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Abstract

In this work, we define the concept of Liouville numbers as well as
the standard construction to obtain Liouville numbers and we prove
their most important properties: irrationality and transcendence.

This is historically interesting since Liouville numbers constructed
in the standard way where the first numbers that were proven to be
transcendental. The proof is very elementary and requires only stan-
dard arithmetic and the Mean Value Theorem for polynomials and the
boundedness of polynomials on compact intervals.
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1 Liouville Numbers
1.1 Preliminary lemmas
theory Liouville-Numbers-Misc
imports

Complex-Main
HOL−Computational-Algebra.Polynomial

begin

We will require these inequalities on factorials to show properties of the
standard construction later.
lemma fact-ineq: n ≥ 1 =⇒ fact n + k ≤ fact (n + k)
proof (induction k)

case (Suc k)
from Suc have fact n + Suc k ≤ fact (n + k) + 1 by simp
also from Suc have . . . ≤ fact (n + Suc k) by simp
finally show ?case .
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qed simp-all

lemma Ints-sum:
assumes

∧
x. x ∈ A =⇒ f x ∈ �

shows sum f A ∈ �
by (cases finite A, insert assms, induction A rule: finite-induct)

(auto intro!: Ints-add)

lemma suminf-split-initial-segment ′:
summable (f :: nat ⇒ ′a::real-normed-vector) =⇒

suminf f = (
∑

n. f (n + k + 1 )) + sum f {..k}
by (subst suminf-split-initial-segment[of - Suc k], assumption, subst lessThan-Suc-atMost)

simp-all

lemma Rats-eq-int-div-int ′: (� :: real set) = {of-int p / of-int q |p q. q > 0}
proof safe

fix x :: real assume x ∈ �
then obtain p q where pq: x = of-int p / of-int q q 6= 0

by (subst (asm) Rats-eq-int-div-int) auto
show ∃ p q. x = real-of-int p / real-of-int q ∧ 0 < q
proof (cases q > 0 )

case False
show ?thesis by (rule exI [of - −p], rule exI [of - −q]) (insert False pq, auto)

qed (insert pq, force)
qed auto

lemma Rats-cases ′:
assumes (x :: real) ∈ �
obtains p q where q > 0 x = of-int p / of-int q
using assms by (subst (asm) Rats-eq-int-div-int ′) auto

The following inequality gives a lower bound for the absolute value of an
integer polynomial at a rational point that is not a root.
lemma int-poly-rat-no-root-ge:

fixes p :: real poly and a b :: int
assumes

∧
n. coeff p n ∈ �

assumes b > 0 poly p (a / b) 6= 0
defines n ≡ degree p
shows abs (poly p (a / b)) ≥ 1 / of-int b ^ n

proof −
let ?S = (

∑
i≤n. coeff p i ∗ of-int a ^ i ∗ (of-int b ^ (n − i)))

from ‹b > 0 › have eq: ?S = of-int b ^ n ∗ poly p (a / b)
by (simp add: poly-altdef power-divide mult-ac n-def sum-distrib-left power-diff )

have ?S ∈ � by (intro Ints-sum Ints-mult assms Ints-power) simp-all
moreover from assms have ?S 6= 0 by (subst eq) auto
ultimately have abs ?S ≥ 1 by (elim Ints-cases) simp
with eq ‹b > 0 › show ?thesis by (simp add: field-simps abs-mult)

qed
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end

theory Liouville-Numbers
imports

Complex-Main
HOL−Computational-Algebra.Polynomial
Liouville-Numbers-Misc

begin

A Liouville number is a real number that can be approximated well – but
not perfectly – by a sequence of rational numbers. “Well“, in this context,
means that the error of the n-th rational in the sequence is bounded by the
n-th power of its denominator.
Our approach will be the following:

• Liouville numbers cannot be rational.

• Any irrational algebraic number cannot be approximated in the Liou-
ville sense

• Therefore, all Liouville numbers are transcendental.

• The standard construction fulfils all the properties of Liouville num-
bers.

1.2 Definition of Liouville numbers

The following definitions and proofs are largely adapted from those in the
Wikipedia article on Liouville numbers. [1]

A Liouville number is a real number that can be approximated well – but
not perfectly – by a sequence of rational numbers. The error of the n-th
term pn

qn
is at most q−n

n , where pn ∈ � and qn ∈ �≥2.
We will say that such a number can be approximated in the Liouville sense.
locale liouville =

fixes x :: real and p q :: nat ⇒ int
assumes approx-int-pos: abs (x − p n / q n) > 0

and denom-gt-1 : q n > 1
and approx-int: abs (x − p n / q n) < 1 / of-int (q n) ^ n

First, we show that any Liouville number is irrational.
lemma (in liouville) irrational: x /∈ �
proof

assume x ∈ �
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then obtain c d :: int where d: x = of-int c / of-int d d > 0
by (elim Rats-cases ′) simp

define n where n = Suc (nat dlog 2 de)
note q-gt-1 = denom-gt-1 [of n]

have neq: c ∗ q n 6= d ∗ p n
proof

assume c ∗ q n = d ∗ p n
hence of-int (c ∗ q n) = of-int (d ∗ p n) by (simp only: )
with approx-int-pos[of n] d q-gt-1 show False by (auto simp: field-simps)

qed
hence abs-pos: 0 < abs (c ∗ q n − d ∗ p n) by simp

from q-gt-1 d have of-int d = 2 powr log 2 d by (subst powr-log-cancel) simp-all
also from d have log 2 (of-int d) ≥ log 2 1 by (subst log-le-cancel-iff ) simp-all
hence 2 powr log 2 d ≤ 2 powr of-nat (nat dlog 2 de)

by (intro powr-mono) simp-all
also have . . . = of-int (2 ^ nat dlog 2 de)

by (subst powr-realpow) simp-all
finally have d ≤ 2 ^ nat dlog 2 (of-int d)e

by (subst (asm) of-int-le-iff )
also have . . . ∗ q n ≤ q n ^ Suc (nat dlog 2 (of-int d)e)

by (subst power-Suc, subst mult.commute, intro mult-left-mono power-mono,
insert q-gt-1 ) simp-all

also from q-gt-1 have . . . = q n ^ n by (simp add: n-def )
finally have 1 / of-int (q n ^ n) ≤ 1 / real-of-int (d ∗ q n) using q-gt-1 d

by (intro divide-left-mono Rings.mult-pos-pos of-int-pos, subst of-int-le-iff )
simp-all

also have . . . ≤ of-int (abs (c ∗ q n − d ∗ p n)) / real-of-int (d ∗ q n) using
q-gt-1 d abs-pos

by (intro divide-right-mono) (linarith, simp)
also have . . . = abs (x − of-int (p n) / of-int (q n)) using q-gt-1 d(2 )

by (simp-all add: divide-simps d(1 ) mult-ac)
finally show False using approx-int[of n] by simp

qed

Next, any irrational algebraic number cannot be approximated with rational
numbers in the Liouville sense.
lemma liouville-irrational-algebraic:

fixes x :: real
assumes irrationsl: x /∈ � and algebraic x
obtains c :: real and n :: nat

where c > 0 and
∧
(p::int) (q::int). q > 0 =⇒ abs (x − p / q) > c / of-int q

^ n
proof −

from ‹algebraic x› obtain p where p:
∧

i. coeff p i ∈ � p 6= 0 poly p x = 0
by (elim algebraicE) blast

define n where n = degree p
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— The derivative of p is bounded within {x − 1 ..x + 1}.
let ?f = λt. |poly (pderiv p) t|
define M where M = (SUP t∈{x−1 ..x+1}. ?f t)
define roots where roots = {x. poly p x = 0} − {x}

define A-set where A-set = {1 , 1/M} ∪ {abs (x ′ − x) |x ′. x ′ ∈ roots}
define A ′ where A ′ = Min A-set
define A where A = A ′ / 2
— We define A to be a positive real number that is less than 1, 1 / M and any

distance from x to another root of p.

— Properties of M, our upper bound for the derivative of p:
have ∃ s∈{x−1 ..x+1}. ∀ y∈{x−1 ..x+1}. ?f s ≥ ?f y

by (intro continuous-attains-sup) (auto intro!: continuous-intros)
hence bdd: bdd-above (?f ‘ {x−1 ..x+1}) by auto

have M-pos: M > 0
proof −

from p have pderiv p 6= 0 by (auto dest!: pderiv-iszero)
hence finite {x. poly (pderiv p) x = 0} using poly-roots-finite by blast
moreover have ¬finite {x−1 ..x+1} by (simp add: infinite-Icc)
ultimately have ¬finite ({x−1 ..x+1} − {x. poly (pderiv p) x = 0}) by simp
hence {x−1 ..x+1} − {x. poly (pderiv p) x = 0} 6= {} by (intro notI ) simp
then obtain t where t: t ∈ {x−1 ..x+1} and poly (pderiv p) t 6= 0 by blast
hence 0 < ?f t by simp
also from t and bdd have . . . ≤ M unfolding M-def by (rule cSUP-upper)
finally show M > 0 .

qed

have M-sup: ?f t ≤ M if t ∈ {x−1 ..x+1} for t
proof −

from that and bdd show ?f t ≤ M
unfolding M-def by (rule cSUP-upper)

qed

— Properties of A:
from p poly-roots-finite[of p] have finite A-set

unfolding A-set-def roots-def by simp
have x /∈ roots unfolding roots-def by auto
hence A ′ > 0 using Min-gr-iff [OF ‹finite A-set›, folded A ′-def , of 0 ]

by (auto simp: A-set-def M-pos)
hence A-pos: A > 0 by (simp add: A-def )

from ‹A ′ > 0 › have A < A ′ by (simp add: A-def )
moreover from Min-le[OF ‹finite A-set›, folded A ′-def ]

have A ′ ≤ 1 A ′ ≤ 1/M
∧

x ′. x ′ 6= x =⇒ poly p x ′ = 0 =⇒ A ′ ≤ abs (x ′ − x)
unfolding A-set-def roots-def by auto

ultimately have A-less: A < 1 A < 1/M
∧

x ′. x ′ 6= x =⇒ poly p x ′ = 0 =⇒ A
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< abs (x ′ − x)
by fastforce+

— Finally: no rational number can approximate x “well enough”.
have ∀ (a::int) (b :: int). b > 0 −→ |x − of-int a / of-int b| > A / of-int b ^ n
proof (intro allI impI , rule ccontr)

fix a b :: int
assume b: b > 0 and ¬(A / of-int b ^ n < |x − of-int a / of-int b|)
hence ab: abs (x − of-int a / of-int b) ≤ A / of-int b ^ n by simp
also from A-pos b have A / of-int b ^ n ≤ A / 1

by (intro divide-left-mono) simp-all
finally have ab ′: abs (x − a / b) ≤ A by simp
also have . . . ≤ 1 using A-less by simp
finally have ab ′′: a / b ∈ {x−1 ..x+1} by auto

have no-root: poly p (a / b) 6= 0
proof

assume poly p (a / b) = 0
moreover from ‹x /∈ �› have x 6= a / b by auto
ultimately have A < abs (a / b − x) using A-less(3 ) by simp
with ab ′ show False by simp

qed

have ∃ x0∈{x−1 ..x+1}. poly p (a / b) − poly p x = (a / b − x) ∗ poly (pderiv
p) x0

using ab ′′ by (intro poly-MVT ′) (auto simp: min-def max-def )
with p obtain x0 :: real where x0 :

x0 ∈ {x−1 ..x+1} poly p (a / b) = (a / b − x) ∗ poly (pderiv p) x0 by auto

from x0 (2 ) no-root have deriv-pos: poly (pderiv p) x0 6= 0 by auto

from b p no-root have p-ab: abs (poly p (a / b)) ≥ 1 / of-int b ^ n
unfolding n-def by (intro int-poly-rat-no-root-ge)

note ab
also from A-less b have A / of-int b ^ n < (1/M ) / of-int b ^ n

by (intro divide-strict-right-mono) simp-all
also have . . . = (1 / b ^ n) / M by simp
also from M-pos ab p-ab have . . . ≤ abs (poly p (a / b)) / M

by (intro divide-right-mono) simp-all
also from deriv-pos M-pos x0 (1 )

have . . . ≤ abs (poly p (a / b)) / abs (poly (pderiv p) x0 )
by (intro divide-left-mono M-sup) simp-all

also have |poly p (a / b)| = |a / b − x| ∗ |poly (pderiv p) x0 |
by (subst x0 (2 )) (simp add: abs-mult)

with deriv-pos have |poly p (a / b)| / |poly (pderiv p) x0 | = |x − a / b|
by (subst nonzero-divide-eq-eq) simp-all

finally show False by simp
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qed
with A-pos show ?thesis using that[of A n] by blast

qed

Since Liouville numbers are irrational, but can be approximated well by
rational numbers in the Liouville sense, they must be transcendental.
lemma (in liouville) transcendental: ¬algebraic x
proof

assume algebraic x
from liouville-irrational-algebraic[OF irrational this]
obtain c n where cn:

c > 0
∧

p q. q > 0 =⇒ c / real-of-int q ^ n < |x − real-of-int p / real-of-int q|
by auto

define r where r = nat dlog 2 (1 / c)e
define m where m = n + r
from cn(1 ) have (1/c) = 2 powr log 2 (1/c) by (subst powr-log-cancel) simp-all
also have log 2 (1/c) ≤ of-nat (nat dlog 2 (1/c)e) by linarith
hence 2 powr log 2 (1/c) ≤ 2 powr . . . by (intro powr-mono) simp-all
also have . . . = 2 ^ r unfolding r-def by (simp add: powr-realpow)
finally have 1 / (2^r) ≤ c using cn(1 ) by (simp add: field-simps)

have abs (x − p m / q m) < 1 / of-int (q m) ^ m by (rule approx-int)
also have . . . = (1 / of-int (q m) ^ r) ∗ (1 / real-of-int (q m) ^ n)

by (simp add: m-def power-add)
also from denom-gt-1 [of m] have 1 / real-of-int (q m) ^ r ≤ 1 / 2 ^ r

by (intro divide-left-mono power-mono) simp-all
also have . . . ≤ c by fact
finally have abs (x − p m / q m) < c / of-int (q m) ^ n

using denom-gt-1 [of m] by − (simp-all add: divide-right-mono)
with cn(2 )[of q m p m] denom-gt-1 [of m] show False by simp

qed

1.3 Standard construction for Liouville numbers

We now define the standard construction for Liouville numbers.
definition standard-liouville :: (nat ⇒ int) ⇒ int ⇒ real where

standard-liouville p q = (
∑

k. p k / of-int q ^ fact (Suc k))

lemma standard-liouville-summable:
fixes p :: nat ⇒ int and q :: int
assumes q > 1 range p ⊆ {0 ..<q}
shows summable (λk. p k / of-int q ^ fact (Suc k))

proof (rule summable-comparison-test ′)
from assms(1 ) show summable (λn. (1 / q) ^ n)

by (intro summable-geometric) simp-all
next

fix n :: nat
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from assms have p n ∈ {0 ..<q} by blast
with assms(1 ) have norm (p n / of-int q ^ fact (Suc n)) ≤

q / of-int q ^ (fact (Suc n)) by (auto simp: field-simps)
also from assms(1 ) have . . . = 1 / of-int q ^ (fact (Suc n) − 1 )

by (subst power-diff ) (auto simp del: fact-Suc)
also have Suc n ≤ fact (Suc n) by (rule fact-ge-self )
with assms(1 ) have 1 / real-of-int q ^ (fact (Suc n) − 1 ) ≤ 1 / of-int q ^ n

by (intro divide-left-mono power-increasing)
(auto simp del: fact-Suc simp add: algebra-simps)

finally show norm (p n / of-int q ^ fact (Suc n)) ≤ (1 / q) ^ n
by (simp add: power-divide)

qed

lemma standard-liouville-sums:
assumes q > 1 range p ⊆ {0 ..<q}
shows (λk. p k / of-int q ^ fact (Suc k)) sums standard-liouville p q
using standard-liouville-summable[OF assms] unfolding standard-liouville-def
by (simp add: summable-sums)

Now we prove that the standard construction indeed yields Liouville num-
bers.
lemma standard-liouville-is-liouville:

assumes q > 1 range p ⊆ {0 ..<q} frequently (λn. p n 6= 0 ) sequentially
defines b ≡ λn. q ^ fact (Suc n)
defines a ≡ λn. (

∑
k≤n. p k ∗ q ^ (fact (Suc n) − fact (Suc k)))

shows liouville (standard-liouville p q) a b
proof

fix n :: nat
from assms(1 ) have 1 < q ^ 1 by simp
also from assms(1 ) have . . . ≤ b n unfolding b-def

by (intro power-increasing) (simp-all del: fact-Suc)
finally show b n > 1 .

note summable = standard-liouville-summable[OF assms(1 ,2 )]
let ?S =

∑
k. p (k + n + 1 ) / of-int q ^ (fact (Suc (k + n + 1 )))

let ?C = (q − 1 ) / of-int q ^ (fact (n+2 ))

have a n / b n = (
∑

k≤n. p k ∗ (of-int q ^ (fact (n+1 ) − fact (k+1 )) / of-int
q ^ (fact (n+1 ))))

by (simp add: a-def b-def sum-divide-distrib of-int-sum)
also have . . . = (

∑
k≤n. p k / of-int q ^ (fact (Suc k)))

by (intro sum.cong refl, subst inverse-divide [symmetric], subst power-diff
[symmetric])

(insert assms(1 ), simp-all add: divide-simps fact-mono-nat del: fact-Suc)
also have standard-liouville p q − . . . = ?S unfolding standard-liouville-def

by (subst diff-eq-eq) (intro suminf-split-initial-segment ′ summable)
finally have abs (standard-liouville p q − a n / b n) = abs ?S by (simp only: )
moreover from assms have ?S ≥ 0
by (intro suminf-nonneg allI divide-nonneg-pos summable-ignore-initial-segment
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summable) force+
ultimately have eq: abs (standard-liouville p q − a n / b n) = ?S by simp

also have ?S ≤ (
∑

k. ?C ∗ (1 / q) ^ k)
proof (intro suminf-le allI summable-ignore-initial-segment summable)

from assms show summable (λk. ?C ∗ (1 / q) ^ k)
by (intro summable-mult summable-geometric) simp-all

next
fix k :: nat
from assms have p (k + n + 1 ) ≤ q − 1 by force
with ‹q > 1 › have p (k + n + 1 ) / of-int q ^ fact (Suc (k + n + 1 )) ≤

(q − 1 ) / of-int q ^ (fact (Suc (k + n + 1 )))
by (intro divide-right-mono) (simp-all del: fact-Suc)

also from ‹q > 1 › have . . . ≤ (q − 1 ) / of-int q ^ (fact (n+2 ) + k)
using fact-ineq[of n+2 k]
by (intro divide-left-mono power-increasing) (simp-all add: add-ac)

also have . . . = ?C ∗ (1 / q) ^ k
by (simp add: field-simps power-add del: fact-Suc)

finally show p (k + n + 1 ) / of-int q ^ fact (Suc (k + n + 1 )) ≤ . . . .
qed
also from assms have . . . = ?C ∗ (

∑
k. (1 / q) ^ k)

by (intro suminf-mult summable-geometric) simp-all
also from assms have (

∑
k. (1 / q) ^ k) = 1 / (1 − 1 / q)

by (intro suminf-geometric) simp-all
also from assms(1 ) have ?C ∗ . . . = of-int q ^ 1 / of-int q ^ fact (n + 2 )

by (simp add: field-simps)
also from assms(1 ) have . . . ≤ of-int q ^ fact (n + 1 ) / of-int q ^ fact (n + 2 )

by (intro divide-right-mono power-increasing) (simp-all add: field-simps del:
fact-Suc)

also from assms(1 ) have . . . = 1 / (of-int q ^ (fact (n + 2 ) − fact (n + 1 )))
by (subst power-diff ) simp-all

also have fact (n + 2 ) − fact (n + 1 ) = (n + 1 ) ∗ fact (n + 1 ) by (simp add:
algebra-simps)

also from assms(1 ) have 1 / (of-int q ^ . . .) < 1 / (real-of-int q ^ (fact (n +
1 ) ∗ n))

by (intro divide-strict-left-mono power-increasing mult-right-mono) simp-all
also have . . . = 1 / of-int (b n) ^ n

by (simp add: power-mult b-def power-divide del: fact-Suc)
finally show |standard-liouville p q − a n / b n| < 1 / of-int (b n) ^ n .

from assms(3 ) obtain k where k: k ≥ n + 1 p k 6= 0
by (auto simp: frequently-def eventually-at-top-linorder)

define k ′ where k ′ = k − n − 1
from assms k have p k ≥ 0 by force
with k assms have k ′: p (k ′ + n + 1 ) > 0 unfolding k ′-def by force
with assms(1 ,2 ) have ?S > 0

by (intro suminf-pos2 [of - k ′] summable-ignore-initial-segment summable)
(force intro!: divide-pos-pos divide-nonneg-pos)+

with eq show |standard-liouville p q − a n / b n| > 0 by (simp only: )
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qed

We can now show our main result: any standard Liouville number is tran-
scendental.
theorem transcendental-standard-liouville:

assumes q > 1 range p ⊆ {0 ..<q} frequently (λk. p k 6= 0 ) sequentially
shows ¬algebraic (standard-liouville p q)

proof −
from assms interpret

liouville standard-liouville p q
λn. (

∑
k≤n. p k ∗ q ^ (fact (Suc n) − fact (Suc k)))

λn. q ^ fact (Suc n)
by (rule standard-liouville-is-liouville)

from transcendental show ?thesis .
qed

In particular: The the standard construction for constant sequences, such as
the “classic” Liouville constant ∑∞

n=1 10
−n! = 0.11000100 . . ., are transcen-

dental.
This shows that Liouville numbers exists and therefore gives a concrete and
elementary proof that transcendental numbers exist.
corollary transcendental-standard-standard-liouville:

a ∈ {0<..<b} =⇒ ¬algebraic (standard-liouville (λ-. int a) (int b))
by (intro transcendental-standard-liouville) auto

corollary transcendental-liouville-constant:
¬algebraic (standard-liouville (λ-. 1 ) 10 )
by (intro transcendental-standard-liouville) auto

end
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