct u arbitrary: p)
                        case 0 thus ?case
                        apply simp
                        apply (induct rule: natUnion-decompose)
                    using Suc by simp
            next
                case (Suc u) show ?case
                        apply (rule induct[OF - Suc(2)])
                    apply (rule Suc(1))
                    by simp
            qed
            with Suc show ?case by simp
        qed
    }
    note all = this
```

```
    from p show ?thesis
        apply (simp add: \mathfrak{P}-def)
    apply (induct rule: natUnion-decompose)
    using all by simp
qed
lemma Append-mono: U\subseteqV\LongrightarrowP\subseteqQ\LongrightarrowAppend UkP\subseteq Append Vk Q
    by (auto simp add: Append-def)
lemma pointwise-Append: pointwise (Append T k)
by (auto simp add: pointwise-def Append-def)
lemma regular-Append: regular (Append T k)
proof -
    have pointwise (Append T k) using pointwise-Append by blast
    then have pointbased (Append T k) using pointwise-implies-pointbased by blast
    then have continuous (Append T k) using pointbased-implies-continuous by
blast
    moreover have setmonotone (Append Tk) by (simp add: setmonotone-def Ap-
pend-def)
    ultimately show ?thesis using regular-def by blast
qed
end
end
theory InductRules
imports Main
begin
lemma disjCases2[consumes 1, case-names 1 2]:
    assumes AB:A\veeB
    and AP:A\LongrightarrowP
    and }BP:B\Longrightarrow
    shows P
proof -
    from AB AP BP show ?thesis by blast
qed
lemma disjCases3[consumes 1, case-names 1 2 3]:
    assumes AB:A\veeB\veeC
    and AP:A\LongrightarrowP
    and BP:B\LongrightarrowP
    and CP:C\LongrightarrowP
    shows P
proof -
    from AB AP BP CP show ?thesis by blast
qed
```

```
lemma disjCases4[consumes 1, case-names 123 4]:
    assumes \(A B: A \vee B \vee C \vee D\)
    and \(A P: A \Longrightarrow P\)
    and \(B P: B \Longrightarrow P\)
    and \(C P: C \Longrightarrow P\)
    and \(D P: D \Longrightarrow P\)
    shows \(P\)
proof -
    from \(A B A P B P C P D P\) show ?thesis by blast
qed
lemma disjCases5[consumes 1, case-names 1234 5]:
    assumes \(A B: A \vee B \vee C \vee D \vee E\)
    and \(A P: A \Longrightarrow P\)
    and \(B P: B \Longrightarrow P\)
    and \(C P: C \Longrightarrow P\)
    and \(D P: D \Longrightarrow P\)
    and \(E P: E \Longrightarrow P\)
    shows \(P\)
proof -
    from \(A B A P B P C P D P E P\) show ?thesis by blast
qed
lemma minimal-witness-ex:
    assumes \(k\) : \(P(k:: n a t)\)
    shows \(\exists k 0 . k 0 \leq k \wedge P k 0 \wedge(\forall k . k<k 0 \longrightarrow \neg(P k))\)
proof -
    let \(? K=\{h . h \leq k \wedge P h\}\)
    have finite- \(K\) : finite ? \(K\) by auto
    have \(k \in\) ? \(K\) by (simp add: \(k\) )
    then have nonempty- \(K: ?\)
    let \(? k=\) Min ? \(K\)
    have witness: ? \(k \leq k \wedge P\) ? \(k\)
        by (metis (mono-tags, lifting) Min-in finite-K mem-Collect-eq nonempty-K)
    have minimal: \(\forall h . h<? k \longrightarrow \neg(P h)\)
    by (metis Min-le witness dual-order.strict-implies-order
                dual-order.trans finite-K leD mem-Collect-eq)
    from witness minimal show ?thesis by metis
qed
lemma minimal-witness[consumes 1, case-names Minimal]:
    assumes \(P(k:: n a t)\)
    and \(\bigwedge K . K \leq k \Longrightarrow P K \Longrightarrow(\bigwedge k . k<K \Longrightarrow \neg(P k)) \Longrightarrow Q\)
    shows \(Q\)
proof -
    from assms minimal-witness-ex show ?thesis by metis
qed
lemma ex-minimal-witness[consumes 1, case-names Minimal]:
```

```
    assumes \(\exists k . P(k:: n a t)\)
    and \(\wedge K . P K \Longrightarrow(\bigwedge k . k<K \Longrightarrow \neg(P k)) \Longrightarrow Q\)
    shows \(Q\)
proof -
    from assms minimal-witness-ex show ?thesis by metis
qed
end
theory ListTools
imports Main
begin
definition is-first :: ' \(a \Rightarrow\) 'a list \(\Rightarrow\) bool
where
    \(i s\)-first \(x u=(\exists v . u=[x] @ v)\)
definition is-last \(::\) ' \(a \Rightarrow\) 'a list \(\Rightarrow\) bool
where
    is-last \(x u=(\exists v \cdot u=v @[x])\)
```

definition is-prefix :: 'a list \Rightarrow 'a list \Rightarrow bool
where
is-prefix $u v=(\exists w . u @ w=v)$
definition is-proper-prefix :: 'a list \Rightarrow 'a list \Rightarrow bool
where
is-proper-prefix $u v=(\exists w . w \neq[] \wedge u @ w=v)$
lemma is-prefix-eq-proper-prefix: is-prefix a $b=(a=b \vee$ is-proper-prefix a $b)$ by (metis append-Nil2 is-prefix-def is-proper-prefix-def)
lemma is-proper-prefix-eq-prefix: is-proper-prefix a $b=(a \neq b \wedge i s$-prefix a b) by (metis append-self-conv is-prefix-eq-proper-prefix is-proper-prefix-def)
definition is-suffix :: 'a list \Rightarrow 'a list \Rightarrow bool
where
$i s$-suffix $u v=(\exists w . w @ u=v)$
definition is-proper-suffix :: 'a list \Rightarrow 'a list \Rightarrow bool
where
is-proper-suffix $u v=(\exists w . w \neq[] \wedge w @ u=v)$
lemma is-suffix-eq-proper-suffix: is-suffix a $b=(a=b \vee$ is-proper-suffix a $b)$ by (metis append-Nil is-proper-suffix-def is-suffix-def)
lemma is-proper-suffix-eq-suffix: is-proper-suffix a $b=(a \neq b \wedge i s$-suffix a $b)$ by (metis is-proper-suffix-def is-suffix-eq-proper-suffix self-append-conv2)
lemma is-prefix-unsplit: is-prefix $u a \Longrightarrow u @($ drop (length $u) a)=a$

```
    by (metis append-eq-conv-conj is-prefix-def)
lemma le-take-same: \(i \leq j \Longrightarrow\) take \(j a=\) take \(j b \Longrightarrow\) take i \(a=\) take ib
    by (metis min.absorb1 take-take)
lemma is-first-drop-length:
    assumes \(k \leq\) length \(a\)
    and \(k>\) length \(u\)
    and \(v=X \# w\)
    and take \(k a=\) take \(k(u @ v)\)
    shows is-first \(X\) (drop (length u) a)
proof -
    let ? \(d=k-\) length \(u\)
    from assms have pos- \(d^{\prime}: ? d>0\) by auto
    from assms have take- \(d^{\prime}-v\) : take ?d (drop (length u) a) \(=\) take ?d \(v\)
        by (metis append-eq-conv-conj drop-take)
    then have take \(1(\) drop (length \(u)\) a) = take \(1 v\)
        by (metis One-nat-def Suc-leI le-take-same pos-d')
    then have take 1 (drop (length \(u\) ) a) \(=[X]\)
        by (simp add: assms)
    then show ?thesis
        by (metis append-take-drop-id is-first-def)
qed
lemma is-first-cons: is-first \(x(y \# y s)=(x=y)\)
    by (auto simp add: is-first-def)
lemma list-all-pos-neg-ex: list-all \(P D \Longrightarrow\) (list-all \(Q D) \Longrightarrow\)
            \(\exists k . k<\) length \(D \wedge P(D!k) \wedge \neg(Q(D!k))\)
using list-all-length by blast
lemma split-list-at: \(k<\) length \(D \Longrightarrow D=(\) take \(k D) @[D!k] @(d r o p(S u c k) D)\)
    by (metis append-Cons append-Nil id-take-nth-drop)
lemma take-eq-take-append: \(i \leq j \Longrightarrow j \leq\) length \(a \Longrightarrow \exists u\). take \(j a=\) take \(i a\)
@ u
    by (metis le-Suc-ex take-add)
lemma is-proper-suffix-length-cmp: is-proper-suffix a \(b \Longrightarrow\) length \(a<\) length \(b\)
by (metis add-diff-cancel-right' append-Nil append-eq-append-conv
    diff-is-0-eq is-proper-suffix-def leI length-append list.size(3))
end
theory Derivations
imports CFG ListTools InductRules
begin
```

```
context CFG begin
lemma [simp]: is-terminal t > is-symbol t
    by (auto simp add: is-terminal-def is-symbol-def)
lemma [simp]: is-sentence [] by (auto simp add: is-sentence-def)
lemma [simp]: is-word [] by (auto simp add: is-word-def)
lemma [simp]: is-word u\Longrightarrow is-sentence u
    by (induct u, auto simp add: is-word-def is-sentence-def)
definition leftderives1 :: sentence }=>\mathrm{ sentence }=>\mathrm{ bool
where
    leftderives1 u v=
        (\exists x y N \alpha.
            u=x@ @N]@y
            \wedgev=x@ @@y
            is-word x
            ^is-sentence y
            \wedge (N,\alpha)\in\Re)
lemma leftderives1-implies-derives1[simp]: leftderives1 u v \Longrightarrow derives1 u v
    apply (auto simp add: leftderives1-def derives1-def)
    apply (rule-tac x=x in exI)
    apply (rule-tac x=y in exI)
    apply (rule-tac x=N in exI)
    by auto
definition leftderivations1 :: (sentence }\times\mathrm{ sentence) set
where
    leftderivations1 ={(u,v)|uv. leftderives1 uv}
lemma [simp]:leftderivations1 \subseteq derivations1
    by (auto simp add: leftderivations1-def derivations1-def)
definition leftderivations :: (sentence }\times\mathrm{ sentence) set
where
    leftderivations = leftderivations1`*
lemma rtrancl-subset-implies: a\subseteqb\Longrightarrowa\subseteqb`* by blast
lemma leftderivations-subset-derivations[simp]:leftderivations }\subseteq\mathrm{ derivations
    apply (simp add: leftderivations-def derivations-def)
    apply (rule rtrancl-subset-rtrancl)
    apply (rule rtrancl-subset-implies)
    by simp
definition leftderives :: sentence }=>\mathrm{ sentence }=>\mathrm{ bool
```

```
where
    leftderives u v = ((u,v) \in leftderivations )
lemma leftderives-implies-derives[simp]: leftderives u v\Longrightarrow derives u v
    apply (auto simp add: leftderives-def derives-def)
    by (rule subsetD[OF leftderivations-subset-derivations])
definition is-leftderivation :: sentence }=>\mathrm{ bool
where
    is-leftderivation }u=\mathrm{ leftderives [S] u
lemma leftderivation-implies-derivation[simp]:
    is-leftderivation u\Longrightarrowis-derivation u
    by (simp add: is-leftderivation-def is-derivation-def)
lemma leftderives-ref[simp]:leftderives u u
    by (auto simp add: leftderives-def leftderivations-def)
lemma leftderives1-implies-leftderives[simp]:leftderives1 a b \Longrightarrowleftderives a b
    by (auto simp add: leftderives-def leftderivations-def leftderivations1-def)
lemma leftderives-trans:leftderives a b leftderives b c leftderives a c
    by (auto simp add: leftderives-def leftderivations-def)
lemma leftderives1-eq-leftderivations1: leftderives1 x y = ((x,y) \in leftderiva-
tions1)
    by (simp add: leftderivations1-def)
lemma leftderives-induct[consumes 1, case-names Base Step]:
    assumes derives:leftderives a b
    assumes Pa: Pa
    assumes induct: \bigwedgeyz.leftderives a y\Longrightarrowleftderives1 y z\LongrightarrowPy\LongrightarrowPz
    shows P b
proof -
    note rtrancl-lemma = rtrancl-induct[where }a=a\mathrm{ and b=b and r=left-
derivations1 and P=P]
    from derives Pa induct rtrancl-lemma show P b
        by (metis leftderives-def leftderivations-def leftderives1-eq-leftderivations1)
qed
end
context CFG begin
lemma derives1-implies-derives[simp]:derives1 a b\Longrightarrow derives a b
    by (auto simp add: derives-def derivations-def derivations1-def)
lemma derives-trans: derives a b derives b c \Longrightarrow derives a c
```

```
    by (auto simp add: derives-def derivations-def)
lemma derives1-eq-derivations1: derives1 x y = ((x,y) \in derivations1)
    by (simp add: derivations1-def)
lemma derives-induct[consumes 1, case-names Base Step]:
    assumes derives: derives a b
    assumes Pa: P a
    assumes induct: \bigwedgeyz. derives a y\Longrightarrow derives1 y z\LongrightarrowPy\LongrightarrowPz
    shows P b
proof -
    note rtrancl-lemma = rtrancl-induct[where }a=a\mathrm{ and }b=b\mathrm{ and r=deriva-
tions1 and P=P
    from derives Pa induct rtrancl-lemma show P b
        by (metis derives-def derivations-def derives1-eq-derivations1)
qed
end
context CFG begin
definition Derives1 :: sentence }=>\mathrm{ nat }=>\mathrm{ rule }=>\mathrm{ sentence }=>\mathrm{ bool
where
    Derives1 u irv=
    (\exists x y N \alpha.
        u=x@ @ N]@y
        \wedgev=x@ <@y
        ^is-sentence x
        ^is-sentence y
        \wedge (N,\alpha)\in\mathfrak{R}
        \wedger=(N,\alpha)\wedgei= length x)
lemma Derives1-split:
    Derives1 u ir v\Longrightarrow\exists x y.u=x@ [fstr]@y^v=x@ (snd r)@y^length
x=i
by (metis Derives1-def fst-conv snd-conv)
lemma Derives1-implies-derives1: Derives1 u i r v\Longrightarrow derives1 u v
    by (auto simp add: Derives1-def derives1-def)
lemma derives1-implies-Derives1:derives1 uv\Longrightarrow\exists ir.Derives1 u irv
    by (auto simp add: Derives1-def derives1-def)
lemma Derives1-unique-dest: Derives1 u i r v \Longrightarrow Derives1 u ir w \Longrightarrowv v=w
    by (auto simp add: Derives1-def derives1-def)
lemma Derives1-unique-src: Derives1 u ir w C Derives1 v ir w \Longrightarrowu=v
    by (auto simp add: Derives1-def derives1-def)
```

```
type-synonym derivation \(=(\) nat \(\times\) rule \()\) list
fun Derivation \(::\) sentence \(\Rightarrow\) derivation \(\Rightarrow\) sentence \(\Rightarrow\) bool
where
    Derivation a [] \(b=(a=b)\)
\(\mid\) Derivation \(a(d \# D) b=(\exists x\). Derives1 \(a(f s t d)(\) snd \(d) x \wedge\) Derivation \(x D b)\)
lemma Derivation-implies-derives: Derivation a \(D b \Longrightarrow\) derives a \(b\)
proof (induct D arbitrary: a b)
    case Nil thus ?case
        by (simp add: derives-def derivations-def)
next
    case (Cons d D)
        note ihyps \(=\) this
        from ihyps have \(\exists x\). Derives1 \(a(f s t d)(s n d d) x \wedge\) Derivation \(x D b\) by auto
        then obtain \(x\) where Derives1 \(a(f s t d)(s n d d) x\) and \(x b\) : Derivation x \(D b\)
by blast
    with Derives1-implies-derives1 have d1: derives a \(x\) by auto
    from ihyps \(x b\) have d2:derives \(x b\) by simp
    show derives \(a b\) by (rule derives-trans[OF d1 d2])
qed
lemma Derivation-Derives 1: Derivation a \(S y \Longrightarrow\) Derives1 y ir \(z \Longrightarrow\) Derivation
\(a(S @[(i, r)]) z\)
proof (induct \(S\) arbitrary: a y zir)
    case Nil thus?case by simp
next
    case (Cons s \(S\) ) thus ?case
        by (metis Derivation.simps(2) append-Cons)
qed
lemma derives-implies-Derivation: derives \(a b \Longrightarrow \exists\). Derivation a \(D b\)
proof (induct rule: derives-induct)
    case Base
    show ?case by (rule exI \([\) where \(x=[]]\), simp)
next
    case (Step y \(z\) )
    note ihyps \(=\) this
    from ihyps obtain \(D\) where ay: Derivation a \(D y\) by blast
    from ihyps derives1-implies-Derives1 obtain ir where yz: Derives1 y ir \(z\) by
blast
    from Derivation-Derives1 [OF ay \(y z]\) show ?case by auto
qed
lemma Derives1-take: Derives1 a irb take i a take ib
    by (auto simp add: Derives1-def)
lemma Derives1-drop: Derives1 a i r \(b \Longrightarrow d r o p(S u c i) a=d r o p(i+\) length (snd
```

```
r)) b
    by (auto simp add: Derives1-def)
lemma Derives1-bound: Derives1 a ir b \Longrightarrowi< length a
    by (auto simp add: Derives1-def)
lemma Derives1-length: Derives1 a i r b \Longrightarrow length b = length a + length (snd r)
- 1
    by (auto simp add: Derives1-def)
definition leftmost :: nat }=>\mathrm{ sentence }=>\mathrm{ bool
where
    leftmost is =(i< length s ^ is-word (take i s)^is-nonterminal (s!i))
lemma set-take: set (take n s)={s!i|i.i<n\wedgei<length s}
proof (cases n \leq length s)
    case True thus ?thesis
    by (subst List.nth-image[symmetric], auto)
next
    case False thus ?thesis
        apply (subst set-conv-nth)
        by (metis less-trans linear not-le take-all)
qed
lemma list-all-take: list-all P (take n s)=(\forall i. i<n\wedge i< length s\longrightarrowP(s!
i))
    by (auto simp add: set-take list-all-iff)
lemma is-sentence-concat:is-sentence (x@y)=(is-sentence x ^ is-sentence y)
    by (auto simp add: is-sentence-def)
lemma is-sentence-cons: is-sentence (x#xs)=(is-symbol x ^ is-sentence xs)
    by (auto simp add: is-sentence-def)
lemma rule-nonterminal-type[simp]:(N,\alpha)\in\mathfrak{R \Longrightarrowis-nonterminal N}
    apply (insert validRules)
    by (auto simp add: is-nonterminal-def)
lemma rule-\alpha-type[simp]:(N,\alpha)\in\Re \ is-sentence \alpha
    apply (insert validRules)
    by (auto simp add: is-sentence-def is-symbol-def list-all-iff is-terminal-def is-nonterminal-def)
lemma [simp]: is-nonterminal N\Longrightarrow is-symbol N
    by (simp add: is-symbol-def)
lemma Derives1-sentence1[elim]: Derives1 a i r b \Longrightarrow is-sentence a
    by (auto simp add: Derives1-def is-sentence-cons is-sentence-concat)
lemma Derives1-sentence2[elim]: Derives1 a i r b c is-sentence b
```

```
    by (auto simp add: Derives1-def is-sentence-cons is-sentence-concat)
lemma [elim]: Derives1 a ir b\Longrightarrowr\in\mathfrak{R}
    using Derives1-def by auto
lemma is-sentence-symbol: is-sentence a\Longrightarrowi< length a \Longrightarrow is-symbol (a!i)
    by (simp add: is-sentence-def list-all-iff)
lemma is-symbol-distinct: is-symbol }x\Longrightarrow\mathrm{ is-terminal }x\not=\mathrm{ is-nonterminal }
    apply (insert disjunct-symbols)
    apply (auto simp add: is-symbol-def is-terminal-def is-nonterminal-def)
    done
lemma is-terminal-nonterminal: is-terminal x > is-nonterminal x Calse
    by (metis is-symbol-def is-symbol-distinct)
lemma Derives1-leftmost:
    assumes Derives1 a i r b
    shows }\existsj\mathrm{ . leftmost j a ^j < i
proof -
    let ?J = {j.j < length a ^ is-nonterminal ( a!j)}
    let ?M = Min?J
    from assms have J1:i \in?J
        apply (auto simp add: Derives1-def is-nonterminal-def)
        by (metis (mono-tags, lifting) prod.simps(2) validRules)
    have J2:finite ?J by auto
    note J = J1 J2
    from J have M1: ?M \in ?J by (rule-tac Min-in, auto)
    {
        fix }
        assume j\in?.J
        with J have ?M \leq j by auto
    }
    note M3 = this[OF J1]
    from assms have a-sentence: is-sentence a by (simp add: Derives1-sentence1)
    have is-word: is-word (take ?M a)
        apply (auto simp add: is-word-def list-all-take)
        proof -
            fix i
            assume i-less-M:i<?M
        assume i-inbounds: i< length a
        show is-terminal (a!i)
        proof(cases is-terminal (a!i))
            case True thus ?thesis by auto
        next
            case False
            then have is-nonterminal ( }a!i
            using i-inbounds a-sentence is-sentence-symbol is-symbol-distinct by blast
            then have i\in?J by (metis i-inbounds mem-Collect-eq)
```

```
            then have ?M < i by (metis J2 Min-le i-less-M leD)
            then have False by (metis i-less-M less-asym')
            then show ?thesis by auto
        qed
    qed
    show ?thesis
    apply (rule-tac exI[where x=?M])
    apply (simp add: leftmost-def)
    by (metis (mono-tags, lifting) M1 M3 is-word mem-Collect-eq)
qed
lemma Derivation-leftmost: }D\not=[]\Longrightarrow\mathrm{ Derivation a D b # i. leftmost i a
    apply (case-tac D)
    apply (auto)
    apply (metis Derives1-leftmost)
    done
lemma nonword-has-nonterminal:
    is-sentence a\Longrightarrow \ (is-word a)\Longrightarrow\existsk.k<length a ^ is-nonterminal ( }a!k
    apply (auto simp add: is-sentence-def list-all-iff is-word-def)
    by (metis in-set-conv-nth is-symbol-distinct)
lemma leftmost-cons-nonterminal: is-nonterminal \(x \Longrightarrow\) leftmost \(0(x \# x s)\)
by (metis CFG.is-word-def CFG-axioms leftmost-def length-greater-0-conv list.distinct(1)
list-all-simps(2) nth-Cons-0 take-Cons')
lemma leftmost-cons-terminal:
is-terminal \(x \Longrightarrow\) leftmost \(i(x \# x s)=(i>0 \wedge\) leftmost \((i-1) x s)\)
by (metis Suc-diff-1 Suc-less-eq is-terminal-nonterminal is-word-def leftmost-def
length-Cons
list-all-simps(1) not-gr0 nth-Cons' take-Cons')
lemma is-nonterminal-cons-terminal:
is-terminal \(x \Longrightarrow k<\) length \((x \# a) \Longrightarrow\) is-nonterminal \(((x \# a)!k) \Longrightarrow\)
\(k>0 \wedge k-1<\) length \(a \wedge\) is-nonterminal \((a!(k-1))\)
by (metis One-nat-def Suc-leI is-terminal-nonterminal less-diff-conv2
list.size(4) nth-non-equal-first-eq)
lemma leftmost-exists:
is-sentence \(a \Longrightarrow k<\) length \(a \Longrightarrow\) is-nonterminal \((a!k) \Longrightarrow\)
\(\exists i\). leftmost \(i\) a \(\wedge i \leq k\)
proof (induct a arbitrary: \(k\) )
case Nil thus?case by auto
next
case (Cons xa)
show ? case
proof (cases is-nonterminal \(x\) )
```

```
    case True thus ?thesis
        apply(rule-tac exI[where x=0])
        apply (simp add: leftmost-cons-nonterminal)
        done
    next
    case False
    then have }x\mathrm{ : is-terminal }
        by (metis Cons.prems(1) is-sentence-cons is-symbol-distinct)
    note k=is-nonterminal-cons-terminal[OF x Cons(3) Cons(4)]
    with Cons have }\existsi\mathrm{ . leftmost i a ^i sk-1 by (metis is-sentence-cons)
    then show ?thesis
        apply (auto simp add: leftmost-cons-terminal[OF x])
        by (metis le-diff-conv2 Suc-leI add-Suc-right add-diff-cancel-right' k
        le-0-eq le-imp-less-Suc nat-le-linear)
    qed
qed
lemma nonword-leftmost-exists:
        is-sentence a \Longrightarrow (is-word a)\Longrightarrow\exists i. leftmost i a
    by (metis leftmost-exists nonword-has-nonterminal)
lemma leftmost-unaffected-Derives1: leftmost j a \Longrightarrow j<i\Longrightarrow Derives1 a i r b
\Longrightarrow ~ l e f t m o s t ~ j ~ b ~ b ~ b l
apply (simp add: leftmost-def)
proof -
    assume a1: j< length a ^ is-word (take j a)^ is-nonterminal (a!j)
    assume a2: j<i
    assume Derives1 a i r b
    then have f3: take i a= take ib
        by (metis Derives1-take)
    have f4:\n ss ssa. take (length (take n (ss::symbol list))) (ssa::symbol list) =
take (length ss) (take n ssa)
    by (metis length-take take-take)
    have f5: \ss. take j (ss::symbol list) = take i (take j ss)
    using a2 by (metis dual-order.strict-implies-order min.absorb2 take-take)
    have f6: length (take j a) = j
    using a1 by (metis dual-order.strict-implies-order length-take min.absorb2)
    then have f7: \n. min j n= length (take n (take ja))
    by (metis length-take)
    have f8: \bigwedgen ss. n= length (take n (ss::symbol list)) \vee length ss < n
    by (metis leI length-take min.absorb2)
    have f9: \ss. take j (ss::symbol list) = take j (take i ss)
    using f7 f6 f5 by (metis take-take)
    have f10: \ss n. length (ss::symbol list) \leqn\vee length (take n ss) = n
        using f8 by (metis dual-order.strict-implies-order)
    then have f11: \ss ssa. length (ss::symbol list) = length (take (length ss)
(ssa::symbol list)) \vee length (take (length ssa) ss) = length ssa
    by (metis length-take min.absorb2)
    have f12: \ss ssa n. take (length (ss::symbol list)) (ssa::symbol list) = take n
```

```
(take (length ss) ssa) \vee length (take n ss) = n
    using f10 by (metis min.absorb2 take-take)
    { assume }\negj<
        { assume }\negj<j\wedgei\not=
            moreover
            { assume length a\not=j^ length (take i a) \not=i
                    then have }\exists\mathrm{ ss.length (take (length (take i (take (length a) (ss::symbol
list)))) (take j ss))}\not=l=length (take i (take (length a) ss))
                    using f12 f11 f6 f5 f4 by metis
                then have \exists ss ssa. take (length (ss::symbol list)) (take j (ssa::symbol list))
F take (length ss) (take i (take (length a) ssa))
            using f11 by metis
            then have length b}\not=
                using f9 f4 f3 by metis }
        ultimately have length b}\not=
            using f7 f6 f5 f3 a1 by (metis length-take) }
    then have length b=j\longrightarrowj<j
        using a2 by metis }
    then have j< length b
        using f9 f8 f7 f6 f4 f3 by metis
    then show j<length b ^ is-word (take jb) ^ is-nonterminal (b!j)
    using f9 f3 a2 a1 by (metis nth-take)
qed
definition derivation-ge :: derivation }=>\mathrm{ nat }=>\mathrm{ bool
where
    derivation-ge D i=( }\foralld\in\mathrm{ set D. fst d }\geqi
lemma derivation-ge-cons: derivation-ge (d#D)i=(fst d\geqi^derivation-ge D
i)
    by (auto simp add: derivation-ge-def)
lemma derivation-ge-append:
    derivation-ge (D@E) i=(derivation-ge D i}^\mathrm{ derivation-ge E i)
    by (auto simp add: derivation-ge-def)
lemma leftmost-unaffected-Derivation:
    derivation-ge D (Suc i)\Longrightarrow leftmost i a \Longrightarrow Derivation a D b leftmost i b
proof (induct D arbitrary: a)
    case Nil thus ?case by auto
next
    case (Cons d D)
    then have \existsx. Derives1 a (fst d) (snd d) x ^ Derivation x D b by simp
    then obtain x where x1: Derives1 a (fst d) (snd d) x and x2: Derivation x D
b by blast
    with Cons have leftmost-x: leftmost i x
        apply (rule-tac leftmost-unaffected-Derives1[
            where }a=a\mathrm{ and }j=i\mathrm{ and }b=x\mathrm{ and }i=fst d and r=snd d]
        by (auto simp add:derivation-ge-def)
```

with Cons $x 2$ show ?case by (auto simp add: derivation-ge-def)
qed
lemma le-Derives1-take:
assumes $l e: i \leq j$
and D : Derives1 a jrb
shows take i $a=$ take $i b$
proof -
note Derives1-take[where $a=a$ and $i=j$ and $r=r$ and $b=b]$
with le D show ?thesis by (rule-tac le-take-same[where $i=i$ and $j=j$], auto)
qed
lemma Derivation-take: derivation-ge $D i \Longrightarrow$ Derivation a $D b \Longrightarrow$ take $i a=$ take i b
proof (induct D arbitrary: a b)
case Nil thus ?case by auto
next
case (Cons d D)
then have $\exists x$. Derives1 $a(f s t d)($ snd $d) x \wedge$ Derivation $x D b$
by simp
then obtain x where ax: Derives1 $a(f s t d)(s n d d) x$ and $x b$: Derivation $x D$ b by blast
from derivation-ge-cons Cons(2) have $d: i \leq f s t d$ and $D:$ derivation-ge $D i$ by auto
note take-i-xb $=\operatorname{Cons}(1)[$ OF $D x b]$
note take-i-ax $=l e$-Derives1-take[OF dax]
from take-i-xb take-i-ax show ?case by auto
qed
lemma leftmost-cons-less: $i<$ length $u \Longrightarrow$ leftmost $i(u @ v)=$ leftmost $i u$ by (auto simp add: leftmost-def nth-append)
lemma leftmost-is-nonterminal: leftmost $i u \Longrightarrow$ is-nonterminal ($u!i$) by (metis leftmost-def)
lemma is-word-is-terminal: $i<$ length $u \Longrightarrow$ is-word $u \Longrightarrow$ is-terminal $(u!i)$ by (metis is-word-def list-all-length)
lemma leftmost-append:
assumes leftmost: leftmost $i(u @ v)$
and is-word: is-word u
shows length $u \leq i$
proof (cases $i<$ length u)
case False thus ?thesis by auto
next
case True
with leftmost have leftmost i u using leftmost-cons-less[OF True] by simp
then have is-nonterminal: is-nonterminal ($u!i$) by (rule leftmost-is-nonterminal) note $i s$-terminal $=$ is-word-is-terminal[$O F$ True is-word $]$
note is-terminal-nonterminal[OF is-terminal is-nonterminal] then show ?thesis by auto
qed
lemma derivation-ge-empty[simp]: derivation-ge [] i
by (simp add: derivation-ge-def)
lemma leftmost-notword: leftmost $i a \Longrightarrow j>i \Longrightarrow \neg($ is-word (take $j a)$)
by (metis is-terminal-nonterminal is-word-def leftmost-def list-all-take)
lemma leftmost-unique: leftmost i a leftmost $j a \Longrightarrow i=j$
by (metis leftmost-def leftmost-notword linorder-neqE-nat)
lemma leftmost-Derives1: leftmost $i a \Longrightarrow$ Derives1 a j r $b \Longrightarrow i \leq j$
by (metis Derives1-leftmost leftmost-unique)
lemma leftmost-Derives1-propagate:
assumes leftmost: leftmost i a
and Derives1: Derives1 a $j r b$
shows $(i s$-word $b \wedge i=j) \vee(\exists k$. leftmost $k b \wedge i \leq k)$
proof -
from leftmost-Derives1[OF leftmost Derives1] have $i j: i \leq j$ by auto
show ?thesis
proof (cases is-word b)
case True show ?thesis
by (metis Derives 1 True ij le-neq-implies-less leftmost
leftmost-unaffected-Derives1 order-refl)
next
case False show ?thesis
by (metis (no-types, opaque-lifting) Derives1 Derives1-bound Derives1-sentence2
Derives1-take append-take-drop-id ij le-neq-implies-less leftmost leftmost-append leftmost-cons-less leftmost-def length-take min.absorb2 nat-le-linear nonword-leftmost-exists not-le)
qed
qed
lemma is-word-Derives1[elim]: is-word $a \Longrightarrow$ Derives1 a i r $b \Longrightarrow$ False
by (metis Derives1-leftmost is-terminal-nonterminal is-word-is-terminal leftmost-def)
lemma is-word-Derivation[elim]: is-word $a \Longrightarrow$ Derivation a $D b \Longrightarrow D=[]$
by (metis Derivation-leftmost is-terminal-nonterminal is-word-def leftmost-def list-all-length)
lemma leftmost-Derivation:
leftmost $i a \Longrightarrow$ Derivation a $D b \Longrightarrow j \leq i \Longrightarrow$ derivation-ge $D j$
proof (induct D arbitrary: $a b i j$)
case Nil thus?case by auto
next

```
    case (Cons d D)
    then have }\existsx\mathrm{ . Derives1 a (fst d) (snd d) x}\wedge Derivation x D b by aut
    then obtain x where ax:Derives1 a (fst d) (snd d) x and xb:Derivation x D b
by blast
    note ji = Cons(4)
    note i-fstd = leftmost-Derives1[OF Cons(2) ax]
    note disj = leftmost-Derives1-propagate[OF Cons(2) ax]
    thus ?case
    proof(induct rule: disjCases2)
        case 1
        with xb have D=[] by auto
        with 1 ji show ?case by (simp add: derivation-ge-def)
    next
        case 2
    then obtain k where k: leftmost kx and ik:i\leqk by blast
    note ge =Cons(1)[OF kxb, where j=j]
    from ji ik i-fstd ge show ?case
        by (simp add: derivation-ge-cons)
    qed
qed
lemma derivation-ge-list-all: derivation-ge D i =list-all (\lambda d. fst d \geqi) D
by (simp add: Ball-set derivation-ge-def)
lemma split-derivation-leftmost:
    assumes derivation-ge D i
    and }\neg(\mathrm{ derivation-ge D (Suc i))
    shows \existsEFr. D=E@[(i,r)]@F^derivation-ge E (Suc i)
proof -
    from assms have \exists k. k< length D ^fst (D!k)\geqi\wedge ᄀ(fst(D!k)\geqSuc i)
    by (metis derivation-ge-def in-set-conv-nth)
    then have }\existsk.k<length D\wedgefst(D!k)=i by aut
    then show ?thesis
    proof(induct rule: ex-minimal-witness)
        case (Minimal k)
            then have k-len: k< length D and k-i: fst (D!k) =i by auto
            let ?E = take k D
            let ?r = snd (D!k)
            let ?F = drop (Suc k) D
            note split = split-list-at[OF k-len]
            from k-i have D-k:D!k=(i,?r) by auto
            show ?case
                apply (rule exI[where x=?E])
                    apply (rule exI[where }x=?F]\mathrm{ )
                    apply (rule exI[where x=?r])
                apply (subst D-k[symmetric])
                apply (rule conjI)
                apply (rule split)
                by (metis (mono-tags, lifting) Minimal.hyps(2) Suc-leI assms(1)
```

```
derivation-ge-list-all le-neq-implies-less list-all-length list-all-take)
```

 qed
 qed
lemma Derives1-Derives1-swap:
assumes $i<j$
and Derives1 ajpb
and Derives1 biqc
shows $\exists b^{\prime}$. Derives1 a iq $b^{\prime} \wedge$ Derives1 $b^{\prime}(j-1+$ length (snd q)) pc
proof -
from Derives1-split[OF assms(2)] obtain a1 a2 where
a-src: $a=a 1$ @ $[f s t p]$ @ $a 2$ and a-dest: $b=a 1$ @ snd p @ $a 2$
and a1-len: length $a 1=j$ by blast
note $a=$ this
from a have is-sentence-a1: is-sentence a1
using Derives1-sentence2 assms(2) is-sentence-concat by blast
from a have is-sentence-a2: is-sentence a2
using Derives1-sentence2 assms(2) is-sentence-concat by blast
from a have is-symbol-fst-p: is-symbol (fst p)
by (metis Derives1-sentence1 assms(2) is-sentence-concat is-sentence-cons)
from Derives1-split[OF assms(3)] obtain b1 b2 where
b-src: $b=b 1$ @ $[f s t q]$ @ b2 and b-dest: $c=b 1$ @ snd q @ b2
and b1-len: length $b 1=i$ by blast
have a-take-j: a1 = take j a by (metis a1-len a-src append-eq-conv-conj)
have b-take-i: b1 @ $[$ fst q] =take (Suc i) b
by (metis append-assoc append-eq-conv-conj b1-len b-src length-append-singleton)
from a-take-j b-take-i take-eq-take-append[where $j=j$ and $i=S u c i$ and $a=a]$
have $\exists u . a 1=(b 1$ @ $[f$ st $q])$ @ u
by (metis le-iff-add Suc-leI a1-len a-dest append-eq-conv-conj assms(1) take-add)
then obtain u where $u 1: a 1=(b 1 @[f s t q]) @ u$ by blast
then have $j-i-u: j=i+1+$ length u
using Suc-eq-plus1 a1-len b1-len length-append length-append-singleton by auto
from $u 1$ is-sentence-a1 have is-sentence-b1-u: is-sentence b1 $\wedge i$ s-sentence u
using is-sentence-concat by blast
have $u 2$: b2 $=u$ @ snd p @ a2 by (metis a-dest append-assoc b-src same-append-eq
u1)
let $? b=b 1$ @ $(s n d q) @ u @[f s t p] @ a 2$
from assms have q-dom: $q \in \mathfrak{R}$ by auto
have $a-b^{\prime}$: Derives1 a i q ? b
apply (subst Derives1-def)
apply (rule exI[where $x=b 1]$)
apply (rule exI $[$ where $x=u @[f s t ~ p] @ a 2]$)
apply (rule exI[where $x=f s t ~ q]$)
apply (rule exI[where $x=$ snd $q]$)
apply (auto simp add: b1-len is-sentence-cons is-sentence-concat
is-sentence-a2 is-symbol-fst-p is-sentence-b1-u a-src u1 q-dom)
done

```
from assms have \(p\)-dom: \(p \in \mathfrak{R}\) by auto
have is-sentence-snd-q: is-sentence (snd q)
    using Derives1-sentence2 \(a-b^{\prime}\) is-sentence-concat by blast
    have \(b^{\prime}-c\) : Derives1 \(? b(j-1+\) length \((\) snd \(q)) p c\)
    apply (subst Derives1-def)
    apply (rule exI[where \(x=b 1\) @ (snd q) @u])
    apply (rule exI[where \(x=a 2]\) )
    apply (rule exI[where \(x=f s t p]\) )
    apply (rule exI[where \(x=\) snd \(p]\) )
    apply (auto simp add: is-sentence-concat is-sentence-b1-u is-sentence-a2 p-dom
        is-sentence-snd-q b-dest u2 b1-len j-i-u)
    done
show ?thesis
    apply (rule exI[where \(x=? b]\) )
    apply (rule conjI)
    apply (rule \(a-b^{\prime}\) )
    apply (rule \(b^{\prime}-c\) )
    done
qed
definition derivation-shift \(::\) derivation \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) derivation
where
    derivation-shift \(D\) left right \(=\operatorname{map}(\lambda d .(\) fst \(d-l e f t+r i g h t\), snd \(d)) D\)
lemma derivation-shift-empty[simp]: derivation-shift [] left right \(=[]\)
    by (auto simp add: derivation-shift-def)
lemma derivation-shift-cons[simp]:
    derivation-shift \((d \# D)\) left right \(=((\) fst \(d-\) left + right, snd \(d) \#(\) derivation-shift
D left right))
by (simp add: derivation-shift-def)
lemma Derivation-append: Derivation \(a(D @ E) c=(\exists\) b. Derivation a \(D b \wedge\) Derivation b E c)
proof (induct \(D\) arbitrary: a c \(E\) )
    case Nil thus ?case by auto
next
    case (Cons d D) thus ?case by auto
qed
lemma Derivation-implies-append:
Derivation a \(D b \Longrightarrow\) Derivation \(b E c \Longrightarrow\) Derivation \(a(D @ E) c\) using Derivation-append by blast
lemma Derivation-swap-single-end-to-front:
\(i<j \Longrightarrow\) derivation-ge \(D j \Longrightarrow\) Derivation a \((D @[(i, r)]) b \Longrightarrow\) Derivation a \(((i, r) \#(\) derivation-shift \(D 1(\) length \((\) snd \(r)))) b\)
proof \((\) induct \(D\) arbitrary: a)
case Nil thus?case by auto
```

```
next
    case (Cons d D)
    from Cons have \exists c. Derives1 a (fst d) (snd d) c^Derivation c (D@ @ (i,r)])
b
    by simp
    then obtain c where ac: Derives1 a (fst d) (snd d) c
    and cb: Derivation c(D @ [(i,r)])b by blast
    from Cons(3) have D-j: derivation-ge D j by (simp add: derivation-ge-cons)
    from Cons(1)[OF Cons(2) D-j cb, simplified]
    obtain x where cx: Derives1 c ir x and
        xb: Derivation x (derivation-shift D 1 (length (snd r))) b by auto
    have i-fst-d: i< fst d using Cons derivation-ge-cons by auto
    from Derives1-Derives1-swap[OF i-fst-d ac cx]
    obtain b' where ab': Derives1 a ir b}\mp@subsup{b}{}{\prime}\mathrm{ and
        b}x\mathrm{ : Derives1 b' (fst d - 1 + length (snd r)) (snd d) x by blast
    show ?case using a\mp@subsup{b}{}{\prime}}\mp@subsup{b}{}{\prime}xxb\mathrm{ by auto
qed
lemma Derivation-swap-single-mid-to-front:
    assumes i<j
    and derivation-ge D j
    and Derivation a (D@[(i,r)]@E)b
    shows Derivation a ((i,r)#((derivation-shift D 1 (length (snd r)))@E))b
proof -
    from assms have \exists x. Derivation a (D@[(i,r)]) x^Derivation x E b
        using Derivation-append by auto
    then obtain x where ax: Derivation a (D@[(i,r)]) x and xb: Derivation x E b
        by blast
    with assms have Derivation a ((i,r)#(derivation-shift D 1 (length (snd r)))) x
        using Derivation-swap-single-end-to-front by blast
    then show ?thesis using Derivation-append }xb\mathrm{ by auto
qed
lemma length-derivation-shift[simp]:
    length(derivation-shift D left right) = length D
    by (simp add: derivation-shift-def)
definition LeftDerives1 :: sentence }=>\mathrm{ nat }=>\mathrm{ rule }=>\mathrm{ sentence }=>\mathrm{ bool
where
    LeftDerives1 u ir v = (leftmost i u ^Derives1 u ir v)
lemma LeftDerives1-implies-leftderives1: LeftDerives1 u ir v\Longrightarrowleftderives1 u v
by (metis Derives1-def LeftDerives1-def append-eq-conv-conj leftderives1-def
    leftmost-def)
lemma leftmost-Derives1-leftderives:
    leftmost i a M Derives1 a ir b Cleftderives b c leftderives a c
using LeftDerives1-def LeftDerives1-implies-leftderives1
    leftderives1-implies-leftderives leftderives-trans by blast
```

```
theorem Derivation-implies-leftderives-gen:
    Derivation a D (u@v)\Longrightarrow is-word u \Longrightarrow (\existsw.
        leftderives a (u@w)^
        (v=[]\longrightarroww=[])^
        (\forallX. is-first X v}\longrightarrow\mathrm{ is-first X w))
proof (induct length D arbitrary: D a u v)
    case 0
        then have a=u@v by auto
        thus ?case by (rule-tac x=v in exI, auto)
next
    case (Suc n)
        from Suc have D\not=[] by auto
        with Suc Derivation-leftmost have \exists i. leftmost i a by auto
        then obtain i}\mathrm{ where i
    show ?case
    proof (cases derivation-ge D (Suc i))
            case True
                with Suc have leftmost:leftmost i(u@v)
                by (rule-tac leftmost-unaffected-Derivation[OF True i], auto)
            have length-u:length u}\leq
                using leftmost-append[OF leftmost Suc(4)].
            have take-Suc: take (Suc i) a = take (Suc i) (u@v)
                using Derivation-take[OF True Suc(3)].
            with length-u have is-prefix-u: is-prefix u a
                        by (metis append-assoc append-take-drop-id dual-order.strict-implies-order
                    is-prefix-def le-imp-less-Suc take-all take-append)
            have a:u@ drop (length u) a=a
                using is-prefix-unsplit[OF is-prefix-u] .
            from take-Suc have length-take-Suc: length (take (Suc i) a)=Suc i
                by (metis Suc-leI i leftmost-def length-take min.absorb2)
            have v:v\not=[]
            proof(cases v=[])
                case False thus ?thesis by auto
            next
                case True
                with length-u have right: length(take(Suc i) (u@v)) = length u by simp
                note left = length-take-Suc
                from left right take-Suc have Suc i= length u by auto
                with length-u show ?thesis by auto
            qed
            then have \exists X w.v=X#w by (cases v, auto)
            then obtain X w where v:v=X#w by blast
            have is-first-X: is-first X (drop (length u) a)
                apply (rule-tac is-first-drop-length[where v=v and w=w and k=Suc i])
                    apply (simp-all add: take-Suc v)
                        apply (metis Suc-leI i leftmost-def)
                    apply (insert length-u)
```

```
            apply arith
            done
            show ?thesis
            apply (rule exI[where }x=drop (length u) a]),
            by (simp add: a v is-first-cons is-first-X)
    next
        case False
        have Di: derivation-ge D i
        using leftmost-Derivation[OF i Suc(3), where j=i, simplified].
        from split-derivation-leftmost[OF Di False]
    obtain EFr where D-split: D=E @ [(i,r)] @ F
        and E-Suc:derivation-ge E (Suc i) by auto
    let ?D = (derivation-shift E 1 (length (snd r)))@F
    from D-split
    have Derivation a ((i,r) # ?D) (u@ v)
    using Derivation-swap-single-mid-to-front E-Suc Suc.prems(1) lessI by blast
    then have \exists y. Derives1 a i r y ^ Derivation y ?D (u@ v) by simp
    then obtain y where ay:Derives1 a i r y
        and yuv: Derivation y?D (u@ v) by blast
    have length- D': length ?D = n using D-split Suc.hyps(2) by auto
    from Suc(1)[OF length-D'[symmetric] yuv Suc(4)]
    obtain w where leftderives y (u@w) and (v=[]\longrightarroww=[])
            and }\forallX\mathrm{ . is-first X v}\longrightarrow is-first X w by blas
        then show ?thesis using ay i leftmost-Derives1-leftderives by blast
    qed
qed
lemma derives-implies-leftderives-gen: derives }a(u@v)\Longrightarrow is-word u\Longrightarrow(\exists w
        leftderives a (u@w)^
        (v=[]\longrightarroww=[])^
        ( }\forall\mathrm{ X. is-first }Xv\longrightarrow\mathrm{ is-first X w))
using Derivation-implies-leftderives-gen derives-implies-Derivation by blast
lemma derives-implies-leftderives: derives \(a b \Longrightarrow\) is-word \(b \Longrightarrow\) leftderives \(a b\) using derives-implies-leftderives-gen by force
fun LeftDerivation \(::\) sentence \(\Rightarrow\) derivation \(\Rightarrow\) sentence \(\Rightarrow\) bool where
LeftDerivation \(a[] b=(a=b)\)
\(\mid\) LeftDerivation \(a(d \# D) b=(\exists\) x. LeftDerives1 \(a(f s t d)(\) snd \(d) x \wedge\) LeftDerivation \(x D\) b)
lemma LeftDerives1-implies-Derives1: LeftDerives1 a ir b Derives1 a irb by (metis LeftDerives1-def)
lemma LeftDerivation-implies-Derivation:
LeftDerivation a \(D b \Longrightarrow\) Derivation a \(D b\)
proof (induct D arbitrary: a)
case (Nil) thus ?case by simp
```

```
next
    case (Cons d D)
    thus ?case
    using CFG.LeftDerivation.simps(2) CFG-axioms Derivation.simps(2)
        LeftDerives1-implies-Derives1 by blast
qed
```

lemma LeftDerivation-implies-leftderives: LeftDerivation a $D b \Longrightarrow$ leftderives a b
proof (induct D arbitrary: a b)
case Nil thus?case by simp
next
case (Cons d D)
note ihyps $=$ this
from ihyps have $\exists x$. LeftDerives1 $a(f s t d)($ snd d) $x \wedge$ LeftDerivation x $D b$
by auto
then obtain x where LeftDerives1 $a(f s t d)(s n d d) x$ and $x b$: LeftDerivation
$x D$ by blast
with LeftDerives1-implies-leftderives1 have d1: leftderives a x by auto
from ihyps $x b$ have d2:leftderives $x b$ by simp
show leftderives $a b$ by (rule leftderives-trans[OF d1 d2])
qed
lemma leftmost-witness[simp]: leftmost (length $x)(x @(N \# y))=($ is-word $x \wedge$
is-nonterminal N)
by (auto simp add: leftmost-def)
lemma leftderives1-implies-LeftDerives1:
assumes leftderives1: leftderives1 $u v$
shows $\exists i r$. LeftDerives1 uirv
proof -
from leftderives1 have
$\exists x y N \alpha . u=x @[N] @ y \wedge v=x @ \alpha @ y \wedge i s$-word $x \wedge$ is-sentence $y \wedge$
$(N, \alpha) \in \mathfrak{R}$
by (simp add: leftderives1-def)
then obtain x y $N \alpha$ where
$u: u=x @[N] @ y$ and
$v: v=x @ \alpha @ y$ and
$x: i s$-word x and
y :is-sentence y and
$r:(N, \alpha) \in \mathfrak{R}$
by blast
show ?thesis
apply (rule-tac $x=$ length x in $e x I$)
apply (rule-tac $x=(N, \alpha)$ in $e x I)$
apply (auto simp add: LeftDerives1-def)
apply (simp add: leftmost-def x u rule-nonterminal-type $[$ OF r])
apply (simp add: Derives1-def $u v$)
apply (rule-tac $x=x$ in $e x I$)
apply (rule-tac $x=y$ in $e x I$)

```
    apply (auto simp add: x y r)
    done
qed
lemma LeftDerivation-LeftDerives1:
    LeftDerivation a S y C LeftDerives1 y ir z\Longrightarrow LeftDerivation a (S@[(i,r)])z
proof (induct S arbitrary: a y z i r)
    case Nil thus?case by simp
next
    case (Cons s S) thus ?case
        by (metis LeftDerivation.simps(2) append-Cons)
qed
lemma leftderives-implies-LeftDerivation:leftderives a b \Longrightarrow\exists D. LeftDerivation
a D b
proof (induct rule: leftderives-induct)
    case Base
    show ?case by (rule exI[where x=[]], simp)
next
    case (Step y z)
    note ihyps = this
    from ihyps obtain D where ay: LeftDerivation a D y by blast
    from ihyps leftderives1-implies-LeftDerives1 obtain i r where yz: LeftDerives1
y irz by blast
    from LeftDerivation-LeftDerives1[OF ay yz] show ?case by auto
qed
lemma LeftDerivation-append:
    LeftDerivation a (D@E)c=( }\exists\textrm{b}\mathrm{ . LeftDerivation a D b ^LeftDerivation b E c)
proof(induct D arbitrary: a c E)
    case Nil thus ?case by auto
next
    case (Cons d D) thus ?case by auto
qed
lemma LeftDerivation-implies-append:
    LeftDerivation a D b\Longrightarrow LeftDerivation b E c L" LeftDerivation a (D@E)c
using LeftDerivation-append by blast
lemma Derivation-unique-dest: Derivation a D b \Longrightarrow Derivation a D c \Longrightarrowb=c
    apply (induct D arbitrary: a b c)
    apply auto
    using Derives1-unique-dest by blast
lemma Derivation-unique-src: Derivation a D c\LongrightarrowDerivation b D c \Longrightarrowa=b
    apply (induct D arbitrary: a b c)
    apply auto
    using Derives1-unique-src by blast
```

```
lemma LeftDerives1-unique: LeftDerives1 a ir b C LeftDerives1 a j s b \Longrightarrowi=
j^r=s
using Derives1-def LeftDerives1-def leftmost-unique by auto
lemma leftlang: }\mathcal{L}={v|v.is-word v\wedge is-leftderivation v }
by (metis (no-types, lifting) CFG.is-derivation-def CFG.is-leftderivation-def
    CFG.leftderivation-implies-derivation CFG-axioms Collect-cong
    L}-def derives-implies-leftderives
lemma leftprefixlang: }\mp@subsup{\mathcal{L}}{P}{}={u|uv.is-word u ^ is-leftderivation(u@v)
```



```
using derives-implies-leftderives-gen is-derivation-def is-leftderivation-def apply
blast
using leftderivation-implies-derivation by blast
lemma derives-implies-leftderives-cons:
    is-word }a\Longrightarrow\mathrm{ derives }u(a@X#b)\Longrightarrow\existsc.leftderives u (a@X#c
by (metis append-Cons append-Nil derives-implies-leftderives-gen is-first-def)
lemma is-word-append[simp]: is-word ( }a@b)=(is-word a ^ is-word b)
    by (auto simp add: is-word-def)
lemma }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -split: }a@b\in\mp@subsup{\mathcal{L}}{P}{}\Longrightarrowa\in\mp@subsup{\mathcal{L}}{P}{
    by (auto simp add: 師-def)
lemma }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -is-word: a }\in\mp@subsup{\mathcal{L}}{P}{}\Longrightarrow\mathrm{ is-word a
    by (metis (no-types, lifting) leftprefixlang mem-Collect-eq)
definition Derive :: sentence }=>\mathrm{ derivation }=>\mathrm{ sentence
where
    Derive a D =(THE b. Derivation a D b)
lemma Derivation-dest-ex-unique: Derivation a D b\Longrightarrow\exists!x. Derivation a D x
using CFG.Derivation-unique-dest CFG-axioms by blast
lemma Derive:
    assumes ab: Derivation a D b
    shows Derive a D=b
proof -
    note the1-equality[OF Derivation-dest-ex-unique[OF ab] ab]
    thus ?thesis by (simp add: Derive-def)
qed
end
end
theory Validity
imports LLEarleyParsing Derivations
begin
```

```
context LocalLexing begin
definition wellformed-token :: token }=>\mathrm{ bool
where
    wellformed-token t = is-terminal (terminal-of-token t)
definition wellformed-tokens :: tokens }=>\mathrm{ bool
where
    wellformed-tokens ts = list-all wellformed-token ts
definition doc-tokens :: tokens }=>\mathrm{ bool
where
    doc-tokens p = (wellformed-tokens p^ is-prefix (chars p)Doc)
definition wellformed-item :: item }=>\mathrm{ bool
where
    wellformed-item x = (
    item-rule }x\in\mathfrak{R^
    item-origin x < item-end x}
    item-end x}\leqlength Doc ^
    item-dot x < length (item-rhs x))
definition wellformed-items :: items }=>\mathrm{ bool
where
    wellformed-items X = (\forallx\inX. wellformed-item x)
lemma is-word-terminals: wellformed-tokens p\Longrightarrowis-word (terminals p)
by (simp add: is-word-def list-all-length terminals-def wellformed-token-def well-
formed-tokens-def)
lemma is-word-subset: is-word }x\Longrightarrow\mathrm{ set }y\subseteq\operatorname{set}x\Longrightarrowis-word y
by (metis (mono-tags, opaque-lifting) in-set-conv-nth is-word-def list-all-length sub-
setCE)
lemma is-word-terminals-take: wellformed-tokens \(p \Longrightarrow\) is-word(terminals (take \(n\) p))
by (metis append-take-drop-id is-word-terminals list-all-append wellformed-tokens-def)
lemma is-word-terminals-drop: wellformed-tokens \(p \Longrightarrow\) is-word(terminals (drop \(n p)\) )
by (metis append-take-drop-id is-word-terminals list-all-append wellformed-tokens-def)
definition pvalid \(::\) tokens \(\Rightarrow\) item \(\Rightarrow\) bool
where
pvalid \(p x=(\exists u \gamma\). wellformed-tokens \(p \wedge\) wellformed-item \(x \wedge\) \(u \leq\) length \(p \wedge\)
```

```
    charslength p = item-end x ^
    charslength (take u p)= item-origin x ^
    is-derivation (terminals (take u p) @ [item-nonterminal x] @ \gamma) }
    derives (item-\alpha x) (terminals (drop u p)))
definition Gen :: tokens set }=>\mathrm{ items
where
    Gen P}={x|xp.p\inP\wedge pvalid px
lemma wellformed-items (Gen P)
    by (auto simp add:Gen-def pvalid-def wellformed-items-def)
lemma wellformed-items (Init)
    by (auto simp add: wellformed-items-def Init-def init-item-def wellformed-item-def)
definition pvalid-left :: tokens }=>\mathrm{ item }=>\mathrm{ bool
where
    pvalid-left p x = (\existsu\gamma.
        wellformed-tokens p ^
        wellformed-item x ^
        u
        charslength p = item-end x ^
        charslength (take u p) = item-origin x ^
        is-leftderivation (terminals (take u p) @ [item-nonterminal x] @ \gamma) }
        leftderives (item-\alpha x) (terminals (drop u p)))
lemma pvalid-left: pvalid p x = pvalid-left p x
proof -
    have right-imp-left: pvalid-left p x \Longrightarrow pvalid p x
    by (meson CFG.leftderives-implies-derives CFG-axioms LocalLexing.pvalid-def
        LocalLexing.pvalid-left-def LocalLexing-axioms leftderivation-implies-derivation)
    have left-imp-right: pvalid p x \Longrightarrow pvalid-left p x
    proof -
    assume pvalid p x
    then obtain u\gamma where
        wellformed-tokens p}
        wellformed-item x ^
        u}\leqlength p ^
        charslength p = item-end x ^
        charslength (take u p)= item-origin x ^
        is-derivation (terminals (take u p)@ [item-nonterminal x] @ \gamma) ^
        derives (item-\alpha x) (terminals (drop u p)) by (simp add: pvalid-def, blast)
    thus ?thesis
        apply (auto simp add: pvalid-left-def)
        apply (rule-tac x=u in exI)
        apply auto
        apply (simp add: is-leftderivation-def)
        apply (rule-tac derives-implies-leftderives-cons[where b=\gamma])
        apply (erule is-word-terminals-take)
```

```
    apply (simp add:is-derivation-def)
    by (metis derives-implies-leftderives is-word-terminals-drop)
    qed
    show ?thesis by (metis left-imp-right right-imp-left)
qed
lemma }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -wellformed-tokens: terminals }p\in\mp@subsup{\mathcal{L}}{P}{}\Longrightarrow\mathrm{ wellformed-tokens p
by (metis (mono-tags, lifting) }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -is-word is-word-def length-map list-all-length
    nth-map terminals-def wellformed-token-def wellformed-tokens-def)
end
end
theory TheoremD2
imports LocalLexingLemmas Validity Derivations
begin
```


context LocalLexing begin

```
definition splits-at :: sentence }=>\mathrm{ nat }=>\mathrm{ sentence }=>\mathrm{ symbol }=>\mathrm{ sentence }=>\mathrm{ bool
where
    splits-at \delta i \alpha N \beta=(i< length }\delta\wedge\alpha=\mathrm{ take i }\delta\wedgeN=\delta!i\wedge\beta=drop(Su
i) \delta)
lemma splits-at-combine: splits-at \delta i \alpha N \beta\Longrightarrow\delta=\alpha@ [N]@ }
    by (simp add: id-take-nth-drop splits-at-def)
lemma splits-at-combine-dest: Derives1 a ir b \Longrightarrow splits-at a i \alpha N \beta\Longrightarrowb=\alpha
@ (snd r)@ @
    by (metis (no-types, lifting) Derives1-drop Derives1-split append-assoc append-eq-conv-conj
        length-append splits-at-def)
lemma Derives1-nonterminal:
    assumes Derives1 a ir b
    assumes splits-at a i \alphaN\beta
    shows fst r = N^is-nonterminal N
proof -
    from assms have fst: fst r = N
        by (metis Derives1-split append-Cons nth-append-length splits-at-def)
    then have is-nonterminal N
        by (metis Derives1-def assms(1) prod.collapse rule-nonterminal-type)
    with fst show ?thesis by auto
qed
```

lemma splits-at-ex: Derives1 δ irs $\Longrightarrow \exists \alpha N \beta$.splits-at $\delta i \alpha N \beta$
by (simp add: Derives1-bound splits-at-def)

```
lemma splits-at- \(\alpha\) : Derives1 \(\delta\) irs splits-at \(\delta i \alpha N \beta \Longrightarrow\)
    \(\alpha=\) take \(i \delta \wedge \alpha=\) take is \(\wedge\) length \(\alpha=i\)
by (metis Derives1-split append-eq-conv-conj splits-at-def)
lemma LeftDerives1-splits-at-is-word: LeftDerives1 \(\delta\) irs \(\Longrightarrow\) splits-at \(\delta i \alpha N \beta\)
\(\Longrightarrow\) is-word \(\alpha\)
by (metis LeftDerives1-def leftmost-def splits-at-def)
lemma splits-at- \(\beta\) : Derives1 \(\delta\) irs \(\Longrightarrow\) splits-at \(\delta\) i \(\alpha N \beta \Longrightarrow\)
    \(\beta=\operatorname{drop}(\) Suc \(i) \delta \wedge \beta=\operatorname{drop}(i+\) length (snd \(r)) s \wedge\) length \(\beta=\) length \(\delta-i\)
\(-1\)
by (metis Derives1-drop Suc-eq-plus1 diff-diff-left length-drop splits-at-def)
lemma Derives1-prefix:
    assumes \(a b\) : Derives1 \(\delta i r(a @ b)\)
    assumes split: splits-at \(\delta i \alpha N \beta\)
    shows is-prefix \(\alpha a \vee\) is-prefix a \(\alpha\)
proof -
    have take: \(\alpha=\) take \(i(a @ b)\) using ab split splits-at- \(\alpha\) by blast
    show ?thesis
    proof (cases \(i \leq\) length \(a\) )
        case True
        then have \(\alpha=\) take \(i\) a by (simp add: take)
        then have is-prefix \(\alpha\) a
            by (metis append-take-drop-id is-prefix-def)
        with True show ?thesis by auto
    next
        case False
        then have is-prefix a \(\alpha\)
            by (simp add: is-prefix-def nat-le-linear take)
        with False show ?thesis by auto
    qed
qed
lemma Derives1-suffix:
    assumes ab: Derives1 \(\delta\) ir \((a @ b)\)
    assumes split: splits-at \(\delta i \alpha N \beta\)
    shows is-suffix \(\beta \quad b \vee\) is-suffix \(b \beta\)
proof -
    have drop1: \(\beta=\operatorname{drop}(i+\) length \((\) snd \(r))(a @ b)\) using ab split splits-at- \(\beta\) by
blast
    have drop2: \(b=\) drop (length \(a)(a @ b)\) by simp
    show ?thesis
    proof \((\) cases \((i+\) length \((\) snd \(r)) \leq\) length \(a)\)
        case True
        with drop1 drop2 have is-suffix b \(\beta\) by (simp add: is-suffix-def)
        then show ?thesis by auto
    next
        case False
```

```
        then have length \(a \leq(i+\) length \((s n d r))\) by arith
        with drop1 drop2 have is-suffix \(\beta b\)
        by (metis append-Nil append-take-drop-id drop-append drop-eq-Nil is-suffix-def)
        then show? ?thesis by auto
    qed
qed
lemma Derives1-skip-prefix:
    length \(a \leq i \Longrightarrow\) Derives1 \((a @ b) i r(a @ c) \Longrightarrow\) Derives1 \(b(i-\) length \(a) r c\)
apply (auto simp add: Derives1-def)
by (metis append-eq-append-conv-if is-sentence-concat is-sentence-cons is-symbol-def
    length-drop rule-nonterminal-type)
lemma cancel-suffix:
    assumes \(a\) @ \(c=b\) @ d
    assumes length \(c \leq\) length \(d\)
    shows \(a=b\) @ (take (length \(d-\) length \(c) d\) )
proof -
    have \(a @ c=(b\) @ take (length \(d-\) length \(c) d)\) @ drop (length \(d-\) length \(c) d\)
        by (metis append-assoc append-take-drop-id assms(1))
    then show ?thesis
        by (metis append-eq-append-conv assms(2) diff-diff-cancel length-drop)
qed
lemma is-sentence-take:
    is-sentence \(y \Longrightarrow\) is-sentence (take \(n y\) )
by (metis append-take-drop-id is-sentence-concat)
lemma Derives1-skip-suffix:
    assumes \(i\) : \(i<\) length \(a\)
    assumes D: Derives1 ( \(a @ c\) ) ir ( \(b @ c\) )
    shows Derives1 a irb
proof -
    note Derives1-def[where \(u=a @ c\) and \(v=b @ c\) and \(i=i\) and \(r=r]\)
    then have \(\exists x\) y \(N\).
        \(a @ c=x @[N] @ y \wedge\)
            \(b @ c=x @ \alpha @ y \wedge i s\)-sentence \(x \wedge\) is-sentence \(y \wedge(N, \alpha) \in \mathfrak{R} \wedge r=(N\),
\(\alpha) \wedge i=\) length \(x\)
            using \(D\) by blast
    then obtain \(x\) y \(N \alpha\) where split:
    \(a @ c=x @[N] @ y \wedge\)
    \(b @ c=x @ \alpha @ y \wedge i s\)-sentence \(x \wedge i s\)-sentence \(y \wedge(N, \alpha) \in \mathfrak{R} \wedge r=(N\),
\(\alpha) \wedge i=\) length \(x\)
            by blast
    from split have length \((a @ c)=\) length \((x @[N] @ y)\) by auto
    then have length \(a+\) length \(c=\) length \(x+\) length \(y+1\) by simp
    with split have length \(a+\) length \(c=i+\) length \(y+1\) by simp
    with \(i\) have len-c-y: length \(c \leq\) length \(y\) by arith
```

```
    let ?y = take (length y - length c) y
    from split have ac: a@ c=(x@ @N])@ y by auto
    note cancel-suffix[where }a=a\mathrm{ and }c=c\mathrm{ and }b=x@[N] and d=y,OF a
len-c-y]
    then have a: a=x@ @ N]@ ?y by auto
    from split have bc: b@ c=(x@ @)@ y by auto
    note cancel-suffix[where }a=b\mathrm{ and }c=c\mathrm{ and b=x@ and d = y,OF bc
len-c-y]
    then have b:b=x @ \alpha @ ?y by auto
    from split len-c-y a b show ?thesis
    apply (simp only: Derives1-def)
    apply (rule-tac x=x in exI)
    apply (rule-tac x=?y in exI)
    apply (rule-tac x=N in exI)
    apply (rule-tac x=\alpha in exI)
    apply auto
    by (rule is-sentence-take)
qed
lemma drop-cancel-suffix: a@c=drop n (b@c)\Longrightarrowa=drop n b
proof -
    assume a1:a @ c=dropn(b@c)
    have length (drop n b) = length b l length c - n - length c
    by (metis add-diff-cancel-right' diff-commute length-drop)
    then show ?thesis
    using a1 by (metis add-diff-cancel-right' append-eq-append-conv drop-append
            length-append length-drop)
qed
lemma drop-keep-last: }u\not=[]\Longrightarrowu=drop n (a@[X])\Longrightarrowu=drop n a@ [X
by (metis append-take-drop-id drop-butlast last-appendR snoc-eq-iff-butlast)
lemma Derives1-X-is-part-of-rule[consumes 2, case-names Suffix Prefix]:
    assumes aXb: Derives1 \delta ir (a@[X]@b)
    assumes split: splits-at \deltai\alphaN \beta
    assumes prefix: \ \beta. \delta=a@ [X]@ \beta\Longrightarrow length a<i\Longrightarrow
                            Derives1 \beta (i - length a - 1) rb\Longrightarrow False
    assumes suffix: \\alpha. \delta=\alpha@ [X]@ @\LongrightarrowDerives1 \alpha ir a \Longrightarrow False
    shows \existsuv.a=\alpha@u^b=v@ \beta^(sndr)=u@[X]@v
proof -
    have prefix-or: is-prefix \alpha a\vee is-proper-prefix a \alpha
    by (metis Derives1-prefix split aXb is-prefix-eq-proper-prefix)
    have is-proper-prefix a \alpha\Longrightarrow False
    proof -
        assume proper:is-proper-prefix a \alpha
        then have }\existsu.u\not=[]\wedge\alpha=a@u by (metis is-proper-prefix-def
    then obtain u where u:u\not=[]^\alpha=a@u by blast
    note splits-at = splits-at-\alpha[OF aXb split] splits-at-combine[OF split]
    from splits-at have \alpha1:\alpha= take i \delta by blast
```

from splits-at have $\alpha 2: \alpha=$ take $i(a @[X] @ b)$ by blast
from splits-at have lena: length $\alpha=i$ by blast
with proper have lena: length $a<i$
using append-eq-conv-conj drop-eq-Nil leI u by auto
from u 2 have $a @ u=$ take $i(a @[X] @ b)$ by auto
with lena have $u=$ take $(i-$ length $a)([X] @ b)$ by (simp add: less-or-eq-imp-le)
with lena have $u X: u=[X] @($ take $(i-$ length $a-1) b)$ by (simp add: not-less take-Cons ${ }^{\prime}$)
let $? \beta=($ take $(i-$ length $a-1) b) @[N] @ \beta$
from splits-at have $f 1: \delta=\alpha$ @ $[N] @ \beta$ by blast
with $u u X$ have $f 2: \delta=a$ @ $[X]$ @ ? β by simp
note skip $=$ Derives1-skip-prefix $[$ where $a=a @[X]$ and $b=? \beta$ and
$r=r$ and $i=i$ and $c=b]$
then have D : Derives1 ? $\beta(i-$ length $a-1) r b$
using One-nat-def Suc-leI aXb append-assoc diff-diff-left f2 lena length-Cons length-append length-append-singleton list.size(3) by fastforce
note prefix [OF f2 lena D]
then show False .
qed
with prefix-or have is-prefix: is-prefix α a by blast
from $a X b$ have $a X b^{\prime}:$ Derives1 δ ir $((a @[X]) @ b)$ by auto
note Derives1-suffix[$O F a X b^{\prime}$ split]
then have suffix-or: is-suffix β b \vee is-proper-suffix $b \beta$
by (metis is-suffix-eq-proper-suffix)
have is-proper-suffix b $\beta \Longrightarrow$ False
proof -
assume proper: is-proper-suffix $b \beta$
then have $\exists u . u \neq[] \wedge \beta=u @ b$ by (metis is-proper-suffix-def)
then obtain u where $u: u \neq[] \wedge \beta=u @ b$ by blast
note splits-at $=$ splits-at- β [OF aXb split] splits-at-combine $[$ OF split]
from splits-at have $\beta 1: \beta=\operatorname{drop}(S u c i) \delta$ by blast
from splits-at have $\beta 2: \beta=\operatorname{drop}(i+$ length $(s n d r))(a @[X] @ b)$ by blast
from splits-at have len β : length $\beta=$ length $\delta-i-1$ by blast
with proper have lenb: length $b<$ length β by (metis is-proper-suffix-length-cmp)
from $u \beta 2$ have $u @ b=\operatorname{drop}(i+$ length $(s n d r))((a @[X]) @ b)$ by auto
hence $u=\operatorname{drop}(i+$ length $($ snd $r))(a @[X])$
by (metis drop-cancel-suffix)
hence $u X: u=$ drop $(i+$ length $($ snd $r)) a @[X]$ by (metis drop-keep-last u)
let ? $\alpha=\alpha$ @ $[N]$ @ $(d r o p(i+$ length $(s n d r)) a)$
from splits-at have $f 1: \delta=\alpha$ @ $[N]$ @ β by blast
with $u u X$ have $f 2: \delta=? \alpha$ @ $[X] @ b$ by simp
note skip $=$ Derives1-skip-suffix $[$ where $a=? \alpha$ and $c=[X] @ b$ and $b=a$ and $r=r$ and $i=i]$
have f3: $i<$ length $(\alpha$ @ $[N]$ @ drop $(i+$ length $($ snd $r)) a)$
proof -
have f1: $1+i+$ length $b=$ length $[X]+$ length $b+i$
by (metis Groups.add-ac(2) Suc-eq-plus1-left length-Cons list.size(3) list.size(4) semiring-normalization-rules(22))
have f2: length $\delta-i-1=$ length $((\alpha @[N] @ \operatorname{drop}(i+$ length $($ snd $r)) a)$ @ $[X]$ @ b) - Suc i
by (metis f2 length-drop splits-at(1))
have length $([]::$ symbol list $) \neq$ length $\delta-i-1-$ length b
by (metis add-diff-cancel-right' append-Nil2 append-eq-append-conv len β length-append u)
then have length $([]::$ symbol list $) \neq$ length $\alpha+$ length $([N]$ @ drop $(i+$ length (snd r)) a) -i
using f2 f1 by (metis Suc-eq-plus1-left add-diff-cancel-right' diff-diff-left
length-append)
then show ?thesis
by auto
qed
from $a X b$ f2 have D : Derives1 (? α @ $[X] @ b) i r(a @[X] @ b)$ by auto
note skip[OF f3 D]
note suffix[OF f2 skip[OF f3 D]]
then show False .
qed
with suffix-or have is-suffix: is-suffix β by blast
from is-prefix have $\exists u . a=\alpha @ u$ by (auto simp add: is-prefix-def)
then obtain u where $u: a=\alpha$ @ u by blast
from is-suffix have $\exists v . b=v$ @ β by (auto simp add: is-suffix-def)
then obtain v where $v: b=v @ \beta$ by blast
from $u v$ splits-at-combine $[O F$ split] $a X b$ have $D: D e r i v e s 1 ~(~ \alpha @[N] @ \beta) i r(\alpha @(u @[X] @ v) @ \beta)$ by simp
from splits-at- $\alpha[O F a X b$ split] have i : length $\alpha=i$ by blast
from i have $i 1$: length $\alpha \leq i$ and $i 2: i \leq$ length α by auto
note Derives1-skip-suffix[OF - Derives1-skip-prefix[OF i1 D], simplified, OF i2]
then have Derives1 $[N] 0 r(u @[X] @ v)$ by auto
then have $r:$ snd $r=u$ @ $[X]$ @ v
by (metis Derives1-split append-Cons append-Nil length-0-conv list.inject self-append-conv)
show ?thesis using $u v r$ by auto
qed
lemma \mathcal{L}_{P}-derives: $a \in \mathcal{L}_{P} \Longrightarrow \exists$ b. derives $[\mathfrak{S}](a @ b)$
by (simp add: \mathcal{L}_{P}-def is-derivation-def)
lemma \mathcal{L}_{P}-leftderives: $a \in \mathcal{L}_{P} \Longrightarrow \exists b$. leftderives $[\mathfrak{S}](a @ b)$
by (metis \mathcal{L}_{P}-derives \mathcal{L}_{P}-is-word derives-implies-leftderives-gen $)$
lemma Derives1-rule: Derives1 a i $r b \Longrightarrow r \in \mathfrak{R}$
by (auto simp add: Derives1-def)

```
lemma is-prefix-empty[simp]: is-prefix [] a
    by (simp add: is-prefix-def)
lemma is-prefix-cons:is-prefix (x # a) b=( }\exists\textrm{c}.b=x#c\wedge is-prefix a c
    by (metis append-Cons is-prefix-def)
lemma is-prefix-cancel[simp]: is-prefix (a@b)(a@c)=is-prefix b c
    by (metis append-assoc is-prefix-def same-append-eq)
lemma is-prefix-chars: is-prefix a b\Longrightarrow is-prefix (chars a) (chars b)
proof (induct a arbitrary: b)
    case Nil thus?case by simp
next
    case (Cons x a)
    from Cons(2) have \exists c. b=x# c^is-prefix a c
        by (simp add: is-prefix-cons)
    then obtain c where c: b=x#c\wedge is-prefix a c by blast
    from c Cons(1) show?case by simp
qed
lemma is-prefix-length: is-prefix a b length a\leqlength b
by (auto simp add: is-prefix-def)
lemma is-prefix-take[simp]: is-prefix (take n a) a
apply (auto simp add: is-prefix-def)
apply (rule-tac x=drop n a in exI)
by simp
lemma doc-tokens-length: doc-tokens p\Longrightarrow length (chars p)\leqlength Doc
by (metis doc-tokens-def is-prefix-length)
fun count-terminals :: sentence }=>\mathrm{ nat where
    count-terminals [] = 0
| count-terminals (x#xs)=(if (is-terminal x) then Suc (count-terminals xs) else
(count-terminals xs))
lemma count-terminals-upper-bound: count-terminals p}\leq\mathrm{ length p
    by (induct p, auto)
lemma count-terminals-append[simp]:count-terminals (a@b)=count-terminals a
+ count-terminals b
    by (induct a arbitrary: b, auto)
lemma Derives1-count-terminals:
    assumes D: Derives1 a i r b
    shows count-terminals b = count-terminals a count-terminals (snd r)
proof -
    have }\exists\alphaN\beta\mathrm{ . splits-at a i 人 N < using D splits-at-ex by simp
    then obtain \alphaN \beta where split: splits-at a i \alpha N \beta by blast
```

```
    from D split have N: is-nonterminal N by (simp add: Derives1-nonterminal)
    have a: a=\alpha @ [N]@ @ by (metis split splits-at-combine)
    from D split have b:b=\alpha @ (snd r)@ @ using splits-at-combine-dest by simp
    show ?thesis
    apply (simp add: a b)
    using N by (metis is-terminal-nonterminal)
qed
lemma Derives1-count-terminals-leq:
    assumes D: Derives1 a irb
    shows count-terminals a \leqcount-terminals b
by (metis Derives1-count-terminals assms le-less-linear not-add-less1)
lemma Derivation-count-terminals-leq:
    Derivation a E b\Longrightarrow count-terminals a count-terminals b
proof (induct E arbitrary: a)
    case Nil thus ?case by auto
next
    case (Cons e E)
    then have \existsxir.Derives1 a ir x}\wedge\mathrm{ Derivation x Eb using Derivation.simps(2)
by blast
    then obtain x ir where axb: Derives1 a i r x}\wedge Derivation x E b by blas
    from axb have ax: count-terminals a\leqcount-terminals x
        using Derives1-count-terminals-leq by blast
    from axb have xb: count-terminals }x\leq\mathrm{ count-terminals b using Cons by simp
    show ?case using ax xb by arith
qed
lemma derives-count-terminals-leq: derives a b count-terminals a\leqcount-terminals
b
using Derivation-count-terminals-leq derives-implies-Derivation by force
lemma is-word-cons[simp]:is-word (x#xs)=(is-terminal x ^ is-word xs)
    by (simp add: is-word-def)
lemma count-terminals-of-word: is-word w\Longrightarrow count-terminals w=length w
    by (induct w, auto)
lemma length-terminals[simp]: length (terminals p) = length p
    by (auto simp add: terminals-def)
lemma path-length-is-upper-bound:
    assumes p: wellformed-tokens p
    assumes \alpha: is-word \alpha
    assumes derives:derives( }\alpha@u)(terminals p
    shows length \alpha\leq length p
proof -
    have counts: count-terminals \alpha \leq count-terminals (terminals p)
        using derives derives-count-terminals-leq by fastforce
```

```
    have len1: length \alpha = count-terminals }\alpha\mathrm{ by (simp add: }\alpha\mathrm{ count-terminals-of-word)
    have len2: length (terminals p)= count-terminals (terminals p)
    by (simp add: count-terminals-of-word is-word-terminals p)
    show ?thesis using counts len1 len2 by auto
qed
lemma is-word-Derives1-index:
    assumes w: is-word w
    assumes derives1: Derives1(w@a) ir b
    shows }i\geq\mathrm{ length w
proof -
    from derives1 have n: is-nonterminal (( }w@a)!i
        using Derives1-nonterminal splits-at-def splits-at-ex by auto
    from w have t:i<length w\Longrightarrow is-terminal ((w@a)!i)
        by (simp add: is-word-is-terminal nth-append)
    show ?thesis
        by (metis t n is-terminal-nonterminal less-le-not-le nat-le-linear)
qed
lemma is-word-Derivation-derivation-ge:
    assumes w: is-word w
    assumes D: Derivation(w@a)D b
    shows derivation-ge D (length w)
by (metis D Derivation-leftmost derivation-ge-empty leftmost-Derivation leftmost-append
w)
lemma derives-word-is-prefix:
    assumes w: is-word w
    assumes derives: derives(w@a)b
    shows is-prefix w b
by (metis Derivation-take append-eq-conv-conj derives derives-implies-Derivation
    is-prefix-take is-word-Derivation-derivation-ge w)
lemma terminals-take[simp]: terminals (take n p) = take n (terminals p)
by (simp add: take-map terminals-def)
lemma terminals-drop[simp]: terminals (drop n p) = drop n (terminals p)
by (simp add: drop-map terminals-def)
lemma take-prefix[simp]: is-prefix a b\Longrightarrow take (length a) b=a
by (metis append-eq-conv-conj is-prefix-unsplit)
lemma Derives1-drop-prefixword:
    assumes w: is-word w
    assumes wa-b: Derives1(w@a) irb
    shows Derives1 a (i - length w) r(drop (length w) b)
proof -
    have i: length w\leqi using wa-b is-word-Derives1-index w by blast
    have is-prefix w b by (metis append-eq-conv-conj i is-prefix-take le-Derives1-take
```

```
wa-b)
    then have b: b=w@ (drop (length w) b) by (simp add: is-prefix-unsplit)
    show ?thesis
        apply (rule-tac Derives1-skip-prefix[OF i])
        by (simp add: b[symmetric] wa-b)
qed
lemma derives1-drop-prefixword:
    assumes w: is-word w
    assumes wa-b: derives1(w@a)b
    shows derives1 a (drop (length w) b)
by (metis Derives1-drop-prefixword Derives1-implies-derives1 derives1-implies-Derives1
w wa-b)
lemma derives1-is-word-is-prefix-drop:
    assumes w: is-word w
    assumes w-a: is-prefix wa
    assumes ab: derives1 a b
    shows derives1 (drop (length w) a) (drop (length w) b)
by (metis ab append-take-drop-id derives1-drop-prefixword take-prefix w w-a)
lemma derives-drop-prefixword-helper:
    derives a b\Longrightarrow is-word w\Longrightarrow is-prefix wa\Longrightarrow derives (drop (length w) a) (drop
(length w) b)
proof (induct rule: derives-induct)
    case Base thus ?case by auto
next
    case (Step y z)
    have is-prefix-w-y:is-prefix w y
            by (metis Step.hyps(1) Step.prems(1) Step.prems(2) derives-word-is-prefix
is-prefix-def)
    thus ?case
        by (metis Step.hyps(2) Step.hyps(3) Step.prems(1) Step.prems(2) derives1-implies-derives
            derives1-is-word-is-prefix-drop derives-trans)
qed
lemma derive-drop-prefixword:
    is-word w\Longrightarrow derives (w@a)b\Longrightarrow derives a (drop (length w) b)
by (metis append-eq-conv-conj derives-drop-prefixword-helper is-prefix-take)
lemma thmD2':
    assumes X: is-terminal X
    assumes p: doc-tokens p
    assumes pX:(terminals p)@[X]\in L
    shows \existsx.pvalid px^ next-symbol }x=\mathrm{ Some }
proof -
    from p have wellformed-p: wellformed-tokens p by (simp add: doc-tokens-def)
    have \exists \omega. leftderives [\mathfrak{S] (((terminals p)@[X])@ @) using }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -leftderives pX by}
```

blast
then obtain ω where leftderives $[\mathfrak{S}]((($ terminals $p) @[X]) @ \omega)$ by blast
then have $\exists D$. LeftDerivation $[\mathfrak{S}] D((($ terminals $p) @[X]) @ \omega)$
using leftderives-implies-LeftDerivation by blast
then obtain D where D : LeftDerivation $[\mathfrak{S}] D((($ terminals $p) @[X]) @ \omega)$ by blast
let $? P=\lambda k .(\exists a b$. LeftDerivation $[\mathfrak{S}]($ take $k D)(a @[X] @ b) \wedge$ derives a (terminals p))
have ?P (length D)
apply (rule-tac $x=$ terminals p in $e x I$)
apply (rule-tac $x=\omega$ in $e x I$)
using D by simp
then show ?thesis
proof (induct rule: minimal-witness $[$ where $P=? P]$)
case (Minimal K)
from Minimal(2) obtain $a b$ where
$a X b:$ LeftDerivation [S] (take K D) (a @ $[X]$ @ b) and
a: derives a (terminals p) by blast
have $K D: K>0 \wedge$ length $D>0$
proof (cases $K=0 \vee$ length $D=0$)
case True
hence take $K D=[]$ by auto
with True $a X b$ have $[\mathfrak{S}]=a @[X] @ b$ by simp
hence $\mathfrak{S}=X$
by (metis Nil-is-append-conv append-self-conv2 butlast.simps(2)
butlast-append hd-append2 list.sel(1) not-Cons-self2)
then have False
using X is-nonterminal-startsymbol is-terminal-nonterminal by auto
then show ?thesis by blast
next
case False thus ?thesis by arith
qed
then have take $K D=$ take $(K-1) D @[D!(K-1)]$
by (metis Minimal.hyps(1) One-nat-def Suc-less-eq Suc-pred hd-drop-conv-nth
le-imp-less-Suc take-hd-drop)
then have $\exists \delta$. LeftDerivation $[\mathfrak{S}]($ take $(K-1) D) \delta \wedge$ LeftDerivation $\delta[D$! $(K-1)](a @[X] @ b)$
by (metis LeftDerivation-append $a X b$)
then obtain δ where
反1: LeftDerivation $[\mathfrak{S}]($ take $(K-1) D) \delta$
and $\delta 2$: LeftDerivation $\delta[D!(K-1)](a @[X] @ b)$
by blast
from $\delta 2$ have $\exists i r$. LeftDerives1 δ ir $(a @[X] @ b)$ by fastforce
then obtain $i r$ where LeftDerives1- δ : LeftDerives1 δ ir $(a @[X] @ b)$ by blast
then have Derives $1-\delta$: Derives1 $\delta \operatorname{ir}(a @[X] @ b)$
by (metis LeftDerives1-implies-Derives1)
then have $\exists \alpha N \beta$. splits-at $\delta i \alpha N \beta$ by (simp add: splits-at-ex)
then obtain $\alpha N \beta$ where split- δ : splits-at $\delta i \alpha N \beta$ by blast
have is-word- α : is-word α by (metis LeftDerives1- δ LeftDerives1-splits-at-is-word split- δ)
have $\neg(? P(K-1))$ using $K D \operatorname{Minimal}(3)$ by auto
with $\delta 1$ have $\min -\delta: \neg(\exists a b . \delta=a @[X] @ b \wedge$ derives $a($ terminals $p))$ by blast
from Derives1- δ split- δ have $\exists u v . a=\alpha @ u \wedge b=v @ \beta \wedge($ snd $r)=$ $u @[X] @ v$
proof (induction rule: Derives1-X-is-part-of-rule)
case (Suffix γ)
from min- δ Suffix(1) a show ?case by auto
next
case (Prefix γ)
have derives γ (terminals p)
by (metis Derives1-implies-derives1 Prefix (2) a derives1-implies-derives derives-trans)
with min- δ Prefix(1) show ?case by auto
qed
then obtain $u v$ where $u X v: a=\alpha @ u \wedge b=v @ \beta \wedge(s n d r)=u @[X] @ v$ by blast
let $? l=$ length α
let ? $q=$ take ?l p
let $? x=$ Item $r($ length $u)($ charslength $? q)($ charslength $p)$
have item-rhs ? $x=$ snd r by ($s i m p$ add: item-rhs-def)
then have item-rhs-x: item-rhs ? $x=u @[X] @ v$ using $u X v$ by simp
have wellformed-x: wellformed-item ?x
apply (auto simp add: wellformed-item-def)
apply (metis Derives1- δ Derives1-rule)
apply (rule is-prefix-length)
apply (rule is-prefix-chars)
apply simp
apply (simp add: doc-tokens-length[OF p])
using item-rhs-x by simp
from item-rhs-x have next-symbol-x: next-symbol ? $x=$ Some X
by (auto simp add: next-symbol-def is-complete-def)
have len- $\alpha-p$: length $\alpha \leq$ length p
apply (rule-tac path-length-is-upper-bound $[$ where $u=u]$)
apply (simp add: wellformed-p)
apply (simp add: is-word- α)
using $a u X v$ by blast
have item-nonterminal-x: item-nonterminal $? x=N$
apply (simp add: item-nonterminal-def)
using Derives1- δ Derives1-nonterminal split- δ by blast
have take-terminals: take (length α) (terminals p) $=\alpha$
apply (rule-tac take-prefix)
using a derives-word-is-prefix is-word- $\alpha u X v$ by blast
have item- $\alpha-x$: item- α ? $x=u$ using item- α-def item-rhs- x by auto
from wellformed-x next-symbol-x len- $\alpha-p$ show ?thesis
apply (rule-tac $x=$? x in exI)
apply (auto simp add: pvalid-def wellformed-p)

```
        apply (rule-tac x=length \alpha in exI)
        apply (auto)
        using item-nonterminal-x apply (simp)
        apply (simp add: take-terminals)
        apply (rule-tac x=\beta in exI)
    using LeftDerivation-implies-leftderives \delta1 is-leftderivation-def split-\delta splits-at-combine
    apply auto[1]
    using item- }\alpha-x\mathrm{ apply simp
    by (metis a derive-drop-prefixword is-word-\alpha uXv)
    qed
qed
lemma admissible-wellformed-tokens: admissible p mellformed-tokens p
    by (auto simp add: admissible-def }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -wellformed-tokens)
lemma chars-append[simp]: chars (a@b)=(chars a)@(chars b)
    by (induct a arbitrary: b, auto)
lemma chars-of-token-simp[simp]: chars-of-token (a,b) =b
    by (simp add: chars-of-token-def)
```



```
    by (auto simp add: \mathcal{X-def)}
lemma is-prefix-append: is-prefix (a@b) D = (is-prefix a D ^ is-prefix b (drop
(length a) D))
    by (metis append-assoc is-prefix-cancel is-prefix-def is-prefix-unsplit)
lemma }\mathfrak{P}\mathrm{ -are-doc-tokens: p}\in\mathfrak{P}\Longrightarrow\mathrm{ doc-tokens p
proof (induct rule: }\mathfrak{P}\mathrm{ -induct)
    case Base thus ?case
            by (simp add: doc-tokens-def wellformed-tokens-def)
next
    case (Induct p ku)
    from Induct(2)[simplified] show ?case
    proof (induct rule: limit-induct)
        case (Init p) from Induct(1)[OF Init] show ?case .
    next
        case (Iterate p Y)
        have Y-is-prefix: \ p.p\inY\Longrightarrow is-prefix (chars p) Doc
            apply (drule Iterate(1))
            by (simp add: doc-tokens-def)
    have \mathcal{Y}(\mathcal{Z}ku)(\mathcal{P}ku)k\subseteq\mathcal{X}k}\mathrm{ by (metis Z._simps(2) Z -subset-X)
    then have 1:Append (\mathcal{Y}(\overline{\mathcal{Z}}ku)(\mathcal{P}ku)k)kY\subseteqAppend (\mathcal{X}k)kY
        by (rule Append-mono, simp)
    have 2: p\in Append (\mathcal{X k)k Y\Longrightarrow doc-tokens p}
        apply (auto simp add: Append-def)
        apply (simp add: Iterate)
```

```
        apply (auto simp add: doc-tokens-def admissible-wellformed-tokens
                is-prefix-append Y-is-prefix)
            by (metis \mathcal{X}
    show ?case
        apply (rule 2)
        by (metis (mono-tags, lifting) 1 Iterate(2) subsetCE)
    qed
qed
theorem thmD2:
    assumes X: is-terminal X
    assumes p: p\in\mathfrak{P}
    assumes pX:(terminals p)@[X]\in\mathcal{L}
    shows \exists x. pvalid p x^ next-symbol }x=\mathrm{ Some X
by (metis X \mathfrak{P}\mathrm{ -are-doc-tokens p pX thmD2')}
end
end
theory TheoremD4
imports TheoremD2
begin
context LocalLexing begin
lemma \mathcal{X}\mathrm{ -are-terminals: }u\in\mathcal{X}k\Longrightarrow is-terminal (terminal-of-token u)
    by (auto simp add: \mathcal{X}\mathrm{ -def is-terminal-def terminal-of-token-def)}
lemma terminals-append[simp]: terminals (a@b)=((terminals a)@ (terminals
b))
    by (auto simp add: terminals-def)
lemma terminals-singleton[simp]: terminals [u] = [terminal-of-token u]
    by (simp add: terminals-def)
lemma terminal-of-token-simp[simp]: terminal-of-token (a,b)=a
    by (simp add: terminal-of-token-def)
```



```
    by (metis pvalid-def)
lemma \mathcal{W}\mathrm{ -elem-in-TokensAt:}
    assumes P:P\subseteq\mathfrak{P}
    assumes u-in-\mathcal{W}:u\in\mathcal{W}Pk
    shows u\in TokensAt k (Gen P)
proof -
    have u:u\in\mathcal{X k}\wedge(\existsp\inby-length k P. admissible ( }p\mathrm{ @ [u])) using u-in-W
        by (auto simp add: \mathcal{W}-def)
    then obtain p where p:p\in by-length k P\wedge admissible (p@ [u]) by blast
```

```
    then have charslength-p: charslength p=k
    by (metis (mono-tags, lifting) by-length.simps charslength.simps mem-Collect-eq)
    from u have u:u\in\mathcal{X }k\mathrm{ by blast}
    from p have p-in-\mathfrak{P}:p\in\mathfrak{P}
    by (metis (no-types, lifting) P by-length.simps mem-Collect-eq subsetCE)
    then have doc-tokens-p: doc-tokens p by (metis }\mathfrak{P}\mathrm{ -are-doc-tokens)
    let ?X = terminal-of-token u
    have X-is-terminal: is-terminal ?X by (metis \mathcal{X}
    from p have terminals p@ [terminal-of-token u] \in \mathcal{L}
    by (auto simp add: admissible-def)
    from thmD2[OF X-is-terminal p-in-\mathfrak{P}\mathrm{ this] obtain }x\mathrm{ where}
    x: pvalid p x}\wedge next-symbol x = Some (terminal-of-token u) by blas
    have x-is-in-Gen-P: x Gen P
    by (metis (mono-tags, lifting) Gen-def by-length.simps mem-Collect-eq p x)
    have u-split[dest!]: \ts.u=(t,s)\Longrightarrowt=terminal-of-token }u\wedges=\mathrm{ chars-of-token
u
    by (metis chars-of-token-simp fst-conv terminal-of-token-def)
    show ?thesis
    apply (auto simp add: TokensAt-def bin-def)
    apply (rule-tac x=x in exI)
    apply (auto simp add: x-is-in-Gen-P x X-is-terminal)
    using x charslength-p pvalid-item-end apply (simp, blast)
    using }u\mathrm{ by (auto simp add: X-def)
qed
lemma is-derivation-is-sentence: is-derivation \(s \Longrightarrow\) is-sentence \(s\)
by (metis (no-types, lifting) Derives1-sentence2 derives1-implies-Derives1 derives-induct is-derivation-def is-nonterminal-startsymbol is-sentence-cons is-sentence-def is-symbol-def list.pred-inject(1))
lemma is-sentence-cons: is-sentence \((N \# s)=(i s\)-symbol \(N \wedge i s\)-sentence \(s)\)
by (auto simp add: is-sentence-def)
lemma is-derivation-step:
assumes \(u N v\) : is-derivation \((u @[N] @ v)\)
assumes \(N \alpha:(N, \alpha) \in \mathfrak{R}\)
shows is-derivation ( \(u @ \alpha @ v\) )
proof -
from \(u N v\) have is-sentence ( \(u @[N] @ v\) ) by (metis is-derivation-is-sentence)
with is-sentence-concat is-sentence-cons
have \(u\)-is-sentence: is-sentence \(u\) and \(v\)-is-sentence: is-sentence \(v\)
by auto
from \(N \alpha\) have derives1 ( \(u @[N] @ v\) ) ( \(u @ \alpha @ v\) )
apply (auto simp add: derives1-def)
apply (rule-tac \(x=u\) in exI)
apply (rule-tac \(x=v\) in exI)
apply (rule-tac \(x=N\) in exI)
by (auto simp add: u-is-sentence \(v\)-is-sentence)
```

```
    then show ?thesis
    by (metis derives1-implies-derives derives-trans is-derivation-def uNv)
qed
lemma is-derivation-derives:
    derives }\alpha\beta\Longrightarrow\mathrm{ is-derivation ( }u@\alpha@v)\Longrightarrow\mathrm{ is-derivation ( }u@\beta@v
proof (induct rule: derives-induct)
    case Base thus?case by simp
next
    case (Step y z)
    from Step have 1:is-derivation (u@y @ v) by auto
    from Step have 2: derives1 y z by auto
    from 12 show ?case by (metis append-assoc derives1-def is-derivation-step)
qed
lemma item-rhs-split: item-rhs x=(item-\alpha x)@(item-\beta x)
    by (metis append-take-drop-id item-\alpha-def item- }\beta\mathrm{ -def)
lemma pvalid-is-derivation-terminals-item- }\beta\mathrm{ :
    assumes pvalid: pvalid px
    shows \exists\delta. is-derivation ((terminals p)@(item-\beta x)@\delta)
proof -
    from pvalid have \existsu\gamma.is-derivation (terminals (take u p) @ [item-nonterminal
x]@ \gamma) ^
    derives (item-\alpha x) (terminals (drop u p))
    by (auto simp add: pvalid-def)
    then obtain u\gamma where 1: is-derivation (terminals (take u p) @ [item-nonterminal
x]@ \gamma) ^
    derives (item-\alpha x) (terminals (drop u p)) by blast
    have x-rule:(item-nonterminal x, item-rhs x) \in 
        by (metis (no-types, lifting) LocalLexing.pvalid-def LocalLexing-axioms assms
case-prodE item-nonterminal-def item-rhs-def prod.sel(1) snd-conv validRules well-
formed-item-def)
    from 1 x-rule is-derivation-step have
        is-derivation ((take u (terminals p)) @ (item-rhs x)@ \gamma)
    by auto
    then have is-derivation ((take u (terminals p))@ ((item-\alpha x)@(item- }\beta\mathrm{ x)) @ }\gamma\mathrm{ )
    by (simp add: item-rhs-split)
    then have is-derivation ((take u (terminals p)) @ (item-\alpha x) @ ((item- }\beta\mathrm{ x) @
\gamma))
    by simp
    then have is-derivation ((take u (terminals p)) @ (drop u (terminals p)) @
((item-\beta x)@ @))
    by (metis 1 is-derivation-derives terminals-drop)
    then have is-derivation ((terminals p) @ ((item- }\betax)@\gamma)
    by (metis append-assoc append-take-drop-id)
    then show ?thesis by auto
qed
```

```
lemma next-symbol-not-complete: next-symbol }x=\mathrm{ Some }t\Longrightarrow\neg\mathrm{ (is-complete }x
    by (metis next-symbol-def option.discI)
lemma next-symbol-starts-item-\beta:
    assumes wf: wellformed-item x
    assumes next-symbol: next-symbol x = Some t
    shows \exists \delta. item- }\betax=t#
proof -
    from next-symbol have nc: \neg (is-complete x) using next-symbol-not-complete by
auto
    from next-symbol have atdot: item-rhs x ! item-dot x = t by (simp add: next-symbol-def
nc)
    from nc have inrange: item-dot x < length (item-rhs x)
        by (simp add: is-complete-def)
    from inrange atdot show ?thesis
        apply (simp add: item- }\beta\mathrm{ -def)
        by (metis Cons-nth-drop-Suc)
qed
lemma pvalid-prefixlang:
    assumes pvalid: pvalid p x
    assumes is-terminal: is-terminal t
    assumes next-symbol: next-symbol x = Some t
    shows (terminals p)@ [t]\in\mathcal{L}
proof -
    have }\exists\delta\mathrm{ . item- }\betax=t#
        by (metis next-symbol next-symbol-starts-item- }\beta\mathrm{ pvalid pvalid-def)
    then obtain }\delta\mathrm{ where }\delta:\mathrm{ :item- }\betax=t#\delta\mathrm{ by blast
    have }\exists\omega\mathrm{ . is-derivation((terminals p)@(item- }\betax)@\omega
        by (metis pvalid pvalid-is-derivation-terminals-item- }\beta\mathrm{ )
    then obtain }\omega\mathrm{ where is-derivation ((terminals p)@(item- }\beta\mathrm{ x)@ }\omega\mathrm{ ) by blast
    then have is-derivation ((terminals p)@(t#\delta)@\omega) by (metis \delta)
    then have is-derivation (((terminals p)@[t])@(\delta@\omega)) by simp
    then show ?thesis
        by (metis (no-types, lifting) CFG. }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -def CFG-axioms
            append-Nil2 is-terminal is-word-append is-word-cons
            is-word-terminals mem-Collect-eq pvalid pvalid-def)
qed
lemma TokensAt-elem-in-\mathcal{W}:
    assumes P: P\subseteq\mathfrak{P}
    assumes u-in-Tokens-at: u G TokensAt k (Gen P)
    shows u\in\mathcal{W}Pk
proof -
    have }\existstsxl\mathrm{ .
            u=(t,s)^
            x\in bin (Gen P) k^
                next-symbol x = Some t ^ is-terminal t ^l\inLex t Doc k}\wedges=\mathrm{ take l
```

```
(drop k Doc)
    using u-in-Tokens-at by (auto simp add: TokensAt-def)
    then obtain tsxl where
        u:u=(t,s)^
            x\in bin (Gen P) k^
                next-symbol x = Some t ^ is-terminal t ^l\inLex t Doc k ^s= take l
(drop k Doc)
            by blast
    from u have t:t=terminal-of-token u by (metis terminal-of-token-simp)
    from u have s:s=chars-of-token u by (metis chars-of-token-simp)
    from u have item-end-x: item-end x = k by (metis (mono-tags, lifting) bin-def
mem-Collect-eq)
    from u have }\exists>\mp@code{p}\mathrm{ . pvalid px by (auto simp add: bin-def Gen-def)
    then obtain p where p:p\inP and pvalid: pvalid px by blast
    have p-len: length (chars p) =k
        by (metis charslength.simps item-end-x pvalid pvalid-item-end)
    have u-in-\mathcal{X:}u\in\mathcal{X}k
        apply (simp add: \mathcal{X-def)}
        apply (rule-tac x=t in exI)
        apply (rule-tac x=l in exI)
        using u by (simp add: is-terminal-def)
    show ?thesis
        apply (auto simp add: \mathcal{W-def)}
        apply (simp add: u-in-\mathcal{X})
        apply (rule-tac x=p in exI)
        apply (simp add: p p-len)
        apply (simp add: admissible-def t[symmetric])
        apply (rule pvalid-prefixlang[where }x=x]\mathrm{ )
    apply (simp add: pvalid)
    apply (simp add:u)
    apply (simp add: u)
    done
qed
theorem thmD4:
    assumes P: P\subseteq\mathfrak{P}
    shows \mathcal{W P k TokensAt k (Gen P)}
using \mathcal{W}-elem-in-TokensAt TokensAt-elem-in-\mathcal{W}
by (metis Collect-cong Collect-mem-eq assms)
end
end
theory TheoremD5
imports TheoremD4
begin
context LocalLexing begin
```

```
lemma Scan-empty: Scan \(\} k I=I\)
    by (simp add: Scan-def)
lemma \(\pi\)-no-tokens: \(\pi k\} I=\) limit \((\lambda I\). Complete \(k(\) Predict \(k I)) I\)
    by (simp add: \(\pi\)-def Scan-empty)
lemma bin-elem: \(x \in\) bin \(I k \Longrightarrow x \in I\)
    by (auto simp add: bin-def)
lemma Gen-implies-pvalid: \(x \in\) Gen \(P \Longrightarrow \exists p \in P\). pvalid \(p x\)
    by (auto simp add: Gen-def)
lemma wellformed-init-item[simp]: \(r \in \mathfrak{R} \Longrightarrow k \leq\) length Doc \(\Longrightarrow\) wellformed-item
(init-item rk)
    by (simp add: init-item-def wellformed-item-def)
lemma init-item-origin[simp]: item-origin (init-item rk)=k
    by (auto simp add: item-origin-def init-item-def)
lemma init-item-end \([\) simp \(]\) : item-end (init-item r \(k\) ) \(=k\)
    by (auto simp add: item-end-def init-item-def)
lemma init-item-nonterminal[simp]: item-nonterminal (init-item \(r k)=f s t r\)
    by (auto simp add: init-item-def item-nonterminal-def)
lemma init-item- \(\alpha[\) simp \(]\) : item- \(\alpha(\) init-item r \(k)=[]\)
    by (auto simp add: init-item-def item- \(\alpha\)-def)
lemma Predict-elem-in-Gen:
    assumes \(I\)-in-Gen- \(P: I \subseteq G e n P\)
    assumes \(k: k \leq\) length Doc
    assumes \(x\)-in-Predict: \(x \in\) Predict \(k I\)
    shows \(x \in G e n P\)
proof -
    have \(x \in I \vee(\exists r y . r \in \Re \wedge x=\) init-item \(r k \wedge y \in \operatorname{bin} I k \wedge\) next-symbol \(y\)
\(=\operatorname{Some}(f s t r))\)
    using \(x\)-in-Predict by (auto simp add: Predict-def)
    then show?thesis
    proof (induct rule: disjCases2)
        case 1 thus ?case using \(I\)-in-Gen-P by blast
    next
        case 2
        then obtain \(r y\) where \(r y: r \in \Re \wedge x=\) init-item \(r k \wedge y \in \operatorname{bin} I k \wedge\)
            next-symbol \(y=\) Some ( \(f\) st \(r\) ) by blast
        then have \(\exists p \in P\). pvalid \(p y\)
            using Gen-implies-pvalid I-in-Gen-P bin-elem subsetCE by blast
        then obtain \(p\) where \(p: p \in P \wedge\) pvalid \(p y\) by blast
        have wellformed- \(p\) : wellformed-tokens \(p\) using \(p\) by (auto simp add: pvalid-def)
        have wellformed-x: wellformed-item \(x\)
```

```
        by (simp add: ry k)
    from ry have item-end y =k by (auto simp add: bin-def)
    with p have charslength-p[simplified]: charslength p = b by (auto simp add:
pvalid-def)
    have item-end-x: item-end x = k by (simp add: ry)
    have pvalid-x: pvalid p x
        apply (auto simp add: pvalid-def)
        apply (simp add: wellformed-p)
        apply (simp add: wellformed-x)
        apply (rule-tac x=length p in exI)
        apply (auto simp add: charslength-p ry)
        by (metis append-Cons next-symbol-starts-item- }\beta\mathrm{ p pvalid-def
        pvalid-is-derivation-terminals-item- }\beta\mathrm{ ry)
    then show ?case using Gen-def mem-Collect-eq p by blast
qed
qed
lemma Predict-subset-Gen:
    assumes I\subseteqGen P
    assumes k\leq length Doc
    shows Predict k I\subseteqGen P
using Predict-elem-in-Gen assms by blast
lemma nth-superfluous-append[simp]: i < length }a\Longrightarrow(a@b)!i=a!
by (simp add: nth-append)
lemma tokens-nth-in-\mathcal{Z:}
    p\in\mathfrak{P}\Longrightarrow\foralli.i<length p\longrightarrow(\exists u.p!i\in\mathcal{Z (charslength (take i p))u)}\\mp@code{\}=|
proof (induct rule: \mathfrak{P}\mathrm{ -induct)}
    case Base thus ?case by simp
next
    case (Induct p ku)
```



```
    then show ?case
    proof (induct rule: limit-induct)
        case (Init p) thus ?case using Induct by auto
    next
        case (Iterate p Y)
        from Iterate(2) have p\inY\vee(\existsqt. p=q@[t]\wedgeq\in by-length k Y}\wedget\in\mathcal{Z
k (Suc u)^
        admissible (q @ [t]))
        by (auto simp add: Append-def)
        then show ?case
        proof (induct rule: disjCases2)
            case 1 thus ?case using Iterate(1) by auto
        next
            case 2
                then obtain qt where
                qt:p=q@ @t]^q\in by-length k Y}\wedget\in\mathcal{Z k (Suc u)^admissible(q@
```

```
[t]) by blast
        then have q-in- Y:q\inY by auto
        with qt have k: k= charslength q by auto
        with qt have t:t\in\mathcal{Z }k\mathrm{ (Suc u) by auto}
        show ?case
        proof(auto simp add: qt)
            fix i
        assume i:i<Suc (length q)
        then have i< length q\veei= length q by arith
        then show \existsu.(q@ [t])!i\in\mathcal{Z (length (chars (take i q))) u}
            proof (induct rule: disjCasesZ)
                case 1
                    from Iterate(1)[OF q-in-Y]
            show ?case by (simp add: 1)
        next
                case 2
                        show ?case
                            apply (auto simp add: 2)
                    apply (rule-tac x=Suc u in exI)
                    using }kt\mathrm{ by auto
        qed
        qed
    qed
    qed
qed
lemma path-append-token:
    assumes p:p\in\mathcal{P}ku
    assumes t: t\in\mathcal{Z k (Sucu)}
    assumes pt:admissible (p@[t])
    assumes k: charslength p=k
    shows p@[t] \in\mathcal{P}k(Suc u)
apply (simp only: P.simps)
apply (rule-tac n=Suc 0 in limit-elem)
using p t pt k apply (auto simp only: Append-def funpower.simps)
by fastforce
definition indexlt-rel :: ((nat \times nat) }\times(nat \times nat)) set wher
    indexlt-rel = less-than <*lex*> less-than
definition indexlt :: nat => nat => nat }=>\mathrm{ nat }=>\mathrm{ bool where
    indexlt }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}ku=(((\mp@subsup{k}{}{\prime},\mp@subsup{u}{}{\prime}),(k,u))\in\mathrm{ indexlt-rel )
lemma indexlt-simp: indexlt k' }\mp@subsup{k}{}{\prime}ku=(\mp@subsup{k}{}{\prime}<k\vee(\mp@subsup{k}{}{\prime}=k\wedge\mp@subsup{u}{}{\prime}<u)
    by (auto simp add: indexlt-def indexlt-rel-def)
lemma wf-indexlt-rel: wf indexlt-rel
    using indexlt-rel-def pair-less-def by auto
```

```
lemma \(\mathcal{P}\)-induct \([\) consumes 1 , case-names Induct]:
    assumes \(p \in \mathcal{P} k u\)
    assumes induct: \(\bigwedge p k u .\left(\bigwedge p^{\prime} k^{\prime} u^{\prime} \cdot p^{\prime} \in \mathcal{P} k^{\prime} u^{\prime} \Longrightarrow\right.\) indexlt \(k^{\prime} u^{\prime} k u \Longrightarrow P\)
\(\left.p^{\prime} k^{\prime} u^{\prime}\right)\)
                    \(\Longrightarrow p \in \mathcal{P} k u \Longrightarrow P p k u\)
    shows \(P\) pku
proof -
    let \(? R=\) indexlt-rel \(<*\) lex \(*>\{ \}\)
    have \(w f-R\) : wf ? \(R\) by (auto simp add: wf-indexlt-rel)
    let ?P \(=\lambda\) a. snd \(a \in \mathcal{P}(f s t(f s t a))(\) snd \((f s t a)) \longrightarrow P(\) snd \(a)(f s t(f s t a))\)
(snd (fst a))
    have \(p \in \mathcal{P} k u \longrightarrow P p k u\)
        apply (rule wf-induct \([O F w f\) - \(R\), where \(P=? P\) and \(a=((k, u), p)\), simplified \(])\)
        apply (auto simp add: indexlt-def[symmetric])
        apply (rule-tac \(p=b a\) and \(k=a\) and \(u=b\) in induct)
        by auto
    thus ?thesis using assms by auto
qed
lemma nonempty-path-indices:
    assumes \(p: p \in \mathcal{P} k u\)
    assumes nonempty: \(p \neq[]\)
    shows \(k>0 \vee u>0\)
proof (cases \(u=0\) )
    case True
    note \(u=\) True
    have \(k>0\)
    proof (cases \(k=0\) )
            case True
            with \(p u\) have \(p=[]\) by \(\operatorname{simp}\)
            with nonempty have False by auto
            then show ?thesis by auto
    next
            case False
            then show? ?hesis by arith
    qed
    then show?thesis by blast
next
    case False
    then show ?thesis by arith
qed
lemma base-paths:
    assumes \(p: p \in \mathcal{P} k 0\)
    assumes \(k: k>0\)
    shows \(\exists u . p \in \mathcal{P}(k-1) u\)
proof -
    from \(k\) have \(\exists i . k=S u c i\) by arith
    then obtain \(i\) where \(i\) : \(k=\) Suc \(i\) by blast
```

```
    from p show ?thesis
    by (auto simp add: i natUnion-def)
qed
lemma indexlt-trans: indexlt k'\prime }\mp@subsup{u}{}{\prime\prime}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\Longrightarrow\mathrm{ indexlt }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}ku\Longrightarrow\mathrm{ indexlt }\mp@subsup{k}{}{\prime\prime}\mp@subsup{u}{}{\prime\prime
ku
using dual-order.strict-trans indexlt-simp by auto
definition is-continuation :: nat }=>\mathrm{ nat }=>\mathrm{ tokens }=>\mathrm{ tokens }=>\mathrm{ bool where
    is-continuation k u q ts = (q\in\mathcal{P}ku\wedge charslength q=k^ admissible (q@ts)
^
    (\forallt\in set ts.t\in\mathcal{Z k (Suc u))}\wedge(\forallt\in set (butlast ts). chars-of-token t= []))
lemma limit-Append-path-nonelem-split: p\inlimit (Append Tk) (\mathcal{P ku) \Longrightarrowp\not\in}
P ku\Longrightarrow
    \existsqts.p=q@ts ^q\in\mathcal{P}ku\wedge charslength q=k^ admissible(q@ts)\wedge(\forallt
set ts.t\inT)^
    (}\forallt\in\mathrm{ set (butlast ts). chars-of-token t=[])
proof (induct rule: limit-induct)
    case (Init p) thus ?case by auto
next
    case (Iterate p Y)
    show ?case
    proof (cases p\inY)
            case True
            from Iterate(1)[OF True Iterate(3)] show ?thesis by blast
    next
            case False
            with Append-def Iterate(2)
            have }\existsqt.p=q@[t]\wedgeq\in\mathrm{ by-length }kY\wedget\inT\wedge\mathrm{ admissible (q@ [t]) by
auto
            then obtain qt where qt: p=q@[t]\wedgeq\in by-length k Y\wedget\inT\wedge admissible
(q@ [t])
            by blast
            from qt have qlen: charslength q=k by auto
            have}q\in\mathcal{P}ku\veeq\not\in\mathcal{P}ku\mathrm{ by blast
            then show ?thesis
            proof(induct rule:disjCases2)
            case 1
            show ?case
                apply (rule-tac x=q in exI)
                apply (rule-tac x=[t] in exI)
                using qlen by (simp add: qt 1)
    next
            case 2
            have q-in-Y:q\inY using qt by auto
            from Iterate(1)[OF q-in-Y 2]
            obtain q' ts where
                q'ts:q= q'@ ts ^ q' }\in\mathcal{P}ku\wedge charslength q' = k^(\forallt\inset ts.t\inT)
```

```
                    (\forallt\inset(butlast ts).chars-of-token t=[])
            by blast
            with qlen have charslength ts = 0 by auto
            hence empty: }\forallt\in\operatorname{set}(ts).chars-of-token t = []
                apply (induct ts)
            by auto
            show ?case
            apply (rule-tac x= '' in exI)
            apply (rule-tac x=ts@[t] in exI)
            using qt q'ts empty by auto
        qed
    qed
qed
lemma limit-Append-path-nonelem-split':
```



```
    \exists qts. p=q@ts ^is-continuation k uq ts
apply (simp only: is-continuation-def)
apply (rule-tac limit-Append-path-nonelem-split)
by auto
lemma final-step-of-path: p\in\mathcal{P}ku\Longrightarrowp\not=[]\Longrightarrow(\exists q ts k' u'.p=q@ts ^
indexlt k' }\mp@subsup{u}{}{\prime}k
    \s-continuation }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}q|ts
proof (induct rule: \mathcal{P-induct)}
    case (Induct p ku)
    from Induct(2) Induct(3) have ku-0: k>0 V u>0
        using nonempty-path-indices by blast
    show ?case
    proof (cases u=0)
        case True
        with ku-0 have k-0: k>0 by arith
        with True Induct(2) base-paths have \exists u'. p\in\mathcal{P}(k-1) u' by auto
        then obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}:p\in\mathcal{P}(k-1)\mp@subsup{u}{}{\prime}\mathrm{ by blast
        have indexlt: indexlt (k-1) u' ku by (simp add: indexlt-simp k-0)
        from Induct(1)[OF u' indexlt Induct(3)] show ?thesis
            using indexlt indexlt-trans by blast
next
    case False
    then have \exists u u}..u=Suc u' by arith
    then obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}:u=\mathrm{ Suc u}\mp@subsup{u}{}{\prime}\mathrm{ by blast
```



```
        using \mathcal{P}.\operatorname{simps(2) by blast}
    from }\mp@subsup{u}{}{\prime}\mathrm{ have indexlt: indexlt k u' ku by (simp add: indexlt-simp)
    have p}\in\mathcal{P}k\mp@subsup{u}{}{\prime}\veep\not\in\mathcal{P}k\mp@subsup{u}{}{\prime}\mathrm{ by blast
    then show ?thesis
    proof (induct rule: disjCases2)
        case 1
        from Induct(1)[OF 1 indexlt Induct(3)] show ?case
```

```
            using indexlt indexlt-trans by blast
        next
            case 2
            from limit-Append-path-nonelem-split'[OF p-limit 2]
            show ?case using indexlt u' by auto
        qed
    qed
qed
lemma terminals-empty[simp]: terminals [] = []
    by (auto simp add: terminals-def)
lemma empty-in- }\mp@subsup{\mathcal{L}}{P}{[simp]: [] \in\mathcal{L}
```



```
    apply (rule-tac x=[S] in exI)
    by simp
lemma admissible-empty[simp]: admissible []
    by (auto simp add: admissible-def)
lemma }\mathfrak{P}\mathrm{ -are-admissible: p }\mathfrak{P}\Longrightarrow\mathrm{ admissible p
proof (induct rule: \mathfrak{P}\mathrm{ -induct)}
    case Base thus ?case by simp
next
    case (Induct p ku)
    from Induct(2)[simplified] show ?case
    proof (induct rule: limit-induct)
        case (Init p) from Induct(1)[OF Init] show ?case .
    next
        case (Iterate p Y)
        have \mathcal{Y}(\mathcal{Z ku) (\mathcal{P}ku)k\subseteq\mathcal{X}k}\mathrm{ by (metis Z.Simps(2) Z -subset-X)}
        then have 1: Append (\mathcal{Y}(\mathcal{Z}ku)(\mathcal{P}ku)k)kY\subseteqAppend (\mathcal{X k)kY}
            by (rule Append-mono, simp)
        have 2: p \in Append (\mathcal{X k)k Y\Longrightarrowadmissible p}
            apply (auto simp add: Append-def)
            by (simp add: Iterate)
        show ?case
            apply (rule 2)
            using 1 Iterate(2) by blast
    qed
qed
lemma prefix-of-empty-is-empty:is-prefix q [] \Longrightarrowq=[]
by (metis is-prefix-cons neq-Nil-conv)
lemma subset-\mathcal{P :}
    assumes leq: }\mp@subsup{k}{}{\prime}<k\vee(\mp@subsup{k}{}{\prime}=k\wedge\mp@subsup{u}{}{\prime}\lequ
    shows \mathcal{P}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\subseteq\mathcal{P}ku
proof -
```

```
    from leq show ?thesis
    proof (induct rule: disjCases2)
    case 1
    have s1:\mathcal{P}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\subseteq\mathcal{Q}\mp@subsup{k}{}{\prime}\mathrm{ by (rule-tac subset-P Q k)}
    have s2:\mathcal{Q }\mp@subsup{k}{}{\prime}\subseteq\mathcal{Q}(k-1)
        apply (rule-tac subset-\mathcal{Q}
        using 1 by arith
    from subset-\mathcal{QPSuc[where k=k-1] 1 have s3: \mathcal{ (k-1)\subseteq\mathcal{P}k0}}\mathbf{k}0
        by simp
```



```
    from s1 s2 s3 s4 subset-trans show ?case by blast
next
    case 2 thus ?case by (simp add : subset-\mathcal{P}k)
    qed
qed
lemma empty-path-is-elem[simp]: [] \in\mathcal{P}ku
proof -
    have [] {\mathcal{P}00\mathrm{ by simp}
    then show [] \in\mathcal{P}ku by (metis le0 not-gr0 subsetCE subset-\mathcal{P})
qed
lemma is-prefix-of-append:
    assumes is-prefix p(a@b)
    shows is-prefix p a \vee (\exists b}\mp@subsup{b}{}{\prime}.\mp@subsup{b}{}{\prime}\not=[]^ is-prefix b' b ^p=a@b'
apply (auto simp add: is-prefix-def)
by (metis append-Nil2 append-eq-append-conv2 assms is-prefix-cancel is-prefix-def)
lemma prefix-is-continuation: is-continuation k u pts \Longrightarrow is-prefix ts'ts \Longrightarrow
    is-continuation k u p ts'
apply (auto simp add: is-continuation-def is-prefix-def)
apply (metis }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -split admissible-def append-assoc terminals-append)
using in-set-butlast-appendI by fastforce
lemma charslength-0:(\forallt\in set ts.chars-of-token t=[])=(charslength ts = 0)
by (induct ts, auto)
```



```
proof(induct ts rule: rev-induct)
    case Nil thus ?case
    apply (auto simp add: is-continuation-def)
    using subset-P Suc by fastforce
next
    case (snoc t ts)
    from snoc(2) have is-continuation k u p ts
    by (metis append-Nil2 is-prefix-cancel is-prefix-empty prefix-is-continuation)
    note induct = snoc(1)[OF this]
```



```
    note is-cont = snoc(2)
```

```
then have admissible: admissible ( \(p @ t s @[t]\) ) by (simp add: is-continuation-def)
from is-cont have \(t: t \in \mathcal{Z} k\) (Suc u) by (simp add: is-continuation-def)
from is-cont have \(\forall t \in\) set ts. chars-of-token \(t=[]\) by (simp add: is-continuation-def)
then have charslength-ts: charslength \(t s=0\) by (simp only: charslength- 0 )
from is-cont have plen: charslength \(p=k\) by (simp add: is-continuation-def)
show ?case
    apply (simp only: \(\mathcal{P} . \operatorname{simps}\) )
    apply (rule-tac limit-step-pointwise \([O F\) pts])
    apply (simp add: pointwise-Append)
    apply (auto simp add: Append-def)
    apply (rule-tac \(x=f s t t\) in \(e x I\) )
    apply (rule-tac \(x=\) snd \(t\) in exI)
    apply (auto simp add: admissible)
    using charslength-ts apply simp
    using plen apply simp
    using \(t\) by simp
qed
lemma indexlt-subset- \(\mathcal{P}\) : indexlt \(k^{\prime} u^{\prime} k u \Longrightarrow \mathcal{P} k^{\prime}\left(\right.\) Suc \(\left.u^{\prime}\right) \subseteq \mathcal{P} k u\)
apply (rule-tac subset-P)
apply (simp add: indexlt-simp)
apply arith
done
lemma prefixes-are-paths: \(p \in \mathcal{P} k u \Longrightarrow\) is-prefix \(x p \Longrightarrow x \in \mathcal{P} k u\)
proof (induct arbitrary: x rule: \(\mathcal{P}\)-induct)
    case (Induct p \(k u\) )
    show ?case
    proof (cases \(p=[]\) )
        case True
        then have \(x=[]\)
            using Induct.prems prefix-of-empty-is-empty by blast
    then show \(x \in \mathcal{P} k u\) by \(\operatorname{simp}\)
    next
    case False
    from final-step-of-path[OF Induct(2) False]
    obtain \(q\) ts \(k^{\prime} u^{\prime}\) where step: \(p=q @ t s \wedge\) indexlt \(k^{\prime} u^{\prime} k u \wedge\) is-continuation
\(k^{\prime} u^{\prime} q\) ts
            by blast
    have subset: \(\mathcal{P} k^{\prime} u^{\prime} \subseteq \mathcal{P} k u\)
    by (metis indexlt-simp less-or-eq-imp-le step subset-P \()\)
    have is-prefix \(x q \vee\left(\exists t s^{\prime} . t s^{\prime} \neq[] \wedge\right.\) is-prefix \(\left.t s^{\prime} t s \wedge x=q @ t s^{\prime}\right)\)
        apply (rule-tac is-prefix-of-append)
        using Induct(3) step by auto
    then show ?thesis
    proof (induct rule: disjCases2)
        case 1
            have \(x: x \in \mathcal{P} k^{\prime} u^{\prime}\)
            using 1 Induct step by (auto simp add: is-continuation-def)
```

```
            then show }x\in\mathcal{P}ku\mathrm{ using subset subsetCE by blast
        next
            case 2
            then obtain ts' where ts': is-prefix ts'ts }\wedgex=q@ts' by blas
            have is-continuation k' }\mp@subsup{k}{}{\prime}qt\mp@subsup{s}{}{\prime}\mathbf{using}\mathrm{ step prefix-is-continuation ts' by blast
            with ts' have }x\in\mathcal{P}\mp@subsup{k}{}{\prime}(Suc u'
            apply (simp only:ts')
            apply (rule-tac is-continuation-in-\mathcal{P})
            by simp
            with subset show }x\in\mathcal{P}ku\mathrm{ using indexlt-subset-P step by blast
        qed
    qed
qed
lemma empty-or-last-of-suffix:
    assumes q= q' @ [t]
    assumes q=p@ts
    shows ts=[]\vee(\existst\mp@subsup{s}{}{\prime}.\mp@subsup{q}{}{\prime}=p@t\mp@subsup{s}{}{\prime}\wedget\mp@subsup{s}{}{\prime}@[t]=ts)
by (metis assms(1) assms(2) butlast-append last-appendR snoc-eq-iff-butlast)
lemma is-prefix-butlast: is-prefix q (butlast p)\Longrightarrow \s-prefix q p
by (metis butlast-conv-take is-prefix-append is-prefix-def is-prefix-take)
lemma last-step-of-path:
    q\in\mathcal{P}ku\Longrightarrowq= q}@[t]
        \exists k' u'. indexlt k' }\mp@subsup{k}{}{\prime}ku\wedgeq\in\mathcal{P}\mp@subsup{k}{}{\prime}(\mathrm{ Suc u})\wedge charslength q' = k'^^t\in\mathcal{Z }\mp@subsup{k}{}{\prime
(Suc u')
proof (induct arbitrary: q' t rule: \mathcal{P}\mathrm{ -induct)}
    case (Induct q k u)
        have \exists p ts k' u'.q=p@ts ^ indexlt k' }\mp@subsup{k}{}{\prime}ku\wedgeis-continuation k' u'p t
            apply (rule-tac final-step-of-path)
            apply (simp add: Induct(2))
            apply (simp add: Induct(3))
            done
            then obtain pts k' u' where pts:q=p@ts ^indexlt k' }\mp@subsup{k}{}{\prime}ku\wedgeis-continuation
k}\mp@subsup{}{\prime}{\prime}\mp@subsup{u}{}{\prime}p\mathrm{ ts
                by blast
            then have indexlt: indexlt k' }\mp@subsup{k}{}{\prime}ku\mathrm{ by auto
            from pts have ts=[]\vee(\existst\mp@subsup{s}{}{\prime}.\mp@subsup{q}{}{\prime}=p@t\mp@subsup{s}{}{\prime}\wedget\mp@subsup{s}{}{\prime}@[t]=ts)
            by (metis empty-or-last-of-suffix Induct(3))
            then show ?case
            proof (induct rule: disjCases2)
            case 1
                with pts have q:q\in\mathcal{P}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\mathrm{ by (auto simp add: is-continuation-def)}
                    from Induct(1)[OF this indexlt Induct(3)] show ?case
                    using indexlt indexlt-trans by blast
    next
                case 2
                    then obtain ts' where ts': q}\mp@subsup{q}{}{\prime}=p@t\mp@subsup{s}{}{\prime}\wedget\mp@subsup{s}{}{\prime}@[t]=ts\mathrm{ by blast
```

```
    then have is-prefix ts' ts using is-prefix-def by blast
    then have is-continuation k' }\mp@subsup{k}{}{\prime}pt\mp@subsup{s}{}{\prime}\mathrm{ by (metis prefix-is-continuation pts)
    have charslength ts' = 0 using charslength-0 is-continuation-def pts ts' by
auto
            then have q'len: charslength q' = k' using is-continuation-def pts ts' by
auto
            have }t\in\mathrm{ set ts using ts' by auto
            with pts have t-in-\mathcal{Z:}t\in\mathcal{Z k}}\mp@subsup{k}{}{\prime}(Suc u') using is-continuation-def by blas
            have q-dom: q\in\mathcal{P}\mp@subsup{k}{}{\prime}(\mathrm{ Suc u') using pts is-continuation-in- }\mathcal{P}\mathrm{ by blast}
            show ?case
            apply (rule-tac x=k' in exI)
            apply (rule-tac x=u' in exI)
            by (simp only: indexlt q'len t-in-\mathcal{Z q-dom)}
    qed
qed
lemma charslength-of-butlast- \(0: p \in \mathcal{P} k 0 \Longrightarrow p=q @[t] \Longrightarrow\) charslength \(q<k\) using last-step-of-path LocalLexing-axioms indexlt-simp by blast
lemma charslength-of-butlast: \(p \in \mathcal{P} k u \Longrightarrow p=q @[t] \Longrightarrow\) charslength \(q \leq k\) by (metis indexlt-simp last-step-of-path eq-imp-le less-imp-le-nat)
lemma last-token-of-path:
assumes \(q \in \mathcal{P} k u\)
assumes \(q=q^{\prime} @[t]\)
assumes charslength \(q^{\prime}=k\)
shows \(t \in \mathcal{Z} k u\)
proof -
from assms have \(\exists k^{\prime} u^{\prime}\). indexlt \(k^{\prime} u^{\prime} k u \wedge q \in \mathcal{P} k^{\prime}\left(\right.\) Suc \(\left.u^{\prime}\right) \wedge\) charslength \(q^{\prime}\) \(=k^{\prime} \wedge\)
\(t \in \mathcal{Z} k^{\prime}\left(\right.\) Suc \(\left.u^{\prime}\right)\) using last-step-of-path by blast
then obtain \(k^{\prime} u^{\prime}\) where th: indexlt \(k^{\prime} u^{\prime} k u \wedge q \in \mathcal{P} k^{\prime}\left(\right.\) Suc \(\left.u^{\prime}\right) \wedge\) charslength \(q^{\prime}=k^{\prime} \wedge\)
\(t \in \mathcal{Z} k^{\prime}\) (Suc \(u^{\prime}\) ) by blast
with \(\operatorname{assms}(3)\) have \(k^{\prime}: k^{\prime}=k\) by blast
with th have \(t \in \mathcal{Z} k^{\prime}\left(\right.\) Suc \(\left.u^{\prime}\right) \wedge u^{\prime}<u\) using indexlt-simp by auto
then show ?thesis
by (metis (no-types, opaque-lifting) \(\mathcal{Z}\)-subset-Suc \(k^{\prime}\) linorder-neqE-nat not-less-eq subsetCE subset-fSuc-strict)
qed
lemma final-step-of-path': \(p \in \mathcal{P} k u \Longrightarrow p \notin \mathcal{P} k(u-1) \Longrightarrow\)
\(\exists q\) ts. \(u>0 \wedge p=q @ t s \wedge i s\)-continuation \(k(u-1) q t s\)
by (metis Suc-diff-1 \(\mathcal{P} . \operatorname{simps}(2)\) diff-0-eq-0 limit-Append-path-nonelem-split' not-gr0)
lemma is-continuation-continue:
assumes is-continuation \(k u q\) ts
assumes charslength \(t s=0\)
```

```
    assumes t\in\mathcal{Z k (Suc u)}
    assumes admissible (q@ ts @ [t])
    shows is-continuation kuq(ts@[t])
proof -
    from assms show ?thesis
        by (simp add: is-continuation-def charslength-0)
qed
theorem compatibility-def:
    assumes p-in-dom: p\in\mathcal{P}ku
    assumes q-in-dom: q\in\mathcal{P ku}
    assumes p-charslength: charslength p=k
    assumes q-split: q = q}@[t
    assumes q'len: charslength q' =k
    assumes admissible: admissible (p@ @ t])
    shows p@ [t]\in\mathcal{P}ku
proof -
    have u:u>0
    proof (cases u=0)
        case True
            then have charslength q}\mp@subsup{q}{}{\prime}<
                using charslength-of-butlast-0 q-in-dom q-split by blast
            with q'len have False by arith
            then show?thesis by blast
    next
        case False
            then show ?thesis by arith
    qed
    have t-dom: t\in\mathcal{Z k u using last-token-of-path q'len q-in-dom q-split by blast}
    have p\in\mathcal{P}k(u-1)\vee p\not\in\mathcal{P}k(u-1) by blast
    then show ?thesis
    proof (induct rule: disjCases2)
        case 1
            with t-dom p-charslength admissible u have is-continuation k (u-1) p[t]
                by (auto simp add: is-continuation-def)
            with u show p@[t]\in\mathcal{P}ku
                by (metis One-nat-def Suc-pred is-continuation-in-\mathcal{P})
    next
        case 2
            from final-step-of-path'[OF p-in-dom 2]
            obtain p'ts where p':p= p'@ ts ^ is-continuation k (u-1) p'ts
                by blast
            from p' p-charslength is-continuation-def have charslength-ts: charslength ts
=0
            by auto
            from u have u':Suc (u-1)=u by arith
            have is-continuation k(u-1) p'(ts@[t])
```

```
            apply (rule-tac is-continuation-continue)
            using p' apply blast
            using charslength-ts apply blast
            apply (simp only: u't-dom)
            using admissible p' apply auto
            done
            from is-continuation-in-\mathcal{P}[OF this] show ?case by (simp only: p' }\mp@subsup{u}{}{\prime}\mathrm{ , simp)
    qed
qed
lemma is-prefix-admissible:
    assumes is-prefix a b
    assumes admissible b
    shows admissible a
proof -
    from assms show ?thesis
        by (auto simp add: is-prefix-def admissible-def }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -def)
qed
lemma butlast-split: n < length q\Longrightarrow butlast q=(take n q)@(drop n (butlast q))
by (metis append-take-drop-id take-butlast)
lemma in-\mathcal{P}\mathrm{ -charslength:}
    assumes p-dom: p\in\mathcal{P}ku
    shows }\existsv.p\in\mathcal{P}(\mathrm{ charslength p) v
proof (cases charslength p\geqk)
    case True
        show ?thesis
            apply (rule-tac x=u in exI)
            by (metis True le-neq-implies-less p-dom subsetCE subset-\mathcal{P})
next
    case False
            then have charslength: charslength p<k by arith
            have p=[]\veep\not=[] by blast
            thus ?thesis
            proof (induct rule: disjCases2)
            case 1 thus ?case by simp
            next
            case 2
                    from final-step-of-path[OF p-dom 2] obtain q ts k' }\mp@subsup{|}{}{\prime}\mathrm{ where
                    step: p=q@ ts ^ indexlt k' u' ku^is-continuation k}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}q\mathrm{ ts by blast
                    from step have }\mp@subsup{k}{}{\prime}\mathrm{ : charslength q}=\mp@subsup{k}{}{\prime}\mathrm{ using is-continuation-def by blast
                    from step have charslength q}\leq\mathrm{ charslength p by simp
                    with }\mp@subsup{k}{}{\prime}\mathrm{ have }\mp@subsup{k}{}{\prime}:\mp@subsup{k}{}{\prime}\leqcharslength p by sim
                    from step have p\in\mathcal{P}\mp@subsup{k}{}{\prime}(Suc u') using is-continuation-in-\mathcal{P}\mathrm{ by blast}
                    with k' have p\in\mathcal{P}\mathrm{ (charslength p) (Suc u')}
                    by (metis le-neq-implies-less subsetCE subset-\mathcal{P})
                    then show ?case by blast
        qed
```


qed

theorem general-compatibility:
$p \in \mathcal{P} k u \Longrightarrow q \in \mathcal{P} k u \Longrightarrow$ charslength $p=$ charslength (take $n q$)
\Longrightarrow charslength $p \leq k \Longrightarrow$ admissible $(p @($ drop $n q)) \Longrightarrow p @(d r o p n q) \in$ $\mathcal{P} k u$
proof (induct length $q-n$ arbitrary: $p q n k u$)
case 0
from 0 have $0=$ length $q-n$ by auto
then have $n: n \geq$ length q by arith
then have drop $n q=[]$ by auto
then show? case by (simp add: 0.prems(1))
next
case (Suc l)
have $n \geq$ length $q \vee n<$ length q by arith
then show ?case
proof (induct rule: disjCases2)
case 1
then have drop $n q=[]$ by auto
then show ?case by (simp add: Suc.prems(1))
next
case 2
then have length $q>0$ by auto
then have q-nonempty: $q \neq[]$ by auto
let $? q^{\prime}=$ butlast q
from q-nonempty Suc(2) have $h 1: l=$ length $? q^{\prime}-n$ by auto
have $h 2: ? q^{\prime} \in \mathcal{P} k u$
by (metis Suc.prems(2) butlast-conv-take is-prefix-take prefixes-are-paths)
have h3: charslength $p=$ charslength (take n ? q^{\prime})
using 2.hyps Suc.prems(3) take-butlast by force
have is-prefix (p @ drop n ? q^{\prime}) (p @ dropn q)
by (simp add: butlast-conv-take drop-take)
note $h_{4}=$ is-prefix-admissible[OF this Suc.prems(5)]
note induct $=\operatorname{Suc}(1)[$ OF h1 Suc(3) h2 h3 Suc.prems(4) h4]
let $? p^{\prime}=p$ @ (drop $n($ butlast $q)$)
from induct have ? $p^{\prime} \in \mathcal{P} k u$.
let $? i=$ charslength $? p^{\prime}$
have charslength-i[symmetric]: charslength $? q^{\prime}=? i$
using Suc.prems(3) apply simp
apply (subst butlast-split[OF 2])
by simp
have q-split: $q=$? $q^{\prime} @[$ last $q]$ by (simp add: q-nonempty)
with Suc.prems(2) charslength-of-butlast have charslength-q': charslength
$? q^{\prime} \leq k$
by blast
from q-nonempty have p^{\prime} last: ? $p^{\prime} @[$ last $q]=p @(d r o p n q)$
by (metis 2.hyps append-assoc drop-eq-Nil drop-keep-last not-le q-split)
have ? $i \leq k$ by (simp only: charslength- i charslength- q ')
then have ? $i=k \vee ? i<k$ by auto

```
then show ?case
proof (induct rule: disjCases2)
    case 1
        have charslength-q': charslength ? q' = k using charslength-i[symmetric]
1 by blast
            from compatibility-def[OF induct Suc.prems(2) 1 q-split charslength-q]
            show ?case by (simp only: p'last Suc.prems(5))
        next
            case 2
                from in-\mathcal{P}-charslength[OF induct]
            obtain v1 where v1: ? p' }\in\mathcal{P}\mathrm{ ?i v1 by blast
            from last-step-of-path[OF Suc.prems(2) q-split]
            have }\existsu.q\in\mathcal{P}\mathrm{ ?i u by (metis charslength-i)
```



```
            let ?v = max v1 v2
            have v1\leq?v by auto
            with v1 have dom1: ?p' }\in\mathcal{P}\mathrm{ ?i ?v by (metis (no-types, opaque-lifting)
subsetCE subset-Pk)
            have v2 \leq?v by auto
            with v2 have dom2: q\in\mathcal{P}\mathrm{ ?i ?v by (metis (no-types, opaque-lifting)}
subsetCE subset-Pk)
            from compatibility-def[OF dom1 dom2 - q-split]
            have p@ drop n q\in\mathcal{P ?i ?v}
                    by (simp only: p'last charslength-i[symmetric] Suc.prems(5))
                then show p@ drop n q\in\mathcal{P}ku by (meson 2.hyps subsetCE subset-\mathcal{P})
        qed
    qed
qed
lemma wellformed-item-derives:
    assumes wellformed: wellformed-item x
    shows derives [item-nonterminal x] (item-rhs x)
proof -
    from wellformed have (item-nonterminal x, item-rhs x) \in 
    by (simp add: item-nonterminal-def item-rhs-def wellformed-item-def)
    then show ?thesis
    by (metis append-Nil2 derives1-def derives1-implies-derives is-sentence-concat
            rule-\alpha-type self-append-conv2)
qed
lemma wellformed-complete-item- }\beta\mathrm{ :
    assumes wellformed: wellformed-item x
    assumes complete: is-complete x
    shows item- }\beta\mathrm{ x = []
using complete is-complete-def item- }\beta\mathrm{ -def by auto
lemma wellformed-complete-item-derives:
    assumes wellformed: wellformed-item x
    assumes complete: is-complete x
```

shows derives [item-nonterminal x] (item- αx)
using complete is-complete-def item- α-def wellformed wellformed-item-derives by auto
lemma is-derivation-implies-admissible:
is-derivation (terminals $p @ \delta) \Longrightarrow$ is-word (terminals p) \Longrightarrow admissible p using \mathcal{L}_{P}-def admissible-def by blast
lemma item-rhs-of-inc-item[simp]: item-rhs (inc-item x k) $=$ item-rhs x by (auto simp add: inc-item-def item-rhs-def)
lemma item-rule-of-inc-item $[$ simp $]$: item-rule (inc-item $x k$) $=$ item-rule x by (simp add: inc-item-def)
lemma item-origin-of-inc-item[simp]: item-origin (inc-item xk) $=$ item-origin x by (simp add: inc-item-def)
lemma item-end-of-inc-item[simp]: item-end (inc-item x k) $=k$ by (simp add: inc-item-def)
lemma item-dot-of-inc-item[simp]: item-dot (inc-item x k) $=($ item-dot $x)+1$ by (simp add: inc-item-def)
lemma item-nonterminal-of-inc-item[simp]: item-nonterminal (inc-item x k) = item-nonterminal x
by (simp add: inc-item-def item-nonterminal-def)
lemma wellformed-inc-item:
assumes wellformed: wellformed-item x
assumes next-symbol: next-symbol $x=$ Some s
assumes k-upper-bound: $k \leq$ length Doc
assumes k-lower-bound: $k \geq$ item-end x
shows wellformed-item (inc-item $x k$)
proof -
have k-lower-bound ${ }^{\prime}: k \geq$ item-origin x
using k-lower-bound wellformed wellformed-item-def by auto
show ?thesis
apply (auto simp add: wellformed-item-def k-upper-bound k-lower-bound')
using wellformed wellformed-item-def apply blast
using is-complete-def next-symbol next-symbol-not-complete not-less-eq-eq by
blast
qed
lemma item- α-of-inc-item:
assumes wellformed: wellformed-item x
assumes next-symbol: next-symbol $x=$ Some s
shows item- $\alpha($ inc-item $x k)=$ item- $\alpha x @[s]$
by (metis (mono-tags, lifting) item-dot-of-inc-item item-rhs-of-inc-item
One-nat-def add.right-neutral add-Suc-right is-complete-def item- α-def item- β-def
le-neq-implies-less list.sel(1) next-symbol next-symbol-not-complete next-symbol-starts-item- β take-hd-drop wellformed wellformed-item-def)
lemma derives1-pad:
assumes derives1: derives1 $\alpha \beta$
assumes u : is-sentence u
assumes v : is-sentence v
shows derives1 ($u @ \alpha @ v$) ($u @ \beta @ v$)
proof -
from derives1 have
$\exists x y N \delta . \alpha=x @[N] @ y \wedge \beta=x @ \delta @ y \wedge$ is-sentence $x \wedge$ is-sentence y
$\wedge(N, \delta) \in \mathfrak{R}$
by (auto simp add: derives1-def)
then obtain x y $N \delta$ where
$1: \alpha=x @[N] @ y \wedge \beta=x @ \delta @ y \wedge$ is-sentence $x \wedge$ is-sentence $y \wedge(N, \delta)$
$\in \mathfrak{R}$ by blast
show ?thesis
apply (simp only: derives1-def)
apply (rule-tac $x=u @ x$ in $e x I$)
apply (rule-tac $x=y @ v$ in $e x I$)
apply (rule-tac $x=N$ in exI)
apply (rule-tac $x=\delta$ in exI)
using 1 uv is-sentence-concat by auto
qed
lemma derives-pad:
derives $\alpha \beta \Longrightarrow$ is-sentence $u \Longrightarrow$ is-sentence $v \Longrightarrow$ derives $(u @ \alpha @ v)(u @ \beta @ v)$
proof (induct rule: derives-induct)
case Base thus? case by simp
next
case (Step y z)
from Step have 1: derives ($u @ \alpha @ v$) ($u @ y @ v$) by auto
from Step have 2: derives1 $y z$ by auto
then have derives1 ($u @ y @ v$) ($u @ z @ v$) by (simp add: Step.prems derives1-pad)
then show ?case
using 1 derives1-implies-derives derives-trans by blast
qed
lemma derives1-is-sentence: derives1 $\alpha \beta \Longrightarrow$ is-sentence $\alpha \wedge$ is-sentence β using Derives1-sentence1 Derives1-sentence2 derives1-implies-Derives1 by blast
lemma derives-is-sentence: derives $\alpha \beta \Longrightarrow(\alpha=\beta) \vee($ is-sentence $\alpha \wedge$ is-sentence β)
proof (induct rule: derives-induct)
case Base thus?case by simp
next

```
    case (Step y z)
    show ?case using Step.hyps(2) Step.hyps(3) derives1-is-sentence by blast
qed
lemma derives-append:
    assumes au: derives a u
    assumes bv: derives b v
    assumes is-sentence-a: is-sentence a
    assumes is-sentence-b: is-sentence b
    shows derives (a@b)(u@v)
proof -
    from au have a=u\vee(is-sentence a ^ is-sentence u)
        using derives-is-sentence by blast
    then have au-sentences: is-sentence a ^is-sentence u using is-sentence-a by
blast
    from bv have b=v\vee (is-sentence b ^ is-sentence v)
        using derives-is-sentence by blast
    then have bv-sentences: is-sentence b ^ is-sentence v using is-sentence-b by
blast
    have 1:derives(a@b)(u@b)
        apply (rule-tac derives-pad[OF au, where }u=[],\mathrm{ simplified])
        using is-sentence-b by auto
    have 2:derives(u@b)(u@v)
        apply (rule-tac derives-pad[OF bv, where v=[], simplified])
        apply (simp add: au-sentences)
        done
    from 12 derives-trans show ?thesis by blast
qed
lemma is-sentence-item-\alpha: wellformed-item x \Longrightarrowis-sentence (item- }\alphax\mathrm{ )
    by (metis is-sentence-take item-\alpha-def item-rhs-def prod.collapse rule-\alpha-type well-
formed-item-def)
lemma is-nonterminal-item-nonterminal: wellformed-item x c> is-nonterminal
(item-nonterminal x)
    by (metis item-nonterminal-def prod.collapse rule-nonterminal-type wellformed-item-def)
lemma Complete-elem-in-Gen:
    assumes I-in-Gen:I\subseteqGen (\mathcal{P k u)}
    assumes k: k\leq length Doc
    assumes x-in-Complete: }x\in\mathrm{ Complete k I
    shows }x\inGen (\mathcal{P ku)
proof -
    let ?P = \mathcal{P ku}
    from x-in-Complete have x\inI\vee (\exists x1 x2. x = inc-item x1 k ^
        x1 \in bin I (item-origin x2) ^ x2 \in bin I k ^ is-complete x2 ^
        next-symbol x1 = Some (item-nonterminal x2))
        by (auto simp add: Complete-def)
    then show ?thesis
```

proof (induct rule: disjCases2)
case 1 thus ?case using I-in-Gen subsetCE by blast
next
case 2
then obtain $x 1$ x2 where $x 12: x=$ inc-item $x 1 k \wedge$
$x 1 \in \operatorname{bin} I($ item-origin $x 2) \wedge x 2 \in \operatorname{bin} I k \wedge$ is-complete $x 2 \wedge$ next-symbol $x 1=$ Some (item-nonterminal $x 2$) by blast
from $x 12$ have $\exists p 1 p 2 . p 1 \in ? P \wedge$ pvalid $p 1 x 1 \wedge p 2 \in ? P \wedge$ pvalid $p 2 x 2$ by (meson Gen-implies-pvalid I-in-Gen bin-elem subsetCE)
then obtain $p 1 p 2$ where $p 1: p 1 \in ? P \wedge$ pvalid $p 1 x 1$ and $p 2: p 2 \in ? P \wedge$
pvalid p2 x2
by blast
from $p 1$ obtain $w \delta$ where p1valid:
wellformed-tokens p1 \wedge
wellformed-item x1 \wedge
$w \leq$ length $p 1 \wedge$
charslength $p 1=$ item-end $x 1 \wedge$
charslength (take wp1) = item-origin $x 1 \wedge$
is-derivation (terminals (take wp1) @ [item-nonterminal x1] @ δ) \wedge
derives (item- α x1) (terminals (drop w p1))
using pvalid-def by blast
from $p 2$ obtain $y \gamma$ where p2valid:
wellformed-tokens p2 \wedge
wellformed-item x2 \wedge
$y \leq$ length p2 \wedge
charslength p2 $=$ item-end $x 2 \wedge$
charslength (take y p2) $=$ item-origin $x 2 \wedge$
is-derivation (terminals (take yp2) @ [item-nonterminal x2] @ γ) \wedge
derives (item- α x2) (terminals (drop y p2))
using pvalid-def by blast
let $? r=p 1$ @ (drop y p2)
have charslength-p1-eq: charslength p1 = item-end x1 by (simp only: p1valid)
from x12 have item-end-x1: item-end x1 = item-origin x2
using bin-def mem-Collect-eq by blast
have item-end-x2: item-end $x 2=k$ using bin-def x12 by blast
then have charslength-p1-leq: charslength $p 1 \leq k$ using charslength-p1-eq item-end-x1 p2valid wellformed-item-def by auto
have $\exists \delta^{\prime}$. item- $\beta x 1=[$ item-nonterminal $x 2] @ \delta^{\prime}$ by (simp add: next-symbol-starts-item- β p1valid x12)
then obtain δ^{\prime} where δ^{\prime} : item- $\beta x 1=[$ item-nonterminal $x 2] @ \delta^{\prime}$ by blast
have is-derivation ((terminals (take w p1))@(item-rhs x1)@ δ)
using is-derivation-derives p1valid wellformed-item-derives by blast
then have is-derivation ((terminals (take wp1))@(item- α x1@ item- β x1)@ δ) by (simp add: item-rhs-split)
then have is-derivation ((terminals (take wp1))@((terminals (drop w p1)) @ item- β x1)@ δ)
using is-derivation-derives p1valid by auto
then have is-derivation ((terminals p1)@(item- β x1)@ δ)
by (metis append-assoc append-take-drop-id terminals-append)
then have is-derivation $\left((\right.$ terminals p1 $) @\left([\right.$ item-nonterminal $\left.\left.x 2] @ \delta^{\prime}\right) @ \delta\right)$ using is-derivation-derives δ^{\prime} by auto
then have is-derivation ((terminals p1)@(terminals (dropyp2)) @ $\left.\delta^{\prime} @ \delta\right)$ using is-complete-def is-derivation-derives is-derivation-step item- α-def item-nonterminal-def item-rhs-def p2valid wellformed-item-def x12 by auto
then have is-derivation (terminals (p1 @ (drop y p2)) @ ($\left.\delta^{\prime} @ \delta\right)$) by simp
then have admissible-r: admissible (p1@ (drop y p2))
apply (rule-tac is-derivation-implies-admissible)
apply auto
apply (rule is-word-terminals)
apply (simp add: p1valid)
using p2valid using is-word-terminals-drop terminals-drop by auto
have r-in-dom: ? $r \in \mathcal{P} k u$
apply (rule-tac general-compatibility)
apply (simp add: p1)
apply (simp add: p2)
apply (simp only: p2valid charslength-p1-eq item-end-x1)
apply (simp only: charslength-p1-leq)
by (simp add: admissible-r)
have wellformed-r: wellformed-tokens ?r
using admissible-r admissible-wellformed-tokens by blast
have wellformed-x: wellformed-item x
apply (simp add: x12)
apply (rule-tac wellformed-inc-item)
apply (simp add: p1valid)
apply (simp add: x12)
apply (simp add: k)
using charslength-p1-eq charslength-p1-leq by auto
have charslength-p1-as-p2: charslength p1 = charslength (take y p2)
using charslength-p1-eq item-end-x1 p2valid by linarith
then have charslength-r: charslength ? $r=$ item-end x
apply (simp add: x12)
apply (subst length-append[symmetric])
apply (subst chars-append [symmetric])
apply (subst append-take-drop-id)
using item-end-x2 p2valid by auto
have item- $\alpha-x$: item- $\alpha x=$ item- α x1 @ [item-nonterminal $x 2$] using x12 p1valid by (simp add: item- α-of-inc-item)
from p2valid have derives-item-nonterminal-x2:
derives [item-nonterminal x2] (terminals (drop y p2))
using derives-trans wellformed-complete-item-derives x12 by blast
have pvalid ?r x
apply (auto simp only: pvalid-def)
apply (rule-tac $x=w$ in $e x I$)
apply (rule-tac $x=\delta$ in $e x I$)
apply (auto simp only:)
apply (simp add: wellformed-r)
apply (simp add: wellformed-x)
using p1valid apply simp

```
    apply (simp only: charslength-r)
    using x12 p1valid apply simp
    using x12 p1valid apply simp
    apply (simp add: item-\alpha-x)
    apply (rule-tac derives-append)
    using p1valid apply simp
    using derives-item-nonterminal-x2 p1valid apply auto[1]
    using is-sentence-item-\alpha p1valid apply blast
    using is-derivation-is-sentence is-sentence-concat p2valid by blast
    with r-in-dom show ?case using Gen-def mem-Collect-eq by blast
    qed
qed
lemma Complete-subset-Gen:
    assumes I-in-Gen-P:I\subseteqGen (\mathcal{P k u)}
    assumes k: k\leq length Doc
    shows Complete kI\subseteqGen (\mathcal{P ku)}
using Complete-elem-in-Gen I-in-Gen-P k by blast
lemma \mathcal{P}\mathrm{ -are-admissible: p}\in\mathcal{P}ku\Longrightarrowadmissible p
apply (rule-tac \mathfrak{P}\mathrm{ -are-admissible)}
using \mathfrak{P}\mathrm{ -covers-P subsetCE by blast}
lemma is-continuation-base:
    assumes p-dom: p \in\mathcal{P ku}
    assumes charslength-p: charslength p=k
    shows is-continuation k u p []
apply (auto simp add: is-continuation-def)
apply (simp add: p-dom)
using charslength-p apply simp
using \mathcal{P}\mathrm{ -are-admissible p-dom by blast}
lemma is-continuation-empty-chars:
    is-continuation k u q ts \Longrightarrow charslength (q@ts)=k\Longrightarrow chars ts = []
by (simp add: is-continuation-def)
lemma \mathcal{Z-subset: }u\leqv\Longrightarrow\mathcal{Z}ku\subseteq\mathcal{Z kv}
using \mathcal{Z}
lemma is-continuation-increase-u:
    assumes cont: is-continuation kuq ts
    assumes uv:}u\leq
    shows is-continuation k v q ts
proof -
    have q\in\mathcal{P}ku using cont is-continuation-def by blast
    with uv have q-dom: q\in\mathcal{P}kv by (meson subsetCE subset-\mathcal{Pk})
```



```
        using \mathcal{Z}
```

```
    show ?thesis
    apply (auto simp only: is-continuation-def)
    apply (simp add: q-dom)
    using cont is-continuation-def apply simp
    using cont is-continuation-def apply simp
    using cont is-continuation-def }\mathcal{Z}\mathrm{ apply simp
    using cont is-continuation-def apply (simp only:)
    done
qed
lemma pvalid-next-symbol-derivable:
    assumes pvalid: pvalid p x
    assumes next-symbol: next-symbol x = Some s
    shows \exists \delta. is-derivation((terminals p)@[s]@\delta)
proof -
    from pvalid pvalid-def have wellformed-x: wellformed-item x by auto
    from next-symbol-starts-item- }\beta[OF\mathrm{ wellformed-x next-symbol]
    obtain }\omega\mathrm{ where }\omega\mathrm{ : item- }\betax=[s]@\omega\mathrm{ by auto
    from pvalid have \exists \gamma. is-derivation((terminals p)@(item- }\betax)@\gamma
        using pvalid-is-derivation-terminals-item- }\beta\mathrm{ by blast
    then obtain \gamma where is-derivation((terminals p)@(item-\beta x)@\gamma) by blast
    with }\omega\mathrm{ have is-derivation((terminals p)@[s]@ @@ ) by auto
    then show ?thesis by blast
qed
lemma pvalid-admissible:
    assumes pvalid: pvalid p x
    shows admissible p
proof -
    have }\exists\delta\mathrm{ . is-derivation((terminals p)@(item- }\beta\mathrm{ x)@ }\delta
    by (simp add: pvalid pvalid-is-derivation-terminals-item- }\beta\mathrm{ )
    then obtain }\delta\mathrm{ where }\delta\mathrm{ : is-derivation((terminals p)@(item- }\beta\mathrm{ x)@ }\delta\mathrm{ ) by blast
    have is-word: is-word (terminals p)
            using pvalid-def is-word-terminals pvalid by blast
    show ?thesis using \delta is-derivation-implies-admissible is-word by blast
qed
lemma pvalid-next-terminal-admissible:
    assumes pvalid: pvalid p x
    assumes next-symbol: next-symbol }x=\mathrm{ Some }
    assumes terminal: is-terminal t
    shows admissible (p@[(t,c)])
proof -
    have is-word (terminals p)
    using is-word-terminals pvalid pvalid-def by blast
    then show ?thesis
    using is-derivation-implies-admissible next-symbol pvalid pvalid-next-symbol-derivable
        terminal by fastforce
```


qed

lemma \mathcal{X}-wellformed: $t \in \mathcal{X} \quad k \Longrightarrow$ wellformed-token t by (simp add: \mathcal{X}-are-terminals wellformed-token-def)
lemma \mathcal{Z}-wellformed: $t \in \mathcal{Z} k u \Longrightarrow$ wellformed-token t using \mathcal{X}-wellformed \mathcal{Z}-subset- \mathcal{X} by blast
lemma Scan-elem-in-Gen:
assumes I-in-Gen: $I \subseteq \operatorname{Gen}(\mathcal{P} k u)$
assumes k : $k \leq$ length Doc
assumes $T: T \subseteq \mathcal{Z} k u$
assumes x-in-Scan: $x \in$ Scan $T k I$
shows $x \in \operatorname{Gen}(\mathcal{P} k u)$
proof -
have $u=0 \Longrightarrow x \in I$
proof -
assume $u=0$
then have $\mathcal{Z} k u=\{ \}$ by simp
then have $T=\{ \}$ using T by blast
then have Scan $T k I=I$ by (simp add: Scan-empty)
then show $x \in I$ using x-in-Scan by simp
qed
then have $x \in I \vee(u>0 \wedge(\exists y t c . x=$ inc-item $y(k+$ length $c) \wedge y \in$ bin $I k \wedge$
$(t, c) \in T \wedge$ next-symbol $y=$ Some $t))$ using x-in-Scan Scan-def by auto
then show ?thesis
proof (induct rule: disjCases2)
case 1 thus ?case using I-in-Gen by blast
next
case 2
then obtain $y t c$ where x-is-scan: $x=$ inc-item $y(k+$ length $c) \wedge y \in \operatorname{bin} I$ $k \wedge$
$(t, c) \in T \wedge$ next-symbol $y=$ Some t by blast
have u-gt- $0: 0<u$ using 2 by blast
have $\exists p \in \mathcal{P} k u$. pvalid $p y$ using Gen-implies-pvalid I-in-Gen bin-elem x-is-scan by blast
then obtain p where $p: p \in \mathcal{P} k u \wedge$ pualid $p y$ by blast
have p-dom: $p \in \mathcal{P} k u$ using p by blast
from p pvalid-def x-is-scan have charslength-p: charslength $p=k$
using bin-def mem-Collect-eq by auto
obtain tok where tok: tok $=(t, c)$ using x-is-scan by blast
have tok-dom: tok $\in \mathcal{Z} k u$ using tok x-is-scan T by blast
have $p=[] \vee p \neq[]$ by blast
then have $\exists q$ ts $u^{\prime} . p=q @ t s \wedge u^{\prime}<u \wedge$ charslength $t s=0 \wedge i s$-continuation $k u^{\prime} q$ ts
proof (induct rule: disjCases2)
case 1 thus ?case
apply (rule-tac $x=p$ in $e x I$)

```
    apply (rule-tac \(x=[]\) in exI)
    apply (rule-tac \(x=0\) in exI)
    apply (simp add: 2 is-continuation-def)
    using charslength-p by simp
    next
    case 2
    from final-step-of-path[OF p-dom 2] obtain \(q\) ts \(k^{\prime} u^{\prime}\)
        where final-step: \(p=q @ t s \wedge\) indexlt \(k^{\prime} u^{\prime} k u \wedge\) is-continuation \(k^{\prime} u^{\prime} q\) ts
by blast
    then have \(k^{\prime} \leq k\) using indexlt-simp by auto
    then have \(k^{\prime}<k \vee k^{\prime}=k\) by arith
    then show ?case
    proof (induct rule: disjCases2)
        case 1
        have \(p \in \mathcal{P} k^{\prime}\) (Suc \(u^{\prime}\) ) using final-step is-continuation-in- \(\mathcal{P}\) by blast
        then have \(p\)-dom: \(p \in \mathcal{P} k 0\) by (meson 1 subsetCE subset- \(\mathcal{P}\) )
        with charslength-p have is-continuation \(k 0 p[]\) using is-continuation-base
```

by blast
then show? case
apply (rule-tac $x=p$ in $e x I$)
apply (rule-tac $x=[]$ in exI)
apply (rule-tac $x=0$ in exI)
apply (simp add: u-gt-0)
done
next
case 2
with final-step indexlt-simp have $u^{\prime}<u$ by auto
then show ?case
apply (rule-tac $x=q$ in exI)
apply (rule-tac $x=t s$ in exI)
apply (rule-tac $x=u^{\prime}$ in exI)
using final-step 2 apply auto
using charslength-p is-continuation-empty-chars by blast
qed
qed
then obtain q ts u^{\prime} where
p-split: $p=q @ t s \wedge u^{\prime}<u \wedge$ charslength $t s=0 \wedge$ is-continuation $k u^{\prime} q t s$
by blast
then have $\exists u^{\prime \prime} . u^{\prime} \leq u^{\prime \prime} \wedge S u c u^{\prime \prime}=u$ by (auto, arith)
then obtain $u^{\prime \prime}$ where $u^{\prime \prime}: u^{\prime} \leq u^{\prime \prime} \wedge$ Suc $u^{\prime \prime}=u$ by blast
with p-split have cont- $u^{\prime \prime}$: is-continuation $k u^{\prime \prime} q$ ts
using is-continuation-increase-u by blast
have admissible: admissible ($p @[t o k]$)
apply (simp add: tok)
apply (rule-tac pvalid-next-terminal-admissible[where $x=y]$)
apply (simp add: p)
apply (simp add: x-is-scan)
using \mathcal{Z}-wellformed tok tok-dom wellformed-token-def by auto
have is-continuation $k u^{\prime \prime} q(t s @[t o k])$
apply (rule is-continuation-continue)
apply (simp add: cont-u')
using p-split apply simp
using $u^{\prime \prime}$ tok-dom apply simp
using admissible p-split by auto
with p-split $u^{\prime \prime}$ have ptok-dom: $p @[t o k] \in \mathcal{P} k u$
using append-assoc is-continuation-in- \mathcal{P} by auto
from p obtain $i \gamma$ where valid:
wellformed-tokens $p \wedge$
wellformed-item y \wedge
$i \leq$ length $p \wedge$
charslength $p=$ item-end $y \wedge$
charslength (take ip) $=$ item-origin $y \wedge$
is-derivation (terminals (take ip) @ [item-nonterminal y] @ γ) \wedge
derives (item- α y) (terminals (drop ip)) using pvalid-def by blast
have clen-ptok: $k+$ length $c=$ charslength $(p @[t o k])$
using charslength-p tok by simp
from ptok-dom have ptok-doc-tokens: doc-tokens ($p @[t o k]$)
using \mathfrak{P}-are-doc-tokens \mathfrak{P}-covers- \mathcal{P} rev-subsetD by blast
have wellformed-x: wellformed-item x
apply (simp add: x-is-scan)
apply (rule-tac wellformed-inc-item)
apply (simp add: valid)
apply (simp add: x-is-scan)
apply (simp only: clen-ptok)
using ptok-doc-tokens charslength.simps doc-tokens-length apply presburger
apply (simp only: clen-ptok)
using valid by auto
have pvalid ($p @[t o k]$) x
apply (auto simp only: pvalid-def)
apply (rule-tac $x=i$ in $e x I$)
apply (rule-tac $x=\gamma$ in $e x I$)
apply (auto simp only:)
using ptok-dom admissible admissible-wellformed-tokens apply blast
apply (simp add: wellformed-x)
using valid apply simp
apply (simp add: x-is-scan clen-ptok)
using valid apply (simp add: x-is-scan)
using valid apply (simp add: x-is-scan)
using valid apply (simp add: x-is-scan)
apply (subst item- α-of-inc-item)
using valid apply simp
using x-is-scan apply simp
apply (rule-tac derives-append)
apply simp
apply (simp add: tok)
using is-sentence-item- α apply blast
by (meson pvalid-next-symbol-derivable LocalLexing-axioms is-derivation-is-sentence

```
            is-sentence-concat p x-is-scan)
    with ptok-dom show ?thesis
        using Gen-def mem-Collect-eq by blast
    qed
qed
lemma Scan-subset-Gen:
    assumes I-in-Gen:I\subseteqGen (\mathcal{P ku)}
    assumes k: k\leq length Doc
    assumes T:T\subseteq\mathcal{Z ku}
    shows Scan TkI\subseteqGen (\mathcal{P ku)}
using I-in-Gen Scan-elem-in-Gen Tk by blast
theorem thmD5:
    assumes I:I\subseteqGen (\mathcal{P ku)}
    assumes k: k\leq length Doc
    assumes T:T\subseteq\mathcal{Z ku}
    shows \pikTI\subseteqGen (\mathcal{P ku)}
apply (simp add: \pi-def)
apply (rule-tac limit-upperbound)
using Ik T Predict-subset-Gen Complete-subset-Gen Scan-subset-Gen apply metis
by (simp add: I)
end
end
theory TheoremD6
imports TheoremD5
begin
context LocalLexing begin
definition inc-dot :: nat }=>\mathrm{ item }=>\mathrm{ item
where
    inc-dot d x = Item (item-rule x) (item-dot x + d) (item-origin x) (item-end x)
lemma inc-dot-0[simp]: inc-dot 0 x = x
    by (simp add: inc-dot-def)
lemma Predict-mk-regular1:
    \exists (P :: rule }=>\mathrm{ item }=>\mathrm{ bool ) F. Predict k=mk-regular1 P F
proof -
    let ?P = \lambda r x::item. r \in R ^ item-end x = k^ next-symbol x = Some(fst r)
    let ?F = \lambdar (x::item). init-item r k
    show ?thesis
        apply (rule-tac x=?P in exI)
        apply (rule-tac x=?F in exI)
        apply (rule-tac ext)
        by (auto simp add: mk-regular1-def bin-def Predict-def)
```


qed

lemma Complete-mk-regular2:
$\exists(P::$ dummy \Rightarrow item \Rightarrow item \Rightarrow bool $) F$. Complete $k=m k$-regular2 P F
proof -
let $? P=\lambda(r::$ dummy $) x y$. item-end $x=$ item-origin $y \wedge$ item-end $y=k \wedge$
is-complete $y \wedge$
next-symbol $x=$ Some (item-nonterminal $y)$
let $? F=\lambda(r::$ dummy $) x y$. inc-item $x k$
show ?thesis
apply (rule-tac $x=? P$ in $e x I$)
apply (rule-tac $x=$? F in exI)
apply (rule-tac ext)
by (auto simp add: mk-regular2-def bin-def Complete-def)
qed
lemma Scan-mk-regular1:
$\exists(P::$ token \Rightarrow item \Rightarrow bool $) F$. Scan $T k=m k$-regular1 $P F$ proof -
let ?P $=\lambda($ tok::token $)(x::$ item $)$. item-end $x=k \wedge$ tok $\in T \wedge$ next-symbol $x=$
Some (fst tok)
let ? $F=\lambda($ tok $::$ token $)(x::$ item $)$. inc-item $x(k+$ length (snd tok $))$
show ?thesis
apply (rule-tac $x=? P$ in exI)
apply (rule-tac $x=? F$ in exI)
apply (rule-tac ext)
by (auto simp add: mk-regular1-def bin-def Scan-def)
qed
lemma Predict-regular: regular (Predict k)
by (metis Predict-mk-regular1 regular1)
lemma Complete-regular: regular (Complete k)
by (metis Complete-mk-regular2 regular2)
lemma Scan-regular: regular (Scan $T k$)
by (metis Scan-mk-regular1 regular1)
lemma π-functional: $\pi k T=$ limit $((\operatorname{Scan} T k) o($ Complete $k) o($ Predict $k))$
proof -
have $\pi k T=$ limit $(\lambda I$. Scan $T k($ Complete $k($ Predict $k I)))$
using π-def by blast
moreover have $(\lambda I$. Scan $T k($ Complete $k($ Predict $k I)))=$
(Scan $T k$) o (Complete k) o (Predict k)
apply (rule ext)
by simp
ultimately show? ?thesis by simp
qed

```
lemma \pi-step-regular: regular ((Scan T k) o (Complete k) o (Predict k))
    by (simp add: Complete-regular Predict-regular Scan-regular regular-comp)
lemma \pi-regular: regular ( }\pikT\mathrm{ )
    by (simp add: \pi-functional }\pi\mathrm{ -step-regular regular-limit)
lemma }\pi\mathrm{ -fix: Scan Tk (Complete k (Predict k ( }\pikTI)))=\pikT
    using }\pi\mathrm{ -functional }\pi\mathrm{ -step-regular regular-fixpoint by fastforce
lemma }\pi\mathrm{ -fix':((Scan Tk) o (Complete k) o (Predict k)) ( }\pikTI)=\pikT
    using \pi-functional \pi-step-regular regular-fixpoint by fastforce
lemma setmonotone-cases:
    assumes setmonotone f
    shows f X=X\veeX\subsetfX
using assms elem-setmonotone by fastforce
lemma distribute-fixpoint-over-setmonotone-comp:
    assumes f
    assumes g: setmonotone g
    assumes fixpoint: (fog) I=I
    shows fI=I\wedgegI=I
proof -
    from setmonotone-cases[OF g, where X=I] show ?thesis
    proof(induct rule: disjCases2)
        case 1
            thus ?case using fixpoint by simp
    next
        case 2
            with f have I\subset (fog)I
                    by (metis comp-apply fixpoint less-asym' setmonotone-cases)
            with fixpoint have False by simp
            then show ?case by blast
        qed
qed
lemma distribute-fixpoint-over-setmonotone-comp-3:
    assumes f: setmonotone f
    assumes g: setmonotone g
    assumes h: setmonotone h
    assumes fixpoint: (fogoh)I=I
    shows fI=I\wedge gI=I\wedgehI=I
by (meson distribute-fixpoint-over-setmonotone-comp f fixpoint g h setmonotone-comp)
lemma Predict-\pi-fix: Predict k ( }\pikTI)=\pikT 
by (meson Complete-regular Predict-regular Scan-regular \pi-fix'
    distribute-fixpoint-over-setmonotone-comp-3 regular-implies-setmonotone)
lemma Scan-\pi-fix: Scan Tk (\pikTI) = < kTI
```

by (meson Complete-regular Predict-regular Scan-regular π-fix'
distribute-fixpoint-over-setmonotone-comp-3 regular-implies-setmonotone)
lemma Complete- π-fix: Complete $k(\pi k T I)=\pi k T I$
by (meson Complete-regular Predict-regular Scan-regular π-fix' distribute-fixpoint-over-setmonotone-comp-3 regular-implies-setmonotone)
lemma π-idempotent: $\pi k T(\pi k T I)=\pi k T I$
by (simp add: π-functional π-step-regular limit-is-idempotent)
lemma derivation-shift-identity[simp]: derivation-shift D $00=D$
by (simp add: derivation-shift-def)
lemma Derivation-skip-prefix: Derivation $(u @ v) D w \Longrightarrow$ derivation-ge D (length $u) \Longrightarrow$
Derivation $v($ derivation-shift $D($ length $u) 0)($ drop $($ length $u) w)$
proof (induct D arbitrary: u $v w$)
case Nil
thus ?case by (simp add: append-eq-conv-conj)
next
case (Cons d D)
from Cons have $\exists x$. Derives1 $(u @ v)(f s t d)(s n d d) x \wedge$ Derivation $x D w$ by auto
then obtain x where x : Derives1 $(u @ v)(f s t d)(s n d d) x \wedge$ Derivation $x D$ w by blast
from Cons have $d:$ fst $d \geq$ length u and $D:$ derivation-ge D (length u)
using derivation-ge-cons apply blast
using Cons.prems(2) derivation-ge-cons by blast
have $\exists x^{\prime} . x=u @ x^{\prime}$ by (metis append-eq-conv-conj d le-Derives1-take x)
then obtain x^{\prime} where $x^{\prime}: x=u @ x^{\prime}$ by blast
show ?case
apply simp
apply (rule-tac $x=x^{\prime}$ in exI)
using Cons.hyps D Derives1-skip-prefix $d x x^{\prime}$ by blast
qed
lemma leftmost-skip-prefix: leftmost $i(u @ v) \Longrightarrow i \geq$ length $u \Longrightarrow$ leftmost $(i-$ length u) v
by (simp add: leftmost-def less-diff-conv2 nth-append)
lemma LeftDerivation-skip-prefix: LeftDerivation ($u @ v$) $D w \Longrightarrow$ derivation-ge D (length u) \Longrightarrow
LeftDerivation $v($ derivation-shift $D($ length $u) 0)(d r o p(l e n g t h u) w)$
proof (induct D arbitrary: u v w)
case Nil
thus ?case by (simp add: append-eq-conv-conj)
next
case (Cons d D)
from Cons have $\exists x$. LeftDerives1 $(u @ v)(f s t d)($ snd d) $x \wedge$ LeftDerivation x
$D w$ by auto
then obtain x where x : LeftDerives1 $(u @ v)(f s t d)(s n d d) x \wedge$ LeftDerivation $x D w$ by blast
from Cons have $d:$ fst $d \geq$ length u and $D:$ derivation-ge D (length u) using derivation-ge-cons apply blast using Cons.prems(2) derivation-ge-cons by blast
have $\exists x^{\prime}$. $x=u @ x^{\prime}$ by (metis LeftDerives1-implies-Derives1 append-eq-conv-conj d le-Derives1-take
x)
then obtain x^{\prime} where $x^{\prime}: x=u @ x^{\prime}$ by blast
have leftmost: leftmost (fst d) (u@v) using LeftDerives1-def x by blast
have 1: LeftDerives1 $v(f$ st $d-$ length $u)(s n d d) x^{\prime}$
apply (auto simp add: LeftDerives1-def)
apply (simp add: leftmost d leftmost-skip-prefix)
using Derives1-skip-prefix LeftDerives1-implies-Derives1 d $x x^{\prime}$ by blast
have 2: LeftDerivation x^{\prime} (derivation-shift $D($ length u) 0) (drop (length u) w) using Cons.hyps $D x x^{\prime}$ by blast
show ?case
apply simp apply (rule-tac $x=x^{\prime}$ in exI) using 12 by blast
qed
lemma splits-at-append: splits-at u i u1 $N u 2 \Longrightarrow$ splits-at $(u @ v) i u 1 N(u 2 @ v)$ by (auto simp add: splits-at-def)
lemma LeftDerives1-append-leftmost-unique: LeftDerives1 ($a @ b$) ir $c \Longrightarrow$ leftmost $j a \Longrightarrow i=j$
by (meson LeftDerives1-def leftmost-cons-less leftmost-def leftmost-unique)
lemma drop-derivation-shift:
drop n (derivation-shift D left right $)=$ derivation-shift (drop n D) left right
by (auto simp add: derivation-shift-def drop-map)
lemma take-derivation-shift:
take n (derivation-shift D left right) $=$ derivation-shift (take $n D$) left right by (auto simp add: derivation-shift-def take-map)
lemma derivation-shift-0-shift: derivation-shift (derivation-shift D left1 0) left2 right2 $=$
derivation-shift D (left1 + left2) right2
by (auto simp add: derivation-shift-def)
lemma splits-at-append-prefix:
splits-at vi $\alpha N \beta \Longrightarrow$ splits-at $(u @ v)(i+$ length $u)(u @ \alpha) N \beta$
apply (auto simp add: splits-at-def)
by (simp add: nth-append)
lemma splits-at-implies-Derives1: splits-at δ i $\alpha N \beta \Longrightarrow$ is-sentence $\delta \Longrightarrow r \in \mathfrak{R}$

```
fst r = N
    C Derives1 \delta ir ( }\alpha@(snd r)@\beta
by (metis (no-types, lifting) Derives1-def is-sentence-concat length-take
    less-or-eq-imp-le min.absorb2 prod.collapse splits-at-combine splits-at-def)
lemma Derives1-append-prefix:
    assumes Derives1: Derives1 v i r w
    assumes u: is-sentence u
    shows Derives1(u@v)(i+ length u)r(u@w)
proof -
    have \exists \alpha N \beta. splits-at vi i N \beta using assms splits-at-ex by auto
    then obtain \alphaN \beta where split-v: splits-at vi\alphaN \beta by blast
    have split-w: w=\alpha@(snd r)@\beta using assms split-v splits-at-combine-dest by
blast
    have split-uv: splits-at (u@v) (i + length u)(u@\alpha)N \beta
        by (simp add: split-v splits-at-append-prefix)
    have is-sentence-uv: is-sentence (u@v)
        using Derives1 Derives1-sentence1 is-sentence-concat u by blast
    show ?thesis
        by (metis Derives1 Derives1-nonterminal Derives1-rule append-assoc is-sentence-uv
                split-uv split-v split-w splits-at-implies-Derives1)
qed
lemma leftmost-prepend-word: leftmost i v \Longrightarrow is-word }u\Longrightarrow\mathrm{ leftmost (i + length
u)(u@v)
by (simp add: leftmost-def nth-append)
lemma LeftDerives1-append-prefix:
    assumes Derives1:LeftDerives1 v ir w
    assumes u: is-word u
    shows LeftDerives1(u@v)(i + length u)r(u@w)
proof -
    have 1: Derives1 v ir w
        by (simp add: Derives1 LeftDerives1-implies-Derives1)
    have 2: leftmost i v
        using Derives1 LeftDerives1-def by blast
    have 3: is-sentence u using u by fastforce
    have 4: Derives1(u@v) (i+ length u)r (u@w)
        by (simp add: }13\mathrm{ Derives1-append-prefix)
    have 5: leftmost (i + length u) (u@v)
        by (simp add: 2 leftmost-prepend-word u)
    show ?thesis
        by (simp add: 4 5 LeftDerives1-def)
qed
lemma Derivation-append-prefix: Derivation v D w \Longrightarrow is-sentence u \Longrightarrow
    Derivation (u@v) (derivation-shift D 0 (length u)) (u@w)
proof (induct D arbitrary: u v w)
```

```
    case Nil thus ?case by auto
next
    case (Cons d D)
        then have \(\exists x\). Derives1 \(v(f s t d)(\) snd \(d) x \wedge\) Derivation \(x D w\) by auto
        then obtain \(x\) where \(x\) : Derives1 \(v(f s t d)(\) snd \(d) x \wedge\) Derivation \(x D w\) by
blast
    with Cons have induct: Derivation ( \(u @ x\) ) (derivation-shift D 0 (length \(u\) )
\((u @ w)\) by auto
    have Derives1: Derives1 ( \(u @ v\) ) ( \((\) fst d) + length \(u)(\) snd d) \((u @ x)\)
            by (simp add: Cons.prems(2) Derives1-append-prefix x)
    show ?case
            apply simp
            apply (rule-tac \(x=u @ x\) in exI)
            by (simp add: Cons.hyps Cons.prems(2) Derives1 x)
qed
lemma LeftDerivation-append-prefix: LeftDerivation vDw is-word \(u \Longrightarrow\)
    LeftDerivation (u@v) (derivation-shift D 0 (length \(u)\) ) (u@w)
proof (induct \(D\) arbitrary: u \(v w\) )
    case Nil thus ?case by auto
next
    case (Cons d D)
        then have \(\exists x\). LeftDerives \(1 v\left(f_{s t} d\right)(\) snd \(d) x \wedge\) LeftDerivation \(x D w\) by
auto
    then obtain \(x\) where \(x\) : LeftDerives1 \(v(f s t d)(s n d d) x \wedge\) LeftDerivation \(x\)
\(D\) w by blast
    with Cons have induct: LeftDerivation ( \(u @ x\) ) (derivation-shift D 0 (length u))
( \(u @ w\) ) by auto
    have Derives1: LeftDerives1 ( \(u @ v)((f s t d)+\) length \(u)(\) snd d) \((u @ x)\)
            by (simp add: Cons.prems(2) LeftDerives1-append-prefix x)
        show ?case
            apply simp
            apply (rule-tac \(x=u @ x\) in \(e x I\) )
            by (simp add: Cons.hyps Cons.prems(2) Derives1 x)
qed
lemma derivation-ge-shift-simp: derivation-ge \(D i \Longrightarrow i \geq l \Longrightarrow r \geq l \Longrightarrow\)
    derivation-shift D lr = derivation-shift D \(0(r-l)\)
proof (induct D)
    case Nil thus ?case by auto
next
    case (Cons d D)
    have \(f s t-d\) : fst \(d \geq l\)
            using Cons.prems(1) Cons.prems(2) derivation-ge-cons le-trans by blast
    show ?case
            apply auto
            using Cons \(f s t-d\) apply arith
            using Cons derivation-ge-cons apply auto
            done
```


qed

lemma append-dropped-prefix: is-prefix $u v \Longrightarrow d r o p$ (length u) $v=w \Longrightarrow u @ w$ $=v$
using is-prefix-unsplit by blast
lemma derivation-ge-shift-plus:
assumes derivation-ge $D u$
assumes derivation-ge (derivation-shift $D u 0) v$
shows derivation-ge $D(u+v)$
proof -
from assms show ?thesis
apply (auto simp add: derivation-ge-def derivation-shift-def)
by fastforce
qed
lemma LeftDerivation-breakdown:
LeftDerivation ($u @ v$) $D w \Longrightarrow \exists n$ w1 w2. $w=w 1$ @ w2 \wedge
LeftDerivation u (take n D) w1 ^
derivation-ge (drop n D) (length w1) \wedge
LeftDerivation v (derivation-shift (drop n D) (length w1) 0) w2
proof (induct length D arbitrary: u v D w)
case 0
then have $D: D=[]$ by auto
with 0 have $u @ v=w$ by auto
with D show ?case
apply (rule-tac $x=0$ in exI)
apply (rule-tac $x=u$ in $e x I$)
apply (rule-tac $x=v$ in $e x I$)
by auto
next
case (Suc l)
then have $\exists d D^{\prime} . D=d \# D^{\prime}$
by (metis LeftDerivation.elims(2) length-0-conv nat.simps(3))
then obtain $d D^{\prime}$ where D-split: $D=d \# D^{\prime}$ by blast
from Suc have is-sentence-uv: is-sentence ($u @ v$)
by (metis D-split Derives1-sentence1 LeftDerivation.simps(2) LeftDerives1-implies-Derives1)
then have is-sentence-u: is-sentence u and is-sentence-v: is-sentence v
by (simp add: is-sentence-concat) +
have is-word $u \vee(\neg$ is-word $u)$ by blast
then show? case
proof (induct rule: disjCases2)
case 1
then have derivation-ge-u: derivation-ge D (length u)
using LeftDerivation-implies-Derivation Suc.prems is-word-Derivation-derivation-ge by blast
have is-prefix: is-prefix u w
using 1.hyps LeftDerivation-implies-leftderives Suc.prems
derives-word-is-prefix leftderives-implies-derives by blast

```
    have u-w:w=u @ (drop (length u)w)
            by (metis 1.hyps LeftDerivation-implies-leftderives Suc.prems
                derives-word-is-prefix is-prefix-unsplit leftderives-implies-derives)
            show ?case
                apply (rule-tac x=0 in exI)
            apply (rule-tac x=u in exI)
            apply (rule-tac x=drop (length u) w in exI)
            apply (auto)
            apply (rule u-w)
            apply (rule derivation-ge-u)
            by (simp add: LeftDerivation-skip-prefix Suc.prems derivation-ge-u)
next
    case 2
            with is-sentence-u have \exists i u1 N u2. splits-at u i u1 N u2 ^ leftmost i u
            using leftmost-def nonword-leftmost-exists splits-at-def by auto
            then obtain i u1 N u2 where split-u: splits-at u i u1 N u2 ^ leftmost i
u by blast
            have is-word-u1: is-word u1 by (metis leftmost-def split-u splits-at-def)
            have LeftDerivation(u@v)(d#D')w using D-split Suc.prems by blast
            then have }\existsx\mathrm{ .LeftDerives1 (u@v)(fst d)(snd d) x ^ LeftDerivation x
```

$D^{\prime} w$
by simp
then obtain x where x : LeftDerives1 $(u @ v)(f s t d)($ snd d) $x \wedge$ Left-
Derivation $x D^{\prime} w$
by blast
then have $f s t-d$-eq- i : fst $d=i$ using
splits-at-combine LeftDerives1-append-leftmost-unique split-u
by metis
have split-uv: splits-at $(u @ v)$ iu1 $N(u 2 @ v)$ by (simp add: split-u splits-at-append)
have split-x: x=u1@ ((snd (snd d)) @u2 @ v)
using LeftDerives1-implies-Derives1 fst-d-eq-i split-uv
splits-at-combine-dest x by blast
have derivation-ge- D^{\prime} : derivation-ge D^{\prime} (length u1)
using LeftDerivation-implies-Derivation is-word-Derivation-derivation-ge
leftmost-def split-u split-x splits-at-def x by fastforce
have D1: LeftDerivation ((snd (snd d)) @ u2 @ v) (derivation-shift D^{\prime} (length u1) 0)
(drop (length u1) w)
using LeftDerivation-skip-prefix derivation-ge- D^{\prime} split-x x by blast
then have D2: LeftDerivation $(((s n d(s n d ~ d))$ @ u2) @ $v)$ (derivation-shift $D^{\prime}($ length u1) 0)
(drop (length u1) w) by auto
have $l=$ length (derivation-shift $D^{\prime}($ length u1) 0$)$
using D-split Suc.hyps(2) by auto
from $\operatorname{Suc}(1)[$ OF this D2] obtain n w1 w2 where induct:
drop (length u1) $w=w 1$ @ w2 \wedge
LeftDerivation (snd (snd d) @u2)
(take $n\left(\right.$ derivation-shift $D^{\prime}($ length u1) 0)) w1 \wedge
derivation-ge (drop $n\left(\right.$ derivation-shift $D^{\prime}($ length u1) 0$\left.)\right)($ length w1) \wedge LeftDerivation v (derivation-shift (drop n (derivation-shift D^{\prime} (length u1) 0))
(length w1) 0) w2 by blast
have derivation-ge- D^{\prime}-u1-w1: derivation-ge (drop $n D^{\prime}$) (length u1 + length w1)

proof -

from induct have 1: derivation-ge (derivation-shift (drop $n D^{\prime}$) (length u1) 0) (length w1)
apply (subst drop-derivation-shift[symmetric])
by blast
have 2: derivation-ge (drop $n D^{\prime}$) (length u1)
by (metis append-take-drop-id derivation-ge- D^{\prime} derivation-ge-append)
show ?thesis using 12 derivation-ge-shift-plus by blast
qed
have LeftDerivation (u1@(snd (snd d) @u2)) (derivation-shift
(take $n\left(\right.$ derivation-shift $D^{\prime}($ length u1) 0)) 0 (length u1)) (u1@w1)
using induct LeftDerivation-append-prefix is-word-u1 by blast
then have der1: LeftDerivation (u1@(snd (snd d) @u2)) (derivation-shift (take $n D^{\prime}$) (length u1) (length u1)) (u1@w1) using take-derivation-shift derivation-shift-0-shift by auto
have eq1: derivation-shift (take $n D^{\prime}$) (length u1) (length u1) $=$ take $n D^{\prime}$ apply (subst derivation-ge-shift-simp[where $i=$ length u1]) apply auto
by (metis append-take-drop-id derivation-ge-D' derivation-ge-append)
from der1 eq1 have der2: LeftDerivation (u1@(snd (snd d) @u2)) (take $\left.n D^{\prime}\right)(u 1 @ w 1)$
by auto
have eq2: take (Suc n) $D=d \#\left(\right.$ take $\left.n D^{\prime}\right)$
by (simp add: D-split)
have der3: LeftDerivation u (take (Suc n) D) (u1@w1)
apply (simp add: eq2)
apply (rule-tac $x=u 1 @($ snd (snd d) @ u2) in exI)
by (metis Derives1-skip-suffix LeftDerives1-def append-assoc der2 f fst-d-eq-i
split-u split-x splits-at-def x)
have is-prefix u1 w
using LeftDerivation-implies-leftderives derives-word-is-prefix is-word-u1
leftderives-implies-derives split- x x by blast
then have eq3:u1@(w1@w2)=w
apply (rule-tac append-dropped-prefix)
apply (auto simp add: induct)
done
show ?case
apply (rule-tac $x=S u c n$ in $e x I$)
apply (rule-tac $x=u 1 @ w 1$ in exI)
apply (rule-tac $x=w 2$ in $e x I$)

```
            apply auto
            apply (simp add: eq3)
            apply (simp add: der3)
            apply (simp add: D-split)
            apply (rule derivation-ge-D'-u1-w1)
            apply (simp add: D-split)
            using induct derivation-shift-0-shift drop-derivation-shift apply auto
            done
        qed
qed
lemma Derives1-terminals-stay:
    assumes Derives1: Derives1 u i r v
    assumes t-dom: t\in set u
    assumes terminal: is-terminal t
    shows t\in set v
proof -
    have \exists | \beta N. splits-at u i \alpha N \beta using Derives1 splits-at-ex by blast
    then obtain \alpha\betaN where split-u: splits-at u i \alphaN \beta by blast
    then have t\in set (\alpha@ @ N]@ @) using splits-at-combine t-dom by auto
    then have t-possible-locations: t\in set \alpha\veet=N\vee t\in set \beta by auto
    have is-nonterminal: is-nonterminal N using Derives1 Derives1-nonterminal
split-u by auto
    with t-possible-locations terminal have t-locations: t\in set \alpha\veet\in set \beta
            using is-terminal-nonterminal by blast
    from Derives1 split-u have v=\alpha@ (sndr)@ \beta by (simp add: splits-at-combine-dest)
    with t-locations show ?thesis by auto
qed
lemma Derivation-terminals-stay: Derivation u Dv\Longrightarrowt\in set u\Longrightarrowis-terminal
t \Longrightarrow t \in ~ s e t v
proof (induct D arbitrary:u v)
    case Nil thus ?case by auto
next
    case (Cons d D)
    then have \existsx. Derives1 u (fst d) (snd d) x ^ Derivation x D v by auto
    then obtain x where x: Derives1 }u(fstd)(snd d) x^Derivation x D v by
auto
    show ?case using Cons Derives1-terminals-stay x by blast
qed
lemma Derivation-empty-no-terminals: Derivation u D [] \Longrightarrowt\in set u\Longrightarrowis-nonterminal
t
    by (metis Ball-set Derivation-implies-derives Derivation-terminals-stay
        derives-is-sentence is-sentence-def is-symbol-distinct list.pred-inject(1))
lemma mono-subset-elem: mono }f\LongrightarrowA\subseteqB\Longrightarrowx\infA\Longrightarrowx\infB\mathrm{ using
mono-def by blast
```

lemma wellformed-inc-dot: wellformed-item $x \Longrightarrow$ item-dot $x+d \leq$ length (item-rhs $x) \Longrightarrow$
wellformed-item(inc-dot d x)
by (simp add: inc-dot-def item-rhs-def wellformed-item-def)
lemma init-item-dot[simp]: item-dot (init-item rk) $=0$ by (simp add: init-item-def)
lemma init-item-rhs $[$ simp $]$: item-rhs $($ init-item $r k)=s n d r$ by (simp add: init-item-def item-rhs-def)
lemma init-item- $\beta[$ simp $]$: item- $\beta($ init-item $r k)=$ snd r by (simp add: item- β-def)
lemma mono- π : mono ($\pi k T$)
by (simp add: π-regular regular-implies-mono)
lemma π-subset-elem-trans:
assumes $Y: Y \subseteq \pi k T X$
assumes $z: z \in \pi k T Y$
shows $z \in \pi k T X$
proof -
from Y have $\pi k T Y \subseteq \pi k T(\pi k T X)$ by (simp add: monoD mono- π)
then have $\pi k T Y \subseteq \pi k T X$ using π-idempotent by blast
with z show ?thesis using contra-subsetD by blast
qed
lemma inc-dot-origin $[$ simp $]$: item-origin (inc-dot dx)=item-origin x by (simp add: inc-dot-def)
lemma inc-dot-end $[$ simp $]$: item-end $($ inc-dot $d x)=$ item-end x by (simp add: inc-dot-def)
lemma inc-dot-rhs[simp]: item-rhs (inc-dot dx)=item-rhs x
by (simp add: inc-dot-def item-rhs-def)
lemma inc-dot-dot[simp]: item-dot (inc-dot dx)=item-dot $x+d$
by (simp add: inc-dot-def)
lemma inc-dot-nonterminal[simp]: item-nonterminal (inc-dot dx)=item-nonterminal x
by (simp add: inc-dot-def item-nonterminal-def)
lemma Predict-subset- π : Predict $k X \subseteq \pi k T X$
proof -
have setmonotone ($\pi k T$)
by (simp add: π-regular regular-implies-setmonotone)
then have $s: X \subseteq \pi k T X$ by (simp add: subset-setmonotone)

```
    have mono (Predict k) by (simp add: Predict-regular regular-implies-mono)
    with s have Predict k X\subseteq Predict k ( }\pikTX)\mathrm{ by (simp add: monoD)
    then show Predict k X\subseteq\pikTX by (simp add: Predict-\pi-fix)
qed
lemma Complete-subset-\pi: Complete k X\subseteq\pikTX
proof -
    have setmonotone ( }\pikT\mathrm{ )
    by (simp add: \pi-regular regular-implies-setmonotone)
    then have s: X\subseteq\pikTX by (simp add: subset-setmonotone)
    have mono (Complete k) by (simp add: Complete-regular regular-implies-mono)
    with s have Complete k X\subseteqComplete k ( }\pikTX)\mathrm{ by (simp add: monoD)
    then show Complete k X\subseteq\pikTX by (simp add: Complete-\pi-fix)
qed
lemma inc-inc-dot[simp]: inc-dot a (inc-dot b x) = inc-dot (a+b)x
    by (simp add: inc-dot-def)
lemma thmD6-Left:wellformed-item x C item- }\betax=\delta@\omega\Longrightarrow\mathrm{ item-end }x
k\Longrightarrow
    LeftDerivation \delta D [] \Longrightarrow inc-dot (length \delta) x\in\pik {} {x}
proof (induct length D arbitrary: x \delta \omega D rule: less-induct)
    case less
        have length }\delta=0\vee length \delta=1\vee length \delta\geq2 by arith
        then show ?case
        proof (induct rule: disjCases3)
            case 1
                then have }\delta=[] by aut
            then show?case by (simp add: \pi-regular elem-setmonotone regular-implies-setmonotone)
        next
            case 2
                then have \exists N.\delta=[N]
                    by (metis One-nat-def append-self-conv2 drop-all id-take-nth-drop
                    le-numeral-extra(4) lessI take-0)
                    then obtain N where N:\delta=[N] by blast
                    then have N\in set \delta by auto
            then have is-nonterminal-N: is-nonterminal N using Derivation-empty-no-terminals
                                    LeftDerivation-implies-Derivation less.prems(4) by blast
                have D}\not=[] using LeftDerivation.elims(2) N less.prems(4) by blas
                then have \existseE.D=e#E using LeftDerivation.elims(2) less.prems(4)
by blast
                then obtain e E where eE: D=e#E by blast
                then have \exists \gamma.LeftDerives1 \delta (fst e)(snd e) \gamma}
                LeftDerivation \gamma E[] using LeftDerivation.simps(2) less.prems(4) by blast
            then obtain \gamma where \gamma:LeftDerives1 \delta (fst e)(snd e) \gamma}\wedge LeftDerivation
        \gamma E [] by blast
```

with N have γ-def: $\gamma=$ snd (snd e)
by (metis 2.hyps Derives1-split LeftDerives1-def One-nat-def append-Cons
append-Nil append-Nil2 leftmost-def length-0-conv less-nat-zero-code linorder-neqE-nat
list.inject not-less-eq)
have next-symbol-x: next-symbol $x=$ Some N
using N less.prems(1) less.prems(2) next-symbol-def next-symbol-starts-item- β
wellformed-complete-item- β by fastforce
have x-subset: $\{x\} \subseteq \pi k\}\{x\}$
using π-regular regular-implies-setmonotone subset-setmonotone by blast
let $? y=$ init-item (snd e) k
have $? y \in$ Predict $k\{x\}$
apply (simp add: Predict-def)
apply (rule disjI2)
apply (rule-tac $x=f s t(s n d e)$ in $e x I)$
apply (rule-tac $x=$ snd (snd e) in exI)
apply auto
using Derives1-rule LeftDerives1-implies-Derives1 γ apply blast
apply (rule-tac $x=x$ in exI)
by (metis (mono-tags, lifting) Derives1-split LeftDerives1-def $N \gamma$
append.simps(1) append.simps(2) bin-def is-nonterminal-N left-most-cons-nonterminal
leftmost-unique length-greater-0-conv less.prems(3) less-nat-zero-code list.inject mem-Collect-eq next-symbol-x singletonI)
then have y-dom: ? $y \in \pi k\}\{x\}$ using Predict-subset- π by blast
let ? $z=$ inc-dot (length γ) ?y
have item-dot $? y=0$ and item-rhs $? y=\gamma$ by (auto simp add: γ-def)
note y-props $=$ this
then have wellformed-y: wellformed-item ?y
using Derives1-rule LeftDerives1-implies-Derives1 γ less.prems(1) less.prems(3)
wellformed-init-item wellformed-item-def by blast
with y-props have wellformed-z: wellformed-item? by (simp add: well-formed-inc-dot)
have item- β-y: item- β ? $y=\gamma$ @ [] using item-rhs-split y-props(2) by auto
have is-complete- z : is-complete ? z by (simp add: is-complete-def γ-def)
have $? z \in \pi k\}\{? y\}$
apply (rule less (1)[where $D=E]$)
apply (auto simp add: eE wellformed-y γ)
apply (simp add: γ-def)
done
with y-dom have z-dom: $? z \in \pi k\}\{x\}$
using π-subset-elem-trans empty-subsetI insert-subset by blast
let $? w=$ inc-dot $($ length $\delta) x$
have ? $w \in$ Complete $k\{x, ? z\}$
apply (simp add: Complete-def)
apply (rule-tac disjI2) +
apply (rule-tac $x=x$ in exI)
apply (auto simp add: 2)
apply (simp add: inc-dot-def inc-item-def less)
apply (rule-tac $x=$? z in exI)
apply (auto simp add: bin-def less is-complete-z next-symbol-x)
by (metis Derives1-split LeftDerives1-def $N \gamma$ append-Cons append-self-conv2
is-nonterminal-N leftmost-cons-nonterminal leftmost-unique length-0-conv list.inject)
then have ? $w \in \pi k\}\{x, ? z\}$ using Complete-subset- π by blast
then show?case by (meson π-subset-elem-trans insert-subset x-subset z-dom)

next

case 3
then have $\exists N \alpha . \delta=[N] @ \alpha$
by (metis append-Cons append-Nil count-terminals.cases le0 le-0-eq list.size(3)
numeral-le-iff semiring-norm(69))
then obtain $N \alpha$ where δ-split: $\delta=[N] @ \alpha$ by blast
with 3 have α-nonempty: $\alpha \neq[]$
by (metis (full-types) One-nat-def Suc-eq-plus1 append-Nil2 impossible-Cons length-Cons
list.size(3) nat-1-add-1)
have LeftDerivation ([N]@ α) $D[]$ using δ-split less.prems(4) by blast
from LeftDerivation-breakdown[OF this, simplified]
obtain n where n : LeftDerivation $[N]($ take $n D)[] \wedge$ LeftDerivation α (drop n D) [] by blast
let ? $E=$ take $n D$
from n have E : LeftDerivation [N] ? E [] by auto
let ? $F=$ drop $n D$
from n have F : LeftDerivation α ? F [] by auto
have length-add: length ? $E+$ length ? $F=$ length D by simp
have ? $E \neq[]$ using E by force
then have length $-E-0$: length ? $E>0$ by auto
have ? $F \neq[]$ using $F \alpha$-nonempty by force
then have length- $F-0$: length ? $F>0$ by auto
from length-add length-E-0 length-F-0
have length ? $E<$ length $D \wedge$ length ? $F<$ length D
using add.commute nat-add-left-cancel-less nat-neq-iff not-add-less2 by linarith
then have length- $E:$ length $? E<$ length D and length- $F:$ length ? $F<$ length D by auto
let $? y=$ inc-dot $($ length $[N]) x$
have y-dom: ? $y \in \pi k\}\{x\}$
apply (rule-tac less(1)[where $D=? E$ and $\omega=\alpha @ \omega]$)
apply (rule length-E)
by (auto simp add: less δ-split E)
let ? $z=$ inc-dot (length α) ?y
have wellformed-y: wellformed-item?y
using δ-split is-complete-def less.prems(1) less.prems(2) wellformed-complete-item- β
wellformed-inc-dot by fastforce
have ? $z \in \pi k\}\{? y\}$
apply (rule-tac less (1) [where $D=? F$ and $\omega=\omega]$)
apply (rule length-F)
apply (rule wellformed-y)
apply (auto simp add: F less)
by (metis δ-split add.commute append-assoc append-eq-conv-conj drop-drop inc-dot-dot inc-dot-rhs item- β-def length-Cons less.prems(2) list.size(3))
then have z-dom: ? $z \in \pi k\}\{x\}$ using π-subset-elem-trans y-dom by blast
have ? $z=$ inc-dot (length δ) x by (simp add: δ-split)
with z-dom show ?case by auto
qed
qed
lemma derives-empty-implies-LeftDerivation: derives $\delta[] \Longrightarrow \exists D$. LeftDerivation $\delta D[]$
using derives-implies-leftderives is-word-def leftderives-implies-LeftDerivation list.pred-inject(1) by blast
lemma thmD6: wellformed-item $x \Longrightarrow$ item- $\beta x=\delta$ @ $\omega \Longrightarrow$ item-end $x=k \Longrightarrow$
derives $\delta[] \Longrightarrow$ inc-dot (length $\delta) x \in \pi k\}\{x\}$
using derives-empty-implies-LeftDerivation thmD6-Left by blast
end
end
theory TheoremD7
imports TheoremD6
begin
context LocalLexing begin
lemma Derives1-keep-first-terminal: Derives1 $(x \# u)$ ir $(y \# v) \Longrightarrow$ is-terminal x $\Longrightarrow x=y$
by (metis Derives1-leftmost Derives1-take leftmost-cons-terminal list.sel(1) not-le take-Cons')
lemma Derives1-nonterminal-head:
assumes Derives1 u ir $(N \# v)$
assumes is-nonterminal N
shows $\exists u^{\prime} M . u=M \# u^{\prime} \wedge i s$-nonterminal M
proof -
from assms have nonempty- u : $u \neq[]$
by (metis Derives1-bound less-nat-zero-code list.size(3))

```
    have }\exists\mp@subsup{u}{}{\prime}M.u=M#\mp@subsup{u}{}{\prime
    using count-terminals.cases nonempty-u by blast
    then obtain }\mp@subsup{u}{}{\prime}M\mathrm{ where split-u: u=M#u'u}\mathrm{ by blast
    have is-sentence-u: is-sentence u using assms
        using Derives1-sentence1 by blast
    then have is-terminal M \vee is-nonterminal M
    using is-sentence-cons is-symbol-distinct split-u by blast
    then show ?thesis
    proof (induct rule: disjCases2)
        case 1
            have is-terminal N
            using 1.hyps Derives1-keep-first-terminal
            assms(1) split-u by blast
        with assms have False using is-terminal-nonterminal by blast
        then show ?case by blast
    next
        case 2 with split-u show ?case by blast
    qed
qed
lemma sentence-starts-with-nonterminal:
    assumes is-nonterminal N
    assumes derives u []
    shows \exists Xr.u@[N]=X#r^is-nonterminal X
proof (cases u= [])
    case True thus ?thesis using assms(1) by blast
next
    case False
    then have \exists Xr.u=X#r using count-terminals.cases by blast
    then obtain X r where Xr:u}=X#r\mathrm{ by blast
    then have is-nonterminal X
            by (metis False assms(2) count-terminals.simps derives-count-terminals-leq
            derives-is-sentence is-sentence-cons is-symbol-distinct not-le zero-less-Suc)
    with Xr show ?thesis by auto
qed
lemma Derives1-nonterminal-head':
    assumes Derives1 u ir(v1@[N]@v2)
    assumes is-nonterminal N
    assumes derives v1 []
    shows \exists u' M.u=M# ' }^\mathrm{ 'is-nonterminal M
proof -
    from sentence-starts-with-nonterminal[OF assms(2,3)]
    obtain X r where v1 @ [N]=X #r^ is-nonterminal X by blast
    then show ?thesis
        by (metis Derives1-nonterminal-head append-Cons append-assoc assms(1))
qed
lemma thmD7-helper:
```

assumes LeftDerivation [$\mathfrak{S}] D(N \# v)$
assumes is-nonterminal N
assumes $\mathfrak{S} \neq N$
shows $\exists n M a \operatorname{a1} a 2 w . n<$ length $D \wedge(M, a) \in \mathfrak{R} \wedge$ LeftDerivation [S] (take $n D)(M \# w) \wedge$
$a=a 1 @[N] @ a 2 \wedge$ derives a1 []
proof -
have $\exists n u$ v. LeftDerivation $[\mathfrak{S}]($ take $n D)(u @[N] @ v) \wedge$ derives $u[]$
apply (rule-tac $x=$ length D in exI)
apply (rule-tac $x=[]$ in exI)
apply (rule-tac $x=v$ in $e x I$)
using assms by simp
then show ?thesis
proof (induct rule: ex-minimal-witness)
case (Minimal K)
have nonzero- $K: K \neq 0$
proof (cases $K=0$)
case True
with Minimal have $\exists u v .[\mathfrak{S}]=u @[N] @ v$
using LeftDerivation.simps(1) take-0 by auto
with assms have False by (simp add: Cons-eq-append-conv)
then show? ?hesis by simp
next
case False
then show ?thesis by arith
qed
from Minimal(1)
obtain $u v$ where $u v$: LeftDerivation $[\mathfrak{S}]($ take $K D)(u @[N] @ v) \wedge$ derives
u [] by blast
from nonzero- K have take $K D \neq[]$
using Minimal.hyps(2) less-nat-zero-code nat-neq-iff take-eq-Nil uv by force
then have $\exists E$ e. (take $K D)=E @[e]$ using rev-exhaust by blast
then obtain $E e$ where Ee: take $K D=E @[e]$ by blast
with $u v$ have $\exists x$. LeftDerivation [$\mathfrak{S}] E x \wedge$ LeftDerives1 $x($ fst $e)($ snd e)
(u@ $[N]$ @ v)
by (simp add: LeftDerivation-append)
then obtain x where x : LeftDerivation [$\mathfrak{S}] E x \wedge$ LeftDerives1 $x(f s t e)(s n d$
e) ($u @[N] @ v$)
by blast
then have $\exists w M . x=M \# w \wedge$ is-nonterminal M using Derives1-nonterminal-head' LeftDerives1-implies-Derives1 assms(2)
$u v$ by blast
then obtain $w M$ where split-x: $x=M \# w$ and is-nonterminal- M : is-nonterminal M by blast
from Ee nonzero-K have E : $E=$ take $(K-1) D$
by (metis Minimal.hyps(2) butlast-snoc butlast-take dual-order.strict-implies-order le-less-linear take-all uv)
have leftmost (fst e) (M\#w) using x LeftDerives1-def split-x by blast
with is-nonterminal- M have fst-e: fst $e=0$
by (simp add: leftmost-cons-nonterminal leftmost-unique)
have Derives 1: Derives1 x 0 (snd e) (u@ [N] @ v)
using LeftDerives1-implies-Derives1 fst-e x by auto
have x-splits-at: splits-at x 0 [] $M w$ by (simp add: split-x splits-at-def)
from Derives 1 x-splits-at
have $p q: \exists p q . u=[] @ p \wedge v=q @ w \wedge s n d(s n d e)=p @[N] @ q$
proof (induct rule: Derives1-X-is-part-of-rule)
case (Suffix α) thus ?case by blast
next
case (Prefix β)
then have derives- β : derives β []
using Derives1-implies-derives1 derives1-implies-derives derives-trans uv
by blast
with Prefix (1) x Minimal E nonzero-K show False
by (meson diff-less less-nat-zero-code less-one nat-neq-iff)
qed
from this[simplified] obtain q where $q: v=q @ w \wedge$ snd (snde) $=u @ N$ \# q by blast
have M-def: fst $($ snd $e)=M$
using Derives1 Derives1-nonterminal x-splits-at by blast
show ?case
apply (rule-tac $x=K-1$ in exI)
apply (rule-tac $x=M$ in exI)
apply (rule-tac $x=$ snd (snd e) in exI)
apply (rule-tac $x=u$ in exI)
apply (rule-tac $x=q$ in exI)
apply (rule-tac $x=w$ in $e x I$)
by (metis Derives1 Derives1-rule E Ee M-def One-nat-def Suc-pred pq append-Nil
append-same-eq dual-order.strict-implies-order le-less-linear nonzero-K not-Cons-self2
not-gr0 not-less-eq prod.collapse q self-append-conv split-x take-all uv x)
qed
qed
lemma head-of-item- β-is-next-symbol:
wellformed-item $x \Longrightarrow$ item- $\beta x=t \# \delta \Longrightarrow$ next-symbol $x=$ Some t
using next-symbol-def next-symbol-starts-item- β wellformed-complete-item- β by
fastforce
lemma next-symbol-predicts: next-symbol $x=$ Some $N \Longrightarrow(N, a) \in \mathfrak{R} \Longrightarrow k=$ item-end $x \Longrightarrow$
init-item $(N, a) k \in$ Predict $k\{x\}$
using Predict-def bin-def by auto
lemma thmD7-LeftDerivation: LeftDerivation $[\mathfrak{S}] D(N \# \gamma) \Longrightarrow i s$-nonterminal N

```
\(\Longrightarrow(N, \alpha) \in \mathfrak{R} \Longrightarrow\)
    init-item \((N, \alpha) 0 \in \pi 0\}\) Init
proof (induct length \(D\) arbitrary: \(D N \gamma \alpha\) rule: less-induct)
    case less
        let ? trivial \(=\mathfrak{S}=N\)
        have ?trivial \(\vee \neg\) ?trivial by blast
        then show ?case
        proof (induct rule: disjCases2)
        case 1
            then have init-item \((N, \alpha) 0 \in\) Init
                    apply (subst Init-def)
            by (auto simp add: less)
            then show ?case
                    by (meson \(\pi\)-regular contra-subsetD regular-implies-setmonotone sub-
set-setmonotone)
    next
        case 2
            from thmD7-helper[OF less(2) less(3) 2]
            obtain \(n M a 1 a 2 w\) where \(n<\) length \(D\) and \((M, a) \in \mathfrak{R}\) and
                LeftDerivation [S] (take \(n D)(M \# w)\) and \(a=a 1 @[N]\) @ a2 and
derives a1 []
            by blast
            note \(M=\) this
            let ? \(x=\) init-item \((M, a) 0\)
            have \(x\)-dom: \(? x \in \pi 0\}\) Init
                    apply (rule less(1)[OF - M(3) - M(2)])
                    using \(M(1)\) apply simp
            using \(M(2)\) by simp
            have wellformed-x: wellformed-item? ? by (simp add: M(2))
            let \(? y=\) inc-dot (length a1) ? \(x\)
            have ? \(y \in \pi 0\}\{? x\}\)
                apply (rule thmD6[where \(\omega=[N]\) @ a2])
                    using wellformed-x by (auto simp add: M)
            with \(x\)-dom have \(y\)-dom: ? \(y \in \pi 0\) \{\} Init
            using \(\pi\)-subset-elem-trans empty-subsetI insert-subset by blast
            have wellformed-y: wellformed-item ?y
                using \(M(4)\) wellformed-inc-dot wellformed-x by auto
            have item- \(\beta\) ? \(y=N \# a 2\) by (simp add: M(4) item- \(\beta\)-def)
            then have next-symbol-y: next-symbol ?y \(=\) Some \(N\)
                    by (simp add: head-of-item- \(\beta\)-is-next-symbol wellformed-y)
            let ? \(z=\) init-item \((N, \alpha) 0\)
            have \(? z \in\) Predict \(0\{? y\}\)
            by (simp add: less.prems(3) next-symbol-predicts next-symbol-y)
            then have \(? z \in \pi 0\}\{? y\}\) using Predict-subset- \(\pi\) by auto
            with \(y\)-dom show ? \(z \in \pi 0\}\) Init
            using \(\pi\)-subset-elem-trans empty-subsetI insert-subset by blast
    qed
qed
```

```
theorem thmD7: is-derivation (N#\gamma)\Longrightarrow is-nonterminal N\Longrightarrow(N,\alpha)\in\Re\Longrightarrow
    init-item (N,\alpha) 0 \in\pi 0 {} Init
by (metis }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ -is-word derives-implies-leftderives-cons empty-in- }\mp@subsup{\mathcal{L}}{P}{}\mathrm{ is-derivation-def
    leftderives-implies-LeftDerivation self-append-conv2 thmD7-LeftDerivation)
end
end
theory TheoremD8
imports TheoremD7
begin
context LocalLexing begin
lemma wellformed-tokens-empty-path[simp]: wellformed-tokens []
    by (simp add: wellformed-tokens-def)
```



```
item-end x = 0^
    derives (item-\alpha x) [] ^(\exists \gamma. is-derivation ([item-nonterminal x] @ \gamma))}
by (auto simp add:Gen-def pvalid-def)
lemma Init-subset-Gen: Init \subseteqGen(\mathcal{P O O)}
    apply (subst \mathcal{P-0-0-Gen)}
    apply (auto simp add: Init-def)
    apply (rule-tac x=[] in exI)
    apply (simp add: is-derivation-def)
    done
lemma J -0-0-subset-Gen: \mathcal{J 0 0 \subseteqGen(\mathcal{P 0 0}}\mathbf{~})
    apply (simp only: J.simps)
    apply (rule-tac thmD5)
    apply (rule Init-subset-Gen)
    by auto
lemma inc-dot-rule [simp]: item-rule (inc-dot d x) = item-rule x
    by (simp add: inc-dot-def)
lemma init-item-rule[simp]: item-rule (init-item r k) =r
    by (simp add: init-item-def)
lemma item-dot-is-\alpha-length: wellformed-item x \Longrightarrow item-dot x = length (item- }
x)
    apply (simp add: item-\alpha-def)
    by (simp add: min-absorb2 wellformed-item-def)
lemma Gen-subset-J-0-0-helper:
```

```
    assumes wellformed-item x
    assumes item-origin x = 0
    assumes item-end x=0
    assumes derives (item-\alpha x) []
    assumes is-derivation (item-nonterminal x # \gamma)
    shows }x\in\pi0{} Ini
proof -
    let ?y = init-item (item-nonterminal x, item-rhs x) 0
    have y-dom: ?y }\in\pi0{}\mathrm{ Init
        apply (rule-tac thmD7)
        using assms apply auto
    using is-nonterminal-item-nonterminal apply blast
    by (simp add: item-nonterminal-def item-rhs-def wellformed-item-def)
    let ?x = inc-dot (length (item-\alpha x)) ?y
    have x1: item-rule }x=\mathrm{ item-rule ?x
        apply (simp)
        by (simp add: item-nonterminal-def item-rhs-def)
    have x2: item-dot }x=\mathrm{ item-dot ?}
        apply simp
        by (simp add: assms(1) item-dot-is-\alpha-length)
    have x3: item-origin x = item-origin ? }
        using assms by auto
    have x4:item-end }x=\mathrm{ item-end ?}
        using assms by auto
    from x1 x2 x3 x4 have x-is-inc: x = ?x using item.expand by blast
    have wellformed-item-y: wellformed-item?y
        using assms(1) item-nonterminal-def item-rhs-def wellformed-item-def by auto
    have }x\in\pi0{}{?y
        apply (subst x-is-inc)
        apply (rule-tac thmD6)
        apply (simp add: wellformed-item-y)
        apply (simp add: item-rhs-split)
        apply simp
        using assms apply simp
        done
    with y-dom show ?thesis
        using \pi-subset-elem-trans empty-subsetI insert-subset by blast
qed
lemma Gen-subset-\mathcal{J-0-0:Gen (\mathcal{P}}000)\subseteq\mathcal{J}00
    apply (subst P-0-0-Gen)
    apply auto
    using Gen-subset-J-0-0-helper by blast
theorem thmD8: \mathcal{J 0 0 = Gen (\mathcal{P}}000)
    using Gen-subset-J-0-0 J-0-0-subset-Gen by blast
end
```

```
end
theory TheoremD9
imports TheoremD8
begin
context LocalLexing begin
definition items-le :: nat }=>\mathrm{ items }=>\mathrm{ items
where
    items-le k I ={x.x 片^ item-end x \leq k }
definition items-eq :: nat }=>\mathrm{ items }=>\mathrm{ items
where
    items-eq k I ={x.x 新 \ item-end x=k }
definition paths-le :: nat }=>\mathrm{ tokens set }=>\mathrm{ tokens set
where
    paths-le kP={p.p\inP\wedge charslength p\leqk}
definition paths-eq :: nat }=>\mathrm{ tokens set }=>\mathrm{ tokens set
where
    paths-eq k P ={ p.p\inP^ charslength p=k}
lemma items-le-pointwise: pointwise (items-le k)
    by (auto simp add: pointwise-def items-le-def)
lemma items-le-is-filter: items-le k I\subseteqI
    by (auto simp add: items-le-def)
lemma items-eq-pointwise: pointwise (items-eq k)
    by (auto simp add: pointwise-def items-eq-def)
lemma items-eq-is-filter: items-eq k I\subseteqI
    by (auto simp add: items-eq-def)
lemma paths-le-pointwise: pointwise (paths-le k)
    by (auto simp add: pointwise-def paths-le-def)
lemma paths-le-continuous: continuous (paths-le k)
    by (simp add: paths-le-pointwise pointbased-implies-continuous pointwise-implies-pointbased)
lemma paths-le-mono: mono (paths-le k)
    by (simp add: continuous-imp-mono paths-le-continuous)
lemma paths-le-is-filter: paths-le k P\subseteqP
    by (auto simp add: paths-le-def)
lemma paths-eq-pointwise: pointwise (paths-eq k)
    by (auto simp add: pointwise-def paths-eq-def)
```

```
lemma paths-eq-is-filter: paths-eq k P\subseteqP
    by (auto simp add: paths-eq-def)
lemma Predict-item-end: x Predict k Y\Longrightarrow item-end x=k\veex\inY
    using Predict-def by auto
lemma Complete-item-end: x Complete k Y\Longrightarrow item-end x = k\veex\inY
    using Complete-def by auto
lemma J
    apply (simp add: \pi-def)
    proof (induct rule: limit-induct)
    case (Init x) thus ?case by (auto simp add: Init-def)
    next
    case (Iterate x Y)
    then have x C Complete 0 (Predict 0 Y) by (simp add: Scan-empty)
    then have item-end x=0\vee x E Predict 0 Y using Complete-item-end by
blast
    then have item-end x=0 v x G Y using Predict-item-end by blast
    then show ?case using Iterate by blast
    qed
lemma items-le-\mathcal{J-0-0: items-le 0 (}\mathcal{J}000)=\mathcal{J}000
    using LocalLexing.J-0-0-item-end LocalLexing.items-le-def LocalLexing-axioms
by blast
lemma paths-le-\mathcal{P-0-0:paths-le 0(\mathcal{P}}000)=\mathcal{P}00
    by (auto simp add: paths-le-def)
definition empty-tokens :: token set }=>\mathrm{ token set
where
    empty-tokens T={t.t\inT^ chars-of-token t=[]}
lemma items-le-Predict: items-le k (Predict kI)=Predict k(items-le kI)
    by (auto simp add: items-le-def Predict-def bin-def)
lemma items-le-Complete:
    wellformed-items I \Longrightarrow items-le k (Complete k I) = Complete k (items-le k I)
    by (auto simp add: items-le-def Complete-def bin-def is-complete-def wellformed-items-def
    wellformed-item-def)
lemma items-le-Scan:
    items-le k (Scan T k I) = Scan (empty-tokens T)k (items-le kI)
    by (auto simp add: items-le-def Scan-def bin-def empty-tokens-def)
lemma wellformed-items-Gen: wellformed-items (Gen P)
    using Gen-implies-pvalid pvalid-def wellformed-items-def by blast
```

```
lemma wellformed-\mathcal{J-0-0: wellformed-items (}\mathcal{J}00
    using thmD8 wellformed-items-Gen by auto
lemma wellformed-items-Predict:
    wellformed-items I \Longrightarrow wellformed-items(Predict k I)
    by (auto simp add: wellformed-items-def wellformed-item-def Predict-def bin-def)
lemma wellformed-items-Complete:
    wellformed-items I \Longrightarrow wellformed-items (Complete k I)
    apply (auto simp add: wellformed-items-def wellformed-item-def Complete-def
bin-def)
    apply (metis dual-order.trans)
    using is-complete-def next-symbol-not-complete not-less-eq-eq by blast
lemma \mathcal{X}\mathrm{ -length-bound: (t, c) & X }k\Longrightarrowk+ length c < length Doc
    using \mathcal{X}
lemma wellformed-items-Scan:
    wellformed-items I\LongrightarrowT\subseteq\mathcal{X}k\Longrightarrow wellformed-items (Scan Tk I)
    apply (auto simp add: wellformed-items-def wellformed-item-def Scan-def bin-def
\mathcal { X } \text { -length-bound)}
    using is-complete-def next-symbol-not-complete not-less-eq-eq by blast
lemma wellformed-items-\pi:
    assumes wellformed-items I
    assumes T\subseteq\mathcal{X}k
    shows wellformed-items (\pikTI)
proof -
    {
        fix }x:: ite
        have }x\in\pikTI\Longrightarrow\mathrm{ wellformed-item x
        proof (simp add: \pi-def, induct rule: limit-induct)
        case (Init x) thus ?case using assms(1) by (simp add: wellformed-items-def)
        next
            case (Iterate x Y)
        have wellformed-items Y by (simp add: Iterate.hyps(1) wellformed-items-def)
            then have wellformed-items (Scan T k (Complete k (Predict k Y)))
            by (simp add: assms(2) wellformed-items-Complete wellformed-items-Predict
                    wellformed-items-Scan)
            then show ?case by (simp add: Iterate.hyps(2) wellformed-items-def)
        qed
    }
    then show ?thesis using wellformed-items-def by auto
qed
```



```
    by (metis Complete-\pi-fix Complete-subset-\pi \mathcal{J.simps(1) \mathcal{J.simps(2) J. .simps(3)}}\mathbf{~}\mathbf{(3)}
not0-implies-Suc)
lemma mono-TokensAt: mono (TokensAt k)
    by (auto simp add: mono-def TokensAt-def bin-def)
lemma \mathcal{T}\mathrm{ -subset-TokensAt: }\mathcal{T}ku\subseteq TokensAt k (\mathcal{J ku)}
proof (induct u)
    case 0 thus ?case by simp
next
    case (Suc u)
        have 1:Tokens k (\mathcal{T}ku) (\mathcal{J ku) = Sel (\mathcal{T}ku) (TokensAt k (\mathcal{J ku))}}\mathbf{ (T)}
        by (simp add: Tokens-def)
```



```
                by (simp add: Sel-upper-bound Suc.hyps)
```



```
        by (simp add: 1 2)
    then show ?case
        by (meson \mathcal{J}-subset-Suc-u mono-TokensAt mono-subset-elem subset-iff)
qed
lemma TokensAt-subset-\mathcal{X}:TokensAt kI\subseteq\mathcal{X}k
    using TokensAt-def \mathcal{X}}\mathrm{ -def is-terminal-def by auto
lemma wellformed-items-\mathcal{J-induct-u:}
    assumes wellformed-items ( }\mathcal{J}ku
    shows wellformed-items (\mathcal{J k (Suc u))}
proof -
    {
        fix x :: item
        have }x\in\mathcal{J}k(\mathrm{ Suc }u)\Longrightarrow\mathrm{ wellformed-item }
        proof (simp add: \pi-def, induct rule: limit-induct)
            case (Init x)
            with assms show ?case by (auto simp add: wellformed-items-def)
        next
            case (Iterate p Y)
                from Iterate(1) have wellformed- Y: wellformed-items Y
                    by (auto simp add: wellformed-items-def)
                    then have wellformed-items (Complete k (Predict k Y))
                    by (simp add: wellformed-items-Complete wellformed-items-Predict)
                then have wellformed-items (Scan (Tokens k (\mathcal{T}ku) (\mathcal{J ku)) k (Complete}
k(Predict k Y)))
                apply (rule-tac wellformed-items-Scan)
                    apply simp
                        apply (simp add: Tokens-def)
                    by (meson Sel-upper-bound TokensAt-subset-\mathcal{X}}\mathcal{T}\mathrm{ -subset-TokensAt sub-
set-trans)
                then show ?case
                using Iterate.hyps(2) wellformed-items-def by blast
```

```
        qed
    }
    then show ?thesis
    using wellformed-items-def by blast
qed
lemma wellformed-items-\mathcal{J-k-u-if-0:wellformed-items ( }\mathcal{J}k0)\Longrightarrow\mathrm{ wellformed-items}
(J ku)
    apply (induct u)
    apply (simp)
    using wellformed-items-\mathcal{J-induct-u by blast}
lemma wellformed-items-natUnion: (\ k. wellformed-items (Ik))\Longrightarrow wellformed-items
(natUnion I)
    by (auto simp add: natUnion-def wellformed-items-def)
lemma wellformed-items-\mathcal{I-k-if-0:wellformed-items (}\mathcal{J}k\mp@code{0) \Longrightarrow wellformed-items}
(\mathcal{I k}
    apply (simp)
    apply (rule wellformed-items-natUnion)
    using wellformed-items-\mathcal{J-k-u-if-0 by blast}
lemma wellformed-items-\mathcal{J-I}: wellformed-items (\mathcal{J ku)^ wellformed-items (\mathcal{I}k)}
proof (induct k arbitrary: u)
    case 0
        show ?case
        using wellformed-\mathcal{J-0-0 wellformed-items-I-k-if-0 wellformed-items-J-k-u-if-0}
by blast
next
    case (Suc k)
        have 0:wellformed-items (\mathcal{J (Suc k) 0)}
            apply simp
            using Suc.hyps wellformed-items-\pi by auto
    then show ?case
            using wellformed-items-\mathcal{I}-k-if-0 wellformed-items-\mathcal{J-k-u-if-0 by blast}
qed
lemma wellformed-items-\mathcal{J: wellformed-items (\mathcal{J k u)}}\mathbf{~}\mathrm{ )}
by (simp add: wellformed-items-\mathcal{J-I})
lemma wellformed-items-\mathcal{I}:wellformed-items (\mathcal{I}k)
using wellformed-items-\mathcal{J-I by blast}
lemma funpower-consume-function:
    assumes law: }^ X.PX\Longrightarrowf(gX)=h(fX)\wedgeP(gX
    shows PI\LongrightarrowP(funpower g n I) ^f(funpower g n I)= funpower hn}(fI
proof (induct n)
    case 0
    then show ?case by simp
```

```
next
    case (Suc n)
    then have S1:P (funpower g n I) and S2: f(funpower g n I)=funpower h n
(f I)
    by auto
    have law1: }\bigwedge X.PX\Longrightarrowf(gX)=h(fX) using law by aut
    have law2: }\bigwedgeX.PX\LongrightarrowP(gX)\mathrm{ using law by auto
    show ?case
        apply simp
        apply (subst law1[where X=funpower g n I])
        apply (simp add: S1)
        apply (subst S2)
        apply auto
        apply (rule law2)
        apply (simp add: S1)
        done
qed
lemma limit-consume-function:
    assumes continuous: continuous f
    assumes law: \bigwedge X.P X\Longrightarrowf(gX)=h(fX)\wedgeP(gX)
    assumes setmonotone: setmonotone g
    shows PI\Longrightarrowf(limit gI)=limit h(fI)
proof -
    have 1:f(limit gI)=f(natUnion( }\lambda\mathrm{ \ . funpower g n I))
        by (simp add: limit-def)
    have chain ( }\lambdan.funpower g n I) by (simp add: setmonotone setmonotone-implies-chain-funpower)
    from continuous-apply[OF continuous this]
    have swap: f (natUnion ( }\lambdan\mathrm{ . funpower g n I)) = natUnion ( }f\circ(\lambdan.funpower
gnI)) by blast
    have fo (\lambdan. funpower g n I) = (\lambda n.f (funpower g n I)) by auto
    also have PI\Longrightarrow(\lambdan.f(funpower g n I))=(\lambda n.funpower h n (f I))
            by (metis funpower-consume-function[where P=P and f=f and g=g and
h=h,OF law, simplified])
    ultimately have PI\Longrightarrowfo(\lambdan. funpower g n I) =( \lambda n. funpower h n (fI))
by auto
    with swap have 2: P I\Longrightarrowf(natUnion (\lambdan. funpower g n I)) = natUnion ( }
n. funpower h n (f I))
    by auto
    have 3: natUnion ( }\lambda\mathrm{ n. funpower h n (f I)) = limit h (f I)
    by (simp add: limit-def)
    assume PI
    with 12 3 show ?thesis by auto
qed
lemma items-le-\pi-swap:
    assumes wellformed-I: wellformed-items I
    assumes T:T\subseteq\mathcal{X k}
    shows items-le k ( }\pikTI)=\pik(\mathrm{ empty-tokens T) (items-le k I)
```

```
proof -
    let ?g = (Scan T k)o(Complete k)o(Predict k)
    let ?h = (Scan (empty-tokens T)k)o(Complete k) o (Predict k)
    have law1: \bigwedgeI. wellformed-items I \Longrightarrow items-le k (?g I) =?h (items-le k I)
    using LocalLexing.wellformed-items-Predict LocalLexing-axioms items-le-Complete
        items-le-Predict items-le-Scan by auto
    have law2: \I. wellformed-items I \Longrightarrow wellformed-items (?g I)
        by (simp add: T wellformed-items-Complete wellformed-items-Predict well-
formed-items-Scan)
    show ?thesis
        apply (subst \pi-functional)
        apply (subst limit-consume-function[where P=wellformed-items and h=?h])
    apply (simp add: items-le-pointwise pointbased-implies-continuous pointwise-implies-pointbased)
        using law1 law2 apply blast
        apply (simp add: \pi-step-regular regular-implies-setmonotone)
        apply (rule wellformed-I)
        apply (subst \pi-functional)
        apply blast
        done
qed
lemma items-le-idempotent: items-le k (items-le k I) = items-le k I
    using items-le-def by auto
lemma paths-le-idempotent: paths-le k (paths-le k P) = paths-le k P
    using paths-le-def by auto
lemma items-le-fix-D:
    assumes items-le-fix: items-le k I=I
    assumes x-dom: x }\in
    shows item-end x \leq k
using items-le-def items-le-fix x-dom by blast
lemma remove-paths-le-in-subset-Gen:
    assumes items-le k I=I
    assumes I\subseteqGen P
    shows I\subseteqGen (paths-le k P)
proof -
    {
        fix }x\mathrm{ :: item
        assume x-dom: }x\in
        then have x-item-end: item-end }x\leqk\mathrm{ using assms items-le-fix-D by auto
        have }x\inGen P using assms x-dom by aut
        then obtain p where p: p\inP^ pvalid p x using Gen-implies-pvalid by blast
        have charslength-p: charslength p\leqk using p pvalid-item-end x-item-end by
auto
    then have p}\in\mathrm{ paths-le k P by (simp add: p paths-le-def)
```

```
        then have }x\inGen (paths-le k P) using Gen-def p by blas
}
    then show ?thesis by blast
qed
lemma mono-Gen: mono Gen
    by (auto simp add: mono-def Gen-def)
lemma empty-tokens-idempotent: empty-tokens (empty-tokens T)= empty-tokens
T
    by (auto simp add: empty-tokens-def)
lemma empty-tokens-is-filter: empty-tokens T\subseteqT
    by (auto simp add: empty-tokens-def)
lemma items-le-paths-le: items-le k (Gen P) = Gen (paths-le k P)
    using LocalLexing.Gen-def LocalLexing.items-le-def LocalLexing-axioms paths-le-def
    pvalid-item-end by auto
lemma bin-items-le[symmetric]: bin I k= bin (items-le k I) k
    by (auto simp add: bin-def items-le-def)
lemma TokensAt-items-le[symmetric]: TokensAt k I = TokensAt k (items-le k I)
    using TokensAt-def bin-items-le by blast
lemma by-length-paths-le[symmetric]: by-length k P = by-length k (paths-le k P)
    using by-length.simps paths-le-def by auto
```



```
theorem \mathcal{T}\mathrm{ -equals-Z-induct-step:}
    assumes induct: items-le k (\mathcal{J ku) = Gen (paths-le k (\mathcal{P}ku))}
    assumes induct-tokens: }\mathcal{T}ku=\mathcal{Z}k
```



```
proof -
    have TokensAt k (\mathcal{J ku) = TokensAt k (items-le k (\mathcal{J ku))}}\mathbf{)}\mathrm{ )}
        using TokensAt-items-le by blast
    also have TokensAt k(items-le k (\mathcal{J ku)) = TokensAt k (Gen (paths-le k (\mathcal{P}k}⿻土一\mp@code{*}
u))
    using induct by auto
    ultimately have TokensAt-le: TokensAt k (\mathcal{J ku) = TokensAt k (Gen (paths-le}
k(\mathcal{P}ku)))
    by auto
    have TokensAt k (\mathcal{J ku) =\mathcal{W}}(\mathcal{P}ku)k
    apply (subst TokensAt-le)
    apply (subst \mathcal{W}\mathrm{ -paths-le[symmetric])}
    apply (rule-tac thmD4[symmetric])
```

```
    using \mathfrak{P}\mathrm{ -covers-P paths-le-is-filter by blast}
    then show ?thesis
    by (simp add: induct-tokens Tokens-def \mathcal{Y}-def)
qed
theorem thmD9:
    assumes induct: items-le k (\mathcal{J ku) = Gen (paths-le k (\mathcal{P}ku))}
    assumes induct-tokens: }\mathcal{T}ku=\mathcal{Z ku
    assumes k: k\leq length Doc
    shows items-le k (\mathcal{J k (Suc u))\subseteqGen (paths-le k (\mathcal{P k (Suc u)))}}\mathbf{)}\mathrm{ (Sta}
proof -
```



```
        by auto
```



```
    \pik (empty-tokens (\mathcal{T k (Suc u))) (items-le k (\mathcal{J k u))}}\mathbf{)}\mathrm{ (Sta}
    apply (subst items-le-\pi-swap)
    apply (simp add: wellformed-items-\mathcal{J}
    using TokensAt-subset-\mathcal{X}\mathcal{T}\mathrm{ -subset-TokensAt apply blast}\\mp@code{T}
    by blast
```



```
        using induct by auto
    have \mathcal{P}\mathrm{ -subset: P k u}\subseteq\mathcal{P}k\mathrm{ (Suc u) using subset-PSuc by blast}
    then have paths-le k (\mathcal{P ku)\subseteq paths-le k (\mathcal{P k (Suc u))}}\mathbf{ (Sum}
        by (simp add: mono-subset-elem paths-le-mono subsetI)
```



```
        by (simp add: mono-subset-elem subsetI)
```



```
        by (rule monoD[OF mono-\pi])
    have }\mathcal{T}\mathrm{ -eq-Z: }\mathcal{T}k(\mathrm{ Suc u) = Z }k(\mathrm{ Suc u)
```



```
        Gen (paths-le k (\mathcal{P k (Suc u)))}
        apply (rule-tac remove-paths-le-in-subset-Gen)
        apply (subst items-le-\pi-swap)
        using wellformed-items-Gen apply blast
```



```
        apply (simp only: empty-tokens-idempotent paths-le-idempotent items-le-paths-le)
        apply (rule-tac thmD5)
        using items-le-is-filter items-le-paths-le apply blast
        apply (rule k)
        using }\mathcal{T}\mathrm{ -eq-Z empty-tokens-is-filter by blast
    from t1 t2 t3 t4 t5 show ?thesis using subset-trans by blast
qed
end
end
```

```
theory Ladder
imports TheoremD9
begin
context LocalLexing begin
definition LeftDerivationFix :: sentence }=>\mathrm{ nat }=>\mathrm{ derivation }=>\mathrm{ nat }=>\mathrm{ sentence
=> bool
where
    LeftDerivationFix \alpha i D j \beta=(is-sentence \alpha ^ is-sentence }
    LeftDerivation \alpha D \beta}\wedgei<length \alpha ^ j< length 
    \wedge\alpha!i=\beta!j^(\existsEF.D=E@(derivation-shift F 0 (Suc j))^
    LeftDerivation (take i \alpha) E (take j \beta) ^
    LeftDerivation (drop (Suc i) \alpha)F(drop (Suc j) \beta)))
definition LeftDerivationIntro ::
    sentence }=>\mathrm{ nat }=>\mathrm{ rule }=>\mathrm{ nat }=>\mathrm{ derivation }=>\mathrm{ nat }=>\mathrm{ sentence }=>\mathrm{ bool
where
    LeftDerivationIntro \alpha ir ix D j \gamma = (\exists \beta. LeftDerives1 \alpha ir \beta^
        ix < length (snd r) ^(snd r)!ix = \gamma! j^
        LeftDerivationFix \beta (i+ix) D j \gamma)
lemma LeftDerivationFix-empty[simp]: is-sentence \alpha 
DerivationFix \alpha i[] i \alpha
    apply (auto simp add: LeftDerivationFix-def)
    apply (rule-tac x=[] in exI)
    apply auto
    done
lemma Derive-empty[simp]: Derive a [] =a
    by (auto simp add: Derive-def)
lemma LeftDerivation-append1: LeftDerivation a (D@[(i,r)]) c \Longrightarrow \exists b. Left-
Derivation a D b
    LeftDerives1 b i r c
by (simp add: LeftDerivation-append)
lemma Derivation-append1: Derivation a (D@[(i,r)])c\Longrightarrow\existsb. Derivation a D
b
    ^ Derives1 b i r c
by (simp add: Derivation-append)
lemma Derivation-take-derive:
    assumes Derivation a D b
    shows Derivation a (take n D) (Derive a (take n D))
by (metis Derivation-append Derive append-take-drop-id assms)
lemma LeftDerivation-take-derive:
    assumes LeftDerivation a D b
```

shows LeftDerivation a (take n D) (Derive a (take n D))
by (metis Derive LeftDerivation-append LeftDerivation-implies-Derivation append-take-drop-id assms)
lemma Derivation-Derive-take-Derives1:
assumes $N \neq 0$
assumes $N \leq$ length D
assumes Derivation a $D b$
assumes α : $\alpha=$ Derive a (take $(N-1) D$)
assumes $\beta=$ Derive a (take $N D$)
shows Derives1 $\alpha(f s t(D!(N-1)))(\operatorname{snd}(D!(N-1))) \beta$
proof -
let ? D1 $=$ take $(N-1) D$
let ? D2 = take $N D$
from assms have app: ?D2 = ?D1 @ $[D!(N-1)]$
apply auto
by (metis Suc-less-eq Suc-pred le-imp-less-Suc take-Suc-conv-app-nth)
from assms have Derivation a ?D2 β
using Derivation-take-derive by blast
with app show ?thesis
using Derivation.simps Derivation-append Derive α by auto
qed
lemma LeftDerivation-Derive-take-LeftDerives1:
assumes $N \neq 0$
assumes $N \leq$ length D
assumes LeftDerivation a D b
assumes α : $\alpha=$ Derive a (take $(N-1) D)$
assumes $\beta=$ Derive a (take N D)
shows LeftDerives1 $\alpha(f s t(D!(N-1)))(\operatorname{snd}(D!(N-1))) \beta$
proof -
let ? $D 1=$ take $(N-1) D$
let ? D2 $=$ take $N D$
from assms have app: ?D2 =?D1 @ $[D!(N-1)]$
apply auto
by (metis Suc-less-eq Suc-pred le-imp-less-Suc take-Suc-conv-app-nth)
from assms have LeftDerivation a ?D2 β
using LeftDerivation-take-derive by blast
with app show ?thesis
by (metis Derive LeftDerivation-append1 LeftDerivation-implies-Derivation α
prod.collapse)
qed
lemma LeftDerives1-skip-prefix:
length $a \leq i \Longrightarrow$ LeftDerives1 $(a @ b)$ ir $(a @ c) \Longrightarrow$ LeftDerives1 b ($i-$ length
a) $r c$
apply (auto simp add: LeftDerives1-def)
using leftmost-skip-prefix apply blast
by (simp add: Derives1-skip-prefix)

```
lemma LeftDerives1-skip-suffix:
    assumes \(i: i<\) length \(a\)
    assumes D: LeftDerives1 ( \(a @ c\) ) ir \((b @ c)\)
    shows LeftDerives1 a irb
proof -
    note Derives1-def[where \(u=a @ c\) and \(v=b @ c\) and \(i=i\) and \(r=r]\)
    then have \(\exists x\) y \(N\).
        \(a @ c=x @[N] @ y \wedge\)
        \(b\) @ \(c=x\) @ \(\alpha\) @ \(y \wedge\) is-sentence \(x \wedge\) is-sentence \(y \wedge(N, \alpha) \in \mathfrak{R} \wedge r=(N\),
\(\alpha) \wedge i=\) length \(x\)
    using \(D\) LeftDerives1-implies-Derives1 by auto
    then obtain \(x\) y \(N \alpha\) where split:
    \(a @ c=x @[N] @ y \wedge\)
        \(b @ c=x @ \alpha @ y \wedge i s\)-sentence \(x \wedge\) is-sentence \(y \wedge(N, \alpha) \in \mathfrak{R} \wedge r=(N\),
\(\alpha) \wedge i=\) length \(x\)
        by blast
    from split have length \((a @ c)=\) length \((x @[N] @ y)\) by auto
    then have length \(a+\) length \(c=\) length \(x+\) length \(y+1\) by simp
    with split have length \(a+\) length \(c=i+\) length \(y+1\) by simp
    with \(i\) have len-c-y: length \(c \leq\) length \(y\) by arith
    let \(? y=\) take (length \(y-\) length \(c) y\)
    from split have ac: \(a\) @ \(c=(x\) @ \([N]) @ y\) by auto
    note cancel-suffix[where \(a=a\) and \(c=c\) and \(b=x @[N]\) and \(d=y\),OF \(a c\)
len-c-y]
    then have \(a: a=x @[N] @\) ? \(y\) by auto
    from split have \(b c: b\) @ \(c=(x\) @ \(\alpha) @ y\) by auto
    note cancel-suffix[where \(a=b\) and \(c=c\) and \(b=x @ \alpha\) and \(d=y, O F b c\)
len-c-y]
    then have \(b: b=x @ \alpha @ ? y\) by auto
    from split len-c-y a bhow ?thesis
        apply (simp only: LeftDerives1-def Derives1-def)
        apply (rule-tac conjI)
        using \(D\) LeftDerives1-def i leftmost-cons-less apply blast
        apply (rule-tac \(x=x\) in exI)
        apply (rule-tac \(x=? y\) in exI)
        apply (rule-tac \(x=N\) in exI)
        apply (rule-tac \(x=\alpha\) in exI)
        apply auto
        by (rule is-sentence-take)
qed
lemma LeftDerives1-X-is-part-of-rule[consumes 2, case-names Suffix Prefix]:
    assumes \(a X b\) : LeftDerives1 \(\delta\) ir \((a @[X] @ b)\)
    assumes split: splits-at \(\delta i \alpha N \beta\)
    assumes prefix: \(\bigwedge \beta . \delta=a @[X] @ \beta \Longrightarrow\) length \(a<i \Longrightarrow\) is-word \((a @[X])\)
\(\Longrightarrow\)
    LeftDerives1 \(\beta(i-\) length \(a-1) r b \Longrightarrow\) False
    assumes suffix: \(\wedge \alpha . \delta=\alpha @[X] @ b \Longrightarrow\) LeftDerives1 \(\alpha\) ir \(a \Longrightarrow\) False
```

shows $\exists u v . a=\alpha @ u \wedge b=v @ \beta \wedge(s n d r)=u @[X] @ v$
proof -
have $a X b$-old: Derives1 δ ir $(a @[X] @ b)$
using LeftDerives1-implies-Derives1 $a X b$ by blast
have prefix-or: is-prefix α a \vee is-proper-prefix a α
by (metis Derives1-prefix split aXb-old is-prefix-eq-proper-prefix)
have is-word- α : is-word α
using LeftDerives1-splits-at-is-word aXb assms(2) by blast
have is-proper-prefix a $\alpha \Longrightarrow$ False
proof -
assume proper:is-proper-prefix a α
then have $\exists u . u \neq[] \wedge \alpha=a @ u$ by (metis is-proper-prefix-def)
then obtain u where $u: u \neq[] \wedge \alpha=a @ u$ by blast
note splits-at $=$ splits-at- $\alpha[$ OF aXb-old split $]$ splits-at-combine $[O F$ split $]$
from splits-at have $\alpha 1: \alpha=$ take $i \delta$ by blast
from splits-at have $\alpha 2: \alpha=$ take $i(a @[X] @ b)$ by blast
from splits-at have len α : length $\alpha=i$ by blast
with proper have lena: length $a<i$ using append-eq-conv-conj drop-eq-Nil leI u by auto
with is-word- α 22 have is-word-aX: is-word ($a @[X]$)
by (simp add: is-word-terminals not-less take-Cons' u)
from $u \alpha 2$ have $a @ u=$ take $i(a @[X] @ b)$ by auto
with lena have $u=$ take $(i-$ length $a)([X] @ b)$ by (simp add: less-or-eq-imp-le)
with lena have $u X: u=[X] @($ take $(i-$ length $a-1) b)$ by (simp add: not-less take-Cons')
let $? \beta=($ take $(i-$ length $a-1) b) @[N] @ \beta$
from splits-at have f1: $\delta=\alpha$ @ $[N]$ @ β by blast
with $u u X$ have $f 2: \delta=a @[X] @ ? \beta$ by simp
note skip $=$ LeftDerives1-skip-prefix $[$ where $a=a @[X]$ and $b=? \beta$ and $r=r$ and $i=i$ and $c=b]$
then have $D:$ LeftDerives1 ? $\beta(i-$ length $a-1) r b$
using One-nat-def Suc-leI aXb append-assoc diff-diff-left f2 lena length-Cons
length-append length-append-singleton list.size(3) by fastforce
note prefix [OF fO lena is-word-aX D]
then show False.
qed
with prefix-or have is-prefix: is-prefix α a by blast
from $a X b$ have $a X b^{\prime}$: LeftDerives 1δ ir $((a @[X]) @ b)$ by auto
then have $a X b^{\prime}$-old: Derives1 $\delta \operatorname{ir}((a @[X]) @ b)$ by (simp add: LeftDerives1-implies-Derives1)
note Derives1-suffix[OF aXb'-old split]
then have suffix-or: is-suffix $\beta b \vee$ is-proper-suffix b β
by (metis is-suffix-eq-proper-suffix)
have is-proper-suffix b $\beta \Longrightarrow$ False
proof -
assume proper: is-proper-suffix b β
then have $\exists u . u \neq[] \wedge \beta=u @ b$ by (metis is-proper-suffix-def)
then obtain u where $u: u \neq[] \wedge \beta=u @ b$ by blast
note splits-at $=$ splits-at- $\beta[$ OF aXb-old split $]$ splits-at-combine $[O F$ split $]$
from splits-at have $\beta 1: \beta=\operatorname{drop}$ (Suc i) δ by blast
from splits-at have $\beta 2: \beta=\operatorname{drop}(i+$ length $($ snd $r))(a @[X] @ b)$ by blast
from splits-at have len β : length $\beta=$ length $\delta-i-1$ by blast
with proper have lenb: length $b<$ length β by (metis is-proper-suffix-length-cmp)
from $u \beta 2$ have $u @ b=\operatorname{drop}(i+$ length $(s n d r))((a @[X]) @ b)$ by auto
hence $u=\operatorname{drop}(i+$ length $($ snd $r))(a @[X])$
by (metis drop-cancel-suffix)
hence $u X: u=$ drop $(i+$ length $($ snd $r)) a @[X]$ by (metis drop-keep-last u)
let ? $\alpha=\alpha @[N] @(\operatorname{drop}(i+$ length $(s n d r)) a)$
from splits-at have $f 1: \delta=\alpha$ @ $[N]$ @ β by blast
with $u u X$ have $f 2: \delta=$? α @ $[X]$ @ b by simp
note skip $=$ LeftDerives1-skip-suffix[where $a=? \alpha$ and $c=[X] @ b$ and $b=a$
and
$r=r$ and $i=i]$
have f3: $i<$ length $(\alpha$ @ $[N]$ @ drop $(i+$ length $(s n d r)) a)$
proof -
have $f 1: 1+i+$ length $b=$ length $[X]+$ length $b+i$
by (metis Groups.add-ac(2) Suc-eq-plus1-left length-Cons list.size(3) list.size(4) semiring-normalization-rules(22))
have f2: length $\delta-i-1=$ length $((\alpha @[N] @ \operatorname{drop}(i+$ length $($ snd $r)) a)$ @ $[X]$ @ b) - Suc i
by (metis f2 length-drop splits-at(1))
have length $([]::$ symbol list $) \neq$ length $\delta-i-1-$ length b
by (metis add-diff-cancel-right' append-Nil2 append-eq-append-conv len β
length-append u)
then have length $([]::$ symbol list $) \neq$ length $\alpha+$ length $([N] @$ drop $(i+$ length (snd r)) a) $-i$
using f2 f1 by (metis Suc-eq-plus1-left add-diff-cancel-right' diff-diff-left length-append)
then show ?thesis
by auto
qed
from $a X b$ f2 have D : LeftDerives1 (? α @ $[X] @ b)$ ir $(a @[X] @ b)$ by auto
note skip[OF f3 D]
note suffix [OF f2 skip[OF f3 D]]
then show False .
qed
with suffix-or have is-suffix: is-suffix β by blast
from is-prefix have $\exists u . a=\alpha$ @ u by (auto simp add: is-prefix-def)
then obtain u where $u: a=\alpha @ u$ by blast
from is-suffix have $\exists v . b=v @ \beta$ by (auto simp add: is-suffix-def)
then obtain v where $v: b=v @ \beta$ by blast
from $u v$ splits-at-combine $[O F$ split] $a X b$ have D:LeftDerives1 $(\alpha @[N] @ \beta)$ ir $(\alpha @(u @[X] @ v) @ \beta)$
by simp
from splits-at- $\alpha[O F$ aXb-old split] have i : length $\alpha=i$ by blast
from i have $i 1$: length $\alpha \leq i$ and $i 2: i \leq$ length α by auto
note LeftDerives1-skip-suffix[OF - LeftDerives1-skip-prefix[OF i1 D], simplified, OF i2]
then have LeftDerives1 $[N] 0 r(u @[X] @ v)$ by auto
then have Derives1 $[N] 0 r(u @[X] @ v)$
using LeftDerives1-implies-Derives1 by auto
then have $r:$ snd $r=u @[X] @ v$
by (metis Derives1-split append-Cons append-Nil length-0-conv list.inject self-append-conv)

show ?thesis using $u v r$ by auto

qed
lemma LeftDerivationFix-grow-suffix:
assumes LDF: LeftDerivationFix (b1@[X]@b2) (length b1) D jc
assumes suffix-b2: LeftDerives1 suffix e r b2
assumes is-word-b1X: is-word (b1 @ $[X]$)
shows LeftDerivationFix (b1@ $[X] @$ suffix $)$ (length b1) ($e+$ length (b1@ $[X]$),
r) \#D) $j c$
proof -
from $L D F$ have $L D F^{\prime}:$ is-sentence $(b 1 @[X] @ b 2) \wedge$ is-sentence $c \wedge$
LeftDerivation (b1 @ $[X]$ @ b2) $D c \wedge$ length b1 < length $(b 1 @[X] @ b 2) \wedge$
$j<$ length $c \wedge$
(b1@ [X] @ b2)! length b1 $=c!j \wedge$
$(\exists E F . D=E$ @ derivation-shift F $0(S u c j) \wedge$ LeftDerivation (take (length b1) (b1 @ [X] @ b2)) E (take jc) \wedge LeftDerivation (drop (Suc (length b1)) (b1 @ [X] @ b2)) F (drop (Suc j) c))
using LeftDerivationFix-def by blast
then obtain $E F$ where $E F: D=E$ @ derivation-shift $F 0(S u c j) \wedge$ LeftDerivation (take (length b1) (b1 @ [X] @ b2)) E (take j c) \wedge LeftDerivation (drop (Suc (length b1)) (b1 @ [X] @ b2)) F (drop (Suc j) c)
by blast
then have LD-b1-c: LeftDerivation b1 E (take j c) by simp
with is-word-b1X have $E: E=[]$
using LeftDerivation-implies-Derivation is-word-Derivation is-word-append by blast
then have b1-def: $b 1=$ take $j c$ using $L D-b 1-c$ by auto
then have b1-len: $j=$ length $b 1$
by (simp add: LDF' dual-order.strict-implies-order min.absorb2)
have $D: D=$ derivation-shift $F 0$ (Suc $j)$ using EF E by simp
have step: LeftDerives1 (b1 @ $[X]$ @ suffix) $(S u c(e+$ length b1)) r $(b 1$ @ $[X]$ @ b2) \wedge

LeftDerivation (b1 @ [X] @ b2) D c
by (metis LDF' LeftDerives1-append-prefix add-Suc-right append-assoc assms(2)
is-word-b1X
length-append-singleton)
then have is-sentence-b1Xsuffix: is-sentence (b1 @ $[X]$ @ suffix)
using Derives1-sentence1 LeftDerives1-implies-Derives1 by blast

```
have }X\mathrm{ -eq-cj: X = c!j using LDF' by auto
show ?thesis
    apply (simp add: LeftDerivationFix-def)
    apply (rule conjI)
    using is-sentence-b1Xsuffix apply simp
    apply (rule conjI)
    using }LD\mp@subsup{F}{}{\prime}\mathrm{ apply simp
    apply (rule conjI)
    using step apply force
    apply (rule conjI)
    using LDF' apply simp
    apply (rule conjI)
    apply (rule X-eq-cj)
    apply (rule-tac x=[] in exI)
    apply (rule-tac x=(e,r)#F in exI)
    apply auto
    apply (rule b1-len[symmetric])
    apply (rule D)
    apply (rule b1-def)
    apply (rule-tac x=b2 in exI)
    apply (simp add: suffix-b2)
    using EF by auto
qed
lemma Derives1-append-suffix:
    assumes Derives1: Derives1 v i r w
    assumes u: is-sentence u
    shows Derives1(v@u) ir(w@u)
proof -
    have \exists\alphaN \beta. splits-at vi \alphaN \beta using assms splits-at-ex by auto
    then obtain \alphaN \beta where split-v: splits-at vi\alphaN \beta by blast
    have split-w: w=\alpha@(snd r)@ \beta using assms split-v splits-at-combine-dest by
blast
    have split-uv: splits-at (v@u) i \alpha N( }\beta@u
        by (simp add: split-v splits-at-append)
    have is-sentence-uv: is-sentence (v@u)
    using Derives1 Derives1-sentence1 is-sentence-concat u by blast
    show ?thesis
    by (metis Derives1 Derives1-nonterminal Derives1-rule append-assoc is-sentence-uv
    split-uv split-v split-w splits-at-implies-Derives1)
qed
lemma leftmost-append-suffix: leftmost i v \Longrightarrow leftmost i (v@u)
by (simp add: leftmost-def nth-append)
lemma LeftDerives1-append-suffix:
    assumes Derives1:LeftDerives1 v i r w
    assumes u:is-sentence u
```

```
    shows LeftDerives1(v@u) ir(w@u)
proof -
    have 1: Derives1 v ir w
        by (simp add: Derives1 LeftDerives1-implies-Derives1)
    have 2: leftmost i v
        using Derives1 LeftDerives1-def by blast
    have 3: is-sentence u using }u\mathrm{ by fastforce
    have 4:Derives1(v@u) ir(w@u)
    by (simp add: }13\mathrm{ Derives1-append-suffix)
    have 5:leftmost i (v@u)
    by (simp add: 2 leftmost-append-suffix u)
    show ?thesis
    by (simp add: 4 5 LeftDerives1-def)
qed
lemma LeftDerivationFix-is-sentence:
    LeftDerivationFix a i D jb\Longrightarrow is-sentence a ^ is-sentence b
    using LeftDerivationFix-def by blast
lemma LeftDerivationIntro-is-sentence:
    LeftDerivationIntro \alpha i r ix D j \gamma \Longrightarrow is-sentence \alpha ^ is-sentence }
    by (meson Derives1-sentence1 LeftDerivationFix-is-sentence LeftDerivationIn-
tro-def
    LeftDerives1-implies-Derives1)
lemma LeftDerivationFix-grow-prefix:
    assumes LDF: LeftDerivationFix(b1@[X]@b2)(length b1) D j c
    assumes prefix-b1: LeftDerives1 prefix e r b1
    shows LeftDerivationFix (prefix@[X]@b2) (length prefix) ((e,r)#D) jc
proof -
    from LDF have LDF':LeftDerivation (b1 @ [X] @ b2) D c^
            length b1 < length(b1@ [X] @ b2) ^
            j< length c ^
        (b1@ [X]@ b2)!length b1 = c! j^
        (\existsEF.D=E @ derivation-shift F 0 (Suc j)^
            LeftDerivation (take (length b1) (b1 @ [X] @ b2)) E (take j c)^
            LeftDerivation (drop (Suc (length b1)) (b1 @ [X] @ b2)) F (drop (Suc j) c))
    using LeftDerivationFix-def by blast
    then obtain E F where EF:D=E @ derivation-shift F0 (Suc j)^
                LeftDerivation (take (length b1) (b1 @ [X] @ b2)) E (take j c)^
                LeftDerivation (drop (Suc (length b1)) (b1 @ [X] @ b2)) F (drop (Suc j) c)
by blast
    then have E-b1-c: LeftDerivation b1 E (take j c) by simp
    with EF have F-b2-c: LeftDerivation b2 F (drop (Suc j) c) by simp
    have step:LeftDerives1(prefix @ [X] @ b2) er (b1 @ [X] @ b2)
        using LDF LeftDerivationFix-is-sentence LeftDerives1-append-suffix
            is-sentence-concat prefix-b1 by blast
    show ?thesis
    apply (simp add: LeftDerivationFix-def)
```

```
    apply (rule conjI)
    apply (metis Derives1-sentence1 LDF LeftDerivationFix-def LeftDerives1-implies-Derives1
        is-sentence-concat is-sentence-cons prefix-b1)
    apply (rule conjI)
    using LDF LeftDerivationFix-is-sentence apply blast
    apply (rule conjI)
    apply (rule-tac \(x=b 1 @[X] @ b 2\) in exI)
    using step apply simp
    using \(L D F^{\prime}\) apply auto[1]
    apply (rule conjI)
    using \(L D F^{\prime}\) apply simp
    apply (rule conjI)
    using \(L D F^{\prime}\) apply auto[1]
    apply (rule-tac \(x=(e, r) \# E\) in \(e x I\) )
    apply (rule-tac \(x=F\) in \(e x I\) )
    apply (auto simp add: EF F-b2-c)
    apply (rule-tac \(x=b 1\) in exI)
    apply (simp add: prefix-b1 E-b1-c)
    done
qed
lemma LeftDerivationFixOrIntro:
    LeftDerivation a \(D \gamma \Longrightarrow\) is-sentence \(\gamma \Longrightarrow j<\) length \(\gamma \Longrightarrow\)
    \((\exists\) i. LeftDerivationFix a i D j \(\gamma\) ) \(\vee\)
    \((\exists d \alpha\) ix. \(d<\) length \(D \wedge\) LeftDerivation a (take d D) \(\alpha \wedge\)
    LeftDerivationIntro \(\alpha(f s t(D!d))(\) snd \((D!d)) i x(d r o p(S u c ~ d) D) j \gamma)\)
proof (induct length \(D\) arbitrary: a \(D \gamma j\) rule: less-induct)
    case less
    have length \(D=0 \vee\) length \(D \neq 0\) by blast
    then show ?case
    proof (induct rule: disjCases2)
    case 1
    then have \(D: D=[]\) by auto
    with less have \(\exists i\). LeftDerivationFix a i \(D j \gamma\)
        apply (rule-tac \(x=j\) in exI)
        by auto
    then show? case by blast
next
    case 2
    note less2 \(=2\)
    have \(\exists n \beta\) i. \(n \leq\) length \(D \wedge \beta=\) Derive a (take n \(D\) ) \(\wedge\) LeftDerivationFix \(\beta\)
\(i(d r o p n D) j \gamma\)
        apply (rule-tac \(x=\) length \(D\) in \(e x I\) )
        apply auto
        using Derive LeftDerivationFix-empty LeftDerivation-implies-Derivation less
by blast
    then show?case
```

proof (induct rule: ex-minimal-witness)
case (Minimal N)
then obtain βi where Minimal- N :
$N \leq$ length $D \wedge \beta=$ Derive a (take $N D) \wedge$ LeftDerivationFix $\beta i($ drop N
D) $j \gamma$ by blast
have $N=0 \vee N \neq 0$ by blast
then show ?case
proof (induct rule: disjCases2)
case 1
with Minimal- N have $\beta=a$ by auto
with 1 Minimal- N show ?case
apply (rule-tac disjI1)
by auto
next
case 2
let ? $\delta=$ Derive a $($ take $(N-1) D)$
have LeftDerives1- $\delta:$ LeftDerives1 ? $\delta(f s t(D!(N-1)))($ snd $(D!(N-$
1))) β
using 2.hyps LeftDerivation-Derive-take-LeftDerives1 Minimal-N less.prems(1) by blast
then have Derives1- $\delta:$ Derives1 $? \delta(\operatorname{fst}(D!(N-1)))(\operatorname{snd}(D!(N-1)))$
β
using LeftDerives1-implies-Derives1 by blast
have i-len: $i<$ length β using Minimal- N
by (auto simp add: LeftDerivationFix-def)
then have $\exists X \beta-1 \beta$-2. splits-at β i $\beta-1 X \beta$-2
using splits-at-def by blast
then obtain $X \beta-1 \beta$-2 where β-split: splits-at β i $\beta-1 X \beta$-2 by blast
then have β-combine: $\beta=\beta-1$ @ $[X] @ \beta$-2 using splits-at-combine by
blast
then have LeftDerives $1-\delta$-hyp:
LeftDerives1 ? $\delta(f s t(D!(N-1)))(\operatorname{snd}(D!(N-1)))(\beta-1 @[X] @$
β-2)
using LeftDerives $1-\delta$ by blast
from β-split have i-def: $i=$ length $\beta-1$
by (simp add: dual-order.strict-implies-order min.absorb2 splits-at-def)
have $\exists Y \delta-1 \delta$-2. splits-at ? $\delta(f s t(D!(N-1))) \delta-1 Y \delta$-2
using Derives1- δ splits-at-ex by blast
then obtain $Y \delta-1 \delta$-2 where δ-split: splits-at ? $\delta(f s t(D!(N-1))) \delta-1$
$Y \delta-2$ by blast
have NFix: LeftDerivationFix $(\beta-1$ @ $[X] @ \beta-2)($ length $\beta-1)(\operatorname{drop} N D)$
$j \gamma$
using Minimal-N β-combine i-def by auto
from LeftDerives1- δ-hyp δ-split
have $\exists u v \cdot \beta-1=\delta-1 @ u \wedge \beta-2=v @ \delta-2 \wedge \operatorname{snd}(\operatorname{snd}(D!(N-1)))=$
$u @[X] @ v$
proof (induct rule: LeftDerives1-X-is-part-of-rule)
case (Suffix suffix)
let ? $k=N-1$
let $? \beta=$ Derive a (take ? k D)
let ? $i=$ length $\beta-1$
have k-less: ? $k<$ length D using 2.hyps Minimal- N by linarith
then have k-leq: ? $k \leq$ length D by auto
have drop- k-d: drop ? $k=(D!(N-1)) \#(\operatorname{drop} N D)$
using 2.hyps Cons-nth-drop-Suc k-less by fastforce
from LeftDerivationFix-grow-suffix[OF NFix Suffix(4) Suffix(3)] Suffix(1) Suffix(2) 2
have LeftDerivationFix ? β ? $i(d r o p ~ ? k ~ D) ~ j \gamma$ apply auto
by (metis One-nat-def drop-k-d)
with Minimal(2)[where $k=$? k] show False
using 2.hyps k-leq by auto
next
case (Prefix prefix)
have collapse: $(f$ st $(D!(N-1))$, snd $(D!(N-1))) \#$ drop $N D=$ drop $(N-1) D$
by (metis 2.hyps Cons-nth-drop-Suc Minimal-N Suc-diff-1 neq0-conv not-less not-less-eq prod.collapse)
from LeftDerivationFix-grow-prefix[OF NFix Prefix(2)] Prefix(1) collapse have LeftDerivationFix ? $\delta(l e n g t h ~ p r e f i x) ~(d r o p ~(N-1) D) ~ j \gamma ~ b y ~ a u t o ~$ with $\operatorname{Minimal}(2)[$ where $k=N-1]$ show False
by (metis Minimal-N collapse diff-le-self le-neq-implies-less less-imp-diff-less

```
less-or-eq-imp-le not-Cons-self2)
```

qed
then obtain $u v$ where $u v$:
$\beta-1=\delta-1 @ u \wedge \beta-2=v @ \delta-2 \wedge \operatorname{snd}(\operatorname{snd}(D!(N-1)))=u @[X]$
@ v by blast
have X-1: snd $($ snd $(D!(N-S u c 0)))$! length $u=X$ using $u v$ by auto
have X-2: $\gamma!j=X$ using LeftDerivationFix-def NFix by auto
show ?case
apply (rule disjI2)
apply (rule-tac $x=N-1$ in exI)
apply (rule-tac $x=? \delta$ in exI)
apply (rule-tac $x=$ length u in $e x I$)
apply (rule conjI)
using Minimal- N less2 apply linarith
apply (rule conjI)
using LeftDerivation-take-derive less.prems(1) apply blast
apply (subst LeftDerivationIntro-def)
apply (rule-tac $x=\beta$ in exI)
apply auto
using LeftDerives1- δ One-nat-def apply presburger
using uv apply auto[1]
using $X-1 X$-2 apply auto[1]
by (metis (no-types, lifting) 2.hyps Derives1- δ Derives1-split Minimal-N
One-nat-def

Suc-diff-1 δ-split append-eq-conv-conj i-def length-append neq0-conv

```
splits-at-def uv)
        qed
        qed
    qed
qed
type-synonym deriv = nat }\times\mathrm{ nat }\times\mathrm{ nat
type-synonym ladder = deriv list
definition deriv-n :: deriv }=>\mathrm{ nat where
    deriv-n d = fst d
definition deriv-j :: deriv => nat where
    deriv-j d = fst (snd d)
definition deriv-ix :: deriv }=>\mathrm{ nat where
    deriv-ix d = snd (snd d)
definition deriv-i :: deriv => nat where
    deriv-i d = snd (snd d)
definition ladder-j :: ladder }=>\mathrm{ nat }=>\mathrm{ nat where
    ladder-j L index = deriv-j (L!index )
definition ladder-i :: ladder }=>\mathrm{ nat }=>\mathrm{ nat where
    ladder-i L index = (if index = 0 then deriv-i (hd L) else ladder-j L (index - 1))
definition ladder-n :: ladder }=>\mathrm{ nat }=>\mathrm{ nat where
    ladder-n L index = deriv-n (L!index 
definition ladder-prev-n :: ladder }=>\mathrm{ nat }=>\mathrm{ nat where
    ladder-prev-n L index =(if index =0 then 0 else (ladder-n L (index - 1)))
definition ladder-ix :: ladder }=>\mathrm{ nat }=>\mathrm{ nat where
    ladder-ix L index = (if index =0 then undefined else deriv-ix (L!index)}
definition ladder-last-j :: ladder }=>\mathrm{ nat where
    ladder-last-j L = ladder-j L (length L - 1)
definition ladder-last-n :: ladder }=>\mathrm{ nat where
    ladder-last-n L = ladder-n L (length L - 1)
definition is-ladder :: derivation }=>\mathrm{ ladder }=>\mathrm{ bool where
    is-ladder D L = (L\not= []^
        (\forallu.u<length L}\longrightarrow\mathrm{ ladder-n L u length D) ^
    (\foralluv.u<v\wedgev<length L}\longrightarrow\mathrm{ ladder-n L u<ladder-n Lv)^
    ladder-last-n L = length D)
```

```
definition ladder-\gamma :: sentence }=>\mathrm{ derivation }=>\mathrm{ ladder }=>\mathrm{ nat }=>\mathrm{ sentence where
    ladder-\gamma a D L index = Derive a (take (ladder-n L index) D)
definition ladder-\alpha :: sentence }=>\mathrm{ derivation }=>\mathrm{ ladder }=>\mathrm{ nat }=>\mathrm{ sentence where
    ladder-\alpha a D L index = (if index = 0 then a else ladder-\gamma a D L (index - 1))
definition LeftDerivationIntrosAt :: sentence }=>\mathrm{ derivation }=>\mathrm{ ladder }=>\mathrm{ nat }
bool where
    LeftDerivationIntrosAt a D L index = (
        let \alpha = ladder-\alpha a D L index in
        let i = ladder-i L index in
        let j = ladder-j L index in
    let ix = ladder-ix L index in
    let \gamma = ladder-\gamma a D L index in
    let n = ladder-n L (index - 1) in
    let m = ladder-n L index in
    let e=D!n in
    let E = drop (Suc n) (take m D) in
    i=fst e ^
    LeftDerivationIntro \alpha i (snd e) ix E j \gamma)
definition LeftDerivationIntros :: sentence }=>\mathrm{ derivation }=>\mathrm{ ladder }=>\mathrm{ bool where
    LeftDerivationIntros a D L = (
        index. 1 < index ^ index < length L \longrightarrow LeftDerivationIntrosAt a D L
index)
definition LeftDerivationLadder :: sentence }=>\mathrm{ derivation }=>\mathrm{ ladder }=>\mathrm{ sentence
=> bool where
    LeftDerivationLadder a DL b = (
        LeftDerivation a D b ^
        is-ladder D L ^
            LeftDerivationFix a (ladder-i L 0) (take (ladder-n L 0) D) (ladder-j L 0)
(ladder-\gamma a D L 0) ^
    LeftDerivationIntros a D L)
definition mk-deriv-fix :: nat }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ deriv where
    mk-deriv-fix i n j = ( n, j, i)
definition mk-deriv-intro :: nat }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ deriv where
    mk-deriv-intro ix nj=( n, j, ix)
lemma mk-deriv-fix-i[simp]: deriv-i (mk-deriv-fix i n j) = i
    by (simp add: deriv-i-def mk-deriv-fix-def)
lemma mk-deriv-fix-j[simp]: deriv-j (mk-deriv-fix i n j) = j
    by (simp add: deriv-j-def mk-deriv-fix-def)
lemma mk-deriv-fix-n[simp]:deriv-n (mk-deriv-fix i n j)=n
    by (simp add: deriv-n-def mk-deriv-fix-def)
```

```
lemma mk-deriv-intro-i[simp]: deriv-i (mk-deriv-intro i n j) = i
    by (simp add: deriv-i-def mk-deriv-intro-def)
lemma mk-deriv-intro-ix[simp]: deriv-ix (mk-deriv-intro ix n j) = ix
    by (simp add: deriv-ix-def mk-deriv-intro-def)
lemma mk-deriv-intro-j[simp]: deriv-j (mk-deriv-intro i n j) = j
    by (simp add: deriv-j-def mk-deriv-intro-def)
lemma mk-deriv-intro-n[simp]: deriv-n (mk-deriv-intro i n j) = n
    by (simp add: deriv-n-def mk-deriv-intro-def)
lemma LeftDerivationFix-implies-ex-ladder:
    LeftDerivationFix a i D j \gamma \Longrightarrow G. LeftDerivationLadder a D L \gamma ^
        ladder-last-j L = j ^ ladder-last-n L = length D
    apply (rule-tac x=[mk-deriv-fix i (length D) j] in exI)
    apply (auto simp add: LeftDerivationLadder-def)
    apply (simp add: LeftDerivationFix-def)
    apply (simp add: is-ladder-def)
    apply (auto simp add: ladder-i-def ladder-j-def ladder-n-def ladder-\gamma-def)
    apply (simp add: ladder-last-n-def ladder-n-def)
    using Derive LeftDerivationFix-def LeftDerivation-implies-Derivation apply blast
    apply (simp add: LeftDerivationIntros-def)
    apply (simp add: ladder-last-j-def ladder-j-def)
    apply (simp add: ladder-last-n-def ladder-n-def)
    done
lemma trivP[case-names prems]: P\LongrightarrowP by blast
lemma LeftDerivationLadder-ladder-n-bound:
    assumes LeftDerivationLadder a D L b
    assumes index < length L
    shows ladder-n L index \leq length D
using LeftDerivationLadder-def assms(1) assms(2) is-ladder-def by blast
lemma LeftDerivationLadder-deriv-n-bound:
    assumes LeftDerivationLadder a D L b
    assumes index < length L
    shows deriv-n (L!index) \leqlength D
using LeftDerivationLadder-def assms(1) assms(2) is-ladder-def ladder-n-def by
auto
lemma ladder-n-simp1[simp]: u < length L \Longrightarrowladder-n (L@L') u=ladder-n L
u
by (simp add: ladder-n-def)
lemma ladder-n-simp2[simp]:ladder-n (L@[d])(length L) = deriv-n d
by (simp add: ladder-n-def)
```

lemma ladder-j-simp1[simp]: $u<$ length $L \Longrightarrow$ ladder-j $\left(L @ L^{\prime}\right) u=$ ladder-j $L u$ by (simp add: ladder-j-def)
lemma ladder-j-simp2[simp]: ladder-j $(L @[d])$ (length $L)=$ deriv-j d by (simp add: ladder-j-def)
lemma ladder-i-simp1[simp]: $u<$ length $L \Longrightarrow$ ladder- $i\left(L @ L^{\prime}\right) u=$ ladder- $i L u$ by (auto simp add: ladder-i-def)
lemma ladder-ix-simp1 $[$ simp $]: u<$ length $L \Longrightarrow$ ladder-ix $\left(L @ L^{\prime}\right) u=$ ladder-ix L u
by (auto simp add: ladder-ix-def)
lemma ladder-ix-simp2[simp]: $L \neq[] \Longrightarrow$ ladder-ix $(L @[d])$ (length $L)=$ deriv-ix d
by (auto simp add: ladder-ix-def)
lemma ladder- $\gamma-\operatorname{simp} 1[$ simp $]: u<$ length $L \Longrightarrow$ ladder $-\gamma$ a $D\left(L @ L^{\prime}\right) u=$ ladder- γ a $D L u$
by (simp add: ladder- γ-def)
lemma ladder- γ-simp2[simp]: $u<$ length $L \Longrightarrow$ is-ladder $D L \Longrightarrow$ ladder- γ a ($\left.D @ D^{\prime}\right) L u=$ ladder- γ a $D L u$
by (simp add: is-ladder-def ladder- γ-def)
lemma ladder- α-simp1 [simp]: $u<$ length $L \Longrightarrow$ ladder- α a $D\left(L @ L^{\prime}\right) u=$ ladder- α a $D L u$
by (simp add: ladder- α-def)
lemma ladder- α-simp2[simp]: $u<$ length $L \Longrightarrow$ is-ladder $D L \Longrightarrow$
ladder- α a ($D @ D^{\prime}$) Lu=ladder- α a $D L u$
by (simp add: is-ladder-def ladder- α-def)
lemma ladder-n-minus-1-bound: is-ladder $D L \Longrightarrow$ index $\geq 1 \Longrightarrow$ index $<$ length $L \Longrightarrow$
ladder-n $L($ index - Suc 0$)<$ length D
by (metis (no-types, lifting) One-nat-def Suc-diff-1 Suc-le-lessD dual-order.strict-implies-order
is-ladder-def le-neq-implies-less not-less)
lemma LeftDerivationIntrosAt-ignore-appendix:
assumes is-ladder: is-ladder D L
assumes hyp: LeftDerivationIntrosAt a D L index
assumes index-ge: index ≥ 1
assumes index-less: index $<$ length L
shows LeftDerivationIntrosAt a (D @ D^{\prime}) (L @ L^{\prime}) index
proof -
have index-minus-1: index - Suc $0<$ length L

```
    using index-less by arith
    have is-0: ladder-n L index - length D = 0
    using index-less is-ladder is-ladder-def by auto
    from index-ge index-less show ?thesis
    apply (simp add: LeftDerivationIntrosAt-def Let-def)
    apply (simp add: index-minus-1 is-ladder ladder-n-minus-1-bound is-0)
    using hyp apply (auto simp add: LeftDerivationIntrosAt-def Let-def)
    done
qed
lemma ladder-i-eq-last-j: L\not=[]\Longrightarrowladder-i (L @ L') (length L) = ladder-last-j
L
by (simp add: ladder-i-def ladder-last-j-def)
lemma ladder-last-n-intro: L = [] \Longrightarrow ladder-n L (length L - Suc 0) = lad-
der-last-n L
by (simp add: ladder-last-n-def)
lemma is-ladder-not-empty: is-ladder D L\LongrightarrowL\not=[]
using is-ladder-def by blast
lemma last-ladder- }\gamma\mathrm{ :
    assumes is-ladder: is-ladder D L
    assumes ladder-last-n: ladder-last-n L = length D
    shows ladder-\gamma a D L (length L-Suc 0) = Derive a D
proof -
    from is-ladder is-ladder-not-empty have L\not= [] by blast
    then show ?thesis
        by (simp add: ladder-\gamma-def ladder-last-n-intro ladder-last-n)
qed
lemma ladder-\alpha-full:
    assumes is-ladder: is-ladder D L
    assumes ladder-last-n: ladder-last-n L = length D
    shows ladder-\alpha a (D@ D')(L@ L')(length L)=Derive a D
proof -
    from is-ladder have L-not-empty: L # [] by (simp add: is-ladder-def)
    with is-ladder ladder-last-n show ?thesis
        apply (simp add: ladder-\alpha-def)
        apply (simp add: last-ladder-\gamma)
        done
qed
lemma LeftDerivationIntro-implies-LeftDerivation:
    LeftDerivationIntro \alpha ir ix D j \gamma\Longrightarrow LeftDerivation \alpha ((i,r)#D) \gamma
using LeftDerivationFix-def LeftDerivationIntro-def by auto
lemma LeftDerivationLadder-grow:
    LeftDerivationLadder a D L \alpha Cladder-last-j L=i\Longrightarrow
```

```
    LeftDerivationIntro \alpha ir ix E j \gamma \Longrightarrow
    LeftDerivationLadder a (D@[(i,r)]@E)(L@[mk-deriv-intro ix (Suc(length D +
length E)) j]) }
proof (induct arbitrary: a D L \alpha i r ix E j \gamma rule: trivP)
    case prems
    {
        fix u :: nat
    assume }u<\mathrm{ Suc (length L)
    then have }u<\mathrm{ length L}\veeu= length L by arith
    then have ladder-n (L@ @mk-deriv-intro ix (Suc (length D + length E)) j])u
\leq
            Suc (length D + length E)
    proof (induct rule: disjCases2)
        case 1
        then show ?case
            apply simp
            by (meson LeftDerivationLadder-ladder-n-bound le-Suc-eq le-add1 le-trans
prems(1))
    next
            case 2
            then show ?case
                by (simp add: ladder-n-def)
    qed
}
    note ladder-n-ineqs = this
    {
    fix u :: nat
    fix v :: nat
    assume u-less-v: u<v
    assume v<Suc (length L)
    then have v< length L\veev= length L by arith
    then have ladder-n (L@ @mk-deriv-intro ix (Suc (length D + length E)) j])u
                < ladder-n (L @ [mk-deriv-intro ix (Suc (length D + length E)) j])v
    proof (induct rule: disjCases2)
        case 1
        with u-less-v have u-bound: u < length L by arith
        show ?case using 1 u-bound apply simp
        using prems u-less-v LeftDerivationLadder-def is-ladder-def by auto
    next
            case 2
            with u-less-v have u-bound: u < length L by arith
            have deriv-n (L!u)\leq length D
                using LeftDerivationLadder-deriv-n-bound prems(1) u-bound by blast
            then show ?case
                apply (simp add: u-bound)
                apply (simp add: ladder-n-def 2)
                done
    qed
    }
```

note ladder-n-ineqs $=$ ladder-n-ineqs this
have is-ladder:
is-ladder $(D$ @ $(i, r) \# E)(L @[m k$-deriv-intro ix $(S u c(l e n g t h ~ D+l e n g t h ~ E))$
j])
apply (auto simp add: is-ladder-def)
using ladder-n-ineqs apply auto
apply (simp add: ladder-last-n-def)
done
have is-ladder-L: is-ladder D L
using LeftDerivationLadder-def prems.prems(1) by blast
have ladder-last-n-eq-length: ladder-last-n $L=$ length D
using is-ladder-L is-ladder-def by blast
have L-not-empty: $L \neq[]$
using LeftDerivationLadder-def is-ladder-def prems(1) by blast
\{
fix index :: nat
assume index-ge: Suc $0 \leq i n d e x$
assume index $<$ Suc (length L)
then have index $<$ length $L \vee$ index $=$ length L by arith
then have LeftDerivationIntrosAt a (D @ $(i, r) \# E)$
(L @ [mk-deriv-intro ix (Suc (length $D+$ length $E)) j]$) index
proof (induct rule: disjCases2)
case 1
then show?case
using LeftDerivationIntrosAt-ignore-appendix LeftDerivationIntros-def LeftDerivationLadder-def One-nat-def index-ge prems.prems(1) by presburger
next
case 2
have min-simp: $\bigwedge n E . \min n(S u c(n+$ length $E))=n$
by auto
with 2 prems is-ladder-L ladder-last-n-eq-length show ?case
apply (simp add: LeftDerivationIntrosAt-def)
apply (simp add: L-not-empty ladder-i-eq-last-j ladder-last-n-intro)
apply (simp add: ladder- α-full min-simp)
apply (simp add: ladder- γ-def)
by (metis Derive LeftDerivationIntro-implies-LeftDerivation LeftDerivation-
Ladder-def
LeftDerivation-implies-Derivation LeftDerivation-implies-append)
qed
\}
then show ?case
apply (auto simp add: LeftDerivationLadder-def)
using prems apply (auto simp add: LeftDerivationLadder-def)[1]
using LeftDerivationFix-def LeftDerivationIntro-def LeftDerivation-append apply auto[1]
using is-ladder apply simp
using L-not-empty apply simp
using LeftDerivationLadder-def LeftDerivationLadder-ladder-n-bound ladder- γ-def

```
        prems.prems(1) apply auto[1]
    apply (subst LeftDerivationIntros-def)
    apply auto
    done
qed
```

lemma LeftDerivationIntro-bounds-ij:
LeftDerivationIntro α ir ix $D j \beta \Longrightarrow i<$ length $\alpha \wedge j<$ length β
by (meson Derives1-bound LeftDerivationFix-def LeftDerivationIntro-def
LeftDerives1-implies-Derives1)
theorem LeftDerivationLadder-exists: LeftDerivation a $D \gamma \Longrightarrow$ is-sentence $\gamma \Longrightarrow$ $j<$ length $\gamma \Longrightarrow$
\exists L. LeftDerivationLadder a $D L \gamma \wedge$ ladder-last-j $L=j$
proof (induct length D arbitrary: a $D \gamma j$ rule: less-induct)
case less
from LeftDerivationFixOrIntro[OF less(2,3,4)] show ?case
proof (induct rule: disjCases2)
case 1
then obtain i where LeftDerivationFix a i D j γ by blast
show ?case
using 1.hyps LeftDerivationFix-implies-ex-ladder by blast
next
case 2
then obtain $d \alpha$ ix where inductrule: $d<$ length $D \wedge$
LeftDerivation a (take d D) $\alpha \wedge$
LeftDerivationIntro $\alpha(f s t(D!d))($ snd $(D!d)) i x(d r o p(S u c d) D) j \gamma$ by blast
then have less-length- D : length (take d D) < length D and LeftDerivation- α : LeftDerivation a (take d D) α by auto
have is-sentence- α : is-sentence α using LeftDerivationIntro-is-sentence inductrule by blast
have $f s t(D!d)<$ length α using LeftDerivationIntro-bounds-ij inductrule by blast
from less (1) [OF less-length-D LeftDerivation- α is-sentence- α, where $j=f s t$ (D ! d), OF this]
obtain L where induct-Ladder:
LeftDerivationLadder a (take d D) L α and induct-last: ladder-last-j $L=f s t$ ($D!d$)
by blast
have induct-intro: LeftDerivationIntro $\alpha(f s t(D!d))(s n d(D!d))$ ix (drop (Suc d) D) $j \gamma$
using inductrule by blast
have $d<$ length D using inductrule by blast
then have simp-to-D: take d D @ $D!d \#$ drop (Suc d) $D=D$
using id-take-nth-drop by force
from LeftDerivationLadder-grow[OF induct-Ladder induct-last induct-intro] simp-to- D

```
    show ?case
    apply auto
    apply (rule-tac x=
    L@ [mk-deriv-intro ix (Suc (min (length D)d + (length D - Suc d))) j] in
exI)
    apply (simp add: ladder-last-j-def)
    done
    qed
qed
lemma LeftDerivationLadder-L-0:
    assumes LeftDerivationLadder \alpha D L \beta
    assumes length L = 1
    shows \exists i. LeftDerivationFix \alpha i D (ladder-last-j L) \beta
proof -
    have is-ladder D L using assms by (auto simp add: LeftDerivationLadder-def)
    then have ladder-n:ladder-n L 0 = length D
    by (simp add: assms(2) is-ladder-def ladder-last-n-def)
    show ?thesis
        apply (rule-tac x = ladder-i L 0 in exI)
        using assms(1) apply (auto simp add: LeftDerivationLadder-def)
    by (metis Derive LeftDerivationFix-def LeftDerivation-implies-Derivation One-nat-def
assms(2)
            diff-Suc-1 ladder-last-j-def ladder-n order-refl take-all)
qed
lemma LeftDerivationFix-splits-at-derives:
    assumes LeftDerivationFix a i D jb
    shows \existsU a1 a2 b1 b2. splits-at a i a1 U a2 ^ splits-at b j b1 U b2 ^
        derives a1 b1 ^ derives a2 b2
proof -
    note hyp = LeftDerivationFix-def[where \alpha=a and \beta=b and D=D and i=i
and j=j]
    from hyp obtain E F where EF:
        D=E @ derivation-shift F 0 (Suc j) ^
            LeftDerivation (take i a) E (take j b) ^ LeftDerivation (drop (Suc i) a) F
(drop (Suc j) b)
    using assms by blast
    show ?thesis
            apply (rule-tac x=a!i in exI)
            apply (rule-tac x=take i a in exI)
            apply (rule-tac x=drop (Suc i) a in exI)
            apply (rule-tac x=take jb in exI)
            apply (rule-tac x=drop (Suc j) b in exI)
            using Derivation-implies-derives LeftDerivation-implies-Derivation assms hyp
            splits-at-def by blast
qed
lemma LeftDerivation-append-suffix:
```

```
    LeftDerivation a D b \Longrightarrow is-sentence c C LeftDerivation(a@c)D(b@c)
proof (induct D arbitrary: a b c)
    case Nil
    then show ?case by auto
next
    case (Cons d D)
    then show ?case
        apply auto
        apply (rule-tac x=x@c in exI)
        apply auto
        using LeftDerives1-append-suffix by simp
qed
lemma LeftDerivation-impossible: LeftDerivation a D b \Longrightarrow i< length a \Longrightarrow
    is-nonterminal ( a!i)\Longrightarrowderivation-ge D (Suc i)\LongrightarrowD=[]
proof (induct D)
    case Nil then show ?case by auto
next
    case (Cons d D)
    then have lm: \ j. leftmost j a \Longrightarrowj\leqi
    by (metis Derives1-sentence1 LeftDerivation.simps(2) LeftDerives1-implies-Derives1
        leftmost-exists leftmost-unique)
    from Cons show ?case
        apply auto
        apply (auto simp add: derivation-ge-def LeftDerives1-def)
        using lm[where j=fst d] by arith
qed
lemma derivation-ge-shift: derivation-ge (derivation-shift F 0 j) j
    apply (induct F)
    apply (auto simp add: derivation-ge-def)
    done
lemma LeftDerivationFix-splits-at-nonterminal:
    assumes LeftDerivationFix a i D jb
    assumes is-nonterminal (a!i)
    shows \existsU a1 a2 b1. splits-at a i a1 U a2 ^ splits-at b j b1 U a2 ^ LeftDerivation
a1 D b1
proof -
    note hyp = LeftDerivationFix-def[where }\alpha=a\mathrm{ and }\beta=b\mathrm{ and }D=D\mathrm{ and }i=
and j=j]
    from hyp obtain E F where EF:
        D=E @ derivation-shift F 0 (Suc j) ^ LeftDerivation (take i a) E (take j b)
^
            LeftDerivation (drop (Suc i) a) F(drop (Suc j) b)
            using assms by blast
    have \exists \beta. LeftDerivation a E \beta}\wedge LeftDerivation \beta (derivation-shift F 0 (Suc
j)) b
```

using EF LeftDerivation-append assms(1) hyp by blast
then obtain β where β-intro:
LeftDerivation a $E \beta \wedge$ LeftDerivation β (derivation-shift $F 0$ (Suc j)) b by blast
have LeftDerivation ((take ia)@(drop i a)) E ((take jb)@(drop ia))
by (metis EF LeftDerivation-append-suffix append-take-drop-id assms(1) hyp is-sentence-concat)
then have LeftDerivation a $E(($ take $j b) @(d r o p i a))$ by simp
then have β-decomposed: $\beta=($ take $j b) @($ drop i a)
using Derivation-unique-dest LeftDerivation-implies-Derivation β-intro by blast
then have $\beta!j=a!i$
by (metis Cons-nth-drop-Suc assms(1) hyp length-take min.absorb2 nth-append-length
order.strict-implies-order)
then have is-nt: is-nonterminal ($\beta!j$) by (simp add: assms(2))
have index- $j: j<$ length β using β-decomposed assms(1) hyp by auto
have derivation: LeftDerivation β (derivation-shift F 0 (Suc j)) b
by (simp add: β-intro)
from LeftDerivation-impossible[OF derivation index-j is-nt derivation-ge-shift]
have $F: F=[]$ by (metis length-0-conv length-derivation-shift)
then have β-is-b: $\beta=b$ using β-intro by auto
show ?thesis
apply (rule-tac $x=a!i$ in $e x I$)
apply (rule-tac $x=$ take i a in exI)
apply (rule-tac $x=d r o p$ (Suc i) a in exI)
apply (rule-tac $x=$ take $j b$ in exI)
using EF F assms(1) hyp splits-at-def by auto
qed
lemma LeftDerivationIntro-implies-nonterminal:
LeftDerivationIntro αi (snd e) ix $E j \gamma \Longrightarrow$ is-nonterminal $(\alpha!i)$
by (simp add: LeftDerivationIntro-def LeftDerives1-def leftmost-is-nonterminal)
lemma LeftDerivationIntrosAt-implies-nonterminal:
LeftDerivationIntrosAt a $D L$ index \Longrightarrow is-nonterminal $((\operatorname{ladder}-\alpha$ a $D L$ index)!
(ladder-i L index))
by (meson LeftDerivationIntro-implies-nonterminal LeftDerivationIntrosAt-def)
lemma LeftDerivationIntro-examine-rule:
LeftDerivationIntro α ir ix $D j \gamma \Longrightarrow$ splits-at $\alpha i \alpha 1 M \alpha 2 \Longrightarrow$
$\exists \eta . M=$ fst $r \wedge \eta=$ snd $r \wedge(M, \eta) \in \mathfrak{R}$
by (metis Derives1-nonterminal Derives1-rule LeftDerivationIntro-def LeftDerives1-implies-Derives1
prod.collapse)
lemma LeftDerivation-skip-prefixword-ex:
assumes LeftDerivation ($u @ v$) Dw
assumes is-word u
shows $\exists w^{\prime} . w=u @ w^{\prime} \wedge$ LeftDerivation $v($ derivation-shift $D($ length $u) 0) w^{\prime}$ by (metis LeftDerivation.simps(1) LeftDerivation-breakdown LeftDerivation-implies-Derivation

```
    LeftDerivation-skip-prefix append-eq-conv-conj assms(1) assms(2) is-word-Derivation
    is-word-Derivation-derivation-ge)
definition ladder-cut :: ladder }=>\mathrm{ nat }=>\mathrm{ ladder
where ladder-cut L n = (let i= length L - 1 in L[i:=(n, snd (L!i))])
fun deriv-shift :: nat }=>\mathrm{ nat }=>\mathrm{ deriv }=>\mathrm{ deriv
where deriv-shift dn dj ( }n,j,i)=(n-dn,j-dj,i
definition ladder-shift :: ladder }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ ladder
where ladder-shift L dn dj = map (deriv-shift dn dj) L
lemma splits-at-append-suffix-prevails:
    assumes splits-at(a@b) iuNv
    assumes i< length a
    shows \exists v
proof -
    have min (length a) (Suc i)=Suc i
        using Suc-leI assms(2) min.absorb2 by blast
    then show ?thesis
            by (metis (no-types) append-assoc append-eq-conv-conj append-take-drop-id
assms(1)
        hd-drop-conv-nth length-take splits-at-def take-hd-drop)
qed
lemma derivation-shift-right-left-cancel:
    derivation-shift (derivation-shift D 0 r) r 0 = D
by (induct D,auto)
lemma derivation-shift-left-right-cancel:
    assumes derivation-ge D r
    shows derivation-shift (derivation-shift D r 0) 0r = D
using assms derivation-ge-shift-simp derivation-shift-0-shift by auto
lemma LeftDerivation-ge-take:
    assumes derivation-ge Dk
    assumes LeftDerivation a D b
    assumes D\not=[]
    shows take k a = take k b ^is-word (take ka)
proof -
    obtain d D' where d:d# D' = D using assms(3) list.exhaust by blast
    then have \existsx.LeftDerives1 a (fst d) (snd d) x ^ LeftDerivation x D'b
    using LeftDerivation.simps(2) assms(2) by blast
    then obtain x where x: LeftDerives1 a (fst d) (snd d) x^ LeftDerivation x D'
b by blast
```

have fst- d - k : fst $d \geq k$ using d assms(1) derivation-ge-cons by blast
from $x f s t-d$ - k have is-word: is-word (take $k a$)
by (metis LeftDerives1-def append-take-drop-id is-word-append leftmost-def min.absorb2 take-append take-take)
have is-eq: take $k a=$ take $k b$
using Derivation-take LeftDerivation-implies-Derivation assms(1) assms(2) by blast
show ?thesis using is-word is-eq by blast
qed
lemma LeftDerivationFix-splits-at-symbol:
assumes LeftDerivationFix a i D jb
shows $\exists U$ a1 a2 b1 b2 n. splits-at a i a1 U a2 \wedge splits-at bjb1 U b2 \wedge
$n \leq$ length $D \wedge$ LeftDerivation a1 (take $n D)$ b1 \wedge derivation-ge (drop n D)
(Suc(length b1)) \wedge
LeftDerivation a2 (derivation-shift (drop n D) (Suc(length b1)) 0) b2 \wedge
$(n=$ length $D \vee(n<$ length $D \wedge$ is-word $(b 1 @[U])))$
proof -
note hyp $=$ LeftDerivationFix-def[where $\alpha=a$ and $\beta=b$ and $D=D$ and $i=i$ and $j=j$]
from hyp obtain $E F$ where $E F$:
$D=E$ @ derivation-shift F $0($ Suc $j) \wedge$ LeftDerivation (take ia) E (take jb) \wedge

LeftDerivation (drop (Suc i) a) F (drop $(S u c j) b)$
using assms by blast
have $\exists \beta$. LeftDerivation a $E \beta \wedge$ LeftDerivation β (derivation-shift F 0 (Suc j)) b
using EF LeftDerivation-append assms(1) hyp by blast
then obtain β where β-intro:
LeftDerivation a $E \beta \wedge$ LeftDerivation β (derivation-shift $F 0$ (Suc j)) b by blast
have LeftDerivation ((take i a)@(drop i a)) E ((take jb)@(drop ia))
by (metis EF LeftDerivation-append-suffix append-take-drop-id assms(1) hyp is-sentence-concat)
then have LeftDerivation a $E(($ take $j b) @(d r o p i a))$ by simp
then have β-decomposed: $\beta=($ take $j b) @($ drop i a)
using Derivation-unique-dest LeftDerivation-implies-Derivation β-intro by blast
have derivation: LeftDerivation β (derivation-shift $F 0(S u c j)) b$
by (simp add: β-intro)
have $\exists n . n \leq$ length $D \wedge E=$ take $n D$
by (metis EF append-eq-conv-conj is-prefix-length is-prefix-take)
then obtain n where n : $n \leq$ length $D \wedge E=$ take $n D$ by blast
have F-def: drop $n D=$ derivation-shift $F 0$ (Suc j)
by (metis EF append-eq-conv-conj length-take min.absorb2 n)
have min-j: min (length b) $j=j$ using assms hyp by linarith
have derivation-ge-Suc-j: derivation-ge (drop n D) (Suc j)
using F-def derivation-ge-shift by simp
have LeftDerivation- β-b: LeftDerivation β (drop n D) by (simp add: F-def

```
\(\beta\)-intro)
    have \(i s\)-word-Suc-j-b: \(n \neq\) length \(D \Longrightarrow\) is-word (take (Suc j) b)
    by (metis EF F-def LeftDerivation-ge-take \(\beta\)-intro append-Nil2 derivation-ge-Suc-j
        length-take min.absorb2 n)
    have take-Suc-j-b-decompose: take (Suc j) b=take jb@ [a!i]
    using assms hyp take-Suc-conv-app-nth by auto
    show ?thesis
        apply (rule-tac \(x=a!i\) in exI)
        apply (rule-tac \(x=\) take \(i\) a in exI)
    apply (rule-tac \(x=d r o p(S u c i) a\) in exI)
    apply (rule-tac \(x=\) take \(j b\) in exI)
    apply (rule-tac \(x=\operatorname{drop}\) (Suc j) bin exI)
    apply (rule-tac \(x=n\) in exI)
    apply (auto simp add: min-j)
    using assms hyp splits-at-def apply blast
    using assms hyp splits-at-def apply blast
    using \(n\) apply blast
    using \(E F n\) apply simp
    using \(F\)-def apply simp
    using derivation-ge-shift apply blast
    using \(F\)-def derivation-shift-right-left-cancel apply simp
    using EF apply blast
    using \(n\) apply arith
    using is-word-Suc-j-b take-Suc-j-b-decompose is-word-append apply simp+
    done
qed
lemma LeftDerivation-breakdown': LeftDerivation (u@v) \(D w \Longrightarrow\)
    \(\exists n\) w1 w2.
        \(n \leq\) length \(D \wedge\)
        \(w=w 1\) @ w2 \(\wedge\)
        LeftDerivation u (take n D) w1 \(\wedge\)
        derivation-ge (drop \(n D\) ) (length w1) \(\wedge\)
    LeftDerivation \(v(\) derivation-shift \((\) drop \(n D)(\) length w1) 0) w2
proof -
    assume hyp: LeftDerivation ( \(u\) @ v) Dw
    from LeftDerivation-breakdown [OF hyp] obtain \(n\) w1 w2 where breakdown:
        \(w=w 1\) @ w2 \(\wedge\)
        LeftDerivation u (take n D) w1 ^
        derivation-ge (drop \(n D)(\) length \(w 1) \wedge\)
        LeftDerivation \(v\) (derivation-shift (drop \(n\) D) (length w1) 0) w2 by blast
    obtain \(m\) where \(m: m=\min\) (length \(D\) ) \(n\) by blast
    have take-m: take \(m D=\) take \(n D\) using \(m\) is-prefix-take take-prefix by fastforce
    have drop-m: drop \(m D=\) drop \(n D\)
    by (metis append-eq-conv-conj append-take-drop-id length-take m)
    have \(m\)-bound: \(m \leq\) length \(D\) by ( \(\operatorname{simp}\) add: \(m\) )
    show ?thesis
    apply (rule-tac \(x=m\) in \(e x I\) )
```

```
    apply (rule-tac x=w1 in exI)
    apply (rule-tac x=w2 in exI)
    using breakdown m-bound take-m drop-m by auto
qed
lemma LeftDerives1-append-replace-in-left:
    assumes ld1:LeftDerives1( }\alpha@\delta)\mathrm{ ir }
    assumes i-bound: i< length \alpha
    shows \exists \mp@subsup{\alpha}{}{\prime}.\beta=\mp@subsup{\alpha}{}{\prime}@\delta^ LeftDerives1 \alpha ir \alpha'^i+ length (snd r)\leqlength \mp@subsup{\alpha}{}{\prime}
proof -
    obtain \mp@subsup{\alpha}{}{\prime}}\mathrm{ where }\mp@subsup{\alpha}{}{\prime}:\mp@subsup{\alpha}{}{\prime}=(\mathrm{ take i }\alpha)@(snd r)@(drop (i+1) \alpha) by blas
    have fst-r: fst r = 人 ! i
    proof -
    have \forall ss n p ssa. \neg LeftDerives1 ss n p ssa \vee Derives1 ss n p ssa
        using LeftDerives1-implies-Derives1 by blast
    then have Derives1(\alpha@ @) ir \beta
        using ld1 by blast
    then show ?thesis
        using Derives1-nonterminal i-bound splits-at-def by auto
    qed
    have Derives1 \alpha ir \alpha'
    using i-bound ld1
    apply (auto simp add: \alpha' Derives1-def)
    apply (rule-tac x=take i \alpha in exI)
    apply (rule-tac x=drop (i+1) \alpha in exI)
    apply (rule-tac x=fst r in exI)
    apply auto
    apply (simp add: fst-r)
    using id-take-nth-drop apply blast
    using Derives1-sentence1 LeftDerives1-implies-Derives1 is-sentence-concat
        is-sentence-take apply blast
    apply (metis Derives1-sentence1 LeftDerives1-implies-Derives1 append-take-drop-id
        is-sentence-concat)
    using Derives1-rule LeftDerives1-implies-Derives1 by blast
    then have leftderives1-\alpha-\alpha': LeftDerives1 \alpha ir \alpha'
    using LeftDerives1-def i-bound ld1 leftmost-cons-less by auto
    have i-bound- \alpha': i+ length (snd r)\leq length \alpha'
    using }\mp@subsup{\alpha}{}{\prime}i\mathrm{ i-bound
    by (simp add: add-mono-thms-linordered-semiring(2) le-add1 less-or-eq-imp-le
min.absorb2)
    have is-sentence- }\delta\mathrm{ : is-sentence }
        using Derives1-sentence1 LeftDerives1-implies-Derives1 is-sentence-concat ld1
by blast
    then have }\beta:\beta=\mp@subsup{\alpha}{}{\prime}@
    using ld1 leftderives1-\alpha-\alpha' Derives1-append-suffix Derives1-unique-dest
        LeftDerives1-implies-Derives1 by blast
    show ?thesis
    apply (rule-tac x=\mp@subsup{\alpha}{}{\prime}}\mathrm{ in exI)
```

using β i-bound $-\alpha^{\prime}$ leftderives1- $\alpha-\alpha^{\prime}$ by blast
qed
lemma LeftDerivationIntro-propagate:
assumes intro: LeftDerivationIntro ($\alpha @ \delta$) irix D j γ
assumes $i-\alpha$: $i<$ length α
assumes non: is-nonterminal $(\gamma!j)$
shows $\exists \omega$. LeftDerivation $\alpha((i, r) \# D) \omega \wedge \gamma=\omega @ \delta \wedge j<$ length ω proof -
from intro LeftDerivationIntro-def $[$ where $\alpha=\alpha @ \delta$ and $i=i$ and $r=r$ and $i x=i x$ and $D=D$ and
$j=j$ and $\gamma=\gamma$]
obtain β where $l d-\beta$: LeftDerives1 (α @ δ) ir β and
$i x: i x<l e n g t h($ snd $r) \wedge$ snd $r!i x=\gamma!j$ and
β-fix: LeftDerivationFix $\beta(i+i x) D j \gamma$
by blast
from LeftDerives1-append-replace-in-left[OF ld- β i- $\alpha]$
obtain α^{\prime} where $\alpha^{\prime}: \beta=\alpha^{\prime} @ \delta \wedge$ LeftDerives1 α ir $\alpha^{\prime} \wedge i+$ length (snd r)
\leq length α^{\prime}
by blast
have i-plus-ix-bound: $i+i x<$ length α^{\prime} using α^{\prime} ix by linarith
have ld- γ : LeftDerivationFix ($\left.\alpha^{\prime} @ \delta\right)(i+i x) D j \gamma$
using β-fix α^{\prime} by simp
then have non-i-ix: is-nonterminal ($\left.\left(\alpha^{\prime} @ \delta\right)!(i+i x)\right)$
by (simp add: LeftDerivationFix-def non)
from LeftDerivationFix-splits-at-nonterminal[OF ld- γ non-i-ix]
obtain U a1 a2 b1 where U :
splits-at $\left(\alpha^{\prime} @ \delta\right)(i+i x)$ a1 U a2 \wedge splits-at γj b1 U a2 \wedge LeftDerivation a1 D b1
by blast
have $\exists q . a 2=q @ \delta \wedge \alpha^{\prime}=a 1 @[U] @ q$
using splits-at-append-suffix-prevails[OF-i-plus-ix-bound, where $b=\delta] U$ by
blast
then obtain q where $q: a 2=q @ \delta \wedge \alpha^{\prime}=a 1 @[U] @ q$ by blast
show ?thesis
apply (rule-tac $x=b 1 @[U] @ q$ in $e x I)$
apply auto
apply (rule-tac $x=\alpha^{\prime}$ in $e x I$)
apply (metis LeftDerivationFix-def LeftDerivation-append-suffix $U \alpha^{\prime}$
q append-Cons append-Nil is-sentence-concat ld- γ)
using U q splits-at-combine apply auto[1]
using U splits-at-def by auto
qed
lemma LeftDerivationIntro-finish:
assumes intro: LeftDerivationIntro ($\alpha @ \delta$) ir ix $D j \gamma$
assumes $i-\alpha$: $i<$ length α
shows $\exists k \omega \delta^{\prime}$.
$k \leq$ length $D \wedge$

LeftDerivation $\alpha((i, r) \#($ take $k D)) \omega \wedge$
LeftDerivation $(\alpha$ @ $\delta)((i, r) \#($ take $k D))(\omega @ \delta) \wedge$
derivation-ge $($ drop $k D)($ length $\omega) \wedge$
LeftDerivation $\delta($ derivation-shift (drop $k D)($ length $\omega) 0) \delta^{\prime} \wedge$
$\gamma=\omega @ \delta^{\prime} \wedge j<$ length ω
proof -
from intro LeftDerivationIntro-def[where $\alpha=\alpha @ \delta$ and $i=i$ and $r=r$ and $i x=i x$ and $D=D$ and
$j=j$ and $\gamma=\gamma$]
obtain β where ld- β : LeftDerives1 (α @ δ) ir β and
$i x: i x<$ length $($ snd $r) \wedge$ snd $r!i x=\gamma!j$ and
β-fix: LeftDerivationFix $\beta(i+i x) D j \gamma$
by blast
from LeftDerives1-append-replace-in-left $[O F \quad l d-\beta i-\alpha]$
obtain α^{\prime} where $\alpha^{\prime}: \beta=\alpha^{\prime} @ \delta \wedge$ LeftDerives1 α ir $\alpha^{\prime} \wedge i+$ length (snd r)
\leq length α^{\prime}
by blast
have i-plus-ix-bound: $i+i x<$ length α^{\prime} using α^{\prime} ix by linarith
have ld- γ : LeftDerivationFix ($\left.\alpha^{\prime} @ \delta\right)(i+i x) D j \gamma$
using β-fix α^{\prime} by simp
from LeftDerivationFix-splits-at-symbol[OF ld- γ]
obtain U a1 a2 b1 b2 n where U :
splits-at $\left(\alpha^{\prime} @ \delta\right)(i+i x) a 1 U$ a2 \wedge
splits-at γj b1 U b2 \wedge
$n \leq$ length $D \wedge$
LeftDerivation a1 (take n D) b1 \wedge
derivation-ge (drop n D) (Suc (length b1)) \wedge
LeftDerivation a2 (derivation-shift (drop n D) (Suc (length b1)) 0) b2 \wedge
($n=$ length $D \vee n<$ length $D \wedge$ is-word $(b 1 @[U])$)
by blast
have n-bound: $n \leq$ length D using U by blast
have $\exists q . a 2=q @ \delta \wedge \alpha^{\prime}=a 1 @[U] @ q$
using splits-at-append-suffix-prevails[OF-i-plus-ix-bound, where $b=\delta] U$ by blast
then obtain q where $q: a 2=q @ \delta \wedge \alpha^{\prime}=a 1 @[U] @ q$ by blast
have $j: j=$ length b1
using U by (simp add: dual-order.strict-implies-order min.absorb2 splits-at-def)
have $n=$ length $D \vee n<$ length $D \wedge$ is-word (b1 @ [U]) using U by blast
then show?thesis
proof (induct rule: disjCases2)
case 1
from 1 have drop-n-D: drop $n D=[]$ by (simp add: U)
then have LeftDerivation a2 [] b2 using U by simp
then have $a 2-e q-b 2: a 2=b 2$ by simp
show ?case
apply (rule-tac $x=n$ in exI)
apply (rule-tac $x=b 1 @[U] @ q$ in $e x I$)
apply (rule-tac $x=\delta$ in exI)
apply auto

```
        apply (simp add: 1)
        apply (rule-tac x=\mp@subsup{\alpha}{}{\prime}}\mathrm{ in exI)
        apply (metis LeftDerivationFix-is-sentence LeftDerivation-append-suffix U
\alpha'
            append-Cons append-Nil is-sentence-concat ld-\gamma q)
            apply (rule-tac x=\mp@subsup{\alpha}{}{\prime}@ \delta in exI)
            apply (metis 1.hyps LeftDerivationFix-def U \alpha' a2-eq-b2 id-take-nth-drop
ld- }
            ld-\gamma q splits-at-def take-all)
            apply (simp add: drop-n-D)+
            apply (metis U a2-eq-b2 id-take-nth-drop q splits-at-def)
            using j apply arith
            done
next
    case 2
        obtain E where E: E = (derivation-shift (drop n D) (Suc (length b1)) 0)
by blast
            then have LeftDerivation(q@\delta) E b2 using Uq by simp
            from LeftDerivation-breakdown'[OF this] obtain n' w1 w2 where w1w2:
                n'}\leqlength E ^
                b2=w1@ @2 ^
                LeftDerivation q (take n' E) w1 ^
                derivation-ge (drop n' E) (length w1) ^
                LeftDerivation \delta (derivation-shift (drop n' E) (length w1) 0) w2 by blast
            have length-E-D: length E = length D - n using E n-bound by simp
            have n-plus-n'-bound: }n+\mp@subsup{n}{}{\prime}\leqlength D using length-E-D w1w2 n-bound
by arith
    have take-breakdown: take (n+ n')D=(take n D) @ (take n' (drop n D))
        using take-add by blast
    have q-w1: LeftDerivation q (take n' E) w1 using w1w2 by blast
    have isw: is-word (b1 @ [U]) using 2 by blast
    have take-n': take n' (drop n D) = derivation-shift (take n' E) 0 (Suc (length
b1))
            by (metis E U derivation-shift-left-right-cancel take-derivation-shift)
    have \mp@subsup{\alpha}{}{\prime}-derives-b1-U-w1: LeftDerivation }\mp@subsup{\alpha}{}{\prime}(\mathrm{ take }(n+\mp@subsup{n}{}{\prime})D)(b1@U
w1)
        apply (subst take-breakdown)
        apply (rule-tac LeftDerivation-implies-append[where b=b1@[U]@q])
        apply (metis LeftDerivationFix-is-sentence LeftDerivation-append-suffix U
            is-sentence-concat ld-\gamma q)
        apply (simp add: take-n')
            by (rule LeftDerivation-append-prefix[OF q-w1, where }u=b1@[U],O
isw, simplified])
    have dge: derivation-ge (drop (n+ n') D) (Suc (length b1 + length w1))
    proof -
        have derivation-ge (drop n' (drop n D)) (length b1 + 1 + length w1)
                            by (metis (no-types) E Suc-eq-plus1 U append-take-drop-id deriva-
tion-ge-append derivation-ge-shift-plus drop-derivation-shift w1w2)
    then show derivation-ge (drop (n+ n') D) (Suc (length b1 + length w1))
```

by (metis (no-types) Suc-eq-plus1 add.commute drop-drop semiring-normalization-rules(23))
qed
show ?case
apply (rule-tac $x=n+n^{\prime}$ in exI)
apply (rule-tac $x=b 1$ @ $[U]$ @ $w 1$ in exI)
apply (rule-tac $x=w 2$ in exI)
apply auto
using n-plus- n^{\prime}-bound apply simp
apply (rule-tac $x=\alpha^{\prime}$ in exI)
using $\alpha^{\prime} \alpha^{\prime}$-derives-b1-U-w1 apply blast
apply (rule-tac $x=\alpha^{\prime} @ \delta$ in exI)
apply (metis Cons-eq-appendI LeftDerivationFix-is-sentence LeftDeriva-
tion-append-suffix
$\alpha^{\prime} \alpha^{\prime}$-derives-b1-U-w1 append-assoc is-sentence-concat ld- β ld- γ)
apply (rule dge)
apply (metis E Suc-eq-plus1 add.commute derivation-shift-0-shift drop-derivation-shift

```
        drop-drop w1w2)
```

 using \(U\) splits-at-combine w1w2 apply auto[1]
 by (simp add: \(j\))
 qed
 qed
lemma LeftDerivationLadder-propagate:
LeftDerivationLadder ($\alpha @ \delta$) D L $\gamma \Longrightarrow$ ladder- $i \operatorname{L} 0<$ length $\alpha \Longrightarrow n=$ ladder- n
L index
\Longrightarrow index $<$ length $L \Longrightarrow$
if (index $+1<$ length L) then
$(\exists \beta$. LeftDerivation $\alpha($ take $n D) \beta \wedge$ ladder $-\gamma(\alpha @ \delta) D L$ index $=\beta @ \delta \wedge$ ladder-j L index $<$ length β)
else
$\left(\exists n^{\prime} \beta \delta^{\prime} .\left(\right.\right.$ index $=0 \vee$ ladder-prev- $n L$ index $\left.<n^{\prime}\right) \wedge n^{\prime} \leq n \wedge$ LeftDerivation $\alpha\left(\right.$ take $\left.n^{\prime} D\right) \beta \wedge$

LeftDerivation $(\alpha @ \delta)\left(\right.$ take $\left.n^{\prime} D\right)(\beta @ \delta) \wedge$
derivation-ge (drop $\left.n^{\prime} D\right)($ length $\beta) \wedge$
LeftDerivation $\delta\left(\right.$ derivation-shift (drop $\left.n^{\prime} D\right)\left(\right.$ length β) 0) $\delta^{\prime} \wedge$
ladder- $\gamma(\alpha @ \delta) D L$ index $=\beta @ \delta^{\prime} \wedge$ ladder-j L index $<$ length $\left.\beta\right)$
proof (induct index arbitrary: n)
case 0
have ldfix:
LeftDerivationFix (α @ δ) (ladder-i L 0) (take n D) (ladder-j L 0) (ladder- γ (α @ δ) D 0)
using 0.prems(1) 0.prems(3) LeftDerivationLadder-def by blast
from 0 have $1<$ length $L \vee 1=$ length L by arith
then show? case
proof (induct rule: disjCases2)
case 1
have LeftDerivationIntrosAt ($\alpha @ \delta$) D L 1
using 0.prems(1) 1.hyps LeftDerivationIntros-def LeftDerivationLadder-def
by blast
from LeftDerivationIntrosAt-implies-nonterminal[$O F$ this]
have is-nonterminal (ladder- $\gamma(\alpha @ \delta) D L 0!$ ladder-j L 0)
by (simp add: ladder- α-def ladder-i-def)
with ldfix have is-nonterminal $((\alpha @ \delta)!(l a d d e r-i ~ L ~ 0))$ by (simp add: Left-DerivationFix-def)
from LeftDerivationFix-splits-at-nonterminal[OF ldfix this] obtain U a1 a2 b where thesplit:
splits-at (α @ δ) (ladder-i L 0) a1 U a2 \wedge
splits-at (ladder- $\gamma(\alpha$ @ $\delta) D L 0)($ ladder-j L 0) b U a2 \wedge LeftDerivation a1 (take n D) b by blast
have $\exists \delta^{\prime}$. $a 2=\delta^{\prime} @ \delta \wedge \alpha=a 1$ @ $[U] @ \delta^{\prime}$
using thesplit splits-at-append-suffix-prevails using 0.prems(2) by blast
then obtain δ^{\prime} where $\delta^{\prime}: a \mathcal{Z}=\delta^{\prime} @ \delta \wedge \alpha=a 1 @\left([U] @ \delta^{\prime}\right)$ by blast
obtain β where β : $\beta=b$ @ ([U] @ δ^{\prime}) by blast
have is-sentence α using LeftDerivationFix-is-sentence is-sentence-concat ldfix by blast
then have is-sentence ([U]@ δ^{\prime}) using δ^{\prime} is-sentence-concat by blast
with δ^{\prime} thesplit have LeftDerivation (a1@ ([U] @ $\left.\delta^{\prime}\right)$) (take n D) (b@ ([U] @ $\left.\delta^{\prime}\right)$)
using LeftDerivation-append-suffix by blast
then have α-derives- β : LeftDerivation $\alpha($ take $n D) \beta$ using $\beta \delta^{\prime}$ by blast
have β-append- δ : ladder- $\gamma(\alpha @ \delta) D L 0=\beta @ \delta$
by (metis $\beta \delta^{\prime}$ append-assoc splits-at-combine thesplit)
have ladder-j-bound: ladder-j L $0<$ length β
by (metis One-nat-def β diff-add-inverse dual-order.strict-implies-order leD
le-add1
length-Cons length-append length-take list.size(3) min.absorb2 neq0-conv splits-at-def
thesplit zero-less-diff zero-less-one)
show ?case
using 1 apply simp
apply (rule-tac $x=\beta$ in exI)
by (auto simp add: α-derives- β-append- δ ladder- j-bound)
next
case 2
note case-2 $=2$
have n-def: $n=$ length D
by (metis 0.prems(1) 0.prems(3) 2.hyps LeftDerivationLadder-def One-nat-def
diff-Suc-1 is-ladder-def ladder-last-n-intro)
then have take-n-D: take $n D=D$ by (simp add: eq-imp-le)
from LeftDerivationFix-splits-at-symbol[OF ldfix] obtain U a1 a2 b1 b2 m where U :
splits-at (α @ δ) (ladder-i L 0) a1 U a2 \wedge
splits-at (ladder- $\gamma(\alpha$ @ $\delta) D L 0)(l a d d e r-j L 0) b 1 U b 2 \wedge$
$m \leq$ length (take n D) \wedge
LeftDerivation a1 (take m (take n D)) b1 ^
derivation-ge (drop m (take n D)) (Suc (length b1)) \wedge

LeftDerivation a2 (derivation-shift (drop m (take n D)) (Suc (length b1)) 0) b2 \wedge
$(m=$ length $($ take $n D) \vee(m<$ length $($ take $n D) \wedge$ is-word $(b 1 @[U])))$ by blast
obtain D^{\prime} where $D^{\prime}: D^{\prime}=$ derivation-shift (drop m D) (Suc (length b1)) 0 by blast
then have a2-derives-b2: LeftDerivation a2 D^{\prime} b2 using U take- $n-D$ by auto
from U have m-leq- $n: m \leq n$
by (simp add: 0.prems(1) 0.prems(3) 0.prems(4) LeftDerivationLadder-def is-ladder-def min.absorb2)
from U have splits-at $(\alpha @ \delta)(l a d d e r-i L 0) a 1 U$ a2 by blast
from splits-at-append-suffix-prevails[OF this $0(2)]$ obtain v^{\prime} where $v^{\prime}: a 2=v^{\prime} @ \delta \wedge \alpha=a 1$ @ $[U] @ v^{\prime}$ by blast
have a1-derives-b1: LeftDerivation a1 (take m D) b1 using m-leq-n U
by (metis 0.prems(1) 0.prems(3) 2.hyps LeftDerivationLadder-def One-nat-def
cancel-comm-monoid-add-class.diff-cancel is-ladder-def ladder-last-n-intro order-refl take-all)
have LeftDerivation ($v^{\prime} @ \delta$) D^{\prime} b2 using a2-derives-b2 v^{\prime} by simp
from LeftDerivation-breakdown ${ }^{[}[O F$ this $]$ obtain $m^{\prime} w 1$ w2 where w12:

$$
b 2=w 1 @ w 2 \wedge
$$

$m^{\prime} \leq$ length $D^{\prime} \wedge$
LeftDerivation $v^{\prime}\left(\right.$ take $\left.m^{\prime} D^{\prime}\right) w 1 \wedge$
derivation-ge (drop $\left.m^{\prime} D^{\prime}\right)($ length $w 1) \wedge$
LeftDerivation δ (derivation-shift (drop $m^{\prime} D^{\prime}$) (length w1) 0) w2 by blast
have length $D^{\prime} \leq$ length $D-m$ by (simp add: D^{\prime})
then have $m^{\prime} \leq$ length $D-m$ using $w 12$ dual-order.trans by blast
then have m - m^{\prime}-leq- n : $m+m^{\prime} \leq n$ using n-def m-leq- n le-diff-conv2 add.commute
by linarith
obtain β where $\beta: \beta=b 1$ @ ([U] @ w1) by blast
have is-sentence ([U] @ v^{\prime})
using LeftDerivationFix-is-sentence is-sentence-concat ldfix v^{\prime} by blast
then have LeftDerivation (a1 @ ([U] @ $\left.v^{\prime}\right)$) (take m D) (b1 @ ([U] @ $\left.v^{\prime}\right)$)
using LeftDerivation-append-suffix a1-derives-b1 by blast
then have α-derives-pre- β : LeftDerivation $\alpha($ take m $D)\left(b 1 @\left([U] @ v^{\prime}\right)\right.$)
using v^{\prime} by blast
have $m=n \vee(m<n \wedge i s$-word $(b 1 @[U]))$
using $U n$-def[symmetric] take- n - D by simp
then have pre- β-derives- β : LeftDerivation (b1 @ ([U] @ $\left.v^{\prime}\right)$) (take $m^{\prime}($ drop m D)) β
proof (induct rule: disjCases2)
case 1
then have $m^{\prime}=0$ using $m-m^{\prime}$-leq- n by arith
then show? case
apply (simp add: β)
using $w 12$ by simp

next

case 2

then have is-word-prefix: is-word (b1 @ [U]) by blast
have take-drop-eq: take $m^{\prime}($ drop $m D)=$ derivation-shift (take $m^{\prime} D^{\prime}$)
0 (length (b1 @ [U]))
apply (simp add: D^{\prime} take-derivation-shift)
by (metis U derivation-shift-left-right-cancel take-derivation-shift take-n- D)
have v^{\prime}-derives-w1: LeftDerivation $v^{\prime}\left(\right.$ take $\left.m^{\prime} D^{\prime}\right) w 1$
by (simp add: w12)
with is-word-prefix have
LeftDerivation ((b1 @ [U]) @ v^{\prime}) (derivation-shift (take m' D^{\prime})
0 (length (b1 @ [U]))) ((b1 @ [U]) @ w1)
using LeftDerivation-append-prefix by blast
with take-drop-eq show ?case by (simp add: β)
qed
have $($ take $m D) @\left(\right.$ take $m^{\prime}($ drop $\left.m D)\right)=\left(\right.$ take $\left.\left(m+m^{\prime}\right) D\right)$
by (simp add: take-add)
then have α-derives- β : LeftDerivation $\alpha\left(\right.$ take $\left.\left(m+m^{\prime}\right) D\right) \beta$
using LeftDerivation-implies-append α-derives-pre- β pre- β-derives- β by fast-
force
have derivation-ge-drop-m-m': derivation-ge $\left(\operatorname{drop}\left(m+m^{\prime}\right) D\right)($ length $\beta)$
proof -
have f1: drop $m^{\prime}($ drop $m D)=\operatorname{drop}\left(m+m^{\prime}\right) D$
by (simp add: add.commute)
have derivation-ge (drop $m^{\prime}($ drop $m \mathrm{D})$) (Suc (length b1))
by (metis (no-types) U append-take-drop-id derivation-ge-append take-n-D)
then show derivation-ge (drop $\left(m+m^{\prime}\right) D$) (length β)
using $f 1$ by (metis (no-types) $D^{\prime} \beta$ append-assoc derivation-ge-shift-plus drop-derivation-shift length-append length-append-singleton w12)
qed
have δ-derives-w2: LeftDerivation δ (derivation-shift $\left(d r o p\left(m+m^{\prime}\right) D\right)$ (length в) 0) $w 2$
proof -
have derivation-shift (drop $m^{\prime} D^{\prime}$) (length w1) $0=$ derivation-shift (drop $\left.\left(m+m^{\prime}\right) D\right)($ length $\beta) 0$
by (simp add: $D^{\prime} \beta$ add.commute derivation-shift-0-shift drop-derivation-shift)
then show LeftDerivation δ (derivation-shift (drop $\left(m+m^{\prime}\right) D$) (length β)
0) $w 2$
using w12 by presburger
qed
have ladder- γ-def: ladder- $\gamma(\alpha$ @ $\delta) D L 0=\beta$ @ w2
using $U \beta$ splits-at-combine $w 12$ by auto
have ladder-j-bound: ladder-j $L 0<$ length β using $U \beta$ splits-at-def by auto
show ?case
using 2 apply simp
apply (rule-tac $x=m+m^{\prime}$ in exI)
apply (auto simp add: $m-m^{\prime}$-leq-n)
apply (rule-tac $x=\beta$ in exI)
apply (auto simp add: α-derives- β)
using LeftDerivationFix-is-sentence LeftDerivation-append-suffix α-derives- β
is-sentence-concat ldfix apply blast
using derivation-ge-drop-m-m' apply blast
apply (rule-tac $x=w 2$ in $e x I$)
apply auto
using δ-derives-w2 apply blast
using ladder- γ-def apply blast
using ladder-j-bound apply blast done
qed
next
case (Suc index)
have step: LeftDerivationIntrosAt (α @ δ) D L (Suc index)
by (metis LeftDerivationIntros-def LeftDerivationLadder-def Suc.prems(1) Suc.prems(4)
Suc-eq-plus1-left le-add1)
have index-plus-1-bound: index $+1<$ length L
using Suc.prems(4) by linarith
then have index-bound: index $<$ length L by arith
obtain n^{\prime} where $n^{\prime}: n^{\prime}=$ ladder- $n L$ index by blast
from Suc.hyps[OF Suc.prems(1) Suc.prems(2) n' index-bound] index-plus-1-bound
have $\exists \alpha^{\prime}$. LeftDerivation $\alpha\left(\right.$ take $\left.n^{\prime} D\right) \alpha^{\prime} \wedge$
ladder- $\gamma(\alpha @ \delta) D L$ index $=\alpha^{\prime} @ \delta \wedge$ ladder $-j L$ index $<$ length α^{\prime}
by auto
then obtain α^{\prime} where α^{\prime} : LeftDerivation $\alpha\left(\right.$ take $\left.n^{\prime} D\right) \alpha^{\prime} \wedge$
ladder- $\gamma(\alpha @ \delta) D L$ index $=\alpha^{\prime} @ \delta \wedge$ ladder $-j L$ index $<$ length α^{\prime}
by blast
have Suc-index-bound: Suc index < length L using Suc.prems by auto
have is-ladder: is-ladder D L using Suc.prems LeftDerivationLadder-def by auto
have n-def: $n=$ ladder- $n L$ (Suc index)
using Suc-index-bound n^{\prime} by (simp add: Suc.prems(3))
with n^{\prime} have n^{\prime}-less-n: $n^{\prime}<n$ using is-ladder Suc-index-bound is-ladder-def
lessI by blast
have ladder- $\alpha-i s-\gamma$: ladder $-\alpha(\alpha @ \delta) D L($ Suc index $)=$ ladder $-\gamma(\alpha @ \delta) D$ Lindex
by (simp add: ladder- α-def)
obtain i where $i: i=$ ladder- $i L$ (Suc index) by blast
obtain e where $e: e=\left(D!n^{\prime}\right)$ by blast
obtain E where E : $E=\operatorname{drop}$ (Suc n^{\prime}) (take n D) by blast
obtain $i x$ where $i x: i x=$ ladder-ix L (Suc index) by blast
obtain j where $j: j=$ ladder- $j L$ (Suc index) by blast
obtain γ where $\gamma: \gamma=$ ladder $-\gamma(\alpha @ \delta) D L$ (Suc index) by blast
have intro: LeftDerivationIntro ($\left.\alpha^{\prime} @ \delta\right) i(s n d e) i x E j \gamma$
by (metis E LeftDerivationIntrosAt-def $\alpha^{\prime} \gamma$ ladder- α-is- γ diff-Suc-1 e i ix j local.step $n^{\prime} n$-def)
have is-eq-fst-e: $i=f s t e$
by (metis LeftDerivationIntrosAt-def diff-Suc-1 e i local.step n^{\prime})

```
have i-less-\alpha': i< length \mp@subsup{\alpha}{}{\prime}}\mathbf{using i \alpha' ladder-i-def by simp
have (Suc index) + < < length L \vee (Suc index ) + 1 = length L
    using Suc-index-bound by arith
then show ?case
proof (induct rule: disjCases2)
    case 1
        from 1 have LeftDerivationIntrosAt ( }\alpha@\delta)DL(Suc (Suc index))
            by (metis LeftDerivationIntros-def LeftDerivationLadder-def Suc.prems(1)
                Suc-eq-plus1 Suc-eq-plus1-left le-add1)
    from LeftDerivationIntrosAt-implies-nonterminal[OF this] have
            is-nonterminal (ladder-\alpha (\alpha @ \delta) D L (Suc (Suc index))!ladder-i L (Suc
(Suc index)))
            by blast
            then have non- }\gamma-j\mathrm{ : is-nonterminal ( }\gamma!j)\mathrm{ by (simp add: }\gammaj\mathrm{ ladder- }\alpha\mathrm{ -def
ladder-i-def)
            from LeftDerivationIntro-propagate[OF intro i-less- - ' non- }\gamma-j
            obtain \omega}\mathrm{ where }\omega\mathrm{ : LeftDerivation }\mp@subsup{\alpha}{}{\prime}((i,\mathrm{ snd e) # E) }\omega\wedge\gamma=\omega@\delta\wedge
< length \omega
            by blast
                            have \alpha-\omega: LeftDerivation \alpha ((take n'}D)@((i, snd e) # E)) 
                            using \mp@subsup{\alpha}{}{\prime}\omega}\mathrm{ LeftDerivation-implies-append by blast
                            have i-e: (i, snd e) =e by (simp add: is-eq-fst-e)
                            have take-n-D-e:((take n'D)@(e#E))= take n D
    proof -
                            obtain nn :: (nat }\times\mathrm{ symbol }\times\mathrm{ symbol list ) list }=>(nat \times nat > nat) list => m
nat and
                            nna ::( nat }\times\mathrm{ symbol }\times\mathrm{ symbol list) list }=>(nat \times nat > nat) list m na
and
            nnb :: (nat }\times\mathrm{ symbol }\times\mathrm{ symbol list) list }=>(nat \times nat > nat) list => na
where
            f1:(\forallps psa. ᄀ is-ladder ps psa \vee psa }=[]^(\foralln.\negn<length psa \vee
                ladder-n psa n\leq length ps)}\wedge(\forallnna.(\negn<na\vee\neg na<length psa
V
            ladder-n psa n< ladder-n psa na) ^ ladder-last-n psa = length ps) ^
                (\forallps psa. (psa=[]\vee nn ps psa<length psa ^ ᄀ ladder-n psa (nn ps
psa)}
                    length ps \vee (nna ps psa<nnb ps psa ^ nnb ps psa<length psa) ^
                        \neg ladder-n psa (nna ps psa) < ladder-n psa (nnb ps psa) \vee
                        ladder-last-n psa\not= length ps) \vee is-ladder ps psa)
    using is-ladder-def by moura
    then have f2: ladder-last-n L = length D
        using is-ladder by blast
    have f3: min (ladder-last-n L) n=n
        using f1 by (metis (no-types) Suc-eq-plus1 index-plus-1-bound is-ladder
            min.absorb2 n-def)
            then have take n' (take n D) @ take n D! n' # E = take n D
            using f2 by (metis E id-take-nth-drop length-take n'-less-n)
            then show ?thesis
            using f3 f2 by (metis (no-types) append-assoc append-eq-conv-conj
```

dual-order.strict-implies-order e length-take min.absorb2 n^{\prime}-less- n
nth-append)
qed
from 1 show ?case
apply auto
apply (rule-tac $x=\omega$ in $e x I$)
apply auto
using $\alpha-\omega$ i-e take-n-D-e apply auto[1]
using $\gamma \omega$ apply blast
using ωj by blast
next
case 2
from LeftDerivationIntro-finish $[O F$ intro i-less- α ' $]$ obtain $k \omega \delta^{\prime}$ where $k w \delta^{\prime}$:
$k \leq$ length $E \wedge$
LeftDerivation $\alpha^{\prime}((i$, snd e) \# take $k E) \omega \wedge$
LeftDerivation $\left(\alpha^{\prime} @ \delta\right)((i$, snd e) \# take $k E)(\omega @ \delta) \wedge$
derivation-ge (drop $k E)($ length $\omega) \wedge$
LeftDerivation $\delta($ derivation-shift (drop $k E)($ length $\omega) 0) \delta^{\prime} \wedge$
$\gamma=\omega @ \delta^{\prime} \wedge j<$ length ω by blast
have ladder-last-n-1: ladder-last-n $L=n$
by (metis 2.hyps Suc-eq-plus1 diff-Suc-1 ladder-last-n-def n-def)
from is-ladder have ladder-last-n-2: ladder-last-n $L=$ length D using is-ladder-def by blast
from ladder-last-n-1 ladder-last-n-2 have n-eq-length- $D: n=$ length D by blast
have take-split: take $\left(S u c\left(n^{\prime}+k\right)\right) D=\left(\right.$ take $\left.n^{\prime} D\right) @((i$, snd e) \# take k E) apply (simp add: E n-eq-length-D)
by (metis (no-types, lifting) Cons-eq-appendI add-Suc append-eq-appendI e is-eq-fst-e n'-less-n n-eq-length-D prod.collapse self-append-conv2 take-Suc-conv-app-nth take-add)
have α - ω : LeftDerivation $\alpha\left(\right.$ take $\left.\left(S u c\left(n^{\prime}+k\right)\right) D\right) \omega$ apply (subst take-split)
apply (rule LeftDerivation-implies-append [where $b=\alpha\rceil$)
apply (simp add: α^{\prime})
using $k w \delta^{\prime}$ by blast
have Suc- n^{\prime} - k-bound: Suc $\left(n^{\prime}+k\right) \leq n$ using $E k w \delta^{\prime} n^{\prime}$-less- n by auto[1]
from 2 show ?case
apply auto
apply (rule-tac $x=\operatorname{Suc}\left(n^{\prime}+k\right)$ in $\left.e x I\right)$
apply auto
apply (simp add: ladder-prev-n-def n^{\prime})
using Suc-n'-k-bound apply blast
apply (rule-tac $x=\omega$ in exI)
apply auto
using $\alpha-\omega$ apply blast
using α - ω LeftDerivationFix-def LeftDerivationLadder-def LeftDerivation-append-suffix
Suc.prems(1) is-sentence-concat apply auto[1]
apply (metis E add.commute add-Suc-right drop-drop kw ${ }^{\prime}$ n-eq-length- D

```
nat-le-linear
            take-all)
        apply (rule-tac x= ' ' in exI)
        apply auto
    apply (metis E LeftDerivationLadder-ladder-n-bound Suc.prems(1) Suc-index-bound
            add.commute add-Suc-right drop-drop kw\delta' n-def n-eq-length-D take-all)
        using \gamma kw\delta' apply blast
        using j kw ' ' by blast
    qed
qed
lemma ladder-i-of-cut-at-0:
    assumes L-non-empty: L\not= []
    shows ladder-i (ladder-cut L n) 0 = ladder-i L 0
proof -
    have length L}\not=0\mathrm{ using L-non-empty by auto
    then have length L=1 \vee length L> 1 by arith
    then show ?thesis
    proof (induct rule: disjCases2)
        case 1
            then show ?case
                    apply (simp add: ladder-cut-def ladder-i-def deriv-i-def)
                    by (simp add: assms hd-conv-nth)
    next
        case 2
            then show ?case
                apply (simp add: ladder-cut-def ladder-i-def deriv-i-def)
            by (metis diff-is-0-eq hd-conv-nth leD list-update-nonempty nth-list-update-neq)
    qed
qed
lemma ladder-last-j-of-cut:
    assumes L-non-empty: L # []
    shows ladder-last-j (ladder-cut L n) = ladder-last-j L
proof -
    have length-L-nonzero: length L}=0\mathrm{ using L-non-empty by auto
    then have length-ladder-cut: length (ladder-cut L n) = length L
        by (metis ladder-cut-def length-list-update)
    show ?thesis
        apply (simp add: ladder-last-j-def length-ladder-cut)
        apply (simp add: ladder-cut-def ladder-j-def deriv-j-def)
        by (metis length-L-nonzero diff-less neq0-conv nth-list-update-eq snd-conv zero-less-Suc)
qed
lemma length-ladder-cut:
    assumes L-non-empty: L\not= []
    shows length (ladder-cut L n) = length L
by (metis ladder-cut-def length-list-update)
```

```
lemma ladder-last-n-of-cut:
    assumes L-non-empty: L\not=[]
    shows ladder-last-n (ladder-cut L n) = n
proof -
    show ?thesis
    apply (simp add: ladder-last-n-def length-ladder-cut[OF L-non-empty])
    apply (simp add: ladder-n-def ladder-cut-def deriv-n-def)
    by (metis assms diff-Suc-less fst-conv length-greater-0-conv nth-list-update-eq)
qed
lemma ladder-n-of-cut:
    assumes L-non-empty: L\not=[]
    assumes index < length L-1
    shows ladder-n (ladder-cut L n) index = ladder-n L index
by (metis assms(2) ladder-cut-def ladder-n-def nat-neq-iff nth-list-update-neq)
lemma ladder-n-prev-bound:
    assumes ladder: is-ladder D L
    assumes u-bound: u< length L - 1
    shows ladder-n L u \leqladder-prev-n L (length L - 1)
proof -
    have ladder-n L u sladder-n L (length L - 2)
    proof -
        have u<Suc (length L - 2)
            using u-bound by linarith
            then show ?thesis
            by (metis (no-types) diff-Suc-less is-ladder-def ladder leI length-greater-0-conv
                not-less-eq numeral-2-eq-2 order.order-iff-strict)
    qed
    then show ?thesis
    by (metis One-nat-def Suc-diff-Suc diff-Suc-1 ladder-prev-n-def neq0-conv not-less0
            numeral-2-eq-2 u-bound zero-less-diff)
qed
lemma ladder-n-last-is-length:
    assumes is-ladder D L
    shows ladder-n L (length L - 1) = length D
using assms is-ladder-def ladder-last-n-intro by auto
lemma derivation-ge-shift-implies-derivation-ge:
    assumes dge:derivation-ge (derivation-shift F 0 j) k
    shows derivation-ge F (k-j)
proof -
    have }\bigwedgeir. (i,r)\in\operatorname{set (derivation-shift F 0 j)\Longrightarrowi\geqk
            using dge derivation-ge-def by auto
    {
```

```
    fix }i:: na
    fix r :: symbol }\times(\mathrm{ symbol list)
    assume ir: (i,r) \in set F
    then have (i+j,r)\in set (derivation-shift F0j)
    proof -
        have (i+j,r)\in(\lambdap.(fst p-0+j, snd p))' set F
        by (metis (lifting) ir diff-zero image-eqI prod.collapse prod.inject)
    then show ?thesis
        by (simp add: derivation-shift-def)
    qed
    then have }i+j\geqk\mathrm{ using dge derivation-ge-def by auto
    then have }i\geqk-j\mathrm{ by auto
}
    then show ?thesis using derivation-ge-def by auto
qed
lemma Derives1-bound': Derives1 a i r b \Longrightarrow i\leq length b
    by (metis Derives1-bound Derives1-take append-Nil2 append-take-drop-id drop-eq-Nil
    dual-order.strict-implies-order length-take min.absorb2 nat-le-linear)
lemma LeftDerivation-Derives1-last:
    assumes LeftDerivation a D b
    assumes D\not=[]
    shows Derives1 (Derive a (take (length D - 1) D)) (fst (last D)) (snd (last D))
b
by (metis Derive LeftDerivation-Derive-take-LeftDerives1 LeftDerivation-implies-Derivation
    LeftDerives1-implies-Derives1 assms(1) assms(2) last-conv-nth le-refl length-0-conv
take-all)
lemma last-of-prefix-in-set:
    assumes n < length E
    assumes }D=E@
    shows last E E set (drop n D)
proof -
    have f1: last (drop n E) = last E
        by (simp add: assms(1))
    have drop n E\not=[]
        by (metis (no-types) Cons-nth-drop-Suc assms(1) list.simps(3))
    then show ?thesis
    using f1 by (metis (no-types) append.simps(2) append-butlast-last-id append-eq-conv-conj
assms(2) drop-append in-set-dropD insertCI list.set(2))
qed
lemma LeftDerivationFix-cut-appendix:
    assumes ldfix:LeftDerivationFix ( }\alpha@\delta) i D j( \beta@\mp@subsup{\delta}{}{\prime}
    assumes \alpha-\beta:LeftDerivation \alpha (take n D) }
    assumes n-bound: n \leq length D
```

```
    assumes dge: derivation-ge (drop n D) (length \beta)
    assumes i-in:i< length \alpha
    assumes j-in: j< length }
    shows LeftDerivationFix \alpha i (take n D) j \beta
proof -
    from LeftDerivationFix-def[where \alpha=\alpha@ }\delta\mathrm{ and }i=i\mathrm{ and }D=D\mathrm{ and j=j and
\beta=\beta@\delta]
    obtain E F where EF:
        is-sentence ( }\alpha@\delta)
        is-sentence ( }\beta\mathrm{ @ }\mp@subsup{\delta}{}{\prime})
        LeftDerivation (\alpha@ @) D ( }\beta\mathrm{ @ }\mp@subsup{\delta}{}{\prime})
        i<length ( }\alpha@\delta)
        j< length ( }\beta\mathrm{ @ }\mp@subsup{\delta}{}{\prime})
        (\alpha@ @)!i=( }\beta\mathrm{ @ }\mp@subsup{\delta}{}{\prime})!j
        D=E @ derivation-shift F 0 (Suc j) ^
            LeftDerivation (take i (\alpha@ \delta)) E (take j ( }\beta\mathrm{ @ ('))}^
```



```
by auto
    with i-in j-in have take-i-E-take-j: LeftDerivation (take i \alpha) E (take j \beta)
    by (simp add: less-or-eq-imp-le)
    obtain m}\mathrm{ where m: m= length E by blast
    {
        assume n-less-m: n < m
        then have E-nonempty: E \not=[] using gr-implies-not0 list.size(3) m by auto
        have last-E-in-set: last E set (drop n D)
            using last-of-prefix-in-set n-less-m m EF by blast
        obtain kr where kr: (k,r)= last E by (metis old.prod.exhaust)
        have k-lower-bound: k\geq length \beta using dge last-E-in-set kr
            by (metis derivation-ge-def fst-conv)
        have \exists \alpha'. Derives1 \alpha' kr (take j \beta) using LeftDerivation-Derives1-last
take-i-E-take-j
            by (metis E-nonempty kr fst-conv snd-conv)
            then have k\leqj by (metis Derives1-bound' j-in length-take less-imp-le-nat
min.absorb2)
            then have k-upper-bound: }k<l=length \beta using j-in by arith
            from k-lower-bound k-upper-bound have False by arith
    }
    then have m-le-n: m}\leqn\mathrm{ by arith
    have take-i-E-take-j: LeftDerivation (take i \alpha) E (take j \beta)
        by (simp add: take-i-E-take-j)
    have take n D=E @ (take (n-m) (derivation-shift F 0 (Suc j)))
    using EF m m-le-n by auto
    then have take-n-D: take n D = E @ (derivation-shift (take (n - m)F)0 (Suc
j))
    using take-derivation-shift by auto
    obtain F' where }\mp@subsup{F}{}{\prime}:\mp@subsup{F}{}{\prime}=\mathrm{ derivation-shift (take (n-m)F)0(Suc j) by blast
    have LeftDerivation((take i \alpha)@(drop i \alpha)) E ((take j \beta)@(drop i \alpha))
    using take-i-E-take-j
```

by (metis EF LeftDerivation-append-suffix append-take-drop-id is-sentence-concat)

```
    then have LeftDerivation \alpha E((take j \beta)@(drop i \alpha)) by simp
    with take-n-D have take-j-drop-i: LeftDerivation ((take j \beta)@(drop i \alpha)) F' \beta
using F'
    by (metis Derivation-unique-dest LeftDerivation-append LeftDerivation-implies-Derivation
\alpha-\beta)
    have F'-ge:derivation-ge F' (Suc j) using F' derivation-ge-shift by blast
    have drop-append: drop i \alpha = [\alpha!i] @ (drop (Suc i) \alpha) by (simp add: Cons-nth-drop-Suc
i-in)
    have take-append: take j \beta @ [\alpha!i] = take (Suc j) \beta
    by (metis LeftDerivationFix-def i-in j-in ldfix nth-superfluous-append take-Suc-conv-app-nth)
    have take-drop-Suc: (take j \beta)@(drop i \alpha)=(take (Suc j) \beta)@(drop (Suc i) \alpha)
        by (simp add: drop-append take-append)
    with take-drop-Suc take-j-drop-i have LeftDerivation ((take (Suc j) \beta)@(drop
(Suc i) \alpha)) F' }
            by auto
    note helper = LeftDerivation-skip-prefix[OF this]
    have len-take: length (take (Suc j) \beta)= Suc j by (simp add: Suc-leI j-in
min.absorb2)
    have F'-shift:derivation-shift F' (Suc j) 0 = take (n-m)F
        using F' derivation-shift-right-left-cancel by blast
    have LeftDerivation-drop: LeftDerivation (drop (Suc i) \alpha) (take (n -m) F)
(drop (Suc j) \beta)
    using helper len-take F'-shift F'-ge by auto
    show ?thesis
        apply (auto simp add: LeftDerivationFix-def)
        using LeftDerivationFix-is-sentence is-sentence-concat ldfix apply blast
        using LeftDerivationFix-is-sentence is-sentence-concat ldfix apply blast
        using }\alpha-\beta\mathrm{ apply blast
        using i-in apply blast
        using j-in apply blast
        using LeftDerivationFix-def i-in j-in ldfix apply auto[1]
        apply (rule-tac x=E in exI)
        apply (rule-tac x=take (n-m)F in exI)
        apply auto
        using take-n-D apply blast
    using take-i-E-take-j apply blast
    using LeftDerivation-drop by blast
qed
lemma LeftDerivationFix-cut-appendix':
    assumes ldfix:LeftDerivationFix ( }\alpha@\delta) iDj(\beta@\mp@subsup{\delta}{}{\prime}
    assumes \alpha-\beta: LeftDerivation \alpha D \beta
    assumes i-in:i< length \alpha
    assumes j-in: j< length }
    shows LeftDerivationFix \alpha i D j \beta
proof -
    obtain n where n: n = length D by blast
```

```
    have LeftDerivationFix \alpha i (take n D) j \beta
        apply (rule-tac LeftDerivationFix-cut-appendix)
        apply (rule ldfix)
        using }\alpha-\beta\mathrm{ n apply auto[1]
        using n apply auto[1]
        using n apply auto[1]
        using i-in apply blast
        using j-in apply blast
        done
    then show ?thesis using n by auto
qed
lemma LeftDerivationIntro-cut-appendix:
    assumes ldfix: LeftDerivationIntro ( }\alpha@\delta) i r ix D j ( \beta@ ' '
    assumes \alpha-\beta: LeftDerivation \alpha ((i,r)#(take n D)) \beta
    assumes n-bound: n}\leq\mathrm{ length D
    assumes dge: derivation-ge (drop n D) (length \beta)
    assumes i-in: i< length \alpha
    assumes j-in: j< length }
    shows LeftDerivationIntro \alpha i r ix (take n D) j \beta
proof -
    from LeftDerivationIntro-def[where \alpha=\alpha@ }\delta\mathrm{ and }i=i\mathrm{ and }r=r\mathrm{ and }ix=ix\mathrm{ and
D=D and j=j and }\gamma=\beta@\delta
    obtain \omega where \omega: LeftDerives1 ( }\alpha\mathrm{ @ }\delta\mathrm{ ) ir }\omega
        ix < length (snd r) ^ snd r ! ix = ( }\beta\mathrm{ @ 片)! j ^ LeftDerivationFix }\omega(i
ix) Dj(\beta@ @')
    using ldfix by blast
    then have }\exists\mp@subsup{\alpha}{}{\prime}.\omega=\mp@subsup{\alpha}{}{\prime}@\delta\wedgei+ length (snd r)\leq length \alpha'
    using i-in using LeftDerives1-append-replace-in-left by blast
    then obtain }\mp@subsup{\alpha}{}{\prime}\mathrm{ where }\mp@subsup{\alpha}{}{\prime}:\omega=\mp@subsup{\alpha}{}{\prime}@\delta\wedgei+ length (snd r)\leqlength \mp@subsup{\alpha}{}{\prime}\mathrm{ by blast
    have \alpha-\alpha': LeftDerives1 \alpha i ir \alpha' using \mp@subsup{\alpha}{}{\prime}}\omega\mathrm{ using LeftDerives1-skip-suffix i-in
by blast
    from \alpha-\beta obtain u where u: LeftDerives1 \alpha i r u ^ LeftDerivation u (take n
D) }\beta\mathrm{ by auto
    with \alpha-\alpha'}\mathrm{ have u= '' using Derives1-unique-dest LeftDerives1-implies-Derives1
by blast
    with u have }\mp@subsup{\alpha}{}{\prime}-\beta\mathrm{ : LeftDerivation }\mp@subsup{\alpha}{}{\prime}(\mathrm{ take n D) }\beta\mathrm{ by auto
    have ldfix-append: LeftDerivationFix ( }\mp@subsup{\alpha}{}{\prime}@\delta)(i+ix)Dj(\beta@ @) using \mp@subsup{\alpha}{}{\prime}
by blast
    have i-plus-ix-bound: i + ix< length \alpha' using \omega \alpha'
    using add-lessD1 le-add-diff-inverse less-asym' linorder-neqE-nat nat-add-left-cancel-less
    by linarith
    from LeftDerivationFix-cut-appendix[OF ldfix-append \alpha'-\beta n-bound dge i-plus-ix-bound
j-in]
    have ldfix:LeftDerivationFix }\mp@subsup{\alpha}{}{\prime}(i+ix)(take n D) j \beta
    show ?thesis
        apply (simp add: LeftDerivationIntro-def)
        apply (rule-tac x=\mp@subsup{\alpha}{}{\prime}}\mathrm{ in exI)
```

```
    apply auto
    using \alpha-\alpha' apply blast
    using }\omega\mathrm{ apply blast
    apply (simp add: \omega j-in)
    using ldfix by blast
qed
lemma LeftDerivationIntro-cut-appendix':
    assumes ldfix: LeftDerivationIntro ( }\alpha@\delta) i r ix D j ( \beta@ ' '
    assumes }\alpha-\beta\mathrm{ : LeftDerivation 人 ((i,r)#D) }
    assumes i-in: i< length \alpha
    assumes j-in: j< length }
    shows LeftDerivationIntro \alpha i rix D j \beta
proof -
    obtain n where n: n= length D by blast
    have LeftDerivationIntro \alpha ir ix (take n D) j \beta
        apply (rule-tac LeftDerivationIntro-cut-appendix)
        apply (rule ldfix)
        using \alpha-\beta n apply auto[1]
        using n apply auto[1]
        using n apply auto[1]
        using i-in apply blast
        using j-in apply blast
        done
    then show ?thesis using n by auto
qed
```

lemma ladder-n-monotone: is-ladder $D L \Longrightarrow u \leq v \Longrightarrow v<$ length $L \Longrightarrow$ ladder- n
$L u \leq$ ladder-n $L v$
by (metis is-ladder-def le-neq-implies-less linear not-less)
lemma ladder-i-cut:
assumes index-bound: index $<$ length L
shows ladder-i (ladder-cut L n) index $=$ ladder-i L index
proof -
have index $=0 \vee$ index >0 by arith
then show ?thesis
proof (induct rule: disjCases2)
case 1
with index-bound have $L \neq[]$ by (simp add: less-numeral-extra(3))
then show ?case using 1 by (simp add: ladder-i-of-cut-at-0)
next
case 2
then show ?case
apply (auto simp add: ladder-i-def ladder-cut-def ladder-j-def deriv-j-def
Let-def)
using index-bound by auto
qed
qed

```
lemma ladder-j-cut:
    assumes index-bound: index < length L
    shows ladder-j (ladder-cut L n) index = ladder-j L index
by (metis gr-implies-not0 index-bound ladder-cut-def ladder-j-def ladder-last-j-def
    ladder-last-j-of-cut length-ladder-cut list.size(3) nth-list-update-neq)
lemma ladder-ix-cut:
    assumes index-lower-bound: index > 0
    assumes index-upper-bound: index < length L
    shows ladder-ix (ladder-cut L n) index = ladder-ix L index
proof -
    show ?thesis
        using index-lower-bound apply (simp add: ladder-ix-def deriv-ix-def)
        by (metis index-upper-bound ladder-cut-def nth-list-update-eq nth-list-update-neq
snd-conv)
qed
lemma LeftDerivation-from-in-between:
    assumes \alpha-\beta:LeftDerivation \alpha (take u D) }
    assumes \alpha-\gamma:LeftDerivation \alpha (take v D) }
    assumes u-le-v:}u\leq
    shows LeftDerivation \beta (drop u (take v D)) \gamma
proof -
    have take-split: take v D= take u D @ (drop u (take v D))
        by (metis u-le-v add-diff-cancel-left' drop-take le-Suc-ex take-add)
    then show ?thesis using \alpha-\gamma \alpha-\beta
        by (metis (no-types, lifting) Derivation-unique-dest LeftDerivation-append
            LeftDerivation-implies-Derivation)
qed
lemma LeftDerivationLadder-cut-appendix-helper:
    assumes LDLadder: LeftDerivationLadder ( }\alpha@\delta)DL
    assumes ladder-i-in-\alpha: ladder-i L 0 < length \alpha
    shows \existsEF\gamma1\gamma2 L'.D=E@F^
        \gamma= \gamma1@ @2^
        LeftDerivationLadder \alpha E L' \gamma1 ^
        derivation-ge F (length \gamma1) ^
        LeftDerivation \delta (derivation-shift F (length \gamma1) 0) \gamma2 ^
    L'}=\mathrm{ ladder-cut L (length E)
proof -
    have is-ladder-D-L: is-ladder D L using LDLadder LeftDerivationLadder-def by
blast
    obtain n where n: n = ladder-last- n L by blast
    then have n-eq-ladder-n: n = ladder-n L (length L - 1) using ladder-last-n-def
by blast
    have length-L-nonzero: length L>0
        using LeftDerivationLadder-def assms(1) is-ladder-def by blast
    from LeftDerivationLadder-propagate[OF LDLadder ladder-i-in-\alpha n-eq-ladder-n]
```

obtain $n^{\prime} \beta \delta^{\prime}$ where finish:
$\left(\right.$ length $L-1=0 \vee$ ladder-prev-n $L($ length $\left.L-1)<n^{\prime}\right) \wedge$
$n^{\prime} \leq n \wedge$
LeftDerivation $\alpha\left(\right.$ take $\left.n^{\prime} D\right) \beta \wedge$
LeftDerivation $(\alpha$ @ $\delta)\left(\right.$ take $\left.n^{\prime} D\right)(\beta$ @ $\delta) \wedge$
derivation-ge (drop $\left.n^{\prime} D\right)($ length $\beta) \wedge$
LeftDerivation $\delta\left(\right.$ derivation-shift $\left(\right.$ drop $\left.n^{\prime} D\right)($ length $\left.\beta) 0\right) \delta^{\prime} \wedge$
ladder- $\gamma(\alpha @ \delta) D L($ length $L-1)=\beta @ \delta^{\prime} \wedge$ ladder-j $L($ length $L-1)<$
length β
using length-L-nonzero by auto
obtain E where $E: E=$ take $n^{\prime} D$ by blast
obtain F where $F: F=$ drop $n^{\prime} D$ by blast
obtain L^{\prime} where $L^{\prime}: L^{\prime}=$ ladder-cut L (length E) by blast
have γ-ladder: $\gamma=$ ladder- $\gamma(\alpha @ \delta) D L$ (length $L-1$)
by (metis Derive LDLadder LeftDerivationLadder-def LeftDerivation-implies-Derivation append-Nil2 append-take-drop-id drop-eq-Nil is-ladder-def ladder- γ-def le-refl
n n-eq-ladder-n)
then have $\gamma: \gamma=\beta$ @ δ^{\prime} using finish by auto
have is-sentence ($\alpha @ \delta$) using LDLadder LeftDerivationFix-is-sentence LeftDerivationLadder-def by blast
then have is-sentence- α : is-sentence α using is-sentence-concat by blast
have is-sentence γ
using Derivation-implies-derives LDLadder LeftDerivationFix-is-sentence LeftDerivationLadder-def LeftDerivation-implies-Derivation derives-is-sentence
by blast
then have is-sentence- β : is-sentence β using γ is-sentence-concat by blast
have length- L^{\prime} : length $L^{\prime}=$ length L
by (metis L' ladder-cut-def length-list-update)
have ladder-last-n- L^{\prime} : ladder-last-n $L^{\prime}=$ length E
using L^{\prime} ladder-last-n-of-cut length-L-nonzero by blast
have length- D-eq- n : length $D=n$
using LDLadder LeftDerivationLadder-def is-ladder-def n by auto
then have length-E-eq- n^{\prime} : length $E=n^{\prime}$ by (simp add: E finish min.absorb2)
\{
fix u :: nat
assume $u<$ length L^{\prime}
then have $u<$ length $L^{\prime}-1 \vee u=$ length $L^{\prime}-1$ by arith
then have ladder-n $L^{\prime} u \leq$ length E
proof (induct rule: disjCases2) case 1
have u-bound: $u<$ length $L-1$ using 1 by (simp add: length- L^{\prime}) then have L^{\prime}-eq-L: ladder-n $L^{\prime} u=$ ladder-n $L u$ using L^{\prime} ladder-n-of-cut length-L-nonzero length-greater-0-conv by blast
from u-bound have ladder-n $L u \leq$ ladder-prev-n L (length $L-1$) using ladder-n-prev-bound LeftDerivationLadder-def assms(1) by blast then show ?case
using L^{\prime}-eq-L finish length-E-eq- $n^{\prime} u$-bound by linarith

next

case 2
then have ladder-n $L^{\prime} u=$ length E using ladder-last- $n-L^{\prime}$ ladder-last- n-def by auto
then show ?case by auto

qed

\}
note ladder- n-bound $=$ this
\{
fix u :: nat
fix $v::$ nat
assume u-less- $v: u<v$
assume v-bound: $v<$ length L^{\prime}
have $v<$ length $L^{\prime}-1 \vee v=$ length $L^{\prime}-1$ using v-bound by arith
then have ladder-n $L^{\prime} u<$ ladder-n $L^{\prime} v$
proof (induct rule: disjCases2)
case 1
show ?case
using 1.hyps L^{\prime} LeftDerivationLadder-def assms(1) is-ladder-def lad-
der-n-of-cut
length- $L^{\prime} u$-less- v by auto
next
case 2
note v-def $=2$
have $v=0 \vee v \neq 0$ by arith
then show ?case
proof (induct rule: disjCases2)
case 1
then show ?case using u-less-v by auto
next
case 2
then have ladder-prev-n L (length $L-1)<n^{\prime}$ using finish v-def length- L^{\prime}
by linarith
then show?case
by (metis (no-types, lifting) L' LeftDerivationLadder-def assms(1)
ladder-last-n-L' ladder-last-n-def ladder-n-of-cut ladder-n-prev-bound le-neq-implies-less length-E-eq-n' length- L^{\prime} length-greater-0-conv less-trans u-less-v v-def)

qed

qed
\}
note ladder-n-pairwise-bound $=$ this
have is-ladder-E-L': is-ladder E L^{\prime}
apply (auto simp add: is-ladder-def ladder-last-n-L')
using length-L-nonzero length- L^{\prime} apply simp
using ladder-n-bound apply blast
using ladder-n-pairwise-bound by blast

```
{
    fix index :: nat
    assume index-bound: index + 1 < length L
    then have index-le: index < length L by arith
    from index-bound have len-L-minus-1: length L-1\not=0 by arith
    obtain m}\mathrm{ where m: m= ladder-n L index by blast
    from LeftDerivationLadder-propagate[OF LDLadder ladder-i-in-\alpha m index-le]
obtain }\omega\mathrm{ where
    \omega: LeftDerivation \alpha (take m D) \omega ^ ladder- }\gamma(\alpha@\delta)DL index =\omega@ < ^
    ladder-j L index < length \omega using index-bound by auto
    have L'-Derive: ladder-\gamma \alpha E L' index = Derive \alpha (take (ladder-n L' index)
E)
    by (simp add: ladder-\gamma-def)
    have ladder-n-L'-eq-L: ladder-n L' index = ladder-n L index
        using L' index-bound ladder-n-of-cut length-L-nonzero by auto
    have ladder-prev-n L (length L - 1) < n' using finish len-L-minus-1 by blast
    then have }\mp@subsup{n}{}{\prime}\mathrm{ -is-upper-bound: ladder-n L (length L - 2) < n' using index-bound
        by (metis diff-diff-left ladder-prev-n-def len-L-minus-1 one-add-one)
    have index-upper-bound: index \leq length L - 2 using index-bound by linarith
    have ladder-n-upper-bound:ladder-n L index \leqladder-n L (length L - 2)
        apply (rule-tac ladder-n-monotone)
        apply (rule-tac is-ladder-D-L)
        apply (rule index-upper-bound)
        using length-L-nonzero by linarith
    with }\mp@subsup{n}{}{\prime}\mathrm{ -is-upper-bound have m-le-n': m}\leq\mp@subsup{n}{}{\prime
        using dual-order.strict-implies-order le-less-trans m by linarith
    then have take mE= take m D
        by (metis E le-take-same length-E-eq-n' order-refl take-all)
    then have take-helper: (take (ladder-n L' index) E) = take m D
        by (simp add: ladder-n-L'-eq-L m)
    then have Derive-eq-\omega: Derive \alpha (take (ladder-n L' index) E) =\omega
        by (simp add: Derive LeftDerivation-implies-Derivation \omega)
    then have t1: ladder-\gamma ( }\alpha@\delta)DL\mathrm{ index = (ladder- }\gamma\alphaE\mp@subsup{L}{}{\prime}\mathrm{ index )@ }
        by (simp add: L'-Derive \omega)
```



```
    then have t2: LeftDerivation \alpha (take (ladder-n L index) D) (ladder-\gamma \alpha E L'
index)
    using \omega m by blast
    have t3: (take (ladder-n L' index) E) = take (ladder-n L index) D
        by (simp add:m take-helper)
    have t4: ladder-j L index < length (ladder-\gamma \alpha E L' index)
        using \omega\omega-eq by blast
    have t5: E!(ladder-n L' index)=D!(ladder-n L index)
    using E ladder-n-L'-eq-L ladder-n-upper-bound n'-is-upper-bound by auto
    note t= t1 t2 t3 t4 t5
}
```

note ladder-early-stage $=$ this

```
{
    fix index :: nat
    assume index-bound: index < length L
    have i: ladder-i L' index = ladder-i L index
        using L' ladder-i-cut by (simp add: index-bound)
    have j: ladder-j L' index = ladder-j L index
        using L' ladder-j-cut by (simp add: index-bound)
    have ix: index > 0\Longrightarrow ladder-ix L' index = ladder-ix L index
        using L' ladder-ix-cut by (simp add: index-bound)
    have \alpha: ladder-\alpha ( }\alpha@\delta)DL index = (ladder-\alpha \alpha E L' index)@ \delta
        by (simp add: index-bound ladder-\alpha-def ladder-early-stage(1))
    have i-bound: index >0\Longrightarrowladder-i L' index < length (ladder-\alpha \alpha E L' index)
        using i index-bound ladder-\alpha-def ladder-early-stage(4) ladder-i-def by auto
    note ij = i j ix \alpha i-bound
}
note ladder-every-stage = this
{
    fix u :: nat
    fix v:: nat
    assume u-le-v:}u\leq
    assume v-bound: v< length L
    have ladder-n L u}\leqladder-n L
        using is-ladder-D-L ladder-n-monotone u-le-v v-bound by blast
}
note ladder-L-n-pairwise-le = this
{
    fix index :: nat
    assume index-lower-bound: index > 0
    assume index-upper-bound: index + 1< length L
    note derivation = ladder-early-stage(2)
    have derivation1:
        LeftDerivation \alpha (take (ladder-n L (index - Suc 0)) D) (ladder-\gamma \alpha E L'
(index - Suc 0))
        using derivation[of index - Suc 0] index-lower-bound index-upper-bound
        using One-nat-def Suc-diff-1 Suc-eq-plus1 le-less-trans lessI less-or-eq-imp-le
by linarith
    have derivation2:
        LeftDerivation \alpha (take (ladder-n L index) D) (ladder-\gamma \alpha E L' index)
        using derivation[of index] index-upper-bound by blast
    have ladder-\alpha-is-\gamma[symmetric]: ladder-\gamma \alpha E L'(index - Suc 0) = ladder-\alpha \alpha
E L' index
        using index-lower-bound ladder-\alpha-def by auto
    have ladder-n-le:ladder-n L (index - Suc 0) \leqladder-n L index
        apply (rule-tac ladder-L-n-pairwise-le)
```

apply arith
using index-upper-bound by arith
from LeftDerivation-from-in-between[OF derivation1 derivation2 ladder-n-le] ladder- α-is- γ
have LeftDerivation (ladder- α a $E L^{\prime}$ index) (drop (ladder-n L^{\prime} (index - Suc 0))
(take (ladder-n L^{\prime} index) $\left.E\right)$) (ladder- γ 人 $E L^{\prime}$ index)
by (metis L^{\prime} Suc-leI add-lessD1 index-lower-bound index-upper-bound lad-der-early-stage(3)
ladder-n-of-cut le-add-diff-inverse2 length-L-nonzero length-greater-0-conv less-diff-conv)
\}
note LeftDerivation-delta-early $=$ this
have LeftDerivationFix- α-0: LeftDerivationFix α (ladder-i L' 0) (take (ladder-n $\left.L^{\prime} 0\right) E$)
(ladder-j $\left.L^{\prime} 0\right)\left(\right.$ ladder- $\left.\gamma \alpha E L^{\prime} 0\right)$
proof -
have ldfix: LeftDerivationFix $(\alpha @ \delta)($ ladder-i L 0$)($ take (ladder-n L 0) D) (ladder-j L 0)
(ladder- $\gamma(\alpha @ \delta) D L 0)$
using LDLadder LeftDerivationLadder-def by blast
have ladder-i-L': ladder-i $L^{\prime} 0=$ ladder-i $L 0$
using L^{\prime} ladder-i-of-cut-at-0 length-L-nonzero by blast
have ladder-j- L^{\prime} : ladder-j $L^{\prime} 0=$ ladder-j $L 0$
by (metis L' ladder-cut-def ladder-j-def ladder-last-j-def ladder-last-j-of-cut length-L' length-greater-0-conv nth-list-update-neq)
have length $L=1 \vee$ length $L>1$ using length-L-nonzero by linarith
then show ?thesis
proof (induct rule: disjCases2)
case 1
from 1 have ladder-n- $L^{\prime}-0$: ladder-n $L^{\prime} 0=n^{\prime}$
using diff-is- $0-e q^{\prime}$ ladder-last- $n-L^{\prime}$ ladder-last- n-def length-E-eq- n^{\prime} length-L' less-or-eq-imp-le by auto
have take-n'-E: take $n^{\prime} E=E$ by (simp add: length-E-eq-n')
from ladder-n-L'-0 take-n'-E have take-ladder-n-L': take (ladder-n $L^{\prime} 0$) E $=E$ by auto
have ladder-n $L 0=$ length D
by (simp add: 1.hyps length-D-eq-n n-eq-ladder-n)
then have take-ladder-n-L-0: take (ladder-n L 0) $D=D$ by simp
have ladder- $\gamma-\alpha$: ladder $-\gamma$ 人 $E L^{\prime} 0=\beta$
apply (simp add: ladder- γ-def take-ladder-n-L')
by (simp add: Derive E LeftDerivation-implies-Derivation finish)
have ladder-j-in- β : ladder-j L $0<$ length β
using finish 1.hyps by auto
have ldfix-1: LeftDerivationFix ($\alpha @ \delta$) (ladder-i L 0) D (ladder-j L 0) (β @ δ^{\prime}) using 1.hyps $\gamma \gamma$-ladder ldfix take-ladder-n-L-0 by auto
then have LeftDerivationFix α (ladder-i L 0) E (ladder-j L 0) β by (simp add: E LeftDerivationFix-cut-appendix finish ladder-i-in- α lad-

```
der-j-in-\beta
            length-D-eq-n)
            then show ?case
            by (simp add: ladder-i-L' ladder-j-L' take-ladder-n-L' ladder-\gamma-\alpha)
    next
        case 2
            have h:0+1< length L using 2.hyps by auto
            note stage = ladder-early-stage[of 0,OF h]
            have ldfix0:LeftDerivationFix ( }\alpha@\delta)(ladder-i L 0) (take (ladder-n L 0)
D) (ladder-j L 0)
            ((ladder-\gamma \alpha E L' 0)@ @)
            using ladder-i-L' ladder-j-L' ldfix stage(1) stage(3) by auto
                from LeftDerivationFix-cut-appendix'[OF ldfix0 stage(2) ladder-i-in-\alpha
stage(4)]
            show ?case
                by (simp add: ladder-i-L' ladder-j-L' stage(3))
    qed
qed
{
fix index :: nat
assume index-bounds: \(1 \leq\) index \(\wedge\) index \(+1<\) length \(L\)
have introsAt-appendix: LeftDerivationIntrosAt ( \(\alpha @ \delta\) ) D L index
using LDLadder LeftDerivationIntros-def LeftDerivationLadder-def add-lessD1
index-bounds
by blast
have index-plus-1-upper-bound: index \(+1<\) length \(L\) using index-bounds by arith
note early-stage \(=\) ladder-early-stage \([\) of index, OF index-plus-1-upper-bound]
have ladder-i-L-index-eq-fst: ladder-i \(L\) index \(=f_{s t}(D\) !ladder-n \(L\) (index Suc 0))
using introsAt-appendix LeftDerivationIntrosAt-def index-bounds by (metis One-nat-def)
have E-at-D-at: \(\left(E!\right.\) ladder-n \(L^{\prime}(\) index \(\left.-S u c 0)\right)=(D!\) ladder-n \(L(\) index Suc 0))
using ladder-early-stage[of index - Suc 0]
by (metis One-nat-def add-lessD1 index-bounds le-add-diff-inverse2)
then have ladder-i-L'-index-eq-fst: ladder-i \(L^{\prime}\) index \(=f s t\left(E!\right.\) ladder-n \(L^{\prime}\) (index - Suc 0))
using index-bounds ladder-i-L-index-eq-fst ladder-every-stage(1) le-add1 le-less-trans by auto
have same-derivation: (drop (Suc (ladder-n \(L^{\prime}(\) index - Suc 0) )) (take (ladder-n \(L^{\prime}\) index) \(\left.E\right)\) ) =
(drop (Suc (ladder-n L (index - Suc 0))) (take (ladder-n L index) D))
using \(L^{\prime}\) early-stage(3) index-bounds ladder-n-of-cut length-L-nonzero by auto
have deriv-split: (drop (ladder-n \(L^{\prime}(\) index - Suc 0) \()\left(\right.\) take (ladder-n \(L^{\prime}\) index \()\) E)) \(=\)
((ladder-i L' index, snd (E!ladder-n L' (index - Suc 0))) \# drop (Suc (ladder-n \(L^{\prime}\left(\right.\) index - Suc 0))) (take (ladder-n \(L^{\prime}\) index) E))
```

by (metis Cons-nth-drop-Suc One-nat-def Suc-le-lessD add-lessD1 diff-Suc-less index-bounds
ladder-i-L'-index-eq-fst ladder-n-bound ladder-n-pairwise-bound length- L^{\prime} length-take min.absorb2 nth-take prod.collapse)
have LeftDerivationIntrosAt $\alpha E L^{\prime}$ index
apply (auto simp add: LeftDerivationIntrosAt-def Let-def)
using ladder-i-L'-index-eq-fst apply blast
apply (rule-tac LeftDerivationIntro-cut-appendix ${ }^{\prime}\left[\right.$ where $\delta=\delta$ and $\left.\delta^{\prime}=\delta\right]$)
apply (metis E-at-D-at LeftDerivationIntrosAt-def One-nat-def Suc-le-lessD
add-lessD1
early-stage (1) index-bounds introsAt-appendix ladder-every-stage(2)
ladder-every-stage(3) ladder-every-stage(4) ladder-i-L'-index-eq-fst same-derivation)
defer 1
using index-bounds ladder-every-stage(5) apply auto[1]
using early-stage(4) index-bounds ladder-every-stage(2) apply auto[1]
using LeftDerivation-delta-early deriv-split
by (metis One-nat-def Suc-le-eq index-bounds)
\}
note LeftDerivationIntrosAt-early $=$ this

\{

fix index :: nat
assume index-bounds: $1 \leq$ index \wedge index $+1=$ length L
have introsAt-appendix: LeftDerivationIntrosAt ($\alpha @ \delta$) D L index
using LDLadder LeftDerivationIntros-def LeftDerivationLadder-def add-lessD1
index-bounds
by (metis Suc-eq-plus1 not-less-eq)
have ladder-i-L-index-eq-fst: ladder-i L index $=f s t(D!l a d d e r-n ~ L(i n d e x-$ Suc 0))
using introsAt-appendix LeftDerivationIntrosAt-def index-bounds by (metis One-nat-def)
have E-at-D-at: $\left(E!\right.$ ladder-n $L^{\prime}($ index - Suc 0$\left.)\right)=(D!$ ladder-n $L($ index Suc 0))
using ladder-early-stage[of index - Suc 0]
by (metis One-nat-def Suc-eq-plus1 index-bounds le-add-diff-inverse2 lessI)
then have ladder-i-L'-index-eq-fst: ladder-i L^{\prime} index $=f s t\left(E!\right.$ ladder-n L^{\prime} (index - Suc 0))
using index-bounds ladder-i-L-index-eq-fst ladder-every-stage(1) le-add1 le-less-trans
by auto
obtain D^{\prime} where $D^{\prime}: D^{\prime}=($ drop $($ Suc $($ ladder-n $L($ index - Suc 0$)))($ take (ladder-n L index) D))
by blast
obtain k where $k: k=\left(\right.$ ladder-n L^{\prime} index $)-\left(\right.$ Suc (ladder- $n L^{\prime}($ index - Suc 0)))
by blast
have ladder-n-L'-index: ladder-n L^{\prime} index $=$ length E
by (metis diff-add-inverse2 index-bounds ladder-last- n - L^{\prime} ladder-last- n-def length- L^{\prime})
have take-is-E: take (ladder-n L^{\prime} index) $E=E$ by (simp add: ladder-n- L^{\prime}-index)
have ladder-n-L-index: ladder-n L index $=$ length D
by (metis diff-add-inverse2 index-bounds length-D-eq-n n-eq-ladder-n)
have take-is-D: take (ladder-n Lindex) $D=D$
by (simp add: ladder-n-L-index)
have write-as-take-k-D': (drop $\left(\right.$ Suc $\left(\right.$ ladder-n $L^{\prime}($ index - Suc 0) $\left.\left.)\right) E\right)=$ take $k D^{\prime}$
using take-is-D
by (metis $D^{\prime} E L^{\prime}$ One-nat-def Suc-le-lessD add-diff-cancel-right' diff-Suc-less drop-take index-bounds k ladder-n-L'-index ladder-n-of-cut length-E-eq-n' length-L-nonzero length-greater-0-conv)
have k-bound: $k \leq$ length D^{\prime}
by (metis le-iff-add append-take-drop-id k ladder-n-L'-index length-append length-drop write-as-take-k-D')
have D^{\prime}-alt: $D^{\prime}=\operatorname{drop}(S u c(l a d d e r-n L($ index - Suc 0) $)) D$
by (simp add: D^{\prime} take-is- D)
have LeftDerivationIntrosAt $\alpha E L^{\prime}$ index
apply (auto simp add: LeftDerivationIntrosAt-def Let-def)
using ladder-i-L'-index-eq-fst apply blast
apply (subst take-is-E)
apply (subst write-as-take- k - D^{\prime})
apply (rule-tac LeftDerivationIntro-cut-appendix[where $\delta=\delta$ and $\left.\delta^{\prime}=\delta^{\prime}\right]$)
apply (metis D^{\prime} Derive E E-at-D-at LeftDerivationIntrosAt-def
LeftDerivation-implies-Derivation One-nat-def Suc-le-lessD add-diff-cancel-right'
diff-Suc-less finish index-bounds introsAt-appendix ladder- γ-def ladder-every-stage(2)
ladder-every-stage(3) ladder-every-stage(4) ladder-i-L'-index-eq-fst length-L-nonzero
take-is-E)
apply (metis Cons-nth-drop-Suc E L' LeftDerivation-from-in-between Left-
Derivation-take-derive
One-nat-def Suc-le-lessD add-diff-cancel-right' diff-Suc-less finish index-bounds
ladder- α-def ladder- γ-def ladder-i-L'-index-eq-fst ladder-n-L'-index lad-
der-n-of-cut
ladder-prev-n-def length-E-eq-n' length-L-nonzero less-imp-le-nat less-numeral-extra(3)
list.size(3) prod.collapse take-is-E write-as-take-k-D')
using k-bound apply blast
using D^{\prime}-alt apply (metis (no-types, lifting) Derive E L' LeftDerivation-implies-Derivation
One-nat-def Suc-leI Suc-le-lessD add-diff-cancel-right' diff-Suc-less drop-drop
finish
index-bounds k ladder- γ-def ladder-n-L'-index ladder-n-of-cut ladder-prev-n-def
le-add-diff-inverse2 length-E-eq-n' length-L-nonzero length-greater-0-conv less-not-refl2 take-is-E)
using index-bounds ladder-every-stage(5) apply auto[1]
by (metis Derive E LeftDerivation-implies-Derivation One-nat-def add-diff-cancel-right'
diff-Suc-less finish index-bounds ladder- γ-def ladder-every-stage(2) length-L-nonzero

```
        take-is-E)
}
note LeftDerivationIntrosAt-last = this
```

have ladder-E-L': LeftDerivationLadder $\alpha E L^{\prime} \beta$
apply (auto simp add: LeftDerivationLadder-def)
using finish E apply blast
using is-ladder-E-L' apply blast
using LeftDerivationFix- $\alpha-0$ apply blast
using LeftDerivationIntros-def LeftDerivationIntrosAt-early LeftDerivationIn-
trosAt-last
by (metis Suc-eq-plus1 Suc-leI le-neq-implies-less length- L^{\prime})
show ?thesis
apply (rule-tac $x=E$ in exI)
apply (rule-tac $x=F$ in $e x I$)
apply (rule-tac $x=\beta$ in exI)
apply (rule-tac $x=\delta^{\prime}$ in $e x I$)
apply (rule-tac $x=L^{\prime}$ in exI)
apply auto
using $E F$ apply simp
apply (rule γ)
using ladder-E- L^{\prime} apply blast
using F finish apply blast
using F finish apply blast
by (rule L^{\prime})
qed
theorem LeftDerivationLadder-cut-appendix:
assumes LDLadder: LeftDerivationLadder ($\alpha @ \delta$) D $L \gamma$
assumes ladder-i-in- α : ladder-i L $0<$ length α
shows $\exists E F \gamma 1 \gamma 2 L^{\prime} . D=E @ F \wedge$
$\gamma=\gamma 1$ @ $\gamma 2 \wedge$
LeftDerivationLadder $\alpha E L^{\prime} \gamma 1 \wedge$
derivation-ge $F($ length $\gamma 1) \wedge$
LeftDerivation $\delta($ derivation-shift $F($ length $\gamma 1) 0) \gamma 2 \wedge$
length $L^{\prime}=$ length $L \wedge$ ladder-i $L^{\prime} 0=$ ladder-i $L 0 \wedge$
ladder-last-j $L^{\prime}=$ ladder-last-j L
proof -
from LeftDerivationLadder-cut-appendix-helper[OF LDLadder ladder-i-in- α]
obtain $E F \gamma 1 \gamma 2 L^{\prime}$ where helper:
$D=E @ F \wedge$
$\gamma=\gamma 1$ @ $\gamma 2 \wedge$
LeftDerivationLadder $\alpha E L^{\prime} \gamma 1 \wedge$
derivation-ge $F($ length $\gamma 1) \wedge$

LeftDerivation $\delta($ derivation-shift $F($ length $\gamma 1) 0) \gamma 2 \wedge L^{\prime}=$ ladder-cut L (length E)
by blast
show ?thesis
apply (rule-tac $x=E$ in exI)
apply (rule-tac $x=F$ in exI)
apply (rule-tac $x=\gamma 1$ in exI)
apply (rule-tac $x=\gamma 2$ in exI)
apply (rule-tac $x=L^{\prime}$ in $e x I$)
using helper LDLadder LeftDerivationLadder-def is-ladder-def ladder-i-of-cut-at-0
ladder-last-j-of-cut length-ladder-cut by force
qed
definition ladder-stepdown-diff :: ladder \Rightarrow nat where
ladder-stepdown-diff $L=$ Suc (ladder-n L 0)
definition ladder-stepdown- $\alpha-0$:: sentence \Rightarrow derivation \Rightarrow ladder \Rightarrow sentence where
ladder-stepdown- α-0 a $D L=$ Derive a (take (ladder-stepdown-diff L) D)
lemma LeftDerivationIntro-LeftDerives1:
assumes LeftDerivationIntro α ir ix D j γ
assumes splits-at α i a1 A a2
shows LeftDerives1 $\alpha \operatorname{ir}(a 1 @(s n d r) @ a 2)$
by (metis LeftDerivationIntro-def LeftDerivationIntro-examine-rule LeftDerivation-Intro-is-sentence
LeftDerives1-def assms(1) assms(2) prod.collapse splits-at-implies-Derives1)
lemma LeftDerives1-Derive:
assumes LeftDerives1 α ir γ
shows Derive $\alpha[(i, r)]=\gamma$
by (metis Derive LeftDerivation.simps(1) LeftDerivation-LeftDerives1
LeftDerivation-implies-Derivation append-Nil assms)
lemma ladder-stepdown- α-0-altdef:
assumes ladder: LeftDerivationLadder α D $L \gamma$
assumes length- L : length $L>1$
assumes split: splits-at (ladder- α 人 D L 1) (ladder-i L 1) a1 A a2
shows ladder-stepdown- $\alpha-0 \alpha D L=a 1 @(\operatorname{snd}($ snd $(D!($ ladder-n L 0$)))) @$ a2
proof -
have 1: ladder- α a D L $1=$ Derive $\alpha($ take (ladder-n L 0) D)
by (simp add: ladder- α-def ladder- γ-def)
obtain rule where rule: rule $=$ snd $(D!($ ladder-n L 0) $)$ by blast
have $\exists E \omega$. LeftDerivationIntro (ladder- $\alpha \alpha$ D L 1) (ladder-i L 1) rule (ladder-ix L1)
E (ladder-j L 1) ω
by (metis LeftDerivationIntrosAt-def LeftDerivationIntros-def LeftDerivation-

Ladder-def

One-nat-def diff-Suc-1 ladder length-L order-refl rule)
then obtain $E \omega$ where intro:
LeftDerivationIntro (ladder- α 人 D 1) (ladder-i L 1) rule (ladder-ix L 1) E (ladder-j L 1) ω
by blast
then have 2: LeftDerives1 (ladder- α 人 D L 1) (ladder-i L 1) rule (a1@(snd rule)@a2)
using LeftDerivationIntro-LeftDerives 1 split by blast
have fst-D: fst $(D!($ ladder-n L 0$))=$ ladder-i L 1
by (metis LeftDerivationIntrosAt-def LeftDerivationIntros-def LeftDerivation-Ladder-def

One-nat-def diff-Suc-1 ladder le-numeral-extra(4) length-L)
have derive-derive: Derive $\alpha($ take (Suc (ladder-n L 0)) D) = Derive (Derive $\alpha($ take (ladder-n L O) D) $)[D$! (ladder-n L 0)] proof -
have f1: Derivation $\alpha($ take (Suc (ladder-n L 0)) D) (Derive α (take (Suc (ladder-n L 0)) D))
using Derivation-take-derive LeftDerivationLadder-def LeftDerivation-implies-Derivation ladder by blast
have f2: length $L-1<$ length L
using length- L by linarith
have $0<$ length $L-1$
using length- L by linarith
then have f3: take (Suc (ladder-n L 0)) $D=$ take (ladder-n L 0) D @ $[D$!
ladder-n L 0] using f2 by (metis (full-types) LeftDerivationLadder-def is-ladder-def ladder ladder-last-n-def take-Suc-conv-app-nth)
obtain sss :: symbol list \Rightarrow (nat \times symbol \times symbol list $)$ list \Rightarrow (nat \times symbol \times symbol list) list \Rightarrow symbol list \Rightarrow symbol list where $\forall x 0 x 1 x 2 x 3$. ($\exists v 4$. Derivation x3 x2 v4 \wedge Derivation v4 x1 x0 $)=($ Derivation x3 x2 (sss x0 x1 x2 x3) ^ Derivation (sss x0 x1 x2 x3) x1 x0)
by moura
then show ?thesis
using f3 f1 Derivation-append Derive by auto
qed
then have 3: ladder-stepdown- $\alpha-0 \quad 1 \quad L=$ Derive (ladder- $\alpha ~ \alpha ~ D ~ L ~ 1) ~[D!~$ (ladder-n L 0)]
using 1 by (simp add: ladder-stepdown- α-0-def ladder-stepdown-diff-def)
have 4: D! (ladder-n L 0$)=($ ladder $-i L 1$, rule $)$
using rule fst- D by (metis prod.collapse)
then show ?thesis using 234 LeftDerives1-Derive snd-conv by auto
qed
lemma ladder-i-0-bound:
assumes ld: LeftDerivationLadder $\alpha D L \gamma$
shows ladder-i L $0<$ length α
proof -
have LeftDerivationFix α (ladder-i L 0) (take (ladder-n L 0) D)

```
    (ladder-j L 0) (ladder-\gamma \alpha D L 0)
    using ld LeftDerivationLadder-def by simp
    then show ?thesis using LeftDerivationFix-def by simp
qed
lemma ladder-j-bound:
    assumes ld:LeftDerivationLadder \alpha D L \gamma
    assumes index-bound: index < length L
    shows ladder-j L index < length (ladder-\gamma \alpha D L index)
proof -
    have ld': LeftDerivationLadder ( }\alpha@[])DL\gamma using ld by sim
    have ladder-i-0: ladder-i L 0 < length \alpha using ladder-i-0-bound ld by auto
    obtain n where n: n = ladder-n L index by blast
    note propagate = LeftDerivationLadder-propagate[OF ld' ladder-i-0 n index-bound]
    from index-bound have index +1< length L\vee index +1 = length L by arith
    then show ?thesis
    proof (induct rule: disjCases2)
        case 1
            then have }\exists\beta\mathrm{ . LeftDerivation }\alpha(\mathrm{ take n D) }\beta
                    ladder-\gamma (\alpha @ []) D L index = \beta @ [] ^ ladder-j L index < length \beta
                    using propagate by auto
            then show ?case by auto
    next
        case 2
            then have
                \exists}\mp@subsup{n}{}{\prime}\beta\mp@subsup{\delta}{}{\prime}
                    (index = 0 \vee ladder-prev-n L index < n')^
                    n'\leqn^
                    LeftDerivation \alpha (take n' D) \beta}
                    LeftDerivation (\alpha@ @]) (take n'D) (\beta@ @])^
                    derivation-ge (drop n' D) (length \beta) ^
                    LeftDerivation [] (derivation-shift (drop n' D) (length \beta) 0) \delta'^
                    ladder-\gamma (\alpha@ []) D L index = \beta@ @'^ ladder-j L index < length }
                    using propagate by auto
        then show ?case by auto
    qed
qed
lemma ladder-last-j-bound:
    assumes ld:LeftDerivationLadder \alpha D L \gamma
    shows ladder-last-j L < length }
proof -
    have length L - }1<l=\mp@code{length L
        using LeftDerivationLadder-def assms is-ladder-def by auto
    from ladder-j-bound[OF ld this]
    show ?thesis
        by (metis Derive LeftDerivationLadder-def LeftDerivation-implies-Derivation
One-nat-def
        is-ladder-def ladder-last-j-def last-ladder-\gamma ld)
```


qed

fun ladder-shift-n :: nat \Rightarrow ladder \Rightarrow ladder where

$$
\text { ladder-shift-n } N[]=[]
$$

| ladder-shift-n $N((n, j, i) \# L)=((n-N, j, i) \#(l a d d e r-s h i f t-n N L))$
fun ladder-stepdown :: ladder \Rightarrow ladder
where
ladder-stepdown [] = undefined
| ladder-stepdown $[v]=$ undefined
| ladder-stepdown $((n 0, j 0, i 0) \#(n 1, j 1, i x 1) \# L)=$

$$
(n 1-\text { Suc n0, } j 1, j 0+i x 1) \#(\text { ladder-shift-n }(\text { Suc n0) L) }
$$

lemma ladder-shift-n-length:
length (ladder-shift-n $N L$) $=$ length L
by (induct L, auto)
lemma ladder-stepdown-prepare:
assumes length $L>1$
shows $L=($ ladder-n L 0, ladder-j $L 0$, ladder-i $L 0) \#$
(ladder-n L 1, ladder-j L 1, ladder-ix L 1) \#(drop 2 L)
proof -
have $\exists n 0 j 0$ i0 n1 j1 ix1 $L^{\prime} . L=\left((n 0, j 0, i 0) \#(n 1, j 1, i x 1) \# L^{\prime}\right)$
by (metis One-nat-def Suc-eq-plus1 assms ladder-stepdown.cases less-not-refl list.size(3)
list.size(4) not-less0)
then obtain $n 0 j 0$ i0 n1 j1 ix1 L^{\prime} where $L^{\prime}: L=\left((n 0, j 0, i 0) \#(n 1, j 1, i x 1) \# L^{\prime}\right)$
by blast
have n0: n0 = ladder-n $L 0$ using L^{\prime}
by (auto simp add: ladder-n-def deriv-n-def)
show ?thesis using L^{\prime}
by (auto simp add: ladder- n-def deriv- n-def ladder-j-def deriv-j-def
ladder-i-def deriv-i-def ladder-ix-def deriv-ix-def)
qed
lemma ladder-stepdown-length:
assumes length $L>1$
shows length (ladder-stepdown L) $=$ length $L-1$
apply (subst ladder-stepdown-prepare [OF assms(1)])
apply (simp add: ladder-shift-n-length)
using assms apply arith
done
lemma ladder-stepdown-i-0:
assumes length $L>1$
shows ladder-i (ladder-stepdown L) $0=$ ladder-i $L 1+$ ladder-ix $L 1$
using ladder-stepdown-prepare[OF assms] ladder-i-def ladder-j-def deriv-j-def
by (metis One-nat-def deriv-i-def diff-Suc-1 ladder-stepdown.simps(3) list.sel(1)

```
snd-conv zero-neq-one)
```

lemma ladder-shift-n-cons: ladder-shift-n $N(x \# L)=(f s t x-N$, snd $x) \#($ ladder-shift- n
N L)
apply (induct L)
by (cases x, simp) +
lemma ladder-shift-n-drop: ladder-shift-n $N($ drop $n L)=$ drop $n($ ladder-shift-n N
L)
proof (induct L arbitrary: n)
case Nil then show ?case by simp
next
case (Cons x)
show ?case
proof (cases n)
case 0 then show ?thesis
by simp
next
case (Suc n) then show ?thesis
by (simp add: ladder-shift-n-cons Cons)
qed
qed
lemma drop-2-shift:
assumes index >0
assumes length $L>1$
shows drop $2 L!($ index - Suc 0) $=L!$ Suc index
proof -
define $l 1 l 2$ and L^{\prime} where $l 1=L!0 l 2=L!1$
and $L^{\prime}=\operatorname{drop} 2 L$
with 〈length $L>1$ 〉 have $L=l 1 \# 12 \# L^{\prime}$
by (cases L) (auto simp add: neq-Nil-conv)
with 〈index > 0〉 show ?thesis
by simp
qed
lemma ladder-shift-n-at:
index $<$ length $L \Longrightarrow$ (ladder-shift-n $N L)!$ index $=($ fst $(L!$ index $)-N$, snd
(L ! index))
proof (induct L arbitrary: index)
case Nil then show ?case by auto
next
case (Cons x L)
show ?case
apply (simp add: ladder-shift-n-cons)
apply (cases index)
apply (auto)
apply (rule-tac Cons(1))
using Cons(2) by auto

```
qed
lemma ladder-stepdown-j:
    assumes length-L-greater-1: length L > 1
    assumes }\mp@subsup{L}{}{\prime}:\mp@subsup{L}{}{\prime}=\mathrm{ ladder-stepdown L
    assumes index-bound: index < length L'
    shows ladder-j L' index = ladder-j L (Suc index)
proof -
    note L-prepare = ladder-stepdown-prepare[OF length-L-greater-1]
    have ladder-stepdown-L-def: ladder-stepdown L = ((ladder-n L (Suc 0) - Suc
(ladder-n L 0), ladder-j L (Suc 0), ladder-j L 0 + ladder-ix L (Suc 0)) #
    ladder-shift-n (Suc (ladder-n L 0)) (drop 2 L))
    by (subst L-prepare, simp)
    have index =0 \vee index > 0 by arith
    then show ladder-j L' index = ladder-j L (Suc index)
    proof (induct rule: disjCases2)
        case 1
            show ?case
                by (simp add: L' ladder-stepdown-L-def 1 ladder-j-def deriv-j-def)
    next
        case 2
            have index-bound': Suc index < length L
                using index-bound L' ladder-stepdown-length length-L-greater-1 by auto
            show ?case
            apply (simp add: L' ladder-stepdown-L-def 2 ladder-j-def ladder-shift-n-drop
drop-2-shift)
                apply (subst drop-2-shift)
                apply (simp add: 2)
                using length-L-greater-1 apply (simp add: ladder-shift-n-length)
                apply (simp add: deriv-j-def)
                apply (simp add: ladder-shift-n-at[OF index-bound }\\mathrm{ ) 
                done
    qed
qed
lemma ladder-stepdown-last-j:
    assumes length-L-greater-1: length L > 1
    shows ladder-last-j (ladder-stepdown L) = ladder-last-j L
    using ladder-stepdown-j Suc-diff-Suc diff-Suc-1 ladder-last-j-def ladder-stepdown-length
    length-L-greater-1 lessI by auto
lemma ladder-stepdown-n:
    assumes length-L-greater-1: length L > 1
    assumes }\mp@subsup{L}{}{\prime}:\mp@subsup{L}{}{\prime}=\mathrm{ ladder-stepdown L
    assumes index-bound: index < length L'
    shows ladder-n L' index = ladder-n L (Suc index) - ladder-stepdown-diff L
proof -
    note L-prepare = ladder-stepdown-prepare[OF length-L-greater-1]
```

```
    have ladder-stepdown-L-def:ladder-stepdown L = ((ladder-n L (Suc 0) - Suc
(ladder-n L 0), ladder-j L (Suc 0), ladder-j L 0 + ladder-ix L (Suc 0)) #
    ladder-shift-n (Suc (ladder-n L 0)) (drop 2 L))
    by (subst L-prepare, simp)
    have index =0 \vee index > 0 by arith
    then show ladder-n L' index = ladder-n L (Suc index) - ladder-stepdown-diff
L
    proof (induct rule: disjCases2)
        case 1
            show ?case
                by (simp add: L' ladder-stepdown-L-def 1 ladder-n-def deriv-n-def lad-
der-stepdown-diff-def)
    next
        case 2
            have index-bound': Suc index < length L
                using index-bound L' ladder-stepdown-length length-L-greater-1 by auto
            show ?case
            apply (simp add: L' ladder-stepdown-L-def 2 ladder-n-def ladder-shift-n-drop
drop-2-shift
                    ladder-stepdown-diff-def)
                apply (subst drop-2-shift)
                apply (simp add: 2)
                using length-L-greater-1 apply (simp add: ladder-shift-n-length)
            apply (simp add: deriv-n-def)
            apply (simp add: ladder-shift-n-at[OF index-bound }\mp@subsup{}{}{\prime}]
            done
    qed
qed
lemma ladder-stepdown-ix:
    assumes length-L-greater-1: length L > 1
    assumes L': L' = ladder-stepdown L
    assumes index-lower-bound: 0 < index
    assumes index-upper-bound: index < length L'
    shows ladder-ix L' index = ladder-ix L (Suc index)
proof -
    note L-prepare = ladder-stepdown-prepare[OF length-L-greater-1]
    have ladder-stepdown-L-def: ladder-stepdown L = ((ladder-n L (Suc 0) - Suc
(ladder-n L 0), ladder-j L (Suc 0), ladder-j L 0 + ladder-ix L (Suc 0)) #
    ladder-shift-n (Suc (ladder-n L 0)) (drop 2 L))
    by (subst L-prepare, simp)
    have index-bound': Suc index < length L
    using index-upper-bound L' ladder-stepdown-length length-L-greater-1 by auto
    show ?thesis
        apply (simp add: L'' ladder-stepdown-L-def index-lower-bound ladder-ix-def
ladder-shift-n-drop)
        apply (subst drop-2-shift)
        apply (simp add: index-lower-bound)
```

using length-L-greater-1 apply (simp add: ladder-shift-n-length)
apply (simp add: deriv-ix-def)
apply (simp add: ladder-shift- n-at [OF index-bound η)
using index-lower-bound by arith
qed
lemma Derive-Derive:
assumes Derivation $\alpha(D @ E) \gamma$
shows Derive (Derive $\alpha D) E=$ Derive $\alpha(D @ E)$
using Derivation-append Derive assms by fastforce
lemma drop-at-shift:
assumes $n \leq i n d e x$
assumes index $<$ length D
shows drop $n D!($ index $-n)=D!$ index
using assms(1) assms(2) by auto
theorem LeftDerivationLadder-stepdown:
assumes ldl: LeftDerivationLadder $\alpha D L \gamma$
assumes length-L: length $L>1$
shows $\exists L^{\prime}$. LeftDerivationLadder (ladder-stepdown- α-0 α D L) (drop (ladder-stepdown-diff
L) D)

$$
L^{\prime} \gamma \wedge \text { length } L^{\prime}=\text { length } L-1 \wedge \text { ladder-i } L^{\prime} 0=\text { ladder-i } L 1+\text { ladder-ix }
$$

$L 1 \wedge$
ladder-last-j $L^{\prime}=$ ladder-last-j L
proof -
obtain L^{\prime} where $L^{\prime}: L^{\prime}=$ ladder-stepdown L by blast
have ldl1: LeftDerivation (ladder-stepdown- $\alpha-0 \quad \alpha D L$) (drop (ladder-stepdown-diff
L) $D) \gamma$
proof -
have D-split: $D=($ take (ladder-stepdown-diff $L) D$) @ (drop (ladder-stepdown-diff L) D)
by simp
show ?thesis using D-split ldl
proof -
obtain sss :: symbol list \Rightarrow (nat \times symbol \times symbol list $)$ list \Rightarrow (nat \times
symbol \times symbol list) list \Rightarrow symbol list \Rightarrow symbol list where $\forall x 0 x 1$ x2 $x 3$. ($\exists v 4$. LeftDerivation x3 x2 v4 \wedge LeftDerivation v4 x1 x0) $=$ (LeftDerivation x3 x2 (sss x0 x1 x2 x3) ^LeftDerivation (sss x0 x1 x2 x3) x1 x0)
by moura
then have (\neg LeftDerivation α (take (ladder-stepdown-diff L) D @ drop (ladder-stepdown-diff L) D) $\gamma \vee$ LeftDerivation α (take (ladder-stepdown-diff L) $D)($ sss $\gamma($ drop (ladder-stepdown-diff L) D) (take (ladder-stepdown-diff L) D) $\alpha) \wedge$ LeftDerivation (sss $\gamma($ drop (ladder-stepdown-diff L) D) (take (ladder-stepdown-diff $L) D)($ drop $($ ladder-stepdown-diff L) D) $\gamma) \wedge($ LeftDerivation α (take (ladder-stepdown-diff L) D @ drop (ladder-stepdown-diff L) D) $\gamma \vee(\forall$ ss. \neg LeftDerivation α (take (ladder-stepdown-diff L) D) ss $\vee \neg$ LeftDerivation ss (drop (ladder-stepdown-diff L) D) γ))
using LeftDerivation-append by blast

then show ?thesis

by (metis (no-types) D-split Derivation-take-derive Derivation-unique-dest LeftDerivationLadder-def LeftDerivation-implies-Derivation ladder-stepdown- $\alpha-0-d e f$ ldl)

qed

qed
have L^{\prime}-nonempty: $L^{\prime} \neq[]$ using L^{\prime} ladder-stepdown-length length- L by fastforce \{
fix u :: nat
assume $u^{\prime}: u<$ length L^{\prime}
then have Suc-u: Suc $u<$ length L using L^{\prime} ladder-stepdown-length length- L
by auto
have ladder-n L (Suc $u) \leq$ length D
using ldl Suc-u by (simp add: LeftDerivationLadder-ladder-n-bound)
then have ladder-n $L^{\prime} u \leq$ length D - ladder-stepdown-diff L
apply (subst ladder-stepdown-n[OF length- $L L^{\prime} u$])
by auto
\}
note $i s$-ladder-prop $1=$ this
\{
fix $u::$ nat
fix $v::$ nat
assume u-less-v: $u<v$
assume $v-L^{\prime}: v<$ length L^{\prime}
from u-less- v - L^{\prime} have u - $L^{\prime}: u<$ length L^{\prime} by arith
have ladder-n L (Suc u) < ladder-n L (Suc v)
using ldl by (metis (no-types, lifting) L' LeftDerivationLadder-def One-nat-def
Suc-diff-1
Suc-lessD Suc-mono is-ladder-def ladder-stepdown-length length-L u-less-v $\left.v-L^{\prime}\right)$
then have ladder-n $L^{\prime} u<$ ladder-n $L^{\prime} v$
apply (simp add: ladder-stepdown-n[OF length-L $\left.L^{\prime}\right] u-L^{\prime} v-L^{\prime}$)
by (metis (no-types, lifting) L' LeftDerivationLadder-def Suc-eq-plus1 Suc-leI diff-less-mono is-ladder-def ladder-stepdown-diff-def ladder-stepdown-length
length-L less-diff-conv u-L' zero-less-Suc)
\}
note $i s$-ladder-prop2 $=$ this
have is-ladder-L': is-ladder (drop (ladder-stepdown-diff L) D) L^{\prime}
apply (auto simp add: is-ladder-def)
using L^{\prime}-nonempty apply blast
using is-ladder-prop 1 apply blast
using is-ladder-prop2 apply blast
using ladder-last-n-def ladder-stepdown-n L' LeftDerivationLadder-def Suc-diff-Suc diff-Suc-1 ladder-n-last-is-length ladder-stepdown-length ldl length-L lessI by auto
have ldfix: LeftDerivationFix (ladder-stepdown- $\alpha-0 \propto D L)\left(\right.$ ladder-i $\left.L^{\prime} 0\right)$ (take (ladder-n L' 0) (drop (ladder-stepdown-diff L) D) (ladder-j L' 0) (ladder- γ (ladder-stepdown- α-0 $\alpha D L$) (drop (ladder-stepdown-diff L) D) L^{\prime}
0)
proof -
have introsAt-L-1: LeftDerivationIntrosAt $\alpha D L 1$
using LeftDerivationIntros-def LeftDerivationLadder-def ldl length-L by blast thm LeftDerivationIntrosAt-def
obtain n where n : $n=$ ladder- $n L 0$ by blast
obtain m where m : $m=$ ladder- $n L 1$ by blast
have LeftDerivationIntro (ladder- $\alpha \alpha D L 1)($ ladder-i L 1$)($ snd $(D!n))$
(ladder-ix L 1) (drop (Suc n) (take m D)) (ladder-j L 1) (ladder- α D L 1) using $n m$ introsAt-L-1 by (metis LeftDerivationIntrosAt-def One-nat-def diff-Suc-1)
from iffD1[OF LeftDerivationIntro-def this] obtain β where β :
LeftDerives1 (ladder- $\alpha \alpha D L 1)($ ladder-i L 1) $($ snd $(D!n)) \beta \wedge$ ladder-ix $L 1<$ length $(\operatorname{snd}(\operatorname{snd}(D!n))) \wedge$
snd $(\operatorname{snd}(D!n))!$ ladder-ix $L 1=$ ladder- γ a D L 1 !ladder-j L $1 \wedge$ LeftDerivationFix β (ladder-i L 1 + ladder-ix L 1) (drop (Suc n) (take m D)) (ladder-j L 1)
(ladder- $\gamma \alpha D$ 1)
by blast
have $\beta=$ Derive (ladder- α 人 D L 1) $[D!n]$
by (metis (no-types, opaque-lifting) LeftDerivationIntrosAt-def LeftDerives1-Derive
β
cancel-comm-monoid-add-class.diff-cancel introsAt-L-1 n prod.collapse)
then have β-def: $\beta=$ ladder-stepdown- $\alpha-0 \alpha D L$
proof -
obtain sss :: nat \Rightarrow symbol list \Rightarrow symbol list and ss :: nat \Rightarrow symbol list \Rightarrow symbol and sssa $::$ nat \Rightarrow symbol list \Rightarrow symbol list where
$\forall x 2$ x3. ($\exists v 4 \mathrm{v5} v 6$. splits-at $x 3$ x2 v4 v5 v6) $=$ splits-at $x 3$ x2 (sss x2 x3) (ss x2 x3) (sssa x2 x3)
by moura
then have $f 1: \forall$ ssa $n p$ ssb. \neg Derives1 ssa n pssb \vee splits-at ssa n (sss n ssa) (ss n ssa) (sssa $n s s a)$
using splits-at-ex by presburger
then have $\beta=$ sss (ladder-i L 1) (ladder- $\alpha \alpha D L 1) @ \operatorname{snd}($ snd $(D!n))$ @ sssa (ladder-i L 1) (ladder- α 人 D L 1)
by (meson LeftDerives1-implies-Derives1 β splits-at-combine-dest)
then show ?thesis
using f1 by (metis (no-types) LeftDerives1-implies-Derives1 β lad-
der-stepdown- α-0-altdef ldl length-L n)
qed
have ladder-i-L'-0: ladder-i $L^{\prime} 0=$ ladder-i $L 1+$ ladder-ix $L 1$
using L^{\prime} ladder-stepdown-i-0 length- L by blast
have derivation-eq: (take (ladder-n $\left.L^{\prime} 0\right)($ drop $($ ladder-stepdown-diff $\left.L) D)\right)=$
(drop (Suc n) (take mD)) using $n m$
by (metis L' L'-nonempty One-nat-def drop-take ladder-stepdown-diff-def ladder-stepdown-n
length-L length-greater-0-conv)
have ladder-j-L'-0: ladder-j $L^{\prime} 0=$ ladder-j L 1
using $L^{\prime} L^{\prime}$-nonempty ladder-stepdown-j length- L by auto
have ladder- γ : (ladder- γ (ladder-stepdown- α-0 α D L) (drop (ladder-stepdown-diff L) D) $\left.L^{\prime} 0\right)=$
ladder- γ a D L 1
by (metis Derivation-take-derive Derivation-unique-dest LeftDerivationFix-def
LeftDerivation-implies-Derivation $\beta \beta$-def derivation-eq ladder- γ-def ldl1)
from β-def β ladder- $i-L^{\prime}$-0 derivation-eq ladder- j - L^{\prime}-0 ladder- γ
show ?thesis by auto
qed
\{
fix index :: nat
assume index-lower-bound: Suc $0 \leq$ index
assume index-upper-bound: index $<$ length L^{\prime}
then have Suc-index-upper-bound: Suc index $<$ length L
using L^{\prime} Suc-diff-Suc Suc-less-eq diff-Suc-1 ladder-stepdown-length length- L
less-Suc-eq
by auto
then have intros-at-Suc-index: LeftDerivationIntrosAt αD (Suc index)
by (metis LeftDerivationIntros-def LeftDerivationLadder-def Suc-eq-plus1-left ldl le-add1)
from iffD1[OF LeftDerivationIntrosAt-def this] have ldintro:
let $\alpha^{\prime}=$ ladder $-\alpha \alpha D L$ (Suc index) $; i=$ ladder $-i L$ (Suc index) $; j=$ ladder- j
L (Suc index);
$i x=$ ladder-ix L (Suc index) $; \gamma=$ ladder $-\gamma \alpha D$ (Suc index) $; n=$ ladder- n
L (Suc index -1);
$m=$ ladder-n L (Suc index) $; e=D!n ; E=d r o p(S u c ~ n)($ take $m D)$
in $i=f s t e \wedge$ LeftDerivationIntro $\alpha^{\prime} i($ snd e) ix E j γ by blast
have index-minus-Suc-0-bound: index - Suc $0<$ length L^{\prime}
by (simp add: index-upper-bound less-imp-diff-less)
note helpers $=$ length-L L^{\prime} index-minus-Suc-0-bound
have ladder-i-L'-index:
ladder-i L^{\prime} index $=$ fst (drop (ladder-stepdown-diff L) D!ladder-n $L^{\prime}($ index

- Suc 0))
apply (auto simp add: ladder-i-def)
using index-lower-bound apply arith
apply (simp add: ladder-stepdown-n[OF helpers] ladder-stepdown-j[OF helpers])
apply (subst drop-at-shift)
using LeftDerivationLadder-def Suc-index-upper-bound Suc-leI Suc-lessD
is-ladder-def
ladder-stepdown-diff-def ldl apply presburger
apply (metis LeftDerivationLadder-def One-nat-def Suc-eq-plus1 Suc-index-upper-bound
add.commute add-diff-cancel-right' ladder-n-minus-1-bound ldl le-add1)
by (metis LeftDerivationIntrosAt-def intros-at-Suc-index diff-Suc-1 ladder-i-def nat.simps(3))
have intro-at-index:
LeftDerivationIntro (ladder- α (ladder-stepdown- α-0 α D L) (drop (ladder-stepdown-diff
L) D) L' index)
(ladder-i L^{\prime} index) (snd (drop (ladder-stepdown-diff L) D!ladder-n L^{\prime} (index - Suc 0)))
(ladder-ix L' index)
(drop (Suc (ladder-n L' (index - Suc 0)))
(take (ladder-n L' index) (drop (ladder-stepdown-diff L) D)))
(ladder-j L' index) (ladder- $\gamma($ ladder-stepdown- α-0 α D L)
(drop (ladder-stepdown-diff L) D) L^{\prime} index)
proof -
have arg1: (ladder- α (ladder-stepdown- $\alpha-0 \alpha D L$)

apply (auto simp add: ladder- α-def ladder- γ-def)
using index-lower-bound apply arith
apply (simp add: ladder-stepdown-n[OF helpers] ladder-stepdown- $\alpha-0$-def)
apply (subst Derive-Derive[where $\gamma=$ ladder- $\gamma \alpha D$ Lindex])
apply (metis (no-types, lifting) Derivation-take-derive LeftDerivationLad-der-def

LeftDerivation-implies-Derivation Suc-index-upper-bound Suc-leI Suc-lessD
add.commute is-ladder-def ladder- γ-def ladder-stepdown-diff-def ldl le-add-diff-inverse2 take-add)
by (metis LeftDerivationLadder-def Suc-index-upper-bound Suc-leI Suc-lessD add.commute
is-ladder-def ladder-stepdown-diff-def ldl le-add-diff-inverse2 take-add)
have arg2: ladder-i L^{\prime} index $=$ ladder-i L (Suc index)
using L^{\prime} index-lower-bound index-minus-Suc-0-bound ladder-i-def lad-der-stepdown-j
length- L by auto
obtain n where n : $n=$ ladder- $n L(S u c$ index -1$)$ by blast
have arg3: (snd (drop (ladder-stepdown-diff L) D! ladder-n L^{\prime} (index - Suc 0))) $=$
snd $(D!n)$
apply (simp add: ladder-stepdown-n[OF helpers] index-lower-bound)
apply (subst drop-at-shift)
using index-lower-bound
apply (metis (no-types, opaque-lifting) L'LeftDerivationLadder-def One-nat-def Suc-eq-plus1
add.commute diff-Suc-1 index-upper-bound is-ladder-def ladder-stepdown-diff-def
ladder-stepdown-length ldl le-add-diff-inverse2 length-L less-or-eq-imp-le n nat.simps(3) neq0-conv not-less not-less-eq-eq)
using index-lower-bound
apply (metis LeftDerivationLadder-def One-nat-def Suc-index-upper-bound Suc-le-lessD

Suc-pred diff-Suc-1 ladder-n-minus-1-bound ldl le-imp-less-Suc less-imp-le)
using index-lower-bound n by (simp add: Suc-diff-le)
have arg4: ladder-ix L^{\prime} index = ladder-ix L (Suc index)
using ladder-stepdown-ix L' Suc-le-lessD index-lower-bound index-upper-bound length-L
by auto
obtain m where m : $m=$ ladder- $n L$ (Suc index) by blast
have Suc-index-Suc: Suc (index - Suc 0) = index
using index-lower-bound by arith
have arg5: (drop (Suc (ladder-n $L^{\prime}\left(\right.$ index - Suc 0))) (take (ladder-n L^{\prime} index)
$($ drop $($ ladder-stepdown-diff L) D)) $)=$ drop (Suc n) (take m D)
apply (simp add: ladder-stepdown-n[OF helpers]
ladder-stepdown-n[OF length-L L' index-upper-bound] $n m$ Suc-index-Suc)
by (metis (no-types, lifting) LeftDerivationLadder-def Suc-eq-plus1-left
Suc-index-upper-bound Suc-leI Suc-le-lessD Suc-lessD drop-drop drop-take
index-lower-bound is-ladder-def ladder-stepdown-diff-def ldl le-add-diff-inverse2)
have arg6: ladder-j L^{\prime} index $=$ ladder-j L (Suc index)
using L^{\prime} index-upper-bound ladder-stepdown-j length- L by blast
have arg7: (ladder- γ (ladder-stepdown- $\alpha-0 \alpha D L)$
$($ drop (ladder-stepdown-diff $L) D) L^{\prime}$ index $)=$ ladder- $\gamma \alpha D L($ Suc index $)$
apply (simp add: ladder- γ-def)
apply (simp add: ladder-stepdown-n[OF length-L L' index-upper-bound] ladder-stepdown- $\alpha-0$-def)
apply (subst Derive-Derive[where $\gamma=l a d d e r-\gamma$ a D L (Suc index)])
apply (metis (no-types, lifting) L'LeftDerivationLadder-def
LeftDerivation-implies-Derivation LeftDerivation-take-derive Suc-le-lessD add-diff-inverse-nat diff-is-0-eq index-lower-bound index-upper-bound is-ladder-L'
is-ladder-def ladder- γ-def ladder-stepdown-n ldl le-0-eq length-L less-numeral-extra(3)
less-or-eq-imp-le take-add)
by (metis (no-types, lifting) L' One-nat-def add-diff-inverse-nat diff-is-0-eq
index-lower-bound index-upper-bound is-ladder-L' is-ladder-def ladder-stepdown-n le-0-eq
le-neq-implies-less length-L less-numeral-extra(3) less-or-eq-imp-le take-add zero-less-one)
from ldintro arg1 arg2 arg3 arg4 arg5 arg6 arg7 show ?thesis
by (metis $m n$)
qed
have LeftDerivationIntrosAt (ladder-stepdown- $\alpha-0 \alpha D L$) (drop (ladder-stepdown-diff L) D)
L^{\prime} index
apply (auto simp add: LeftDerivationIntrosAt-def Let-def)
using ladder-i-L'-index apply blast
using intro-at-index by blast
\}
note introsAt $=$ this
show ?thesis
apply (rule-tac $x=L^{\prime}$ in exI)
apply auto
defer 1
using L^{\prime} ladder-stepdown-length length- L apply auto[1]
using ladder-stepdown-i-0 length- $L L^{\prime}$ apply auto[1]

```
    using ladder-stepdown-last-j L' length-L apply auto[1]
    apply (auto simp add: LeftDerivationLadder-def)
    using ldl1 apply blast
    using is-ladder-L' apply blast
    using ldfix apply blast
    apply (auto simp add: LeftDerivationIntros-def)
    apply (simp add: introsAt)
    done
qed
fun ladder-shift-j :: nat }=>\mathrm{ ladder }=>\mathrm{ ladder where
    ladder-shift-j d [] = []
| ladder-shift-j d ((n,j,i)#L)=((n,j - d, i)#(ladder-shift-j d L))
definition ladder-cut-prefix :: nat => ladder }=>\mathrm{ ladder
where
    ladder-cut-prefix d L =
        (ladder-shift-j d L)[0:=(ladder-n L 0, ladder-j L 0 - d, ladder-i L O - d)]
lemma ladder-shift-j-length:
    length (ladder-shift-j d L) = length L
    by (induct L, auto)
lemma ladder-cut-prefix-length:
    shows length (ladder-cut-prefix d L) = length L
apply (simp add: ladder-cut-prefix-def)
apply (simp add: ladder-shift-j-length)
done
lemma ladder-shift-j-cons: ladder-shift-j d (x#L)=(fst x, fst (snd x) - d, snd(snd
x))#
    (ladder-shift-j d L)
    apply (induct L)
    by (cases x, simp)+
lemma deriv-j-ladder-shift-j:
    index < length L \Longrightarrow deriv-j (ladder-shift-j d L!index) = deriv-j (L!index) -
d
proof (induct L arbitrary: index)
    case Nil
        then show ?case by auto
next
    case (Cons x L)
        show ?case
            apply (subst ladder-shift-j-cons)
            apply (cases index)
            using Cons by (auto simp add: deriv-j-def)
qed
```

```
lemma deriv-n-ladder-shift-j:
    index < length L \Longrightarrow deriv-n (ladder-shift-j d L!index) = deriv-n (L!index)
proof (induct L arbitrary: index)
    case Nil
        then show ?case by auto
next
    case (Cons x L)
        show ?case
            apply (subst ladder-shift-j-cons)
            apply (cases index)
            using Cons by (auto simp add: deriv-n-def)
qed
lemma deriv-ix-ladder-shift-j:
    index < length L \Longrightarrow deriv-ix (ladder-shift-j d L!index) = deriv-ix (L!index)
proof (induct L arbitrary: index)
    case Nil
        then show ?case by auto
next
    case (Cons x L)
        show ?case
            apply (subst ladder-shift-j-cons)
            apply (cases index)
            using Cons by (auto simp add: deriv-ix-def)
qed
lemma ladder-cut-prefix-j:
    assumes index-bound: index < length L
    assumes length-L: length L>0
    shows ladder-j (ladder-cut-prefix d L) index = ladder-j L index -d
    apply (simp add: ladder-j-def ladder-cut-prefix-def)
    apply (cases index)
    apply (auto simp add: length-L)
    apply (subst nth-list-update-eq)
    apply (simp only: ladder-shift-j-length length-L)
    apply (simp add: deriv-j-def)
    apply (subst deriv-j-ladder-shift-j)
    using index-bound apply arith
    by blast
lemma hd-0-subst: length L>0\Longrightarrowhd (L [0:= x])=x
    using hd-conv-nth by (simp add: upd-conv-take-nth-drop)
lemma ladder-cut-prefix-i:
    assumes index-bound: index < length L
    assumes length-L: length L>0
    shows ladder-i (ladder-cut-prefix d L) index = ladder-i L index - d
    apply (simp add: ladder-i-def ladder-cut-prefix-def)
    apply (cases index)
```

```
    apply auto[1]
    apply (subst hd-0-subst)
    using length-L ladder-shift-j-length apply metis
    apply (auto simp add: deriv-i-def)
    apply (case-tac nat)
    apply (simp add: ladder-j-def deriv-j-def)
    apply auto
    apply (subst nth-list-update-eq)
    using length-L ladder-shift-j-length apply auto[1]
    apply simp
    apply (simp add: ladder-j-def)
    apply (subst deriv-j-ladder-shift-j)
    using index-bound apply arith
    apply simp
    done
lemma ladder-cut-prefix-n:
    assumes index-bound: index < length L
    assumes length-L: length L>0
    shows ladder-n (ladder-cut-prefix d L) index = ladder-n L index
    apply (simp add: ladder-cut-prefix-def)
    apply (cases index)
    apply (auto simp add: ladder-n-def)
    apply (subst nth-list-update-eq)
    apply (simp add: ladder-shift-j-length)
    using length-L apply blast
    apply (simp add: deriv-n-def )
    apply (rule-tac deriv-n-ladder-shift-j)
    using index-bound by arith
lemma ladder-cut-prefix-ix:
    assumes index-bound: index < length L
    assumes length-L: length L>0
    shows ladder-ix (ladder-cut-prefix d L) index = ladder-ix L index
    apply (simp add: ladder-cut-prefix-def)
    apply (cases index)
    apply (auto simp add: ladder-ix-def)
    apply (rule-tac deriv-ix-ladder-shift-j)
    using index-bound by arith
lemma LeftDerivationFix-derivation-ge-is-nonterminal:
    assumes ldfix: LeftDerivationFix \alpha i D j \gamma
    assumes derivation-ge-d: derivation-ge D d
    assumes is-nonterminal: is-nonterminal ( }\gamma!j
    shows}(D=[]^\alpha=\gamma\wedgei=j)\vee(i>d\wedgej\geqd
proof -
    have is-nonterminal ( }\alpha!i)\mathrm{ using ldfix is-nonterminal
        by (simp add: LeftDerivationFix-def)
    from LeftDerivationFix-splits-at-nonterminal[OF ldfix this] obtain U a1 a2 b1
```


where U :

splits-at α i a1 U a2 \wedge splits-at γj b1 U a2 \wedge LeftDerivation a1 D b1 by blast have $D=[] \vee D \neq[]$ by auto
then show ?thesis
proof (induct rule: disjCases2)
case 1
then have $a 1=b 1$ using U by auto
then have $i-e q-j: i=j$ using U
by (metis dual-order.strict-implies-order length-take min.absorb2 splits-at-def)
from 1 have $\alpha=\gamma$ using ldfix LeftDerivationFix-def by auto
with $1 i$-eq-j show? case by blast
next
case 2
have $\exists a 1^{\prime}$. LeftDerives1 a1 (fst (hd D)) (snd (hd D)) a1' using U 2
by (metis LeftDerivation.elims(2) list.sel(1))
then obtain $a 1^{\prime}$ where $a 1^{\prime}:$ LeftDerives1 a1 (fst (hd D)) (snd (hd D)) a1'
by blast
then have $(f s t(h d D))<$ length a1 using Derives1-bound LeftDerives1-implies-Derives1 by blast
then have f ft-less- i : $($ fst $(h d D))<i$ using U
by (simp add: leD min.absorb2 nat-le-linear splits-at-def)
have d-le-fst: $d \leq f s t(h d D)$ using derivation-ge-d 2 by (simp add: deriva-tion-ge-def)
with fst-less- i have d-less- $i: d<i$ using le-less-trans by blast
have $\exists b 1^{\prime}$. LeftDerives1 b1' (fst (last D)) (snd (last D)) b1 using U 2
by (metis Derive LeftDerivation-Derive-take-LeftDerives1 LeftDerivation-implies-Derivation
last-conv-nth length-0-conv order-refl take-all)
then obtain $b 1^{\prime}$ where $b 1^{\prime}:$ LeftDerives1 b1' $($ fst (last D)) (snd (last D)) b1
by blast
then have f st (last $D) \leq$ length b1
using Derives1-bound' LeftDerives1-implies-Derives1 by blast
then have fst-le- $j:$ fst (last $D) \leq j$ using U splits-at-def by auto
have $d \leq f s t$ (last D) using derivation-ge-d 2 using derivation-ge-def last-in-set by blast
with fst-le- j have $d \leq j$ using order.trans by blast
with d-less- i show ?thesis by auto
qed
qed
lemma LeftDerivationFix-derivation-ge: assumes ldfix: LeftDerivationFix $\alpha i D j \gamma$
assumes derivation-ge-d: derivation-ge $D d$
shows $i=j \vee(i>d \wedge j \geq d)$
proof -
from LeftDerivationFix-splits-at-symbol[OF ldfix] obtain U a1 a2 b1 b2 n where U :
splits-at α i a1 U a2 \wedge

```
    splits-at \gamma j b1 U b2 ^
    n\leqlength D ^
    LeftDerivation a1 (take n D) b1 ^
    derivation-ge (drop n D) (Suc (length b1)) ^
    LeftDerivation a2 (derivation-shift (drop n D) (Suc (length b1)) 0) b2 ^
    (n= length D 
    have n=0 \ n>0 by auto
    then show ?thesis
    proof (induct rule: disjCases2)
    case 1
            then have a1 = b1 using U by auto
            then have i-eq-j:i=j using U
    by (metis dual-order.strict-implies-order length-take min.absorb2 splits-at-def)
    then show ?case by blast
next
    case 2
        obtain E where E: E= take n D by blast
        have E-nonempty: }E\not=[]\mathrm{ using E 2
            using U less-nat-zero-code list.size(3) take-eq-Nil by auto
            have \exists a1'. LeftDerives1 a1 (fst (hd E)) (snd (hd E)) a1' using U E
E-nonempty
            by (metis LeftDerivation.simps(2) list.exhaust list.sel(1))
            then obtain a1' where a1': LeftDerives1 a1 (fst (hd E)) (snd (hd E)) a1'
by blast
    then have (fst (hd E)) < length a1 using Derives1-bound LeftDerives1-implies-Derives1
by blast
    then have fst-less-i:(fst (hd E)) <i using U
        by (simp add: leD min.absorb2 nat-le-linear splits-at-def)
    have d-le-fst: d \leqfst (hd E) using derivation-ge-d E-nonempty E
            by (simp add: LeftDerivation.elims(2) U derivation-ge-def hd-conv-nth)
    with fst-less-i have d-less-i:d<i using le-less-trans by blast
    have \existsb1'. LeftDerives1 b1'(fst (last E)) (snd (last E)) b1 using E-nonempty
UE
            by (metis LeftDerivation-append1 append-butlast-last-id prod.collapse)
    then obtain b1' where b1': LeftDerives1 b1'(fst (last E)) (snd (last E)) b1
by blast
    then have fst (last E) \leq length b1
        using Derives1-bound' LeftDerives1-implies-Derives1 by blast
    then have fst-le-j: fst (last E) \leqj using U splits-at-def by auto
    have d\leqfst (last E) using derivation-ge-d E-nonempty E
        using derivation-ge-d last-in-set by (metis derivation-ge-def set-take-subset
subsetCE)
    with fst-le-j have d\leqj using order.trans by blast
    with d-less-i show ?thesis by auto
    qed
qed
```

```
lemma LeftDerivationIntro-derivation-ge:
    assumes ldintro: LeftDerivationIntro \alpha ir ix D j \gamma
    assumes i-ge-d: i\geqd
    assumes derivation-ge-d: derivation-ge D d
    shows j\geqd
proof -
    from iffD1[OF LeftDerivationIntro-def ldintro] obtain }\beta\mathrm{ where }\beta\mathrm{ :
        LeftDerives1 \alpha ir \beta}\wedgeix<length (snd r)^ snd r!ix=\gamma!j
        LeftDerivationFix \beta (i+ix) D j \gamma by blast
    then have (i+ix=j)\vee(i+ix>d\wedgej\geqd)
        using LeftDerivationFix-derivation-ge derivation-ge-d by blast
    then show ?thesis
    proof (induct rule: disjCases2)
    case 1 then show ?case using i-ge-d trans-le-add1 by blast
    next
        case 2 then show ?case by simp
    qed
qed
lemma derivation-ge-LeftDerivationLadder:
    assumes derivation-ge-d: derivation-ge D d
    assumes ladder: LeftDerivationLadder \alpha D L \gamma
    assumes ladder-i-0: ladder-i L 0 \geqd
    shows index < length L \Longrightarrowladder-i L index \geqd\wedge ladder-j L index }\geq
proof (induct index)
    case 0
        from iffD1[OF LeftDerivationLadder-def ladder]
        have ldfix: LeftDerivationFix \alpha (ladder-i L 0)
            (take (ladder-n L 0) D) (ladder-j L 0) (ladder-\gamma \alpha D L 0) by blast
    have derivation-ge (take (ladder-n L 0) D) d
            using derivation-ge-d by (metis append-take-drop-id derivation-ge-append)
    from ladder-i-0 derivation-ge-d LeftDerivationFix-derivation-ge[OF ldfix this]
    show ?case by linarith
next
    case (Suc n)
        have ladder-i-Suc: ladder-i L (Suc n) \geqd
            apply (auto simp add: ladder-i-def)
            using Suc by auto
        from iffD1[OF LeftDerivationLadder-def ladder] have LeftDerivationIntros \alpha
D L
            by blast
        then have LeftDerivationIntrosAt \alpha D L (Suc n)
            using Suc.prems
            by (metis LeftDerivationIntros-def Suc-eq-plus1-left le-add1)
    from iffD1[OF LeftDerivationIntrosAt-def this]
    show ?case using ladder-i-Suc LeftDerivationIntro-derivation-ge
            by (metis append-take-drop-id derivation-ge-append derivation-ge-d)
qed
```

```
lemma derivation-shift-append:
    derivation-shift (A@B) left right =
    (derivation-shift A left right) @ (derivation-shift B left right)
by (induct A, simp+)
lemma derivation-shift-right-left-subtract:
    right }\geq\mathrm{ left }\Longrightarrow\mathrm{ derivation-shift (derivation-shift L 0 right) left 0=
    derivation-shift L 0 (right - left)
by (induct L, simp+)
lemma LeftDerivationFix-cut-prefix:
    assumes LeftDerivationFix (\delta@\alpha) i D j \gamma
    assumes derivation-ge D (length \delta)
    assumes i\geq length \delta
    assumes is-word-\delta: is-word \delta
    shows \exists}\mp@subsup{\gamma}{}{\prime}.\gamma=\delta@\mp@subsup{\gamma}{}{\prime}
    LeftDerivationFix \alpha (i - length \delta) (derivation-shift D (length \delta) 0) (j - length
\delta) }\mp@subsup{\gamma}{}{\prime
proof -
    have j-ge-d: j\geq length }
        using assms(3) LeftDerivationFix-derivation-ge[OF assms(1) assms(2)] by
arith
    obtain }\mp@subsup{\gamma}{}{\prime}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}:\mp@subsup{\gamma}{}{\prime}=drop (length \delta) \gamma by blas
    from iffD1[OF LeftDerivationFix-def assms(1)] obtain E F where EF:
        is-sentence ( }\delta\mathrm{ @ < ) ^
        is-sentence }\gamma
        LeftDerivation (\delta @ \alpha)D 人}
        i<length ( }\delta@\alpha)
        j< length }\gamma
        (\delta@\alpha)!i=\gamma!j^
        D=E @ derivation-shift F 0 (Suc j) ^
        LeftDerivation (take i (\delta@ @)) E (take j \gamma) ^
        LeftDerivation (drop (Suc i) (\delta @ \alpha)) F (drop (Suc j) \gamma) by blast
    then have LeftDerivation ( }\delta\mathrm{ @ ) D 人 by blast
    from LeftDerivation-skip-prefixword-ex[OF this is-word-\delta]
    obtain }\mp@subsup{\gamma}{}{\prime}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}:\gamma=\delta@\mp@subsup{\gamma}{}{\prime}\wedge\mathrm{ LeftDerivation }\alpha\mathrm{ (derivation-shift D (length
\delta) 0) \gamma
    have ldf1: is-sentence \alpha using EF is-sentence-concat by blast
    have ldf2: is-sentence }\mp@subsup{\gamma}{}{\prime}\mathrm{ using EF }\mp@subsup{\gamma}{}{\prime}\mathrm{ is-sentence-concat by blast
    have ldf3: i - length }\delta<\mathrm{ length }
        by (metis EF append-Nil assms(3) drop-append drop-eq-Nil not-le)
    have ldff: j - length }\delta<\mathrm{ length }\mp@subsup{\gamma}{}{\prime
        by (metis EF append-Nil j-ge-d \gamma' drop-append drop-eq-Nil not-le)
    have ldf5: \alpha! (i - length \delta) = \gamma'! ( }j-\mathrm{ length }\delta
    by (metis \gamma'EF assms(3) j-ge-d leD nth-append)
    have D-split: D=E @ derivation-shift F 0 (Suc j) using EF by blast
    show ?thesis
    apply (rule-tac x=\mp@subsup{\gamma}{}{\prime}}\mathrm{ in exI)
    apply (auto simp add: }\mp@subsup{\gamma}{}{\prime}\mathrm{ )
```

```
    apply (auto simp add: LeftDerivationFix-def)
    using ldf1 apply blast
    using ldf2 apply blast
    using }\mp@subsup{\gamma}{}{\prime}\mathrm{ apply blast
    using ldf3 apply blast
    using ldf4 apply blast
    using ldf5 apply blast
    apply (rule-tac x=derivation-shift E (length \delta) 0 in exI)
    apply (rule-tac x=F in exI)
    apply auto
    apply (subst D-split)
    apply (simp add: derivation-shift-append)
    apply (subst derivation-shift-right-left-subtract)
    apply (simp add: j-ge-d le-Suc-eq)
    using j-ge-d apply (simp add: Suc-diff-le)
    apply (metis EF LeftDerivation-implies-Derivation LeftDerivation-skip-prefix
\gamma
    append-eq-conv-conj assms(3) drop-take is-word-Derivation-derivation-ge is-word-\delta
        take-all take-append)
    using EF Suc-diff-le \gamma' assms(3) j-ge-d by auto
qed
lemma LeftDerives1-propagate-prefix:
    LeftDerives1 ( }\delta@\alpha\mathrm{ ) ir }\beta\Longrightarrowi\geqlength \delta\Longrightarrow is-prefix \delta 
proof -
    assume a1: LeftDerives1 ( }\delta\mathrm{ @ }\alpha\mathrm{ ) ir }
    assume a2: length }\delta\leq
    have f3: take i (\delta @ 人)}=\mathrm{ take i }
        using a1 Derives1-take LeftDerives1-implies-Derives1 by blast
    then have f4: length (take i \beta)=i
        using a1 by (metis (no-types) Derives1-bound LeftDerives1-implies-Derives1
dual-order.strict-implies-order length-take min.absorb2)
    have take (length \delta) (take i \beta)=\delta
        using f3 a2 by (simp add: append-eq-conv-conj)
    then show ?thesis
    using f4 a2 by (metis (no-types) append-Nil2 append-eq-conv-conj diff-is-0-eq'
is-prefix-take take-0 take-append)
qed
lemma LeftDerivationIntro-cut-prefix:
    assumes LeftDerivationIntro (\delta@\alpha) i r ix D j \gamma
    assumes derivation-ge D (length \delta)
    assumes }i\geq\mathrm{ length }
    assumes is-word-\delta: is-word }
    shows \exists \gamma '. }\gamma=\delta@\mp@subsup{\gamma}{}{\prime}
    LeftDerivationIntro \alpha (i - length \delta) r ix (derivation-shift D (length \delta) 0) (j -
length \delta) }\mp@subsup{\gamma}{}{\prime
proof -
```

```
from iffD1[OF LeftDerivationIntro-def assms(1)] obtain }\beta\mathrm{ where }\beta\mathrm{ :
    LeftDerives1 ( }\delta\mathrm{ @ 人) ir }\beta
    ix < length (snd r)^ snd r!ix = \gamma!j^LeftDerivationFix \beta}(i+ix)Dj
by blast
    have }\exists\mp@subsup{\beta}{}{\prime}.\beta=\delta@\mp@subsup{\beta}{}{\prime
    using LeftDerives1-propagate-prefix \beta assms(3) by (metis append-dropped-prefix)
    then obtain }\mp@subsup{\beta}{}{\prime}\mathrm{ where }\mp@subsup{\beta}{}{\prime}:\beta=\delta@\mp@subsup{\beta}{}{\prime}\mathrm{ by blast
    with \beta have LeftDerives1 ( }\delta\mathrm{ @ ) ir ir ( @ 尔) by simp
    from LeftDerives1-skip-prefix[OF assms(3) this]
    have \alpha-\beta':LeftDerives1 \alpha (i - length \delta) r \beta' by blast
    have ldfix:LeftDerivationFix ( }\delta@\mp@subsup{\beta}{}{\prime})(i+ix)Dj\gamma using \beta \beta' by aut
    have \delta-le-i-plus-ix: length }\delta\leqi+ix using assms(3) by arith
    from LeftDerivationFix-cut-prefix[OF ldfix assms(2) \delta-le-i-plus-ix assms(4)]
    obtain }\mp@subsup{\gamma}{}{\prime}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}:\gamma=\delta@\mp@subsup{\gamma}{}{\prime}
        LeftDerivationFix 尔 (i+ix - length \delta) (derivation-shift D (length \delta) 0) (j -
length \delta) }\mp@subsup{\gamma}{}{\prime
        by blast
    have same-symbol: }\gamma!j=\mp@subsup{\gamma}{}{\prime}!(j-length \delta
    by (metis LeftDerivationFix-def \beta \beta
    have }\mp@subsup{\beta}{}{\prime}-\mp@subsup{\gamma}{}{\prime}\mathrm{ : LeftDerivationFix }\mp@subsup{\beta}{}{\prime}(i-\mathrm{ length }\delta+ix
        (derivation-shift D (length \delta) 0) (j - length \delta) \gamma' by (simp add: }\mp@subsup{\gamma}{}{\prime}\mathrm{ assms(3))
    show ?thesis
    apply (simp add: LeftDerivationIntro-def)
    apply (rule-tac x=\mp@subsup{\gamma}{}{\prime}}\mathrm{ in exI)
    apply (auto simp add: }\mp@subsup{\gamma}{}{\prime}\mathrm{ )
    apply (rule-tac x=\mp@subsup{\beta}{}{\prime}}\mathrm{ in exI)
    by (auto simp add: \beta \alpha-\beta' same-symbol }\mp@subsup{\beta}{}{\prime}-\mp@subsup{\gamma}{}{\prime}\mathrm{ )
qed
lemma LeftDerivationLadder-implies-LeftDerivation-at-index:
    assumes LeftDerivationLadder \alpha D L \gamma
    assumes index < length L
    shows LeftDerivation \alpha (take (ladder-n L index) D) (ladder-\gamma \alpha D L index)
using LeftDerivationLadder-def LeftDerivation-take-derive assms(1) ladder-\gamma-def
by auto
lemma LeftDerivationLadder-cut-prefix-propagate:
    assumes ladder: LeftDerivationLadder ( }\delta@\alpha)DL
    assumes is-word-\delta: is-word \delta
    assumes derivation-ge-\delta: derivation-ge D (length \delta)
    assumes ladder-i-0: ladder-i L 0 \geq length \delta
    assumes L': L' = ladder-cut-prefix (length \delta) L
    assumes }\mp@subsup{D}{}{\prime}:\mp@subsup{D}{}{\prime}=\mathrm{ derivation-shift D (length %) 0
    shows index < length L}
    LeftDerivation \alpha (take (ladder-n L' index) D') (ladder-\gamma \alpha D' L' index) ^
    ladder-\alpha (\delta@\alpha) D L index = \delta@(ladder-\alpha \alpha D' L' index ) ^
    ladder-\gamma (\delta@\alpha)D L index = \delta@(ladder- }\gamma\alpha\mp@subsup{D}{}{\prime}\mp@subsup{L}{}{\prime}\mathrm{ index }
```

proof (induct index)
case 0
have ladder- α : ladder- $\alpha(\delta @ \alpha) D L 0=\delta @\left(\right.$ ladder $\left.-\alpha \alpha D^{\prime} L^{\prime} 0\right)$
by (simp add: ladder- α-def)
have ldfix: LeftDerivationFix ($\delta @ \alpha$) (ladder-i L 0) (take (ladder-n L 0) D) (ladder-j L 0) (ladder- $\gamma(\delta @ \alpha) D L 0)$ using ladder LeftDerivationLadder-def
by blast
have dge-take: derivation-ge (take (ladder-n L 0) D) (length δ)
using derivation-ge- δ by (metis append-take-drop-id derivation-ge-append)
from LeftDerivationFix-cut-prefix[OF ldfix dge-take ladder-i-0 is-word- δ]
obtain γ^{\prime} where γ^{\prime} : ladder- $\gamma(\delta$ @ $\alpha) D L 0=\delta$ @ $\gamma^{\prime} \wedge$
LeftDerivationFix α (ladder-i L 0 - length δ) (derivation-shift (take (ladder-n
L 0) D) (length $\delta) 0)$
(ladder-j L 0 - length δ) γ^{\prime} by blast
have ladder- γ : ladder- $\gamma(\delta @ \alpha) D L 0=\delta @\left(l a d d e r-\gamma \alpha D^{\prime} L^{\prime} 0\right)$
using γ^{\prime} by (metis 0.prems D^{\prime} Derive L^{\prime} LeftDerivationFix-def
LeftDerivation-implies-Derivation ladder- γ-def ladder-cut-prefix-n take-derivation-shift)
have LeftDerivation $\alpha\left(\right.$ take (ladder-n $\left.\left.L^{\prime} 0\right) D^{\prime}\right)\left(\right.$ ladder $\left.-\gamma \alpha D^{\prime} L^{\prime} 0\right)$
proof -
have LeftDerivation ($\delta @ \alpha)($ take (ladder-n L 0) D) $($ ladder- $\gamma(\delta @ \alpha) D L 0)$
using LeftDerivationLadder-implies-LeftDerivation-at-index ladder 0.prems
by blast
then show ?thesis
by (metis D^{\prime} LeftDerivationLadder-def LeftDerivation-skip-prefix
LeftDerivation-take-derive derivation-ge- δ ladder ladder- γ-def)
qed
then show ?case using ladder- α ladder- γ by auto
next
case (Suc index)
have index-less-L: index < length L using Suc(2) by arith
then have induct: ladder- $\gamma(\delta @ \alpha) D L$ index $=\delta @\left(\right.$ ladder $-\gamma \alpha D^{\prime} L^{\prime}$ index $)$ using Suc by blast
then have ladder- α : ladder- $\alpha(\delta @ \alpha) D L($ Suc index $)=\delta @\left(\right.$ ladder $-\alpha \alpha D^{\prime} L^{\prime}$
(Suc index))
by (simp add: ladder- α-def)
have introsAt: LeftDerivationIntrosAt ($\delta @ \alpha$) D L (Suc index)
using Suc(2) ladder
by (metis LeftDerivationIntros-def LeftDerivationLadder-def Suc-eq-plus1-left
le-add1)
obtain n m e E where $n: n=$ ladder-n L (Suc index -1$)$ and
$m: m=$ ladder-n L (Suc index) and $e: e=D!n$ and $E: E=\operatorname{drop}$ (Suc n)
(take m D)
by blast
from iffD1 [OF LeftDerivationIntrosAt-def introsAt] have
LeftDerivationIntro (ladder- α (δ @ α) D L (Suc index)) (ladder-i L (Suc index)) (snd e)
(ladder-ix L (Suc index)) $E($ ladder-j $L($ Suc index $))($ ladder- $\gamma(\delta @ \alpha) D L$
(Suc index))
using n m e E Let-def by meson
then have ldintro:
LeftDerivationIntro (δ @(ladder- $\alpha \alpha D^{\prime} L^{\prime}($ Suc index))) (ladder-i L (Suc index)) (snd e)
(ladder-ix L (Suc index)) $E($ ladder-j $L($ Suc index $))($ ladder- $\gamma(\delta @ \alpha) D L$ (Suc index))
by (simp add: ladder- α)
have dge- E - δ : derivation-ge E (length δ)
apply (simp add: E)
using derivation-ge- δ
by (metis append-take-drop-id derivation-ge-append)
have ladder-i-Suc: length $\delta \leq$ ladder-i L (Suc index)
using Suc.prems derivation-ge-LeftDerivationLadder derivation-ge- δ ladder ladder-i-0
by blast
from LeftDerivationIntro-cut-prefix[OF ldintro dge-E- δ ladder-i-Suc is-word- δ]
obtain γ^{\prime} where γ^{\prime} : ladder- $\gamma(\delta$ @ $\alpha) D L($ Suc index $)=\delta$ @ $\gamma^{\prime} \wedge$
LeftDerivationIntro (ladder- $\alpha \alpha^{\prime} L^{\prime}($ Suc index) $)$ (ladder-i L (Suc index) length δ) (snd e)
(ladder-ix L (Suc index)) (derivation-shift E (length $\delta) 0)($ ladder-j L (Suc index) - length $\delta) \gamma^{\prime}$
by blast
then have LeftDerivation (ladder- $\alpha \alpha D^{\prime} L^{\prime}($ Suc index $)$)
((ladder-i L (Suc index) - length δ, snd e) \# (derivation-shift E (length δ) 0)) γ^{\prime}
using LeftDerivationIntro-implies-LeftDerivation by blast
then have LeftDerivation (ladder- $\gamma \alpha D^{\prime} L^{\prime}$ index)
((ladder-i L (Suc index) - length δ, snd e) \# (derivation-shift E (length δ)
0)) γ^{\prime}
by (auto simp add: ladder- α-def)
have ld: LeftDerivation α (take (ladder-n $L^{\prime}($ Suc index) $\left.) D^{\prime}\right)\left(\right.$ ladder $-\gamma \alpha D^{\prime}$ L^{\prime} (Suc index))
proof -
have LeftDerivation ($\delta @ \alpha$) (take (ladder-n L (Suc index)) D) (ladder- $\gamma(\delta @ \alpha)$
D L (Suc index))
using LeftDerivationLadder-implies-LeftDerivation-at-index ladder Suc.prems
by blast
then show ?thesis
by (metis D^{\prime} LeftDerivationLadder-def LeftDerivation-skip-prefix
LeftDerivation-take-derive derivation-ge- δ ladder ladder- γ-def)
qed
then show? case
using $\gamma^{\prime} D^{\prime}$ Derive L^{\prime} LeftDerivationIntro-def $n m$ e Eld
LeftDerivation-implies-Derivation ladder- γ-def ladder-cut-prefix-n take-derivation-shift
by (metis (no-types, lifting) LeftDerivationLadder-implies-LeftDerivation-at-index
LeftDerivation-skip-prefixword-ex Suc.prems Suc-leI index-less-L is-word- δ
ladder
ladder- α le-0-eq neq0-conv)
qed

```
theorem LeftDerivationLadder-cut-prefix:
    assumes ladder:LeftDerivationLadder ( }@\alpha)DL
    assumes is-word-\delta: is-word \delta
    assumes ladder-i-0:ladder-i L 0 \geq length \delta
    shows \exists}\mp@subsup{D}{}{\prime}\mp@subsup{L}{}{\prime}\mp@subsup{\gamma}{}{\prime}.\gamma=\delta@ \mp@subsup{\gamma}{}{\prime}
    LeftDerivationLadder \alpha D' L' }\mp@subsup{|}{}{\prime}
    D ^ { \prime } = \text { derivation-shift D (length } \delta \text { ) 0 ^}
    length L' = length L ^ ladder-i L' 0 + length \delta = ladder-i L 0 ^
    ladder-last-j L'+ length }\delta=\mathrm{ ladder-last-j L
proof -
    obtain }\mp@subsup{D}{}{\prime}\mathrm{ where }\mp@subsup{D}{}{\prime}:\mp@subsup{D}{}{\prime}=\mathrm{ derivation-shift D (length }\delta)0\mathrm{ by blast
    obtain }\mp@subsup{L}{}{\prime}\mathrm{ where }\mp@subsup{L}{}{\prime}:\mp@subsup{L}{}{\prime}=\mathrm{ ladder-cut-prefix (length }\delta\mathrm{ ) L by blast
    obtain }\mp@subsup{\gamma}{}{\prime}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}:\mp@subsup{\gamma}{}{\prime}=\mathrm{ drop (length }\delta\mathrm{ ) }\gamma\mathrm{ by blast
    have ladder-last-j-upper-bound: ladder-last-j L < length \gamma using ladder
        using ladder-last-j-bound by blast
    have derivation-ge-\delta: derivation-ge D (length \delta) using is-word-\delta LeftDerivation-
Ladder-def
        LeftDerivation-implies-Derivation is-word-Derivation-derivation-ge ladder by
blast
    note derivation-ge-ladder =
        derivation-ge-LeftDerivationLadder[OF derivation-ge-\delta ladder ladder-i-0]
    have ladder-last-j-lower-bound: ladder-last-j L \geq length \delta
        using LeftDerivationLadder-def derivation-ge-ladder is-ladder-def ladder
            ladder-last-j-def by auto
    from ladder-last-j-upper-bound ladder-last-j-lower-bound
    have \delta-less-\gamma:length }\delta<\mathrm{ length }\gamma\mathrm{ by arith
    then have }\gamma\mathrm{ -def: }\gamma=\delta@\mp@subsup{\gamma}{}{\prime
        by (metis LeftDerivation.simps(1) LeftDerivationLadder-def LeftDerivation-ge-take
\gamma
        append-eq-conv-conj derivation-ge-\delta ladder)
    have length-L-nonzero: length L}\not=
        using LeftDerivationLadder-def is-ladder-def ladder by auto
    have ladder-i-L'-thm: \bigwedge index. index < length L \Longrightarrowladder-i L' index + length
\delta= ladder-i L index
        apply (simp add: L')
        apply (subst ladder-cut-prefix-i)
        apply simp
        using length-L-nonzero apply blast
        using derivation-ge-ladder by auto
    have ladder-j-L'-thm: \bigwedge index. index < length L \Longrightarrowladder-j L' index + length
\delta = ladder-j L index
        apply (simp add: L')
        apply (subst ladder-cut-prefix-j)
        using LeftDerivationLadder-def is-ladder-def ladder apply blast
        using LeftDerivationLadder-def is-ladder-def ladder apply blast
        using derivation-ge-ladder by auto
    have length-L': length L' = length L using L' ladder-cut-prefix-length by simp
    have \alpha-\gamma': LeftDerivation \alpha D' }\mp@subsup{\gamma}{}{\prime
```

using D^{\prime} LeftDerivationLadder-def LeftDerivation-skip-prefix γ^{\prime} derivation-ge- δ ladder
by blast
have length- D^{\prime} : length $D^{\prime}=$ length D by (simp add: D^{\prime})
have is-ladder-D-L: is-ladder D L using LeftDerivationLadder-def ladder by blast
\{
fix u :: nat
assume u-bound- $L^{\prime}: u<$ length L^{\prime}
have u-bound- L : $u<$ length L using length- L^{\prime} using u-bound- L^{\prime} by simp
have ladder-n $L^{\prime} u \leq$ length D^{\prime}
apply (simp add: length- $D^{\prime} L^{\prime}$)
apply (subst ladder-cut-prefix-n)
apply (simp add: u-bound-L)
using length-L-nonzero apply arith
using u-bound-L is-ladder-D-L
by (simp add: is-ladder-def)
\}
note is-ladder- $1=$ this
\{
fix u :: nat
fix v :: nat
assume u-less- $v: u<v$
assume v-bound- $L^{\prime}: v<$ length L^{\prime}
then have v-bound- L : $v<$ length L by (simp add: length- L^{\prime})
with u-less-v have u-bound-L: $u<$ length L by arith
have ladder-n $L^{\prime} u<$ ladder- $n L^{\prime} v$
apply (simp add: L^{\prime})
apply (subst ladder-cut-prefix-n)
using u-bound- L apply blast
using length-L-nonzero apply blast
apply (subst ladder-cut-prefix-n)
using v-bound-L apply blast
using length-L-nonzero apply blast
using u-less-v v-bound-L is-ladder-D-L by (simp add: is-ladder-def)
\}
note is-ladder-2 $=$ this
have is-ladder-3: ladder-last- $n L^{\prime}=$ length D^{\prime}
apply (simp add: length-D' ladder-last-n-def L^{\prime})
apply (subst ladder-cut-prefix-n)
apply (simp add: ladder-cut-prefix-length)
using length-L-nonzero apply auto[1]
using length-L-nonzero apply blast
apply (simp add: ladder-cut-prefix-length)
using is-ladder-D-L by (simp add: is-ladder-def ladder-last-n-def)
have is-ladder-4: LeftDerivationFix α (ladder-i $\left.L^{\prime} 0\right)$ (take (ladder-n $\left.L^{\prime} 0\right) D^{\prime}$)
(ladder-j $L^{\prime} 0$) (ladder- $\left.\gamma \alpha D^{\prime} L^{\prime} 0\right)$
proof -
have ldfix: LeftDerivationFix ($\delta @ \alpha$) (ladder-i L 0) (take (ladder-n L 0) D)
(ladder-j L 0) (ladder- $\gamma(\delta @ \alpha) D L 0)$
using ladder LeftDerivationLadder-def by blast
have dge: derivation-ge (take (ladder-n L 0) D) (length δ)
using derivation-ge- δ by (metis append-take-drop-id derivation-ge-append)
from LeftDerivationFix-cut-prefix[OF ldfix dge ladder-i-0 is-word- δ]
obtain γ^{\prime} where γ^{\prime} : ladder- $\gamma(\delta$ @ $\alpha) D L 0=\delta @ \gamma^{\prime} \wedge$
LeftDerivationFix α (ladder-i L 0 - length δ) (derivation-shift (take (ladder-n L 0) D) (length δ) 0)
(ladder-j L 0 - length δ) γ^{\prime} by blast
then show ?thesis
using LeftDerivationLadder-cut-prefix-propagate $D^{\prime} L^{\prime}$ append-eq-conv-conj derivation-ge- δ
is-word- δ ladder ladder-cut-prefix-i ladder-cut-prefix-j ladder-cut-prefix-n ladder-i-0
length-0-conv length-L-nonzero length-greater-0-conv take-derivation-shift by auto
qed
\{
fix index :: nat
assume index-lower-bound: Suc $0 \leq$ index
assume index-upper-bound: index $<$ length L^{\prime}
have introsAt: LeftDerivationIntrosAt ($\delta @ \alpha$) D L index
by (metis LeftDerivationIntros-def LeftDerivationLadder-def One-nat-def in-dex-lower-bound
index-upper-bound ladder length-L')
then have ladder-i-L: ladder-i Lindex $=f s t(D$!ladder-n $L($ index - Suc 0) $)$
by (metis LeftDerivationIntrosAt-def One-nat-def <LeftDerivationIntrosAt (δ @ $\alpha) D L$ index $>$)
have ladder-i-L'-as-L: ladder-i L^{\prime} index $=$ ladder- $i L$ index $-($ length $\delta)$
using ladder-cut-prefix-i L^{\prime} index-upper-bound is-ladder-D-L is-ladder-not-empty length- L^{\prime}
length-greater-0-conv by auto
have length-L-gr-0: length $L>0$ using length- L^{\prime} length-L-nonzero by arith
have index-Suc-upper-bound-L: index - Suc $0<$ length L using index-upper-bound length- L^{\prime} by arith
have fst $\left(D^{\prime}\right.$! ladder-n $L^{\prime}($ index - Suc 0$\left.)\right)=$ fst $(D$! ladder-n $L($ index Suc 0)) - (length δ)
apply (subst D^{\prime}, subst L^{\prime})
apply (subst ladder-cut-prefix-n[OF index-Suc-upper-bound-L length-L-gr-0])
apply (simp add: derivation-shift-def)
using index-lower-bound index-upper-bound is-ladder-D-L ladder-n-minus-1-bound length- L^{\prime} by auto
then have ladder- $i-L^{\prime}$: ladder- $i L^{\prime}$ index $=f s t\left(D^{\prime}\right.$! ladder-n $L^{\prime}($ index - Suc 0))
using ladder-i-L ladder-i- L^{\prime}-as- L by auto
have LeftDerivationIntro (ladder- $\alpha \alpha D^{\prime} L^{\prime}$ index) (ladder-i L^{\prime} index) (snd (D^{\prime} ! ladder-n $L^{\prime}\left(\right.$ index - Suc 0))) (ladder-ix L^{\prime} index) (drop (Suc (ladder-n L' (index - Suc 0))) (take (ladder-n L' index) $\left.D^{\prime}\right)$) (ladder-j L' index)

```
    (ladder-\gamma \alpha D' L' index)
    proof -
    have LeftDerivationIntro (ladder-\alpha (\delta@\alpha) D L index) (ladder-i L index)
        (snd (D!ladder-n L (index - Suc 0))) (ladder-ix L index)
            (drop (Suc (ladder-n L (index - Suc 0))) (take (ladder-n L index) D))
(ladder-j L index)
            (ladder-\gamma (\delta@\alpha)D L index) using introsAt
            by (metis LeftDerivationIntrosAt-def One-nat-def)
                            then have ldintro: LeftDerivationIntro ( }\delta@(ladder-\alpha \alpha D' L' index)) (ladder-i
L index)
            (snd (D!ladder-n L (index - Suc 0))) (ladder-ix L index)
            (drop (Suc (ladder-n L (index - Suc 0))) (take (ladder-n L index) D))
(ladder-j L index)
            (ladder-\gamma (\delta@\alpha) D L index)
            using D' L' LeftDerivationLadder-cut-prefix-propagate derivation-ge-\delta in-
dex-upper-bound
            is-word-\delta ladder ladder-i-0 length-L' by auto
    have dge:derivation-ge (drop (Suc (ladder-n L (index - Suc 0)))
            (take (ladder-n L index) D)) (length \delta) using derivation-ge-\delta
            by (metis append-take-drop-id derivation-ge-append)
    have }\delta\mathrm{ -le-i-L: length }\delta\leq\mathrm{ ladder-i L index
            using derivation-ge-ladder index-upper-bound length-L' by auto
    from LeftDerivationIntro-cut-prefix[OF ldintro dge \delta-le-i-L is-word-\delta] obtain
\gamma}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}\mathrm{ :
            ladder-\gamma (\delta@ @) D L index = \delta @ \gamma '^
            LeftDerivationIntro (ladder-\alpha \alpha D' L' index) (ladder-i L index - length
\delta)
            (snd (D!ladder-n L (index - Suc 0))) (ladder-ix L index)
            (derivation-shift (drop (Suc (ladder-n L (index - Suc 0))) (take (ladder-n
L index) D))
            (length \delta) 0) (ladder-j L index - length \delta) \gamma' by blast
            have h1: ladder-i L' index = ladder-i L index - length \delta
            using L' ladder-cut-prefix-i ladder-i-L'-as-L by blast
            have h2:(snd (D'!ladder-n L'(index - Suc 0)))}=(\mathrm{ snd (D!ladder-n L
(index - Suc 0)))
            apply (subst L', subst ladder-cut-prefix-n)
            apply (simp add: index-Suc-upper-bound-L)
            using length-L-gr-0 apply auto[1]
            apply (subst D')
            apply (simp add: derivation-shift-def)
            using index-lower-bound index-upper-bound is-ladder-D-L ladder-n-minus-1-bound
            length-L' by auto
                            have h3: ladder-ix L' index = ladder-ix L index
                                using ladder-cut-prefix-ix L' index-upper-bound length-L' length-L-gr-0 by
auto
    have h4: (drop (Suc (ladder-n L'(index - Suc 0))) (take (ladder-n L' index)
D
    (derivation-shift (drop (Suc (ladder-n L (index - Suc 0))) (take (ladder-n
```

```
L index) D))
            (length \delta) 0)
            apply (subst D')
            apply (subst L')+
            apply (subst ladder-cut-prefix-n, simp add: index-Suc-upper-bound-L)
            using length-L-gr-0 apply blast
            apply (subst ladder-cut-prefix-n)
            using index-upper-bound length-L' apply arith
            using length-L-gr-0 apply blast
            apply (simp add: derivation-shift-def)
            by (simp add: drop-map take-map)
    have h5:ladder-j L' index = ladder-j L index - length \delta
            using ladder-cut-prefix-j L' index-upper-bound length-L' length-L-gr-0 by
auto
    have h6: ladder-\gamma \alpha D' L' index = \gamma'
            using D' L'LeftDerivationLadder-cut-prefix-propagate }\mp@subsup{\gamma}{}{\prime}\mathrm{ derivation-ge- }
index-upper-bound
            is-word-\delta ladder ladder-i-0 length-L' by auto
            show ?thesis using h1 h2 h3 h4 h5 h6 \gamma' by simp
    qed
    then have LeftDerivationIntrosAt \alpha D' L' index
            apply (auto simp add: LeftDerivationIntrosAt-def Let-def)
            using ladder-i-L' by blast
}
note is-ladder-5 = this
show ?thesis
    apply (rule-tac x=D' in exI)
    apply (rule-tac x=L' in exI)
    apply (rule-tac x=\mp@subsup{\gamma}{}{\prime}}\mathrm{ in exI)
    apply auto
    using }\gamma\mathrm{ -def apply blast
    defer 1
    using D' apply blast
    using L' ladder-cut-prefix-length apply auto[1]
    apply (subst ladder-i-L'-thm)
    using LeftDerivationLadder-def is-ladder-def ladder apply blast
    apply simp
    apply (simp add: ladder-last-j-def)
    apply (subst ladder-j-L'-thm)
    apply (simp add: length-L')
    using length-L-nonzero apply arith
    apply (simp add: length-L')
    apply (auto simp add: LeftDerivationLadder-def)
    using }\alpha-\mp@subsup{\gamma}{}{\prime}\mathrm{ apply blast
    apply (auto simp add: is-ladder-def)
    using length-L-nonzero length-L' apply auto[1]
    using is-ladder-1 apply blast
    using is-ladder-2 apply blast
    using is-ladder-3 apply blast
```

```
    using is-ladder-4 apply blast
    by (auto simp add: LeftDerivationIntros-def is-ladder-5)
qed
end
end
theory TheoremD10
imports TheoremD9 Ladder
begin
context LocalLexing begin
lemma \mathcal{P}\mathrm{ -wellformed: p 仅 ku # wellformed-tokens p}
using \mathcal{P}\mathrm{ -are-admissible admissible-wellformed-tokens by blast}
lemma \mathcal{X-token-length: t\in\mathcal{X}}k\Longrightarrowk+length (chars-of-token t) \leqlength Doc
by (metis le-diff-conv2 \mathcal{X}
    empty-iff is-prefix-length le-neq-implies-less length-drop linear)
lemma mono-Scan: mono (Scan T k)
    by (simp add: Scan-regular regular-implies-mono)
lemma \pi-apply-setmonotone: }x\inI\Longrightarrowx\in\pikT
using Complete-subset-\pi LocalLexing.Complete-def LocalLexing-axioms by blast
lemma Scan-apply-setmonotone: }x\inI\Longrightarrowx\inScan Tk
    by (simp add: Scan-def)
lemma leftderives-padfront:
    assumes leftderives \alpha \beta
    assumes is-word u
    shows leftderives (u@\alpha)(u@\beta)
using LeftDerivation-append-prefix LeftDerivation-implies-leftderives assms(1) assms(2)
    leftderives-implies-LeftDerivation by blast
lemma leftderives-padback:
    assumes leftderives \alpha \beta
    assumes is-sentence u
    shows leftderives ( }\alpha@u)(\beta@u
using LeftDerivation-append-suffix LeftDerivation-implies-leftderives assms(1) assms(2)
    leftderives-implies-LeftDerivation by blast
lemma leftderives-pad:
    assumes }\alpha-\beta\mathrm{ :leftderives }\alpha
    assumes is-word: is-word u
```

assumes is-sentence: is-sentence v shows leftderives ($u @ \alpha @ v)(u @ \beta @ v)$
by (simp add: $\alpha-\beta$ is-sentence is-word leftderives-padback leftderives-padfront)
lemma leftderives-rule:
assumes $(N, w) \in \mathfrak{R}$
shows leftderives $[N] w$
by (metis append-Nil append-Nil2 assms is-sentence-def is-word-terminals leftderives1-def
leftderives1-implies-leftderives list.pred-inject(1) terminals-empty wellformed-tokens-empty-path)
lemma leftderives-rule-step:
assumes ld: leftderives a ($u @[N] @ v$)
assumes rule: $(N, w) \in \mathfrak{R}$
assumes is-word: is-word u
assumes is-sentence: is-sentence v
shows leftderives a ($u @ w @ v$)
proof -
have N-w: leftderives $[N] w$ using rule leftderives-rule by blast
then have leftderives ($u @[N] @ v$) ($u @ w @ v$) using leftderives-pad is-word is-sentence
by blast
then show leftderives $a(u @ w @ v)$ using leftderives-trans ld by blast
qed
lemma leftderives-trans-step:
assumes ld: leftderives a ($u @ b @ v$)
assumes rule: leftderives $b c$
assumes is-word: is-word u
assumes is-sentence: is-sentence v
shows leftderives a ($u @ c @ v$)
proof -
have leftderives ($u @ b @ v$) ($u @ c @ v$) using leftderives-pad ld rule is-word is-sentence
by blast
then show ?thesis using leftderives-trans ld by blast
qed
lemma charslength-of-prefix:
assumes is-prefix a b
shows charslength $a \leq$ charslength b
by (simp add: assms is-prefix-chars is-prefix-length)
lemma item-rhs-simp [simp]: item-rhs $(\operatorname{Item}(N, \alpha) d i j)=\alpha$
by (simp add: item-rhs-def)
definition Prefixes :: 'a list \Rightarrow 'a list set
where
Prefixes $p=\{q$. is-prefix q $p\}$
lemma \mathfrak{P}-wellformed: $p \in \mathfrak{P} \Longrightarrow$ wellformed-tokens p

```
    by (simp add: \(\mathfrak{P}\)-are-admissible admissible-wellformed-tokens)
lemma Prefixes-reflexive \([\) simp]: \(p \in\) Prefixes \(p\)
    by (simp add: Prefixes-def is-prefix-def)
lemma Prefixes-is-prefix: \(q \in\) Prefixes \(p=i s\)-prefix \(q p\)
    by (simp add: Prefixes-def)
lemma prefixes-are-paths': \(p \in \mathfrak{P} \Longrightarrow\) is-prefix \(q p \Longrightarrow q \in \mathfrak{P}\)
    using \(\mathcal{P}\).simps(3) \(\mathfrak{P}\)-def prefixes-are-paths by blast
lemma thmD10-ladder:
    \(p \in \mathfrak{P} \Longrightarrow\)
    charslength \(p=k \Longrightarrow\)
    \(X \in T \Longrightarrow\)
    \(T \subseteq \mathcal{X} k \Longrightarrow\)
    \((N, \alpha @ \beta) \in \mathfrak{R} \Longrightarrow\)
    \(r \leq\) length \(p \Longrightarrow\)
    leftderives \([\mathfrak{G}]((\) terminals \((\) take \(r p)) @[N] @ \gamma) \Longrightarrow\)
    LeftDerivationLadder \(\alpha\) D \(L(\) terminals \(((\) drop \(r p) @[X])) \Longrightarrow\)
    ladder-last-j \(L=\) length \((\) drop \(r p) \Longrightarrow\)
    \(k^{\prime}=k+\) length (chars-of-token \(\left.X\right) \Longrightarrow\)
    \(x=\operatorname{Item}(N, \alpha @ \beta)(\) length \(\alpha)(\) charslength \((\) take \(r p)) k^{\prime} \Longrightarrow\)
    \(I=\) items-le \(k^{\prime}\left(\pi k^{\prime}\{ \}(\right.\) Scan Tk(Gen (Prefixes \(\left.\left.\left.p)\right)\right)\right)\)
    \(\Longrightarrow x \in I\)
proof (induct length L arbitrary: \(N \alpha \beta r \gamma D L\) x rule: less-induct)
    case less
    have item-origin-x-def: item-origin \(x=(\) charslength \((\) take \(r p))\)
        by (simp add: less.prems(11))
    then have \(x\) - \(k\) : item-origin \(x \leq k\)
    using charslength.simps is-prefix-chars is-prefix-length is-prefix-take less.prems(2)
by force
    have item-end- \(x\)-def: item-end \(x=k^{\prime}\) by (simp add: less.prems(11))
    have item-dot-x-def: item-dot \(x=\) length \(\alpha\) by (simp add: less.prems(11))
    have \(k^{\prime}\)-upperbound: \(k^{\prime} \leq\) length Doc
        using \(\mathcal{X}\)-token-length less.prems(10) less.prems(3) less.prems(4) by blast
    note item-def \(=\) less.prems(11)
    note \(k^{\prime}=\) less.prems(10)
    note rule-dom \(=\) less.prems \((5)\)
    note \(p\)-charslength \(=\) less.prems(2)
    note \(p\)-dom \(=\) less.prems(1)
    note \(r=\) less.prems \((6)\)
    note leftderives-start \(=\) less.prems(7)
    note \(X\)-dom \(=\) less.prems(3)
    have wellformed-x: wellformed-item \(x\)
        apply (auto simp add: wellformed-item-def item-def rule-dom p-charslength)
        apply (subst \(k^{\prime}\) )
        apply (subst charslength.simps[symmetric])
        apply (subst p-charslength[symmetric])
```

using item-origin-x-def p-charslength x - k apply linarith
apply (rule k^{\prime}-upperbound)
done
have leftderives- α : leftderives α (terminals ((drop r $p) @[X])$)
using LeftDerivationLadder-def LeftDerivation-implies-leftderives less.prems(8)
by blast
have is-sentence-drop-pX: is-sentence (drop r (terminals p) @ [terminal-of-token X])
by (metis derives-is-sentence is-sentence-concat leftderives- α leftderives-implies-derives
rule- α-type rule-dom terminals-append terminals-drop terminals-singleton)
have snd-item-rule-x: snd (item-rule x) $=\alpha @ \beta$ by (simp add: item-def)
from less have is-ladder D L using LeftDerivationLadder-def by blast
then have length $L \neq 0$ by (simp add: is-ladder-not-empty)
then have length $L=1 \vee$ length $L>1$ by arith
then show ?case
proof (induct rule: disjCases2)
case 1
have \exists i. LeftDerivationFix α i D (length (drop r $p)$) (terminals ((drop r $p) @[X])$)
using 1.hyps LeftDerivationLadder-L-0 less.prems(8) less.prems(9) by fastforce
then obtain i where $L D F$:
LeftDerivationFix α i $D($ length $($ drop $r \operatorname{p}))($ terminals $(($ drop r $p) @[X]))$ by blast
from LeftDerivationFix-splits-at-derives[OF this] obtain U a1 a2 b1 b2
where decompose:
splits-at α i a1 U a2 \wedge splits-at (terminals (drop r p @ $[X])$)
(length $($ drop $r p))$ b1 U b2 \wedge derives a1 b1 \wedge derives a2 b2 by blast
then have b1: b1 = terminals (drop r p)
by (simp add: append-eq-conv-conj splits-at-def)
with decompose have $U: U=$ fst X
by (metis length-terminals nth-append-length splits-at-def terminal-of-token-def
terminals-append terminals-singleton)
from decompose b1 U have b2: b2 = []
by (simp add: splits-at-combine splits-at-def)
have D : LeftDerivation αD (terminals $(($ drop $r p) @[X])$)
using LDF LeftDerivationLadder-def less.prems(8) by blast
let $? y=\operatorname{Item}($ item-rule $x)($ length a1) (item-origin $x) k$
have wellformed-y: wellformed-item? y
using wellformed-x
apply (auto simp add: wellformed-item-def x - k)
using $k^{\prime} k^{\prime}$-upperbound apply arith
apply (simp add: item-rhs-def snd-item-rule-x)
using decompose splits-at-def
by (simp add: is-prefix-length trans-le-add1)
have y-nonterminal: item-nonterminal $? y=N$
by (simp add: item-def item-nonterminal-def)

```
    have item-\alpha-y: item-\alpha ?y = a1
    by (metis append-assoc append-eq-conv-conj append-take-drop-id decompose
item.sel(1)
            item.sel(2) item-\alpha-def item-rhs-def snd-item-rule-x splits-at-def)
    have pvalid-y: pvalid p ?y
        apply (auto simp add: pvalid-def)
        using p-dom }\mathfrak{P}\mathrm{ -wellformed apply blast
        using wellformed-y apply auto[1]
        apply (rule-tac x=r in exI)
        apply (auto simp add: r)
        using p-charslength apply simp
        using item-def apply simp
        apply (rule-tac x=\gamma in exI)
        using y-nonterminal apply simp
        using is-derivation-def leftderives-start apply auto[1]
        apply (simp add: item-\alpha-y)
        using b1 decompose by auto
    let ?z = inc-item ?y k'
    have item-rhs-y: item-rhs ? }y=\alpha@
        by (simp add: item-def item-rhs-def)
    have split-\alpha: \alpha=a1@[U]@a2 using decompose splits-at-combine by blast
    have next-symbol-y: next-symbol ?y = Some(fst X)
    by (auto simp add: next-symbol-def is-complete-def item-rhs-y split-\alpha U)
    have z-in-Scan-y:?z\inScan Tk{?y}
    apply (simp add: Scan-def)
    apply (rule disjI2)
    apply (rule-tac x=? y in exI)
    apply (rule-tac x=fst X in exI)
    apply (rule-tac x=snd X in exI)
    apply (auto simp add: bin-def X-dom)
    using }\mp@subsup{k}{}{\prime}\mathrm{ chars-of-token-def apply simp
    using next-symbol-y apply simp
    done
from pvalid-y have ?y \inGen(Prefixes p)
    apply (simp add: Gen-def)
    apply (rule-tac x=p in exI)
    by (auto simp add: paths-le-def p-dom)
    then have Scan Tk{?y}\subseteqScan Tk(Gen(Prefixes p))
    apply (rule-tac monoD[OF mono-Scan])
    apply blast
    done
    with z-in-Scan-y have z-in-Scan-Gen: ?z \in Scan T k (Gen(Prefixes p))
    using rev-subsetD by blast
    have wellformed-z: wellformed-item ?z
    using k' k'-upperbound next-symbol-y wellformed-inc-item wellformed-y by
auto
have item- }\beta-z:\mathrm{ : item- }\beta\mathrm{ ? }z=a2@ 
    apply (simp add: item- }\beta\mathrm{ -def)
    apply (simp add: item-rhs-y split-\alpha)
```


done

have item-end- z : item-end ? $z=k^{\prime}$ by simp
have x-via-z: $x=$ inc-dot (length a2) ?z
by (simp add: inc-dot-def less.prems(11) split- α)
have x-in-z: $x \in \pi k^{\prime}\{ \}\{? z\}$
apply (subst x-via-z)
apply (rule-tac thmD $6[$ OF wellformed-z item- $\beta-z$ item-end- $z]$)
using decompose b2 by blast
have $\pi k^{\prime}\{ \}\{? z\} \subseteq \pi k^{\prime}\{ \}(S c a n T k(G e n($ Prefixes $p)))$
apply (rule-tac monoD[OF mono- π])
using z-in-Scan-Gen using empty-subsetI insert-subset by blast
then have x-in-Scan-Gen: $x \in \pi k^{\prime}\{ \}$ (Scan $T k(G e n($ Prefixes $\left.p))\right)$
using $x-i n-z$ by blast
have item-end $x=k^{\prime}$ by (simp add: item-end- x-def)
with x-in-Scan-Gen show ?case
using items-le-def less.prems(12) mem-Collect-eq nat-le-linear by blast
next
case 2
obtain i where $i: i=$ ladder- $i L 0$ by blast
obtain i^{\prime} where $i^{\prime}: i^{\prime}=$ ladder-j $L 0$ by blast
obtain α^{\prime} where $\alpha^{\prime}: \alpha^{\prime}=$ ladder- $\gamma \alpha D L 0$ by blast
obtain n where n : $n=$ ladder- $n L 0$ by blast
have ldfix: LeftDerivationFix $\alpha i($ take $n D) i^{\prime} \alpha^{\prime}$
using LeftDerivationLadder-def $\alpha^{\prime} i i^{\prime} n$ less.prems(8) by blast
have α^{\prime}-alt: $\alpha^{\prime}=$ ladder- α 人 D L 1 using 2 by (simp add: α^{\prime} ladder- α-def)
have i^{\prime}-alt: $i^{\prime}=$ ladder-i $L 1$ using 2 by (simp add: i^{\prime} ladder-i-def)
obtain e where $e: e=D!n$ by blast
obtain $i x$ where $i x$: ix = ladder-ix L 1 by blast
obtain m where m : $m=$ ladder-n $L 1$ by blast
obtain E where E : $E=\operatorname{drop}$ (Suc n) (take mD) by blast
have ldintro: LeftDerivationIntro $\alpha^{\prime} i^{\prime}$ (snd e) ix E (ladder-j L 1) (ladder- γ人 D L 1)
by (metis 2.hyps LeftDerivationIntrosAt-def LeftDerivationIntros-def LeftDerivationLadder-def One-nat-def α^{\prime}-alt E diff-Suc-1 e i'-alt ix leI less.prems(8) m n not-less-eq zero-less-one)
have is-nonterminal- α^{\prime}-at- $i^{\prime}:$ is-nonterminal ($\alpha^{\prime}!i^{\prime}$)
using LeftDerivationIntro-implies-nonterminal ldintro by blast
then have is-nonterminal- α-at- $i:$ is-nonterminal ($\alpha!i$)
using LeftDerivationFix-def ldfix by auto
then have $\exists A$ a1 a2 a1'. splits-at αi a1 A a2 \wedge splits-at $\alpha^{\prime} i^{\prime} a 1^{\prime} A$ a2 \wedge LeftDerivation a1 (take $n D$) a1 ${ }^{\prime}$
using LeftDerivationFix-splits-at-nonterminal ldfix by auto
then obtain A a1 a2 a1' where A : splits-at αi a1 A a2 \wedge splits-at $\alpha^{\prime} i^{\prime}$ a1' A a2 \wedge

LeftDerivation a1 (take n D) a1' by blast
have A-def: $A=\alpha^{\prime}!i^{\prime}$ using A splits-at-def by blast
have is-nonterminal-A: is-nonterminal A using A-def is-nonterminal- $\alpha^{\prime}-a t-i^{\prime}$ by blast
have \exists rule. $e=\left(i^{\prime}\right.$, rule $)$
by (metis e 2.hyps LeftDerivationIntrosAt-def LeftDerivationIntros-def
LeftDerivationLadder-def One-nat-def Suc-leI diff-Suc-1 i^{\prime}-alt less.prems (8)
n prod.collapse zero-less-one)
then obtain rule where rule: $e=\left(i^{\prime}\right.$, rule) by blast
obtain w where $w: w=$ snd rule by blast
obtain $\alpha^{\prime \prime}$ where $\alpha^{\prime \prime}$: $\alpha^{\prime \prime}=a 1^{\prime} @ w$ @ $a 2$ by blast
have $\alpha^{\prime}-\alpha^{\prime \prime}$: LeftDerives $1 \alpha^{\prime} i^{\prime}$ rule $\alpha^{\prime \prime}$
by (metis A w LeftDerivationFix-is-sentence LeftDerivationIntro-def
LeftDerivationIntro-examine-rule LeftDerives1-def $\alpha^{\prime \prime}$ ldfix ldintro prod.collapse
rule snd-conv splits-at-implies-Derives1)
then have is-word-a1': is-word a1' using LeftDerives1-splits-at-is-word A by blast
have A-eq-fst-rule: $A=$ fst rule
using A LeftDerivationIntro-examine-rule ldintro rule by fastforce
have ix-bound: ix < length w using ix w rule ldintro LeftDerivationIntro-def snd-conv
by auto
then have $\exists w 1 W$ w2. splits-at w ix w1 W w2 using splits-at-def by blast
then obtain $w 1 W w 2$ where W : splits-at $w i x w 1 W w 2$ by blast
have a1'-w-a2: a1'@w@a2 = ladder-stepdown- $\alpha-0 \alpha D L$
using ladder-stepdown- α-0-altdef 2.hyps $A \alpha^{\prime}$-alt e i^{\prime}-alt less.prems(8) n
rule
snd-conv w by force
from LeftDerivationLadder-stepdown[OF less.prems(8) 2] obtain L^{\prime} where L^{\prime} :

LeftDerivationLadder (a1'@(w@a2)) (drop (ladder-stepdown-diff L) D) L^{\prime} (terminals (drop r p @ $[X])$) \wedge length $L^{\prime}=$ length $L-1 \wedge$
ladder-i $L^{\prime} 0=$ ladder-i L $1+$ ladder-ix L $1 \wedge$ ladder-last-j $L^{\prime}=$ ladder-last-j
L
using $a 1^{\prime}-w-a 2$ by auto
have ladder- i - $L^{\prime}-0$: ladder-i $L^{\prime} 0=i^{\prime}+i x$ using $L^{\prime} i^{\prime}$-alt ix by auto
have ladder-last-j- L^{\prime} : ladder-last-j $L^{\prime}=$ length (drop r p) using L^{\prime} less.prems by auto
from L^{\prime} have this1: LeftDerivationLadder (a1'@(w@a2)) (drop (ladder-stepdown-diff L) D) L^{\prime}
(terminals (drop rp@ $[X])$) by blast
have this2: length $a 1^{\prime} \leq$ ladder- $i L^{\prime} 0$ using A ladder- $i-L^{\prime}-0$ splits-at-def by auto
from LeftDerivationLadder-cut-prefix[OF this1 is-word-a1' this2]
obtain $D^{\prime} L^{\prime \prime} \gamma^{\prime}$ where $L^{\prime \prime}$:
terminals (drop rp@ $[X]$) $=a 1^{\prime} @ \gamma^{\prime} \wedge$
LeftDerivationLadder (w @ a2) $D^{\prime} L^{\prime \prime} \gamma^{\prime} \wedge$
$D^{\prime}=$ derivation-shift (drop (ladder-stepdown-diff L) D) (length a1') $0 \wedge$ length $L^{\prime \prime}=$ length $L^{\prime} \wedge$
ladder-i $L^{\prime \prime} 0+$ length $a 1^{\prime}=$ ladder-i $L^{\prime} 0 \wedge$
ladder-last-j $L^{\prime \prime}+$ length $a 1^{\prime}=$ ladder-last-j L^{\prime} by blast
have length-a1'-bound: length $a 1^{\prime} \leq$ length (drop $r p$) using $L^{\prime \prime}$ lad-der-last-j-L'
by linarith
then have is-prefix-a1'-drop-r-p: is-prefix a1' (terminals (drop r p))
proof -
have $f 1: \forall$ ss ssa ssb. \neg is-prefix (ss::symbol list) (ssa @ ssb) \vee is-prefix ss ssa $\vee(\exists$ ssc. ssc $\neq[] \wedge$ is-prefix ssc ssb \wedge ss $=s s a @ s s c)$
by (simp add: is-prefix-of-append)
have f2: \ss ssa. is-prefix ((ss::symbol list) @ ssa) ss $\vee \neg i s$-prefix ssa []
by (metis (no-types) append-Nil2 is-prefix-cancel)
have f3: \bigwedge ss. is-prefix ss []$\vee \neg$ is-prefix (terminals (drop rp) @ ss) a1'
by (metis (no-types) drop-eq-Nil is-prefix-append length-a1'-bound length-terminals)
have is-prefix a1' (a1'@ $\left.\gamma^{\prime}\right) \wedge$ is-prefix a1' a1'
by (metis (no-types) append-Nil2 is-prefix-cancel is-prefix-empty)
then show ?thesis
using f3 f2 f1 by (metis $L^{\prime \prime}$ terminals-append)
qed
obtain r^{\prime} where $r^{\prime}: r^{\prime}=r+i^{\prime}$ by blast
have length-a1'-eq- i^{\prime} : length $a 1^{\prime}=i^{\prime}$
using A less-or-eq-imp-le min.absorb2 splits-at-def by auto
have $a 1^{\prime}-r^{\prime}: r \leq r^{\prime} \wedge r^{\prime} \leq$ length $p \wedge$
terminals $($ drop $r p)=a 1^{\prime} @\left(\right.$ terminals $\left(\right.$ drop $\left.\left.r^{\prime} p\right)\right)$
using is-prefix-a1'-drop-r-p r^{\prime}
proof -
have \exists q. terminals (drop r p) $=a 1^{\prime} @ q$
using is-prefix-a1'-drop-r-p by (metis is-prefix-unsplit)
then obtain q where q : terminals (drop $r p)=a 1^{\prime} @ q$ by blast
have $q=$ drop $i^{\prime}($ terminals (drop r p))
using length-a1'-eq-i' q by (simp add: append-eq-conv-conj)
then have $q=$ terminals (drop $i^{\prime}(d r o p r p)$) by simp
then have $q=$ terminals (drop $r^{\prime} p$) by (simp add: r^{\prime} add.commute)
with q show ?thesis
using add.commute diff-add-inverse le-Suc-ex le-add1 le-diff-conv
length-a1'-bound
length-a1'-eq-i' length-drop $r r^{\prime}$ by auto
qed
have ladder-i-L': ladder-i $L^{\prime \prime} 0=i x$ using $L^{\prime \prime}$ ladder- $i-L^{\prime}-0$ length-a1'-eq-i'
add.commute add-left-cancel by linarith
have $L^{\prime \prime}$-ladder: LeftDerivationLadder (w @ a2) $D^{\prime} L^{\prime \prime} \gamma^{\prime}$ using $L^{\prime \prime}$ by
have ladder-i $L^{\prime \prime} 0<$ length w using ladder-i-L" ix-bound by blast
from LeftDerivationLadder-cut-appendix[OF $L^{\prime \prime}$-ladder this]
obtain $E^{\prime} F^{\prime} \gamma 1^{\prime} \gamma 2^{\prime} L^{\prime \prime \prime}$ where $L^{\prime \prime \prime}$:
$D^{\prime}=E^{\prime} @ F^{\prime} \wedge$
$\gamma^{\prime}=\gamma 1^{\prime} @ \gamma 2^{\prime} \wedge$

LeftDerivationLadder $w E^{\prime} L^{\prime \prime \prime} \gamma 1^{\prime} \wedge$
derivation-ge $F^{\prime}\left(\right.$ length $\left.\gamma 1^{\prime}\right) \wedge$
LeftDerivation a2 (derivation-shift $F^{\prime}\left(\right.$ length $\left.\left.\gamma 1{ }^{\prime}\right) 0\right) \gamma 2^{\prime} \wedge$
length $L^{\prime \prime \prime}=$ length $L^{\prime \prime} \wedge$ ladder $-i L^{\prime \prime \prime} 0=$ ladder- $i L^{\prime \prime} 0 \wedge$
ladder-last-j $L^{\prime \prime \prime}=$ ladder-last-j $L^{\prime \prime}$
by blast
obtain z where $z: z=\operatorname{Item}(A, w)($ length $w)\left(\right.$ charslength $\left(\right.$ take $\left.\left.r^{\prime} p\right)\right) k^{\prime}$ by blast
have $z 1$: length $L^{\prime \prime \prime}<$ length L using 2.hyps $L^{\prime} L^{\prime \prime} L^{\prime \prime \prime}$ by linarith
have $z 2: p \in \mathfrak{P}$ by (simp add: p-dom)
have z3: charslength $p=k$ using p-charslength by auto
have $z 4: X \in T$ by (simp add: X-dom)
have $z 5: T \subseteq \mathcal{X} k$ by (simp add: less.prems(4))
have rule $\in \mathfrak{R}$
using Derives1-rule LeftDerives1-implies-Derives1 $\alpha^{\prime}-\alpha^{\prime \prime}$ by blast
then have $z 6:(A, w @[]) \in \mathfrak{R}$ using $w A$-eq-fst-rule by auto
have z^{7} : $r^{\prime} \leq$ length p using $a 1^{\prime}-r^{\prime}$ by linarith
have leftderives $[\mathfrak{S}](($ terminals $($ take $r p)) @[N] @ \gamma)$
using leftderives-start by blast
then have leftderives $[\mathfrak{S}](($ terminals $($ take $r ~ p)) @(\alpha @ \beta) @ \gamma)$
by (metis \mathfrak{P}-wellformed is-derivation-def is-derivation-is-sentence is-sentence-concat
is-word-terminals-take leftderives-implies-derives leftderives-rule-step
p-dom rule-dom)
then have leftderives $[\mathfrak{S}](($ terminals $($ take r p $)) @ a 1 @([A] @ a 2 @ \beta) @ \gamma)$
using A splits-at-combine append-assoc by fastforce
then have z8-helper: leftderives $[\mathfrak{S}](($ terminals $($ take r $p)) @ a 1$ @ $([A] @ a 2 @ \beta) @ \gamma)$
by (meson A LeftDerivation-implies-leftderives \mathfrak{P}-wellformed is-derivation-def
$i s$-derivation-is-sentence is-sentence-concat is-word-terminals-take leftderives-implies-derives leftderives-trans-step p-dom)
have join-terminals: (terminals (take r p) @a1' = terminals (take $r^{\prime} p$)
by (metis is-prefix-a1'-drop-r-p length-a1'-eq-i' r' take-add take-prefix terminals-drop terminals-take)
from $z 8$-helper join-terminals have $z 8$:
leftderives $[\mathfrak{S}]$ (terminals (take $\left.r^{\prime} p\right) @[A] @ a 2 @ \beta$ @ γ)
by (metis append-assoc)
have γ^{\prime}-altdef: $\gamma^{\prime}=$ terminals (drop $r^{\prime} p @[X]$)
using $L^{\prime \prime} a 1^{\prime}-r^{\prime}$ by auto
have ladder-last-j $L^{\prime \prime \prime}+$ length $a 1^{\prime}=$ length $($ drop $r p)$
using $L^{\prime \prime} L^{\prime \prime \prime}$ ladder-last-j- L^{\prime} by linarith
then have ladder-last-j- $L^{\prime \prime \prime}-\gamma^{\prime}:$ ladder-last- $L^{\prime \prime \prime}=$ length $\gamma^{\prime}-1$
by (simp add: γ^{\prime}-altdef length-a1'-eq-i' r^{\prime})
then have length $\gamma^{\prime}-1<$ length $\gamma 1^{\prime}$
using $L^{\prime \prime \prime}$ ladder-last-j-bound by fastforce
then have length $\gamma 1^{\prime}+$ length $\gamma 2^{\prime}-1<$ length $\gamma 1^{\prime}$
using $L^{\prime \prime \prime}$ by simp
then have length $\gamma^{2}{ }^{\prime}=0$ by arith
then have $\gamma 2^{\prime}: \gamma^{2}{ }^{\prime}=[]$ by simp

```
    then have }\gamma\mp@subsup{1}{}{\prime}:\gamma\mp@subsup{1}{}{\prime}=\mathrm{ terminals (drop r' p@ [X]) using }\mp@subsup{\gamma}{}{\prime}\mathrm{ -altdef }\mp@subsup{L}{}{\prime\prime\prime}\mathrm{ by
auto
    then have z9:LeftDerivationLadder w E' L'\prime\prime}(terminals (drop r'p @ [X]))
        using L'"\prime by blast
    have z10: ladder-last-j L'\prime\prime}= length (drop r'p
        using }\mp@subsup{\gamma}{}{\prime}\mathrm{ -altdef ladder-last-j- L'''-}\mp@subsup{\gamma}{}{\prime}\mathrm{ by auto
    note z11 = k'
    have z12:z=Item (A,w @ []) (length w) (charslength (take r'p)) k'
        using z by simp
    note z13 = less.prems(12)
    note induct = less.hyps(1)[of L'\prime\prime A w [] r' a2@ @@\gamma E'z]
    note z-in-I = induct[OF z1 z2 z3 z4 z5 z6 z7 z% z9 z10 z11 z12 z13]
    have a2-derives-empty: derives a2 [] using L'I\prime \gamma2'
    using LeftDerivation-implies-leftderives leftderives-implies-derives by blast
    obtain x1 where x1: x1 = Item ( N, \alpha@ \beta) (length a1)
    (charslength (take r p)) (charslength (take r' p)) by blast
obtain q}\mathrm{ where q: q= take r' p by blast
then have is-prefix-q-p: is-prefix q p by simp
then have q-in-Prefixes: q\in Prefixes p using Prefixes-is-prefix by blast
then have wellformed-q: wellformed-tokens q
    using p-dom is-prefix-q-p prefixes-are-paths' }\mathfrak{P}\mathrm{ -wellformed by blast
    have item-rule-x1: item-rule x1 = (N, \alpha@\beta)
        using x1 by simp
    have is-prefix-r-r': is-prefix (take r p) (take r'p)
    by (metis append-eq-conv-conj is-prefix-take r' take-add)
then have charslength-le-r-r': charslength (take r p) \leqcharslength (take r'
p)
    using charslength-of-prefix by blast
have is-prefix (take r'p) p by auto
then have charslength-r'-p: charslength (take r'p) \leq charslength p
    using charslength-of-prefix by blast
    have charslength p\leqlength Doc
    using less.prems(1) add-leE k' k'-upperbound z3 by blast
with charslength-r'- 
    charslength (take r r}p)\leqlength Doc by arith
have }\alpha\mathrm{ -decompose: }\alpha=a1 @ [A] @ a2 using A splits-at-combine by blast
have wellformed-x1: wellformed-item x1
    apply (auto simp add: wellformed-item-def)
    using item-rule-x1 less.prems apply auto[1]
    using charslength-le-r-r' x1 apply auto[1]
    using charslength-r'-Doc x1 apply auto[1]
    using x1 \alpha-decompose by simp
have item-nonterminal-x1: item-nonterminal x1 = N
    by (simp add: x1 item-nonterminal-def)
have r-q-p: take r (terminals q) = terminals (take r p)
by (metis q is-prefix-r-r' length-take min.absorb2 r take-prefix terminals-take)
have item-\alpha-x1: item- }\alphax1=a1 by (simp add: \alpha-decompose item- \alpha-def x1
```

```
    have a1':a1'= drop r (terminals q)
            by (metis append-eq-conv-conj join-terminals length-take length-terminals
min.absorb2 q r)
    have pvalid-q-x1: pvalid q x1
    apply (simp add: pvalid-def wellformed-q wellformed-x1 item-nonterminal-x1)
            apply (rule-tac x=r in exI)
            apply auto
            apply (simp add: a1'-r' min.absorb2 q)
            apply (simp add: q x1)
            apply (simp add: q x1 r')
            using r-q-p less.prems(7) append-Cons is-leftderivation-def
            leftderivation-implies-derivation apply fastforce
            apply (simp add: item-\alpha-x1)
            using a1' A LeftDerivation-implies-leftderives leftderives-implies-derives
by blast
            have item-end-x1-le-k': item-end x1 \leq k'
            using charslength-r'-p
            apply (simp add: x1)
            using less.prems by auto
            have x1-in-I: x1 \inI
            apply (subst less.prems(12))
            apply (auto simp add: items-le-def item-end-x1-le-k')
            apply (rule \pi-apply-setmonotone)
            apply (rule Scan-apply-setmonotone)
            apply (simp add:Gen-def)
            apply (rule-tac x=q in exI)
            by (simp add: pvalid-q-x1 paths-le-def q-in-Prefixes)
            obtain x2 where x2: x2 = inc-item x1 k' by blast
            have x1-in-bin: x1 \in bin I (item-origin z)
            using bin-def x1 x1-in-I z12 by auto
            have x2-in-Complete: x2 \in Complete k' I
                apply (simp add: Complete-def)
            apply (rule disjI2)
            apply (rule-tac x=x1 in exI)
            apply (simp add: x2)
            apply (rule-tac x=z in exI)
            apply auto
            using x1-in-bin apply blast
            using bin-def z12 z-in-I apply auto[1]
            apply (simp add: is-complete-def z12)
            by (simp add: \alpha-decompose is-complete-def item-nonterminal-def next-symbol-def
x1 z12)
            have wf-I': wellformed-items ( }\pi\mp@subsup{k}{}{\prime}{}(Scan Tk (Gen (Prefixes p))))
                            by (simp add: wellformed-items-Gen wellformed-items-Scan wellformed-items-\pi
z5)
            from items-le-Complete[OF this] x2-in-Complete
            have x2-in-I: x2 \inI by (metis Complete-\pi-fix z13)
            have wellformed-items I
                using wf-I' items-le-is-filter wellformed-items-def z13 by auto
```

```
    with x2-in-I have wellformed-x2: wellformed-item x2
        by (simp add: wellformed-items-def)
        have item-dot-x2: item-dot x2 = Suc (length a1)
        by (simp add: x2 x1)
    have item-\beta-x2: item- }\beta\mathrm{ x2 =a2 @ }
        apply (simp add: item- }\beta\mathrm{ -def item-dot-x2)
        apply (simp add: item-rhs-def x2 x1 \alpha-decompose)
        done
    have item-end-x2: item-end x2 = k' by (simp add: x2)
        note inc-dot-x2-by-a2 = thmD6[OF wellformed-x2 item- }\beta\mathrm{ -x2 item-end-x2
a2-derives-empty]
        have x = inc-dot (length a2) x2
            by (simp add: \alpha-decompose inc-dot-def less.prems(11) x1 x2)
        with inc-dot-x2-by-a2 have }x\in\pi\mp@subsup{k}{}{\prime}{}{x2} by aut
        then have }x\in\pi\mp@subsup{k}{}{\prime}{}I\mathrm{ using x2-in-I
            by (meson contra-subsetD empty-subsetI insert-subset monoD mono-\pi)
            then show }x\in
            by (metis (no-types, lifting) \pi-subset-elem-trans dual-order.refl item-end-x-def
            items-le-def items-le-is-filter mem-Collect-eq z13)
    qed
qed
theorem thmD10:
    assumes p-dom: p\in\mathfrak{P}
    assumes p-charslength: charslength p=k
    assumes X-dom: X \inT
    assumes T-dom:T\subseteq\mathcal{X k}
    assumes rule-dom:(N,\alpha@\beta)\in\Re
    assumes r: r\leq length p
    assumes leftderives-start:leftderives [\mathfrak{S}]((terminals (take r p))@[N]@\gamma)
    assumes leftderives-\alpha:leftderives \alpha (terminals ((drop r p)@[X]))
    assumes }\mp@subsup{k}{}{\prime}:\mp@subsup{k}{}{\prime}=k+\mathrm{ length (chars-of-token X)
    assumes item-def:x = Item (N, \alpha@\beta) (length \alpha) (charslength (take r p)) k'
    assumes I:I= items-le k}\mp@subsup{k}{}{\prime}(\pi\mp@subsup{k}{}{\prime}{}(Scan Tk(Gen (Prefixes p))))
    shows }x\in
proof -
    have \exists D. LeftDerivation \alpha D (terminals ((drop r p)@[X]))
        using leftderives-\alpha leftderives-implies-LeftDerivation by blast
    then obtain D where D: LeftDerivation \alpha D (terminals ((drop r p)@[X])) by
blast
    have is-sentence: is-sentence (terminals (drop r p @ [X]))
    using derives-is-sentence is-sentence-concat leftderives-\alpha leftderives-implies-derives
            rule-\alpha-type rule-dom by blast
    have \existsL.LeftDerivationLadder \alpha DL (terminals ((drop r p)@[X])) ^
            ladder-last-j L = length (drop r p)
    apply (rule LeftDerivationLadder-exists)
    apply (rule D)
```

apply (rule is-sentence)
by auto
then obtain L where L : LeftDerivationLadder $\alpha D L$ (terminals ((drop r $p) @[X])$) and

L-ladder-last-j: ladder-last-j $L=$ length (drop r p) by blast
from thmD10-ladder[OF assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) $\operatorname{assms}(7)$

L L-ladder-last-j k^{\prime} item-def I]
show ?thesis .
qed
end
end
theory TheoremD11
imports TheoremD10
begin

context LocalLexing begin

lemma LeftDerivationLadder-length-1:
assumes ladder: LeftDerivationLadder $\alpha D L \gamma$
assumes singleton-L: length $L=1$
shows LeftDerivationFix α (ladder-i L 0) D (ladder-last-j L) γ
proof -
have ldfix: LeftDerivationFix α (ladder-i L 0) (take (ladder-n L 0) D) (ladder-j L 0)
(ladder- $\gamma \alpha D L 0)$
using ladder LeftDerivationLadder-def by blast
have ladder-n-0: ladder-n $L 0=$ length D
using ladder singleton-L
by (metis LeftDerivationLadder-def One-nat-def diff-Suc-1 is-ladder-def lad-der-last-n-intro)
from ldfix ladder-n-0 ladder singleton-L show ?thesis
by (metis Derivation-unique-dest LeftDerivationLadder-def
LeftDerivationLadder-implies-LeftDerivation-at-index LeftDerivationLadder-ladder-n-bound
LeftDerivation-implies-Derivation One-nat-def diff-Suc-1 ladder-last-j-def take-all
zero-less-one)
qed
lemma LeftDerivationFix-from-singleton-helper:
assumes LeftDerivationFix $[A] 0 D$ (length $u)(u @[B] @ v)$
shows $D=[]$
proof -
from iffD1[OF LeftDerivationFix-def assms] obtain EF where EF:
is-sentence $[A] \wedge$
is-sentence (u @ $[B]$ @ v) \wedge

```
    LeftDerivation [A] D(u@ [B]@v)^
    0< length [A]^
    length u< length (u@ [B]@v)^
    [A]! O=(u@ [B]@v)! length u ^
    D=E @ derivation-shift F 0 (Suc (length u)) ^
    LeftDerivation (take 0 [A]) E (take (length u) (u @ [B] @ v)) ^
    LeftDerivation (drop (Suc 0) [A])F(drop (Suc (length u)) (u@ [B]@v))
    by blast
    from EF have E: E = []
    by (metis Derivation.elims(2) Derives1-split LeftDerivation-implies-Derivation
        Nil-is-append-conv list.distinct(1) take-0)
    from EF have F:F=[]
    by (metis E LeftDerivation.simps(1) LeftDerivation-ge-take LeftDerivation-implies-Derivation
        append-eq-conv-conj derivation-ge-shift is-word-Derivation length-Cons length-derivation-shift
        list.size(3) nth-Cons-0 nth-append self-append-conv2 take-0)
    from EF E F show }D=[] by aut
qed
lemma LeftDerivationFix-from-singleton:
    assumes LeftDerivationFix [A] i D j\gamma
    shows D = []
proof -
    have \existsu B v. splits-at \gamma ju B v using assms
        using LeftDerivationFix-splits-at-derives by blast
    then obtain uBv where s: splits-at \gamma ju Bv by blast
    from s have s1:\gamma=u@ [B]@ v using splits-at-combine by blast
    from s have s2: j = length u using splits-at-def by auto
    from assms s1 s2 LeftDerivationFix-from-singleton-helper
    show ?thesis by (metis LeftDerivationFix-def length-Cons less-Suc0 list.size(3))
qed
lemma LeftDerivationLadder-ladder-}-\mathrm{ -last:
    assumes LeftDerivationLadder \alpha D L \gamma
```



```
by (metis Derive LeftDerivationLadder-def LeftDerivation-implies-Derivation One-nat-def
assms
    is-ladder-def last-ladder-\gamma)
theorem thmD11-helper:
    p\in\mathfrak{P}\Longrightarrow
    charslength p=k\Longrightarrow
    X\inT\Longrightarrow
    T\subseteq\mathcal{X k}\Longrightarrow
    q=p@ [X]\Longrightarrow
    (N,\alpha@\beta)\in\Re\Longrightarrow
    r\leq length q}
```

```
    LeftDerivation \([\mathfrak{S}] D((\) terminals \((\) take \(r q)) @[N] @ \gamma) \Longrightarrow\)
    leftderives \(\alpha\) (terminals (drop \(r q)) \Longrightarrow\)
    \(k^{\prime}=k+\) length (chars-of-token \(\left.X\right) \Longrightarrow\)
    \(x=\operatorname{Item}(N, \alpha @ \beta)(\) length \(\alpha)(\) charslength \((\) take \(r q)) k^{\prime} \Longrightarrow\)
    \(I=\) items-le \(k^{\prime}\left(\pi k^{\prime}\{ \}(S c a n T k(\right.\) Gen \((\) Prefixes \(\left.p)))\right) \Longrightarrow\)
    \(x \in I\)
proof (induct length \(D\) arbitrary: \(D r N \gamma \alpha \beta x\) rule: less-induct)
    case less
        have \(D=[] \vee D \neq[]\) by blast
        then show ?case
        proof (induct rule: disjCases2)
            case 1
            then have \(r: r=0\)
                            by (metis LeftDerivation.simps(1) diff-add-0 diff-add-inverse2 le-0-eq
length-0-conv
            length-append length-terminals less.prems(7) less.prems(8) list.size(4)
take-eq-Nil)
    with 1 have \(\gamma: \gamma=[]\)
    using LeftDerivation.simps(1) append-Cons append-self-conv2 less.prems(8)
```

list.inject
take-eq-Nil terminals-empty by auto
from $r \gamma 1$ have start-is- $N: \mathfrak{S}=N$
using LeftDerivation.simps (1) append-eq-Cons-conv less.prems(8) list.inject
take-eq-Nil
terminals-empty by auto
have $h 1: r \leq$ length p using r by auto
have h2: leftderives [ऽ] (terminals (take r p) @ $[N]$ @ γ)
by (simp add: r γ start-is- N)
have h3: leftderives α (terminals (drop r $p @[X])$)
using less.prems by (simp add: r less.prems)
have $h_{4}: x=\operatorname{Item}(N, \alpha @ \beta)($ length $\alpha)($ charslength $($ take r $p)) k^{\prime}$
using less.prems by (simp add: r less.prems)
from thmD10[OF less.prems(1, 2, 3, 4, 6) h1 h2 h3 less.prems(10) h4
less.prems(12)]
show ?case.
next
case 2
note D-non-empty $=2$
have $r<$ length $q \vee r=$ length q using less by arith
then show ?case
proof (induct rule: disjCases2)
case 1
have $h 1: r \leq$ length p using less.prems 1 by auto
have take- q - p : take r $q=$ take r p
using 1 less.prems
by (simp add: drop-keep-last le-neq-implies-less nat-le-linear not-less-eq
not-less-eq-eq)
have h2: leftderives [ऽ] (terminals (take r p) @ [N] @ γ)
apply (simp only: take- $q-p[$ symmetric $]$)
using less.prems LeftDerivation-implies-leftderives by blast
have h3: leftderives α (terminals (drop rp@[X]))
using less.prems $(5,9) h 1$ by simp
have $h_{4}: k^{\prime}=k+$ length (chars-of-token X) using less.prems by blast
have $h 5: x=\operatorname{Item}(N, \alpha @ \beta)($ length $\alpha)($ charslength $($ take $r p)) k^{\prime}$
using less.prems take- $q-p$ by simp
from thmD10[OF less.prems (1, 2, 3, 4, 6) h1 h2 h3 h4 h5 less.prems(12)]

show ?case.

next
case 2
from 2 have $l d$: LeftDerivation $[\mathfrak{S}] D$ (terminals $q @[N] @ \gamma)$
using less.prems(8) by auto
from 2 have α-derives-empty: derives α []
using less.prems (9) by auto
have is-sentence-p: is-sentence (terminals p)
using less.prems(1) \mathcal{L}_{P}-derives \mathfrak{P}-are-admissible admissible-def
is-derivation-def
is-derivation-is-sentence is-sentence-concat by blast
have is-symbol-X: is-symbol (terminal-of-token X)
using less.prems $(3,4) \mathcal{X}$-are-terminals is-symbol-def rev-subsetD by
have is-sentence-q: is-sentence (terminals q) using is-sentence-p
is-symbol-X
less.prems LeftDerivation-implies-leftderives is-derivation-def
is-derivation-is-sentence is-sentence-concat ld leftderives-implies-derives
by blast
have is-symbol- N : is-symbol N
using less.prems(6) is-symbol-def rule-nonterminal-type by blast
have is-sentence- γ : is-sentence γ
by (meson LeftDerivation-implies-leftderives is-derivation-def is-derivation-is-sentence
is-sentence-concat ld leftderives-implies-derives)
have ld-exists-h1: is-sentence (terminals q @ $[N]$ @ γ)
using is-sentence-q is-sentence- γ is-symbol- N is-sentence-concat
LeftDerivation-implies-leftderives is-derivation-def is-derivation-is-sentence
$l d$
leftderives-implies-derives by blast
have ld-exists-h2: length $q<$ length (terminals q @ $[N] @ \gamma$) by simp
from LeftDerivationLadder-exists[OF ld ld-exists-h1 ld-exists-h2] obtain
L where
L: LeftDerivationLadder [ऽ] $D L$ (terminals q @ $[N]$ @ γ) and
L-last-j: ladder-last-j $L=$ length q by blast
note r-eq-length- $q=2$
have ladder-i-0-eq-0: ladder-i L $0=0$ using L append-Nil ladder-i-0-bound
length-append-singleton less-Suc0 list.size(3) by fastforce
have length $L=1 \vee$ length $L>1$ using L
by (metis LeftDerivationLadder-def Suc-eq-plus1 Suc-eq-plus1-left
butlast-conv-take
butlast-snoc diff-add-inverse2 is-ladder-def le-add1 le-neq-implies-less length-append-singleton old.nat.exhaust take-0)

then show?case

proof (induct rule: disjCases2)
case 1
from LeftDerivationLadder-length-1[OF L 1] ladder-i-0-eq-0
have ldfix: LeftDerivationFix [ऽ] 0 D (ladder-last-j L) (terminals q
@ $[N] @ \gamma)$
by auto
with LeftDerivationFix-from-singleton have $D=[]$ by blast
with D-non-empty have False by auto
then show ?case by blast

next

case 2
obtain a where a : $a=$ ladder- α [$\mathfrak{S}] D L$ (length $L-1$) by blast then have $a-a s-\gamma: a=$ ladder- $\gamma[\mathfrak{S}] D L$ (length $L-2)$ using 2
ladder- α-def
by (metis diff-diff-left diff-is-0-eq not-le one-add-one)
have introsAt: LeftDerivationIntrosAt [S] $D L$ (length $L-1$) using
L
by (metis 2.hyps LeftDerivationIntros-def LeftDerivationLadder-def
One-nat-def
Suc-leI Suc-lessD diff-less less-not-refl not-less-eq zero-less-diff)
obtain i where $i: i=$ ladder- $i L$ (length $L-1$) by blast
obtain j where $j: j=$ ladder $-j L$ (length $L-1$) by blast
obtain $i x$ where $i x$: ix = ladder-ix L (length $L-1$) by blast
obtain c where $c: c=$ ladder- $\gamma[\mathfrak{S}] D L$ (length $L-1$) by blast
obtain n where n : $n=$ ladder- $n L$ (length $L-1-1$) by blast
obtain m where m : $m=$ ladder-n L (length $L-1$) by blast
obtain e where $e: e=D!n$ by blast
obtain E where $E: E=$ drop (Suc n) (take m D) by blast
from iffD1[OF LeftDerivationIntrosAt-def introsAt]
have $i=f s t$ e \wedge LeftDerivationIntro a $i($ snd e) ix E j c by (metis Eaceiixjmn)
then have $i-e q-f s t-e: i=f s t e$ and
ldintro: LeftDerivationIntro a i (snd e) ix E $j c$ by auto
have c-def: $c=$ terminals q @ $[N]$ @ γ
using c L LeftDerivationLadder-ladder- γ-last by simp
from iffD1[OF LeftDerivationIntro-def ldintro] obtain b where b : LeftDerives1 a $i($ snd $e) b \wedge i x<l e n g t h(s n d(s n d e)) \wedge$ snd (snd e) ! ix $=c!j \wedge$ LeftDerivationFix $b(i+i x) E j c$ by blast obtain $M \omega$ where $M \omega:(M, \omega)=$ snd e using prod.collapse by
have j - $q: j=$ length q using L-last- $j j$ ladder-last- j-def by auto
with c-def have c-at- $j: c!j=N$
by (metis append-Cons length-terminals nth-append-length)
with $b M \omega$ have ω-at-ix: $\omega!i x=N$ by (metis snd-conv)
obtain $\mu 1 \mu 2$ where split- ω : splits-at ω ix $\mu 1 N \mu 2$
by (metis M $\omega \omega$-at-ix b snd-conv splits-at-def)
obtain a1 a2 where split-a: splits-at a i a1 Ma2 using b
by (metis LeftDerivationIntro-bounds-ij LeftDerivationIntro-examine-rule $M \omega$
fst-conv ldintro splits-at-def)
then have is-word-a1: is-word a1
using LeftDerives1-splits-at-is-word b by blast
have $b=a 1$ @ ω @ a2 using split- $a b M \omega$
by (metis LeftDerives1-implies-Derives1 snd-conv splits-at-combine-dest)
then have b-def: $b=a 1$ @ $\mu 1$ @ $[N]$ @ $\mu 2$ @ a2 using split- ω splits-at-combine
by simp
have is-nonterminal- N : is-nonterminal N
using less.prems (6) rule-nonterminal-type by blast
with LeftDerivationFix-splits-at-nonterminal split-a b
have $\exists U$ b1 b2 c1. splits-at $b(i+i x) b 1 U$ b2 \wedge splits-at c $j c 1 U$

b2 \wedge

LeftDerivation b1 E c1 by (simp add: LeftDerivationFix-def c-at-j)
then obtain $b 1$ b2 c1 where b1b2c1:
splits-at $b(i+i x) b 1 N b 2 \wedge$ splits-at c $j c 1 N b 2 \wedge$
LeftDerivation b1 E c1 using c-at-j splits-at-def by auto
then have $c 1-q: c 1=$ terminals q using c-def $j-q$
by (simp add: append-eq-conv-conj splits-at-def)
have length-a1-eq-i: length a1 $=i$ using split-a splits-at-def by auto
have length- $\mu 1-e q-i x$: length $\mu 1=i x$ using split- ω splits-at-def by
auto
have $b 1=$ take $(i+i x) b$ using b1b2c1 splits-at-def by blast
then have b1-eq-a1- $\mu 1: b 1=a 1$ @ $\mu 1$ using b-def length-a1-eq- i
length- $\mu 1-e q-i x$
by (simp add: append-eq-conv-conj take-add)
have LeftDerivation (a1 @ $\mu 1$) Ec1 using b1b2c1 b1-eq-a1- $\mu 1$ by

blast

from LeftDerivation-skip-prefixword-ex[OF this is-word-a1]
obtain w where $w: c 1=a 1 @ w \wedge$
LeftDerivation $\mu 1$ (derivation-shift E (length a1) 0$) w$ by blast
have a1-eq-take-i: a1 = take $i($ terminals q)
using w c1- q split- a append-eq-conv-conj length-a1-eq-i by blast
have $\mu 1$-leftderives: leftderives $\mu 1$ (terminals (drop iq)) using w c1-q split-a

LeftDerivation-implies-leftderives append-eq-conv-conj length-a1-eq-i by auto
have LeftDerivation [S] (take n D) a
by (metis 2.hyps L LeftDerivationLadder-implies-LeftDerivation-at-index
One-nat-def Suc-lessD a-as- γ diff-Suc-eq-diff-pred diff-Suc-less n numeral-2-eq-2)
then have LD-to-M: LeftDerivation [S] (take n D) ((terminals (take iq))@[M]@a2)
using split-a splits-at-combine a1-eq-take-i terminals-take by auto
have is-ladder: is-ladder $D L$ using L by (simp add: LeftDerivation-Ladder-def)
then have n-less-m: $n<m$ using $n m$ is-ladder-def by (metis (no-types, lifting) 2.hyps One-nat-def diff-Suc-less length-greater-0-conv zero-less-diff)
have m-le-D: $m \leq$ length D using m is-ladder-def is-ladder dual-order.refl ladder-n-last-is-length by auto
have length (take $n D$) $=n$ using n-less-m m-le- D
using length-take less-irrefl less-le-trans linear min.absorb2 by auto
then have length-take-n-D: length (take n D) < length D using n-less-m m-le-D less-le-trans by linarith
have ω-decompose: $\omega=\mu 1 @(N \# \mu 2)$ using split- ω splits-at-combine by simp
have $(M, \omega) \in \mathfrak{R}$ by (metis Derives1-rule LeftDerives1-implies-Derives1 $M \omega b)$
with ω-decompose have M-rule: $(M, \mu 1 @(N \# \mu 2)) \in \mathfrak{R}$ by simp
have i-le- q : $i \leq$ length q using a1-eq-take-i length-a1-eq-i by auto obtain y where
$y: y=\operatorname{Item}(M, \mu 1 @ N \# \mu 2)$ (length $\mu 1)$ (charslength (take i
q)) k^{\prime} by blast
from less.hyps[OF length-take-n-D less.prems(1, 2, 3, 4, 5) M-rule i-le-q LD-to-M
$\mu 1$-leftderives less.prems(10) y less.prems(12)]
have y-in-I: $y \in I$ by blast
obtain z where $z: z=\operatorname{Item}(N, \alpha @ \beta) 0 k^{\prime} k^{\prime}$ by blast
then have z-is-init-item: $z=$ init-item $(N, \alpha @ \beta) k^{\prime}$ by (simp add:
init-item-def)
have $z \in$ Predict $k^{\prime}\{y\}$
apply (simp add: z-is-init-item)
apply (rule next-symbol-predicts)
apply (simp add: is-complete-def next-symbol-def y)
apply (simp add: less.prems(6))
apply (simp add: y item-end-def)
done
then have $z \in$ Predict $k^{\prime} I$ using Predict-def bin-def y-in- I by auto then have z-in-I: $z \in I$ by (metis Predict- π-fix items-le-Predict less.prems(12))
have length-chars-q: length (chars q) $=k^{\prime}$ using less.prems by simp
have x-is-inc-dot: $x=$ inc-dot (length α) z
by (simp add: less.prems(11) r-eq-length-q length-chars-q z inc-dot-def)
have wellformed-items-I: wellformed-items I
apply (subst less.prems(12))
by (meson LocalLexing.items-le-is-filter LocalLexing.wellformed-items-Gen
LocalLexing-axioms empty-subsetI less.prems(4) subsetCE
wellformed-items-Scan
wellformed-items- π wellformed-items-def)
with z-in-I have wellformed- z : wellformed-item z
using wellformed-items-def by blast
have item- β-z: item- $\beta z=\alpha @ \beta$ by (simp add: z-is-init-item)
have item-end-z: item-end $z=k^{\prime}$ by (simp add: z-is-init-item)
have $x \in \pi k^{\prime}\{ \}\{z\}$
apply (simp add: x-is-inc-dot)
apply (rule thmD6)
apply (rule wellformed-z)
apply (rule item- $\beta-z$)
apply (rule item-end-z)
by (simp add: α-derives-empty)
then have $x \in \pi k^{\prime}\{ \} I$ using z-in- I
by (meson contra-subsetD empty-subsetI insert-subset monoD mono- π)

then show ?case

by (metis (no-types, lifting) LocalLexing.wellformed-item-def
LocalLexing-axioms
π-subset-elem-trans item.sel(3) item.sel(4) items-le-def items-le-is-filter
less.prems(11) less.prems(12) mem-Collect-eq wellformed-z z)
qed
qed
qed
qed
theorem thmD11:
assumes p-dom: $p \in \mathfrak{P}$
assumes p-charslength: charslength $p=k$
assumes X-dom: $X \in T$
assumes T-dom: $T \subseteq \mathcal{X} k$
assumes q-def: $q=p @[X]$
assumes rule-dom: $(N, \alpha @ \beta) \in \mathfrak{R}$
assumes r : $r \leq$ length q
assumes leftderives-start: leftderives $[\mathfrak{S}](($ terminals $($ take $r q)) @[N] @ \gamma)$
assumes leftderives- α : leftderives α (terminals (drop r q))
assumes $k^{\prime}: k^{\prime}=k+$ length (chars-of-token X)
assumes item-def: $x=\operatorname{Item}(N, \alpha @ \beta)($ length $\alpha)\left(\right.$ charslength (take r q)) k^{\prime}
assumes $I: I=$ items-le $k^{\prime}\left(\pi k^{\prime}\{ \}(S c a n T k(G e n(\right.$ Prefixes $\left.p)))\right)$
shows $x \in I$
proof -
have $\exists D$. LeftDerivation $[\mathfrak{S}] D(($ terminals $($ take $r q) @[N] @ \gamma)$
using leftderives-start leftderives-implies-LeftDerivation by blast
then obtain D where D : LeftDerivation [$\mathfrak{S}] D(($ terminals $($ take $r q)) @[N] @ \gamma)$
by blast
from thmD11-helper[OF $\operatorname{assms}(1,2,3,4,5,6,7) D \operatorname{assms}(9,10,11,12)]$
show ?thesis .
qed
end

end

theory TheoremD12
imports TheoremD11
begin

context LocalLexing begin

lemma charslength-appendix-is-empty:
charslength $(p @ t s)=$ charslength $p \Longrightarrow(\bigwedge t . t \in$ set $t s \Longrightarrow$ chars-of-token $t=$ [])
proof (induct ts)
case Nil then show ?case by auto
next
case (Cons sts)
have charslength $(p$ @ $s \# t s)=$ charslength $(p @ t s)+$ length (chars-of-token
s)
by simp
then have charslength $(p @ s \# t s)=$ charslength $p+$ charslength $t s+$ length
(chars-of-token s) by simp
with Cons.prems(1) have charslength ts + length (chars-of-token s) $=0$ by arith
then show ?case using Cons.prems(2) charslength-0 by auto qed
lemma empty-tokens-have-charslength-0:
$(\bigwedge t . t \in$ set $t s \Longrightarrow$ chars-of-token $t=[]) \Longrightarrow$ charslength $t s=0$
proof (induct ts)
case Nil then show? case by simp
next
case (Cons t ts)
then show? case by auto
qed
lemma π-idempotent': $\pi k\}(\pi k T I)=\pi k T I$
apply (simp add: π-no-tokens)
by (simp add: Complete- π-fix Predict- π-fix fix-is-fix-of-limit)
theorem thmD12:
assumes induct: items-le $k(\mathcal{J} k u)=G e n($ paths-le $k(\mathcal{P} k u))$
assumes induct-tokens: $\mathcal{T} k u=\mathcal{Z} k u$
shows items-le $k(\mathcal{J} k($ Suc $u)) \supseteq$ Gen (paths-le $k(\mathcal{P} k(S u c u)))$
proof -
\{
fix x :: item
assume x-dom: $x \in G e n$ (paths-le k ($\mathcal{P} k$ (Suc u)))
have \exists q. pvalid $q x \wedge q \in \mathcal{P} k($ Suc $u) \wedge$ charslength $q \leq k$
proof -

```
    have \(\bigwedge i I n . i \in I \vee i \notin\) items-le \(n I\)
    by (meson items-le-is-filter subsetCE)
    then show?thesis
            by (metis Gen-implies-pvalid \(x\)-dom items-le-fix-D items-le-idempotent
items-le-paths-le
            pvalid-item-end)
    qed
    then obtain \(q\) where \(q\) : pvalid \(q x \wedge q \in \mathcal{P} k(\) Suc \(u) \wedge\) charslength \(q \leq k\) by
blast
    have \(q \in \mathcal{P} k u \vee q \notin \mathcal{P} k u\) by blast
    then have \(x \in\) items-le \(k(\mathcal{J} k(\) Suc \(u))\)
    proof (induct rule: disjCases2)
        case 1
            with \(q\) have \(x \in G e n\) (paths-le \(k(\mathcal{P} k u)\) )
                apply (auto simp add: Gen-def)
                apply (rule-tac \(x=q\) in \(e x I\) )
                by (simp add: paths-le-def)
            with induct have \(x \in\) items-le \(k(\mathcal{J} k u)\) by simp
            then show ?case
                    using LocalLexing.items-le-def LocalLexing-axioms \(\mathcal{J}\)-subset-Suc-u by
fastforce
    next
        case 2
            have \(q\)-is-limit: \(q \in\) limit (Append \((\mathcal{Y}(\mathcal{Z} k u)(\mathcal{P} k u) k) k)(\mathcal{P} k u)\) using
\(q\) by auto
            from limit-Append-path-nonelem-split[OF q-is-limit 2] obtain \(p\) ts where
\(p-t s:\)
                \(q=p @ t s \wedge\)
                \(p \in \mathcal{P} k u \wedge\)
                charslength \(p=k \wedge\)
                admissible \((p\) @ts) \(\wedge\)
                \((\forall t \in\) set \(t s . t \in \mathcal{Y}(\mathcal{Z} k u)(\mathcal{P} k u) k) \wedge(\forall t \in\) set (butlast ts). chars-of-token
\(t=[])\)
            by blast
            then have \(t\)-nonempty: \(t s \neq[]\) using 2 using self-append-conv by auto
            obtain \(T\) where \(T: T=\mathcal{Y}(\mathcal{Z} k u)(\mathcal{P} k u) k\) by blast
            obtain \(J\) where \(J: J=\pi k T\) (Gen (paths-le \(k(\mathcal{P} k u))\) ) by blast
            from \(q\) p-ts have chars-of-token-is-empty: \(\wedge t\). teset ts \(\Longrightarrow\) chars-of-token
\(t=[]\)
            using charslength-appendix-is-empty chars-append charslength.simps le-add1
le-imp-less-Suc
            le-neq-implies-less length-append not-less-eq by auto
        \{
            fix sss :: token list
            have is-prefix sss ts \(\Longrightarrow\) pvalid ( \(p\) @ sss) \(x \Longrightarrow x \in J\)
            proof (induct length sss arbitrary: sss \(x\) rule: less-induct)
            case less
                    have sss \(=[] \vee\) sss \(\neq[]\) by blast
                    then show ?case
```

```
    proof (induct rule: disjCases2)
        case 1
            with less have pvalid-p-x: pvalid px by auto
            have charslength-p:charslength p\leqk using p-ts by blast
            with p-ts have p\in paths-le k (\mathcal{P k u)}
                by (simp add: paths-le-def)
            with pvalid-p-x have x\inGen (paths-le k (\mathcal{P ku))}
                using Gen-def mem-Collect-eq by blast
                    then have }x\in\pikT(Gen (paths-le k (\mathcal{P k u))) using
\pi-apply-setmonotone
            by blast
            then show }x\inJ\mathrm{ using pvalid-item-end q J LocalLexing.items-le-def
                LocalLexing-axioms charslength-p mem-Collect-eq pvalid-p-x by
auto
            next
            case 2
                then have \exists a ss.sss =ss@[a] using rev-exhaust by blast
                then obtain a ss where snoc: sss=ss@[a] by blast
                obtain p}\mp@subsup{p}{}{\prime}\mathrm{ where }\mp@subsup{p}{}{\prime}:\mp@subsup{p}{}{\prime}=p@ ss by aut
            then have pvalid-left ( p}@[a])x using snoc less pvalid-left by sim
            from iffD1[OF pvalid-left-def this] obtain r \omega where pvalid:
                wellformed-tokens(p'@ [a])^
                    wellformed-item x ^
                r\leqlength ( p'@ [a])^
                charslength ( }\mp@subsup{p}{}{\prime}@[a])= item-end x ^
                charslength (take r (p'@ [a])) = item-origin x ^
                is-leftderivation (terminals (take r (p' @ [a])) @ [item-nonterminal
x]@\omega)^
                leftderives (item-\alpha x) (terminals (drop r ( }\mp@subsup{p}{}{\prime}@[a]))) by blas
            obtain q}\mp@subsup{q}{}{\prime}\mathrm{ where }\mp@subsup{q}{}{\prime}:\mp@subsup{q}{}{\prime}=\mp@subsup{p}{}{\prime}@[a] by blas
            have is-prefix-ss-ts: is-prefix ss ts using snoc less
                by (simp add: is-prefix-append)
            then have is-prefix (p@ss)qusing p' snoc p-ts by simp
            then have is-prefix p}\mp@subsup{p}{}{\prime}q\mathrm{ using }\mp@subsup{p}{}{\prime}\mathrm{ by simp
                then have h1: p'\in\mathfrak{P}\mathrm{ using q }\mathfrak{P}\mathrm{ -covers-P prefixes-are-paths'}\mp@subsup{}{}{\prime}
subsetCE by blast
            have charslength-ss: charslength ss = 0
                apply (rule empty-tokens-have-charslength-0)
                    by (metis is-prefix-ss-ts append-is-Nil-conv chars-append
chars-of-token-is-empty
                charslength.simps charslength-0 is-prefix-def length-greater-0-conv
list.size(3))
then have \(h 2\) : charslength \(p^{\prime}=k\) using \(p^{\prime} p-t s\) by auto
have \(a\)-in-ts: \(a \in\) set ts
by (metis in-set-dropD is-prefix-append is-prefix-cons list.set-intros(1) snoc less(2))
then have \(h 3: a \in T\) using \(T p\)-ts by blast
```



```
then have \(y \in \pi k T\) (Gen (paths-le \(k(\mathcal{P} k u))\) ) using \(\pi\)-apply-setmonotone by blast
            then show }y\inJ\mathrm{ by (simp add: J items-le-def item-end-y)
        next
            case 2
            then obtain ss' where ss': is-prefix ss' ss ^toks = p@s\mp@subsup{s}{}{\prime}}\mathbf{by
blast
            then have l1: length ss ' < length sss
                                    using append-eq-conv-conj append-self-conv is-prefix-length
length-append
                                    less-le-trans nat-neq-iff not-Cons-self2 not-add-less1 snoc by
fastforce
            have l2: is-prefix ss' ts using ss' is-prefix-ss-ts
                by (metis append-dropped-prefix is-prefix-append)
                            have l3: pvalid (p @ ss') y using ss' pvalid-toks-y by simp
                            show ?case using less.hyps[OF l1 l2 l3] by blast
        qed
        }
        then have Gen (Prefixes p')\subseteqJ
    by (meson Gen-implies-pvalid Prefixes-is-prefix subsetI)
    with }x\mathrm{ -dom have r0:x items-le k ( }\pik{
        by (metis (no-types, lifting) LocalLexing.items-le-def LocalLex-
ing-axioms
        mem-Collect-eq mono-Scan mono-\pi mono-subset-elem subsetI)
        then have x-in-\pi: x\in\pik{} (Scan TkJ)
        using LocalLexing.items-le-is-filter LocalLexing-axioms subsetCE
by blast
            have r1: Scan T kJ=J
                        by (simp add: J Scan-\pi-fix)
            have r2: }\pik{}J=J\mathrm{ using }\pi\mathrm{ -idempotent' using }J\mathrm{ by blast
            from x-in-\pi r1 r2 show }x\inJ\mathrm{ by auto
        qed
        qed
    }
    note th = this
    have x-in-J: x\inJ
    apply (rule th[of ts])
    apply (simp add: is-prefix-eq-proper-prefix)
    using p-ts q by blast
    have \mathcal{T}-eq-\mathcal{Z}:\mathcal{T}k(Suc u)=\mathcal{Z }k(\mathrm{ Suc u)}
    using induct induct-tokens }\mathcal{T}\mathrm{ -equals-Z Z-induct-step by blast
    have T-alt: T=\mathcal{T}k(Suc u) using \mathcal{T}\mathrm{ -eq-Z }T\mathrm{ by simp}
    have J=\pikT (items-le k (\mathcal{J ku)) using induct J by simp}
    then have J\subseteq\pikT (\mathcal{J ku) by (simp add: items-le-is-filter monoD}
mono-\pi)
with T-alt have J\subseteq\mathcal{J}k(Suc u) using \mathcal{J}.\operatorname{simps(2) by blast}
with }x\mathrm{ -in-J have }x\in\mathcal{J}k\mathrm{ (Suc u) by blast
then show ?case
```

using LocalLexing.items-le-def LocalLexing-axioms pvalid-item-end q by
auto
qed
\}
then show? ?thesis by auto
qed
end
end
theory TheoremD13
imports TheoremD12
begin
context LocalLexing begin
lemma pointwise-natUnion-swap:
assumes pointwise-f: pointwise f
shows $f($ natUnion $G)=$ natUnion $(\lambda u . f(G u))$
proof -
note f-simp $=$ pointwise-simp $[$ OF pointwise- $f]$
have h1: f (natUnion $G)=\bigcup\{f\{x\} \mid x . x \in($ natUnion $G)\}$ using f-simp by
blast
have h2: $\bigwedge x . f(G x)=\bigcup\{f\{y\} \mid y . y \in G x\}$ using f-simp by metis
show ?thesis
apply (subst h1)
apply (subst h2)
apply (simp add: natUnion-def)
by blast
qed
lemma pointwise-Gen: pointwise Gen
by (simp add: pointwise-def Gen-def, blast)
lemma thmD13-part1:
assumes start: items-le $k\left(\begin{array}{lll}\mathcal{J} & k & 0\end{array}\right)=$ Gen (paths-le $\left.k(\mathcal{P} k l l)\right)$
assumes valid- k : $k \leq$ length Doc
shows items-le $k(\mathcal{J} k u)=G e n($ paths-le $k(\mathcal{P} k u)) \wedge \mathcal{T} k u=\mathcal{Z} k u$
proof (induct u)
case 0
then show ?case using start by auto
next
case (Suc u)
from Suc have sub: items-le $k(\mathcal{J} k(S u c u)) \subseteq$ Gen (paths-le $k(\mathcal{P} k(S u c u)))$
using thmD9 valid-k by blast
from Suc have sup: items-le $k(\mathcal{J} k(S u c u)) \supseteq \operatorname{Gen}($ paths-le $k(\mathcal{P} k(S u c u)))$
using thmD12 by blast
from Suc have tokens: $\mathcal{T} k($ Suc $u)=\mathcal{Z} k($ Suc $u)$
using \mathcal{T}-equals-Z \mathcal{Z}-induct-step by blast

```
    from sub sup tokens show ?case by blast
qed
lemma thmD13-part2:
    assumes start: items-le k (\mathcal{J k 0) = Gen (paths-le k (\mathcal{P k 0))}}\mathbf{~}\mathrm{ )}
    assumes valid-k: }k\leqlength Do
    shows items-le k (\mathcal{I k)}=\mathrm{ Gen (paths-le k (Q k))}
proof -
    note part1 = thmD13-part1 [OF start valid-k]
    have e1: items-le k (\mathcal{I k) = natUnion ( }\lambda\mathrm{ u. items-le k (J ku))}
        using items-le-pointwise pointwise-natUnion-swap by auto
    have e2: natUnion ( }\lambda\mathrm{ u. items-le k (J k u)) = natUnion ( }\lambda\mathrm{ u.Gen (paths-le k
(\mathcal{P}ku))
    using part1 by auto
```



```
paths-le k (\mathcal{P}ku)))
    using pointwise-Gen pointwise-natUnion-swap by fastforce
    have e4:natUnion (\lambda u.paths-le k (\mathcal{P k u)) = paths-le k (natUnion ( }\lambdau.\mathcal{P}k
u)
    using paths-le-pointwise pointwise-natUnion-swap by fastforce
    from e1 e2 e3 e4 show ?thesis by simp
qed
theorem thmD13:
    assumes start: items-le k (\mathcal{J k 0) =Gen (paths-le k (\mathcal{P}k0))}
    assumes valid-k: k\leqlength Doc
```



```
    \ items-le k (\mathcal{I k})=Gen(paths-le k (\mathcal{Q k)})
using thmD13-part1[OF start valid-k] thmD13-part2[OF start valid-k] by blast
end
end
theory TheoremD14
imports TheoremD13
begin
context LocalLexing begin
lemma empty-tokens-of-empty[simp]: empty-tokens {}={}
    using empty-tokens-is-filter by blast
lemma items-le-split-via-eq: items-le (Suc k) J = items-le k J items-eq (Suc k)
J
    by (auto simp add: items-le-def items-eq-def)
lemma paths-le-split-via-eq: paths-le (Suc k) P= paths-le k P\cup paths-eq (Suc k)
P
    by (auto simp add: paths-le-def paths-eq-def)
```

```
lemma natUnion-superset:
    shows gi\subseteqnatUnion g
by (meson natUnion-elem subset-eq)
definition indexle :: nat }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ bool where
    indexle }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}ku=((\mathrm{ indexlt }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}ku)\vee (\mp@subsup{k}{}{\prime}=k\wedge\mp@subsup{u}{}{\prime}=u)
definition produced-by-scan-step :: item }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ bool where
    produced-by-scan-step x k u = (\exists k' u' y X. indexle k' u' ku^y\in\mathcal{J k}
        item-end y = k'}^\X\in(\mathcal{T}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime})\wedgex=\mathrm{ inc-item y (k'+ length (chars-of-token
X)) ^
    next-symbol y Some (terminal-of-token X))
lemma indexle-trans: indexle }\mp@subsup{k}{}{\prime\prime}\mp@subsup{u}{}{\prime\prime}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\Longrightarrow\mathrm{ indexle }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}ku\Longrightarrow\mathrm{ indexle }\mp@subsup{k}{}{\prime\prime}\mp@subsup{u}{}{\prime\prime
ku
    using indexle-def indexlt-trans
proof -
    assume a1: indexle k}\mp@subsup{k}{}{\prime\prime}\mp@subsup{u}{}{\prime\prime}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime
    assume a2: indexle }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}k
    then have f3: \n na. u' = u\vee indexlt n na k u\vee\neg indexlt n na k' u'
        by (meson indexle-def indexlt-trans)
    have \bigwedgen na. k'=k\vee indexlt n na ku\vee\neg indexlt n na k' u'
        using a2 by (meson indexle-def indexlt-trans)
    then show ?thesis
        using f3 a2 a1 indexle-def by auto
qed
lemma produced-by-scan-step-trans:
    assumes indexle k}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}k
    assumes produced-by-scan-step x k}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime
    shows produced-by-scan-step x ku
proof -
    from iffD1[OF produced-by-scan-step-def assms(2)] obtain k'a u'a y X where
produced-k'- <':
    indexle k'a u'a k' }\mp@subsup{u}{}{\prime}
        y\in\mathcal{J k'a u'a}^
        item-end y = k'a}
        X\in\mathcal{T}\mp@subsup{k}{}{\prime}a\mp@subsup{u}{}{\prime}a\wedge
        x= inc-item y (k'a + length (chars-of-token X))}\wedge next-symbol y = Some
(terminal-of-token X)
            by blast
        then show ?thesis using indexle-trans assms(1) produced-by-scan-step-def by
blast
qed
lemma \mathcal{J}-induct[consumes 1, case-names Induct]:
    assumes }x\in\mathcal{J}k
    assumes induct: \xku.(\bigwedge x' k' u'. x'\in\mathcal{J k}
```

```
x' k' u')
    \Longrightarrowx\in\mathcal{J ku \LongrightarrowPxku}
    shows P x ku
proof -
    let ?R = indexlt-rel <*lex*> {}
    have wf-R: wf ?R by (auto simp add: wf-indexlt-rel)
    let ?P = \lambda a. snd a G\mathcal{J}(fst (fst a)) (snd (fst a))}\longrightarrowP(snd a) (fst (fst a))
(snd (fst a))
    have }x\in\mathcal{J}ku\longrightarrowPxk
        apply (rule wf-induct[OF wf-R, where P}=?P\mathrm{ and }a=((k,u),x), simplified]
            apply (auto simp add: indexlt-def[symmetric])
            apply (rule-tac x=ba and k=a and }u=b\mathrm{ in induct)
            by auto
    thus ?thesis using assms by auto
qed
lemma \pi-no-tokens-item-end:
    assumes x-in-\pi: x \in\pik{}I
    shows item-end x = k\veex\inI
proof -
    have x-in-limit: }x\in\mathrm{ limit ( }\lambdaI\mathrm{ . Complete k (Predict k I)) I
        using x-in-\pi \pi-no-tokens by auto
    then show ?thesis
    proof (induct rule: limit-induct)
        case (Init x) then show ?case by auto
    next
        case (Iterate x J)
            from Iterate(2) have item-end x = k\vee x f Predict kJ
                using Complete-item-end by auto
            then show ?case
            proof (induct rule: disjCases2)
                case 1 then show ?case by blast
            next
                case 2
                            then have item-end x = k\veex\inJ
                            using Predict-item-end by auto
                        then show ?case
                        proof (induct rule: disjCases2)
                        case 1 then show ?case by blast
                    next
                        case 2 then show ?case using Iterate(1)[OF 2] by blast
                    qed
            qed
    qed
qed
```



```
    by (metis (no-types, opaque-lifting) mk-disjoint-insert natUnion-superset natU-
nion-upperbound
```

```
    subsetCE subset-insert)
lemma locate-in-limit:
    assumes x-in-limit: }x\in\mathrm{ limit f X
    assumes x-notin-X: x \not\inX
    shows \existsn.x\in funpower f(Suc n) X ^ x & funpower f n X
proof -
    have \exists N. x f funpower f NX using x-in-limit limit-def natUnion-ex by fastforce
    then obtain N where N:x\infunpower f NX by blast
    {
        fix n :: nat
            have}x\in\mathrm{ funpower f n X # m < n. x funpower f (Suc m) X ^x f
funpower f m X
            proof (induct n)
            case 0
                with x-notin-X show ?case by auto
            next
            case (Suc n)
                    have }x\not\in\mathrm{ funpower f n X 
                    then show ?case
                    proof (induct rule: disjCases2)
                    case 1
                            then show ?case using Suc by fastforce
                    next
                        case 2
                    from Suc(1)[OF 2] show ?case using less-SucI by blast
                    qed
        qed
    }
    with N show ?thesis by auto
qed
lemma produced-by-scan-step:
    x\in\mathcal{J }ku\Longrightarrow item-end x>k\Longrightarrow produced-by-scan-step x ku
proof (induct rule: \mathcal{J-induct)}
    case (Induct x k u)
        have (k=0\wedgeu=0)\vee(k>0\wedgeu=0)\vee(u>0) by arith
        then show ?case
        proof (induct rule: disjCases3)
            case 1
                with Induct have item-end x = 0 using J-0-0-item-end by blast
                with Induct have False by arith
                then show ?case by blast
            next
            case 2
                then obtain k' where k':k=Suc k' using Suc-pred' by blast
                with Induct 2 have x\in\mathcal{J}(Suc k') 0 by auto
                then have }x\in\pik{}(\mathcal{I}\mp@subsup{k}{}{\prime})\mathrm{ by (simp add: k')
            then have item-end x=k\veex\in\mathcal{I}k' using \pi-no-tokens-item-end by blast
```

```
    then show ?case
    proof (induct rule: disjCases2)
        case 1
            with Induct have False by auto
            then show ?case by blast
next
            case 2
```



```
            then obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}:x\in\mathcal{J}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\mathrm{ by blast
            have }\mp@subsup{k}{}{\prime}\mathrm{ -bound: }\mp@subsup{k}{}{\prime}<\mathrm{ item-end }x\mathrm{ using }\mp@subsup{k}{}{\prime}\mathrm{ Induct by arith
            have indexlt: indexlt k' }\mp@subsup{k}{}{\prime}ku\mathrm{ by (simp add: indexlt-simp k')
            from Induct(1)[OF u' this k'-bound]
            have pred-produced: produced-by-scan-step x k' u'.
            then show ?case using indexlt produced-by-scan-step-trans indexle-def
by blast
            qed
    next
        case 3
            then have ex-u': \exists u}\mp@subsup{u}{}{\prime}.u=\mathrm{ Suc u' by arith
            then obtain }\mp@subsup{u}{}{\prime}\mathrm{ where }\mp@subsup{u}{}{\prime}:u=Suc u' by blas
            with Induct have }x\in\mathcal{J}k\mathrm{ (Suc u') by metis
```



```
            have }x\in\mathcal{J}k\mp@subsup{u}{}{\prime}\veex\not\in\mathcal{J}k\mp@subsup{u}{}{\prime}\mathrm{ by blast
            then show ?case
            proof (induct rule: disjCases2)
                case 1
                    have indexlt: indexlt k u' k u by (simp add: indexlt-simp u')
                    with Induct(1)[OF 1 indexlt Induct(3)] show ?case
                    using indexle-def produced-by-scan-step-trans by blast
            next
                case 2
                    have item-end-x: k< item-end x using Induct by auto
                obtain f}\mathrm{ where f:f=Scan (T }k\mathrm{ {u) k०Complete k}\circ\mathrm{ Predict k by blast
                    have }x\in\operatorname{limit f (\mathcal{J}ku}
                    using x-in-\pi \pi-functional f by simp
                    from locate-in-limit[OF this 2] obtain n}\mathrm{ where n:
                        x\in funpower f (Suc n) (\mathcal{J k u')^}
                        x\not\infunpower f n (\mathcal{J k u}
            obtain Y where Y:Y=funpower f n ( \mathcal{J k u')}
                    by blast
            have }x\mathrm{ -f- Y: x ffY^x&Y using Y n by auto
                    then have }x\inScan (\mathcal{T}ku)k(Complete k (Predict k Y)) using
comp-apply f by simp
            then have }x\in(\mathrm{ Complete k (Predict k Y)) V
                    x\in{ inc-item }\mp@subsup{x}{}{\prime}(k+\mathrm{ length c)| |'t c. }\mp@subsup{x}{}{\prime}\in\mathrm{ bin (Complete k (Predict
k Y)) k^
                    (t,c)\in(\mathcal{T k u)^ next-symbol }\mp@subsup{x}{}{\prime}=\mathrm{ Some t } using Scan-def by}
simp
then show?case
```

```
proof (induct rule: disjCases2)
```

 case 1
 then have False using item-end-x \(x\) - \(f\) - \(Y\) Complete-item-end Pre-
 dict-item-end
using less-not-refl3 by blast
then show ?case by auto
next
case 2
have $Y \subseteq$ limit $f\left(\mathcal{J} k u^{\prime}\right)$ using Y limit-def natUnion-superset by
fastforce
then have $Y \subseteq \pi k(\mathcal{T} k u)\left(\mathcal{J} k u^{\prime}\right)$ using f by (simp add: π-functional)
then have Y-in- $\mathcal{J}: Y \subseteq \mathcal{J} k u$ using u^{\prime} by simp
then have in- $\mathcal{J}:$ Complete k (Predict $k Y) \subseteq \mathcal{J} k u$
proof have $f 1: \forall f$ I Ia $i .(\neg$ mono $f \vee \neg(I::$ item set $) \subseteq I a \vee(i::$ item $) \notin$
$f I) \vee i \in f I a$
by (meson mono-subset-elem)
obtain ii :: item set \Rightarrow item set \Rightarrow item where
x0)
by moura
then have f2: $\forall I$ Ia. ii $I a I \in I \wedge i i \quad I a I \notin I a \vee I \subseteq I a$
by blast
obtain $n n$:: nat where
f3: $u=$ Suc nn
using ex-u' by presburger

moreover

\{ assume $i i(\mathcal{J} k u)($ Complete $k($ Predict $k Y)) \in$ Complete $k(\pi$ $k(\mathcal{T} k(S u c n n))(\mathcal{J} k n n))$
then have ?thesis
using f3 f2 Complete- π-fix by auto $\}$
ultimately show ?thesis
using f2 f1 by (metis (full-types) Complete-regular Predict- $\pi-f x$
Predict-regular
$\mathcal{J} . \operatorname{simps}(2) \quad Y$-in- \mathcal{J} regular-implies-mono)
qed
from 2 obtain $x^{\prime} t c$ where $x^{\prime}-t-c$:

$$
x=\text { inc-item } x^{\prime}(k+\text { length } c) \wedge x^{\prime} \in \text { bin (Complete } k \text { (Predict } k
$$

Y)) $k \wedge$
$(t, c) \in \mathcal{T} k u \wedge$ next-symbol $x^{\prime}=$ Some t by blast
show ?case
apply (simp add: produced-by-scan-step-def)
apply (rule-tac $x=k$ in $e x I$)
apply (rule-tac $x=u$ in exI)
apply (simp add: indexle-def)
apply (rule-tac $x=x^{\prime}$ in exI)
apply auto
using $x^{\prime}-t-c$ bin-def in- \mathcal{J} apply auto[1]

```
                    using }\mp@subsup{x}{}{\prime}-t-c bin-def apply blas
                    apply (rule-tac x=t in exI)
                        apply (rule-tac x=c in exI)
                using }\mp@subsup{x}{}{\prime}-t-c\mathrm{ by auto
                qed
            qed
        qed
qed
lemma limit-single-step:
    assumes }x\inf
    shows }x\in\operatorname{limit f X
by (metis assms elem-limit-simp funpower.simps(1) funpower.simps(2))
lemma Gen-union: Gen (A\cupB)=Gen A\cupGen B
    by (simp add:Gen-def, blast)
lemma is-prefix-Prefixes-subset:
    assumes is-prefix q p
    shows Prefixes q\subseteq Prefixes p
proof -
    show ?thesis
        apply (auto simp add: Prefixes-def)
        using assms by (metis is-prefix-append is-prefix-def)
qed
lemma Prefixes-subset-\mathcal{P}
    assumes p\in\mathcal{P}ku
    shows Prefixes p\subseteq\mathcal{P}ku
using Prefixes-is-prefix assms prefixes-are-paths by blast
lemma Prefixes-subset-paths-le:
    assumes Prefixes p\subseteqP
    shows Prefixes p\subseteq paths-le (charslength p) P
using Prefixes-is-prefix assms charslength-of-prefix paths-le-def by auto
lemma Scan-\mathcal{J-subset-J:}
```



```
by (metis (no-types, lifting)Scan-\pi-fix \mathcal{J}.\operatorname{simps(2) \mathcal{J}}\mathrm{ -subset-Suc-u monoD mono-Scan)}
lemma subset-\mathcal{Jk: }u\leqv\Longrightarrow\mathcal{J}ku\subseteq\mathcal{J kv}
    thm \mathcal{J}}\mathrm{ -subset-Suc-u
    by (rule subset-fSuc, rule \mathcal{J}-subset-Suc-u)
```



```
lemma subset-\mathcal{I S Suc: \mathcal{I }}\\subseteq\mathcal{J}(\mathrm{ Suc k) u}
proof -
    have a:\mathcal{I }k\subseteq\mathcal{J}(Suck)0
```

```
    apply (simp only: J.simps)
    using \pi-apply-setmonotone by blast
    show ?thesis
    apply (case-tac u = 0)
    apply (simp only:a)
    apply (rule subset-trans[OF a subset-J k])
    by auto
qed
lemma subset-ISuc: \mathcal{I }k\subseteq\mathcal{I}(Suc k)
    by (rule subset-trans[OF subset-\mathcal{IJ Suc subset-JINk])}
lemma subset-\mathcal{I}:i\leqj\Longrightarrow\mathcal{I}i\subseteq\mathcal{I}j
    by (rule subset-fSuc[where }u=i\mathrm{ and }v=j\mathrm{ and }f=\mathcal{I}\mathrm{ , OF subset-ISuc])
lemma subset-\mathcal{J :}
    assumes leq: k'<k\vee (k'=k\wedge u}\lequ
    shows }\mathcal{J}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\subseteq\mathcal{J}k
proof -
    from leq show ?thesis
    proof (induct rule: disjCases2)
        case 1
        have s1:\mathcal{J }\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\subseteq\mathcal{I}\mp@subsup{k}{}{\prime}\mathrm{ by (rule-tac subset-JINk)}
        have s2:\mathcal{I}\mp@subsup{k}{}{\prime}\subseteq\mathcal{I}(k-1)
            apply (rule-tac subset-\mathcal{I})
            using 1 by arith
        from subset-\mathcal{IJ Suc[where k=k-1] 1 have s3:\mathcal{I}}(k-1)\subseteq\mathcal{J}k0
            by simp
        have s4:\mathcal{J k0\subseteq\mathcal{J ku by (rule-tac subset-J k, simp)}}\mathbf{ (rym}
        from s1 s2 s3 s4 subset-trans show ?case by blast
    next
        case 2 thus ?case by (simp add : subset-J k)
    qed
qed
lemma \mathcal{J}}\mathrm{ -subset:
    assumes indexle k' }\mp@subsup{k}{}{\prime}k
    shows \mathcal{J k}}\mp@subsup{k}{}{\prime}\mp@subsup{u}{}{\prime}\subseteq\mathcal{J}k
using subset-\mathcal{J indexle-def indexlt-simp}
by (metis assms less-imp-le-nat order-refl)
lemma Scan-items-le:
    assumes bounded-T: ^t.t\inT\Longrightarrow length(chars-of-token t)\leql
    shows Scan Tk(items-le kP)\subseteqitems-le (k+l) (Scan T k P)
proof -
    {
        fix }x\mathrm{ :: item
        assume x-dom: x G Scan T k (items-le k P)
        then have x-dom': x S Scan TkP
```

```
    by (meson items-le-is-filter mono-Scan mono-subset-elem)
    from }x\mathrm{ -dom have }x\in\mathrm{ items-le k P }
            (\existsytc.x= inc-item y (k+ length c)}\wedgey\in\operatorname{bin}(\mathrm{ items-le k P)}k\wedge(t,c)
T
            ^ next-symbol y = Some t)
            using Scan-def using UnE mem-Collect-eq by auto
    then have item-end x\leqk+l
    proof (induct rule: disjCases2)
            case 1 then show ?case
            by (meson items-le-fix-D items-le-idempotent trans-le-add1)
    next
        case 2
            then obtain ytc where y:x= inc-item y(k+length c)}\wedge y\inbi
(items-le k P) k\wedge
            (t,c) \inT^ next-symbol y = Some t by blast
            then have item-end-x: item-end x = (k+ length c) by simp
            from bounded-T y have length c\leql
                    using chars-of-token-simp by auto
            with item-end-x show ?case by arith
    qed
    with }x\mathrm{ -dom' have }x\in\mathrm{ items-le (k+l) (Scan T kP)
        using items-le-def mem-Collect-eq by blast
}
then show ?thesis by blast
qed
lemma Scan-mono-tokens:
    P\subseteqQ\LongrightarrowScan PkI\subseteqScan Q kI
by (auto simp add: Scan-def)
```



```
u))}\wedge\mathcal{T}ku=\mathcal{Z}k
    ^ items-le k (\mathcal{I k)}=\mathrm{ Gen (paths-le k (Q k))}
proof (induct k arbitrary: u rule: less-induct)
    case (less k)
    have k=0\veek\not=0 by arith
    then show ?case
    proof (induct rule: disjCases2)
            case 1
                have \mathcal{J}-eq-\mathcal{P}: items-le k ( \mathcal{J k 0) =Gen (paths-le k (\mathcal{P}klo))}
                    by (simp only: }1\mathrm{ thmD8 items-le-paths-le)
                show ?case using thmD13[OF \mathcal{J}-eq-\mathcal{P} less.prems] by blast
    next
            case 2
                have \exists k
                then obtain k' where k':k=Suc k' by blast
                have }\mp@subsup{k}{}{\prime}\mathrm{ -less-k: }\mp@subsup{k}{}{\prime}<k\mathrm{ using }\mp@subsup{k}{}{\prime}\mathrm{ by arith
                have items-le k ( \mathcal{J k 0) =Gen (paths-le k (\mathcal{P}k0))}
                proof -
```

have simp-left: items-le $k(\mathcal{J} k 0)=\pi k\{ \}$ (items-le $\left.k\left(\mathcal{I} k^{\prime}\right)\right)$
using items-le-T-swap k^{\prime} wellformed-items-I by auto
have simp-right: Gen (paths-le $k(\mathcal{P} k 0))=$ natUnion (λ v. Gen (paths-le $\left.k\left(\mathcal{P} k^{\prime} v\right)\right)$)
by (simp add: k^{\prime} paths-le-pointwise pointwise-Gen pointwise-natUnion-swap)

\{

fix v :: nat
have split- \mathcal{J} : items-le $k\left(\mathcal{J} k^{\prime} v\right)=$ items-le $k^{\prime}\left(\mathcal{J} k^{\prime} v\right) \cup$ items-eq $k(\mathcal{J}$
using k^{\prime} items-le-split-via-eq by blast
have sub1: items-le $k^{\prime}\left(\mathcal{J} k^{\prime} v\right) \subseteq$ natUnion (λv. Gen (paths-le k ($\mathcal{P} k^{\prime}$
v)))
proof -
have h : items-le $k^{\prime}\left(\mathcal{J} k^{\prime} v\right) \subseteq$ Gen (paths-le $k\left(\mathcal{P} k^{\prime} v\right)$)
proof -
have f1: items-le $k^{\prime}\left(\operatorname{Gen}\left(\mathcal{P} k^{\prime} v\right)\right) \cup$ items-eq $(S u c k)\left(G e n\left(\mathcal{P} k^{\prime}\right.\right.$
$v))=$
Gen (paths-le $k\left(\mathcal{P} k^{\prime} v\right)$)
using LocalLexing.items-le-split-via-eq LocalLexing-axioms items-le-paths-le
k^{\prime}
by blast
have $k^{\prime} \leq$ length Doc
by (metis (no-types) dual-order.trans k^{\prime} less.prems lessI less-imp-le-nat)
then have items-le $k^{\prime}\left(\mathcal{J} k^{\prime} v\right)=$ items-le $k^{\prime}\left(\operatorname{Gen}\left(\mathcal{P} k^{\prime} v\right)\right)$
by (simp add: items-le-paths-le k^{\prime} less.hyps)
then show?thesis
using $f 1$ by blast
qed
have Gen (paths-le $\left.k\left(\mathcal{P} k^{\prime} v\right)\right) \subseteq \operatorname{natUnion}(\lambda v$. Gen (paths-le k (\mathcal{P} $\left.\left.k^{\prime} v\right)\right)$) using natUnion-superset by fastforce
then show ?thesis using h by blast
qed
\{
fix x :: item
assume x-dom: $x \in$ items-eq $k\left(\mathcal{J} k^{\prime} v\right)$
have x-in- $\mathcal{J}: x \in \mathcal{J} k^{\prime} v$ using x-dom items-eq-def by auto
have item-end-x: item-end $x=k$ using x-dom items-eq-def by auto
then have k^{\prime}-bound: $k^{\prime}<$ item-end x using k^{\prime} by arith
from produced-by-scan-step[OF x-in- $\mathcal{J} \quad k^{\prime}$-bound]
have produced-by-scan-step $x k^{\prime} v$.
from iffD1[OF produced-by-scan-step-def this] obtain $k^{\prime \prime} v^{\prime \prime} y X$ where
scan-step:
indexle $k^{\prime \prime} v^{\prime \prime} k^{\prime} v \wedge y \in \mathcal{J} k^{\prime \prime} v^{\prime \prime} \wedge$ item-end $y=k^{\prime \prime} \wedge X \in \mathcal{T} k^{\prime \prime}$
$v^{\prime \prime} \wedge$
$x=$ inc-item $y\left(k^{\prime \prime}+\right.$ length $($ chars-of-token $\left.X)\right) \wedge$
next-symbol $y=$ Some (terminal-of-token X) by blast
then have y-in-items-le: $y \in$ items-le $k^{\prime \prime}\left(\mathcal{J} k^{\prime \prime} v^{\prime \prime}\right)$

```
    using items-le-def LocalLexing-axioms le-refl mem-Collect-eq by blast
    have y-in-Gen: y G Gen(paths-le k'\prime}(\mathcal{P}\mp@subsup{k}{}{\prime\prime}\mp@subsup{v}{}{\prime\prime})
    proof -
    have f1: \n. k'<n\vee\negk<n
        using Suc-lessD k' by blast
    have f2: }\mp@subsup{k}{}{\prime\prime}=\mp@subsup{k}{}{\prime}\vee\mp@subsup{k}{}{\prime\prime}<\mp@subsup{k}{}{\prime
        using indexle-def indexlt-simp scan-step by force
    have f3: }\mp@subsup{k}{}{\prime}<
        using }\mp@subsup{k}{}{\prime}\mathrm{ by blast
    have f4: k' 
        using f1 by (meson less.prems less-Suc-eq-le)
    have }\mp@subsup{k}{}{\prime\prime}\leqlength Doc \vee k'= k'\prime
                    using fo f1 by (meson Suc-lessD less.prems less-Suc-eq-le
less-trans-Suc)
    then show ?thesis
        using f4 f3 f2 Suc-lessD y-in-items-le less.hyps less-trans-Suc by
    blast
    qed
    then have }\exists\textrm{p}.p\in\mathcal{P}\mp@subsup{k}{}{\prime\prime}\mp@subsup{v}{}{\prime\prime}\wedge pvalid p
    by (meson Gen-implies-pvalid paths-le-is-filter rev-subsetD)
    then obtain p where p:p\in\mathcal{P}\mp@subsup{k}{}{\prime\prime}\mp@subsup{v}{}{\prime\prime}\wedge pvalid p y by blast
    then have charslength-p: charslength p = k" using pvalid-item-end
scan-step by auto
    have pvalid-p-y: pvalid py using p}\mathrm{ by blast
    have admissible (p@[(fst X, snd X)])
    apply (rule pvalid-next-terminal-admissible)
    apply (rule pvalid-p-y)
    using scan-step apply (simp add: terminal-of-token-def)
        using scan-step by (metis TokensAt-subset-\mathcal{X}\mathcal{T}\mathrm{ -subset-TokensAt}
\mathcal { X } \text { -are-terminals}
                rev-subsetD terminal-of-token-def)
            then have admissible-p-X: admissible ( }p@[X])\mathrm{ by simp
            have X-in-\mathcal{Z}:X\in\mathcal{Z k}}\mp@subsup{}{\prime\prime}{\prime\prime}(Suc \mp@subsup{v}{}{\prime\prime}) by (metis (no-types,lifting) Suc-lessD
Z-subset-Suc
    k'-bound dual-order.trans indexle-def indexlt-simp item-end-of-inc-item
item-end-x
            le-add1 le-neq-implies-less less.hyps less.prems not-less-eq scan-step
subsetCE)
            have pX-in-\mathcal{P}-\mp@subsup{k}{}{\prime\prime}-\mp@subsup{v}{}{\prime\prime}:p@[X]\in\mathcal{P}\mp@subsup{k}{}{\prime\prime}(Suc v'\prime)
            apply (simp only: P.simps)
            apply (rule limit-single-step)
            apply (auto simp only: Append-def)
            apply (rule-tac x=p in exI)
            apply (rule-tac x=X in exI)
            apply (simp only: admissible-p-X X-in-\mathcal{Z})
            using charslength-p p by auto
            have indexle k'\prime }\mp@subsup{v}{}{\prime\prime}\mp@subsup{k}{}{\prime}v\mathrm{ using scan-step by simp
            then have indexle k'\prime (Suc v'') k' (Suc v)
                by (simp add: indexle-def indexlt-simp)
```

then have $\mathcal{P} k^{\prime \prime}\left(\right.$ Suc $\left.v^{\prime \prime}\right) \subseteq \mathcal{P} k^{\prime}($ Suc $v)$
by (metis indexle-def indexlt-simp less-or-eq-imp-le subset-P $)$
with $p X$-in- $\mathcal{P}-k^{\prime \prime}-v^{\prime \prime}$ have $p X-i n-\mathcal{P}-k^{\prime}: p @[X] \in \mathcal{P} k^{\prime}$ (Suc v) by blast
have charslength $(p @[X])=k^{\prime \prime}+$ length (chars-of-token $\left.X\right)$
using charslength- p by auto
then have charslength $(p @[X])=$ item-end x using scan-step by simp
then have charslength- p - X : charslength $(p @[X])=k$ using item-end- x by simp
then have $p X$-dom: $p @[X] \in$ paths-le $k\left(\mathcal{P} k^{\prime}(\right.$ Suc v))
using lessI less-Suc-eq-le mem-Collect-eq $p X-i n-\mathcal{P}-k^{\prime}$ paths-le-def by
auto
have wellformed-x: wellformed-item x using item-end-x less.prems scan-step wellformed-inc-item well-
formed-items- \mathcal{J} wellformed-items-def by auto
have wellformed- p - X : wellformed-tokens ($p @[X]$)
using \mathcal{P}-wellformed $p X$-in- $\mathcal{P}-k^{\prime \prime}-v^{\prime \prime}$ by blast
from iffD1 [OF pvalid-def pvalid-p-y] obtain $r \gamma$ where $r-\gamma$: wellformed-tokens $p \wedge$
wellformed-item y \wedge
$r \leq$ length $p \wedge$
charslength $p=$ item-end $y \wedge$
charslength (take r p) $=$ item-origin $y \wedge$
is-derivation (terminals (take r p) @ [item-nonterminal y] @ γ) \wedge derives (item- α y) (terminals (drop $r p)$) by blast
have r-le- p : $r \leq$ length p by (simp add: $r-\gamma$)
have item-nonterminal-x: item-nonterminal $x=$ item-nonterminal y by (simp add: scan-step)
have item- $\alpha-x$: item- $\alpha x=($ item- $\alpha y) @[$ terminal-of-token $X]$
by (simp add: item- α-of-inc-item r - γ scan-step)
have pvalid-x: pvalid ($p @[X]$) x
apply (auto simp add: pvalid-def wellformed-x wellformed- p - X)
apply (rule-tac $x=r$ in exI)
apply auto
apply (simp add: le-SucI r- γ)
using r - γ scan-step apply auto[1]
using r - γ scan-step apply auto[1]
apply (rule-tac $x=\gamma$ in $e x I$)
apply (simp add: r-le-p item-nonterminal-x)
using $r-\gamma$ apply simp
apply (simp add: r-le-p item- $\alpha-x$)
by (metis terminals-singleton append-Nil2
derives-implies-leftderives derives-is-sentence is-sentence-concat is-sentence-cons is-symbol-def is-word-append is-word-cons
is-word-terminals
is-word-terminals-drop leftderives-implies-derives leftderives-padback leftderives-refl r - γ terminals-append terminals-drop wellformed- $p-X$)
then have $x \in G e n\left(p a t h s-l e k\left(\mathcal{P} k^{\prime}(S u c v)\right)\right.$) using $p X$-dom Gen-def LocalLexing-axioms mem-Collect-eq by auto

```
            }
            then have sub2: items-eq k (\mathcal{J k}
(\mathcal{P k}
            by (meson dual-order.trans natUnion-superset subsetI)
            have suffices3: items-le k (\mathcal{J k}}\mp@subsup{}{\prime}{\prime}v)\subseteq\mathrm{ natUnion ( }\lambdav.Gen (paths-le k (\mathcal{P
k
            using split-\mathcal{J sub1 sub2 by blast}
            have items-le k (\mathcal{J k}}\mp@subsup{k}{}{\prime}v)\subseteqGen (paths-le k (\mathcal{P}k\mp@code{l))
            using suffices3 simp-right by blast
            }
            note suffices2 = this
            have items-le-natUnion-swap: items-le k (\mathcal{I }}\mp@subsup{k}{}{\prime})=\operatorname{natUnion( }\lambda\mathrm{ v. items-le
k(\mathcal{J k}
            by (simp add: items-le-pointwise pointwise-natUnion-swap)
            then have suffices1: items-le k (\mathcal{I}k}\mp@subsup{k}{}{\prime})\subseteqGen(paths-le k (\mathcal{P}kl0))
            using suffices2 natUnion-upperbound by metis
            have sub-lemma: items-le k ( \mathcal{J k 0) \subseteqGen (paths-le k (\mathcal{P}klo))}
            proof -
```



```
            apply (subst simp-left)
            apply (rule thmD5)
            apply (auto simp only: less)
            using suffices1 items-le-is-filter items-le-paths-le subsetCE by blast
            then show ?thesis
            by (simp add: items-le-idempotent remove-paths-le-in-subset-Gen)
            qed
            have eq1: \pi k{} (items-le k (\mathcal{I}k'))=\pik{}(items-le k (natUnion (\mathcal{J}
                k
            then have eq2: }\pik{}(\mathrm{ items-le k (natUnion (J k
            \pi}{
            using items-le-natUnion-swap by auto
            from simp-left eq1 eq2
            have simp-left': items-le k (\mathcal{J k 0) = = k {} (natUnion ( }\lambda\mathrm{ v. items-le k}
(\mathcal{J}}\mp@subsup{k}{}{\prime}v))
            by metis
    {
            fix v :: nat
            fix q :: token list
            fix x :: item
            assume q-dom: q \in paths-eq k(\mathcal{P }\mp@subsup{k}{}{\prime}v)
            assume pvalid-q-x: pvalid q x
            have q-in-\mathcal{P}:q\in\mathcal{P}\mp@subsup{k}{}{\prime}v\mathrm{ using q-dom paths-eq-def by auto}
            have charslength-q: charslength q =k using q-dom paths-eq-def by auto
            with }\mp@subsup{k}{}{\prime}\mathrm{ -less-k have q-nonempty: q}\not=[
            using 2.hyps chars.simps(1) charslength.simps list.size(3) by auto
            then have }\exists>XX.q=p@[X] by (metis append-butlast-last-id
            then obtain pX where pX:q=p@ [X] by blast
            from last-step-of-path[OF q-in-\mathcal{P}pX] obtain k" v'l}\mathrm{ where }\mp@subsup{k}{}{\prime\prime}\mathrm{ :
            indexlt k"\prime v"}\mp@subsup{k}{}{\prime}v\wedgeq\in\mathcal{P}\mp@subsup{k}{}{\prime\prime}(Suc \mp@subsup{v}{}{\prime\prime})\wedge charslength p = k'\prime
```

```
            X\in\mathcal{Z k}}\mp@subsup{}{\prime\prime}{\prime\prime}(Suc v') by blas
    have h1:p\in\mathfrak{P}
    by (metis (no-types, lifting) LocalLexing.\mathfrak{P}\mathrm{ -covers-P LocalLexing-axioms}
        append-Nil2 is-prefix-cancel is-prefix-empty pX prefixes-are-paths q-in-\mathcal{P}
subsetCE)
            have h2: charslength p= k'l using k'" by blast
            obtain T where T:T={X} by blast
            have h3: X \inT using T by blast
            have h4:T\subseteq\mathcal{X k'l}\mathbf{ using \mathcal{Z}}\mathrm{ -subset-X }\mathcal{X}T\mp@subsup{k}{}{\prime\prime}\mathrm{ by blast}
            obtain N where N:N= item-nonterminal x by blast
            obtain \alpha where \alpha: \alpha = item- }\alphax\mathrm{ by blast
            obtain }\beta\mathrm{ where }\beta\mathrm{ : }\beta=\mathrm{ item- }\betax\mathrm{ by blast
                have wellformed-x:wellformed-item x using pvalid-def pvalid-q-x by
blast
then have \(h 5:(N, \alpha @ \beta) \in \mathfrak{R}\)
using \(N \alpha \beta\) item-nonterminal-def item-rhs-def item-rhs-split prod.collapse
wellformed-item-def by auto
have pvalid-left-q-x: pvalid-left \(q x\) using pvalid- \(q-x\) by (simp add:
pvalid-left)
    from iffD1[OF pvalid-left-def pvalid-left-q-x] obtain r \gamma where r-\gamma:
    wellformed-tokens q ^
    wellformed-item x ^
    r\leqlength q ^
    charslength q = item-end x}
    charslength (take r q) = item-origin x ^
    is-leftderivation (terminals (take r q) @ [item-nonterminal x] @ \gamma)^
    leftderives (item-\alpha x) (terminals (drop r q)) by blast
    have h6: r\leq length q using r-\gamma by blast
    have h7: leftderives [\mathfrak{S] (terminals (take r q)@ [N] @ \gamma)}
        using r-\gamma N is-leftderivation-def by blast
    have h8: leftderives \alpha (terminals (drop r q)) using r-\gamma \alpha by metis
    have h9:k= k'\prime + length (chars-of-token X) using r-\gamma
        using charslength-q h2 pX by auto
    have h10:x = Item (N,\alpha@ @) (length \alpha) (charslength (take r q))k
                by (metis N \alpha \beta charslength-q item.collapse item-dot-is-\alpha-length
item-nonterminal-def
        item-rhs-def item-rhs-split prod.collapse r-\gamma)
    from thmD11[OF h1 h2 h3 h4 pX h5 h6 h7 h8 h9 h10]
    have x\in items-le k (\pik{} (Scan T k''(Gen (Prefixes p))))
        by blast
    then have x-in: x \in\pik{}(Scan T k'\prime(Gen (Prefixes p)))
        using items-le-is-filter by blast
    have subset1: Prefixes p\subseteq Prefixes q
        apply (rule is-prefix-Prefixes-subset)
        by (simp add: pX is-prefix-def)
    have subset2: Prefixes q\subseteq\mathcal{P}\mp@subsup{k}{}{\prime\prime}(Suc v')
        apply (rule Prefixes-subset-\mathcal{P})
```

```
            using k" by blast
            from subset1 subset2 have Prefixes p\subseteq\mathcal{P}\mp@subsup{k}{}{\prime\prime}(Suc v')}\mathrm{ ) by blast
            then have Prefixes p\subseteq paths-le k}\mp@subsup{}{}{\prime\prime}(\mathcal{P}\mp@subsup{k}{}{\prime\prime}(Suc v'\prime)
            using k" Prefixes-subset-paths-le by blast
```



```
v'
                            using Gen-def LocalLexing-axioms by auto
                            have }\mp@subsup{k}{}{\prime\prime}\mathrm{ -less-k: }\mp@subsup{k}{}{\prime\prime}<k\mathrm{ using }\mp@subsup{k}{}{\prime\prime}\mp@subsup{k}{}{\prime}\mathrm{ using indexlt-simp less-Suc-eq by
auto
    then have }\mp@subsup{k}{}{\prime\prime}\mathrm{ -Doc-bound: }\mp@subsup{k}{}{\prime\prime}\leq\mathrm{ length Doc using less by auto
    from less(1)[OF k'\prime-less-k k'\prime}\mathrm{ -Doc-bound, of Suc v']
    have induct1: items-le k'\prime (\mathcal{J k'I}(Suc v')) = Gen (paths-le k'\prime (\mathcal{P k'}
(Suc v'I))
            by blast
                            from less(1)[OF k''-less-k k''-Doc-bound, of Suc(Suc v'')]
                            have induct2: \mathcal{T k'\prime}(Suc (Suc v'\prime)) = \mathcal{Z k' (Suc (Suc v'\prime)) by blast}
                            have subset4:Gen (Prefixes p)\subseteqitems-le k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'\prime)
                            using subset3 induct1 by auto
from induct1 subset4
have subset6: Scan T k'\prime}(\mathrm{ Gen (Prefixes p))}
        Scan T k''(items-le k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'\)))
        apply (rule-tac monoD[OF mono-Scan])
        by blast
    have k}\mp@subsup{k}{}{\prime\prime}+\mathrm{ length (chars-of-token X)}=
        by (simp add: h9)
    have }^t.t\inT\Longrightarrow length (chars-of-token t)\leqlength (chars-of-token
X)
        using T by auto
    from Scan-items-le[of T, OF this, simplified, of k'\prime }\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'')] h
    have subset7: Scan T k''(items-le k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'))
        \subseteq \text { items-le k (Scan T k''(J k''(Suc v''))) by simp}
    have T\subseteq\mathcal{Z k'' (Suc (Suc v'\prime)) using T k'}
        using \mathcal{Z-subset-Suc rev-subsetD singletonD subsetI by blast}
    then have T-subset-\mathcal{T}:T\subseteq\mathcal{T}\mp@subsup{k}{}{\prime\prime}(Suc (Suc v')) using induct2 by auto
    have subset8: Scan T k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'\prime)) 
        Scan (\mathcal{T k}
        using T-subset-\mathcal{T}}\mathrm{ Scan-mono-tokens by blast
            have subset9:Scan (\mathcal{T }\mp@subsup{k}{}{\prime\prime}(Suc (Suc v'\))) k''(\mathcal{J k'' (Suc v'}\mp@subsup{v}{}{\prime\prime}))\subseteq\mathcal{J}\mp@subsup{k}{}{\prime\prime}
(Suc (Suc v'\prime))
        by (rule Scan-\mathcal{J-subset-J)}
    have subset10:(Scan T k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'\prime)))\subseteq\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc (Suc v'\prime)) 
        using subset8 subset9 by blast
    have }\mp@subsup{k}{}{\prime\prime}\leq\mp@subsup{k}{}{\prime}\mathrm{ using }\mp@subsup{k}{}{\prime\prime}\mathrm{ indexlt-simp by auto
    then have indexle k'\prime (Suc (Suc v'\)) k' (Suc (Suc v')) using indexlt-simp
        using indexle-def le-neq-implies-less by auto
    then have subset11: \mathcal{J k}}\mp@subsup{}{\prime\prime}{\prime\prime}(Suc (Suc v'\prime))\subseteq\mathcal{J k
        using \mathcal{J}-subset by blast
    have subset12: Scan T k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'\prime))\subseteq\mathcal{J k
        using subset8 subset9 subset10 subset11 by blast
```

```
    then have subset13: items-le k (Scan T k'\prime}(\mathcal{J}\mp@subsup{k}{}{\prime\prime}(Suc v'))) 
        items-le k (\mathcal{J k}
        using items-le-def mem-Collect-eq rev-subsetD subsetI by auto
    have subset14:Scan T k''}(\mathrm{ Gen (Prefixes p)) }\subseteq\mathrm{ items-le k (J k' (Suc
(Suc v}\mp@subsup{v}{}{\prime\prime}))
    using subset6 subset7 subset13 by blast
    then have x-in': x \in\pik{} (items-le k (\mathcal{J k}
        using x-in
    by (meson \pi-apply-setmonotone \pi-subset-elem-trans subsetCE subsetI)
    from x-in' have }x\in\pik{} (natUnion (\lambda v. items-le k (\mathcal{J k
    by (meson k' mono-\pi mono-subset-elem natUnion-superset)
    }
    note suffices6 = this
    {
        fix v :: nat
    have Gen (paths-eq k (\mathcal{P k'v}))\subseteq\pik{} (natUnion (\lambda v. items-le k (\mathcal{J}
k
        using suffices6 by (meson Gen-implies-pvalid subsetI)
    }
note suffices5 = this
    {
        fix v :: nat
```



```
        using paths-le-split-via-eq k' by metis
    then have Gen-split:Gen (paths-le k (\mathcal{P }\mp@subsup{k}{}{\prime}v))=
    Gen (paths-le k'(\mathcal{P }\mp@subsup{k}{}{\prime}v))\cupGen(paths-eq k (\mathcal{P }\mp@subsup{k}{}{\prime}v)) using Gen-union
by metis
            have case-le:Gen (paths-le k'(\mathcal{P }\mp@subsup{k}{}{\prime}v))\subseteq\pik{}(natUnion (\lambdav.
items-le k(\mathcal{J k}
    proof -
        from less k'-less-k have k'
        from less(1)[OF k'-less-k this]
        have items-le k'(\mathcal{J k}
        then have Gen (paths-le k'}(\mathcal{P}\mp@subsup{k}{}{\prime}v))\subseteq\mathrm{ natUnion ( }\lambda\mathrm{ v. items-le k (JJ
k'v))
            using items-le-def LocalLexing-axioms k'-less-k natUnion-superset by
fastforce
            then show ?thesis using \pi-apply-setmonotone by blast
        qed
        have Gen (paths-le k (\mathcal{P k}}\mp@subsup{k}{}{\prime}v))\subseteq\pik{}(natUnion (\lambda v. items-le k (\mathcal{J
k'v)))
            using Gen-split case-le suffices5 UnE rev-subsetD subsetI by blast
        }
    note suffices4 = this
    have super-lemma:Gen (paths-le k (\mathcal{P}}k0))\subseteqitems-le k ( ( J k 0)
        apply (subst simp-right)
        apply (subst simp-left')
        using suffices4 by (meson natUnion-ex rev-subsetD subsetI)
    from super-lemma sub-lemma show ?thesis by blast
```

```
            qed
            then show ?case using thmD13 less.prems by blast
        qed
qed
end
end
theory PathLemmas
imports TheoremD14
begin
context LocalLexing begin
lemma characterize-\mathcal{P}:
    (\foralli<length p. \existsu.p!i\in\mathcal{Z (charslength (take i p)) u)\Longrightarrow admissible p \Longrightarrow}
    \existsu.p\in\mathcal{P}\mathrm{ (charslength p)u}
proof (induct p rule: rev-induct)
    case Nil
        show ?case by simp
next
    case (snoc a p)
        from snoc.prems have admissible-p: admissible p
            by (metis append-Nil2 is-prefix-admissible is-prefix-cancel is-prefix-empty)
        {
            fix i :: nat
            assume ilen: i< length p
            then have i< length( p@[a])
                    by (simp add:Suc-leI Suc-le-lessD trans-le-add1)
            with snoc have }\existsu.(p@[a])!i\in\mathcal{Z (charslength (take i(p@ [a])))u
                    by blast
            then obtain }u\mathrm{ where }u:(p@[a])!i\in\mathcal{Z (charslength (take i (p@ [a])))u
by blast
            from ilen have p-at:(p@ [a])!i=p!i by (simp add: nth-append)
    from ilen have p-take: take i(p@ [a])= take ip by (simp add:less-or-eq-imp-le)
            from u p-at p-take have p-i: p!i\in\mathcal{Z (charslength (take i p)) u by simp}
            then have }\existsu.p!i\in\mathcal{Z}\mathrm{ (charslength (take i p)) u by blast
        }
                            then have }\foralli<length p.\existsu.p!i\in\mathcal{Z (charslength (take i p)) u by auto
                            with admissible-p snoc.hyps obtain u where u:p\in\mathcal{P}(\mathrm{ charslength p) u by}
blast
```



```
            using snoc
                by (metis (no-types, opaque-lifting) add-Suc-right append-Nil2 length-Cons
length-append
            less-Suc-eq-le less-or-eq-imp-le)
    then obtain v}\mathrm{ where (p@ [a])! (length p) & Z (charslength (take (length p)
(p@ @a]))) v
```

by blast
then have $v: a \in \mathcal{Z}$ (charslength p) v by simp
\{
assume v-leq-u: $v \leq u$
then have $a \in \mathcal{Z}$ (charslength p) (Suc u) using v
by (meson LocalLexing.subset-fSuc LocalLexing-axioms \mathcal{Z}-subset-Suc sub-
setCE)
from path-append-token[OF u this snoc.prems(2)]
have $p @[a] \in \mathcal{P}$ (charslength p) (Suc u) by blast
then have ?case using in- \mathcal{P}-charslength by blast
\}
note case-v-leq-u $=$ this
\{
assume u-less- $v: u<v$
then obtain w where $w: v=$ Suc w using less-imp-Suc-add by blast
with u-less- v have $u \leq w$ by arith
with u have $p \in \mathcal{P}$ (charslength p) w by (meson subsetCE subset- $\mathcal{P} k$)
from v w path-append-token[OF this - snoc.prems(2)]
have $p @[a] \in \mathcal{P}$ (charslength $p)($ Suc $w)$ by blast
then have ?case using in- \mathcal{P}-charslength by blast
\}
note case-u-less- $v=$ this
show ?case using case-v-leq-u case-u-less-v not-le by blast qed
lemma drop-empty-tokens:
assumes $p: p \in \mathfrak{P}$
assumes $r: r \leq$ length p
assumes empty: charslength (take r p) $=0$
assumes admissible: admissible (drop r p)
shows drop r $p \in \mathfrak{P}$
proof -
have $p-\mathcal{Z}$: $\forall i<$ length $p . \exists u . p!i \in \mathcal{Z}$ (charslength (take $i p)$) u using p using tokens-nth-in- \mathcal{Z} by blast
obtain q where $q: q=$ drop $r p$ by blast
\{
fix $j::$ nat
assume $j: j<$ length q
have length- $p-q-r$: length $p=$ length $q+r$
using r q add.commute diff-add-inverse le-Suc-ex length-drop by simp
have j-plus-r-bound: $j+r<$ length p by (simp add: j length- $p-q-r$)
with p - \mathcal{Z} have $\exists u . p!(j+r) \in \mathcal{Z}$ (charslength $($ take $(j+r) p)) u$ by blast
then obtain u where $u: p!(j+r) \in \mathcal{Z}$ (charslength $($ take $(j+r) p)) u$ by blast
have p-at-is- q-at: $p!(j+r)=q!j$ by (simp add: add.commute $q r)$
have take $(j+r) p=($ take $r p)$ @ (take $j q$) by (metis add.commute q take-add)
with empty have charslength (take $(j+r) p$) $=$ charslength (take $j q$) by auto
with u p-at-is- q-at have $q!j \in \mathcal{Z}$ (charslength (take $j q)$) u by simp

```
    then have \existsu.q!j\in\mathcal{Z (charslength (take jq)) u by auto}
    }
    then have }\foralli<length q. \existsu. q!i\in\mathcal{Z (charslength (take i q)) u by blast
    from characterize-\mathcal{P}[OF this] have }\existsu.q\in\mathcal{P}\mathrm{ (charslength q) u using admissible
q by auto
    then show ?thesis using }\mathfrak{P}\mathrm{ -covers- }\mathcal{P}q\mathrm{ by blast
qed
end
end
theory MainTheorems
imports PathLemmas
begin
context LocalLexing begin
theorem \mathfrak{I}\mathrm{ -is-generated-by-P}:\mathfrak{I}=Gen \mathfrak{P}
proof -
    have wellformed-items (\mathcal{I}}\mathrm{ (length Doc))
        using wellformed-items-\mathcal{I}}\mathrm{ by auto
    then have }\x.x\in\mathcal{I}\mathrm{ (length Doc) }\Longrightarrow\mathrm{ item-end }x\leqlength Do
        using wellformed-item-def wellformed-items-def by blast
    then have \mathcal{I}(length Doc)\subseteqitems-le (length Doc) (\mathcal{I}}\mathrm{ (length Doc))
        by (auto simp only: items-le-def)
    then have \mathcal{I}(length Doc) = items-le (length Doc) (\mathcal{I}(length Doc))
        using items-le-is-filter by blast
    then have }\mathfrak{I}\mathrm{ -altdef: }\mathfrak{I}=\mathrm{ items-le (length Doc) (I (length Doc)) using I
auto
    have }\wedgep.p\in(\mathcal{Q}(\mathrm{ length Doc)) }\Longrightarrow\mathrm{ charslength p s length Doc
        using \mathfrak{P}
    then have \mathcal{Q (length Doc)\subseteq paths-le (length Doc) (\mathcal{Q (length Doc))}}\mathbf{}\mathrm{ (los}
        by (auto simp only: paths-le-def)
    then have \mathcal{Q (length Doc) = paths-le (length Doc) (\mathcal{Q (length Doc))}}\mathbf{}\mathrm{ (len}
        using paths-le-is-filter by blast
    then have }\mathfrak{P}\mathrm{ -altdef: }\mathfrak{P}=\mathrm{ paths-le (length Doc) (Q (length Doc)) using }\mathfrak{P}\mathrm{ -def
by auto
    show ?thesis using I-altdef \mathfrak{P}
qed
definition finished-item :: symbol list }=>\mathrm{ item
where
    finished-item \alpha = Item ( S, 人)(length \alpha) 0 (length Doc)
lemma item-rule-finished-item[simp]: item-rule (finished-item \alpha)}=(\mathfrak{S},\alpha
    by (simp add: finished-item-def)
lemma item-origin-finished-item[simp]: item-origin (finished-item \alpha)=0
    by (simp add: finished-item-def)
```

```
lemma item-end-finished-item[simp]: item-end (finished-item \alpha) = length Doc
    by (simp add: finished-item-def)
lemma item-dot-finished-item[simp]: item-dot (finished-item \alpha)= length \alpha
    by (simp add: finished-item-def)
lemma item-rhs-finished-item[simp]: item-rhs (finished-item \alpha)}=
    by (simp add: finished-item-def)
lemma item-\alpha-finished-item[simp]: item- }\alpha(\mathrm{ (inished-item }\alpha)=
    by (simp add: finished-item-def item-\alpha-def)
lemma item-nonterminal-finished-item[simp]: item-nonterminal (finished-item \alpha)
= S
    by (simp add: finished-item-def item-nonterminal-def)
lemma Derives1-of-singleton:
    assumes Derives1[N] ir \alpha
    shows i=0^r=(N,\alpha)
proof -
    from assms have i=0 using Derives1-bound
        using length-Cons less-Suc0 list.size(3) by fastforce
    then show ?thesis using assms
        using Derives1-def append-Cons append-self-conv append-self-conv2 length-0-conv
            list.inject by auto
qed
definition pvalid-with :: tokens }=>\mathrm{ item }=>\mathrm{ nat }=>\mathrm{ symbol list }=>\mathrm{ bool
where
    pvalid-with p x u \gamma =
        (wellformed-tokens p}
        wellformed-item x ^
        u
        charslength p = item-end x ^
        charslength (take u p)= item-origin x ^
        is-derivation (terminals (take u p) @ [item-nonterminal x] @ \gamma)^
        derives (item-\alpha x) (terminals (drop u p)))
    lemma pvalid-with: pvalid px=(\existsu %. pvalid-with p x u \gamma)
    using pvalid-def pvalid-with-def by blast
theorem Completeness:
    assumes p-in-ll: p\inll
    shows \exists \alpha. pvalid-with p(finished-item \alpha) 0[]^ finished-item \alpha \in I
proof -
    have p:p\in\mathfrak{P}\wedge charslength p= length Doc ^ terminals p\in\mathcal{L}
        using p-in-ll ll-def by auto
```

then have derives- p : derives [\mathfrak{S}] (terminals p) using \mathcal{L}-def is-derivation-def mem-Collect-eq by blast
then have $\exists D$. Derivation [$\mathfrak{S}] D$ (terminals p)
by (simp add: derives-implies-Derivation)
then obtain D where D : Derivation [$\mathfrak{S}] D$ (terminals p) by blast
have is-word-p: is-word (terminals p) using leftlang p by blast
have not-is-word- $\mathfrak{S}: \neg$ (is-word $[\mathfrak{S}])$ using is-nonterminal-startsymbol is-terminal-nonterminal
is-word-cons by blast
have $D \neq[]$ using D is-word-p not-is-word-S using Derivation.simps(1) by force
then have $\exists d D^{\prime} . D=d \# D^{\prime}$ using D Derivation.elims(2) by blast
then obtain $d D^{\prime}$ where $d: D=d \# D^{\prime}$ by blast
have $\exists \alpha$. Derives1 $[\mathfrak{S}]($ fst $d)($ snd $d) \alpha \wedge$ derives α (terminals p) using d D Derivation.simps(2) Derivation-implies-derives by blast
then obtain α where α : Derives1 [$\mathfrak{S}]($ fst d) $($ snd $d) \alpha \wedge$ derives α (terminals
p) by blast
then have snd-d-in- \mathbb{R} : snd $d \in \mathfrak{R}$ using Derives1-rule by blast
with α have snd-d: snd $d=(\mathfrak{S}, \alpha)$ using Derives1-of-singleton by blast
have wellformed- p : wellformed-tokens p by (simp add: \mathfrak{P}-wellformed p)
have wellformed-finished-item: wellformed-item (finished-item α)
apply (auto simp add: wellformed-item-def)
using snd-d snd-d-in- \mathfrak{R} by metis
have pvalid-with: pvalid-with p (finished-item α) 0 []
apply (auto simp add: pvalid-with-def)
using wellformed- p apply blast
using wellformed-finished-item apply blast
using p apply (simp add: finished-item-def)
apply (simp add: is-derivation-def)
by (simp add: α)
then have pvalid p (finished-item α) using pvalid-def pvalid-with-def by blast
then have finished-item $\alpha \in$ Gen \mathfrak{P} using Gen-def mem-Collect-eq p by blast
then have finished-item $\alpha \in \mathfrak{I}$ using \mathfrak{I}-is-generated-by- \mathfrak{P} by blast
with pvalid-with show ?thesis by blast
qed
theorem Soundness:
assumes finished-item- α : finished-item $\alpha \in \mathfrak{I}$
shows \exists p. pvalid-with p (finished-item $\alpha) 0[] \wedge p \in l l$
proof -
have finished-item $\alpha \in G e n \mathfrak{P}$
using \mathfrak{I}-is-generated-by- \mathfrak{P} finished-item- α by auto
then obtain p where $p: p \in \mathfrak{P} \wedge$ pvalid p (finished-item α)
using Gen-implies-pvalid by blast
have pvalid-p-finished-item: pvalid p (finished-item α) using p by blast
from iffD1[OF pvalid-def this, simplified] obtain $r \gamma$ where pvalid:
wellformed-tokens $p \wedge$
wellformed-item (finished-item $\alpha) \wedge$
$r \leq$ length $p \wedge$

```
    length (chars p) = length Doc }
    chars (take r p)=[]^
    is-derivation (take r (terminals p)@ S # \gamma) ^ derives \alpha (drop r (terminals
p))
    by blast
    have item-rule (finished-item \alpha)\in\Re using pvalid
    using wellformed-item-def by blast
    then have (\mathfrak{S},\alpha)\in\mathfrak{R}\mathrm{ by simp}
    then have is-derivation-\alpha: is-derivation \alpha by (simp add: is-derivation-def left-
derives-rule)
    have drop-r-p-in-\mathfrak{P}:drop r p\in\mathfrak{P}
        apply (rule drop-empty-tokens)
        using p apply blast
        using pvalid apply blast
        using pvalid apply simp
        by (metis append-Nil2 derives-trans is-derivation-\alpha is-derivation-def
            is-derivation-implies-admissible is-word-terminals-drop pvalid terminals-drop)
    then have in-ll: drop r p\inll
        apply (auto simp add: ll-def)
        apply (metis append-Nil append-take-drop-id chars-append pvalid)
        using is-derivation-\alpha pvalid
        by (metis (no-types, lifting) \mathcal{L-def derives-trans is-derivation-def}
            is-word-terminals-drop mem-Collect-eq terminals-drop)
    have pvalid-with (drop r p) (finished-item \alpha) 0 []
        apply (auto simp add: pvalid-with-def)
        using \mathfrak{P}\mathrm{ -wellformed drop-r-p-in-P}\mathrm{ apply blast}
        using pvalid apply blast
        apply (metis append-Nil append-take-drop-id chars-append pvalid)
        apply (simp add: is-derivation-def)
        using pvalid by blast
    with in-ll show ?thesis by auto
qed
lemma is-finished-and-finished-item:
    assumes wellformed-x: wellformed-item x
    shows is-finished }x=(\exists\alpha.x=\mathrm{ finished-item }\alpha
proof -
    {
        assume is-finished-x: is-finished x
        obtain \alpha where \alpha: \alpha= item-rhs x by blast
        have x= finished-item \alpha
            apply (rule item.expand)
            apply auto
            using \alpha is-finished-def is-finished-x item-nonterminal-def item-rhs-def apply
auto[1]
            using \alpha assms is-complete-def is-finished-def is-finished-x wellformed-item-def
apply auto[1]
            using is-finished-def is-finished-x apply blast
            using is-finished-def is-finished-x by auto
```

```
        then have \exists \alpha.x= finished-item \alpha by blast
    }
    note left-implies-right = this
    {
        assume }\exists\alpha.x= finished-item \alpha
        then obtain \alpha where \alpha: x= finished-item \alpha by blast
        have is-finished x by (simp add: \alpha is-finished-def is-complete-def)
    }
    note right-implies-left = this
    show ?thesis using left-implies-right right-implies-left by blast
qed
theorem Correctness:
    shows (ll\not={})= earley-recognised
proof -
    have 1:(ll # {})=(\exists \alpha. finished-item \alpha \in I)
        using Soundness Completeness ex-in-conv by fastforce
    have 2: (\exists\alpha. finished-item \alpha G I) =( }\existsx\in\mathfrak{I}\mathrm{ . is-finished }x
    using I-def is-finished-and-finished-item wellformed-items-I wellformed-items-def
by auto
    show ?thesis using earley-recognised-def 12 by blast
qed
end
end
```


[^0]: ${ }^{1}$ https://arxiv.org/abs/1702.03277

