Liouville Numbers

Manuel Eberl

September 13, 2023

Abstract

In this work, we define the concept of Liouville numbers as well as the standard construction to obtain Liouville numbers and we prove their most important properties: irrationality and transcendence.

This is historically interesting since Liouville numbers constructed in the standard way where the first numbers that were proven to be transcendental. The proof is very elementary and requires only standard arithmetic and the Mean Value Theorem for polynomials and the boundedness of polynomials on compact intervals.

Contents

1 Liouville Numbers

1.1 Preliminary lemmas . 1
1.2 Definition of Liouville numbers 3
1.3 Standard construction for Liouville numbers 7

1 Liouville Numbers

1.1 Preliminary lemmas

```
theory Liouville-Numbers-Misc
imports
    Complex-Main
    HOL-Computational-Algebra.Polynomial
begin
```

We will require these inequalities on factorials to show properties of the standard construction later.

```
lemma fact-ineq: \(n \geq 1 \Longrightarrow\) fact \(n+k \leq\) fact \((n+k)\)
proof (induction \(k\) )
    case (Suc k)
    from Suc have fact \(n+\) Suc \(k \leq\) fact \((n+k)+1\) by simp
    also from Suc have \(\ldots \leq\) fact \((n+S u c k)\) by simp
    finally show ?case.
```

lemma Ints-sum:
assumes $\bigwedge x . x \in A \Longrightarrow f x \in \mathbb{Z}$
shows sum $f A \in \mathbb{Z}$
by (cases finite A, insert assms, induction A rule: finite-induct) (auto intro!: Ints-add)
lemma suminf-split-initial-segment':
summable $(f::$ nat \Rightarrow 'a::real-normed-vector $) \Longrightarrow$ suminf $f=\left(\sum n . f(n+k+1)\right)+\operatorname{sum} f\{. . k\}$
by (subst suminf-split-initial-segment [of - Suc k], assumption, subst lessThan-Suc-atMost)

```
simp-all
```

lemma Rats-eq-int-div-int': $(\mathbb{Q}::$ real set $)=\{$ of-int $p /$ of-int $q \mid p q . q>0\}$
proof safe
fix $x::$ real assume $x \in \mathbb{Q}$
then obtain $p q$ where $p q: x=o f$-int $p /$ of-int $q q \neq 0$
by (subst (asm) Rats-eq-int-div-int) auto
show $\exists p q . x=$ real-of-int $p /$ real-of-int $q \wedge 0<q$
proof (cases $q>0$)
case False
show ?thesis by (rule exI $[o f--p]$, rule exI $[o f--q]$) (insert False pq, auto)
qed (insert pq, force)
qed auto
lemma Rats-cases':
assumes $(x::$ real $) \in \mathbb{Q}$
obtains $p q$ where $q>0 x=$ of-int $p /$ of-int q
using assms by (subst (asm) Rats-eq-int-div-int') auto
The following inequality gives a lower bound for the absolute value of an integer polynomial at a rational point that is not a root.

```
lemma int-poly-rat-no-root-ge:
    fixes \(p::\) real poly and \(a b::\) int
    assumes \(\bigwedge n\). coeff \(p n \in \mathbb{Z}\)
    assumes \(b>0\) poly \(p(a / b) \neq 0\)
    defines \(n \equiv\) degree \(p\)
    shows \(a b s(\) poly \(p(a / b)) \geq 1 /\) of-int \(b{ }^{\wedge} n\)
proof -
    let \(? S=\left(\sum i \leq n\right.\). coeff \(p i *\) of-int \(a^{\wedge} i *(\) of-int \(\left.b \wedge(n-i))\right)\)
    from \(\langle b\rangle 0\rangle\) have eq: ?S \(=\) of-int \(b{ }^{\wedge} n * \operatorname{poly} p(a / b)\)
    by (simp add: poly-altdef power-divide mult-ac n-def sum-distrib-left power-diff)
    have \(? S \in \mathbb{Z}\) by (intro Ints-sum Ints-mult assms Ints-power) simp-all
    moreover from assms have ? \(S \neq 0\) by (subst eq) auto
    ultimately have abs? \(S \geq 1\) by (elim Ints-cases) simp
    with \(e q\langle b\rangle 0\rangle\) show ?thesis by (simp add: field-simps abs-mult)
qed
```

end

```
theory Liouville-Numbers
imports
    Complex-Main
    HOL-Computational-Algebra.Polynomial
    Liouville-Numbers-Misc
begin
```

A Liouville number is a real number that can be approximated well - but not perfectly - by a sequence of rational numbers. "Well", in this context, means that the error of the n-th rational in the sequence is bounded by the n-th power of its denominator.
Our approach will be the following:

- Liouville numbers cannot be rational.
- Any irrational algebraic number cannot be approximated in the Liouville sense
- Therefore, all Liouville numbers are transcendental.
- The standard construction fulfils all the properties of Liouville numbers.

1.2 Definition of Liouville numbers

The following definitions and proofs are largely adapted from those in the Wikipedia article on Liouville numbers. [1]

A Liouville number is a real number that can be approximated well - but not perfectly - by a sequence of rational numbers. The error of the n-th term $\frac{p_{n}}{q_{n}}$ is at most q_{n}^{-n}, where $p_{n} \in \mathbb{Z}$ and $q_{n} \in \mathbb{Z}_{\geq 2}$.
We will say that such a number can be approximated in the Liouville sense.

```
locale liouville =
    fixes }x:: real and p q :: nat => in
    assumes approx-int-pos: abs (x-pn/qn)>0
        and denom-gt-1: }\quadqn>
        and approx-int: abs (x-pn/qn)<1/of-int (qn) ^n
```

First, we show that any Liouville number is irrational.
lemma (in liouville) irrational: $x \notin \mathbb{Q}$
proof
assume $x \in \mathbb{Q}$

```
    then obtain \(c d::\) int where \(d: x=\) of-int \(c /\) of-int \(d d>0\)
    by (elim Rats-cases') simp
define \(n\) where \(n=\operatorname{Suc}(\) nat \(\lceil\log 2 d\rceil\) )
note \(q\)-gt-1 \(=\) denom-gt-1 [of \(n\) ]
have neq: \(c * q n \neq d * p n\)
proof
    assume \(c * q n=d * p n\)
    hence of-int \((c * q n)=o f-i n t(d * p n)\) by (simp only: )
    with approx-int-pos[of \(n] d\)-gt-1 show False by (auto simp: field-simps)
qed
hence abs-pos: \(0<a b s(c * q n-d * p n)\) by \(\operatorname{simp}\)
    from \(q\)-gt-1 \(d\) have of-int \(d=2\) powr log \(2 d\) by (subst powr-log-cancel) simp-all
    also from \(d\) have \(\log 2\) (of-int \(d\) ) \(\geq \log 21\) by (subst log-le-cancel-iff) simp-all
    hence 2 powr \(\log 2 d \leq 2\) powr of-nat (nat \(\lceil\log 2 d\rceil\) )
    by (intro powr-mono) simp-all
    also have \(\ldots=o f-i n t\left(2^{\wedge}\right.\) nat \(\left.\lceil\log 2 d\rceil\right)\)
    by (subst powr-realpow) simp-all
    finally have \(d \leq 2\) nat \(\lceil\log 2(\) of-int \(d)\rceil\)
    by (subst (asm) of-int-le-iff)
    also have \(\ldots * q n \leq q n へ\) Suc (nat \(\lceil\log 2(o f-i n t d)\rceil)\)
    by (subst power-Suc, subst mult.commute, intro mult-left-mono power-mono,
        insert \(q\)-gt-1) simp-all
    also from \(q\) - \(g t-1\) have \(\ldots=q n^{\wedge} n\) by (simp add: \(n\)-def)
    finally have \(1 /\) of-int \(\left(q n^{\wedge} n\right) \leq 1 /\) real-of-int \((d * q n)\) using \(q\)-gt- \(1 d\)
        by (intro divide-left-mono Rings.mult-pos-pos of-int-pos, subst of-int-le-iff)
simp-all
    also have \(\ldots \leq\) of-int \((a b s(c * q n-d * p n)) /\) real-of-int \((d * q n)\) using
\(q-g t-1\) d abs-pos
    by (intro divide-right-mono) (linarith, simp)
    also have \(\ldots=\) abs ( \(x\) - of-int ( \(p n\) ) / of-int ( \(q n\) )) using \(q\)-gt-1 d(2)
    by (simp-all add: divide-simps d(1) mult-ac)
    finally show False using approx-int[of \(n]\) by simp
qed
```

Next, any irrational algebraic number cannot be approximated with rational numbers in the Liouville sense.

```
lemma liouville-irrational-algebraic:
    fixes \(x\) :: real
    assumes irrationsl: \(x \notin \mathbb{Q}\) and algebraic \(x\)
    obtains \(c::\) real and \(n::\) nat
    where \(c>0\) and \(\bigwedge(p::\) int \()(q::\) int \() . q>0 \Longrightarrow a b s(x-p / q)>c /\) of-int \(q\)
^ \(n\)
proof -
    from 〈algebraic \(x\rangle\) obtain \(p\) where \(p\) : \(\bigwedge i\). coeff \(p i \in \mathbb{Z} p \neq 0\) poly \(p x=0\)
        by (elim algebraicE) blast
    define \(n\) where \(n=\) degree \(p\)
```

- The derivative of p is bounded within $\{x-1 \ldots x+1\}$.
let ?f $=\lambda t$. \mid poly $(p d e r i v p) t \mid$
define M where $M=(S U P \quad t \in\{x-1$.. $x+1\}$. ?f $t)$
define roots where roots $=\{x$. poly p $x=0\}-\{x\}$
define A-set where A-set $=\{1,1 / M\} \cup\left\{a b s\left(x^{\prime}-x\right) \mid x^{\prime} . x^{\prime} \in\right.$ roots $\}$
define A^{\prime} where $A^{\prime}=\operatorname{Min} A$-set
define A where $A=A^{\prime} / 2$
- We define A to be a positive real number that is less than $1::^{\prime} a, 1 / M$ and any distance from x to another root of p.
- Properties of M, our upper bound for the derivative of p : have $\exists s \in\{x-1 \ldots x+1\}$. $\forall y \in\{x-1 \ldots x+1\}$. ?f $s \geq$?f y
by (intro continuous-attains-sup) (auto intro!: continuous-intros)
hence bdd: bdd-above (?f ' $\{x-1 \ldots x+1\}$) by auto

```
have \(M\)-pos: \(M>0\)
proof -
    from \(p\) have pderiv \(p \neq 0\) by (auto dest!: pderiv-iszero)
    hence finite \(\{x\). poly (pderiv \(p\) ) \(x=0\}\) using poly-roots-finite by blast
    moreover have \(\neg\) finite \(\{x-1 \ldots x+1\}\) by (simp add: infinite-Icc)
    ultimately have \(\neg\) finite \((\{x-1 \ldots x+1\}-\{x\). poly (pderiv \(p) x=0\})\) by simp
    hence \(\{x-1 . . x+1\}-\{x\). poly (pderiv \(p) x=0\} \neq\{ \}\) by (intro notI) simp
    then obtain \(t\) where \(t: t \in\{x-1 \ldots x+1\}\) and poly (pderiv \(p) t \neq 0\) by blast
    hence \(0<\) ?f \(t\) by simp
    also from \(t\) and \(b d d\) have \(\ldots \leq M\) unfolding \(M\)-def by (rule \(c S U P\)-upper)
    finally show \(M>0\).
qed
```

have M-sup: ?f $t \leq M$ if $t \in\{x-1 \ldots x+1\}$ for t
proof -
from that and bdd show ?f $t \leq M$
unfolding M-def by (rule $c S U P$-upper)
qed

- Properties of A :
from p poly-roots-finite $[o f p]$ have finite A-set
unfolding A-set-def roots-def by simp
have $x \notin$ roots unfolding roots-def by auto
hence $A^{\prime}>0$ using Min-gr-iff $\left[O F\right.$ 〈finite A-set〉, folded A^{\prime}-def, of 0$]$
by (auto simp: A-set-def M-pos)
hence A-pos: $A>0$ by (simp add: A-def)
from $\left\langle A^{\prime}>0\right\rangle$ have $A<A^{\prime}$ by (simp add: A-def)
moreover from Min-le $[O F<$ finite A-set \rangle, folded A^{\prime}-def $]$
have $A^{\prime} \leq 1 A^{\prime} \leq 1 / M \bigwedge x^{\prime} . x^{\prime} \neq x \Longrightarrow$ poly $p x^{\prime}=0 \Longrightarrow A^{\prime} \leq a b s\left(x^{\prime}-x\right)$
unfolding A-set-def roots-def by auto
ultimately have A-less: $A<1 A<1 / M \bigwedge x^{\prime} . x^{\prime} \neq x \Longrightarrow$ poly $p x^{\prime}=0 \Longrightarrow A$

```
< abs ( }\mp@subsup{x}{}{\prime}-x
    by fastforce+
```

— Finally: no rational number can approximate x "well enough".
have $\forall(a::$ int $)(b::$ int $) . b>0 \longrightarrow \mid x-o f$-int $a /$ of-int $b \mid>A /$ of-int $b{ }^{\wedge} n$
proof (intro allI impI, rule ccontr)
fix $a b$:: int
assume $b: b>0$ and $\neg\left(A /\right.$ of-int $b{ }^{\wedge} n<\mid x-$ of-int a / of-int $\left.b \mid\right)$
hence $a b$: abs $(x$ - of-int $a /$ of-int $b) \leq A /$ of-int b ^ n by simp
also from A-pos b have $A /$ of-int $b{ }^{\wedge} n \leq A / 1$
by (intro divide-left-mono) simp-all
finally have $a b^{\prime}: a b s(x-a / b) \leq A$ by simp
also have $\ldots \leq 1$ using A-less by simp
finally have $a b^{\prime \prime}: a / b \in\{x-1 \ldots x+1\}$ by auto
have no-root: poly $p(a / b) \neq 0$
proof
assume poly $p(a / b)=0$
moreover from $\langle x \notin \mathbb{Q}\rangle$ have $x \neq a / b$ by auto
ultimately have $A<a b s(a / b-x)$ using A-less(3) by simp
with $a b^{\prime}$ show False by simp
qed
have $\exists x 0 \in\{x-1 . . x+1\}$. poly $p(a / b)-$ poly $p x=(a / b-x) *$ poly (pderiv p) $x 0$
using $a b^{\prime \prime}$ by (intro poly-MVT') (auto simp: min-def max-def)
with p obtain $x 0::$ real where $x 0$:

$$
x 0 \in\{x-1 \ldots x+1\} \text { poly } p(a / b)=(a / b-x) * \text { poly }(\text { pderiv } p) x 0 \text { by auto }
$$

from $x 0$ (2) no-root have deriv-pos: poly (pderiv p) $x 0 \neq 0$ by auto
from b p no-root have p-ab: abs (poly $p(a / b)) \geq 1 /$ of-int $b^{\wedge} n$ unfolding n-def by (intro int-poly-rat-no-root-ge)
note $a b$
also from A-less b have $A /$ of-int $b{ }^{\wedge} n<(1 / M) /$ of-int $b{ }^{\wedge} n$
by (intro divide-strict-right-mono) simp-all
also have $\ldots=\left(1 / b^{\wedge} n\right) / M$ by simp
also from M-pos $a b p$-ab have $\ldots \leq a b s(\operatorname{poly} p(a / b)) / M$
by (intro divide-right-mono) simp-all
also from deriv-pos M-pos x0(1)
have $\ldots \leq a b s($ poly $p(a / b)) / a b s(p o l y(p d e r i v p) x 0)$
by (intro divide-left-mono M-sup) simp-all
also have \mid poly $p(a / b)|=|a / b-x| *|$ poly (pderiv p) x0 \mid
by (subst $x 0$ (2)) (simp add: abs-mult)
with deriv-pos have \mid poly $p(a / b)|/|$ poly (pderiv $p) x 0|=|x-a / b|$
by (subst nonzero-divide-eq-eq) simp-all
finally show False by simp
qed
with A-pos show ?thesis using that $[$ of $A n]$ by blast qed

Since Liouville numbers are irrational, but can be approximated well by rational numbers in the Liouville sense, they must be transcendental.

```
lemma (in liouville) transcendental: \(\neg\) algebraic \(x\)
proof
    assume algebraic \(x\)
    from liouville-irrational-algebraic[OF irrational this]
    obtain \(c n\) where \(c n\) :
        \(c>0 \bigwedge p q . q>0 \Longrightarrow c /\) real-of-int \(q \wedge n<\mid x\) - real-of-int \(p /\) real-of-int \(q \mid\)
        by auto
    define \(r\) where \(r=\) nat \(\lceil\log 2(1 / c)\rceil\)
    define \(m\) where \(m=n+r\)
    from \(c n(1)\) have \((1 / c)=2\) powr \(\log 2(1 / c)\) by (subst powr-log-cancel) simp-all
    also have \(\log 2(1 / c) \leq\) of-nat (nat \(\lceil\log 2(1 / c)\rceil)\) by linarith
    hence 2 powr \(\log 2(1 / c) \leq 2\) powr ... by (intro powr-mono) simp-all
    also have \(\ldots=2^{\wedge} r\) unfolding \(r\)-def by (simp add: powr-realpow)
    finally have \(1 /\left(\mathcal{Z}^{\wedge} r\right) \leq c\) using \(c n(1)\) by (simp add: field-simps)
    have abs \((x-p m / q m)<1 /\) of-int \((q m){ }^{\wedge} m\) by (rule approx-int)
    also have \(\ldots=(1 /\) of-int \((q m) \wedge r) *(1 /\) real-of-int \((q m) \wedge n)\)
    by (simp add: m-def power-add)
    also from denom-gt-1[of m] have \(1 /\) real-of-int \((q m) \wedge r \leq 1 / 2 へ r\)
    by (intro divide-left-mono power-mono) simp-all
    also have \(\ldots \leq c\) by fact
    finally have \(a b s(x-p m / q m)<c /\) of-int \((q m)^{\wedge} n\)
    using denom-gt-1[of m] by - (simp-all add: divide-right-mono)
    with cn(2)[of q m p m] denom-gt-1[of m] show False by simp
qed
```


1.3 Standard construction for Liouville numbers

We now define the standard construction for Liouville numbers.

```
definition standard-liouville :: (nat => int) => int => real where
    standard-liouville p q = (\sumk.pk/ of-int q^ fact (Suc k))
lemma standard-liouville-summable:
    fixes p:: nat => int and q :: int
    assumes q>1 range p\subseteq{0..<q}
    shows summable ( }\lambdak.pk/\mathrm{ of-int q` fact (Suc k))
proof (rule summable-comparison-test')
    from assms(1) show summable ( }\lambdan.(1/q)^ n
        by (intro summable-geometric) simp-all
next
    fix n :: nat
```

from assms have $p n \in\{0 . .<q\}$ by blast
with $\operatorname{assms}(1)$ have $\operatorname{norm}(p n /$ of-int $q \wedge$ fact (Suc n) $) \leq$ $q /$ of-int $q^{\wedge}($ fact (Suc n)) by (auto simp: field-simps)
also from $\operatorname{assms}(1)$ have $\ldots=1 /$ of-int $q^{\wedge}($ fact (Suc $\left.n)-1\right)$
by (subst power-diff) (auto simp del: fact-Suc)
also have Suc $n \leq f a c t$ (Suc n) by (rule fact-ge-self)
with $\operatorname{assms}(1)$ have $1 /$ real-of-int $q \wedge($ fact $($ Suc $n)-1) \leq 1 /$ of-int $q{ }^{\wedge} n$
by (intro divide-left-mono power-increasing)
(auto simp del: fact-Suc simp add: algebra-simps)
finally show norm $(p n /$ of-int $q \wedge$ fact $(S u c n)) \leq(1 / q){ }^{\wedge} n$
by (simp add: power-divide)
qed
lemma standard-liouville-sums:
assumes $q>1$ range $p \subseteq\{0 . .<q\}$
shows ($\lambda k . p k /$ of-int q^{\wedge} fact (Suc k)) sums standard-liouville $p q$
using standard-liouville-summable[OF assms] unfolding standard-liouville-def
by (simp add: summable-sums)
Now we prove that the standard construction indeed yields Liouville numbers.
lemma standard-liouville-is-liouville:
assumes $q>1$ range $p \subseteq\{0 . .<q\}$ frequently $(\lambda n$. $p n \neq 0$) sequentially
defines $b \equiv \lambda n . q^{\wedge}$ fact (Suc n)
defines $a \equiv \lambda n$. ($\sum k \leq n . p k * q^{\wedge}($ fact $($ Suc $n)-\operatorname{fact}($ Suc $\left.k))\right)$
shows liouville (standard-liouville $p q$) ab
proof
fix n :: nat
from $\operatorname{assms}(1)$ have $1<q^{\wedge} 1$ by simp
also from $\operatorname{assms}(1)$ have $\ldots \leq b n$ unfolding b-def
by (intro power-increasing) (simp-all del: fact-Suc)
finally show $b n>1$.
note summable $=$ standard-liouville-summable[OF $\operatorname{assms}(1,2)]$
let $? S=\sum k . p(k+n+1) /$ of-int $q^{\wedge}($ fact $(S u c(k+n+1)))$
let ? $C=(q-1) /$ of-int $q^{\wedge}($ fact $(n+2))$
have $a n / b n=\left(\sum k \leq n\right.$. p $k *($ of-int $q \wedge(f a c t(n+1)-f a c t(k+1)) /$ of-int $\left.\left.q^{\wedge}(\operatorname{fact}(n+1))\right)\right)$
by (simp add: a-def b-def sum-divide-distrib of-int-sum)
also have $\ldots=\left(\sum k \leq n\right.$. p $k /$ of-int $q^{\wedge}($ fact $($ Suc $\left.k))\right)$
by (intro sum.cong refl, subst inverse-divide [symmetric], subst power-diff [symmetric])
(insert assms(1), simp-all add: divide-simps fact-mono-nat del: fact-Suc)
also have standard-liouville $p q-\ldots=$? S unfolding standard-liouville-def
by (subst diff-eq-eq) (intro suminf-split-initial-segment' summable)
finally have abs (standard-liouville $p q-a n / b n$) $=a b s$? S by (simp only:) moreover from assms have ? $S \geq 0$
by (intro suminf-nonneg allI divide-nonneg-pos summable-ignore-initial-segment
summable) force +
ultimately have eq: abs (standard-liouville $p q-a n / b n$) $=$? S by simp
also have ? $S \leq\left(\sum k\right.$. ? $\left.C *(1 / q)^{\wedge} k\right)$
proof (intro suminf-le allI summable-ignore-initial-segment summable)
from assms show summable $\left(\lambda k\right.$.? $\left.C *(1 / q)^{\wedge} k\right)$
by (intro summable-mult summable-geometric) simp-all
next
fix $k::$ nat
from assms have $p(k+n+1) \leq q-1$ by force
with $\langle q>1\rangle$ have $p(k+n+1) /$ of-int q ^fact $(\operatorname{Suc}(k+n+1)) \leq$
$(q-1) /$ of-int $q \wedge($ fact $(\operatorname{Suc}(k+n+1)))$
by (intro divide-right-mono) (simp-all del: fact-Suc)
also from $\langle q>1\rangle$ have $\ldots \leq(q-1) /$ of-int $q^{\wedge}($ fact $(n+2)+k)$
using fact-ineq[of $n+2 k]$
by (intro divide-left-mono power-increasing) (simp-all add: add-ac)
also have $\ldots=$? $C *(1 / q)^{\wedge} k$
by (simp add: field-simps power-add del: fact-Suc)
finally show $p(k+n+1) /$ of-int q ^fact $(\operatorname{Suc}(k+n+1)) \leq \ldots$.
qed
also from assms have $\ldots=? C *\left(\sum k .(1 / q) \wedge k\right)$
by (intro suminf-mult summable-geometric) simp-all
also from assms have $\left(\sum k .(1 / q)^{\wedge} k\right)=1 /(1-1 / q)$
by (intro suminf-geometric) simp-all
also from $\operatorname{assms}(1)$ have ? $C * \ldots=o f$-int $q^{\wedge} 1 /$ of-int q^{\wedge} fact $(n+2)$
by (simp add: field-simps)
also from $\operatorname{assms}(1)$ have $\ldots \leq$ of-int q ^fact $(n+1) /$ of-int q^{\wedge} fact ($\left.n+2\right)$ by (intro divide-right-mono power-increasing) (simp-all add: field-simps del: fact-Suc)
also from $\operatorname{assms}(1)$ have $\ldots=1 /\left(\right.$ of-int $\left.q^{\wedge}(f a c t(n+2)-f a c t(n+1))\right)$ by (subst power-diff) simp-all
also have fact $(n+2)-$ fact $(n+1)=(n+1) *$ fact $(n+1)$ by $(\operatorname{simp}$ add:
algebra-simps)
also from $\operatorname{assms}(1)$ have $1 /($ of-int $q \wedge \ldots)<1 /($ real-of-int $q \wedge($ fact $(n+$ 1) * n))
by (intro divide-strict-left-mono power-increasing mult-right-mono) simp-all also have $\ldots=1 /$ of-int $(b n){ }^{\text {^ }} n$
by (simp add: power-mult b-def power-divide del: fact-Suc)
finally show \mid standard-liouville $p q-a n / b n \mid<1 /$ of-int (bn) ^n.
from $\operatorname{assms}(3)$ obtain k where $k: k \geq n+1 p k \neq 0$
by (auto simp: frequently-def eventually-at-top-linorder)
define k^{\prime} where $k^{\prime}=k-n-1$
from assms k have $p k \geq 0$ by force
with k assms have $k^{\prime}: p\left(k^{\prime}+n+1\right)>0$ unfolding k^{\prime}-def by force
with $\operatorname{assms}(1,2)$ have ? $S>0$
by (intro suminf-pos2[of-k] summable-ignore-initial-segment summable)
(force intro!: divide-pos-pos divide-nonneg-pos) +
with $e q$ show \mid standard-liouville $p q-a n / b n \mid>0$ by (simp only:)

qed

We can now show our main result: any standard Liouville number is transcendental.

```
theorem transcendental-standard-liouville:
    assumes q>1 range p\subseteq{0..<q} frequently ( }\lambdak.pk\not=0) sequentially
    shows \negalgebraic (standard-liouville p q)
proof -
    from assms interpret
        liouville standard-liouville p q
                        \lambdan. (\sumk\leqn.pk*q^(fact (Suc n) - fact (Suc k)))
            \lambdan.q^fact (Suc n)
        by (rule standard-liouville-is-liouville)
    from transcendental show ?thesis .
qed
```

In particular: The the standard construction for constant sequences, such as the "classic" Liouville constant $\sum_{n=1}^{\infty} 10^{-n!}=0.11000100 \ldots$, are transcendental.
This shows that Liouville numbers exists and therefore gives a concrete and elementary proof that transcendental numbers exist.

```
corollary transcendental-standard-standard-liouville:
    a\in{0<..<b}\Longrightarrow\negalgebraic (standard-liouville (\lambda-. int a) (int b))
    by (intro transcendental-standard-liouville) auto
corollary transcendental-liouville-constant:
    \negalgebraic (standard-liouville (\lambda-. 1) 10)
    by (intro transcendental-standard-liouville) auto
end
```


References

[1] Wikipedia. Liouville number - Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Liouville_number\& oldid $=696910651,2015$. [Online; accessed 22-July-2004].

