
The Inversions of a List

Manuel Eberl

March 17, 2025

Abstract

This entry defines the set of inversions of a list, i. e. the pairs of
indices that violate sortedness. It also proves the correctness of the
well-known O(n log n) divide-and-conquer algorithm to compute the
number of inversions.

Contents
1 The Inversions of a List 1

1.1 Definition of inversions . 1
1.2 Counting inversions . 3
1.3 Stability of inversions between lists under permutations . . . 4
1.4 Inversions between sorted lists 4
1.5 Merge sort . 5
1.6 Merge sort with inversion counting 7

1 The Inversions of a List
theory List-Inversions
imports

Main
HOL−Combinatorics.Permutations

begin

1.1 Definition of inversions
context preorder
begin

We define inversions as pair of indices w. r. t. a preorder.
inductive-set inversions :: ′a list ⇒ (nat × nat) set for xs :: ′a list where

i < j =⇒ j < length xs =⇒ less (xs ! j) (xs ! i) =⇒ (i, j) ∈ inversions xs

lemma inversions-subset: inversions xs ⊆ Sigma {..<length xs} (λi. {i<..<length
xs})

1

〈proof 〉

lemma finite-inversions [intro]: finite (inversions xs)
〈proof 〉

lemma inversions-altdef : inversions xs = {(i, j). i < j ∧ j < length xs ∧ less (xs
! j) (xs ! i)}
〈proof 〉

lemma inversions-code:
inversions xs =

Sigma {..<length xs} (λi. Set.filter (λj. less (xs ! j) (xs ! i)) {i<..<length xs})
〈proof 〉

lemmas (in −) [code] = inversions-code

lemma inversions-trivial [simp]: length xs ≤ Suc 0 =⇒ inversions xs = {}
〈proof 〉

lemma inversions-imp-less:
z ∈ inversions xs =⇒ fst z < snd z
z ∈ inversions xs =⇒ snd z < length xs
〈proof 〉

lemma inversions-Nil [simp]: inversions [] = {}
〈proof 〉

lemma inversions-Cons:
inversions (x # xs) =

(λj. (0 , j + 1)) ‘ {j∈{..<length xs}. less (xs ! j) x} ∪
map-prod Suc Suc ‘ inversions xs (is - = ?rhs)

〈proof 〉

The following function returns the inversions between two lists, i. e. all pairs
of an element in the first list with an element in the second list such that
the former is greater than the latter.
definition inversions-between :: ′a list ⇒ ′a list ⇒ (nat × nat) set where

inversions-between xs ys =
{(i, j) ∈ {..<length xs}×{..<length ys}. less (ys ! j) (xs ! i)}

lemma finite-inversions-between [intro]: finite (inversions-between xs ys)
〈proof 〉

lemma inversions-between-Nil [simp]:
inversions-between [] ys = {}
inversions-between xs [] = {}
〈proof 〉

We can now show the following equality for the inversions of the concatena-

2

tion of two lists:
proposition inversions-append:

fixes xs ys
defines m ≡ length xs and n ≡ length ys
shows inversions (xs @ ys) =

inversions xs ∪ map-prod ((+) m) ((+) m) ‘ inversions ys ∪
map-prod id ((+) m) ‘ inversions-between xs ys

(is - = ?rhs)
〈proof 〉

1.2 Counting inversions

We now define versions of inversions and inversions-between that only return
the number of inversions.
definition inversion-number :: ′a list ⇒ nat where

inversion-number xs = card (inversions xs)

definition inversion-number-between where
inversion-number-between xs ys = card (inversions-between xs ys)

lemma inversions-between-code:
inversions-between xs ys =

Set.filter (λ(i,j). less (ys ! j) (xs ! i)) ({..<length xs}×{..<length ys})
〈proof 〉

lemmas (in −) [code] = inversions-between-code

lemma inversion-number-Nil [simp]: inversion-number [] = 0
〈proof 〉

lemma inversion-number-trivial [simp]: length xs ≤ Suc 0 =⇒ inversion-number
xs = 0
〈proof 〉

lemma inversion-number-between-Nil [simp]:
inversion-number-between [] ys = 0
inversion-number-between xs [] = 0
〈proof 〉

We again get the following nice equation for the number of inversions of a
concatenation:
proposition inversion-number-append:

inversion-number (xs @ ys) =
inversion-number xs + inversion-number ys + inversion-number-between xs ys

〈proof 〉

3

1.3 Stability of inversions between lists under permutations

A crucial fact for counting list inversions with merge sort is that the number
of inversions between two lists does not change when the lists are permuted.
This is true because the set of inversions commutes with the act of permuting
the list:
lemma inversions-between-permute1 :

assumes π permutes {..<length xs}
shows inversions-between (permute-list π xs) ys =

map-prod (inv π) id ‘ inversions-between xs ys
〈proof 〉

lemma inversions-between-permute2 :
assumes π permutes {..<length ys}
shows inversions-between xs (permute-list π ys) =

map-prod id (inv π) ‘ inversions-between xs ys
〈proof 〉

proposition inversions-between-permute:
assumes π1 permutes {..<length xs} and π2 permutes {..<length ys}
shows inversions-between (permute-list π1 xs) (permute-list π2 ys) =

map-prod (inv π1) (inv π2) ‘ inversions-between xs ys
〈proof 〉

corollary inversion-number-between-permute:
assumes π1 permutes {..<length xs} and π2 permutes {..<length ys}
shows inversion-number-between (permute-list π1 xs) (permute-list π2 ys) =

inversion-number-between xs ys
〈proof 〉

The following form of the above theorem is nicer to apply since it has the
form of a congruence rule.
corollary inversion-number-between-cong-mset:

assumes mset xs = mset xs ′ and mset ys = mset ys ′

shows inversion-number-between xs ys = inversion-number-between xs ′ ys ′

〈proof 〉

1.4 Inversions between sorted lists

Another fact that is crucial to the efficient computation of the inversion
number is this: If we have two sorted lists, we can reduce computing the
inversions by inspecting the first elements and deleting one of them.
lemma inversions-between-Cons-Cons:

assumes sorted-wrt less-eq (x # xs) and sorted-wrt less-eq (y # ys)
shows inversions-between (x # xs) (y # ys) =

(if ¬less y x then
map-prod Suc id ‘ inversions-between xs (y # ys)

4

else
{..<length (x#xs)} × {0} ∪
map-prod id Suc ‘ inversions-between (x # xs) ys)

〈proof 〉

This leads to the following analogous equation for counting the inversions
between two sorted lists. Note that a single step of this only takes constant
time (assuming we pre-computed the lengths of the lists) so that the entire
function runs in linear time.
lemma inversion-number-between-Cons-Cons:

assumes sorted-wrt less-eq (x # xs) and sorted-wrt less-eq (y # ys)
shows inversion-number-between (x # xs) (y # ys) =

(if ¬less y x then
inversion-number-between xs (y # ys)

else
inversion-number-between (x # xs) ys + length (x # xs))

〈proof 〉

We now define a function to compute the inversion number between two
lists that are assumed to be sorted using the equalities we just derived.
fun inversion-number-between-sorted :: ′a list ⇒ ′a list ⇒ nat where

inversion-number-between-sorted [] ys = 0
| inversion-number-between-sorted xs [] = 0
| inversion-number-between-sorted (x # xs) (y # ys) =

(if ¬less y x then
inversion-number-between-sorted xs (y # ys)

else
inversion-number-between-sorted (x # xs) ys + length (x # xs))

theorem inversion-number-between-sorted-correct:
sorted-wrt less-eq xs =⇒ sorted-wrt less-eq ys =⇒

inversion-number-between-sorted xs ys = inversion-number-between xs ys
〈proof 〉

end

1.5 Merge sort

For convenience, we first define a simple merge sort that does not compute
the inversions. At this point, we need to start assuming a linear ordering
since the merging function does not work otherwise.
context linorder
begin

definition split-list
where split-list xs = (let n = length xs div 2 in (take n xs, drop n xs))

5

fun merge-lists :: ′a list ⇒ ′a list ⇒ ′a list where
merge-lists [] ys = ys

| merge-lists xs [] = xs
| merge-lists (x # xs) (y # ys) =

(if less-eq x y then x # merge-lists xs (y # ys) else y # merge-lists (x # xs)
ys)

lemma set-merge-lists [simp]: set (merge-lists xs ys) = set xs ∪ set ys
〈proof 〉

lemma mset-merge-lists [simp]: mset (merge-lists xs ys) = mset xs + mset ys
〈proof 〉

lemma sorted-merge-lists [simp, intro]:
sorted xs =⇒ sorted ys =⇒ sorted (merge-lists xs ys)
〈proof 〉

fun merge-sort :: ′a list ⇒ ′a list where
merge-sort xs =
(if length xs ≤ 1 then

xs
else

merge-lists (merge-sort (take (length xs div 2) xs))
(merge-sort (drop (length xs div 2) xs)))

lemmas [simp del] = merge-sort.simps

lemma merge-sort-trivial [simp]: length xs ≤ Suc 0 =⇒ merge-sort xs = xs
〈proof 〉

theorem mset-merge-sort [simp]: mset (merge-sort xs) = mset xs
〈proof 〉

corollary set-merge-sort [simp]: set (merge-sort xs) = set xs
〈proof 〉

theorem sorted-merge-sort [simp, intro]: sorted (merge-sort xs)
〈proof 〉

lemma inversion-number-between-code:
inversion-number-between xs ys = inversion-number-between-sorted (sort xs) (sort

ys)
〈proof 〉

lemmas (in −) [code-unfold] = inversion-number-between-code

6

1.6 Merge sort with inversion counting

Finally, we can put together all the components and define a variant of merge
sort that counts the number of inversions in the original list:
function sort-and-count-inversions :: ′a list ⇒ ′a list × nat where

sort-and-count-inversions xs =
(if length xs ≤ 1 then

(xs, 0)
else

let (xs1 , xs2) = split-list xs;
(xs1 ′, m) = sort-and-count-inversions xs1 ;
(xs2 ′, n) = sort-and-count-inversions xs2

in
(merge-lists xs1 ′ xs2 ′, m + n + inversion-number-between-sorted xs1 ′

xs2 ′))
〈proof 〉

termination 〈proof 〉

lemmas [simp del] = sort-and-count-inversions.simps

The projection of this function to the first component is simply the standard
merge sort algorithm that we defined and proved correct before.
theorem fst-sort-and-count-inversions [simp]:

fst (sort-and-count-inversions xs) = merge-sort xs
〈proof 〉

The projection to the second component is the inversion number.
theorem snd-sort-and-count-inversions [simp]:

snd (sort-and-count-inversions xs) = inversion-number xs
〈proof 〉

lemmas (in −) [code-unfold] = snd-sort-and-count-inversions [symmetric]

end

end

References

[1] T. H. Cormen, C. Lee, and E. Lin. Instructor’s Manual to accompany
Introduction to Algorithms, 2nd Edition. MIT Press, 2002.

7

	The Inversions of a List
	Definition of inversions
	Counting inversions
	Stability of inversions between lists under permutations
	Inversions between sorted lists
	Merge sort
	Merge sort with inversion counting

