List Index

Tobias Nipkow

September 13, 2023

Abstract

This theory provides functions for finding the index of an element in a list, by predicate and by value.

1 Index-based manipulation of lists

theory List-Index imports Main begin

This theory collects functions for index-based manipulation of lists.

1.1 Finding an index

This subsection defines three functions for finding the index of items in a list:
find-index P xs finds the index of the first element in $x s$ that satisfies P.
index xs x finds the index of the first occurrence of x in $x s$.
last-index xs x finds the index of the last occurrence of x in $x s$.
All functions return length $x s$ if $x s$ does not contain a suitable element.
The argument order of find-index follows the function of the same name in the Haskell standard library. For index (and last-index) the order is intentionally reversed: index maps lists to a mapping from elements to their indices, almost the inverse of function $n t h$.
primrec find-index :: ('a \Rightarrow bool $) \Rightarrow$ 'a list \Rightarrow nat where
find-index - [] = $0 \mid$
find-index $P(x \# x s)=($ if $P x$ then 0 else find-index $P x s+1)$
definition index :: 'a list $\Rightarrow{ }^{\prime} a \Rightarrow$ nat where
index $x s=(\lambda a$. find-index $(\lambda x . x=a) x s)$
definition last-index :: 'a list $\Rightarrow{ }^{\prime} a \Rightarrow$ nat where
last-index xs $x=$
(let $i=$ index (rev xs) $x ; n=$ size $x s$

```
    in if i=n then }i\mathrm{ else n - (i+1))
lemma find-index-append: find-index P (xs @ ys)=
    (if \existsx\inset xs. P x then find-index P xs else size xs + find-index P ys)
    <proof\rangle
lemma find-index-le-size: find-index P xs <= size xs
<proof\rangle
lemma index-le-size: index xs x <= size xs
<proof\rangle
lemma last-index-le-size: last-index xs x <= size xs
<proof\rangle
lemma index-Nil[simp]: index [] a = 0
<proof\rangle
lemma index-Cons[simp]: index (x#xs) a = (if x=a then 0 else index xs a + 1)
<proof\rangle
lemma index-append: index (xs @ ys) x=
    (if x : set xs then index xs x else size xs + index ys x)
<proof\rangle
lemma index-conv-size-if-notin[simp]: x # set xs \Longrightarrow index xs x = size xs
\langleproof\rangle
lemma find-index-eq-size-conv:
    size xs = n\Longrightarrow(find-index P xs=n)=(\forallx\in set xs. ~ P x)
\langleproof\rangle
lemma size-eq-find-index-conv:
    size xs =n\Longrightarrow(n= find-index P xs) = (\forallx\in set xs. ~ P x)
<proof\rangle
lemma index-size-conv: size xs = n\Longrightarrow(index xs x = n)=(x\not\in set xs)
\langleproof\rangle
lemma size-index-conv: size xs = n \Longrightarrow(n= index xs x)=(x\not\in set xs)
<proof\rangle
lemma last-index-size-conv:
    size xs = n\Longrightarrow(last-index xs x = n)=( }x\not\in\mathrm{ set xs)
<proof\rangle
lemma size-last-index-conv:
    size xs = n\Longrightarrow(n= last-index xs x) =( }x\not\in\mathrm{ set xs )
<proof\rangle
```

```
lemma find-index-less-size-conv:
    (find-index P xs < size xs)}=(\existsx\in\mathrm{ set xs. P x )
<proof\rangle
lemma index-less-size-conv:
    (index xs x< size xs) =(x\in set xs)
<proof>
lemma last-index-less-size-conv:
    (last-index xs x < size xs) = (x : set xs)
<proof\rangle
lemma index-less[simp]:
    x : set xs \Longrightarrow size xs <= n \Longrightarrow index xs }x<
\langleproof\rangle
lemma last-index-less[simp]:
    x : set }xs\Longrightarrow\mathrm{ size xs <= n C last-index xs x < n
\langleproof\rangle
lemma last-index-Cons: last-index (x#xs) y =
    (if }x=y\mathrm{ then
            if x\in set xs then last-index xs y+1 else 0
    else last-index xs y + 1)
<proof\rangle
lemma last-index-append: last-index (xs @ ys) x=
    (if x : set ys then size xs + last-index ys x
    else if x: set xs then last-index xs x else size xs + size ys)
\langleproof\rangle
lemma last-index-Snoc[simp]:
    last-index (xs @ [x]) y =
    (if }x=y\mathrm{ then size xs
    else if y: set xs then last-index xs y else size xs + 1)
\langleproof\rangle
lemma nth-find-index: find-index P xs < size xs \LongrightarrowP(xs!find-index P xs)
<proof\rangle
lemma nth-index[simp]:x set xs \Longrightarrow xs ! index xs x = x
<proof\rangle
lemma nth-last-index[simp]: x set xs \Longrightarrowxs!last-index xs x =x
\langleproof\rangle
lemma index-rev: \llbracketdistinct xs; x f set xs \rrbracket\Longrightarrow
    index (rev xs) x = length xs - index xs x - 1
```

```
<proof\rangle
```

lemma index-nth-id:
\llbracket distinct $x s ; n<$ length $x s \rrbracket \Longrightarrow$ index $x s(x s!n)=n$
〈proof〉
lemma index-upt[simp]: $m \leq i \Longrightarrow i<n \Longrightarrow \operatorname{index}[m . .<n] i=i-m$
$\langle p r o o f\rangle$
lemma index-eq-index-conv[simp]: $x \in$ set $x s \vee y \in$ set $x s \Longrightarrow$
(index xs $x=$ index xs $y)=(x=y)$
$\langle p r o o f\rangle$
lemma last-index-eq-index-conv[simp]: $x \in$ set $x s \vee y \in$ set $x s \Longrightarrow$
(last-index xs $x=$ last-index xs $y)=(x=y)$
$\langle p r o o f\rangle$
lemma inj-on-index: inj-on (index xs) (set xs)
$\langle p r o o f\rangle$
lemma inj-on-index2: $I \subseteq$ set $x s \Longrightarrow$ inj-on (index $x s$) I
$\langle p r o o f\rangle$
lemma inj-on-last-index: inj-on (last-index xs) (set xs)
$\langle p r o o f\rangle$
lemma find-index-conv-takeWhile:
find-index P xs $=$ size $($ takeWhile $($ Not o $P) x s)$
$\langle p r o o f\rangle$
lemma index-conv-takeWhile: index xs $x=\operatorname{size}($ takeWhile $(\lambda y . x \neq y) x s)$
$\langle p r o o f\rangle$
lemma find-index-first: $i<$ find-index P xs $\Longrightarrow \neg P(x s!i)$
$\langle p r o o f\rangle$
lemma index-first: $i<$ index xs $x \Longrightarrow x \neq x s!i$
$\langle p r o o f\rangle$
lemma find-index-eqI:
assumes $i \leq$ length xs
assumes $\forall j<i$. $\neg P(x s!j)$
assumes $i<$ length $x s \Longrightarrow P(x s!i)$
shows find-index P xs $=i$
$\langle p r o o f\rangle$
lemma find-index-eq-iff:
find-index P xs $=i$
$\longleftrightarrow(i \leq$ length $x s \wedge(\forall j<i . \neg P(x s!j)) \wedge(i<$ length $x s \longrightarrow P(x s!i)))$

```
\langleproof\rangle
```

lemma index-eqI:
assumes $i \leq$ length $x s$
assumes $\forall j<i . x s!j \neq x$
assumes $i<$ length $x s \Longrightarrow x s!i=x$
shows index xs $x=i$
$\langle p r o o f\rangle$
lemma index-eq-iff:
index xs $x=i$
$\longleftrightarrow(i \leq$ length $x s \wedge(\forall j<i . x s!j \neq x) \wedge(i<$ length $x s \longrightarrow x s!i=x))$
$\langle p r o o f\rangle$
lemma index-take: index xs $x>=i \Longrightarrow x \notin \operatorname{set}($ take $i x s)$
$\langle p r o o f\rangle$
lemma last-index-drop:
last-index xs $x<i \Longrightarrow x \notin \operatorname{set}(\operatorname{drop} i x s)$
$\langle p r o o f\rangle$
lemma set-take-if-index: assumes index xs $x<i$ and $i \leq l e n g t h ~ x s$
shows $x \in$ set (take $i x s$)
$\langle p r o o f\rangle$
lemma index-take-if-index:
assumes index xs $x \leq n$ shows index (take n xs) $x=$ index xs x
$\langle p r o o f\rangle$
lemma index-take-if-set:
$x: \operatorname{set}($ take $n x s) \Longrightarrow$ index (take $n x s) x=$ index $x s x$
$\langle p r o o f\rangle$
lemma index-last[simp]:
$x s \neq[] \Longrightarrow$ distinct $x s \Longrightarrow$ index $x s$ (last $x s)=$ length $x s-1$
\langle proof \rangle
lemma index-update-if-diff2:
$n<$ length $x s \Longrightarrow x \neq x s!n \Longrightarrow x \neq y \Longrightarrow$ index $(x s[n:=y]) x=$ index $x s x$ $\langle p r o o f\rangle$
lemma set-drop-if-index: distinct $x s \Longrightarrow$ index xs $x<i \Longrightarrow x \notin \operatorname{set}(\operatorname{drop} i x s)$ $\langle p r o o f\rangle$
lemma index-swap-if-distinct: assumes distinct xs $i<$ size xs $j<$ size xs shows index $(x s[i:=x s!j, j:=x s!i]) x=$
(if $x=x s$! i then j else if $x=x s$! j then i else index $x s x$)
$\langle p r o o f\rangle$
lemma bij－betw－index：

$$
\text { distinct } x s \Longrightarrow X=\text { set } x s \Longrightarrow l=\text { size } x s \Longrightarrow \text { bij-betw }(\text { index } x s) X\{0 . .<l\}
$$

〈proof〉
lemma index－image：distinct $x s \Longrightarrow$ set $x s=X \Longrightarrow$ index $x s$＇$X=\{0 . .<$ size $x s\}$ $\langle p r o o f\rangle$
lemma index－map－inj－on：
$\llbracket i n j$－on $f S ; y \in S$ ；set $x s \subseteq S \rrbracket \Longrightarrow$ index $($ map $f x s)(f y)=$ index xs y $\langle p r o o f\rangle$
lemma index－map－inj：inj $f \Longrightarrow$ index $(\operatorname{map} f x s)(f y)=$ index xs y $\langle p r o o f\rangle$

1．2 Map with index

primrec map－index＇$::$ nat $\Rightarrow\left(n a t \Rightarrow{ }^{\prime} a \Rightarrow ' b\right) \Rightarrow^{\prime} a$ list $\Rightarrow{ }^{\prime} b$ list where

$$
\text { map-index' } n f[]=[]
$$

\mid map－index $^{\prime} n f(x \# x s)=f n x \#$ map－index $^{\prime}($ Suc $n) f$ xs
lemma length－map－index＇［simp］：length（map－index＇$n f x s)=$ length $x s$ $\langle p r o o f\rangle$
lemma map－index＇－map－zip：map－index＇$n f$ xs $=\operatorname{map}($ case－prod $f)(z i p[n . .<n$ + length $x s$ ］$x s$ ）
$\langle p r o o f\rangle$
abbreviation map－index \equiv map－index ${ }^{\prime} 0$
lemmas map－index $=$ map－index＇－map－zip［of 0，simplified $]$
lemma take－map－index：take p（map－index f xs）$=$ map－index $f($ take $p x s)$〈proof〉
lemma drop－map－index：drop $p($ map－index $f x s)=$ map－index＇$p f($ drop $p x s)$ $\langle p r o o f\rangle$
lemma map－map－index［simp］：map $g($ map－index $f x s)=$ map－index $(\lambda n x . g(f n$ x））$x s$ \langle proof \rangle
lemma map－index－map［simp］：map－index $f($ map $g x s)=\operatorname{map-index}(\lambda n x . f n(g$ x））$x s$
$\langle p r o o f\rangle$
lemma set－map－index［simp］：$x \in \operatorname{set}($ map－index $f x s)=(\exists i<$ length xs．$f i(x s$ ！ $i)=x$ ） $\langle p r o o f\rangle$

```
lemma set-map-index'[simp]:x\inset (map-index' n f xs)
    \longleftrightarrow (\existsi<length xs.f (n+i) (xs!i)=x)
    <proof\rangle
lemma nth-map-index[simp]: p< length xs \Longrightarrowmap-index f xs !p=fp(xs!p)
    \langleproof\rangle
lemma map-index-cong:
    \forall< length xs.f p (xs ! p)=g p (xs ! p)\Longrightarrow map-index f xs=map-index g xs
    \langleproof\rangle
lemma map-index-id: map-index (curry snd) xs = xs
    <proof>
lemma map-index-no-index[simp]: map-index (\lambdan x.fx)xs=map fxs
    <proof\rangle
lemma map-index-congL:
    \forallp<length xs.f p (xs !p)=xs!p\Longrightarrow map-index f xs = xs
    <proof\rangle
lemma map-index'-is-NilD: map-index' n f xs = [] \Longrightarrow xs = []
    \langleproof\rangle
declare map-index'-is-NilD[of 0, dest!]
lemma map-index'-is-ConsD:
    map-index' n f xs = y # ys\Longrightarrow\existszzs.xs=z#zs^fnz=y^ map-index'}(
+1)fzs=ys
    \langleproof\rangle
lemma map-index'-eq-imp-length-eq: map-index' n f xs = map-index' n g ys \Longrightarrow
length xs = length ys
<proof\rangle
lemmas map-index-eq-imp-length-eq = map-index'-eq-imp-length-eq[of 0]
lemma map-index'-comp[simp]: map-index' n f (map-index' n g xs) = map-index'
n(\lambdan.fnogn) xs
    <proof>
lemma map-index'-append[simp]: map-index' nf (a @ b)
    = map-index' nfa@ map-index' ( n + length a) fb
    \langleproof\rangle
lemma map-index-append[simp]: map-index f (a@b)
    = map-index fa@ map-index'(length a) fb
    <proof\rangle
```


1.3 Insert at position

```
primrec insert-nth :: nat \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) list \(\Rightarrow\) 'a list where
    insert-nth \(0 x\) xs \(=x \#\) xs
\(\mid\) insert-nth (Suc n) \(x\) xs \(=(\) case xs of []\(\Rightarrow[x] \mid y \# y s \Rightarrow y \#\) insert-nth \(n x y s)\)
```

lemma insert-nth-take-drop[simp]: insert-nth $n x x s=$ take $n x s$ @ $[x]$ @dropnxs $\langle p r o o f\rangle$
lemma length-insert-nth: length (insert-nth $n x x s)=$ Suc (length xs)
〈proof〉
lemma set-insert-nth:
set $($ insert-nth $i x x s)=$ insert $x($ set $x s)$
\langle proof \rangle
lemma distinct-insert-nth:
assumes distinct xs
assumes $x \notin$ set $x s$
shows distinct (insert-nth ixxs)
$\langle p r o o f\rangle$
lemma nth-insert-nth-front:
assumes $i<j j \leq$ length $x s$
shows insert-nth $j x$ xs ! $i=x s!i$
$\langle p r o o f\rangle$
lemma nth-insert-nth-index-eq:
assumes $i \leq$ length xs
shows insert-nth $i x x s!i=x$
$\langle p r o o f\rangle$
lemma nth-insert-nth-back:
assumes $j<i i \leq$ length $x s$
shows insert-nth $j x x s!i=x s!(i-1)$
$\langle p r o o f\rangle$
lemma nth-insert-nth:
assumes $i \leq$ length $x s j \leq$ length $x s$
shows insert-nth $j x$ xs $!i=($ if $i=j$ then x else if $i<j$ then $x s!i$ else $x s!(i$ - 1))
$\langle p r o o f\rangle$
lemma insert-nth-inverse:
assumes $j \leq$ length $x s j^{\prime} \leq$ length $x s^{\prime}$
assumes $x \notin$ set $x s x \notin$ set $x s^{\prime}$
assumes insert-nth $j x$ xs $=$ insert-nth $j^{\prime} x x s^{\prime}$
shows $j=j^{\prime}$
$\langle p r o o f\rangle$

Insert several elements at given（ascending）positions

```
lemma length-fold-insert-nth:
    length \((\) fold \((\lambda(p, b)\). insert-nth \(p b)\) pxs \(x s)=\) length \(x s+\) length \(p x s\)
    〈proof〉
lemma invar-fold-insert-nth:
    \(\llbracket \forall x \in\) set \(p x s . p<\) fst \(x ; p<\) length \(x s ; x s!p=b \rrbracket \Longrightarrow\)
        fold \((\lambda(x, y)\). insert-nth \(x y) p x s x s!p=b\)
    \(\langle p r o o f\rangle\)
lemma nth-fold-insert-nth:
    \(\llbracket\) sorted (map fst pxs); distinct (map fst pxs); \(\forall(p, b) \in\) set pxs. \(p<\) length \(x s+\)
length pxs;
    \(i<\) length pxs; pxs ! \(i=(p, b) \rrbracket \Longrightarrow\)
    fold \((\lambda(p, b)\). insert-nth \(p b)\) pxs xs ! \(p=b\)
\(\langle\) proof〉
```


1．4 Remove at position

fun remove－nth $::$ nat $\Rightarrow{ }^{\prime}$ a list \Rightarrow＇a list where
remove-nth $i[]=[]$
\mid remove-nth $0(x \# x s)=x s$
| remove-nth (Suc i) ($x \#$ xs) $=x$ \# remove-nth $i x s$
lemma remove-nth-take-drop:
remove-nth $i x s=$ take $i x s$ @ drop (Suc i) xs
$\langle p r o o f\rangle$
lemma remove-nth-insert-nth:
assumes $i \leq$ length $x s$
shows remove-nth $i($ insert-nth $i x x s)=x s$
$\langle p r o o f\rangle$
lemma insert-nth-remove-nth:
assumes $i<$ length $x s$
shows insert-nth $i(x s!i)($ remove-nth $i x s)=x s$
$\langle p r o o f\rangle$
lemma length-remove-nth:
assumes $i<$ length xs
shows length (remove-nth ixs) = length xs -1
$\langle p r o o f\rangle$
lemma set-remove-nth-subset:
set (remove-nth j xs $) \subseteq$ set xs
$\langle p r o o f\rangle$
lemma set－remove－nth：

```
assumes distinct xs j < length xs
shows set (remove-nth jxs)= set xs - {xs!j}
<proof>
lemma distinct-remove-nth:
assumes distinct xs
shows distinct (remove-nth i xs)
<proof\rangle
end
```

