
The Inversions of a List

Manuel Eberl

March 17, 2025

Abstract

This entry defines the set of inversions of a list, i. e. the pairs of
indices that violate sortedness. It also proves the correctness of the
well-known O(n log n) divide-and-conquer algorithm to compute the
number of inversions.

Contents
1 The Inversions of a List 1

1.1 Definition of inversions . 1
1.2 Counting inversions . 3
1.3 Stability of inversions between lists under permutations . . . 5
1.4 Inversions between sorted lists 6
1.5 Merge sort . 8
1.6 Merge sort with inversion counting 9

1 The Inversions of a List
theory List-Inversions
imports

Main
HOL−Combinatorics.Permutations

begin

1.1 Definition of inversions
context preorder
begin

We define inversions as pair of indices w. r. t. a preorder.
inductive-set inversions :: ′a list ⇒ (nat × nat) set for xs :: ′a list where

i < j =⇒ j < length xs =⇒ less (xs ! j) (xs ! i) =⇒ (i, j) ∈ inversions xs

lemma inversions-subset: inversions xs ⊆ Sigma {..<length xs} (λi. {i<..<length
xs})

1

by (auto simp: inversions.simps)

lemma finite-inversions [intro]: finite (inversions xs)
by (rule finite-subset[OF inversions-subset]) auto

lemma inversions-altdef : inversions xs = {(i, j). i < j ∧ j < length xs ∧ less (xs
! j) (xs ! i)}

by (auto simp: inversions.simps)

lemma inversions-code:
inversions xs =

Sigma {..<length xs} (λi. Set.filter (λj. less (xs ! j) (xs ! i)) {i<..<length xs})
by (auto simp: inversions-altdef)

lemmas (in −) [code] = inversions-code

lemma inversions-trivial [simp]: length xs ≤ Suc 0 =⇒ inversions xs = {}
by (auto simp: inversions-altdef)

lemma inversions-imp-less:
z ∈ inversions xs =⇒ fst z < snd z
z ∈ inversions xs =⇒ snd z < length xs
by (auto simp: inversions-altdef)

lemma inversions-Nil [simp]: inversions [] = {}
by (auto simp: inversions-altdef)

lemma inversions-Cons:
inversions (x # xs) =

(λj. (0 , j + 1)) ‘ {j∈{..<length xs}. less (xs ! j) x} ∪
map-prod Suc Suc ‘ inversions xs (is - = ?rhs)

proof −
have z ∈ inversions (x # xs) ←→ z ∈ ?rhs for z
by (cases z) (auto simp: inversions-altdef map-prod-def nth-Cons split: nat.splits)

thus ?thesis by blast
qed

The following function returns the inversions between two lists, i. e. all pairs
of an element in the first list with an element in the second list such that
the former is greater than the latter.
definition inversions-between :: ′a list ⇒ ′a list ⇒ (nat × nat) set where

inversions-between xs ys =
{(i, j) ∈ {..<length xs}×{..<length ys}. less (ys ! j) (xs ! i)}

lemma finite-inversions-between [intro]: finite (inversions-between xs ys)
by (rule finite-subset[of - {..<length xs} × {..<length xs + length ys}])

(auto simp: inversions-between-def)

lemma inversions-between-Nil [simp]:

2

inversions-between [] ys = {}
inversions-between xs [] = {}
by (simp-all add: inversions-between-def)

We can now show the following equality for the inversions of the concatena-
tion of two lists:
proposition inversions-append:

fixes xs ys
defines m ≡ length xs and n ≡ length ys
shows inversions (xs @ ys) =

inversions xs ∪ map-prod ((+) m) ((+) m) ‘ inversions ys ∪
map-prod id ((+) m) ‘ inversions-between xs ys

(is - = ?rhs)
proof −

note defs = inversions-altdef inversions-between-def m-def n-def map-prod-def
have z ∈ inversions (xs @ ys) ←→ z ∈ ?rhs for z
proof

assume z ∈ inversions (xs @ ys)
then obtain i j where [simp]: z = (i, j)

and ij: i < j j < m + n less ((xs @ ys) ! j) ((xs @ ys) ! i)
by (cases z) (auto simp: inversions-altdef m-def n-def)

from ij consider j < m | i ≥ m | i < m j ≥ m by linarith
thus z ∈ ?rhs
proof cases

assume i < m j ≥ m
define j ′ where j ′ = j − m
have [simp]: j = m + j ′

using ‹j ≥ m› by (simp add: j ′-def)
from ij and ‹i < m› show ?thesis
by (auto simp: inversions-altdef map-prod-def inversions-between-def nth-append

m-def n-def)
next

assume i ≥ m
define i ′ j ′ where i ′ = i − m and j ′ = j − m
have [simp]: i = m + i ′ j = m + j ′

using ‹i < j› and ‹i ≥ m› by (simp-all add: i ′-def j ′-def)
from ij show ?thesis

by (auto simp: inversions-altdef map-prod-def nth-append m-def n-def)
qed (use ij in ‹auto simp: nth-append defs›)

qed (auto simp: nth-append defs)
thus ?thesis by blast

qed

1.2 Counting inversions

We now define versions of inversions and inversions-between that only return
the number of inversions.
definition inversion-number :: ′a list ⇒ nat where

3

inversion-number xs = card (inversions xs)

definition inversion-number-between where
inversion-number-between xs ys = card (inversions-between xs ys)

lemma inversions-between-code:
inversions-between xs ys =

Set.filter (λ(i,j). less (ys ! j) (xs ! i)) ({..<length xs}×{..<length ys})
by (auto simp: inversions-between-def)

lemmas (in −) [code] = inversions-between-code

lemma inversion-number-Nil [simp]: inversion-number [] = 0
by (simp add: inversion-number-def)

lemma inversion-number-trivial [simp]: length xs ≤ Suc 0 =⇒ inversion-number
xs = 0

by (auto simp: inversion-number-def)

lemma inversion-number-between-Nil [simp]:
inversion-number-between [] ys = 0
inversion-number-between xs [] = 0
by (simp-all add: inversion-number-between-def)

We again get the following nice equation for the number of inversions of a
concatenation:
proposition inversion-number-append:

inversion-number (xs @ ys) =
inversion-number xs + inversion-number ys + inversion-number-between xs ys

proof −
define m n where m = length xs and n = length ys
let ?A = inversions xs
let ?B = map-prod ((+) m) ((+) m) ‘ inversions ys
let ?C = map-prod id ((+) m) ‘ inversions-between xs ys

have inversion-number (xs @ ys) = card (?A ∪ ?B ∪ ?C)
by (simp add: inversion-number-def inversions-append m-def)

also have . . . = card (?A ∪ ?B) + card ?C
by (intro card-Un-disjoint finite-inversions finite-inversions-between finite-UnI

finite-imageI)
(auto simp: inversions-altdef inversions-between-def m-def n-def)

also have card (?A ∪ ?B) = inversion-number xs + card ?B unfolding inver-
sion-number-def

by (intro card-Un-disjoint finite-inversions finite-UnI finite-imageI)
(auto simp: inversions-altdef m-def n-def)

also have card ?B = inversion-number ys unfolding inversion-number-def
by (intro card-image) (auto simp: map-prod-def inj-on-def)

also have card ?C = inversion-number-between xs ys
unfolding inversion-number-between-def by (intro card-image inj-onI) (auto

4

simp: map-prod-def)
finally show ?thesis .

qed

1.3 Stability of inversions between lists under permutations

A crucial fact for counting list inversions with merge sort is that the number
of inversions between two lists does not change when the lists are permuted.
This is true because the set of inversions commutes with the act of permuting
the list:
lemma inversions-between-permute1 :

assumes π permutes {..<length xs}
shows inversions-between (permute-list π xs) ys =

map-prod (inv π) id ‘ inversions-between xs ys
proof −

from assms have [simp]: π i < length xs if i < length xs π permutes {..<length
xs} for i π

using permutes-in-image[OF that(2)] that by auto
have ∗: inv π permutes {..<length xs}

using assms by (rule permutes-inv)
from assms ∗ show ?thesis unfolding inversions-between-def map-prod-def

by (force simp: image-iff permute-list-nth permutes-inverses intro: exI [of - π i
for i])
qed

lemma inversions-between-permute2 :
assumes π permutes {..<length ys}
shows inversions-between xs (permute-list π ys) =

map-prod id (inv π) ‘ inversions-between xs ys
proof −

from assms have [simp]: π i < length ys if i < length ys π permutes {..<length
ys} for i π

using permutes-in-image[OF that(2)] that by auto
have ∗: inv π permutes {..<length ys}

using assms by (rule permutes-inv)
from assms ∗ show ?thesis unfolding inversions-between-def map-prod-def

by (force simp: image-iff permute-list-nth permutes-inverses intro: exI [of - π i
for i])
qed

proposition inversions-between-permute:
assumes π1 permutes {..<length xs} and π2 permutes {..<length ys}
shows inversions-between (permute-list π1 xs) (permute-list π2 ys) =

map-prod (inv π1) (inv π2) ‘ inversions-between xs ys
by (simp add: inversions-between-permute1 inversions-between-permute2 assms

map-prod-def image-image case-prod-unfold)

corollary inversion-number-between-permute:

5

assumes π1 permutes {..<length xs} and π2 permutes {..<length ys}
shows inversion-number-between (permute-list π1 xs) (permute-list π2 ys) =

inversion-number-between xs ys
proof −

have inversion-number-between (permute-list π1 xs) (permute-list π2 ys) =
card (map-prod (inv π1) (inv π2) ‘ inversions-between xs ys)

by (simp add: inversion-number-between-def inversions-between-permute assms)
also have . . . = inversion-number-between xs ys
unfolding inversion-number-between-def using assms[THEN permutes-inj-on[OF

permutes-inv]]
by (intro card-image inj-onI) (auto simp: map-prod-def)

finally show ?thesis .
qed

The following form of the above theorem is nicer to apply since it has the
form of a congruence rule.
corollary inversion-number-between-cong-mset:

assumes mset xs = mset xs ′ and mset ys = mset ys ′

shows inversion-number-between xs ys = inversion-number-between xs ′ ys ′

proof −
obtain π1 π2 where π12 : π1 permutes {..<length xs ′} xs = permute-list π1 xs ′

π2 permutes {..<length ys ′} ys = permute-list π2 ys ′

using assms[THEN mset-eq-permutation] by metis
thus ?thesis by (simp add: inversion-number-between-permute)

qed

1.4 Inversions between sorted lists

Another fact that is crucial to the efficient computation of the inversion
number is this: If we have two sorted lists, we can reduce computing the
inversions by inspecting the first elements and deleting one of them.
lemma inversions-between-Cons-Cons:

assumes sorted-wrt less-eq (x # xs) and sorted-wrt less-eq (y # ys)
shows inversions-between (x # xs) (y # ys) =

(if ¬less y x then
map-prod Suc id ‘ inversions-between xs (y # ys)

else
{..<length (x#xs)} × {0} ∪
map-prod id Suc ‘ inversions-between (x # xs) ys)

using assms unfolding inversions-between-def map-prod-def
by (auto, (auto simp: set-conv-nth nth-Cons less-le-not-le image-iff

intro: order-trans split: nat.splits)?)

This leads to the following analogous equation for counting the inversions
between two sorted lists. Note that a single step of this only takes constant
time (assuming we pre-computed the lengths of the lists) so that the entire
function runs in linear time.
lemma inversion-number-between-Cons-Cons:

6

assumes sorted-wrt less-eq (x # xs) and sorted-wrt less-eq (y # ys)
shows inversion-number-between (x # xs) (y # ys) =

(if ¬less y x then
inversion-number-between xs (y # ys)

else
inversion-number-between (x # xs) ys + length (x # xs))

proof (cases less y x)
case False
hence inversion-number-between (x # xs) (y # ys) =

card (map-prod Suc id ‘ inversions-between xs (y # ys))
by (simp add: inversion-number-between-def inversions-between-Cons-Cons[OF

assms])
also have . . . = inversion-number-between xs (y # ys)

unfolding inversion-number-between-def by (intro card-image inj-onI) (auto
simp: map-prod-def)

finally show ?thesis using False by simp
next

case True
hence inversion-number-between (x # xs) (y # ys) =

card ({..<length (x # xs)} × {0} ∪ map-prod id Suc ‘ inversions-between
(x # xs) ys)

by (simp add: inversion-number-between-def inversions-between-Cons-Cons[OF
assms])

also have . . . = length (x # xs) + card (map-prod id Suc ‘ inversions-between
(x # xs) ys)

by (subst card-Un-disjoint) auto
also have card (map-prod id Suc ‘ inversions-between (x # xs) ys) =

inversion-number-between (x # xs) ys
unfolding inversion-number-between-def by (intro card-image inj-onI) (auto

simp: map-prod-def)
finally show ?thesis using True by simp

qed

We now define a function to compute the inversion number between two
lists that are assumed to be sorted using the equalities we just derived.
fun inversion-number-between-sorted :: ′a list ⇒ ′a list ⇒ nat where

inversion-number-between-sorted [] ys = 0
| inversion-number-between-sorted xs [] = 0
| inversion-number-between-sorted (x # xs) (y # ys) =

(if ¬less y x then
inversion-number-between-sorted xs (y # ys)

else
inversion-number-between-sorted (x # xs) ys + length (x # xs))

theorem inversion-number-between-sorted-correct:
sorted-wrt less-eq xs =⇒ sorted-wrt less-eq ys =⇒

inversion-number-between-sorted xs ys = inversion-number-between xs ys
by (induction xs ys rule: inversion-number-between-sorted.induct)

(simp-all add: inversion-number-between-Cons-Cons)

7

end

1.5 Merge sort

For convenience, we first define a simple merge sort that does not compute
the inversions. At this point, we need to start assuming a linear ordering
since the merging function does not work otherwise.
context linorder
begin

definition split-list
where split-list xs = (let n = length xs div 2 in (take n xs, drop n xs))

fun merge-lists :: ′a list ⇒ ′a list ⇒ ′a list where
merge-lists [] ys = ys
| merge-lists xs [] = xs
| merge-lists (x # xs) (y # ys) =

(if less-eq x y then x # merge-lists xs (y # ys) else y # merge-lists (x # xs)
ys)

lemma set-merge-lists [simp]: set (merge-lists xs ys) = set xs ∪ set ys
by (induction xs ys rule: merge-lists.induct) auto

lemma mset-merge-lists [simp]: mset (merge-lists xs ys) = mset xs + mset ys
by (induction xs ys rule: merge-lists.induct) auto

lemma sorted-merge-lists [simp, intro]:
sorted xs =⇒ sorted ys =⇒ sorted (merge-lists xs ys)
by (induction xs ys rule: merge-lists.induct) auto

fun merge-sort :: ′a list ⇒ ′a list where
merge-sort xs =
(if length xs ≤ 1 then

xs
else

merge-lists (merge-sort (take (length xs div 2) xs))
(merge-sort (drop (length xs div 2) xs)))

lemmas [simp del] = merge-sort.simps

lemma merge-sort-trivial [simp]: length xs ≤ Suc 0 =⇒ merge-sort xs = xs
by (subst merge-sort.simps) auto

theorem mset-merge-sort [simp]: mset (merge-sort xs) = mset xs
by (induction xs rule: merge-sort.induct)

(subst merge-sort.simps, auto simp flip: mset-append)

8

corollary set-merge-sort [simp]: set (merge-sort xs) = set xs
by (rule mset-eq-setD) simp-all

theorem sorted-merge-sort [simp, intro]: sorted (merge-sort xs)
by (induction xs rule: merge-sort.induct)

(subst merge-sort.simps, use sorted01 in auto)

lemma inversion-number-between-code:
inversion-number-between xs ys = inversion-number-between-sorted (sort xs) (sort

ys)
by (subst inversion-number-between-sorted-correct)

(simp-all add: cong: inversion-number-between-cong-mset)

lemmas (in −) [code-unfold] = inversion-number-between-code

1.6 Merge sort with inversion counting

Finally, we can put together all the components and define a variant of merge
sort that counts the number of inversions in the original list:
function sort-and-count-inversions :: ′a list ⇒ ′a list × nat where

sort-and-count-inversions xs =
(if length xs ≤ 1 then

(xs, 0)
else

let (xs1 , xs2) = split-list xs;
(xs1 ′, m) = sort-and-count-inversions xs1 ;
(xs2 ′, n) = sort-and-count-inversions xs2

in
(merge-lists xs1 ′ xs2 ′, m + n + inversion-number-between-sorted xs1 ′

xs2 ′))
by auto

termination by (relation measure length) (auto simp: split-list-def Let-def)

lemmas [simp del] = sort-and-count-inversions.simps

The projection of this function to the first component is simply the standard
merge sort algorithm that we defined and proved correct before.
theorem fst-sort-and-count-inversions [simp]:

fst (sort-and-count-inversions xs) = merge-sort xs
by (induction xs rule: length-induct)

(subst sort-and-count-inversions.simps, subst merge-sort.simps,
simp-all add: split-list-def case-prod-unfold Let-def)

The projection to the second component is the inversion number.
theorem snd-sort-and-count-inversions [simp]:

snd (sort-and-count-inversions xs) = inversion-number xs
proof (induction xs rule: length-induct)

case (1 xs)

9

show ?case
proof (cases length xs ≤ 1)

case False
have xs = take (length xs div 2) xs @ drop (length xs div 2) xs by simp
also have inversion-number . . . = snd (sort-and-count-inversions xs)

by (subst inversion-number-append, subst sort-and-count-inversions.simps)
(use False 1 in ‹auto simp: Let-def split-list-def case-prod-unfold

inversion-number-between-sorted-correct
cong: inversion-number-between-cong-mset›)

finally show ?thesis ..
qed (auto simp: sort-and-count-inversions.simps)

qed

lemmas (in −) [code-unfold] = snd-sort-and-count-inversions [symmetric]

end

end

References

[1] T. H. Cormen, C. Lee, and E. Lin. Instructor’s Manual to accompany
Introduction to Algorithms, 2nd Edition. MIT Press, 2002.

10

	The Inversions of a List
	Definition of inversions
	Counting inversions
	Stability of inversions between lists under permutations
	Inversions between sorted lists
	Merge sort
	Merge sort with inversion counting

