List Index

Tobias Nipkow

September 13, 2023

Abstract

This theory provides functions for finding the index of an element
in a list, by predicate and by value.

1 Index-based manipulation of lists

theory List-Indexr imports Main begin

This theory collects functions for index-based manipulation of lists.

1.1 Finding an index

This subsection defines three functions for finding the index of items in a
list:

find-index P xs finds the index of the first element in zs that satisfies P.
index zs x finds the index of the first occurrence of z in zs.
last-index s x finds the index of the last occurrence of z in zs.

All functions return length xs if zs does not contain a suitable element.

The argument order of find-index follows the function of the same name
in the Haskell standard library. For inder (and last-index) the order is
intentionally reversed: index maps lists to a mapping from elements to their
indices, almost the inverse of function nth.

primrec find-index :: (‘a = bool) = 'a list = nat where
find-index - [| = 0 |
find-index P (x#xs) = (if P then 0 else find-index P xs + 1)

definition indez :: ‘a list = 'a = nat where
index xs = (Aa. find-index (\z. z=a) xs)

definition last-index :: 'a list = 'a = nat where
last-index xs © =
(let ¢ = index (rev zs) x; n = size xs

inif i = n then i else n — (i+1))

lemma find-indez-append: find-index P (zs Q ys) =
(if Jz€set xs. P x then find-index P xs else size xs + find-index P ys)
by (induct zs) simp-all

lemma find-indez-le-size: find-index P xs <= size xs
by (induct zs) simp-all

lemma index-le-size: index xs x <= size xs
by (simp add: indez-def find-index-le-size)

lemma last-index-le-size: last-index s © <= size xs
by (simp add: last-indez-def Let-def index-le-size)

lemma index-Nil[simp]: index [| a = 0
by (simp add: indez-def)

lemma indez-Cons[simp]: index (z#xs) a = (if x=a then 0 else index s a + 1)
by (simp add: indez-def)

lemma index-append: index (zs Q ys) z =
(if z : set xs then index xs x else size xs + index ys x)
by (induct zs) simp-all

lemma index-conv-size-if-notin[simp: © ¢ set ts = index xs © = size xs
by (induct zs) auto

lemma find-indez-eq-size-conv:
size xs = n = (find-index P xs = n) = (Vz € set zs. ~ P xz)
by (induct zs arbitrary: n) auto

lemma size-eq-find-index-conv:
size xs = n = (n = find-index P xs) = (Vz € set zs. ~ P)
by(metis find-indez-eq-size-conv)

lemma index-size-conv: size xs = n = (index zs x = n) = (v ¢ set xs)
by (auto simp: indez-def find-index-eq-size-conv)

lemma size-index-conv: size xs = n = (n = index zs x) = (x ¢ set s)
by (metis indezx-size-conv)

lemma last-index-size-conv:

size s = n = (last-index xs © = n) = (z ¢ set xs)
apply(auto simp: last-indez-def index-size-conv)
apply(drule length-pos-if-in-set)
apply arith
done

lemma size-last-index-conv:
size xs = n = (n = last-index zs ©) = (z ¢ set xs)
by (metis last-index-size-conv)

lemma find-indez-less-size-conv:
(find-index P xs < size xs) = (3x € set xs. P x)
by (induct zs) auto

lemma indez-less-size-conv:
(index zs x < size xs) = (x € set xs)
by (auto simp: indez-def find-indez-less-size-conv)

lemma last-index-less-size-conv:
(last-index zs © < size xs) = (z : set xs)
by (simp add: last-index-def Let-def index-size-conv length-pos-if-in-set
del:length-greater-0-conv)

lemma index-less[simp]:

T setxs = size s <= n = index xS T < N
apply(induct zs) apply auto
apply (metis index-less-size-conv less-eq-Suc-le less-trans-Suc)
done

lemma last-indez-less|simp]:
z @ set s = size x5 <= n = last-index zs = < n
by (simp add: last-index-less-size-conv[symmetric])

lemma last-indez-Cons: last-index (x#xs) y =

(if =y then

if x € set xs then last-index zs y + 1 else 0

else last-index xs y + 1)
using index-le-size[of rev xs y]
apply(auto simp add: last-index-def index-append Let-def)
apply(simp add: index-size-conv)
done

lemma last-indez-append: last-index (zs @ ys) z =
(if z : set ys then size xs + last-index ys x
else if x : set xs then last-index zs x else size xs + size ys)
by (induct xs) (simp-all add: last-indez-Cons last-index-size-conv)

lemma last-indez-Snoc|simp]:

last-indexr (zs @Q [z]) y =

(if =y then size xs

else if y : set zs then last-index xs y else size xs + 1)
by (simp add: last-indez-append last-indez-Cons)

lemma nth-find-index: find-index P xs < size s => P(xs ! find-index P xs)
by (induct xs) auto

lemma nth-indez[simp]: © € set xs = zs | index xs x = x
by (induct zs) auto

lemma nth-last-index[simp]: © € set s = xs ! last-index zs z =
by (simp add:last-index-def index-size-conv Let-def rev-nth[symmetric])

lemma indez-rev: | distinct zs; © € set xs | =
index (rev zs) x = length xs — index xs x — 1
by (induct xzs) (auto simp: indez-append)

lemma index-nth-id:
[distinct zs; n < length zs | = indez zs (zs ! n) = n
by (metis in-set-conv-nth index-less-size-conv nth-eq-iff-index-eq nth-index)

lemma indez-upt[simp]: m < { = i < n = index [m..<n] i = i—m
by (induction n) (auto simp add: index-append)

lemma index-eq-index-conv[simp]: © € set xs V y € set 1s =
(index xs x = index zs y) = (x = y)
by (induct xs) auto

lemma last-index-eq-indez-conv[simp|: © € set xzs V y € set 18 —>
(last-index zs x = last-index zs y) = (z = y)
by (induct xs) (auto simp:last-index-Cons)

lemma inj-on-index: inj-on (index xs) (set xs)
by (simp add:inj-on-def)

lemma inj-on-index2: I C set xs = inj-on (index xs) I
by (rule inj-onl) auto

lemma inj-on-last-index: inj-on (last-index xs) (set xs)
by (simp add:inj-on-def)

lemma find-indez-conv-take While:
find-index P zs = size(take While (Not o P) xs)
by (induct xs) auto

lemma index-conv-take While: index xs x = size(take While (Ay. z5y) xs)
by (induct xs) auto

lemma find-indez-first: i < find-index P xs => —P (xsli)
unfolding find-indez-conv-take While
by (metis comp-apply nth-mem set-take WhileD take While-nth)

lemma index-first: i<inder s x = x#uxs!i
using find-indez-first unfolding index-def by blast

lemma find-indez-eql:
assumes i<length s
assumes Vj<i. =P (zslj)
assumes i<length zs => P (xsl7)
shows find-index P s = 1
by (metis (mono-tags, lifting) antisym-conv2 assms find-indez-eq-size-conv
find-indez-first find-index-less-size-conv linorder-neqE-nat nth-find-index)

lemma find-indez-eq-iff:
find-index P xs = 1
+— (i<length zs N (Vj<i. =P (zs!j)) A (i<length s — P (xs!i)))
by (auto intro: find-index-eql
simp: nth-find-index find-index-le-size find-index-first)

lemma indez-eql:
assumes i<length zs
assumes Vj<i. zslj # z
assumes i<length zs = xsli = ¢
shows index zs x = i
unfolding indez-def by (simp add: find-indezx-eql assms)

lemma index-eq-iff:
index Ts x = i
> (i<length zs N (Vj<i. aslj # z) A (i<length zs — zsli = x))
by (auto intro: index-eql
simp: index-le-size index-less-size-conv
dest: index-first)

lemma index-take: index xs ¥ >= i = z ¢ set(take i xs)
apply(subst (asm) index-conv-take While)

apply(subgoal-tac set(take i zs) <= set(takeWhile ((#) z) xs))
apply(blast dest: set-take WhileD)

apply(metis set-take-subset-set-take take While-eq-take)

done

lemma last-index-drop:

last-index zs © < i = x ¢ set(drop i xs)
apply (subgoal-tac set(drop i xs) = set(take (size s — i) (rev xs)))
apply(simp add: last-index-def index-take Let-def split:if-split-asm)
apply (metis rev-drop set-rev)
done

lemma set-take-if-index: assumes indexr s * < i and ¢ < length xs
shows z € set (take i xs)
proof —
have index (take ¢ xs Q drop i zs) © < @
using append-take-drop-id|of i xs] assms(1) by simp
thus ?thesis using assms(2)
by (simp add:indez-append del:append-take-drop-id split: if-splits)

qed

lemma index-take-if-index:
assumes index s * < n shows index (take n xs) © = index s
proof cases

assume z : set(take n zs) with assms show ?thesis

by (metis append-take-drop-id indezx-append)

next

assume z ¢ set(take n zs) with assms show ?thesis

by (metis order-le-less set-take-if-index le-cases length-take min-def size-indez-conv
take-all)
qed

lemma index-take-if-set:
z : set(take n xs) = index (take n xs) x = index xs x
by (metis index-take index-take-if-index linear)

lemma index-last][simp]:
zs # || = distinct xs = index xs (last xs) = length zs — 1
by (induction xs) auto

lemma index-update-if-diff2:

n < length s = x # zsln = ¢ # y = index (zs[n := y]) = = index zs x
by (subst (2) id-take-nth-drop|of n xs])

(auto simp: upd-conv-take-nth-drop indez-append min-def)

lemma set-drop-if-index: distinct xs = index xs x < i = z ¢ set(drop i xs)
by (metis in-set-dropD index-nth-id last-index-drop last-index-less-size-conv nth-last-index)

lemma indez-swap-if-distinct: assumes distinct xs 1 < size xs j < size xs
shows index (xs[i := zslj, j .= xsli]) z =
(if x = xsli then j else if x = xs!j then i else index s x)
proof—
have distinct(zs]i := zslj, j := xsli]) using assms by simp
with assms show ?thesis
apply (auto simp: simp del: distinct-swap)
apply (metis index-nth-id list-update-same-conv)
apply (metis (erased, opaque-lifting) index-nth-id length-list-update list-update-swap
nth-list-update-eq)
apply (metis index-nth-id length-list-update nth-list-update-eq)
by (metis indez-update-if-diff2 length-list-update nth-list-update)
qged

lemma bij-betw-index:
distinct xs = X = set xs = | = size xs = bij-betw (indezx zs) X {0..<l}
apply simp
apply (rule bij-betw-imagel [OF inj-on-index])
by (auto simp: image-def) (metis index-nth-id nth-mem)

lemma indez-image: distinct ts = set s = X = index xs ‘ X = {0..<size zs}
by (simp add: bij-betw-imp-surj-on bij-betw-inder)

lemma index-map-inj-on:
[inj-on f S; y € S; set xs C S| = index (map fxs) (fy) = index xs y
by (induct zs) (auto simp: inj-on-eq-iff)

lemma index-map-ing: inj f = index (map f xs) (f y) = index zs y
by (simp add: index-map-inj-on[where S=UNIV])

1.2 Map with index

primrec map-indez’ :: nat = (nat = ‘a = 'b) = 'a list = 'b list where
map-index’ n f [| = []
| map-index’ n f (z#txs) = fn x # map-index’ (Suc n) f s

lemma length-map-index’[simp]: length (map-indez’ n f zs) = length zs
by (induct xs arbitrary: n) auto

lemma map-indez’-map-zip: map-index’ n f xs = map (case-prod f) (zip [n .< n
+ length xs] xs)
proof (induct xs arbitrary: n)

case (Cons z zs)

hence map-index’ n f (z#xs) = fn x # map (case-prod f) (zip [Sucn .< n +
length (x # xs)] zs) by simp

also have ... = map (case-prod f) (zip (n # [Suc n ..< n + length (x # zs)])
(z # xs5)) by simp

also have (n # [Suc n ..< n + length (z # xs)]) = [n ..< n + length (z # xs)]
by (induct xs) auto

finally show ?case by simp
qed simp

abbreviation map-inder = map-index’ 0
lemmas map-index = map-index’-map-zip[of 0, simplified]

lemma take-map-index: take p (map-index f xs) = map-index f (take p xs)
unfolding map-indez by (auto simp: min-def take-map take-zip)

lemma drop-map-index: drop p (map-indez f xs) = map-index’ p f (drop p xs)
unfolding map-index’-map-zip by (cases p < length zs) (auto simp: drop-map
drop-zip)

lemma map-map-index[simpl: map g (map-index f xs) = map-index (An z. g (f n
unfolding map-index by auto

lemma map-index-map[simpl: map-index f (map g xs) = map-index (An z. fn (g

unfolding map-indezx by (auto simp: map-zip-map2)

lemma set-map-indez[simp]: © € set (map-index f xs) = (Fi < length zs. fi (zs!
i) =1x)

unfolding map-index by (auto simp: set-zip introl: image-eql|[of - case-prod f])

lemma set-map-index’[simp|: x€set (map-index’ n f xs)
+—— (Ji<length zs. f (n+1) (wsli) = z)
unfolding map-index’-map-zip
by (auto simp: set-zip introl: image-eql|of - case-prod f])

lemma nth-map-index[simpl: p < length s = map-indezx fzs ! p = fp (zs ! p)
unfolding map-index by auto

lemma map-index-cong:
Vp < length zs. fp (zs! p) = g p (zs ! p) = map-index [s = map-index g xs
unfolding map-indezx by (auto simp: set-zip)

lemma map-indez-id: map-indezx (curry snd) zs = s
unfolding map-index by auto

lemma map-indez-no-index[simp]: map-index (An z. fx) s = map f zs
unfolding map-indezx by (induct xs rule: rev-induct) auto

lemma map-index-conglL:
Vp < length xs. fp (zs! p) = xs | p = map-index f s = xs
by (rule trans[OF map-indez-cong map-index-id)) auto

lemma map-indez’-is-NilD: map-indez’ n fxs = [| = zs = |]
by (induct zs) auto

declare map-index’-is-NilD[of 0, dest!]

lemma map-index’-is-ConsD:

map-index' n frs =y # ys = Jzzs. xs = z # 28 N fn z = y A map-indez’ (n
+ 1) fzs=ys

by (induct zs arbitrary: n) auto

lemma map-index’-eq-imp-length-eq: map-index’ n f xs = map-indez’ n g ys —
length xs = length ys
proof (induct ys arbitrary: xs n)
case (Cons y ys) thus Zcase by (cases xs) auto
qed (auto dest!: map-index’-is-NilD)

lemmas map-indez-eq-imp-length-eq = map-indez’-eq-imp-length-eq|of 0]
lemma map-index’-comp[simp]: map-index’ n f (map-index’ n g xs) = map-index’

n (An. fnogn) s
by (induct zs arbitrary: n) auto

lemma map-index’-append|simp|: map-indez’ n f (a Q b)
= map-indez’ n f a @ map-indezx’ (n + length a) f b
by (induct a arbitrary: n) auto

lemma map-indez-append[simp]: map-index f (a Q b)
= map-indez f a @ map-indez’ (length a) f b
using map-index’-append|where n=0|
by (simp del: map-index’-append)

1.3 Insert at position

primrec insert-nth :: nat = 'a = 'a list = 'a list where
insert-nth 0 ¢ rs = = # xs
| insert-nth (Suc n) z zs = (case zs of [| = [x] | y # ys = y # insert-nth n z ys)

lemma insert-nth-take-drop[simp|: insert-nth n z xs = take n zs Q [z] @ drop n xs
proof (induct n arbitrary: xs)

case Suc thus ?case by (cases zs) auto
qed simp

lemma length-insert-nth: length (insert-nth n x xs) = Suc (length zs)
by (induct zs) auto

lemma set-insert-nth:
set (insert-nth i x xs) = insert x (set xs)
by (simp add: set-append|symmetric])

lemma distinct-insert-nth:

assumes distinct xs

assumes z ¢ set s

shows distinct (insert-nth i x xs)
using assms proof (induct zs arbitrary: i)

case Nil

then show ?case by (cases i) auto
next

case (Cons a xs)

then show ?case

by (cases i) (auto simp add: set-insert-nth simp del: insert-nth-take-drop)

qged

lemma nth-insert-nth-front:

assumes i < jj < length zs

shows insert-nth jx xzs! i = xs ! i
using assms by (simp add: nth-append)

lemma nth-insert-nth-index-eq:
assumes i < length s
shows insert-nth i x xs | i = x

using assms by (simp add: nth-append)

lemma nth-insert-nth-back:
assumes j < 1 ¢ < length zs
shows insert-nth jxzs ! i =axs! (i — 1)
using assms by (cases ©) (auto simp add: nth-append min-def)

lemma nth-insert-nth:
assumes i < length zs j < length xs
shows insert-nth j x xs | i = (if i = j then x else if i < j then xs ! i else zs ! (i
1))
using assms by (simp add: nth-insert-nth-front nth-insert-nth-indez-eq nth-insert-nth-back
del: insert-nth-take-drop)

lemma insert-nth-inverse:
assumes j < length zs j' < length s’
assumes z ¢ set s © ¢ set s’
assumes insert-nth j r s = insert-nth j' x s’
shows j = j’
proof —
from assms(1,3) have Vi<length zs. insert-nth jras! i =z +— i =]
by (auto simp add: nth-insert-nth simp del: insert-nth-take-drop)
moreover from assms(2,4) have V i<length zs’. insert-nth j' z zs'! i = v +—
i=7
by (auto simp add: nth-insert-nth simp del: insert-nth-take-drop)
ultimately show j = j'
using assms(1,2,5) by (metis dual-order.trans nat-le-linear)
qed

Insert several elements at given (ascending) positions

lemma length-fold-insert-nth:
length (fold (A(p, b). insert-nth p b) pxs xs) = length xs + length pxs
by (induct pzs arbitrary: xs) auto

lemma invar-fold-insert-nth:
[V zeset prs. p < fst z; p < length zs; s | p = b] =
fold (M(z, y). insert-nth x y) prsxs ! p = b
by (induct pzs arbitrary: zs) (auto simp: nth-append)

lemma nth-fold-insert-nth:
[sorted (map fst pxs); distinct (map fst pzs); ¥ (p, b) € set pxs. p < length xs +
length pxs;
i < length pzs; pzs ! i = (p, b)] =
fold (A(p, b). insert-nth p b) prsxs ! p=>
proof (induct pzxs arbitrary: xs i p b)
case (Cons pb pxs)
show ?Zcase
proof (cases i)
case (

10

with Cons.prems have p < Suc (length xs)
proof (induct pxs rule: rev-induct)
case (snoc pb’ pxs)
then obtain p’ b’ where pb’ = (p’, b’) by auto
with snoc.prems have Vp € fst “ set prs. p < p’ p’ < Suc (length xs + length
pas)
by (auto simp: image-iff sorted-wrt-append le-eq-less-or-eq)
with snoc.prems show ?case by (intro snoc(1)) (auto simp: sorted-append)
qed auto
with 0 Cons.prems show ?thesis unfolding fold.simps o-apply
by (intro invar-fold-insert-nth) (auto simp: image-iff le-eq-less-or-eq nth-append)
next
case (Suc n) with Cons.prems show ?thesis unfolding fold.simps
by (auto intro!: Cons(1))
qed
qed simp

1.4 Remove at position

fun remove-nth :: nat = 'a list = ’'a list
where
remove-nth i [| = ||
| remove-nth 0 (x # xs) = s
| remove-nth (Suc i) (x # xs) = x # remove-nth i xs

lemma remowve-nth-take-drop:
remove-nth i xs = take i xs Q drop (Suc) s
proof (induct zs arbitrary: i)
case Nil
then show ?Zcase by simp
next
case (Cons a xs)
then show ?case by (cases i) auto
qed

lemma remove-nth-insert-nth:
assumes i < length s
shows remove-nth i (insert-nth i z xs) = xs
using assms proof (induct zs arbitrary: i)
case Nil
then show Zcase by simp
next
case (Cons a xs)
then show ?case by (cases i) auto
qged

lemma insert-nth-remove-nth:

assumes i < length xs
shows insert-nth i (zs ! ©) (remove-nth i xs) = xs

11

using assms proof (induct xs arbitrary: i)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show ?case by (cases i) auto
qed

lemma length-remove-nth:

assumes | < length xs

shows length (remove-nth i zs) = length xs — 1
using assms unfolding remowve-nth-take-drop by simp

lemma set-remove-nth-subset:

set (remove-nth j xs) C set xs
proof (induct xs arbitrary: j)

case Nil

then show ?case by simp
next

case (Cons a xs)

then show ?Zcase by (cases j) auto
qed

lemma set-remove-nth:
assumes distinct xs j < length zs
shows set (remove-nth j xs) = set xs — {xs | j}
using assms proof (induct xzs arbitrary: j)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show ?case by (cases j) auto
qed

lemma distinct-remove-nth:
assumes distinct s
shows distinct (remove-nth i xs)
using assms proof (induct xs arbitrary: i)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show ?case
by (cases i) (auto simp add: set-remove-nth-subset rev-subsetD)
qed

end

12

	Index-based manipulation of lists
	Finding an index
	Map with index
	Insert at position
	Remove at position

