List Index

Tobias Nipkow

March 17, 2025

Abstract

This theory provides functions for finding the index of an element
in a list, by predicate and by value.

1 Index-based manipulation of lists

theory List-Indexr imports Main begin

This theory collects functions for index-based manipulation of lists.

1.1 Finding an index

This subsection defines three functions for finding the index of items in a
list:

find-index P xs finds the index of the first element in zs that satisfies P.
index zs x finds the index of the first occurrence of z in zs.
last-index s x finds the index of the last occurrence of z in zs.

All functions return length xs if zs does not contain a suitable element.

The argument order of find-index follows the function of the same name
in the Haskell standard library. For inder (and last-index) the order is
intentionally reversed: index maps lists to a mapping from elements to their
indices, almost the inverse of function nth.

primrec find-index :: (‘a = bool) = 'a list = nat where
find-index - [] = 0 |
find-index P (x#xs) = (if P x then 0 else find-index P xs + 1)

definition indez :: ‘a list = 'a = nat where
index rs = (Aa. find-index (Ax. x=a) xs)

definition last-index :: 'a list = 'a = nat where
last-index xs © =
(let ¢ = index (rev zs) x; n = size xs

inif i = n then i else n — (i+1))

lemma find-indez-append: find-index P (zs Q ys) =
(if Jz€set xs. P x then find-index P xs else size xs + find-index P ys)
(proof)

lemma find-indez-le-size: find-index P xs <= size xs
(proof)

lemma index-le-size: index xs x <= size xs

(proof)

lemma last-index-le-size: last-index s © <= size xs
(proof)

lemma index-Nil[simp]: index [| a = 0
(proof)

lemma indez-Cons[simp]: index (z#xs) a = (if x=a then 0 else index s a + 1)
{proof)

lemma index-append: index (zs Q ys) z =
(if z : set xs then index xs x else size xs + index ys x)
{proof)

lemma index-conv-size-if-notin[simp: © ¢ set ts = index xs © = size xs
{proof)

lemma find-indez-eq-size-conv:
size xs = n = (find-index P xs = n) = (Vz € set zs. ~ P xz)

(proof)

lemma size-eq-find-index-conv:
size xs = n = (n = find-index P xs) = (Vz € set zs. ~ P)
{proof)

lemma index-size-conv: size xs = n = (index zs x = n) = (v ¢ set xs)
(proof)

lemma size-index-conv: size xs = n = (n = index zs x) = (x ¢ set s)
{proof)

lemma last-index-size-conv:

assumes size s = N

shows (last-index zs x = n) = (z ¢ set xs)
(proof)

lemma size-last-indez-conv:

size xs = n = (n = last-index zs) = (z ¢ set zs)
{proof)

lemma find-indez-less-size-conv:
(find-index P xs < size xs) = (Jx € set xs. P x)
(proof)

lemma indez-less-size-conv:
(index xs x < size xs) = (x € set xs)

(proof)

lemma last-indez-less-size-conv:
(last-index xs © < size xs) = (z : set xs)

{proof)

lemma index-less[simp]:
T set 18 = size 1s <= n —> index zs Tt < n

(proof)

lemma last-index-less[simp]:
T : set xs = size 8 <= n = last-index vs r < n
(proof)

lemma last-indez-Cons:
last-index (z#zs) y =
(if =y then
if x € set xs then last-index zs y + 1 else 0
else last-index xs y + 1)

{proof)

lemma last-indez-append: last-index (zs @Q ys) z =
(if z : set ys then size xs + last-index ys x
else if x : set xs then last-index zs x else size xs + size ys)

{proof)

lemma last-index-Snoc[simp]:
last-index (zs @Q [z]) y =
(if =y then size xs
else if y : set zs then last-index xs y else size xs + 1)
(proof)

lemma nth-find-index: find-index P xs < size xs = P(xzs ! find-index P xs)
(proof)

lemma nth-indez[simp]: © € set xs = zs | index zs x = ©
{proof)

lemma nth-last-index][simp]: © € set s = xs ! last-index zs ¢ = x

{proof)

lemma indez-rev: | distinct xs; © € set xs | =
index (rev zs) x = length s — index zs © — 1

{proof)

lemma indez-nth-id:
[distinct zs; n < length zs | = indez zs (zs ! n) = n
{proof)

lemma indez-upt[simp]: m < { = i < n = index [m..<n] i = i—m
(proof)

lemma index-eg-index-conv[simp|: © € set xs V y € set s —>
(index zs x = index zs y) = (x = y)

(proof)

lemma last-indez-eg-index-conv[simp|: © € set zs V y € set xs =
(last-index zs x = last-index zs y) = (z = y)
{proof)

lemma inj-on-index: inj-on (index xzs) (set xs)
{proof)

lemma inj-on-index2: I C set zs = inj-on (index xs) I
{proof)

lemma inj-on-last-index: inj-on (last-index xs) (set xs)
(proof)

lemma find-indez-conv-take While:
find-index P xs = size(takeWhile (Not o P) xs)

(proof)

lemma index-conv-take While: index xs x = size(take While (Ay. z#y) xs)
{proof)

lemma find-indezx-first: i < find-index P xs = =P (xsli)
(proof)

lemma indez-first: i<inder xs © = zFxsli
(proof)

lemma find-indez-eql:
assumes i<length zs
assumes Vj<i. =P (zslj)
assumes i<length zs = P (asl7)
shows find-index P s =

(proof)

lemma find-indez-eq-iff:
find-index P zs = ¢
> (i<length zs N (Vj<i. =P (zslj)) A (i<length s — P (xs!)))
{proof)

lemma index-eql:
assumes i<length s
assumes Vj<i. xslj # ¢
assumes i<length zs = xsli = ¢
shows inder xs x =

(proof)

lemma index-eq-iff:
index xs * = 1
+—— (i<length zs N (Vj<i. aslj # z) A (i<length xs — xsli = x))
(proof)

lemma index-take: index xs x >= i = z ¢ set(take i xs)
{proof)

lemma last-index-drop:
last-index zs © < i => x ¢ set(drop i xs)
(proof)

lemma set-take-if-index: assumes index zs v < i and i < length xs
shows z € set (take i xs)

(proof)

lemma index-take-if-index:
assumes index xs < n shows index (take n xs) x = inder zs x

{(proof)

lemma index-take-if-set:
z : set(take n xs) = index (take n xs) x = index xs

{proof)

lemma indez-last[simp]:
zs # [| = distinct xs = index xs (last xs) = length xs — 1
{proof)

lemma index-update-if-diff2:
n < length s = x # zsln = ¢ # y = index (zs[n := y]) z = index zs x
(proof)

lemma set-drop-if-index: distinct xs = index xs x < i = z ¢ set(drop i xs)
{proof)

lemma index-swap-if-distinct: assumes distinct xs i < size s j < size z$
shows index (xs[i := zslf, j := xsli]) = =

(if x = xsli then j else if x = xs!j then i else index s x)
(proof)

lemma bij-betw-index:
distinct xs = X = set xs = | = size xs = bij-betw (indezx zs) X {0..<l}
(proof)

lemma indez-image: distinct s = set xs = X = index xs ‘* X = {0..<size zs}
{proof)

lemma index-map-inj-on:

[inj-on fS; y € S; set zs C S | = index (map fxs) (f y) = index zs y
(proof)

lemma index-map-ing: inj f = index (map f xs) (f y) = index zs y
(proof)

1.2 Map with index

primrec map-indez’ :: nat = (nat = 'a = 'b) = 'a list = 'b list where
map-index’ n f [| =]
| map-indez’ n f (x#txs) = fn z # map-index’ (Suc n) f zs

lemma length-map-index'[simp]: length (map-index’ n f zs) = length xs
(proof)

lemma map-index’-map-zip: map-index’ n f zs = map (case-prod f) (zip [n .< n
+ length zs] xs)
(proof)

abbreviation map-index = map-index’ 0
lemmas map-index = map-index’-map-zip[of 0, simplified]

lemma take-map-index: take p (map-index f xs) = map-indez f (take p xs)

{proof)

lemma drop-map-indez: drop p (map-indez f xs) = map-indez’ p f (drop p zs)
(proof)

lemma map-map-index[simp]: map g (map-index f xs) = map-index (An z. g (fn
(proof)
lemma map-index-map[simp]: map-index f (map g xs) = map-index (An z. fn (g

{proof)

lemma set-map-indez[simp|: © € set (map-index f xs) = (Fi < length zs. fi (zs!

i) = 1)
{proof)

lemma set-map-index’[simp]: x€set (map-index’ n f xs)
+— (Fi<length zs. f (n+i) (wsli) = x)
(proof)

lemma nth-map-indez[simp): p < length s = map-index fxs ! p = fp (zs ! p)
(proof)

lemma map-index-cong:
assumes length xs = length ys \i. i < length xs => fi (xzs i) = g i (ys ! i)
shows map-index f xs = map-index g ys
(proof)

lemma map-indez-id: map-index (curry snd) xs = xs
{proof)

lemma map-indez-no-indez|simp|: map-index (An z. f) xs = map f xs
(proof)

lemma map-index-congL:
Vp < length zs. fp (zs! p) = zs ! p = map-index f s = xs
(proof)

lemma map-index’-is-NilD: map-index’ n fazs = [| = xs =[]
{proof)

declare map-indez’-is-NilD[of 0, dest!]

lemma map-index’-is-ConsD:

map-index' n fxs =y # ys = Fz28. xs = 2z # 2zs A fnz =y A map-index’ (n
+ 1) fzs=ys

(proof)

lemma map-index’-eq-imp-length-eq: map-indez’ n f rs = map-indez’ n g ys =
length xs = length ys
(proof)

lemmas map-indez-eq-imp-length-eq = map-indez’-eq-imp-length-eq|of 0]

lemma map-index’-comp[simp]: map-index’ n f (map-index’ n g xs) = map-index’
n(An. fnogn) s
(proof)

lemma map-index’-append|simp|: map-index’ n f (a Q b)
= map-index’ n f a @ map-indez’ (n + length a) b
(proof)

lemma map-indez-append[simp]: map-index f (a Q b)
= map-indez f a @ map-indez’ (length a) f b
(proof)

1.3 Insert at position

primrec insert-nth :: nat = ’‘a = ‘a list = 'a list where
insert-nth 0 © rs = = # xs
| insert-nth (Suc n) x xs = (case zs of [| = [z] | y # ys = y # insert-nth n z ys)

lemma insert-nth-take-drop[simp)|: insert-nth n z zs = take n zs Q [z] @ drop n xs
(proof)

lemma length-insert-nth: length (insert-nth n x zs) = Suc (length s)
(proof)

lemma set-insert-nth:
set (insert-nth i x xs) = insert x (set xs)

(proof)

lemma distinct-insert-nth:
assumes distinct xs
assumes z ¢ set s
shows distinct (insert-nth i x xs)

(proof)

lemma nth-insert-nth-front:
assumes i < jj < length zs
shows insert-nth jx xs!i=xs! i
(proof)

lemma nth-insert-nth-index-eq:
assumes i < length s
shows insert-nth i v zs ! i = x

(proof)

lemma nth-insert-nth-back:
assumes j < i ¢ < length zs
shows insert-nthjxazs ! i =axs! (i — 1)
(proof)

lemma nth-insert-nth:

assumes i < length zs j < length xs

shows insert-nth j x xs | i = (if i = j then x else if i < j then xs ! i else zs ! (i
- 1))

(proof)

lemma insert-nth-inverse:
assumes j < length xs j' < length s’

assumes z ¢ set s x ¢ set s’
assumes insert-nth j r s = insert-nth j' x s’
shows j = j'

(proof)

Insert several elements at given (ascending) positions

lemma length-fold-insert-nth:
length (fold (A(p, b). insert-nth p b) pxs xs) = length xs + length pxs
(proof)

lemma invar-fold-insert-nth:
[V z€set pxs. p < fst z; p < length xs; s | p = b] =
fold (M(z, y). insert-nth x y) prsazs ! p = b
(proof)

lemma nth-fold-insert-nth:
[sorted (map fst pxs); distinct (map fst pzs); ¥ (p, b) € set pxs. p < length xs +
length pxs;
i < length pzs; pxs! i = (p, b)] =
fold (A(p, b). insert-nth p b) prsxs ! p=1>
(proof)

1.4 Remove at position

fun remove-nth :: nat = 'a list = 'a list
where
remove-nth i [| = |]
| remove-nth 0 (v # xs) = xs
| remove-nth (Suc i) (x # xs) = x # remove-nth i xs

lemma remowve-nth-take-drop:
remove-nth i xs = take i xs Q drop (Suc) s

(proof)

lemma remove-nth-insert-nth:
assumes i < length xs
shows remove-nth i (insert-nth i z xs) = xs

{proof)

lemma insert-nth-remove-nth:
assumes i < length xs
shows insert-nth i (zs ! ©) (remove-nth i xs) = xs

{proof)

lemma length-remove-nth:
assumes { < length xs
shows length (remove-nth i zs) = length xs — 1

{proof)

lemma set-remove-nth-subset:

set (remove-nth j xs) C set xs
(proof)

lemma set-remove-nth:
assumes distinct s j < length xs
shows set (remove-nth j zs) = set xs — {zs ! j}

{proof)

lemma distinct-remove-nth:
assumes distinct xs
shows distinct (remove-nth i xs)

{proof)

1.5 Additional lemmas contributed by Manuel Eberl

lemma map-indez-idl: (\i. fi (xs! i) = zs ! i) = map-indez f zs = zs
{proof)

lemma map-indez-transfer [transfer-rule]:
rel-fun (rel-fun (=) (rel-fun R1 R2)) (rel-fun (list-all2 R1) (list-all2 R2))
map-inder map-index
{proof)

lemma map-indez-Cons: map-index f (x # xs) = f 0 x # map-index (Ai z. f (Suc
(proof)

lemma map-indez-rev: map-indez f (rev xs) = rev (map-index (\i. f (length zs —
i— 1)) zs)
(proof)

lemma map-conv-map-index: map f xs = map-index (Ai z. fz) zs
(proof)

lemma map-index-map-indez: map-index f (map-index g xs) = map-index (Ai z.
(proof)

lemma map-index-replicate [simp]: map-index f (replicate n) = map (N\i. fi x)
[0..<n]
(proof)

lemma zip-map-index:

zip (map-indez f zs) (map-index g ys) = map-index (Ai. map-prod (f i) (g i)) (zip
xs ys)

(proof)

lemma map-index-conv-fold:
map-index f s = rev (snd (fold Az (i,ys). (i+1, fix # ys)) zs (0,])))

10

(proof)

lemma map-index-code-conv-foldr:
map-index f xs = snd (foldr (\x (i,ys). (i—1, fix # ys)) zs (length xzs — 1, []))

(proof)

end

11

	Index-based manipulation of lists
	Finding an index
	Map with index
	Insert at position
	Remove at position
	Additional lemmas contributed by Manuel Eberl

