
Reasoning about Lists via List Interleaving

Pasquale Noce
Security Certification Specialist at Arjo Systems - Gep S.p.A.

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at arjowiggins-it dot com

March 17, 2025

Abstract

Among the various mathematical tools introduced in his outstand-
ing work on Communicating Sequential Processes, Hoare has defined
"interleaves" as the predicate satisfied by any three lists such that the
first list may be split into sublists alternately extracted from the other
two ones, whatever is the criterion for extracting an item from either
one list or the other in each step.

This paper enriches Hoare’s definition by identifying such criterion
with the truth value of a predicate taking as inputs the head and the
tail of the first list. This enhanced "interleaves" predicate turns out
to permit the proof of equalities between lists without the need of
an induction. Some rules that allow to infer "interleaves" statements
without induction, particularly applying to the addition or removal of
a prefix to the input lists, are also proven. Finally, a stronger version
of the predicate, named "Interleaves", is shown to fulfil further rules
applying to the addition or removal of a suffix to the input lists.

Contents
1 List interleaving 1

1.1 A first version of interleaving 2
1.2 A second, stronger version of interleaving 11

1 List interleaving
theory ListInterleaving
imports Main
begin

Among the various mathematical tools introduced in his outstanding work
on Communicating Sequential Processes [1], Hoare has defined interleaves as

1

the predicate satisfied by any three lists s, t, emphu such that s may be split
into sublists alternately extracted from t and u, whatever is the criterion for
extracting an item from either t or u in each step.
This paper enriches Hoare’s definition by identifying such criterion with the
truth value of a predicate taking as inputs the head and the tail of s. This
enhanced interleaves predicate turns out to permit the proof of equalities
between lists without the need of an induction. Some rules that allow to
infer interleaves statements without induction, particularly applying to the
addition of a prefix to the input lists, are also proven. Finally, a stronger
version of the predicate, named Interleaves, is shown to fulfil further rules
applying to the addition of a suffix to the input lists.
Throughout this paper, the salient points of definitions and proofs are com-
mented; for additional information, cf. Isabelle documentation, particularly
[5], [4], [3], and [2]. For a sample nontrivial application of the mathematical
machinery developed in this paper, cf. [6].

1.1 A first version of interleaving

Here below is the definition of predicate interleaves, as well as of a conve-
nient symbolic notation for it. As in the definition of predicate interleaves
formulated in [1], the recursive decomposition of the input lists is performed
by item prepending. In the case of a list ws constructed recursively by item
appending rather than prepending, the statement that it satisfies predicate
interleaves with two further lists can nevertheless be proven by induction
using as input rev ws, rather than ws itself.
With respect to Hoare’s homonymous predicate, interleaves takes as an ad-
ditional input a predicate P, which is a function of a single item and a list.
Then, for statement interleaves P (x # xs) (y # ys) (z # zs) to hold, the
item picked for being x must be y if P x xs, z otherwise. On the contrary,
in case either the second or the third list is empty, the truth value of P x xs
does not matter and list x # xs just has to match the other nonempty one,
if any.

fun interleaves ::
(′a ⇒ ′a list ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ ′a list ⇒ bool where

interleaves P (x # xs) (y # ys) (z # zs) = (if P x xs
then x = y ∧ interleaves P xs ys (z # zs)
else x = z ∧ interleaves P xs (y # ys) zs) |

interleaves P (x # xs) (y # ys) [] =
(x = y ∧ interleaves P xs ys []) |

interleaves P (x # xs) [] (z # zs) =
(x = z ∧ interleaves P xs [] zs) |

interleaves - (- # -) [] [] = False |
interleaves - [] (- # -) - = False |

2

interleaves - [] - (- # -) = False |
interleaves - [] [] [] = True

abbreviation interleaves-syntax ::
′a list ⇒ ′a list ⇒ ′a list ⇒ (′a ⇒ ′a list ⇒ bool) ⇒ bool
(‹(- ' {-, -, -})› [60 , 60 , 60] 51)

where xs ' {ys, zs, P} ≡ interleaves P xs ys zs

The advantage provided by this enhanced interleaves predicate is that in
case xs ' {ys, zs, P}, fixing the values of xs and either ys or zs has the
effect of fixing the value of the remaining list, too. Namely, if xs ' {ys ′, zs,
P} also holds, then ys = ys ′, and likewise, if xs ' {ys, zs ′, P} also holds,
then zs = zs ′. Therefore, once two interleaves statements xs ' {ys, zs, P},
xs ′ ' {ys ′, zs ′, P ′} have been proven along with equalities xs = xs ′, P =
P ′, and either zs = zs ′ or ys = ys ′, possibly by induction, the remaining
equality, i.e. respectively ys = ys ′ and zs = zs ′, can be inferred without the
need of a further induction.
Here below is the proof of this property as well as of other ones. Particularly,
it is also proven that in case xs ' {ys, zs, P}, lists ys and zs can be swapped
by replacing predicate P with its negation.
It is worth noting that fixing the values of ys and zs does not fix the value
of xs instead. A counterexample is ys = [y], zs = [z] with y 6= z, P y [z] =
True, P z [y] = False, in which case both of the interleaves statements [y,
z] ' {ys, zs, P} and [z, y] ' {ys, zs, P} hold.

lemma interleaves-length [rule-format]:
xs ' {ys, zs, P} −→ length xs = length ys + length zs

proof (induction P xs ys zs rule: interleaves.induct, simp-all)
qed (rule conjI , (rule-tac [!] impI)+, simp-all)

lemma interleaves-nil:
[] ' {ys, zs, P} =⇒ ys = [] ∧ zs = []

by (rule interleaves.cases [of (P, [], ys, zs)], simp-all)

lemma interleaves-swap:
xs ' {ys, zs, P} = xs ' {zs, ys, λw ws. ¬ P w ws}

proof (induction P xs ys zs rule: interleaves.induct, simp-all)
fix y ′ :: ′a and ys ′ zs ′ P ′

show ¬ [] ' {zs ′, y ′ # ys ′, λw ws. ¬ P ′ w ws} by (cases zs ′, simp-all)
qed

lemma interleaves-equal-fst [rule-format]:
xs ' {ys, zs, P} −→ xs ' {ys ′, zs, P} −→ ys = ys ′

proof (induction xs arbitrary: ys ys ′ zs, (rule-tac [!] impI)+)
fix ys ys ′ zs
assume [] ' {ys, zs, P}

3

hence ys = [] ∧ zs = [] by (rule interleaves-nil)
moreover assume [] ' {ys ′, zs, P}
hence ys ′ = [] ∧ zs = [] by (rule interleaves-nil)
ultimately show ys = ys ′ by simp

next
fix x xs ys ys ′ zs
assume

A:
∧

ys ys ′ zs. xs ' {ys, zs, P} −→ xs ' {ys ′, zs, P} −→ ys = ys ′ and
B: x # xs ' {ys, zs, P} and
B ′: x # xs ' {ys ′, zs, P}

show ys = ys ′

proof (cases zs, case-tac [2] ys, case-tac [2−3] ys ′, simp-all)
assume C : zs = []
hence ∃w ws. ys = w # ws using B by (cases ys, simp-all)
then obtain w ws where Y : ys = w # ws by blast
hence D: w = x using B and C by simp
have xs ' {ws, [], P} using B and C and Y by simp
moreover have ∃w ′ ws ′. ys ′ = w ′ # ws ′

using B ′ and C by (cases ys ′, simp-all)
then obtain w ′ ws ′ where Y ′: ys ′ = w ′ # ws ′ by blast
hence D ′: w ′ = x using B ′ and C by simp
have xs ' {ws ′, [], P} using B ′ and C and Y ′ by simp
moreover have xs ' {ws, [], P} −→ xs ' {ws ′, [], P} −→ ws = ws ′

using A .
ultimately have ws = ws ′ by simp
with Y and Y ′ and D and D ′ show ?thesis by simp

next
fix v vs w ′ ws ′

assume C : zs = v # vs and ys = []
hence D: xs ' {[], vs, P} using B by simp
assume E : ys ′ = w ′ # ws ′

have P x xs ∨ ¬ P x xs by simp
moreover {

assume P x xs
hence xs ' {ws ′, v # vs, P} using B ′ and C and E by simp
hence length xs = Suc (length vs) + length ws ′

by (simp add: interleaves-length)
moreover have length xs = length vs
using D by (simp add: interleaves-length)

ultimately have False by simp
}
moreover {

assume ¬ P x xs
hence xs ' {w ′ # ws ′, vs, P} using B ′ and C and E by simp
moreover have xs ' {[], vs, P} −→ xs ' {w ′ # ws ′, vs, P} −→
[] = w ′ # ws ′

using A .
ultimately have [] = w ′ # ws ′ using D by simp
hence False by simp

4

}
ultimately show False ..

next
fix v vs w ws
assume C : zs = v # vs and ys ′ = []
hence D: xs ' {[], vs, P} using B ′ by simp
assume E : ys = w # ws
have P x xs ∨ ¬ P x xs by simp
moreover {

assume P x xs
hence xs ' {ws, v # vs, P} using B and C and E by simp
hence length xs = Suc (length vs) + length ws
by (simp add: interleaves-length)

moreover have length xs = length vs
using D by (simp add: interleaves-length)

ultimately have False by simp
}
moreover {

assume ¬ P x xs
hence xs ' {w # ws, vs, P} using B and C and E by simp
moreover have xs ' {[], vs, P} −→ xs ' {w # ws, vs, P} −→ [] = w # ws
using A .

ultimately have [] = w # ws using D by simp
hence False by simp

}
ultimately show False ..

next
fix v vs w ws w ′ ws ′

assume C : zs = v # vs and D: ys = w # ws and D ′: ys ′ = w ′ # ws ′

have P x xs ∨ ¬ P x xs by simp
moreover {

assume E : P x xs
hence F : w = x using B and C and D by simp
have xs ' {ws, v # vs, P} using B and C and D and E by simp
moreover have F ′: w ′ = x using B ′ and C and D ′ and E by simp
have xs ' {ws ′, v # vs, P} using B ′ and C and D ′ and E by simp
moreover have xs ' {ws, v # vs, P} −→ xs ' {ws ′, v # vs, P} −→

ws = ws ′

using A .
ultimately have ws = ws ′ by simp
hence w = w ′ ∧ ws = ws ′ using F and F ′ by simp

}
moreover {

assume E : ¬ P x xs
hence xs ' {w # ws, vs, P} using B and C and D by simp
moreover have xs ' {w ′ # ws ′, vs, P}
using B ′ and C and D ′ and E by simp

moreover have xs ' {w # ws, vs, P} −→ xs ' {w ′ # ws ′, vs, P} −→
w # ws = w ′ # ws ′

5

using A .
ultimately have w # ws = w ′ # ws ′ by simp
hence w = w ′ ∧ ws = ws ′ by simp

}
ultimately show w = w ′ ∧ ws = ws ′ ..

qed
qed

lemma interleaves-equal-snd:
xs ' {ys, zs, P} =⇒ xs ' {ys, zs ′, P} =⇒ zs = zs ′

by (subst (asm) (1 2) interleaves-swap, rule interleaves-equal-fst)

Since interleaves statements permit to prove equalities between lists without
the need of an induction, it is useful to search for rules that allow to infer
such statements themselves without induction, which is precisely what is
done here below. Particularly, it is proven that under proper assumptions,
predicate interleaves keeps being satisfied by applying a filter, a mapping,
or the addition or removal of a prefix to the input lists.

lemma interleaves-all-nil:
xs ' {xs, [], P}

by (induction xs, simp-all)

lemma interleaves-nil-all:
xs ' {[], xs, P}

by (induction xs, simp-all)

lemma interleaves-equal-all-nil:
xs ' {ys, [], P} =⇒ xs = ys

by (insert interleaves-all-nil, rule interleaves-equal-fst)

lemma interleaves-equal-nil-all:
xs ' {[], zs, P} =⇒ xs = zs

by (insert interleaves-nil-all, rule interleaves-equal-snd)

lemma interleaves-filter [rule-format]:
assumes A: ∀ x xs. P x (filter Q xs) = P x xs
shows xs ' {ys, zs, P} −→ filter Q xs ' {filter Q ys, filter Q zs, P}

proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp)
fix ys zs
assume [] ' {ys, zs, P}
hence ys = [] ∧ zs = [] by (rule interleaves-nil)
thus [] ' {filter Q ys, filter Q zs, P} by simp

next
fix x xs ys zs
assume

B:
∧

ys ′ zs ′. xs ' {ys ′, zs ′, P} −→

6

filter Q xs ' {filter Q ys ′, filter Q zs ′, P} and
C : x # xs ' {ys, zs, P}

show filter Q (x # xs) ' {filter Q ys, filter Q zs, P}
proof (cases ys, case-tac [!] zs, simp-all del: filter .simps, rule ccontr)

assume ys = [] and zs = []
thus False using C by simp

next
fix z zs ′

assume ys = [] and zs = z # zs ′

hence D: x = z ∧ xs ' {[], zs ′, P} using C by simp
moreover have xs ' {[], zs ′, P} −→

filter Q xs ' {filter Q [], filter Q zs ′, P}
using B .

ultimately have filter Q xs ' {[], filter Q zs ′, P} by simp
thus filter Q (x # xs) ' {[], filter Q (z # zs ′), P} using D by simp

next
fix y ys ′

assume ys = y # ys ′ and zs = []
hence D: x = y ∧ xs ' {ys ′, [], P} using C by simp
moreover have xs ' {ys ′, [], P} −→

filter Q xs ' {filter Q ys ′, filter Q [], P}
using B .

ultimately have filter Q xs ' {filter Q ys ′, [], P} by simp
thus filter Q (x # xs) ' {filter Q (y # ys ′), [], P} using D by simp

next
fix y ys ′ z zs ′

assume ys = y # ys ′ and zs = z # zs ′

hence D: x # xs ' {y # ys ′, z # zs ′, P} using C by simp
show filter Q (x # xs) ' {filter Q (y # ys ′), filter Q (z # zs ′), P}
proof (cases P x xs)

case True
hence E : P x (filter Q xs) using A by simp
have F : x = y ∧ xs ' {ys ′, z # zs ′, P} using D and True by simp
moreover have xs ' {ys ′, z # zs ′, P} −→

filter Q xs ' {filter Q ys ′, filter Q (z # zs ′), P}
using B .

ultimately have G: filter Q xs ' {filter Q ys ′, filter Q (z # zs ′), P}
by simp

show ?thesis
proof (cases Q x)

assume Q x
hence filter Q (x # xs) = x # filter Q xs by simp
moreover have filter Q (y # ys ′) = x # filter Q ys ′

using ‹Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (z # zs ′), simp-all)

next
assume ¬ Q x
hence filter Q (x # xs) = filter Q xs by simp

7

moreover have filter Q (y # ys ′) = filter Q ys ′

using ‹¬ Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (z # zs ′), simp-all)

qed
next

case False
hence E : ¬ P x (filter Q xs) using A by simp
have F : x = z ∧ xs ' {y # ys ′, zs ′, P} using D and False by simp
moreover have xs ' {y # ys ′, zs ′, P} −→

filter Q xs ' {filter Q (y # ys ′), filter Q zs ′, P}
using B .

ultimately have G: filter Q xs ' {filter Q (y # ys ′), filter Q zs ′, P}
by simp

show ?thesis
proof (cases Q x)

assume Q x
hence filter Q (x # xs) = x # filter Q xs by simp
moreover have filter Q (z # zs ′) = x # filter Q zs ′

using ‹Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (y # ys ′), simp-all)

next
assume ¬ Q x
hence filter Q (x # xs) = filter Q xs by simp
moreover have filter Q (z # zs ′) = filter Q zs ′

using ‹¬ Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (z # zs ′), simp-all)

qed
qed

qed
qed

lemma interleaves-map [rule-format]:
assumes A: inj f
shows xs ' {ys, zs, P} −→

map f xs ' {map f ys, map f zs, λw ws. P (inv f w) (map (inv f) ws)}
(is - −→ - ' {-, -, ?P ′})

proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp-all)
fix ys zs
assume [] ' {ys, zs, P}
hence ys = [] ∧ zs = [] by (rule interleaves-nil)
thus [] ' {map f ys, map f zs, ?P ′} by simp

next
fix x xs ys zs
assume

B:
∧

ys zs. xs ' {ys, zs, P} −→ map f xs ' {map f ys, map f zs, ?P ′} and
C : x # xs ' {ys, zs, P}

8

show f x # map f xs ' {map f ys, map f zs, ?P ′}
proof (cases ys, case-tac [!] zs, simp-all del: interleaves.simps(1))

assume ys = [] and zs = []
thus False using C by simp

next
fix z zs ′

assume ys = [] and zs = z # zs ′

hence x = z ∧ xs ' {[], zs ′, P} using C by simp
moreover have xs ' {[], zs ′, P} −→ map f xs ' {map f [], map f zs ′, ?P ′}
using B .

ultimately show f x = f z ∧ map f xs ' {[], map f zs ′, ?P ′} by simp
next

fix y ys ′

assume ys = y # ys ′ and zs = []
hence x = y ∧ xs ' {ys ′, [], P} using C by simp
moreover have xs ' {ys ′, [], P} −→ map f xs ' {map f ys ′, map f [], ?P ′}
using B .

ultimately show f x = f y ∧ map f xs ' {map f ys ′, [], ?P ′} by simp
next

fix y ys ′ z zs ′

assume ys = y # ys ′ and zs = z # zs ′

hence D: x # xs ' {y # ys ′, z # zs ′, P} using C by simp
show f x # map f xs ' {f y # map f ys ′, f z # map f zs ′, ?P ′}
proof (cases P x xs)

case True
hence E : ?P ′ (f x) (map f xs) using A by simp
have x = y ∧ xs ' {ys ′, z # zs ′, P} using D and True by simp
moreover have xs ' {ys ′, z # zs ′, P} −→

map f xs ' {map f ys ′, map f (z # zs ′), ?P ′}
using B .

ultimately have f x = f y ∧ map f xs ' {map f ys ′, map f (z # zs ′), ?P ′}
by simp

thus ?thesis using E by simp
next

case False
hence E : ¬ ?P ′ (f x) (map f xs) using A by simp
have x = z ∧ xs ' {y # ys ′, zs ′, P} using D and False by simp
moreover have xs ' {y # ys ′, zs ′, P} −→

map f xs ' {map f (y # ys ′), map f zs ′, ?P ′}
using B .

ultimately have f x = f z ∧ map f xs ' {map f (y # ys ′), map f zs ′, ?P ′}
by simp

thus ?thesis using E by simp
qed

qed
qed

lemma interleaves-prefix-fst-1 [rule-format]:
assumes A: xs ' {ys, zs, P}

9

shows (∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
ws @ xs ' {ws @ ys, zs, P}

proof (induction ws, simp-all add: A, rule impI)
fix w ws
assume B: ∀n < Suc (length ws). P ((w # ws) ! n) (drop n ws @ xs)
assume (∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→

ws @ xs ' {ws @ ys, zs, P}
moreover have ∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)
proof (rule allI , rule impI)

fix n
assume n < length ws
moreover have Suc n < Suc (length ws) −→

P ((w # ws) ! (Suc n)) (drop (Suc n) ws @ xs)
using B ..

ultimately show P (ws ! n) (drop (Suc n) ws @ xs) by simp
qed
ultimately have ws @ xs ' {ws @ ys, zs, P} ..
moreover have 0 < Suc (length ws) −→ P ((w # ws) ! 0) (drop 0 ws @ xs)
using B ..

hence P w (ws @ xs) by simp
ultimately show w # ws @ xs ' {w # ws @ ys, zs, P} by (cases zs, simp-all)

qed

lemma interleaves-prefix-fst-2 [rule-format]:
ws @ xs ' {ws @ ys, zs, P} −→
(∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
xs ' {ys, zs, P}

proof (induction ws, simp-all, (rule impI)+)
fix w ws
assume A: ∀n < Suc (length ws). P ((w # ws) ! n) (drop n ws @ xs)
hence 0 < Suc (length ws) −→ P ((w # ws) ! 0) (drop 0 ws @ xs) ..
hence P w (ws @ xs) by simp
moreover assume w # ws @ xs ' {w # ws @ ys, zs, P}
ultimately have ws @ xs ' {ws @ ys, zs, P} by (cases zs, simp-all)
moreover assume ws @ xs ' {ws @ ys, zs, P} −→
(∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
xs ' {ys, zs, P}

ultimately have (∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
xs ' {ys, zs, P}

by simp
moreover have ∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)
proof (rule allI , rule impI)

fix n
assume n < length ws
moreover have Suc n < Suc (length ws) −→

P ((w # ws) ! (Suc n)) (drop (Suc n) ws @ xs)
using A ..

ultimately show P (ws ! n) (drop (Suc n) ws @ xs) by simp
qed

10

ultimately show xs ' {ys, zs, P} ..
qed

lemma interleaves-prefix-fst [rule-format]:
∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs) =⇒
xs ' {ys, zs, P} = ws @ xs ' {ws @ ys, zs, P}

proof (rule iffI , erule interleaves-prefix-fst-1 , simp)
qed (erule interleaves-prefix-fst-2 , simp)

lemma interleaves-prefix-snd [rule-format]:
∀n < length ws. ¬ P (ws ! n) (drop (Suc n) ws @ xs) =⇒
xs ' {ys, zs, P} = ws @ xs ' {ys, ws @ zs, P}

proof (subst (1 2) interleaves-swap)
qed (rule interleaves-prefix-fst, simp)

1.2 A second, stronger version of interleaving

Simple counterexamples show that unlike prefixes, the addition or removal of
suffixes to the input lists does not generally preserve the validity of predicate
interleaves. In fact, if P y [x] = True with x 6= y, then [y, x] ' {[x], [y],
P} does not hold although [y] ' {[], [y], λw ws. P w (ws @ [x])} does, by
virtue of lemma ?xs ' {[], ?xs, ?P}. Similarly, [x, y] ' {[], [y, x], λw ws. P
w (ws @ [x])} does not hold for x 6= y even though [x, y, x] ' {[x], [y, x],
P} does.
Both counterexamples would not work any longer if the truth value of the
input predicate were significant even if either the second or the third list is
empty. In fact, in the former case, condition P y [x] = True would entail
the falseness of statement [y] ' {[], [y], λw ws. P w (ws @ [x])}, so that the
validity of rule [y] ' {[], [y], λw ws. P w (ws @ [x])} =⇒ [y, x] ' {[x], [y],
P} would be preserved. In the latter case, statement [x, y, x] ' {[x], [y, x],
P} may only hold provided the last item x of the first list is extracted from
the third one, which would require that ¬ P x []; thus, subordinating rule
[x, y, x] ' {[x], [y, x], P} =⇒ [x, y] ' {[], [y, x], λw ws. P w (ws @ [x])}
to condition P x [] would preserve its validity.
This argument suggests that in order to obtain an interleaves predicate
whose validity is also preserved upon the addition or removal of a suffix to
the input lists, the truth value of the input predicate must matter until both
the second and the third list are empty. In what follows, such a stronger ver-
sion of the predicate, named Interleaves, is defined along with a convenient
symbolic notation for it.

fun Interleaves ::
(′a ⇒ ′a list ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ ′a list ⇒ bool where

Interleaves P (x # xs) (y # ys) (z # zs) = (if P x xs
then x = y ∧ Interleaves P xs ys (z # zs)

11

else x = z ∧ Interleaves P xs (y # ys) zs) |
Interleaves P (x # xs) (y # ys) [] =
(P x xs ∧ x = y ∧ Interleaves P xs ys []) |

Interleaves P (x # xs) [] (z # zs) =
(¬ P x xs ∧ x = z ∧ Interleaves P xs [] zs) |

Interleaves - (- # -) [] [] = False |
Interleaves - [] (- # -) - = False |
Interleaves - [] - (- # -) = False |
Interleaves - [] [] [] = True

abbreviation Interleaves-syntax ::
′a list ⇒ ′a list ⇒ ′a list ⇒ (′a ⇒ ′a list ⇒ bool) ⇒ bool
(‹(- ∼= {-, -, -})› [60 , 60 , 60] 51)

where xs ∼= {ys, zs, P} ≡ Interleaves P xs ys zs

In what follows, it is proven that predicate Interleaves is actually not weaker
than, viz. is a sufficient condition for, predicate interleaves. Moreover, the
former predicate is shown to fulfil the same rules as the latter, although
sometimes under more stringent assumptions (cf. lemmas Interleaves-all-nil,
Interleaves-nil-all with lemmas ?xs ' {?xs, [], ?P}, ?xs ' {[], ?xs, ?P}),
and to have the further property that under proper assumptions, its validity
is preserved upon the addition or removal of a suffix to the input lists.

lemma Interleaves-interleaves [rule-format]:
xs ∼= {ys, zs, P} −→ xs ' {ys, zs, P}

proof (induction P xs ys zs rule: interleaves.induct, simp-all)
qed (rule conjI , (rule-tac [!] impI)+, simp-all)

lemma Interleaves-length:
xs ∼= {ys, zs, P} =⇒ length xs = length ys + length zs

by (drule Interleaves-interleaves, rule interleaves-length)

lemma Interleaves-nil:
[] ∼= {ys, zs, P} =⇒ ys = [] ∧ zs = []

by (drule Interleaves-interleaves, rule interleaves-nil)

lemma Interleaves-swap:
xs ∼= {ys, zs, P} = xs ∼= {zs, ys, λw ws. ¬ P w ws}

proof (induction P xs ys zs rule: Interleaves.induct, simp-all)
fix y ′ :: ′a and ys ′ zs ′ P ′

show ¬ [] ∼= {zs ′, y ′ # ys ′, λw ws. ¬ P ′ w ws} by (cases zs ′, simp-all)
qed

lemma Interleaves-equal-fst:
xs ∼= {ys, zs, P} =⇒ xs ∼= {ys ′, zs, P} =⇒ ys = ys ′

by ((drule Interleaves-interleaves)+, rule interleaves-equal-fst)

12

lemma Interleaves-equal-snd:
xs ∼= {ys, zs, P} =⇒ xs ∼= {ys, zs ′, P} =⇒ zs = zs ′

by ((drule Interleaves-interleaves)+, rule interleaves-equal-snd)

lemma Interleaves-equal-all-nil:
xs ∼= {ys, [], P} =⇒ xs = ys

by (drule Interleaves-interleaves, rule interleaves-equal-all-nil)

lemma Interleaves-equal-nil-all:
xs ∼= {[], zs, P} =⇒ xs = zs

by (drule Interleaves-interleaves, rule interleaves-equal-nil-all)

lemma Interleaves-filter [rule-format]:
assumes A: ∀ x xs. P x (filter Q xs) = P x xs
shows xs ∼= {ys, zs, P} −→ filter Q xs ∼= {filter Q ys, filter Q zs, P}

proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp)
fix ys zs
assume [] ∼= {ys, zs, P}
hence ys = [] ∧ zs = [] by (rule Interleaves-nil)
thus [] ∼= {filter Q ys, filter Q zs, P} by simp

next
fix x xs ys zs
assume

B:
∧

ys ′ zs ′. xs ∼= {ys ′, zs ′, P} −→
filter Q xs ∼= {filter Q ys ′, filter Q zs ′, P} and

C : x # xs ∼= {ys, zs, P}
show filter Q (x # xs) ∼= {filter Q ys, filter Q zs, P}
proof (cases ys, case-tac [!] zs, simp-all del: filter .simps, rule ccontr)

assume ys = [] and zs = []
thus False using C by simp

next
fix z zs ′

assume ys = [] and zs = z # zs ′

hence D: ¬ P x xs ∧ x = z ∧ xs ∼= {[], zs ′, P} using C by simp+
moreover have xs ∼= {[], zs ′, P} −→

filter Q xs ∼= {filter Q [], filter Q zs ′, P}
using B .

ultimately have filter Q xs ∼= {[], filter Q zs ′, P} by simp
moreover have ¬ P x (filter Q xs) using A and D by simp+
ultimately show filter Q (x # xs) ∼= {[], filter Q (z # zs ′), P}
using D by simp

next
fix y ys ′

assume ys = y # ys ′ and zs = []
hence D: P x xs ∧ x = y ∧ xs ∼= {ys ′, [], P} using C by simp+
moreover have xs ∼= {ys ′, [], P} −→

filter Q xs ∼= {filter Q ys ′, filter Q [], P}
using B .

ultimately have filter Q xs ∼= {filter Q ys ′, [], P} by simp

13

moreover have P x (filter Q xs) using A and D by simp+
ultimately show filter Q (x # xs) ∼= {filter Q (y # ys ′), [], P}
using D by simp

next
fix y ys ′ z zs ′

assume ys = y # ys ′ and zs = z # zs ′

hence D: x # xs ∼= {y # ys ′, z # zs ′, P} using C by simp
show filter Q (x # xs) ∼= {filter Q (y # ys ′), filter Q (z # zs ′), P}
proof (cases P x xs)

case True
hence E : P x (filter Q xs) using A by simp
have F : x = y ∧ xs ∼= {ys ′, z # zs ′, P} using D and True by simp
moreover have xs ∼= {ys ′, z # zs ′, P} −→

filter Q xs ∼= {filter Q ys ′, filter Q (z # zs ′), P}
using B .

ultimately have G: filter Q xs ∼= {filter Q ys ′, filter Q (z # zs ′), P}
by simp

show ?thesis
proof (cases Q x)

assume Q x
hence filter Q (x # xs) = x # filter Q xs by simp
moreover have filter Q (y # ys ′) = x # filter Q ys ′

using ‹Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (z # zs ′), simp-all)

next
assume ¬ Q x
hence filter Q (x # xs) = filter Q xs by simp
moreover have filter Q (y # ys ′) = filter Q ys ′

using ‹¬ Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (z # zs ′), simp-all)

qed
next

case False
hence E : ¬ P x (filter Q xs) using A by simp
have F : x = z ∧ xs ∼= {y # ys ′, zs ′, P} using D and False by simp
moreover have xs ∼= {y # ys ′, zs ′, P} −→

filter Q xs ∼= {filter Q (y # ys ′), filter Q zs ′, P}
using B .

ultimately have G: filter Q xs ∼= {filter Q (y # ys ′), filter Q zs ′, P}
by simp

show ?thesis
proof (cases Q x)

assume Q x
hence filter Q (x # xs) = x # filter Q xs by simp
moreover have filter Q (z # zs ′) = x # filter Q zs ′

using ‹Q x› and F by simp
ultimately show ?thesis using E and G

14

by (cases filter Q (y # ys ′), simp-all)
next

assume ¬ Q x
hence filter Q (x # xs) = filter Q xs by simp
moreover have filter Q (z # zs ′) = filter Q zs ′

using ‹¬ Q x› and F by simp
ultimately show ?thesis using E and G
by (cases filter Q (z # zs ′), simp-all)

qed
qed

qed
qed

lemma Interleaves-map [rule-format]:
assumes A: inj f
shows xs ∼= {ys, zs, P} −→

map f xs ∼= {map f ys, map f zs, λw ws. P (inv f w) (map (inv f) ws)}
(is - −→ - ∼= {-, -, ?P ′})

proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp-all)
fix ys zs
assume [] ∼= {ys, zs, P}
hence ys = [] ∧ zs = [] by (rule Interleaves-nil)
thus [] ∼= {map f ys, map f zs, ?P ′} by simp

next
fix x xs ys zs
assume

B:
∧

ys zs. xs ∼= {ys, zs, P} −→ map f xs ∼= {map f ys, map f zs, ?P ′} and
C : x # xs ∼= {ys, zs, P}

show f x # map f xs ∼= {map f ys, map f zs, ?P ′}
proof (cases ys, case-tac [!] zs, simp-all del: Interleaves.simps(1−3))

assume ys = [] and zs = []
thus False using C by simp

next
fix z zs ′

assume ys = [] and zs = z # zs ′

hence D: ¬ P x xs ∧ x = z ∧ xs ∼= {[], zs ′, P} using C by simp+
moreover have xs ∼= {[], zs ′, P} −→ map f xs ∼= {map f [], map f zs ′, ?P ′}
using B .

ultimately have map f xs ∼= {[], map f zs ′, ?P ′} by simp
moreover have ¬ ?P ′ (f x) (map f xs) using A and D by simp+
ultimately show f x # map f xs ∼= {[], f z # map f zs ′, ?P ′}
using D by simp

next
fix y ys ′

assume ys = y # ys ′ and zs = []
hence D: P x xs ∧ x = y ∧ xs ∼= {ys ′, [], P} using C by simp+
moreover have xs ∼= {ys ′, [], P} −→ map f xs ∼= {map f ys ′, map f [], ?P ′}
using B .

ultimately have map f xs ∼= {map f ys ′, [], ?P ′} by simp

15

moreover have ?P ′ (f x) (map f xs) using A and D by simp+
ultimately show f x # map f xs ∼= {f y # map f ys ′, [], ?P ′}
using D by simp

next
fix y ys ′ z zs ′

assume ys = y # ys ′ and zs = z # zs ′

hence D: x # xs ∼= {y # ys ′, z # zs ′, P} using C by simp
show f x # map f xs ∼= {f y # map f ys ′, f z # map f zs ′, ?P ′}
proof (cases P x xs)

case True
hence E : ?P ′ (f x) (map f xs) using A by simp
have x = y ∧ xs ∼= {ys ′, z # zs ′, P} using D and True by simp
moreover have xs ∼= {ys ′, z # zs ′, P} −→

map f xs ∼= {map f ys ′, map f (z # zs ′), ?P ′}
using B .

ultimately have f x = f y ∧ map f xs ∼= {map f ys ′, map f (z # zs ′), ?P ′}
by simp

thus ?thesis using E by simp
next

case False
hence E : ¬ ?P ′ (f x) (map f xs) using A by simp
have x = z ∧ xs ∼= {y # ys ′, zs ′, P} using D and False by simp
moreover have xs ∼= {y # ys ′, zs ′, P} −→

map f xs ∼= {map f (y # ys ′), map f zs ′, ?P ′}
using B .

ultimately have f x = f z ∧ map f xs ∼= {map f (y # ys ′), map f zs ′, ?P ′}
by simp

thus ?thesis using E by simp
qed

qed
qed

lemma Interleaves-prefix-fst-1 [rule-format]:
assumes A: xs ∼= {ys, zs, P}
shows (∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→

ws @ xs ∼= {ws @ ys, zs, P}
proof (induction ws, simp-all add: A, rule impI)

fix w ws
assume B: ∀n < Suc (length ws). P ((w # ws) ! n) (drop n ws @ xs)
assume (∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→

ws @ xs ∼= {ws @ ys, zs, P}
moreover have ∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)
proof (rule allI , rule impI)

fix n
assume n < length ws
moreover have Suc n < Suc (length ws) −→

P ((w # ws) ! (Suc n)) (drop (Suc n) ws @ xs)
using B ..

ultimately show P (ws ! n) (drop (Suc n) ws @ xs) by simp

16

qed
ultimately have ws @ xs ∼= {ws @ ys, zs, P} ..
moreover have 0 < Suc (length ws) −→ P ((w # ws) ! 0) (drop 0 ws @ xs)
using B ..

hence P w (ws @ xs) by simp
ultimately show w # ws @ xs ∼= {w # ws @ ys, zs, P} by (cases zs, simp-all)

qed

lemma Interleaves-prefix-fst-2 [rule-format]:
ws @ xs ∼= {ws @ ys, zs, P} −→
(∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
xs ∼= {ys, zs, P}

proof (induction ws, simp-all, (rule impI)+)
fix w ws
assume A: ∀n < Suc (length ws). P ((w # ws) ! n) (drop n ws @ xs)
hence 0 < Suc (length ws) −→ P ((w # ws) ! 0) (drop 0 ws @ xs) ..
hence P w (ws @ xs) by simp
moreover assume w # ws @ xs ∼= {w # ws @ ys, zs, P}
ultimately have ws @ xs ∼= {ws @ ys, zs, P} by (cases zs, simp-all)
moreover assume ws @ xs ∼= {ws @ ys, zs, P} −→
(∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
xs ∼= {ys, zs, P}

ultimately have (∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)) −→
xs ∼= {ys, zs, P}

by simp
moreover have ∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs)
proof (rule allI , rule impI)

fix n
assume n < length ws
moreover have Suc n < Suc (length ws) −→

P ((w # ws) ! (Suc n)) (drop (Suc n) ws @ xs)
using A ..

ultimately show P (ws ! n) (drop (Suc n) ws @ xs) by simp
qed
ultimately show xs ∼= {ys, zs, P} ..

qed

lemma Interleaves-prefix-fst [rule-format]:
∀n < length ws. P (ws ! n) (drop (Suc n) ws @ xs) =⇒
xs ∼= {ys, zs, P} = ws @ xs ∼= {ws @ ys, zs, P}

proof (rule iffI , erule Interleaves-prefix-fst-1 , simp)
qed (erule Interleaves-prefix-fst-2 , simp)

lemma Interleaves-prefix-snd [rule-format]:
∀n < length ws. ¬ P (ws ! n) (drop (Suc n) ws @ xs) =⇒
xs ∼= {ys, zs, P} = ws @ xs ∼= {ys, ws @ zs, P}

proof (subst (1 2) Interleaves-swap)
qed (rule Interleaves-prefix-fst, simp)

17

lemma Interleaves-all-nil-1 [rule-format]:
xs ∼= {xs, [], P} −→ (∀n < length xs. P (xs ! n) (drop (Suc n) xs))

proof (induction xs, simp-all, rule impI , erule conjE , rule allI , rule impI)
fix x xs n
assume

xs ∼= {xs, [], P} −→ (∀n < length xs. P (xs ! n) (drop (Suc n) xs)) and
xs ∼= {xs, [], P}

hence A: ∀n < length xs. P (xs ! n) (drop (Suc n) xs) ..
assume

B: P x xs and
C : n < Suc (length xs)

show P ((x # xs) ! n) (drop n xs)
proof (cases n, simp-all add: B)

case (Suc m)
have m < length xs −→ P (xs ! m) (drop (Suc m) xs) using A ..
moreover have m < length xs using C and Suc by simp
ultimately show P (xs ! m) (drop (Suc m) xs) ..

qed
qed

lemma Interleaves-all-nil-2 [rule-format]:
∀n < length xs. P (xs ! n) (drop (Suc n) xs) =⇒ xs ∼= {xs, [], P}

by (insert Interleaves-prefix-fst [of xs P [] [] []], simp)

lemma Interleaves-all-nil:
xs ∼= {xs, [], P} = (∀n < length xs. P (xs ! n) (drop (Suc n) xs))

proof (rule iffI , rule allI , rule impI , rule Interleaves-all-nil-1 , assumption+)
qed (rule Interleaves-all-nil-2 , simp)

lemma Interleaves-nil-all:
xs ∼= {[], xs, P} = (∀n < length xs. ¬ P (xs ! n) (drop (Suc n) xs))

by (subst Interleaves-swap, simp add: Interleaves-all-nil)

lemma Interleaves-suffix-one-aux:
assumes A: P x []
shows ¬ xs @ [x] ∼= {[], zs, P}

using [[simproc del: defined-all]]
proof (induction xs arbitrary: zs, simp-all, rule-tac [!] notI)

fix zs
assume [x] ∼= {[], zs, P}
thus False by (cases zs, simp-all add: A)

next
fix w xs zs
assume B:

∧
zs. ¬ xs @ [x] ∼= {[], zs, P}

assume w # xs @ [x] ∼= {[], zs, P}
thus False proof (cases zs, simp-all, (erule-tac conjE)+)

fix zs ′

assume xs @ [x] ∼= {[], zs ′, P}
moreover have ¬ xs @ [x] ∼= {[], zs ′, P} using B .

18

ultimately show False by contradiction
qed

qed

lemma Interleaves-suffix-one-fst-2 [rule-format]:
assumes A: P x []
shows xs @ [x] ∼= {ys @ [x], zs, P} −→ xs ∼= {ys, zs, λw ws. P w (ws @ [x])}
(is - −→ - ∼= {-, -, ?P ′})

using [[simproc del: defined-all]]
proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp-all)

fix ys zs
assume [x] ∼= {ys @ [x], zs, P}
hence B: length [x] = length (ys @ [x]) + length zs
by (rule Interleaves-length)

have ys: ys = [] by (cases ys, simp, insert B, simp)
then have zs = [] by (cases zs, simp, insert B, simp)
with ys show [] ∼= {ys, zs, ?P ′} by simp

next
fix w xs ys zs
assume B:

∧
ys zs. xs @ [x] ∼= {ys @ [x], zs, P} −→ xs ∼= {ys, zs, ?P ′}

assume w # xs @ [x] ∼= {ys @ [x], zs, P}
thus w # xs ∼= {ys, zs, ?P ′}
proof (cases zs, case-tac [!] ys, simp-all del: Interleaves.simps(1 ,3),
(erule-tac [1−2] conjE)+)
assume xs @ [x] ∼= {[], [], P}
thus False by (cases xs, simp-all)

next
fix ys ′

have xs @ [x] ∼= {ys ′ @ [x], [], P} −→ xs ∼= {ys ′, [], ?P ′} using B .
moreover assume xs @ [x] ∼= {ys ′ @ [x], [], P}
ultimately show xs ∼= {ys ′, [], ?P ′} ..

next
fix z ′ zs ′

assume w # xs @ [x] ∼= {[x], z ′ # zs ′, P}
thus w # xs ∼= {[], z ′ # zs ′, ?P ′}
proof (cases P w (xs @ [x]), simp-all, erule-tac [!] conjE)

assume xs @ [x] ∼= {[], z ′ # zs ′, P}
moreover have ¬ xs @ [x] ∼= {[], z ′ # zs ′, P}
using A by (rule Interleaves-suffix-one-aux)

ultimately show False by contradiction
next

have xs @ [x] ∼= {[x], zs ′, P} −→ xs ∼= {[], zs ′, ?P ′} using B by simp
moreover assume xs @ [x] ∼= {[x], zs ′, P}
ultimately show xs ∼= {[], zs ′, ?P ′} ..

qed
next

fix y ′ ys ′ z ′ zs ′

assume w # xs @ [x] ∼= {y ′ # ys ′ @ [x], z ′ # zs ′, P}
thus w # xs ∼= {y ′ # ys ′, z ′ # zs ′, ?P ′}

19

proof (cases P w (xs @ [x]), simp-all, erule-tac [!] conjE)
have xs @ [x] ∼= {ys ′ @ [x], z ′ # zs ′, P} −→ xs ∼= {ys ′, z ′ # zs ′, ?P ′}
using B .

moreover assume xs @ [x] ∼= {ys ′ @ [x], z ′ # zs ′, P}
ultimately show xs ∼= {ys ′, z ′ # zs ′, ?P ′} ..

next
have xs @ [x] ∼= {y ′ # ys ′ @ [x], zs ′, P} −→ xs ∼= {y ′ # ys ′, zs ′, ?P ′}
using B by simp

moreover assume xs @ [x] ∼= {y ′ # ys ′ @ [x], zs ′, P}
ultimately show xs ∼= {y ′ # ys ′, zs ′, ?P ′} ..

qed
qed

qed

lemma Interleaves-suffix-fst-1 [rule-format]:
assumes A: ∀n < length ws. P (ws ! n) (drop (Suc n) ws)
shows xs ∼= {ys, zs, λv vs. P v (vs @ ws)} −→ xs @ ws ∼= {ys @ ws, zs, P}
(is - ∼= {-, -, ?P ′} −→ -)

using [[simproc del: defined-all]]
proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp-all)

fix ys zs
assume [] ∼= {ys, zs, ?P ′}
hence ys = [] ∧ zs = [] by (rule Interleaves-nil)
thus ws ∼= {ys @ ws, zs, P} using A by (simp add: Interleaves-all-nil)

next
fix x xs ys zs
assume A:

∧
ys zs. xs ∼= {ys, zs, ?P ′} −→ xs @ ws ∼= {ys @ ws, zs, P}

assume x # xs ∼= {ys, zs, ?P ′}
thus x # xs @ ws ∼= {ys @ ws, zs, P}
proof (rule-tac Interleaves.cases [of (?P ′, x # xs, ys, zs)],
simp-all del: Interleaves.simps(1),
(erule-tac conjE)+, (erule-tac [2] conjE)+, (erule-tac [3] conjE)+)
fix P ′ x ′ xs ′ y ′ ys ′ z ′ zs ′

assume
B: x ′ # xs ′ ∼= {y ′ # ys ′, z ′ # zs ′, P ′} and
C : ?P ′ = P ′ and
D: xs = xs ′

show x ′ # xs ′ @ ws ∼= {y ′ # ys ′ @ ws, z ′ # zs ′, P}
proof (cases P ′ x ′ xs ′)

have xs ∼= {ys ′, z ′ # zs ′, ?P ′} −→ xs @ ws ∼= {ys ′ @ ws, z ′ # zs ′, P}
using A .

moreover case True
hence xs ∼= {ys ′, z ′ # zs ′, ?P ′} using B and C and D by simp
ultimately have xs @ ws ∼= {ys ′ @ ws, z ′ # zs ′, P} ..
moreover have P x ′ (xs ′ @ ws) using C [symmetric] and True by simp
moreover have x ′ = y ′ using B and True by simp
ultimately show ?thesis using D by simp

next
have xs ∼= {y ′ # ys ′, zs ′, ?P ′} −→ xs @ ws ∼= {(y ′ # ys ′) @ ws, zs ′, P}

20

using A .
moreover case False
hence xs ∼= {y ′ # ys ′, zs ′, ?P ′} using B and C and D by simp
ultimately have xs @ ws ∼= {(y ′ # ys ′) @ ws, zs ′, P} ..
moreover have ¬ P x ′ (xs ′ @ ws) using C [symmetric] and False by simp
moreover have x ′ = z ′ using B and False by simp
ultimately show ?thesis using D by simp

qed
next

fix P ′ x ′ xs ′ y ′ ys ′

have xs ∼= {ys ′, [], ?P ′} −→ xs @ ws ∼= {ys ′ @ ws, [], P} using A .
moreover assume

xs ′ ∼= {ys ′, [], P ′} and
B: ?P ′ = P ′ and
C : xs = xs ′

hence xs ∼= {ys ′, [], ?P ′} by simp
ultimately have xs ′ @ ws ∼= {ys ′ @ ws, [], P} using C by simp
moreover assume

P ′ x ′ xs ′ and
x ′ = y ′

hence P y ′ (xs ′ @ ws) using B [symmetric] by simp
ultimately show P y ′ (xs ′ @ ws) ∧ xs ′ @ ws ∼= {ys ′ @ ws, [], P} by simp

next
fix P ′ x ′ xs ′ z ′ zs ′

have xs ∼= {[], zs ′, ?P ′} −→ xs @ ws ∼= {[] @ ws, zs ′, P} using A .
moreover assume

xs ′ ∼= {[], zs ′, P ′} and
B: ?P ′ = P ′ and
C : xs = xs ′

hence xs ∼= {[], zs ′, ?P ′} by simp
ultimately have xs ′ @ ws ∼= {ws, zs ′, P} using C by simp
moreover assume
¬ P ′ x ′ xs ′ and
x ′ = z ′

hence ¬ P z ′ (xs ′ @ ws) using B [symmetric] by simp
ultimately show z ′ # xs ′ @ ws ∼= {ws, z ′ # zs ′, P} by (cases ws, simp-all)

qed
qed

lemma Interleaves-suffix-one-fst-1 [rule-format]:
P x [] =⇒
xs ∼= {ys, zs, λw ws. P w (ws @ [x])} =⇒ xs @ [x] ∼= {ys @ [x], zs, P}

by (rule Interleaves-suffix-fst-1 , simp)

lemma Interleaves-suffix-one-fst:
P x [] =⇒
xs ∼= {ys, zs, λw ws. P w (ws @ [x])} = xs @ [x] ∼= {ys @ [x], zs, P}

proof (rule iffI , rule Interleaves-suffix-one-fst-1 , assumption+)
qed (rule Interleaves-suffix-one-fst-2)

21

lemma Interleaves-suffix-one-snd:
¬ P x [] =⇒
xs ∼= {ys, zs, λw ws. P w (ws @ [x])} = xs @ [x] ∼= {ys, zs @ [x], P}

by (subst (1 2) Interleaves-swap, rule Interleaves-suffix-one-fst)

lemma Interleaves-suffix-aux [rule-format]:
(∀n < length ws. P (ws ! n) (drop (Suc n) ws)) −→
x # xs @ ws ∼= {ws, zs, P} −→
¬ P x (xs @ ws)

proof (induction ws arbitrary: P rule: rev-induct, simp-all,
rule impI , (rule-tac [2] impI)+)
fix P
assume x # xs ∼= {[], zs, P}
thus ¬ P x xs by (cases zs, simp-all)

next
fix w ws P
assume

A:
∧

P ′. (∀n < length ws. P ′ (ws ! n) (drop (Suc n) ws)) −→
x # xs @ ws ∼= {ws, zs, P ′} −→ ¬ P ′ x (xs @ ws) and

B: ∀n < Suc (length ws). P ((ws @ [w]) ! n)
(drop (Suc n) ws @ drop (Suc n − length ws) [w])

assume x # xs @ ws @ [w] ∼= {ws @ [w], zs, P}
hence C : (x # xs @ ws) @ [w] ∼= {ws @ [w], zs, P} by simp
let ?P ′ = λv vs. P v (vs @ [w])
have (∀n < length ws. ?P ′ (ws ! n) (drop (Suc n) ws)) −→

x # xs @ ws ∼= {ws, zs, ?P ′} −→ ¬ ?P ′ x (xs @ ws)
using A .

moreover have ∀n < length ws. ?P ′ (ws ! n) (drop (Suc n) ws)
proof (rule allI , rule impI)

fix n
assume D: n < length ws
moreover have n < Suc (length ws) −→ P ((ws @ [w]) ! n)
(drop (Suc n) ws @ drop (Suc n − length ws) [w])

using B ..
ultimately have P ((ws @ [w]) ! n) (drop (Suc n) ws @ [w]) by simp
moreover have n < length (butlast (ws @ [w])) using D by simp
hence butlast (ws @ [w]) ! n = (ws @ [w]) ! n by (rule nth-butlast)
ultimately show P (ws ! n) (drop (Suc n) ws @ [w]) by simp

qed
ultimately have x # xs @ ws ∼= {ws, zs, ?P ′} −→ ¬ ?P ′ x (xs @ ws) ..
moreover have length ws < Suc (length ws) −→ P ((ws @ [w]) ! length ws)
(drop (Suc (length ws)) ws @ drop (Suc (length ws) − length ws) [w])

using B ..
hence P w [] by simp
hence x # xs @ ws ∼= {ws, zs, ?P ′}
using C by (rule Interleaves-suffix-one-fst-2)

ultimately have ¬ ?P ′ x (xs @ ws) ..
thus ¬ P x (xs @ ws @ [w]) by simp

22

qed

lemma Interleaves-suffix-fst-2 [rule-format]:
assumes A: ∀n < length ws. P (ws ! n) (drop (Suc n) ws)
shows xs @ ws ∼= {ys @ ws, zs, P} −→ xs ∼= {ys, zs, λv vs. P v (vs @ ws)}
(is - −→ - ∼= {-, -, ?P ′})

using [[simproc del: defined-all]]
proof (induction xs arbitrary: ys zs, rule-tac [!] impI , simp-all)

fix ys zs
assume ws ∼= {ys @ ws, zs, P}
hence B: length ws = length (ys @ ws) + length zs
by (rule Interleaves-length)

have ys: ys = [] by (cases ys, simp, insert B, simp)
then have zs = [] by (cases zs, simp, insert B, simp)
with ys show [] ∼= {ys, zs, ?P ′} by simp

next
fix x xs ys zs
assume B:

∧
ys zs. xs @ ws ∼= {ys @ ws, zs, P} −→ xs ∼= {ys, zs, ?P ′}

assume x # xs @ ws ∼= {ys @ ws, zs, P}
thus x # xs ∼= {ys, zs, ?P ′}
proof (cases zs, case-tac [!] ys, simp-all del: Interleaves.simps(1 ,3),
(erule-tac [2] conjE)+)
assume C : x # xs @ ws ∼= {ws, [], P}
have length (x # xs @ ws) = length ws + length []
by (insert Interleaves-length [OF C], simp)

thus False by simp
next

fix ys ′

have xs @ ws ∼= {ys ′ @ ws, [], P} −→ xs ∼= {ys ′, [], ?P ′} using B .
moreover assume xs @ ws ∼= {ys ′ @ ws, [], P}
ultimately show xs ∼= {ys ′, [], ?P ′} ..

next
fix z ′ zs ′

assume x # xs @ ws ∼= {ws, z ′ # zs ′, P}
thus x # xs ∼= {[], z ′ # zs ′, ?P ′}
proof (cases P x (xs @ ws), simp-all)

case True
moreover assume x # xs @ ws ∼= {ws, z ′ # zs ′, P}
with A [rule-format] have ¬ P x (xs @ ws)
by (rule Interleaves-suffix-aux)

ultimately show False by contradiction
next

case False
moreover assume x # xs @ ws ∼= {ws, z ′ # zs ′, P}
ultimately have x = z ′ ∧ xs @ ws ∼= {ws, zs ′, P} by (cases ws, simp-all)
moreover have xs @ ws ∼= {[] @ ws, zs ′, P} −→ xs ∼= {[], zs ′, ?P ′}
using B .

ultimately show x = z ′ ∧ xs ∼= {[], zs ′, ?P ′} by simp
qed

23

next
fix y ′ ys ′ z ′ zs ′

assume x # xs @ ws ∼= {y ′ # ys ′ @ ws, z ′ # zs ′, P}
thus x # xs ∼= {y ′ # ys ′, z ′ # zs ′, ?P ′}
proof (cases P x (xs @ ws), simp-all, erule-tac [!] conjE)

have xs @ ws ∼= {ys ′ @ ws, z ′ # zs ′, P} −→ xs ∼= {ys ′, z ′ # zs ′, ?P ′}
using B .

moreover assume xs @ ws ∼= {ys ′ @ ws, z ′ # zs ′, P}
ultimately show xs ∼= {ys ′, z ′ # zs ′, ?P ′} ..

next
have xs @ ws ∼= {y ′ # ys ′ @ ws, zs ′, P} −→ xs ∼= {y ′ # ys ′, zs ′, ?P ′}
using B by simp

moreover assume xs @ ws ∼= {y ′ # ys ′ @ ws, zs ′, P}
ultimately show xs ∼= {y ′ # ys ′, zs ′, ?P ′} ..

qed
qed

qed

lemma Interleaves-suffix-fst [rule-format]:
∀n < length ws. P (ws ! n) (drop (Suc n) ws) =⇒
xs ∼= {ys, zs, λv vs. P v (vs @ ws)} = xs @ ws ∼= {ys @ ws, zs, P}

proof (rule iffI , rule Interleaves-suffix-fst-1 , simp-all)
qed (rule Interleaves-suffix-fst-2 , simp)

lemma Interleaves-suffix-snd [rule-format]:
∀n < length ws. ¬ P (ws ! n) (drop (Suc n) ws) =⇒
xs ∼= {ys, zs, λv vs. P v (vs @ ws)} = xs @ ws ∼= {ys, zs @ ws, P}

by (subst (1 2) Interleaves-swap, rule Interleaves-suffix-fst, simp)

end

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, May
2015. http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/
doc/prog-prove.pdf.

24

http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/functions.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/prog-prove.pdf

[5] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, May 2015. http://isabelle.in.tum.de/
website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf.

[6] P. Noce. The ipurge unwinding theorem for csp noninterference secu-
rity. Archive of Formal Proofs, June 2015. http://isa-afp.org/entries/
Noninterference_Ipurge_Unwinding.shtml, Formal proof development.

25

http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/tutorial.pdf
http://isa-afp.org/entries/Noninterference_Ipurge_Unwinding.shtml
http://isa-afp.org/entries/Noninterference_Ipurge_Unwinding.shtml

	List interleaving
	A first version of interleaving
	A second, stronger version of interleaving

