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Abstract

This entry defines the power operator xs =~ n, the n-fold concate-
nation of xs with itself.

Much of the theory is taken from the AFP entry Combinatorics on
Words Basics where the operator is called ~@. This new entry uses the
standard overloaded ~~ syntax and is aimed at becoming the central
theory of the power operator for lists that can be extended easily.

1 The Power Operator ~— on Lists

theory List-Power
imports Main
begin

overloading pow-list == compow :: nat = 'a list = 'a list
begin

primrec pow-list :: nat = ’'a list = 'a list where
pow-list 0 zs =[] |
pow-list (Suc n) s = xs Q pow-list n xs

end

context
begin

interpretation monoid-mult || append
rewrites power un =u ~ n
proof—
show class.monoid-mult [| (@)
by (unfold-locales, simp-all)
show power.power [| (Q) un=u""n
by (induction n) (auto simp add: power.power.simps)
qed

— inherited power properties


https://www.isa-afp.org/entries/Combinatorics_Words.html
https://www.isa-afp.org/entries/Combinatorics_Words.html

lemmas pow-list-zero = power.power-0 and
pow-list-one = power-SucO-right and
pow-list-1 = power-one-right and
pow-list-Nil = power-one and
pow-list-2 = power2-eq-square and
pow-list-Suc = power-Suc and
pow-list-Suc?2 = power-Suc?2 and
pow-list-comm = power-commutes and
pow-list-add = power-add and
pow-list-eq-if = power-eq-if and
pow-list-mult = power-mult and
pow-list-commuting-commutes = power-commuting-commautes

end

lemma pow-list-alt: s~ n = concat (replicate n xs)
by (induct n) auto

lemma pow-list-single: [a] =~ m = replicate m a
by (simp add: pow-list-alt)

lemma length-pow-list-single [simp]: length([a] =" n) = n
by (simp add: pow-list-single)

lemma nth-pow-list-single: i < m = ([a] ~m)!i=a
by (simp add: pow-list-single)

lemma pow-list-not-NilD: zs ~ m # [| = 0 < m
by (cases m) auto

lemma length-pow-list: length(xzs =" k) = k * length xs
by (induction k) simp+

lemma pow-list-set: set (w ~ Suc k) = set w
by (induction k)(simp-all)

lemma pow-list-slide: xs Q (ys Q@ xs) "~ n Q ys = (zs @ ys) ™ (Suc n)
by (induction n) simp+

lemma hd-pow-list: 0 < n = hd(zs = n) = hd xs
by (auto simp: pow-list-alt hd-append gr0-conv-Suc)

lemma rev-pow-list: rev (xs = m) = (rev zs) = m
by (induction m)(auto simp: pow-list-comm)

lemma eq-pow-list-iff-eq-exp|simp|: assumes zs # [| shows xs 7k = axs
— k=m
proof

assume k£ = m thus zs ~ k = zs = m by simp



next
assume zs k=15 m
thus k£ = m using <xzs # []»[folded length-0-conv]
by (metis length-pow-list mult-cancel2)
qed

lemma pow-list-Nil-iff-0: s # [ = 2s ~ m =[] +— m=10
by (simp add: pow-list-eq-if)

lemma pow-list-Nil-iff-Nil: 0 < m = zs — m =[] +— xs =]
by (cases xs) (auto simp add: pow-list-Nil pow-list-Nil-iff-0)

lemma pow-eq-eq:

assumes sk =ys kand 0 < k

shows (zs::'a list) = ys
proof—

have length s = length ys

using assms(1) length-pow-list by (metis nat-mult-eq-cancell [OF <0 < k»])

thus ?thesis by (metis Suc-pred append-eq-append-conv assms(1,2) pow-list.simps(2))

qed

lemma map-pow-list[simp]: map f (xs = k) = (map fxs) "k
by (induction k) simp-all

lemma concat-pow-list: concat (zs = k) = (concat zs) ~ k
by (induction k) simp-all

lemma concat-pow-list-single[simp|: concat ([a] ~" k) = a "k
by (simp add: pow-list-alt)
lemma pow-list-single-Nil-iff: [a] ~"n=1[ +— n=10
by (simp add: pow-list-single)

lemma hd-pow-list-single: k # 0 = hd ([a] T~ k) = a
by (cases k) simp+

lemma indez-pow-mod: i < length(zs = k) = (s ~ k)l = zs!(i mod length xs)
proof (induction k)
have auz: length(xzs = Suc l) = length(zs ~ 1) + length zs for |
by simp
have auzl: length (zs "7 1) < i = i < length(zs ~ 1) + length xzs = i mod
length xs = i — length(xs™ 1) for 1
unfolding length-pow-list[of | xs]
using less-diff-conv2|of | x length s i length s, unfolded add.commute|[of length
xs 1 x length xs]]
le-add-diff-inverse[of Ixlength xs 1]
by (simp add: mod-nat-eql)
case (Suc k)
show ?case



unfolding aux sym[OF pow-list-Suc2[symmetric]] nth-append le-mod-geq
using auxl[ OF - Suc.prems[unfolded auz]]
Suc.IH pow-list-Suc2[symmetric] Suc.prems|unfolded auzx] lel[of i length(xs ~
k)] by presburger
qed auto
lemma unique-letter-word: assumes Ac. ¢ € set w = ¢ = a shows w = [a] ~
length w
using assms proof (induction w)
case (Cons b w)
have [a] 7" length w = w using Cons.IH[OF Cons.prems|OF list.set-intros(2)]]..
then show b # w = [a] ~ length(b # w)
unfolding Cons.prems|OF list.set-intros(1)] by auto
qed simp

lemma count-list-pow-list: count-list (w " k) a = k * (count-list w a)
by (induction k) simp+

lemma sing-pow-lists: a € A = [a] ~ n € lists A
by (induction n) auto

lemma one-generated-list-power: u € lists {x} = k. concat u =z ~ " k
proof (induction u rule: lists.induct)

case Nil

then show ?case by (metis concat.simps(1) pow-list.simps(1))
next

case Cons

then show ?case by (metis concat.simps(2) pow-list-Suc singletonD)
qed

lemma pow-list-in-lists: 0 < k = u ~ k € lists B—> u € lists B
by (metis Suc-pred in-lists-conv-set pow-list-set)

end
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