
List Index

Tobias Nipkow

September 13, 2023

Abstract

This theory provides functions for finding the index of an element
in a list, by predicate and by value.

1 Index-based manipulation of lists
theory List-Index imports Main begin

This theory collects functions for index-based manipulation of lists.

1.1 Finding an index
This subsection defines three functions for finding the index of items in a
list:

find-index P xs finds the index of the first element in xs that satisfies P.

index xs x finds the index of the first occurrence of x in xs.

last-index xs x finds the index of the last occurrence of x in xs.

All functions return length xs if xs does not contain a suitable element.
The argument order of find-index follows the function of the same name

in the Haskell standard library. For index (and last-index) the order is
intentionally reversed: index maps lists to a mapping from elements to their
indices, almost the inverse of function nth.
primrec find-index :: (′a ⇒ bool) ⇒ ′a list ⇒ nat where
find-index - [] = 0 |
find-index P (x#xs) = (if P x then 0 else find-index P xs + 1)

definition index :: ′a list ⇒ ′a ⇒ nat where
index xs = (λa. find-index (λx. x=a) xs)

definition last-index :: ′a list ⇒ ′a ⇒ nat where
last-index xs x =
(let i = index (rev xs) x; n = size xs

1

in if i = n then i else n − (i+1))

lemma find-index-append: find-index P (xs @ ys) =
(if ∃ x∈set xs. P x then find-index P xs else size xs + find-index P ys)
by (induct xs) simp-all

lemma find-index-le-size: find-index P xs <= size xs
by(induct xs) simp-all

lemma index-le-size: index xs x <= size xs
by(simp add: index-def find-index-le-size)

lemma last-index-le-size: last-index xs x <= size xs
by(simp add: last-index-def Let-def index-le-size)

lemma index-Nil[simp]: index [] a = 0
by(simp add: index-def)

lemma index-Cons[simp]: index (x#xs) a = (if x=a then 0 else index xs a + 1)
by(simp add: index-def)

lemma index-append: index (xs @ ys) x =
(if x : set xs then index xs x else size xs + index ys x)

by (induct xs) simp-all

lemma index-conv-size-if-notin[simp]: x /∈ set xs =⇒ index xs x = size xs
by (induct xs) auto

lemma find-index-eq-size-conv:
size xs = n =⇒ (find-index P xs = n) = (∀ x ∈ set xs. ∼ P x)

by(induct xs arbitrary: n) auto

lemma size-eq-find-index-conv:
size xs = n =⇒ (n = find-index P xs) = (∀ x ∈ set xs. ∼ P x)

by(metis find-index-eq-size-conv)

lemma index-size-conv: size xs = n =⇒ (index xs x = n) = (x /∈ set xs)
by(auto simp: index-def find-index-eq-size-conv)

lemma size-index-conv: size xs = n =⇒ (n = index xs x) = (x /∈ set xs)
by (metis index-size-conv)

lemma last-index-size-conv:
size xs = n =⇒ (last-index xs x = n) = (x /∈ set xs)

apply(auto simp: last-index-def index-size-conv)
apply(drule length-pos-if-in-set)
apply arith
done

2

lemma size-last-index-conv:
size xs = n =⇒ (n = last-index xs x) = (x /∈ set xs)

by (metis last-index-size-conv)

lemma find-index-less-size-conv:
(find-index P xs < size xs) = (∃ x ∈ set xs. P x)

by (induct xs) auto

lemma index-less-size-conv:
(index xs x < size xs) = (x ∈ set xs)

by(auto simp: index-def find-index-less-size-conv)

lemma last-index-less-size-conv:
(last-index xs x < size xs) = (x : set xs)

by(simp add: last-index-def Let-def index-size-conv length-pos-if-in-set
del:length-greater-0-conv)

lemma index-less[simp]:
x : set xs =⇒ size xs <= n =⇒ index xs x < n

apply(induct xs) apply auto
apply (metis index-less-size-conv less-eq-Suc-le less-trans-Suc)
done

lemma last-index-less[simp]:
x : set xs =⇒ size xs <= n =⇒ last-index xs x < n

by(simp add: last-index-less-size-conv[symmetric])

lemma last-index-Cons: last-index (x#xs) y =
(if x=y then

if x ∈ set xs then last-index xs y + 1 else 0
else last-index xs y + 1)

using index-le-size[of rev xs y]
apply(auto simp add: last-index-def index-append Let-def)
apply(simp add: index-size-conv)
done

lemma last-index-append: last-index (xs @ ys) x =
(if x : set ys then size xs + last-index ys x
else if x : set xs then last-index xs x else size xs + size ys)

by (induct xs) (simp-all add: last-index-Cons last-index-size-conv)

lemma last-index-Snoc[simp]:
last-index (xs @ [x]) y =
(if x=y then size xs
else if y : set xs then last-index xs y else size xs + 1)

by(simp add: last-index-append last-index-Cons)

lemma nth-find-index: find-index P xs < size xs =⇒ P(xs ! find-index P xs)
by (induct xs) auto

3

lemma nth-index[simp]: x ∈ set xs =⇒ xs ! index xs x = x
by (induct xs) auto

lemma nth-last-index[simp]: x ∈ set xs =⇒ xs ! last-index xs x = x
by(simp add:last-index-def index-size-conv Let-def rev-nth[symmetric])

lemma index-rev: [[distinct xs; x ∈ set xs]] =⇒
index (rev xs) x = length xs − index xs x − 1

by (induct xs) (auto simp: index-append)

lemma index-nth-id:
[[distinct xs; n < length xs]] =⇒ index xs (xs ! n) = n

by (metis in-set-conv-nth index-less-size-conv nth-eq-iff-index-eq nth-index)

lemma index-upt[simp]: m ≤ i =⇒ i < n =⇒ index [m..<n] i = i−m
by (induction n) (auto simp add: index-append)

lemma index-eq-index-conv[simp]: x ∈ set xs ∨ y ∈ set xs =⇒
(index xs x = index xs y) = (x = y)

by (induct xs) auto

lemma last-index-eq-index-conv[simp]: x ∈ set xs ∨ y ∈ set xs =⇒
(last-index xs x = last-index xs y) = (x = y)

by (induct xs) (auto simp:last-index-Cons)

lemma inj-on-index: inj-on (index xs) (set xs)
by (simp add:inj-on-def)

lemma inj-on-index2 : I ⊆ set xs =⇒ inj-on (index xs) I
by (rule inj-onI) auto

lemma inj-on-last-index: inj-on (last-index xs) (set xs)
by (simp add:inj-on-def)

lemma find-index-conv-takeWhile:
find-index P xs = size(takeWhile (Not o P) xs)

by(induct xs) auto

lemma index-conv-takeWhile: index xs x = size(takeWhile (λy. x 6=y) xs)
by(induct xs) auto

lemma find-index-first: i < find-index P xs =⇒ ¬P (xs!i)
unfolding find-index-conv-takeWhile
by (metis comp-apply nth-mem set-takeWhileD takeWhile-nth)

lemma index-first: i<index xs x =⇒ x 6=xs!i
using find-index-first unfolding index-def by blast

4

lemma find-index-eqI :
assumes i≤length xs
assumes ∀ j<i. ¬P (xs!j)
assumes i<length xs =⇒ P (xs!i)
shows find-index P xs = i

by (metis (mono-tags, lifting) antisym-conv2 assms find-index-eq-size-conv
find-index-first find-index-less-size-conv linorder-neqE-nat nth-find-index)

lemma find-index-eq-iff :
find-index P xs = i
←→ (i≤length xs ∧ (∀ j<i. ¬P (xs!j)) ∧ (i<length xs −→ P (xs!i)))

by (auto intro: find-index-eqI
simp: nth-find-index find-index-le-size find-index-first)

lemma index-eqI :
assumes i≤length xs
assumes ∀ j<i. xs!j 6= x
assumes i<length xs =⇒ xs!i = x
shows index xs x = i

unfolding index-def by (simp add: find-index-eqI assms)

lemma index-eq-iff :
index xs x = i
←→ (i≤length xs ∧ (∀ j<i. xs!j 6= x) ∧ (i<length xs −→ xs!i = x))

by (auto intro: index-eqI
simp: index-le-size index-less-size-conv
dest: index-first)

lemma index-take: index xs x >= i =⇒ x /∈ set(take i xs)
apply(subst (asm) index-conv-takeWhile)
apply(subgoal-tac set(take i xs) <= set(takeWhile ((6=) x) xs))
apply(blast dest: set-takeWhileD)

apply(metis set-take-subset-set-take takeWhile-eq-take)
done

lemma last-index-drop:
last-index xs x < i =⇒ x /∈ set(drop i xs)

apply(subgoal-tac set(drop i xs) = set(take (size xs − i) (rev xs)))
apply(simp add: last-index-def index-take Let-def split:if-split-asm)

apply (metis rev-drop set-rev)
done

lemma set-take-if-index: assumes index xs x < i and i ≤ length xs
shows x ∈ set (take i xs)
proof −

have index (take i xs @ drop i xs) x < i
using append-take-drop-id[of i xs] assms(1) by simp

thus ?thesis using assms(2)
by(simp add:index-append del:append-take-drop-id split: if-splits)

5

qed

lemma index-take-if-index:
assumes index xs x ≤ n shows index (take n xs) x = index xs x
proof cases

assume x : set(take n xs) with assms show ?thesis
by (metis append-take-drop-id index-append)

next
assume x /∈ set(take n xs) with assms show ?thesis
by (metis order-le-less set-take-if-index le-cases length-take min-def size-index-conv

take-all)
qed

lemma index-take-if-set:
x : set(take n xs) =⇒ index (take n xs) x = index xs x

by (metis index-take index-take-if-index linear)

lemma index-last[simp]:
xs 6= [] =⇒ distinct xs =⇒ index xs (last xs) = length xs − 1

by (induction xs) auto

lemma index-update-if-diff2 :
n < length xs =⇒ x 6= xs!n =⇒ x 6= y =⇒ index (xs[n := y]) x = index xs x

by(subst (2) id-take-nth-drop[of n xs])
(auto simp: upd-conv-take-nth-drop index-append min-def)

lemma set-drop-if-index: distinct xs =⇒ index xs x < i =⇒ x /∈ set(drop i xs)
by (metis in-set-dropD index-nth-id last-index-drop last-index-less-size-conv nth-last-index)

lemma index-swap-if-distinct: assumes distinct xs i < size xs j < size xs
shows index (xs[i := xs!j, j := xs!i]) x =
(if x = xs!i then j else if x = xs!j then i else index xs x)

proof−
have distinct(xs[i := xs!j, j := xs!i]) using assms by simp
with assms show ?thesis

apply (auto simp: simp del: distinct-swap)
apply (metis index-nth-id list-update-same-conv)

apply (metis (erased, opaque-lifting) index-nth-id length-list-update list-update-swap
nth-list-update-eq)

apply (metis index-nth-id length-list-update nth-list-update-eq)
by (metis index-update-if-diff2 length-list-update nth-list-update)

qed

lemma bij-betw-index:
distinct xs =⇒ X = set xs =⇒ l = size xs =⇒ bij-betw (index xs) X {0 ..<l}

apply simp
apply(rule bij-betw-imageI [OF inj-on-index])
by (auto simp: image-def) (metis index-nth-id nth-mem)

6

lemma index-image: distinct xs =⇒ set xs = X =⇒ index xs ‘ X = {0 ..<size xs}
by (simp add: bij-betw-imp-surj-on bij-betw-index)

lemma index-map-inj-on:
[[inj-on f S ; y ∈ S ; set xs ⊆ S]] =⇒ index (map f xs) (f y) = index xs y

by (induct xs) (auto simp: inj-on-eq-iff)

lemma index-map-inj: inj f =⇒ index (map f xs) (f y) = index xs y
by (simp add: index-map-inj-on[where S=UNIV])

1.2 Map with index
primrec map-index ′ :: nat ⇒ (nat ⇒ ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list where

map-index ′ n f [] = []
| map-index ′ n f (x#xs) = f n x # map-index ′ (Suc n) f xs

lemma length-map-index ′[simp]: length (map-index ′ n f xs) = length xs
by (induct xs arbitrary: n) auto

lemma map-index ′-map-zip: map-index ′ n f xs = map (case-prod f) (zip [n ..< n
+ length xs] xs)
proof (induct xs arbitrary: n)

case (Cons x xs)
hence map-index ′ n f (x#xs) = f n x # map (case-prod f) (zip [Suc n ..< n +

length (x # xs)] xs) by simp
also have . . . = map (case-prod f) (zip (n # [Suc n ..< n + length (x # xs)])

(x # xs)) by simp
also have (n # [Suc n ..< n + length (x # xs)]) = [n ..< n + length (x # xs)]

by (induct xs) auto
finally show ?case by simp

qed simp

abbreviation map-index ≡ map-index ′ 0

lemmas map-index = map-index ′-map-zip[of 0 , simplified]

lemma take-map-index: take p (map-index f xs) = map-index f (take p xs)
unfolding map-index by (auto simp: min-def take-map take-zip)

lemma drop-map-index: drop p (map-index f xs) = map-index ′ p f (drop p xs)
unfolding map-index ′-map-zip by (cases p < length xs) (auto simp: drop-map

drop-zip)

lemma map-map-index[simp]: map g (map-index f xs) = map-index (λn x. g (f n
x)) xs

unfolding map-index by auto

lemma map-index-map[simp]: map-index f (map g xs) = map-index (λn x . f n (g
x)) xs

7

unfolding map-index by (auto simp: map-zip-map2)

lemma set-map-index[simp]: x ∈ set (map-index f xs) = (∃ i < length xs. f i (xs !
i) = x)

unfolding map-index by (auto simp: set-zip intro!: image-eqI [of - case-prod f])

lemma set-map-index ′[simp]: x∈set (map-index ′ n f xs)
←→ (∃ i<length xs. f (n+i) (xs!i) = x)
unfolding map-index ′-map-zip
by (auto simp: set-zip intro!: image-eqI [of - case-prod f])

lemma nth-map-index[simp]: p < length xs =⇒ map-index f xs ! p = f p (xs ! p)
unfolding map-index by auto

lemma map-index-cong:
∀ p < length xs. f p (xs ! p) = g p (xs ! p) =⇒ map-index f xs = map-index g xs
unfolding map-index by (auto simp: set-zip)

lemma map-index-id: map-index (curry snd) xs = xs
unfolding map-index by auto

lemma map-index-no-index[simp]: map-index (λn x. f x) xs = map f xs
unfolding map-index by (induct xs rule: rev-induct) auto

lemma map-index-congL:
∀ p < length xs. f p (xs ! p) = xs ! p =⇒ map-index f xs = xs
by (rule trans[OF map-index-cong map-index-id]) auto

lemma map-index ′-is-NilD: map-index ′ n f xs = [] =⇒ xs = []
by (induct xs) auto

declare map-index ′-is-NilD[of 0 , dest!]

lemma map-index ′-is-ConsD:
map-index ′ n f xs = y # ys =⇒ ∃ z zs. xs = z # zs ∧ f n z = y ∧ map-index ′ (n

+ 1) f zs = ys
by (induct xs arbitrary: n) auto

lemma map-index ′-eq-imp-length-eq: map-index ′ n f xs = map-index ′ n g ys =⇒
length xs = length ys
proof (induct ys arbitrary: xs n)

case (Cons y ys) thus ?case by (cases xs) auto
qed (auto dest!: map-index ′-is-NilD)

lemmas map-index-eq-imp-length-eq = map-index ′-eq-imp-length-eq[of 0]

lemma map-index ′-comp[simp]: map-index ′ n f (map-index ′ n g xs) = map-index ′

n (λn. f n o g n) xs
by (induct xs arbitrary: n) auto

8

lemma map-index ′-append[simp]: map-index ′ n f (a @ b)
= map-index ′ n f a @ map-index ′ (n + length a) f b
by (induct a arbitrary: n) auto

lemma map-index-append[simp]: map-index f (a @ b)
= map-index f a @ map-index ′ (length a) f b
using map-index ′-append[where n=0]
by (simp del: map-index ′-append)

1.3 Insert at position
primrec insert-nth :: nat ⇒ ′a ⇒ ′a list ⇒ ′a list where

insert-nth 0 x xs = x # xs
| insert-nth (Suc n) x xs = (case xs of [] ⇒ [x] | y # ys ⇒ y # insert-nth n x ys)

lemma insert-nth-take-drop[simp]: insert-nth n x xs = take n xs @ [x] @ drop n xs
proof (induct n arbitrary: xs)

case Suc thus ?case by (cases xs) auto
qed simp

lemma length-insert-nth: length (insert-nth n x xs) = Suc (length xs)
by (induct xs) auto

lemma set-insert-nth:
set (insert-nth i x xs) = insert x (set xs)

by (simp add: set-append[symmetric])

lemma distinct-insert-nth:
assumes distinct xs
assumes x /∈ set xs
shows distinct (insert-nth i x xs)

using assms proof (induct xs arbitrary: i)
case Nil
then show ?case by (cases i) auto

next
case (Cons a xs)
then show ?case

by (cases i) (auto simp add: set-insert-nth simp del: insert-nth-take-drop)
qed

lemma nth-insert-nth-front:
assumes i < j j ≤ length xs
shows insert-nth j x xs ! i = xs ! i

using assms by (simp add: nth-append)

lemma nth-insert-nth-index-eq:
assumes i ≤ length xs
shows insert-nth i x xs ! i = x

9

using assms by (simp add: nth-append)

lemma nth-insert-nth-back:
assumes j < i i ≤ length xs
shows insert-nth j x xs ! i = xs ! (i − 1)

using assms by (cases i) (auto simp add: nth-append min-def)

lemma nth-insert-nth:
assumes i ≤ length xs j ≤ length xs
shows insert-nth j x xs ! i = (if i = j then x else if i < j then xs ! i else xs ! (i
− 1))
using assms by (simp add: nth-insert-nth-front nth-insert-nth-index-eq nth-insert-nth-back
del: insert-nth-take-drop)

lemma insert-nth-inverse:
assumes j ≤ length xs j ′ ≤ length xs ′

assumes x /∈ set xs x /∈ set xs ′

assumes insert-nth j x xs = insert-nth j ′ x xs ′

shows j = j ′
proof −

from assms(1 ,3) have ∀ i≤length xs. insert-nth j x xs ! i = x ←→ i = j
by (auto simp add: nth-insert-nth simp del: insert-nth-take-drop)

moreover from assms(2 ,4) have ∀ i≤length xs ′. insert-nth j ′ x xs ′ ! i = x ←→
i = j ′

by (auto simp add: nth-insert-nth simp del: insert-nth-take-drop)
ultimately show j = j ′

using assms(1 ,2 ,5) by (metis dual-order .trans nat-le-linear)
qed

Insert several elements at given (ascending) positions
lemma length-fold-insert-nth:

length (fold (λ(p, b). insert-nth p b) pxs xs) = length xs + length pxs
by (induct pxs arbitrary: xs) auto

lemma invar-fold-insert-nth:
[[∀ x∈set pxs. p < fst x; p < length xs; xs ! p = b]] =⇒

fold (λ(x, y). insert-nth x y) pxs xs ! p = b
by (induct pxs arbitrary: xs) (auto simp: nth-append)

lemma nth-fold-insert-nth:
[[sorted (map fst pxs); distinct (map fst pxs); ∀ (p, b) ∈ set pxs. p < length xs +

length pxs;
i < length pxs; pxs ! i = (p, b)]] =⇒

fold (λ(p, b). insert-nth p b) pxs xs ! p = b
proof (induct pxs arbitrary: xs i p b)

case (Cons pb pxs)
show ?case
proof (cases i)

case 0

10

with Cons.prems have p < Suc (length xs)
proof (induct pxs rule: rev-induct)

case (snoc pb ′ pxs)
then obtain p ′ b ′ where pb ′ = (p ′, b ′) by auto
with snoc.prems have ∀ p ∈ fst ‘ set pxs. p < p ′ p ′ ≤ Suc (length xs + length

pxs)
by (auto simp: image-iff sorted-wrt-append le-eq-less-or-eq)

with snoc.prems show ?case by (intro snoc(1)) (auto simp: sorted-append)
qed auto
with 0 Cons.prems show ?thesis unfolding fold.simps o-apply

by (intro invar-fold-insert-nth) (auto simp: image-iff le-eq-less-or-eq nth-append)
next

case (Suc n) with Cons.prems show ?thesis unfolding fold.simps
by (auto intro!: Cons(1))

qed
qed simp

1.4 Remove at position
fun remove-nth :: nat ⇒ ′a list ⇒ ′a list
where

remove-nth i [] = []
| remove-nth 0 (x # xs) = xs
| remove-nth (Suc i) (x # xs) = x # remove-nth i xs

lemma remove-nth-take-drop:
remove-nth i xs = take i xs @ drop (Suc i) xs

proof (induct xs arbitrary: i)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases i) auto

qed

lemma remove-nth-insert-nth:
assumes i ≤ length xs
shows remove-nth i (insert-nth i x xs) = xs

using assms proof (induct xs arbitrary: i)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases i) auto

qed

lemma insert-nth-remove-nth:
assumes i < length xs
shows insert-nth i (xs ! i) (remove-nth i xs) = xs

11

using assms proof (induct xs arbitrary: i)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases i) auto

qed

lemma length-remove-nth:
assumes i < length xs
shows length (remove-nth i xs) = length xs − 1

using assms unfolding remove-nth-take-drop by simp

lemma set-remove-nth-subset:
set (remove-nth j xs) ⊆ set xs

proof (induct xs arbitrary: j)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases j) auto

qed

lemma set-remove-nth:
assumes distinct xs j < length xs
shows set (remove-nth j xs) = set xs − {xs ! j}

using assms proof (induct xs arbitrary: j)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases j) auto

qed

lemma distinct-remove-nth:
assumes distinct xs
shows distinct (remove-nth i xs)

using assms proof (induct xs arbitrary: i)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases i) (auto simp add: set-remove-nth-subset rev-subsetD)
qed

end

12

	Index-based manipulation of lists
	Finding an index
	Map with index
	Insert at position
	Remove at position

