
List Index

Tobias Nipkow

March 17, 2025

Abstract

This theory provides functions for finding the index of an element
in a list, by predicate and by value.

1 Index-based manipulation of lists
theory List-Index imports Main begin

This theory collects functions for index-based manipulation of lists.

1.1 Finding an index
This subsection defines three functions for finding the index of items in a
list:

find-index P xs finds the index of the first element in xs that satisfies P.

index xs x finds the index of the first occurrence of x in xs.

last-index xs x finds the index of the last occurrence of x in xs.

All functions return length xs if xs does not contain a suitable element.
The argument order of find-index follows the function of the same name

in the Haskell standard library. For index (and last-index) the order is
intentionally reversed: index maps lists to a mapping from elements to their
indices, almost the inverse of function nth.
primrec find-index :: (′a ⇒ bool) ⇒ ′a list ⇒ nat where

find-index - [] = 0 |
find-index P (x#xs) = (if P x then 0 else find-index P xs + 1)

definition index :: ′a list ⇒ ′a ⇒ nat where
index xs = (λa. find-index (λx. x=a) xs)

definition last-index :: ′a list ⇒ ′a ⇒ nat where
last-index xs x =
(let i = index (rev xs) x; n = size xs

1

in if i = n then i else n − (i+1))

lemma find-index-append: find-index P (xs @ ys) =
(if ∃ x∈set xs. P x then find-index P xs else size xs + find-index P ys)
〈proof 〉

lemma find-index-le-size: find-index P xs <= size xs
〈proof 〉

lemma index-le-size: index xs x <= size xs
〈proof 〉

lemma last-index-le-size: last-index xs x <= size xs
〈proof 〉

lemma index-Nil[simp]: index [] a = 0
〈proof 〉

lemma index-Cons[simp]: index (x#xs) a = (if x=a then 0 else index xs a + 1)
〈proof 〉

lemma index-append: index (xs @ ys) x =
(if x : set xs then index xs x else size xs + index ys x)
〈proof 〉

lemma index-conv-size-if-notin[simp]: x /∈ set xs =⇒ index xs x = size xs
〈proof 〉

lemma find-index-eq-size-conv:
size xs = n =⇒ (find-index P xs = n) = (∀ x ∈ set xs. ∼ P x)
〈proof 〉

lemma size-eq-find-index-conv:
size xs = n =⇒ (n = find-index P xs) = (∀ x ∈ set xs. ∼ P x)
〈proof 〉

lemma index-size-conv: size xs = n =⇒ (index xs x = n) = (x /∈ set xs)
〈proof 〉

lemma size-index-conv: size xs = n =⇒ (n = index xs x) = (x /∈ set xs)
〈proof 〉

lemma last-index-size-conv:
assumes size xs = n
shows (last-index xs x = n) = (x /∈ set xs)
〈proof 〉

lemma size-last-index-conv:

2

size xs = n =⇒ (n = last-index xs x) = (x /∈ set xs)
〈proof 〉

lemma find-index-less-size-conv:
(find-index P xs < size xs) = (∃ x ∈ set xs. P x)
〈proof 〉

lemma index-less-size-conv:
(index xs x < size xs) = (x ∈ set xs)
〈proof 〉

lemma last-index-less-size-conv:
(last-index xs x < size xs) = (x : set xs)
〈proof 〉

lemma index-less[simp]:
x : set xs =⇒ size xs <= n =⇒ index xs x < n
〈proof 〉

lemma last-index-less[simp]:
x : set xs =⇒ size xs <= n =⇒ last-index xs x < n
〈proof 〉

lemma last-index-Cons:
last-index (x#xs) y =

(if x=y then
if x ∈ set xs then last-index xs y + 1 else 0

else last-index xs y + 1)
〈proof 〉

lemma last-index-append: last-index (xs @ ys) x =
(if x : set ys then size xs + last-index ys x
else if x : set xs then last-index xs x else size xs + size ys)
〈proof 〉

lemma last-index-Snoc[simp]:
last-index (xs @ [x]) y =
(if x=y then size xs
else if y : set xs then last-index xs y else size xs + 1)
〈proof 〉

lemma nth-find-index: find-index P xs < size xs =⇒ P(xs ! find-index P xs)
〈proof 〉

lemma nth-index[simp]: x ∈ set xs =⇒ xs ! index xs x = x
〈proof 〉

lemma nth-last-index[simp]: x ∈ set xs =⇒ xs ! last-index xs x = x
〈proof 〉

3

lemma index-rev: [[distinct xs; x ∈ set xs]] =⇒
index (rev xs) x = length xs − index xs x − 1
〈proof 〉

lemma index-nth-id:
[[distinct xs; n < length xs]] =⇒ index xs (xs ! n) = n
〈proof 〉

lemma index-upt[simp]: m ≤ i =⇒ i < n =⇒ index [m..<n] i = i−m
〈proof 〉

lemma index-eq-index-conv[simp]: x ∈ set xs ∨ y ∈ set xs =⇒
(index xs x = index xs y) = (x = y)
〈proof 〉

lemma last-index-eq-index-conv[simp]: x ∈ set xs ∨ y ∈ set xs =⇒
(last-index xs x = last-index xs y) = (x = y)
〈proof 〉

lemma inj-on-index: inj-on (index xs) (set xs)
〈proof 〉

lemma inj-on-index2 : I ⊆ set xs =⇒ inj-on (index xs) I
〈proof 〉

lemma inj-on-last-index: inj-on (last-index xs) (set xs)
〈proof 〉

lemma find-index-conv-takeWhile:
find-index P xs = size(takeWhile (Not o P) xs)
〈proof 〉

lemma index-conv-takeWhile: index xs x = size(takeWhile (λy. x 6=y) xs)
〈proof 〉

lemma find-index-first: i < find-index P xs =⇒ ¬P (xs!i)
〈proof 〉

lemma index-first: i<index xs x =⇒ x 6=xs!i
〈proof 〉

lemma find-index-eqI :
assumes i≤length xs
assumes ∀ j<i. ¬P (xs!j)
assumes i<length xs =⇒ P (xs!i)
shows find-index P xs = i
〈proof 〉

4

lemma find-index-eq-iff :
find-index P xs = i
←→ (i≤length xs ∧ (∀ j<i. ¬P (xs!j)) ∧ (i<length xs −→ P (xs!i)))
〈proof 〉

lemma index-eqI :
assumes i≤length xs
assumes ∀ j<i. xs!j 6= x
assumes i<length xs =⇒ xs!i = x
shows index xs x = i
〈proof 〉

lemma index-eq-iff :
index xs x = i
←→ (i≤length xs ∧ (∀ j<i. xs!j 6= x) ∧ (i<length xs −→ xs!i = x))
〈proof 〉

lemma index-take: index xs x >= i =⇒ x /∈ set(take i xs)
〈proof 〉

lemma last-index-drop:
last-index xs x < i =⇒ x /∈ set(drop i xs)
〈proof 〉

lemma set-take-if-index: assumes index xs x < i and i ≤ length xs
shows x ∈ set (take i xs)
〈proof 〉

lemma index-take-if-index:
assumes index xs x ≤ n shows index (take n xs) x = index xs x
〈proof 〉

lemma index-take-if-set:
x : set(take n xs) =⇒ index (take n xs) x = index xs x
〈proof 〉

lemma index-last[simp]:
xs 6= [] =⇒ distinct xs =⇒ index xs (last xs) = length xs − 1
〈proof 〉

lemma index-update-if-diff2 :
n < length xs =⇒ x 6= xs!n =⇒ x 6= y =⇒ index (xs[n := y]) x = index xs x
〈proof 〉

lemma set-drop-if-index: distinct xs =⇒ index xs x < i =⇒ x /∈ set(drop i xs)
〈proof 〉

lemma index-swap-if-distinct: assumes distinct xs i < size xs j < size xs
shows index (xs[i := xs!j, j := xs!i]) x =

5

(if x = xs!i then j else if x = xs!j then i else index xs x)
〈proof 〉

lemma bij-betw-index:
distinct xs =⇒ X = set xs =⇒ l = size xs =⇒ bij-betw (index xs) X {0 ..<l}
〈proof 〉

lemma index-image: distinct xs =⇒ set xs = X =⇒ index xs ‘ X = {0 ..<size xs}
〈proof 〉

lemma index-map-inj-on:
[[inj-on f S ; y ∈ S ; set xs ⊆ S]] =⇒ index (map f xs) (f y) = index xs y
〈proof 〉

lemma index-map-inj: inj f =⇒ index (map f xs) (f y) = index xs y
〈proof 〉

1.2 Map with index
primrec map-index ′ :: nat ⇒ (nat ⇒ ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list where

map-index ′ n f [] = []
| map-index ′ n f (x#xs) = f n x # map-index ′ (Suc n) f xs

lemma length-map-index ′[simp]: length (map-index ′ n f xs) = length xs
〈proof 〉

lemma map-index ′-map-zip: map-index ′ n f xs = map (case-prod f) (zip [n ..< n
+ length xs] xs)
〈proof 〉

abbreviation map-index ≡ map-index ′ 0

lemmas map-index = map-index ′-map-zip[of 0 , simplified]

lemma take-map-index: take p (map-index f xs) = map-index f (take p xs)
〈proof 〉

lemma drop-map-index: drop p (map-index f xs) = map-index ′ p f (drop p xs)
〈proof 〉

lemma map-map-index[simp]: map g (map-index f xs) = map-index (λn x. g (f n
x)) xs
〈proof 〉

lemma map-index-map[simp]: map-index f (map g xs) = map-index (λn x . f n (g
x)) xs
〈proof 〉

lemma set-map-index[simp]: x ∈ set (map-index f xs) = (∃ i < length xs. f i (xs !

6

i) = x)
〈proof 〉

lemma set-map-index ′[simp]: x∈set (map-index ′ n f xs)
←→ (∃ i<length xs. f (n+i) (xs!i) = x)
〈proof 〉

lemma nth-map-index[simp]: p < length xs =⇒ map-index f xs ! p = f p (xs ! p)
〈proof 〉

lemma map-index-cong:
assumes length xs = length ys

∧
i. i < length xs =⇒ f i (xs ! i) = g i (ys ! i)

shows map-index f xs = map-index g ys
〈proof 〉

lemma map-index-id: map-index (curry snd) xs = xs
〈proof 〉

lemma map-index-no-index[simp]: map-index (λn x. f x) xs = map f xs
〈proof 〉

lemma map-index-congL:
∀ p < length xs. f p (xs ! p) = xs ! p =⇒ map-index f xs = xs
〈proof 〉

lemma map-index ′-is-NilD: map-index ′ n f xs = [] =⇒ xs = []
〈proof 〉

declare map-index ′-is-NilD[of 0 , dest!]

lemma map-index ′-is-ConsD:
map-index ′ n f xs = y # ys =⇒ ∃ z zs. xs = z # zs ∧ f n z = y ∧ map-index ′ (n

+ 1) f zs = ys
〈proof 〉

lemma map-index ′-eq-imp-length-eq: map-index ′ n f xs = map-index ′ n g ys =⇒
length xs = length ys
〈proof 〉

lemmas map-index-eq-imp-length-eq = map-index ′-eq-imp-length-eq[of 0]

lemma map-index ′-comp[simp]: map-index ′ n f (map-index ′ n g xs) = map-index ′

n (λn. f n o g n) xs
〈proof 〉

lemma map-index ′-append[simp]: map-index ′ n f (a @ b)
= map-index ′ n f a @ map-index ′ (n + length a) f b
〈proof 〉

7

lemma map-index-append[simp]: map-index f (a @ b)
= map-index f a @ map-index ′ (length a) f b
〈proof 〉

1.3 Insert at position
primrec insert-nth :: nat ⇒ ′a ⇒ ′a list ⇒ ′a list where

insert-nth 0 x xs = x # xs
| insert-nth (Suc n) x xs = (case xs of [] ⇒ [x] | y # ys ⇒ y # insert-nth n x ys)

lemma insert-nth-take-drop[simp]: insert-nth n x xs = take n xs @ [x] @ drop n xs
〈proof 〉

lemma length-insert-nth: length (insert-nth n x xs) = Suc (length xs)
〈proof 〉

lemma set-insert-nth:
set (insert-nth i x xs) = insert x (set xs)
〈proof 〉

lemma distinct-insert-nth:
assumes distinct xs
assumes x /∈ set xs
shows distinct (insert-nth i x xs)
〈proof 〉

lemma nth-insert-nth-front:
assumes i < j j ≤ length xs
shows insert-nth j x xs ! i = xs ! i
〈proof 〉

lemma nth-insert-nth-index-eq:
assumes i ≤ length xs
shows insert-nth i x xs ! i = x
〈proof 〉

lemma nth-insert-nth-back:
assumes j < i i ≤ length xs
shows insert-nth j x xs ! i = xs ! (i − 1)
〈proof 〉

lemma nth-insert-nth:
assumes i ≤ length xs j ≤ length xs
shows insert-nth j x xs ! i = (if i = j then x else if i < j then xs ! i else xs ! (i
− 1))
〈proof 〉

lemma insert-nth-inverse:
assumes j ≤ length xs j ′ ≤ length xs ′

8

assumes x /∈ set xs x /∈ set xs ′

assumes insert-nth j x xs = insert-nth j ′ x xs ′

shows j = j ′
〈proof 〉

Insert several elements at given (ascending) positions
lemma length-fold-insert-nth:

length (fold (λ(p, b). insert-nth p b) pxs xs) = length xs + length pxs
〈proof 〉

lemma invar-fold-insert-nth:
[[∀ x∈set pxs. p < fst x; p < length xs; xs ! p = b]] =⇒

fold (λ(x, y). insert-nth x y) pxs xs ! p = b
〈proof 〉

lemma nth-fold-insert-nth:
[[sorted (map fst pxs); distinct (map fst pxs); ∀ (p, b) ∈ set pxs. p < length xs +

length pxs;
i < length pxs; pxs ! i = (p, b)]] =⇒

fold (λ(p, b). insert-nth p b) pxs xs ! p = b
〈proof 〉

1.4 Remove at position
fun remove-nth :: nat ⇒ ′a list ⇒ ′a list

where
remove-nth i [] = []
| remove-nth 0 (x # xs) = xs
| remove-nth (Suc i) (x # xs) = x # remove-nth i xs

lemma remove-nth-take-drop:
remove-nth i xs = take i xs @ drop (Suc i) xs
〈proof 〉

lemma remove-nth-insert-nth:
assumes i ≤ length xs
shows remove-nth i (insert-nth i x xs) = xs
〈proof 〉

lemma insert-nth-remove-nth:
assumes i < length xs
shows insert-nth i (xs ! i) (remove-nth i xs) = xs
〈proof 〉

lemma length-remove-nth:
assumes i < length xs
shows length (remove-nth i xs) = length xs − 1
〈proof 〉

lemma set-remove-nth-subset:

9

set (remove-nth j xs) ⊆ set xs
〈proof 〉

lemma set-remove-nth:
assumes distinct xs j < length xs
shows set (remove-nth j xs) = set xs − {xs ! j}
〈proof 〉

lemma distinct-remove-nth:
assumes distinct xs
shows distinct (remove-nth i xs)
〈proof 〉

1.5 Additional lemmas contributed by Manuel Eberl
lemma map-index-idI : (

∧
i. f i (xs ! i) = xs ! i) =⇒ map-index f xs = xs

〈proof 〉

lemma map-index-transfer [transfer-rule]:
rel-fun (rel-fun (=) (rel-fun R1 R2)) (rel-fun (list-all2 R1) (list-all2 R2))

map-index map-index
〈proof 〉

lemma map-index-Cons: map-index f (x # xs) = f 0 x # map-index (λi x. f (Suc
i) x) xs
〈proof 〉

lemma map-index-rev: map-index f (rev xs) = rev (map-index (λi. f (length xs −
i − 1)) xs)
〈proof 〉

lemma map-conv-map-index: map f xs = map-index (λi x. f x) xs
〈proof 〉

lemma map-index-map-index: map-index f (map-index g xs) = map-index (λi x.
f i (g i x)) xs
〈proof 〉

lemma map-index-replicate [simp]: map-index f (replicate n x) = map (λi. f i x)
[0 ..<n]
〈proof 〉

lemma zip-map-index:
zip (map-index f xs) (map-index g ys) = map-index (λi. map-prod (f i) (g i)) (zip

xs ys)
〈proof 〉

lemma map-index-conv-fold:
map-index f xs = rev (snd (fold (λx (i,ys). (i+1 , f i x # ys)) xs (0 , [])))

10

〈proof 〉

lemma map-index-code-conv-foldr :
map-index f xs = snd (foldr (λx (i,ys). (i−1 , f i x # ys)) xs (length xs − 1 , []))
〈proof 〉

end

11

	Index-based manipulation of lists
	Finding an index
	Map with index
	Insert at position
	Remove at position
	Additional lemmas contributed by Manuel Eberl

