Power Operator for Lists

Stépan Holub, Martin Ragka, Stépan Starosta and Tobias Nipkow

March 17, 2025

Abstract

This entry defines the power operator xs =~ n, the n-fold concate-
nation of xs with itself.

Much of the theory is taken from the AFP entry Combinatorics on
Words Basics where the operator is called ~@. This new entry uses the
standard overloaded ~~ syntax and is aimed at becoming the central
theory of the power operator for lists that can be extended easily.

1 The Power Operator ~— on Lists

theory List-Power
imports Main
begin

overloading pow-list == compow :: nat = 'a list = 'a list
begin

primrec pow-list :: nat = ’'a list = 'a list where
pow-list 0 zs =[] |
pow-list (Suc n) s = xs Q pow-list n xs

end

context
begin

interpretation monoid-mult || append

rewrites power un = u n

(proof)

lemmas pow-list-zero = power.power-0 and
pow-list-one = power-SucO-right and
pow-list-1 = power-one-right and
pow-list-Nil = power-one and
pow-list-2 = power2-eq-square and
pow-list-Suc = power-Suc and
pow-list-Suc?2 = power-Suc?2 and

https://www.isa-afp.org/entries/Combinatorics_Words.html
https://www.isa-afp.org/entries/Combinatorics_Words.html

pow-list-comm = power-commutes and

pow-list-add = power-add and

pow-list-eq-if = power-eq-if and

pow-list-mult = power-mult and
pow-list-commuting-commutes = power-commuting-commutes

end

lemma pow-list-alt: s~ n = concat (replicate n xs)

{(proof)

lemma pow-list-single: [a] =~ m = replicate m a
(proof)

lemma length-pow-list-single [simp]: length([a] "~ n) = n

(proof)

lemma nth-pow-list-single: i < m = ([a]
(proof)

lemma pow-list-not-NilD: s ~~ m # [| = 0 < m

(proof)

lemma length-pow-list: length(zs =~ k) = k * length xs
(proof)

lemma pow-list-set: set (w ~ Suc k) = set w

(proof)

lemma pow-list-slide: xs Q (ys @ zs) ~ n Q@ ys = (zs @ ys) ™ (Suc n)
(proof)

lemma hd-pow-list: 0 < n => hd(zs = n) = hd xs

(proof)

lemma rev-pow-list: rev (xs = m) = (rev zs) = m

(proof)

lemma eq-pow-list-iff-eq-exp[simp]: assumes zs # [| shows zs "k =zs ~ m
«— k=m

(proof)

lemma pow-list-Nil-iff-0: xs #[] = 2zs — m =[] +— m=10

(proof)

lemma pow-list-Nil-iff-Nil: 0 < m = xs — m =[] +— xs = |]

(proof)

lemma pow-eg-eq:

assumes zs k=ys kand 0 < k
shows (zs::'a list) = ys
(proof)

lemma map-pow-list[simp]: map f (zs " k) = (map fas) ~ "k

(proof)

lemma concat-pow-list: concat (zs ~ k) = (concat zs) ~ k
(proof)

lemma concat-pow-list-single[simp]: concat ([a] "~ k) =a ~ k

(proof)

lemma pow-list-single-Nil-iff: [a] " n=1[+—=n=20

(proof)

lemma hd-pow-list-single: k # 0 = hd ([a] T~ k) = a
(proof)

lemma indez-pow-mod: i < length(zs = k) = (s ~ k)l = zs!(i mod length xs)

(proof)

A~~~

lemma unique-letter-word: assumes Ac. ¢ € set w = ¢ = a shows w = [a]
length w

{proof)

lemma count-list-pow-list: count-list (w ~ " k) a = k * (count-list w a)

(proof)

lemma sing-pow-lists: a € A = [a] " n € lists A

{(proof)

lemma one-generated-list-power: v € lists {x} = k. concat u =2 " k
(proof)

lemma pow-list-in-lists: 0 < k = u ~ k € lists B = u € lists B

(proof)

end

	The Power Operator 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 on Lists

